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Abstract 

Fibrosis is characterised by an exuberant wound healing response and the major cell type 

responsible is the myofibroblast. The myofibroblast is typified by excessive ECM production 

and contractile activity and is demarcated by alpha-smooth muscle actin expression. What 

has recently come to light is that the activation of the fibroblast to myofibroblast may be 

under epigenetic control, specifically methylation. Methylation of DNA is a conserved 

mechanism to precisely regulate gene expression in a specific context. Hypermethylation 

leads to gene repression and hypomethylation results in gene induction. Methylation 

abnormalities have recently been uncovered in fibrosis, both organ specific and widespread 

fibrosis. The fact that these methylation changes are rapid and reversible lends themselves 

amenable to therapeutic intervention. This review considers the role of methylation in 

fibrosis and the activation of the myofibroblasts and how this could be targeted for fibrosis. 

Fibrosis is of course currently intractable to therapeutics and is a leading cause of morbidity 

and mortality and is an urgent unmet clinical need. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Fibrosis is characterised by an accumulation of extracellular matrix (ECM) proteins, particularly type I 

and type II collagen (Iredale, 2007). This accumulation results in a hardening of the tissue, similar to 

what you would see as a result of scar tissue formation during the process of wound healing (Wynn, 

2008), however, in this case it is pathological and fibrosis of an organ will impair its function 

(Zeisberg and Kalluri, 2013). In fibrotic tissues, myofibroblasts are the primary contributors to the 

excessive production of ECM proteins regardless of the aetiology (Zeisberg and Kalluri, 2013). The 

fibrosis can be organ specific as in liver fibrosis or more widespread as in systemic sclerosis (SSc). 

Whether fibrosis is organ specific or diffuse it is a major cause of morbidity and mortality. Currently, 

there is no specific treatment and a deeper understanding of the activation of the myofibroblast is 

required. It is only recently that the molecular mechanisms of the switch between fibroblast and 

myofibroblast have come to light. 

Myofibroblasts 

Myofibroblasts produce ECM proteins such as collagen and ED-A fibronectin. However, the defining 

characteristic of the myofibroblast is its expression of α-smooth muscle actin (α-SMA); this gives the 

cell contractility, which allows the cell to aid in the process of wound healing by actively by pulling 

the two edges of a wound towards each other (Hinz et al., 2007). 

In a tissue that has been damaged, fibroblasts will differentiate into myofibroblasts and contribute 

to the repair of the damage (Hinz et al., 2007). Persistent injury leads to the formation of scar tissue 

and fibrosis. Myofibroblasts can also arise from epithelial cells through a process known as 

epithelial-mesenchymal transition (EMT) (Wynn, 2008); in the liver, hepatic stellate cells (HSCs) are 

the major cell type from which myofibroblasts originate (Page et al., 2015). The differentiation of 

HSCs to myofibroblasts is preceded by a specific set of gene changes and it is alteration in gene 

methylation that drives this process (Mann et al., 2010). Methylation is an epigenetic modification 

that can spatially and temporally regulate gene expression. This review aims to examine the role of 

methylation in myofibroblasts and how this impacts fibrosis. 

Pathogenesis of Fibrosis 

Fibrosis can be triggered by injury to a tissue; this can be caused by toxicity, autoimmunity, the 

effect of cytokines, infection or trauma. Regardless of the cause, fibrosis arises when there is a 

failure of an injury to achieve resolution, thus leading to an accumulation of fibroblasts and 

overproduction of ECM proteins that can inhibit the function of organs. This loss of organ function 

can be fatal. 

When there is damage to a tissue, resident fibroblasts (and some epithelial cells) adopt a 

myofibroblast phenotype and, through their contractility and secretion of ECM proteins, aid in 

wound repair. In fibrosis, the accumulation of myofibroblasts and ECM production becomes 

excessive and is also accompanied by damage to parenchymal tissues, changes to the 

microvasculature resulting in reduced perfusion and infiltration of mononuclear cells. Fibrosis can 

result in the loss of organ function as the resident parenchymal cells are replaced by myofibroblasts 

and ECM (Zeisberg and Kalluri, 2013).  

 



Methylation  

Methylation of deoxyribonucleic acid (DNA) is the process of adding a methyl group to a nucleotide 

within the DNA. This methyl group is commonly donated by S-adenosyl-L-methionine (AdoMet) and  

its transfer is facilitated through the action of the DNA methyltransferase (DNMT) family of enzymes 

(Cheng and Roberts, 2001). Dietary sources of methyl donors (e.g. folate) are important, with 

deficiency resulting in hypomethylation (Duthie et al., 2000). In humans, four DNMT enzymes have 

been identified (see Table 1). 

The methylation of DNA occurs predominantly at CpG dinucleotides, where a cytosine and guanine 

are separated by a single phosphate. The methylation occurs specifically on the 5th Carbon atom of 

the cytosine ring (Meehan et al., 1992), and is then referred to as 5-methylcytosine (5mC) (see figure 

1); DNMT3a and DNMT3b both methylate DNA in this manner (Cheng and Roberts, 2001). Reports 

on the degree of CpG island methylation vary, but numerous sources show it to be somewhere 

between 60-90% (Meehan et al., 1992; Robertson et al., 1999).  

The greatest frequency of CpG sequences is seen in CpG islands, sequences of repeating C and G 

nucleotides that are typically around 1000 base pairs in length. Approximately 70% of genes have a 

CpG island in their promotor region (Deaton and Bird, 2011).  

DNMT3 and DNMT1 act synergistically, there is evidence to show that methylation by DNMT3 

stimulates DNMT1 to further methylate the DNA, in one study this resulted in a fivefold increase in 

methylation activity over that of DNMT3 alone (Fatemi et al., 2002).  Alone, DNMT1 is recruited to 

sites of DNA where it acts to maintain methylation (Mortusewicz et al., 2005). It also plays a role in 

DNA replication and knockdown of DNMT1 causes an arrest of intra-S phase DNA replication. It is 

thought that this mechanism acts to prevent demethylation that would arise from DNA replication in 

and absence of DNMT1 (Milutinovic et al., 2003). DNMT3L has also been shown to cause a 20-fold 

increase to the catalytic activity of DNMT3a and DNMT3b (Gowher et al., 2005; Kareta et al., 2006).  

The methylation and demethylation of DNA is a form of epigenetic modification; a stable, inherited 

modification to DNA that does not alter the sequence, but results in a change in gene expression  

(Ciechomska et al., 2014). DNA methylation is critically involved in X chromosome inactivation and 

the silencing of retroviral elements of the genome (Moore et al., 2013).  Methylation of DNA can 

result in gene repression (Mohn et al., 2008) and hypomethylation of DNA is associated with 

elevated gene expression (Karouzakis et al., 2009), however methylation does not always cause a 

change in expression. Gene repression is achieved through the action of methyl binding proteins 

such as methyl-Cap binding protein 2 (MeCP2)(Nan et al., 1998), and other members of the methyl-

CpG binding domain (MBD) family, which all share this domain, allowing them to bind to 

methylated-CpG sequences (Hendrich and Tweedie, 2003). Repression of a gene is dependent on the 

density of the methylation, i.e. how frequently methylated-CpG sequences occur within the gene, 

and also on the location of the methylation in relation to the promoter region of the gene (Bian et al., 

2013; Hsieh, 1994)  

Epigenetic changes have been linked to many diseases including cardiovascular disease (Webster et 

al., 2013); as well as colon, lung, breast and thyroid cancer, where large hypomethylated blocks of 

the genomes have been found (Hansen et al., 2011) and promoter hypermethylation of classic 

tumour suppressor genes are found. More recently, methylation changes have been associated with 



fibrotic diseases such as hepatic, pulmonary, renal and cardiac fibrosis (Mann et al., 2010; 

Rabinovich et al., 2012; Tampe et al., 2014; Xu et al., 2015). Numerous genes have been found to be 

involved in this association and those referred to in this review are listed in Table 2. 

Komatsu et al. also found hypomethylation in the early stages of liver fibrosis. Global 

hypomethylation was observed, along with hypomethylation and upregulation of secreted 

phosphoprotein 1 (Spp1), a gene which induces inflammation. In addition, αSma, Col1a2, and Timp1 

genes were also found to be hypomethylated and upregulated (Komatsu et al., 2012). The 

upregulation of these genes, which are closely linked to fibrosis, coinciding with upregulation of 

Spp1 suggest that Spp1 may also play a role the processes of liver fibrosis. Interestingly it appears 

TIMP-1, a major fibrotic inducer is regulated by methylation as it can be modified by decatibine 

treatment (Vincent et al., 2015). 

In tissue samples from patients with idiopathic pulmonary fibrosis (IPF), it was found that 625 CpG 

islands were differentially methylated when compared to healthy tissue samples, with 91.2% of 

them being in intronic, exonic or intergenic regions and 8.8% of them in promoter regions. Many of 

these differentially methylated CpG islands were found to be in genes involved in apoptosis, cell 

morphogenesis, regulation of cellular biosynthetic processes, histone acetylation, cellular growth 

and proliferation, cell morphology, cancer and cell signaling. The IPF samples were then compared to 

samples from lung cancer patients; the lung cancer samples were found to have 2428 differentially 

methylated CpG islands when compared to healthy tissue samples. 65% of the differentially 

methylated CpG islands methylated in IPF samples were also seen in the lung cancer samples 

(Rabinovich et al., 2012). 

Methylation of the promoter region of the Thy-1 gene is associated with the myofibroblast 

phenotype in the lung, where expression of Thy-1 ceases and α-SMA expression is acquired. Using 

CCD19Lu lung fibroblasts, Robinson et al. found that hypoxia could induce global hypermethylation 

and that Thy-1 mRNA expression was suppressed. When the methylation was reversed with 5-aza-2’-

deoxycytidine, Thy-1 expression was restored. This provides evidence that methylation alterations 

can influence myofibroblast differentiation (Robinson et al., 2012). It has also been shown in 

idiopathic lung fibrosis that there is hypermethylation of the p14ARF promoter compared to controls, 

leading to reduced expression. P14ARF is a pro apoptotic protein, thus, its down regulation promotes 

resistance to apoptosis in IPF (Cisneros et al., 2012). 

In SSc, a prototypical fibrotic disease, in which the skin and lung are fibrotic, promoter 

hypermethylation of DKK1 and SFRP1 is found in myofibroblasts. This hypermethylation could be 

reversed with 5-Aza’C and, in a mouse model of fibrosis, pre-treatment with 5-Aza’C ameliorated 

fibrosis. This occurs because DKK1 and SFRP1 are Wnt antagonists; therefore, a reduction in their 

levels leads to unabated Wnt signalling, which is known to drive fibrosis (Dees et al., 2014). 

Furthermore, there has been described global and gene specific changes in dermal fibroblasts from 

SSc patients, including hypomethylation in RUNX genes (Altorok et al., 2015). This is particularly 

interesting as both RUNX1 and RUNX2 have been shown to regulate tissue inhibitor of 

metalloproteinases 1 (TIMP-1) (Bertrand-Philippe et al., 2004), which has a critical role in systemic 

sclerosis. A recent study in keloid fibroblasts, which are similar to SSc fibroblasts, with an abundance 

of ECM molecules, showed massive changes in global methylation with the majority being 

hypomethylated and 26% being hypermethylated (Jones et al., 2015).  



Altorok et al. also found numerous differentially methylated sites in SSc fibroblasts when compared 

to healthy controls. In diffuse cutaneous SSc, 2710 differentially methylated CpG sites were 

identified, with 61% being hypomethylated, and in limited cutaneous SSc, 1021 differentially 

methylated CpG sites were identified, with 90% being hypomethylated.  Out of the differentially 

methylated sites in diffuse cutaneous SSc and limited cutaneous SSc, only 203 CpG sites were 

common between the two forms of the disease. These common sites of differential methylation 

between the two forms of the disease are likely key in the processes of fibrosis. In addition to the 

hypomethylation of the RUNX genes, COL23A1 and COL4A2, encoding collagens and MYO1E, 

encoding myosins, were also hypomethylated in both diffuse cutaneous SSc and limited cutaneous 

SSc (Altorok et al., 2015).  

 

Hypermethylation of the FLI1 promoter region has also been described in myofibroblasts from SSc 

patients, thus leading to its repression. FLI1 is a collagen suppressor gene and a negative regulator of 

fibrosis which is reduced in SSc patient’s cells; in normal fibroblasts, reduction of FLI1 via siRNA 

results in excessive ECM production. SSc fibroblasts were also found to contain higher levels of 

DNMT1, histone deacetylase (HDAC)-1, HDAC-6, methyl-CpG DNA binding domain (MBD)-1 and 

MeCP2 than control fibroblasts, which is indicative of the epigenetic modifications occurring within 

them (Wang et al., 2006). 

 

Demethylation 

 

DNA methylation marks are very stable and can be transmitted through generations, but they are 

not permanent and can be erased. The ten-eleven translocation (TET) family of proteins are 

responsible for the oxidation of 5mC into 5-hydroxymethylcytosine (5hmC) (Zhao et al., 2014), and 

whilst 5mC is typically associated with gene silencing effects, 5hmC is associated with an increase in 

gene expression (Coppieters et al., 2014). In addition, it has been found that TET can also covert 5mC 

into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito et al., 2011). These alterations made 

to 5mC by TET are intermediate steps in the process of DNA demethylation; this can occur through 

the oxidation of 5mC and 5hmC into 5caC, which is then excised by thymine-DNA glycosylase, a base 

excision enzyme. From the current evidence, it is thought that this results in the initiation of the 

base-excision repair pathway, replacing what was originally 5mC with a non-methylated cytosine (He 

et al., 2011; Maiti and Drohat, 2011). There is also evidence that activation-induced 

deaminase/apolipoprotein B mRNA-editing enzyme complex (AID/APOBEC) deaminases promote 

demethylation of 5hmC (Guo et al., 2011). TET can also cause DNA demethylation in a passive 

manner, DNMT1 shows lower activity at hemi-5hmC sites, meaning that the methylation cannot be 

maintained throughout the process of cell division (Valinluck and Sowers, 2007). TET3 has recently 

been shown to regulate activation of hepatic stellate cells (HSCs) into myofibroblasts, silencing of 

TET3 was found to promote HSC activation and resulted in the downregulation of HIF-1A-AS1, a long 

non coding RNA; in addition, silencing of HIF-1A-AS1 was found to promote proliferation and reduce 

apoptosis in LX-2 cells (Zhang et al., 2014). 

It was recently shown that HSC transdifferentiation was accompanied by alteration in DNA 

methylation patterns; and that a decrease in DNMT3b resulted in a pro-fibrogenic phenotype in 

activated HSCs (Page et al., 2015). In human livers affected by primary sclerosing cholangitis (PSC), 

where there is fibrosis of the intrahepatic bile ducts, it was shown that there is an increase in TETs 



(demethylating enzymes) and DNMTs; however hepatic protein expression of TET2 and TET3 ceased 

and there was also an induction of DNMT3b expression. Similar findings were also obtained from 

livers effected by alcoholic liver disease, although there was a reduction in TET2 expression (Page et 

al., 2015). It is suggested that global and gene specific methylation changes precede the 

differentiation of the stellate cell. While Page et al. found a more methylated genome associated 

with liver myofibroblast activation, another group, Gotze et al., found in vitro that early activation of 

stellate cells was associated with global hypomethylation (Gotze et al., 2015). These conflicting 

results could be a result of different genes having their methylation patterns altered; for example, 

hypomethylation of pro-fibrotic genes and hypermethylation of anti-fibrotic genes could both result 

in fibrosis. However, it also possible that this could simply be caused by the passage number of the 

cells that were used in each study, as it has been shown that methylation patterns can change with 

passage (Shmookler Reis and Goldstein, 1982). 

A gene specific hypermethylation occurs in phosphatase and tension homolog deleted on 

chromosome 10 (PTEN), a negative regulator of HSC activation. Hypermethylation of the PTEN 

promoter results in lessened expression, as well as enhanced phospho-extracellular-signal-regulated 

kinase (p-ERK) signalling, which is important in mediating fibrosis. Treatment with 5-aza-2′-

deoxycytidine (5-Aza’C), a DNMT inhibitor, was found to decrease aberrant hypermethylation of the 

PTEN promoter, preventing the loss of expression seen in HSC activation. Furthermore, 5-Aza’C 

treatment prevented transforming growth factor-β (TGF-β)-mediated upregulation of Col1a1 and α-

smooth muscle actin (α-SMA) mRNA as well as α-SMA protein (Bian et al., 2012). 

 

Bone morphogenetic protein endothelial cell precursor-derived regulator (BMPER), a member of the 

TGF-β superfamily, is an important regulator of fibroblast activation. It was found that BMPER is 

highly expressed in IPF lung fibroblasts, more so than in healthy lung fibroblasts. Demethylation 

using 5′-azacytidine resulted in a decrease in BMPER expression in both healthy and IPF fibroblasts; 

this shows that the expression of BMPER, and therefore fibroblast activation, is regulated through 

methylation and demethylation. Treatment with 5′-azacytidine to cause demethylation was also 

found to decrease expression of Collagen 1, hyaluronan and hyaluronan synthase 2 (Huan et al., 

2015). Hyaluronan is a polysaccharide component of the ECM (Laurent and Fraser, 1992) whilst 

hyaluronan synthase 2 is the enzyme which produces it (Jacobson et al., 2000). It can therefore be 

established that a decrease in BMPER expression appears to result in reduced production of ECM 

components by lung fibroblasts. This decrease in ECM components also suggests a decrease in 

fibroblast migration as this is facilitated by the ECM (Huan et al., 2015). 

 

Angiogenic factor with G patch and FHA domains 1 (Aggf1) expression has been found to be 

suppressed in HSCs and downregulated in liver fibrosis.  This suppression of Aggf1 expression was 

found to be a result of changes in DNA methylation, and treatment with 5’-azacytidine restored 

expression. Inducing overexpression of Aggf1 was shown to alleviate liver fibrosis both in mice and in 

HSC cultures. Aggf1 regulates liver fibrosis by binding to the inhibitory SMAD7 protein, this results in 

reduced binding of SMAD3 to gene promoters and subsequent inhibition of fibrogenesis. When 

SMAD7 was knocked down, HSC activation was restored (Zhou et al., 2016). This again shows 

another gene that can induce fibrosis as a result of modification to DNA methylation. 

 



MeCP2 

MeCP2 is also of particular interest in fibrosis as there is evidence implicating it in the regulation of 

genes that play a vital role in the process (Bian et al., 2013). MeCP2 is able to bind to a single 

methylated CpG dinucleotide and shows weaker binding to methylated non-CpG sequences; MeCP2 

binding to methylated CpGs can result in gene repression, however, its suppressive capabilities rely 

on HDAC1 (Nan et al., 1998). MeCP2 recruits HDAC1 to methylated DNA where it regulates 

heterochromatic association through interaction with a protein responsible for heterochromatic 

packaging, Heterochromatin protein-1(Pandey et al., 2015). Hemi-methylated DNA has been shown 

to be a poor substrate for MeCP2, meaning there will be less repression (Meehan et al., 1992). It has 

been found in mouse models that MeCP2 also plays a role in gene activation. MeCP2-null mice had 

around ~85% of dysregulated genes in their hypothalamus downregulated (2184 out of the 2582 

genes). At the site of activated gene promoters, MeCP2 is associated with CREB1, a transcriptional 

activator (Chahrour et al., 2008). 

One way in which MeCP2 has been implicated in the pathogenesis of fibrosis is through its ability to 

positively regulate expression of the enzyme absent, small, or homeotic disc1-like (ASH1L). ASH1L 

can methylate H3K4 (histone 3, lysine 4), which functions to upregulate the expression of certain 

genes, including α-SMA, collagen, TIMP1 and transforming growth factor-β1 (TGF-β1) (Bian et al., 

2013). These are key proteins associated with the myofibroblast phenotype. 

In lung fibroblasts from mice with bleomycin-induced pulmonary fibrosis, Hu et al. found that 

MeCP2 binds to CpG islands in the α-SMA gene, specifically in the promoter region, intron 1 site 1 

and intron 1 site 2; binding occurred regardless of whether they were methylated or unmethylated. 

However, MeCP2 showed a much higher affinity for the methylated promoter region and 

methylated intron 1 site 2. When over expression of MeCP2 was stimulated using a plasmid, a 

resulting rise in α-SMA expression was seen. siRNA induced repression of MeCP2 resulted in 

inhibition of α-SMA, even when treated with TGF-β, which normally stimulates α-SMA expression. 

This indicates that MeCP2 acts as an activator of α-SMA expression. However, it was also found 

methylation of the α-SMA promoter region inhibited the stimulatory effect of MeCP2 (Hu et al., 

2011). 

The same study also found that mice deficient in MeCP2 showed lesser levels of fibrosis when 

treated with bleomycin than was seen in the wild-type (Hu et al., 2011). In systemic sclerosis we 

have also seen elevated levels of MeCP2 in fibroblasts (O'Reilly et al., 2016). We also showed that 

MeCP2 is induced in normal fibroblasts by the addition of TGF-β. Thus, it is clear that MeCP2 plays a 

role in fibrosis through regulation of gene expression. 

TGF-β 

TGF-β is also closely involved in the processes of fibrosis and plays a major role in the mediation of 

fibrosis. Fibroblasts that have been exposed to TGF-β express high levels of connective tissue growth 

factor (CTGF) and that TGF-β directly activates transcription of CTGF (Grotendorst et al., 1996). 

TGF-β has been linked to an increase in the expression of COL1A1 in hepatic stellate cells (HSCs) 

(Garcia-Trevijano et al., 1999) and also COL1A2 in primary human fibroblasts (Chen et al., 1999). It 

has also been shown that TGF-β stimulates fibroblast differentiation into the myofibroblast 



phenotype, mediated by extracellular-signal-regulated kinase (ERK) and p38 mitogen-activated 

protein kinase (p38 MAPK). This change in phenotype coincides with numerous changes to gene 

expression (Ding et al., 2008). In cells from neonatal Sprague-Dawley rats, TGF-β induced 

upregulation of COL1A1 was also accompanied by decreased expression of DNMT1 and DNMT3a. 

This resulted in a decrease in the methylation levels at multiple CpG sites in the COL1A1 promoter 

(Pan et al., 2013). However, Bechtel et al. found DMNT1 expression was induced by TGF-β (Bechtel 

et al., 2010) but again this may simply be caused by the passage number of the cells used in each 

study; alternatively it  may be caused by differences in the type of cells used, since Pan et al. used 

cardiac cells and Bechtel et al. used renal cells and it has been established the methylation patterns 

vary in different tissues and individuals (Zhang et al., 2013). 

TGF-β also induces changes to methylation during EMT. Exposure to TGF-β resulted in an increase in 

the average methylation values of around 500 CpG islands located in or near gene promoters. 

Withdrawal of TGF-β stimulation resulted in methylation levels returning to their pre-TGF-β level. 

This suggests that continuing stimulation by TGF-β is required throughout the process of EMT 

(Cardenas et al., 2014). Thus, TGF-β can induce both hypermethylation and hypomethylation, 

illustrating the complexities of the pathways that control and alter methylation patterns. 

Interestingly, treatment with 5-aza-2’-deoxycytidine abrogates the effects of TGF-β induced 

myofibroblasts in cardiac cells (Watson et al., 2014). 

 

Micro RNAs 

 

Micro RNAs (miRNAs) are small, non-coding RNAs that are typically around 22-25 nucleotides in 

length. Their role is to mediate cleavage of messenger RNAs (mRNAs), destabilise mRNAs or repress 

translation, resulting in the regulation of gene expression. Many of these miRNAs regulate genes 

that are either pro- or anti-fibrotic; this is achieved through imperfect binding to the 3′ untranslated 

region (UTR) and the 5’ UTR of their target mRNAs (O'Reilly, 2016). It is now appreciated that while 

miRNAs are regulating gene expression, they themselves are regulated by methylation and cross talk 

occurs between the two.  

 

MiRNA29 is closely linked to fibrogenesis and decreased levels have been associated with fibrosis of 

the heart, liver, kidney and skin as well as SSc. MiRNA29 has been shown to target the DNMT family, 

and ultimately results in abnormal methylation. Therefore, a reduction in miRNA 29 could result in 

hypermethylation of genes that regulate fibrosis. In idiopathic pulmonary fibrosis, there is a 

reduction in the levels of the miRNA-17-92 cluster. DNMT1 is a target gene for the miRNA-17-92 

cluster, so a reduction in miRNAs of this cluster results in increased DNMT1 levels. Transfection of 

these miRNAs caused a reduction in DNMT1 levels and resulted in globally reduced DNA methylation  

(O'Reilly, 2016). 

Peroxisome proliferator-activated receptor-γ 

Peroxisome proliferator-activated receptor-γ (PPAR-γ) has been inversely related to expression of 

collagen and is a critical regulator of liver fibrosis; it has been suggested as a ‘master regulator’ 

(Ghosh et al., 2008).  



MeCP2 has been shown to downregulate expression of PPAR-γ (see figure 2) through the promotion 

of methylation of H3K9 (histone 3, lysine 9) and enhancer of Zeste homolog 2 (EZH2) mediated 

methylation of H3K27 (histone 3, lysine 27), this allows for the chromatin silencer Heterochromatin 

Protein 1α (HP1α) to interact with the 5’ end of the PPAR-γ gene (Mann et al., 2010). This decrease 

in expression of PPAR-γ ultimately results in reduced inhibition of collagen synthesis and shows that 

MeCP2 has a critical role in the differentiation of liver myofibroblasts. 

In rats, it has been found that ancestral liver damage led to adaptations in their offspring, making 

them more resistant to liver fibrosis. These adaptations were largely achieved through alterations to 

DNA methylation and histone deacetylation and resulted in an increase in PPAR-γ, which acts to 

impede fibrosis, as well a decrease in expression of profibrogenic TGF-β1 and decreased 

myofibroblast generation. Crosslinked qChIP analysis on sperm from these rats showed greater 

levels of H2A.Z and H3K27me3 incorporation into the chromatin at the PPAR-γ promoter (Zeybel et 

al., 2012). However, how this occurs is not fully known and the mediators of the modulation of the 

sperm remain to be identified.  These acquired and inheritable changes to gene expression reinforce 

the major role of epigenetic alterations in the processes of fibrosis. Of major interest in this study is 

the fact that in liver fibrosis patients, methylation at the PPAR-γ promoter could discern those with 

mild and severe liver fibrosis. It was found that those with severe liver fibrosis had higher levels of 

PPAR-γ promoter CpG methylation than those with mild fibrosis. This could underpin why some 

people progress to severe liver fibrosis and others have a more stable, mild disease. It has been 

known for some time that only a proportion of heavy drinkers develop alcoholic liver disease and 

this differential methylation may explain why. It has been shown in liver fibrosis that regression can 

occur if the damaging agent is removed. Therefore factors that promote regression of fibrosis are of 

interest. This is associated with reduction of TIMPs and induction of MMPs which will have a net 

effect of breaking down the collagenous scar. It may be in the case of myofibroblast regression that 

the cells have a reversal of their differentially methylated genes that promotes the reversal. This is 

yet to be proved experimentally but is an attractive hypothesis. As further research into TETs 

mediating the demethylation of DNA progresses this will be an interesting area. 

Conclusion 

Epigenetic changes, primarily methylation, and MeCP2 are intrinsic components in the process of 

fibrosis. With the evidence presented here showing global alterations to methylation, it seems that 

this may be one of the primary driving forces behind fibrogenesis and, in combination with MeCP2, 

HDAC1 and miRNAs, results in changes of expression of critical genes such as collagen, α-SMA, TIMP-

1 and TGF-β. The evidence suggests that there is cross talk between methylation and other 

epigenetic modifications including miRNA, thus adding to the complexity found in myofibroblast 

activation and fibrogenesis.  

Treatment of fibrosis remains to be a challenge; drugs that demethylate DNA, such as 5-Aza’C, may 

be repurposed for treatment of fibrosis. In cancer cell lines, treatment with the DNMT inhibitors 

azacytidine and decitabine was found to cause demethylation of genes in a non-random pattern, 

however, some CpGs appeared to have a resistance to drug-induced demethylation. This resistance 

was not seen in DNMT1, DNMT3b double knockout cells, indicating that the methylation of resistant 

CpGs is being maintained by these enzymes. It was also found that whole genome demethylation 

was higher than gene specific demethylation (Hagemann et al., 2011).   



Hydralazine, a vasodilator used to treat hypertension, has also been found to inhibit fibrosis. In 

C57BL/6 mice with renal fibrosis induced by unilateral ureteral obstruction, treatment with 

hydralazine produced lessened fibrosis compared to untreated controls and coincided with a 

reduced accumulation of fibroblasts. These results were mirrored in CD1 mice which received a dose 

of folic acid to induce renal fibrosis. It was also found that hydralazine treatment caused a reduction 

in Rasal1 methylation, caused by a reduction of DNMT1 expression and an induction of TET3-

mediated hydroxymethylation (Tampe et al., 2015). In HL-1 cells derived from mouse atrial 

cardiomyocytes, hydralazine also caused a decrease in methylation of the SERCA2 promoter by 

blocking DNMT1 (Kao et al., 2011). 

Therefore, one of the greatest challenges in developing a demethylating treatment for fibrosis is 

ensuring that the desired genes are targeted. Whilst globally reducing methylation levels may 

potentially alleviate fibrosis, it could also have unintended side effects. To effectively develop and 

apply a demethylating drug for the treatment of fibrosis is likely going to require a more complete 

understanding of the processes and interactions between methylation patterns, miRNAs, the MBD 

family of proteins and HDACs as well as a deeper understanding of the genes involved. In the future, 

cell-free DNA methylation may possibly be used as a biomarker for fibrotic disease. 

 

Tables 

Table 1. - Enzymes of the DNA methyltransferase family that methylate the 5th carbon of cytosine. 

Family Function 

 
DNMT1 
 

Preferentially methylates hemimethylated DNA. 
Maintains methylation. 

DNMT2 
Methylates cytosine 38 in the anticodon loop of 
aspartic acid transfer RNA. 

DNMT3a Add methyl groups to DNA. 
 DNMT3b 

DNMT3L 
Associates with DNMT3a & Dnnt3b and has been 
shown to increase catalytic activity. 

TET1 Oxidise 5-methylcytosine to 5-
hydroxymethylcytosine, 5-formylcytosine and 5-
carboxylcytosine. 

TET2 

TET3 

References: (Cheng and Roberts, 2001; Fatemi et al., 2002; Goll et 
al., 2006; Kareta et al., 2006; Loenarz and Schofield, 2009) 

 

 

 

 

 

 

 

 

 



Table 2. - Differentially methylated genes confirmed in fibrosis. 

 

Gene Methylation change References 

COL23A1 
COL4A2 
MYO1E 
RUNX 

Hypomethylated 
 

Altorok et al., 2015 
 

αSma 
COL1A2 
Spp1 
Timp1 

Hypomethylated Komatsu et al., 2012 

COL1A1 Hypomethylated Pan et al., 2013 

Rasal1 Hypermethylated Bechtel et al., 2010 

PTEN Hypermethylated Bian et al., 2012 

P14ARF Hypermethylated Cisneros et al., 2012 

DKK1 
SFRP1  

Hypermethylated Dees et al., 2014 

BMPER Hypermethylated Huan et al., 2015 

Thy1 Hypermethylated Robinson et al., 2012 

FLI1 Hypermethylated Wang et al., 2006 

Aggf1 Hypermethylated Zhou et al., 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 

Figure 1 Methylation of the cytosine reside and hydroxymethylation. This is mediated by DNMTs and 

TETs. 



 

Figure 2 A simple depiction of collagen regulation, decreased levels of miRNA132 results in an 

increase in MeCP2 expression. MeCP2 then downregulates PPAR-γ expression ultimately causing 

increased collagen synthesis. 
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