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Abstract

In this thesis, I study asset pricing models of stock and bond returns, and the

role of macroeconomic factors in explaining and forecasting their dynamics.

The first chapter is devoted to the identification and measurement of risk premia

in the cross-section of stocks, when some of the risk factors are only weakly

related to asset returns and, as a result, spurious inference problems are likely

to arise. I develop a new estimator for cross-sectional asset pricing models that,

simultaneously, provides model diagnostic and parameter estimates. This novel

approach removes the impact of spurious factors and restores consistency and

asymptotic normality of the parameter estimates. Empirically, I identify both

robust factors and those that instead suffer from severe identification problems

that render the standard assessment of their pricing performance unreliable (e.g.

consumption growth, human capital proxies and others).

The second chapter extends the shrinkage-based estimation approach to the class

of affine factor models of the term structure of interest rates, where many macroe-

conomic factors are known to improve the yield forecasts, while at the same time

being unspanned by the cross-section of bond returns.

In the last chapter (with Christian Julliard), we propose a simple macro model

for the co-pricing of stocks and bonds. We show that aggregate consumption

growth reacts slowly, but significantly, to bond and stock return innovations. As a

consequence, slow consumption adjustment (SCA) risk, measured by the reaction

of consumption growth cumulated over many quarters following a return, can

explain most of the cross-sectional variation of expected bond and stock returns.

Moreover, SCA shocks explain about a quarter of the time series variation of

consumption growth, a large part of the time series variation of stock returns,

and a significant (but small) fraction of the time series variation of bond returns,

and have substantial predictive power for future consumption growth.
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Chapter 1

Spurious Factors in Linear Asset

Pricing Models

1.1 Introduction

Sharpe (1964) and Lintner (1965) CAPM pioneered the class of linear factor models in

asset pricing. Now, decades later, what started as an elegant framework has turned into a

well-established and successful tradition in finance. Linear models, thanks to their inherent

simplicity and ease of interpretation, are widely used as a reference point in much of the

empirical work, having been applied to nearly all kinds of financial assets1. In retrospect,

however, such heavy use produced a rather puzzling outcome: Harvey, Liu, and Zhu (2013)

list over 300 factors proposed in the literature, all of which have been claimed as important

(and significant) drivers of the cross-sectional variation in stock returns2.

One of the reasons for such a wide range of apparently significant risk factors is perhaps a

1Notable examples are the 3-factor model of Fama and French (1992), Fama and French (1993); the
conditional CAPM of Jagannathan and Wang (1996); the conditional CCAPM of Lettau and Ludvigson
(2001b), the Q1-Q4 consumption growth of Jagannathan and Wang (2007), the durable/nondurable con-
sumption CAPM of Yogo (2006); the ultimate consumption risk of Parker and Julliard (2005); the pricing of
currency portfolios in Lustig and Verdelhan (2007) and Lustig, Roussanov, and Verdelhan (2011); and the
regression-based approach to the term structure of interest rates in Adrian, Crump, and Moench (2013)

2In the context of predictive regressions, Novy-Marx (2014) recently demonstrated that many unconven-
tional factors, such as the party of the U.S. President, sunspots, the weather in Manhattan, planet location
and the El-Nino phenomenon have a statistically significant power for the performance of many popular
trading strategies, such as those based on market capitalisation, momentum, gross profitability, earnings
surprises and others.

1



1. Spurious Factors in Linear Asset Pricing Models

simple lack of model identification, and consequently, an invalid inference about risk premia

parameters. As pointed out in a growing number of papers (see e.g. Jagannathan and Wang

(1998), Kan and Zhang (1999b), Kleibergen (2009), Kleibergen and Zhan (2013), Burnside

(2010), Gospodinov, Kan, and Robotti (2014a)), in the presence of factors that only weakly

correlate with assets (or do not correlate at all), all the risk premia parameters are no longer

strongly identified and standard estimation and inference techniques become unreliable. As

a result, identification failure often leads to the erroneous conclusion that such factors are

important, although they are totally spurious by nature. The impact of the true factors

could, in turn, be crowded out from the model.

The shrinkage-based estimators that I propose (Pen-FM and Pen-GMM, from the pe-

nalised version of the Fama-MacBeth procedure or GMM, accordingly), not only allow to

detect the overall problem of rank-deficiency caused by irrelevant factors, but also indicate

which particular variables are causing it, and recover the impact of strong risk factors without

compromising any of its properties (e.g. consistency, asymptotic normality, etc).

My estimator can bypass the identification problem because, in the case of useless (or

weak) factors, we know that it stems from the low correlation between these variables and

asset returns. This, consequently, is reflected in the regression-based estimates of betas, asset

exposures to the corresponding sources of risk. Therefore, one can use the L1−norm of the

vector of β̂’s (or related quantities, such as correlations) to assess the overall factor strength

for a given cross-section of returns, and successfully isolate the cases when it is close to

zero. Therefore, I modify the second stage of the Fama-MacBeth procedure1 (or the GMM

objective function) to include a penalty that is inversely proportional to the factor strength,

measured by the L1−norm of the vector β̂.

One of the main advantages of this penalty type is its ability to simultaneously recog-

nise the presence of both useless and weak factors2, allowing Pen-FM(GMM) to detect the

problem of both under- and weak identification. On the contrary, the critical values for the

tests often used in practice3 are all derived under the assumption of strictly zero correlation

between the factor and returns. As a result, faced with a weak factor, such tests tend to

1The problem of identification is not a consequence of having several stages in the estimation. It is well
known that the two-pass procedure gives exactly the same point estimates as GMM with the identity weight
matrix under a particular moment normalisation.

2If the time series estimates of beta have the standard asymptotic behaviour, then for both useless
(β = 0n) and weak (β = B√

T
) factors L1−norm of β̂ is of the order 1√

T
.

3Wald test for the joint spread of betas or more general rank deficiency tests, such as Cragg and Donald
(1997), Kleibergen and Paap (2006)

2



1. Spurious Factors in Linear Asset Pricing Models

reject the null hypothesis of betas being jointly zero; however, risk premia parameters still

have a nonstandard asymptotic distribution, should the researcher proceed with the standard

inference techniques1.

Combining model selection and estimation in one step is another advantage of Pen-

FM(GMM), because it makes the model less prone to the problem of pretesting, when the

outcome of the initial statistical procedure and decision of whether to keep or exclude some

factors from the model further distort parameter estimation and inference2.

Eliminating the influence of irrelevant factors is one objective of the estimator; however,

it should also reflect the pricing ability of other variables in the model. I construct the

penalty in such a way that does not prevent recovering the impact of strong factors. In

fact, I show that Pen-FM(GMM) provide consistent and asymptotically normal estimates of

the strong factors risk premia that have exactly the same asymptotic distribution as if the

irrelevant factors had been known and excluded from the model ex ante. Further, I illustrate,

with various simulations, that my estimation approach also demonstrates good finite sample

performance even for a relatively small sample of 50-150 observations. It is successful in a)

eliminating spurious factors from the model, b) retaining the valid ones, c) estimating their

pricing impact, and d) recovering the overall quality of fit.

I revisit some of the widely used linear factor models and confirm that many tradable risk

factors seem to have substantial covariance with asset returns. This allows researchers to

rely on either standard or shrinkage-based estimation procedures, since both deliver identical

point estimates and confidence bounds (e.g. the three-factor model of Fama and French

(1993), or a four-factor model that additionally includes the quality-minus-junk factor of

Asness, Frazzini, and Pedersen (2014)).

There are cases, however, when some of the factors are particularly weak for a given cross-

section of assets, and their presence in the model only masks the impact of the true sources

of risk. The new estimator proposed in this chapter allows then to uncover this relationship

and identify the actual pricing impact of the strong factors. This is the case, for example,

1A proper test for the strength of the factor should be derived under the null of weak identification,
similar to the critical value of 10 for the first stage F -statistics in the case of a single endogenous variable
and 1 instrument in the IV estimation, or more generally the critical values suggested in Stock and Yogo
(2005)

2See, e.g. simulation designs in Breiman (1996) highlighting the model selection problem in the context of
linear regressions and the choice of variables, Guggenberger (2010) for the impact of Hausman pretest in the
context of panel data, and Berk, Brown, Buja, Zhang, and Zhao (2013) for recent advances in constructing
confidence bounds, robust to prior model selection

3



1. Spurious Factors in Linear Asset Pricing Models

of the q-factor model of Hou, Xue, and Zhang (2014) and the otherwise ‘hidden’ impact of

the profitability factor, which I find to be a major driving force behind the cross-sectional

variation in momentum-sorted portfolios.

Several papers have recently proposed1 asset pricing models that highlight, among other

things, the role of investment and profitability factors, and argue that these variables should

be important drivers of the cross-sectional variation in returns, explaining a large number

of asset pricing puzzles2. However, when I apply the q-factor model (Hou, Xue, and Zhang

(2014)) to the momentum-sorted cross-section of portfolios using the Fama-MacBeth pro-

cedure, none of the variables seem to command a significant risk premium, although the

model produces an impressive R2 of 93%. Using Pen-FM on the same dataset eliminates the

impact of two out of four potential risk drivers, and highlights a significant pricing ability of

the profitability factor (measured by ROE), largely responsible for 90% of the cross-sectional

variation in portfolio returns. Point estimates of the risk premia (for both market return and

ROE), produced by Pen-FM in this case are also closer to the average return generated by a

tradable factor, providing further support for the role of the firm’s performance in explaining

the momentum effect, as demonstrated in Hou, Xue, and Zhang (2014). The importance of

this factor in explaining various characteristics of stocks is also consistent with the findings of

Novy-Marx (2013), who proposes an alternative proxy for expected profitability and argues

that it is crucial in predicting the cross-sectional differences of stock returns.

While specifications with tradable factors seem to be occasionally contaminated by the

problem of useless factors, the situation seems to be much worse when a nontradable source

of risk enters into the model. For example, I find that specifications including such factors

as durable consumption growth or human capital proxies are not strongly identified3 and

Pen-FM shrinks their risk premia towards zero. Since conventional measures of fit, such as

the crossectional R2, are often inflated in the presence of spurious factors (Kleibergen and

Zhan (2013), Gospodinov, Kan, and Robotti (2014b)), their high in-sample values only mask

a poorly identified model.

1E.g. Fama and French (2015) and Hou, Xue, and Zhang (2014)
2There is vast empirical support for shocks to a firm’s profitability and investment to be closely related

to the company’s stock performance, e.g. Ball and Brown (1968), Bernand and Thomas (1990), Chan, Je-
gadeesh, and Lakonishok (1996), Haugen and Baker (1996), Fairfield, Whisenant, and Yohn (2003), Titman,
Wei, and Xie (2004), Fama and French (2006), Cooper, Gulen, and Schill (2008), Xing (2008), Polk and
Sapienza (2009), Fama and French (2015)

3This finding is consistent with the results of identification tests in Zhiang and Zhan (2013) and Burnside
(2010)

4



1. Spurious Factors in Linear Asset Pricing Models

It is worth noting, however, that when a particular risk driver is identified as weak (or

useless), it does not necessarily render the model containing it invalid. The finding merely

highlights the impossibility of assessing the size of the risk premia paremeters, significance

of their pricing impact and the resulting quality of fit, based on the standard estimation

techniques. The method that I propose allows to recover identification and quality of fit

only for strong risk factors (which is contaminated otherwise), but stays silent regarding the

impact of the weak ones. Furthermore, since I focus on the multiple-beta representation,

the risk premia reflect the partial pricing impact of a factor. Therefore, it is also plausible

to have a model with a factor being priced within a linear SDF setting, but not contributing

anything on its own, that is conditional on other factors in the model. When estimated by

the Fama-MacBeth procedure, its risk premium is no longer identified. Although the focus of

this chapter is on the models that admit multivariate beta-representation, nothing precludes

extending shrinkage-based estimators to a linear SDF setting to assess the aggregate factor

impact as well.

Why does identification have such a profound impact on parameter estimates? The

reason is simple: virtually any estimation technique relies on the existence of a unique set

of true parameter values that satisfies the model’s moment conditions or minimises a loss

function. Therefore, violations of this requirement in general deliver estimates that are

inconsistent, have non-standard distribution, and require (when available) specifically tuned

inference techniques for hypothesis testing. Since the true, population values of the β’s

on an irrelevant factor are zero for all the assets, the risk premia in the second stage are

no longer identified, and the entire inference is distorted. Kan and Zhang (1999b) show

that even a small degree of model misspecification would be enough to inflate the useless

factor t-statistic, creating an illusion of its pricing importance. Kleibergen (2009) further

demonstrates that the presence of such factors has a drastic impact on the consistency and

asymptotic distribution of the estimates even if the model is correctly specified and the true

β’s are zero only asymptotically (β = B√
T
).

When the model is not identified, obtaining consistent parameter estimates is generally

hard, if not impossible. There is, however, an extensive literature on inference, originat-

ing from the problem of weak instruments (see, e.g. Stock, Watson, and Yogo (2002)).

Kleibergen (2009) develops identification-robust tests for the two-step procedure of Fama

and MacBeth, and demonstrates how to build confidence bounds for the risk premia and

test hypotheses of interest in the presence of spurious or weak factors. Unfortunately, the
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more severe is the identification problem, the less information can be extracted from the

data. Therefore, it comes as no surprise that in many empirical applications robust confi-

dence bounds can be unbounded at least from one side, and sometimes even coincide with

the whole real line (as in the case of conditional Consumption-CAPM of Lettau and Lud-

vigson (2001b)), making it impossible to draw any conclusions either in favour of or against

a particular hypothesis. In contrast, my approach consists in recovering a subset of param-

eters that are strongly identified from the data, resulting in their consistent, asymptotically

normal estimates and usual confidence bounds. I prove that when the model is estimated by

Pen-FM, standard bootstrap techniques can be used to construct valid confidence bounds for

the strong factors risk premia even in the presence of useless factors. This is due to the fact

that my penalty depends the nature of the second stage regressor (strong or useless), which

remaines the same in bootstrap and allows the shrinkage term to eliminate the impact of the

useless factors. As a result, bootstrap remains consistent and does not require additional

modifications (e.g. Andrews and Guggenberger (2009), Chatterjee and Lahiri (2011)).

Using various types of penalty to modify the properties of the original estimation proce-

dure has a long and celebrated history in econometrics, with my estimator belonging to the

class of Least Absolute Selection and Shrinkage Operator (i.e. lasso, Tibshirani (1996))1.

The structure of the penalty, however, is new, for it is designed not to choose significant

parameters in the otherwise fully identified model, but rather select a subset of parameters

that can be strongly identified and recovered from the data. The difference is subtle, but em-

pirically rather striking. Simulations confirm that whereas Pen-FM successfully captures the

distinction between strong and weak factors even for a very small sample size, the estimates

produced, for instance, by the adaptive lasso (Zou (2006)), display an erratic behaviour2.

The chapter also conributes to a recent strand of literature that examines the properties

of conventional asset pricing estimation techniques. Lewellen, Nagel, and Shanken (2010)

demonstrate that when a set of assets exhibits a strong factor structure, any variable cor-

related with those unobserved risk drivers may be indentified as a significant determinant

1Various versions of shrinkage techniques have been applied to a very wide class of models, related to
variable selection, e.g. adaptive lasso (Zou (2006)) for variable selection in a linear model, bridge estimator for
GMM (Caner (2009)), adaptive shrinkage for parameter and moment selection (Liao (2013)), or instrument
selection (Caner and Fan (2014))

2This finding is expected, since the adaptive lasso, like all other similar estimators, requires identification
of the original model parameters used either as part of the usual loss function, or the penalty imposed on
it. Should this condition fail, the properties of the estimator will be substantially affected. This does not,
however, undermine any results for the correctly identified model

6



1. Spurious Factors in Linear Asset Pricing Models

of the cross-section of returns. They assume that model parameters are identified, and pro-

pose a number of remedies to the problem, such as increasing the asset span by including

portfolios, constructed on other sorting mechanisms, or reporting alternative measures of fit

and confidence bounds for them. These remedies, however, do not necessarily lead to better

identification.

Burnside (2010) highlights the importance of using different SDF normalisations, their

effect on the resulting identification conditions and their relation to the useless factor prob-

lem. He further suggests using the Kleibergen and Paap (2006) test for rank deficiency as

a model selection tool. Gospodinov, Kan, and Robotti (2014a) also consider the SDF-based

estimation of a potentially misspecified asset pricing model, contaminated by the presence of

irrelevant factors. They propose a sequential elimination procedure that successfully iden-

tifies spurious factors and those that are not priced in the cross-section of returns, and

eliminates them simultaneously from the candidate model. In contrast, the focus of my

chapter is on the models with β-representation, which reflect the partial pricing impact of

different risk factors1. Further, I use the simulation design from Gospodinov, Kan, and

Robotti (2014a) to compare and contrast the finite sample performance of two approaches

when the useless factors are assumed to have zero true covariance with asset returns. Pen-

FM(GMM) seems to be less conservative by correctly preserving the strongly identified risk

factors even in case of a relatively small sample size, when it is notoriously hard to reliably

assess the pricing impact of the factor. This could be particularly important for empirical

applications that use quarterly or yearly data, where the available sample is naturally quite

small.

The rest of the chapter is organised as follows. I first discuss the structure of a linear

factor model and summarise the consequences of identification failure established in the prior

literature. Section 1.4 introduces Pen-FM and Pen-GMM estimators. I then discuss their

asymptotic properties (Section 1.5) and simulation results (Section 2.8). Section 1.7 presents

empirical applications, and Section 1.8 concludes.

1In addition, the two-step procedure could also be used in the applications that rely on the separate
datasets used in the estimation of betas and risk premia. For example, Bandi and Tamoni (2015) and Boons
and Tamoni (2014) estimate betas from long-horizon regressions and use them to price the cross-section of
returns observed at a higher frequency, which would be impossible to do using a standard linear SDF-based
approach
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1.2 Linear factor model

I consider a standard linear factor framework for the cross-section of asset returns, where

the risk premia for n portfolios are explained through their exposure to k factors, that is

E [Re
t ] = inλ0,c + βfλ0,f ,

cov(Re
t , Ft) = βfvar(Ft), (1.1)

E [Ft] = µf ,

where t = 1...T is the time index of the observations, Re
t is the n × 1 vector of excess

portfolios returns, Ft is the k × 1 vector of factors, λ0,c is the intercept (zero-beta excess

return), λ0,f is the k × 1 vector of the risk premia on the factors, βf is the n× k matrix of

portfolio betas with respect to the factors, and µf is the k × 1 vector of the factors means.

Although many theoretical models imply that the common intercept should be equal to 0,

it is often included in empirical applications to proxy the imperfect measurement of the

risk-free rate, and hence is a common level factor in excess returns.

Model (1.1) can also be written equivalently as follows

Re
t = inλ0,c + βfλ0,f + βfvt + ut, (1.2)

Ft = µf + vt,

where ut and vt are n× 1 and k × 1 vectors of disturbances.

After demeaning the variables and eliminating µf , the model becomes:

Re
t = inλ0,c + βf (F t + λ0,f ) + ϵt = βλ0 + βfF t + ϵt, (1.3)

Ft = µf + vt,

where ϵt = ut + βfv, v̄ = 1
T

∑T
t=1 vt, F t = Ft − F , F = 1

T

∑T
t=1 Ft, β = (in βF ) is a

n× (k+1) matrix, stacking both the n× 1 unit vector and asset betas, and λ0 = (λ0,c, λ
′
0,f )

′

is a (k + 1)× 1 vector of the common intercept and risk premia parameters.

Assuming ϵt and vt are asymptotically uncorrelated, our main focus is on estimating the

parameters from the first equation in (1.3). A typical approach would be to use the Fama-

MacBeth procedure, which decomposes the parameter estimation in two steps, focusing

separately on time series and cross-sectional dimensions.
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The first stage consists in time series regressions of excess returns on factors, to get the

estimates of βf :

β̂f =
T∑
t=1

R̄e
t F̄

′
t

[
T∑
j=1

F̄jF̄
′
j

]−1

,

where β̂f is an n × k matrix, R
e

t is a n × 1 vector of demeaned asset returns, R
e

t = Re
t −

1
T

∑T
t=1R

e
t .

While the time series beta reveals how a particular factor correlates with the asset excess

returns over time, it does not indicate whether this correlation is priced and could be used

to explain the differences between required rates of return on various securities. The second

stage of the Fama-MacBeth procedure aims to check whether asset holders demand a pre-

mium for being exposed to this source of risk (βj, j = 1..k), and consists in using a single

OLS or GLS cross-sectional regression of the average excess returns on their risk exposures.

λ̂OLS =
[
β̂′β̂
]−1

β̂′R̄e, (1.4)

λ̂GLS =
[
β̂′Ω̂−1β̂

]−1

β̂′Ω̂−1R̄e,

where β̂ = [in β̂f ] is the extended n×(k+1) matrix of β̂’s, λ̂ = [λ̂c λ̂
′
f ]

′ is a (k+1)×1 vector

of the risk premia estimates, R̄e = 1
T

∑T
t=1R

e
t is a n× 1 vector of the average cross-sectional

excess returns, and Ω̂ is a consistent estimate of the disturbance variance-covariance matrix,

e.g. Ω̂ = 1
T−k−1

∑T
t=1(R̄

e
t − β̂f t)(R̄

e
t − β̂f F̄t)

′.

If the model is identified, that is, if the matrix of β has full rank, the Fama-MacBeth

procedure delivers risk premia estimates that are consistent and asymptotically normal,

allowing one to construct confidence bounds and test hypotheses of interest in the usual

way (e.g. using t-statistics). In the presence of a useless or weak factor (βj = 0n or more

generally βj = B√
T
, where B is an n × 1 vector), however, this condition is violated, thus

leading to substantial distortions in parameter inference.

Although the problem of risk premia identification in the cross-section of assets is par-

ticularly clear when considering the case of the two-stage procedure, the same issue arises

when trying to jointly estimate time series and cross-sectional parameters by GMM, using

the following set of moment conditions:
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E [Re
t − inλ0,c − βf (λ0,f − µf + Ft)] = 0n,

E [(Re
t − inλ0,c − βf (λ0,f − µf + Ft))F

′
t ] = 0n×k, (1.5)

E[Ft − µf ] = 0k.

Assuming the true values of model parameters θ0 = {vec(βf );λ0,c;λ0,f ;µf} belong to the

interior of a compact set S ∈ Rnk+k+k+1, one could then proceed to estimate them jointly

by minimizing the following objective function:

θ̂ = argmin
θ∈S

[
1

T

T∑
t=1

gt(θ)

]′
WT (θ)

[
1

T

T∑
t=1

gt(θ)

]
, (1.6)

where WT (θ) is a positive definite weight (n+ nk + k)× (n+ nk + k) matrix, and

gt(θ) =

 Re
t − inλc − βf (λf − µ+ Ft)

vec ([Re
t − inλc − βf (λf − µ+ Ft)]F

′
t)

Ft − µ

 (1.7)

is a sample moment of dimension (n+ nk + k)× 1.

In the presence of a useless factor the model is no longer identified, since the matrix of

first derivatives G(θ0) = E[Gt(θ0)] = E
[
dgt(θ0)
dθ

]
has a reduced column rank if at least one

of the vectors in βf is 0n×1 or
B√
T
, making the estimates from eq.(1.6) generally inconsistent

and having a nonstandard asymptotic distribution, since

dgt(θ0)

dθ′
=

 [λ0,f − µf + Ft]
′ ⊗ In −in βf βf

(Ft ⊗ In) [(λ0,f − µf + Ft)
′ ⊗ In] −vec(inF ′

t) −(Ft ⊗ In)βf (Ft ⊗ In)βf

0k×nk 0k×1 0k×k −Ik

 ,
(1.8)

where ⊗ denotes the Kronecker product and In is the identity matrix of size n. Note that

the presence of useless factors affects only the risk premia parameters, since as long as the

mean and the variance-covariance matrix of the factors are well-defined, the first moment

conditions in eq. (1.5) would be satisfied for any λf as long as βf (λf − λ0,f ) = 0. Therefore,

identification problem relates only to the risk premia, but not the factor exposures, betas.

Throughout the paper, I consider the linear asset pricing framework, potentially contam-

inated by the presence of useless/weak factors, whether correctly specified or not. I call the

model correctly specified if it includes all the true risk factors and eq.(1.3) holds. The model
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under estimation, however, could also include a useless/weak risk driver that is not priced

in the cross-section of asset returns.

The model is called misspecified if eq.(1.3) does not hold. This could be caused by either

omitting some of the risk factors necessary for explaining the cross-section of asset returns,

or if the model is actually a non-linear one. The easiest way to model a misspecification

would be to assume the true data-generating process including individual fixed effects for

the securities in the cross-sectional equation:

E [Re
t ] = λ0,i + βfλ0,f

where λ0,i is a n × 1 vector of individual intercepts. In the simulations I consider the case

of a misspecified model, where the source of misspecification comes from the omitted risk

factors. Therefore, it contaminates the estimation of both betas and risk premia.

1.3 Identification and what if it’s not there

Depending on the nature of the particular identification failure and the rest of the model

features, conventional risk premia estimators generally lose most of their properties: consis-

tency, asymptotic normality, not to mention the validity of standard errors and confidence

interval coverage for all the factors in the model. Further, numerical optimisation techniques

may have convergence issues, faced with a relatively flat region of the objective function,

leading to unstable point estimates.

Kan and Zhang (1999a) are the first to notice the problem generated by including a factor

uncorrelated with asset returns in the GMM estimation framework of a linear stochastic

discount factor model. They show that if the initial model is misspecified, the Wald test

for the risk premia overrejects the null hypothesis of a factor having zero risk premium, and

hence a researcher will probably conclude that it indeed explains the systematic differences

in portfolio returns. The likelihood of finding significance in the impact of a useless factor

increases with the number of test assets; hence, expanding the set of assets (e.g. combining 25

Fama-French with 19 industry portfolios) may even exacerbate the issue (Gospodinov, Kan,

and Robotti (2014a)). Further, if the model is not identified, tests for model misspecification

have relatively low power, thus making it even more difficult to detect the problem.

11



1. Spurious Factors in Linear Asset Pricing Models

Gospodinov, Kan, and Robotti (2014a) consider a linear SDF model that includes both

strong and useless factors, and the effect of misspecificaion-robust standard errors. Their es-

timator is based on minimizing the Hansen-Jagannathan distance (Hansen and Jagannathan

(1997)) between the set of SDF pricing the cross-section of asset returns, and the ones implied

by a given linear factor structure. This setting allows to construct misspecification-robust

standard errors, because the value of the objective function can be used to assess the degree

of model misspecification. They demonstrate that the risk premia estimates of the useless

factors converge to a bounded random variable, and are inconsistent. Under correct model

specificatation, strong factors risk premia estimates are consistent; however, they are no

longer asymptotically normal. Further, if the model is misspecified, risk premia estimates

for the strong factors are inconsistent and their pricing impact could be crowded out by the

influence of the useless ones. Useless factors t-statistics, in turn, are inflated and asymptot-

ically tend to infinity.

Kan and Zhang (1999b) study the properties of the Fama-MacBeth two-pass procedure

with a single useless risk factor (β = 0n), and demonstrate the same outcome. Thus, faced

with a finite sample, a researcher is likely to conclude that such a factor explains the cross-

sectional differences in asset returns. Kleibergen (2009) also considers the properties of

the OLS/GLS two-pass procedure, if the model if weakly identified (β = B√
T
). The paper

proposes several statistics that are robust to identification failure and thus could be used to

construct confidence sets for the risk premia parameters without pretesting.

Cross-sectional measures of fit are also influenced by the presence of irrelevant factors.

Kan and Zhang (1999b) conjecture that in this case cross-sectional OLS-based R2 tends to

be substantially inflated, while its GLS counterpart appears to be less affected. This was

later proved by Kleibergen and Zhan (2013), who derive the asymptotic distribution of R2

and GLS-R2 statistics and confirm that, although both are affected by the presence of useless

factors, the OLS-based measure suffers substantially more. Gospodinov, Kan, and Robotti

(2014b) consider cross-sectional measures of fit for the families of invariant (i.e. MLE, CUE-

GMM, GLS) and non-invariant estimators in both SDF and beta-based frameworks and

show that the invariant estimators and their fit are particularly affected by the presence of

useless factors and model misspecification.
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1.4 Pen-FM Estimator

Assuming the true values of risk premia parameters λ0 = (λ0,c, λ0,F ) lie in the interior of

the compact parameter space Θ ∈ Rk, consider the following penalised version of the second

stage in the Fama-MacBeth procedure:

λ̂pen = argmin
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

k∑
j=1

1

||β̂j||d1
|λj|, (1.9)

where d > 0 and ηT > 0 are tuning parameters, and ||·||1 stands for the L1 norm of the

vector, ||β̂j||1 =
∑n

i=1 |β̂i,j|.
The objective function in Equation (1.9) is composed of two parts: the first term is the

usual loss function, that typically delivers the OLS or GLS estimates of the risk premia

parameters in the cross-sectional regression, depending on the type of the weight matrix,

WT . The second term introduces the penalty that is inversely proportional to the strength

of the factors, and is used to eliminate the irrelevant ones from the model.

Equation (1.9) defines an estimator in the spirit of the lasso, Least Absolute Selection

and Shrinkage Estimator of Tibshirani (1996) or the adaptive lasso of Zou (2006)1. The

modification here, however, ensures that the driving force for the shrinkage term is not the

value of the risk premium or its prior regression-based estimates (which are contaminated

by the identification failure), but the nature of the betas. In particular, in the case of the

adaptive lasso, the second stage estimates for the risk premia would have the penalty weights

inversely proportional to their prior estimates:

λ̂A.Lasso = argmin
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

k∑
j=1

1

|λ̂j,ols|d
|λj|, (1.10)

where λ̂j is the OLS-based estimate of the factor j risk premium. Since these weights are

derived from inconsistent estimates, with those for useless factors likely to be inflated under

model misspecification, the adaptive lasso will no longer be able to correctly identify strong

risk factors in the model. Simulations in Section 2.8 further confirm this distinction.

The reason for using the L1 norm of the vector β̂j, however, is clear from the asymptotic

1Similar shrinkage-based estimators were later employed in various contexts of parameter estimation and
variable selection. For a recent survey of the shrinkage-related techniques, see, e.g. Liao (2013).
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behaviour of the latter:

vec(β̂j) = vec(βj) +
1√
T
N
(
0,Σβj

)
+ op

(
1√
T

)
,

where vec(·) is the vectorisation operator, stacking the columns of a matrix into a single

vector, N
(
0,Σβj

)
is the asymptotic distribution of the estimates of betas, a normal vector

with mean 0 and variance-covariance matrix Σβj , and op

(
1√
T

)
contains the higher-order

terms from the asymptotic expansion that do not influence the estimates
√
T asymptotics.

If a factor is strong, there is at least one portfolio that has true non-zero exposure to it;

hence the L1 norm of β̂ converges to a positive number, different from 0 (
∥∥∥β̂j∥∥∥

1
= Op(1)).

However, if a factor is useless and does not correlate with any of the portfolios in the cross-

section, βj = 0n×1, therefore the L1 norm of β̂ converges to
∥∥∥β̂j∥∥∥

1
= Op(

1√
T
). This allows

to clearly distinguish the estimation of their corresponding risk premia, imposing a higher

penalty on the risk premium for a factor that has small absolute betas. Note that in the case

of local-to-zero asymptotics in weak identification (βsp = 1√
T
Bsp), again

∥∥∥β̂j∥∥∥
1
= Op(

1√
T
),

the same penalty would be able to pick up its scale and shrink the risk premium at the

second pass, eliminating its effect.

What is the driving mechanism for such an estimator? It is instructive to show its main

features with an example of a single risk factor and no intercept at the second stage.

λ̂pen = argmin
λ∈Θ

[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
+ ηT

1

||β̂||d1
|λ|

= argmin
λ∈Θ

[
λ− λ̂WLS

]′
β̂′WT β̂(λ− λ̂WLS) + ηT

1

||β̂||d1
|λ|,

where λWLS =
[
β̂′WT β̂

]−1

β̂′WT R̄e is the weighted least squares estimate of the risk premium

(which corrresponds to either the OLS or GLS cross-sectional regressions).

The solution to this problem can easily be seen as a soft-thresholding function:

λ̂pen = sign
(
λ̂WLS

)(
|λ̂WLS| − ηT

1

2β̂′WT β̂||β̂||d1

)
+

(1.11)

=


λ̂WLS − ηT

1

2β̂′WT β̂||β̂||d1
if λ̂WLS ≥ 0 and ηT

1

2β̂′WT β̂||β̂||d1
< |λ̂WLS|

λ̂WLS + ηT
1

2β̂′WT β̂||β̂||d1
if λ̂WLS < 0 and ηT

1

2β̂′WT β̂||β̂||d1
< |λ̂WLS|

0 if ηT
1

2β̂′WT β̂||β̂||d1
≥ |λ̂WLS|
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Equation (1.11) illustrates the whole idea behind the modified lasso technique: if the

penalty associated with the factor betas is high enough, the weight of the shrinkage term

will asymptotically tend to infinity, setting the estimate directly to 0. At the same time,

I set the tuning parameters (d and ηT ) to such value that the threshold component does

not affect either consistency or the asymptotic distribution for the strong factors (for more

details, see Section 1.5).

If there is more than one regressor at the second stage, there is no analytical solution to

the minimization problem of Pen-FM; however, it can be easily derived numerically through

a sequence of 1-dimensional optimizations on the partial residuals, which are easy to solve.

This is the so-called pathwise coordinate descent algorithm, where, at each point in time

only one parameter estimate is updated. The algorithm goes as follows:

Step 1. Pick a factor i ∈ [1..k] and write the overall objective function as

L =

[
R̄e − β̂iλi − β̂jλ̃j

j ̸=i

]′
WT

[
R̄e − β̂iλi − β̂jλ̃j

j ̸=i

]
+ ηT

 k∑
j=1,j ̸=i

1∥∥∥β̂j∥∥∥d
1

∣∣∣λ̃j∣∣∣+ 1∥∥∥β̂i∥∥∥d
1

|λi|


where all the values of λj, except for the one related to factor i, are fixed at certain levels

λ̃j,j ̸=i.

Step 2. Optimise L w.r.t λi. Note that this is a univariate lasso-style problem, where

the residual pricing errors are explained only by the chosen factor i.

Step 3. Repeat the coordinate update for all the other components of λ.

Step 4. Repeat the procedure in Steps 1-3 until convergence is reached.

The convergence of the algorithm above to the actual solution of Pen-FM estimator

problem follows from the general results of Tseng (1988, 2001), who studies the coordinate

descent in a general framework. The only requirement for the algorithm to work is that

the penalty function is convex and additively separable in the parameters, which is clearly

satisfied in the case of Pen-FM. Pathwise-coordinate descent has the same level of computa-

tional complexity as OLS (or GLS), and therefore works very fast. It has been applied before

to various types of shrinkage estimators, as in Friedman, Hastie, Hoffling, and Tibshirani

(2007), and has been shown to be very efficient and numerically stable. It is also robust to

potentially high correlations between the vectors of beta, since each iteration relies only on

the residuals from the pricing errors.

As in the two-stage procedure, I define the shrinkage-based estimator for GMM (Pen-
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GMM) as follows:

θ̂pen = argmin
θ∈S

[
1

T

T∑
t=1

gt(θ)

]′
WT (θ)

[
1

T

T∑
t=1

gt(θ)

]
+ ηT

k∑
j=1

1

||β̂||d1
|λj|, (1.12)

where S is a compact set in Rnk+k+k+1.

The rationale for constructing such a penalty is the same as before, since one can use the

properties of the β̂s to automatically distinguish the strong factors from the weak ones on

the basis of some prior estimates of the latter (OLS or GMM based).

It is important to note that the penalty proposed here does not necessarily need to be

based on ||β̂j||1. In fact, the proofs can easily be modified to rely on any other variable

that has the same asymptotic properties, i.e. being Op

(
1√
T

)
for the useless factors and

Op(1) for the strong ones. Different scaled versions of the estimates of β, such as partial

correlations or their Fischer transformation all share this property. Partial correlations,

unlike betas, are invariant to linear transformation of the data, while Fisher transformation

(f(ρ̂) = 1
2
ln
(

1+ρ̂
1−ρ̂

)
) provides a map of partial correlations from [−1, 1] to R.

1.5 Asymptotic Results

Similar to most of the related literature, I rely on the following high-level assumptions

regarding the behaviour of the disturbance term ϵt:

Assumption 1 (Kleibergen (2009)). As T → ∞,

1.
1√
T

T∑
t=1

[([
1

Ft

]
⊗
(
Rt − inλ0,c − βf (f t + λ0,f )

))] d→

[
φR

φβ

]
where φR is n× 1, φβ is nk × 1, where n is the number of portfolios and k is the number of

factors. Further,
(
φ′
R, φ

′
β

)′ ∼ N (0, V ), where V = Q⊗ Ω, and

Q
(k+1)×(k+1)

=

(
1 µ′

f

µf Vff + µfµ
′
f

)
= E

[(
1

Ft

)(
1

Ft

)′]
, Ω

n×n
= var(εt), Vff

k×k
= var(Ft)

2.

plim
T→∞

1

T

T∑
j=1

R̄jF̄
′
j = Qff , plim

T→∞
F̄ = µf ,
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1. Spurious Factors in Linear Asset Pricing Models

where Qff has full rank.

Assumption 1 provides the conditions required for the regression-based estimates of βf

to be easily computed using conventional methods, i.e. the data should conform to certain

CLT and LLN, resulting in the standard
√
T convergence. This assumption is not at all

restrictive, and can be derived from various sets of low-level conditions, depending on the

data generating process in mind for the behaviour of the disturbance term and its interaction

with the factors, e.g. as in Shanken (1992) or Jagannathan and Wang (1998)1.

Lemma 1.1 Under Assumption 1, average cross-sectional returns and OLS estimator β̂

have a joint large sample distribution:

√
T

(
R̄− βλf

vec(β̂ − β)

)
d→

(
ψR

ψβ

)
∼ N

[(
0

0

)
,

(
Ω 0

0 V −1
ff ⊗ Ω

)
,

]

where ψR = φR is independent of ψβ = (V −1
ff ⊗ In)(φβ − (µf ⊗ In)φR)

Proof. See Kleibergen (2009), Lemma 1.

1.5.1 Correctly Specified Model

Having intuitively discussed the driving force behind the proposed shrinkage-based approach,

I now turn to its asymptotic properties. The following propositions describe the estimator’s

behaviour in the presence of irrelevant factors: β = (βns, βsp), where βns is an n× k1 matrix

of the set of betas associated with k1 non-spurious factors (including a unit vector) and

βsp denotes the matrix of the true value of betas for useless (βsp = 0n×(k+1−k1)) or weak

(βsp =
Bsp√
T
) factors.

Proposition 1.1 Under Assumption 1, if WT
p→ W , W is a positive definite n× n matrix,

ηT = ηT−d/2 with a finite constant η > 0, d > 0 and β′
nsβns having full rank, λ̂ns

p→ λ0,ns

and λ̂sp
p→ 0

1For example, Shanken (1992) uses the following assumptions, which easily result in Assumption 1:
1. The vector ϵt is independently and identically distributed over time, conditional on (the time series

values for) F , with E[ϵt|F ] = 0 and V ar(ϵt|F ) = Ω (rank N)
2. Ft is generated by a stationary process such that the first and second sample moments converge in

probability, as T → ∞ to the true moments which are finite. Also, F̄ is asymptotically normally
distributed.

Jagannathan and Wang (1998) provide low level conditions for a process with conditional heteroscedasticity.
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1. Spurious Factors in Linear Asset Pricing Models

Further, if d > 2

√
T

(
λ̂ns − λ0,ns

λ̂sp

)
d→

(
[β′
nsWβns]

−1 β′
nsWΨβ,nsλ0,ns + (β′

nsWβns)
−1 β′

nsWψR

0

)

Proof. See Appendix B.1.

The intuition behind the proof for consistency is clear: the tuning parameter ηT is set

in such a way that the overall effect of the penalty, ηT , disappears with the sample size,

and therefore does not affect the consistency of the parameter estimation, unless some of its

shrinkage components are inflated by the presence of irrelevant factors. If a factor is useless,

the L1 norm of β̂j tends to 0 at the
√
T rate, and the penalty converges to a positive constant

in front of the corresponding |λj|. Further, since β̂j → 0n×1, λj disappears from the usual

loss function,
[
R̄e − β̂λ

]′
WT

[
R̄e − β̂λ

]
, and it is the penalty component that determines its

asymptotic behaviour, shrinking the estimate towards 0. At the same time, other parameter

estimates are not affected, and their behaviour is fully described by standard arguments.

The shrinkage-based second pass estimator has the so-called oracle property for the non-

spurious factors: the estimates of their risk premia have the same asymptotic distribution as if

we had not included the useless factors in advance. Risk premia estimates are asymptotically

normal, with two driving sources of the error component: estimation error from the first pass

β’s (and the resulting error-in-variables problem), and the disturbance term effect from the

second pass.

The risk premia for the useless factors are driven towards 0 even at the level of the

asymptotic distribution to ensure that they do not affect the estimation of other parameters.

It should be emphasized, that the effect of the penalty does not depend on the actual value

of the risk premium. Unlike the usual lasso or related procedures, the mechanism of the

shrinkage here is driven by the strength of β̂, regressors in the second pass. Therefore, there

is no parameter discontinuity in the vicinity of 0, and bootstrap methods can be applied to

approximate the distribution and build the confidence bounds.

One could argue that the assumption of β = 0 is quite restrictive, and a more realistic

approximation of local-to-zero asymptotics should be used. Following the literature on weak

instruments, I model this situation by assuming that βsp =
Bsp√
T
. This situation could arise

when a factor has some finite-sample correlation with the assets that eventually disappears

asymptotically. As with the case of useless factors, I present the asymptotic results properties
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1. Spurious Factors in Linear Asset Pricing Models

of the Pen-FM estimator, when there are weak factors in the model.

Proposition 1.2 Under Assumption 1, if βsp = Bsp√
T
, WT

p→ W , W is a positive definite

n× n matrix, ηT = ηT−d/2 with a finite constant η > 0, d > 0 and β′
nsβns having full rank,

λ̂ns
p→ λ0,ns and λ̂sp

p→ 0

Further, if d > 2

√
T

(
λ̂ns − λ0,ns

λ̂sp

)
d→

(
(β′

nsW
−1βns]

−1
β′
nsW

−1Bspλ0,sp + [β′
nsW

−1βns)
−1
β′
nsW

−1(ψR +Ψβ,nsλ0,ns)

0

)

Proof. See Appendix B.2.

The logic behind the proof is exactly the same as in the previous case. Recall that even

in the case of weak identification again
∥∥∥β̂j∥∥∥

1
= Op(

1√
T
). Therefore, the penalty function

recognises its impact, shrinking the corresponding risk premia towards 0, while leaving the

other parameters intact.

The situation with weak factors is slightly different from that with purely irrelevant ones.

While excluding such factors does not influence consistency of the strong factors risk premia

estimates, it affects their asymptotic distribution, as their influence does not disappear fast

enough (it is of the rate 1√
T
, the same as the asymptotic convergence rate), and hence we

get an asymptotic bias apart from the usual components of the distribution. Note, that any

procedure eliminating the impact of weak factors from the model (e.g. Gospodinov, Kan,

and Robotti (2014a), Burnside (2010)), results in the same effect. In small sample it could

influence the risk premia estimates; however, the size of this effect depends on several factors,

and in general is likely to be quite small, especially compared to the usual error component.

Note that the 1√
T
bias arises only if the omitted risk premium is non-zero. This requires

a factor that asymptotically is not related to the cross-section of returns, but is nevertheless

priced. Though unlikely, one cannot rule out such a case ex ante. If the factor is tradable,

the risk premium on it should be equal to the corresponding excess return; hence one can

use this property to recover a reliable estimate of the risk premium, and argue about the

possible size of the bias or try to correct for it.
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1.5.2 Misspecified Model

Model misspecification severely exacerbates many consequences of the identification failure1;

however, its particular influence depends on the degree and nature of such misspecification.

The easiest case to consider is mean-misspecification, when factor betas are properly

estimated, but the residual average returns on the second stage are non-zero. One might draw

an analogy here with panel data, where the presence of individual fixed effects would imply

that the pooled OLS regression is no longer applicable. The case of mean-misspecification

is also easy to analyse, because it allows us to isolate the issue of the correct estimation of

β from the one of recovering the factor risk premia. For example, one can model the return

generation process as follows:

R̄ = c+ βλ0 +
1√
T
ψR + op

(
1√
T

)
,

vec(β̂) = vec(β) +
1√
T
ψβ + op

(
1√
T

)
,

where c is a n × 1 vector of the constants. It is well known that both OLS and GLS,

applied to the second pass, result in diverging estimates for the spurious factors risk premia

and t-statistics asymptotically tending to infinity. Simulations confirm the poor coverage

of the standard confidence intervals and the fact that the spurious factor is often found

to be significant even in relatively small samples. However, the shrinkage-based second

pass I propose successfully recognises the spurious nature of the factor. Since the first-pass

estimates of β’s are consistent and asymptotically normal, the penalty term behaves in the

same way as in the correctly specified model, shrinking the risk premia for spurious factors

to 0 and estimating the remaining parameters as if the spurious factor had been omitted

from the model. Of course, since the initial model is misspecified to begin with, risk premia

estimates would suffer from inconsistency, but it would not stem from the lack of model

identification.

A more general case of model misspecification would involve an omitted variable bias (or

the nonlinear nature of the factor effects). This would in general lead to the inconsistent

estimates of betas (e.g. if the included factors are correlated with the omitted ones), inval-

idating the inference in both stages of the estimation. However, as long as the problem of

1See, e.g. Kan and Zhang (1999a), Jagannathan and Wang (1998), Kleibergen (2009) and Gospodinov,
Kan, and Robotti (2014a)
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rank deficiency caused by the useless factors remains, the asymptotic distribution of Pen-FM

estimator will continue to share that of the standard Fama-MacBeth regressions without the

impact of spurious factors. A similar result can easily be demonstrated for Pen-GMM.

1.5.3 Bootstrap

While the asymptotic distribution gives a valid description of the pointwise convergence, a

different procedure is required to construct valid confidence bounds. Although traditional

shrinkage-based estimators are often used in conjunction with bootstrap techniques, it has

been demonstrated that even in the simplest case of a linear regression with independent

factors and i.i.d. disturbances, such inferences will be invalid (Chatterjee and Lahiri (2010)).

Intuitively this happens because the classical lasso-related estimators incorporate the penalty

function, which behaviour depends on the true parameter values (in particular, whether they

are 0 or not). This in turn requires the bootstrap analogue to correctly identify the sign

of parameters in the ε-neighborhood of zero, which is quite difficult. Some modifications

to the residual bootstrap scheme have been proposed to deal with this feature of the lasso

estimator (Chatterjee and Lahiri (2011, 2013)).

Fortunately, the problem explained above is not relevant for the estimator that I propose,

because the driving force of the penalty function comes only from the nature of the regressors,

and hence there is no discontinuity, depending on the true value of the risk premium. Further,

in the baseline scenario I work with a 2-step procedure, where shrinkage is used only in the

second stage, leaving the time series estimates of betas and average returns unchanged. All

of the asymptotic properties discussed in the previous section result from the first order

asymptotic expansions of the time series regressions. Therefore, it can be demonstrated

that once a consistent bootstrap procedure for time series regressions is established (be

it pairwise bootstrap, blocked or any other technique appropriate to the data generating

process in mind), one can easily modify the second stage so that the bootstrap risk premia

have proper asymptotic distributions.

Consider any bootstrap procedure (pairwise, residual or block bootstrap) that remains

consistent for the first stage estimates, that is
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β̂∗ = β̂ +
1√
T
Ψβ + op

(
1√
T

)
R̄e∗ = R̄e +

1√
T
ΨR + op

(
1√
T

)
,

where β̂∗ and R̄∗ are the the bootstrap analogues of β̂ and R̄.

Then

λ̂∗pen = argmin
λ∈Θ

[
R̄∗ − β̂∗λ

]′
WT

[
R̄∗ − β̂∗λ

]
+ ηT

k∑
j=1

1∥∥∥β̂∗
j

∥∥∥d
1

|λj| (1.13)

is the bootstrap analogue of λ̂pen.

Let Ĥn(· ) denote the conditional cdf of the bootstrap version B∗
T =

√
T (λ̂∗pen − λ̂pen) of

the centred and scaled Pen-FM estimator of the risk premia BT =
√
T (λ̂pen − λ0).

Proposition 1.3 Under conditions of Proposition 1.1,

ρ(Ĥ∗
T , ĤT )→0, as T → ∞,

where ĤT = P (BT ≤ x), x ∈ R and ρ denotes weak convergence in distribution on the set of

all probability measures on (R(k+1),B(R(k+1)))

Proof. See Appendix B.3

Proposition 1.3 implies that the bootstrap analogue of Pen-FM can be used as an ap-

proximation for the distribution of the risk premia estimates. This result is similar to the

properties of the adaptive lasso, that naturally incorporates soft thresholding with regard to

the optimisation solution, and unlike the usual lasso of Tibshirani (1996), does not require

aditional corrections (e.g. Chatterjee and Lahiri (2010)).

Let bT (α) denote the α-quantile of ||BT ||, α ∈ (0, 1). Define

IT,α = b ∈ Rk : ||b− λ̂pen|| ≤ T−1/2bT (α)

the level-α confidence set for λ.

Proposition 1.4 Let α ∈ (0, 1) be such that P (||B|| ≤ t(α) + ν) > α for all ν > 0. Then

under the conditions of Proposition 1.1

P (λ0 ∈ IT,α) → α as T → ∞
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This holds if there is at least 1 non-spurious factor, or an intercept in the second stage.

Proof. See Appendix B.4

In other words, the above proposition states that having a sample of bootstrap analogues

for λ̂pen, one can construct valid percentile-based confidence bounds for strongly identified

parameters.

1.5.4 Generalised Method of Moments

One can modify the objective function in Equation (1.6) to include a penalty based on the

initial OLS estimates of the βF parameters. Similar to the two-step procedure, this would

shrink the risk premia coefficients for the spurious factors to 0, while providing consistent

estimates for all the other parameters in the model.

The following set of assumptions provides quite general high level conditions for deriving

the asymptotic properties of the estimator in the GMM case.

Assumption 2 1. For all 1 ≤ t ≤ T , T ≥ 1 and θ ∈ S

a) gt(θ) is m-dependent

b) |gt(θ1)− gt(θ2)| ≤Mt|θ1 − θ2|,
with limT→∞

∑T
t−1EM

p
t <∞, for some p > 2;

c) supθ∈S E|gt(θ)|p <∞ , for some p > 2

2. Define E 1
T

∑T
t=1 gt(θ) = g1T (θ)

a) Assume that g1T (θ) → g1(θ) uniformly over S, and g1T (θ) is continuously differen-

tiable in θ;

b) g1(θ0,ns, λsp = 0k2) = 0, and g1(θns, λsp = 0k2) ̸= 0 for θns ̸= θ0,ns, where

θns = {µ, vec(β), λf,ns, λc}

3. Define the following (n+nk+k)×(nk+k+1+k) matrix: GT (θ) =
dg1T (θ)
dθ′

. Assume that

GT (θ)
p→ G(θ) uniformly in a neighbourhood N of (θ0,ns, λsp = 0k2), G(θ) is continuous

in theta. Gns(θns,0, λsp = 0k2) is an (n + nk + k) × (nk + k1 + k) submatrix of G(θ0)

and has full column rank.

4. WT (θ) is a positive definite matrix, WT (θ)
p→ W (θ) uniformly in θ ∈ S, where W (θ)

is an (n+ nk + k)× (n+ nk + k) symmetric nonrandom matrix, which is continuous

in θ and is positive definite for all θ ∈ S.
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The set of assumptions is fairly standard for the GMM literature and stems from the re-

liance on the empirical process theory, often used to establish the behaviour of the shrinkage-

based GMM estimators (e.g. Caner (2009), Liao (2013)). Most of these assumptions could

be further substantially simplified (or trivially established) following the structure of the

linear factor model and the moment function for the estimation. However, it is instructive

to present a fairly general case. Several comments are in order, however.

Assumption 2.1 presents a widespread sufficient condition for using empirical process

arguments, and is very easy to establish for a linear class of models (it also encompasses

a relatively large class of processes, including the weak time dependence of the time series

and potential heteroscedasticity). For instance, the primary conditions for the two-stage

estimation procedure in Shanken (1992) easily satisfy these requirements.

Assumptions 2.2 and 2.3, among other things, provide the identification condition used

for the moment function and its parameters. I require the presence of k2 irrelevant/spurious

factors to be the only source for the identification failure, which, once eliminated, should not

affect any other parameter estimation. One of the direct consequences is that the first-stage

OLS estimates of the betas (β̂) have a standard asymtotic normal distribution and basically

follow the same speed of convergence as in the Fama-McBeth procedure, allowing us to rely

on them in formulating the appropriate penalty function.

The following proposition establishes the consistency and asymptotic normality of Pen-

GMM:

Proposition 1.5 Under Assumption 2, if βsp = 0n×k2, ηT = ηT−d/2 with a finite constant

η > 0, and d > 2, then

λ̂sp
p→ 0k2 and θ̂ns

p→ θ0,ns

Further, if d > 2

√
T (λ̂pen,sp)

d→ 0k2
√
T (θ̂pen,ns − θ0,ns)

d→ [Gns(θ0)
′W (θ0)Gns(θ0)]

−1Gns(θ0)W (θ0)Z(θ0)

where θns = {µ, vec(β, ), λf,ns, λc}, Z(θ0) ≡ N(0,Γ(θ0)), and

Γ(θ0) = limT→∞E
[

1√
T

∑T
t=1 gt(θ0)

] [
1√
T

∑T
t=1 gt(θ0)

]′
Proof. See Appendix B.5.
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The intuition behind these results is similar to the two-pass procedure of Fama-MacBeth:

the penalty function is formulated in such a way as to capture the effect of factors with

extremely weak correlation with asset returns. Not only does the resulting estimator retain

consistency, but it also has an asymptotically normal distribution. Bootstrap consistency

for constructing confidence bounds could be proved using an argument, similar to the one

outlined for the Pen-FM estimator in Propositions 1.3 and 1.4.

1.6 Simulations

Since many empirical applications are characterised by a rather small time sample of available

data (e.g. when using yearly observations), it is particularly important to assess the finite

sample performance of the estimator I propose. In this section I discuss the small-sample

behaviour of the Pen-FM estimator, based on the simulations for the following sample sizes:

T = 30, 50, 100, 250, 500, 1000.

For a correctly specified model I generate normally distributed returns for 25 portfolios

from a one-factor model, CAPM. In order to get factor loadings and other parameters for

the data-generating process, I estimate the CAPM on the cross-section of excess returns

on 25 Fama-French portfolios sorted on size and book-to-market, using quarterly data from

1947Q2 to 2014Q2 and market excess return, measured by the value-weight return of all

CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ. The

data is taken from Kenneth French website. I then run separate time series regressions of

these portfolios excess returns on Re
mkt to get the estimates of market betas, β̂ (25 × 1),

and the variance-covariance matrix of residuals, Σ̂ (25 × 25). I then run a cross-sectional

regression of the average excess returns on the factor loadings to get λ̂0 and λ̂1.

The true factor is simulated from a normal distribution with the empirical mean and

variance of the market excess return. A spurious factor is simulated from a normal distri-

bution with the mean and variance of the real per capita nondurable consumption growth,

constructed for the same time period using data from NIPA Table 7.1 and the corresponding

PCE deflator. It is independent of all the other innovations in the model. Finally, returns

are generated from the following equation:

Re
t = λ̂0 + β̂′λ̂1 + β′R̄e

t,mkt + ϵt
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where ϵt is generated from a multivariate normal distribution N
(
0, Σ̂

)
.

I then compare the performance of 3 estimators: (a) Fama-MacBeth, using the simulated

market return as the only factor (I call this the oracle estimator, since it includes only

the true risk factor ex ante), (b) Fama-MacBeth, using the simulated market return and the

irrelevant factor, (c) Pen-FM estimator, using the simulated market return and the irrelevant

factor.

For a misspecified model the data is generated from a 3 factor model, based on 3 canonical

Fama-French factors (with parameters obtained and data generated as in the procedure

outlined above). However, in the simulations I consider estimating a 1 factor model (thus,

the source of misspecification is omitting the SMB and HML factors). Again, I compare the

performance of 3 estimators: (a) Fama-MacBeth, using the simulated market return as the

only factor, (b) Fama-MacBeth, using the simulated market return and the irrelevant factor,

(c) Pen-FM estimator, using the simulated market return and the irrelevant factor.

For each of the simulations, I also compute conventional measures of fit:

R2
ols = 1− var(R̄e−λ̂olsβ̂)

var(R̄e)
, HJ =

√
λ̂′ols

(∑T
t=1RtR′

t

)
λ̂ols,

R2
gls,1 = 1− var(Ω̂−1/2(R̄e−λ̂olsβ̂))

var(Ω̂−1/2R̄e)
, T 2 = α′

(
(1+λ̂′fΣf λ̂f )q

T

)+

α,

R2
gls,2 = 1− var(Ω̂−1/2(R̄e−λ̂glsβ̂))

var(Ω̂−1/2R̄e)
, q = α′(yΩ̂y′)+α

APE = 1
n

∑n
i=1 |αi|,
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where R2
ols is the cross-sectional OLS-based R2, R2

gls,1 is the GLS-R2, based on the OLS-type

estimates of the risk premia, Ω̂ is the sample variance-covariance matrix of returns, R2
gls,2 is

the GLS-R2, based on the GLS-type estimates of the risk premia αi = R̄i
e − λ̂olsβ̂i is the

average time series pricing error for portfolio i, HJ is the Hansen-Jagannathan distance, +

stands for the pseudo-inverse of a matrix, y = I− β̂(β̂′β̂)−1β̂, T 2 is the cross-sectional test of

Shanken (1985), Σf is the variance-covariance matrix of the factors, and λ̂f is a k× 1 vector

of the factors risk premia (excluding the common intercept).

For the Pen approach, I use the penalty, defined through partial correlations of the factors

and returns (since they are invariant to the linear transformation of the data). I set the level

tuning parameter, η to σ̄, the average standard deviation of the residials from the first stage,

and the curvature parameter, d, to 4. In Section 1.6.3, I investigate the impact of tuning

parameters on the estimator performance, and show that changing values of the tuning

parameters has only little effect on the estimator’s ability to eliminate or retain strong/weak

factors.

1.6.1 Correctly Specified Model

Table 1.1 demonstrates the performance of the three estimation techniques in terms of their

point estimates: the Fama-MacBeth two-pass procedure without the useless factor (denoted

as the oracle estimator), the Fama-MacBeth estimator, which includes both useful and

useless factors in the model and the Pen-FM estimator. All three us an identity weight

matrix at the second stage. For each of the estimators the table reports the mean point

estimate of the risk premia and the intercept, their bias and mean squared error. I also

report in the last column the average factor shrinkage rates for the Pen-FM estimator,

produced using 10,000 simulations (i.e. how often the corresponding risk premia estimate is

set exactly to 0).

The results are striking. The useless factor is correctly identified in the model with the

correponding risk premia shrunk to 0 with 100% accuracy even for such a small sample size

as 30 observations. At the same time, the useful factor (market excess return) is correctly

preserved in the specification, with the shrinkage rate below 1% for all the sample sizes.

Starting from T = 50, the finite sample bias of the parameter estimates produced by the Pen-

FM estimator is much closer to that of the oracle Fama-MacBeth cross-sectional regression,

which exludes the useless factor ex ante. For example, when T = 50, the average finite sample
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bias of the useful factor risk premium, produced by the oracle Fama-MacBeth estimator is

0.093 %, 0.114 % for the two-step procedure which includes the useless factor, and 0.091%

for the estimates produced by Pen-FM.

The mean squared errors of the estimates demonstrate a similar pattern: for T ≥ 50 the

MSE for Pen-FM is virtually identical to that of the Fama-MacBeth without the useless factor

in the model. At the same time, the mean squared error for the standard Fama-MacBeth

estimator stays at the same level of about 0.32% regardless of sample size, illustrating the fact

that the risk premia estimate of the useless factor is inconsistent, converging to a bounded

random variable, centred at 0.

The size of the confidence intervals constructed by bootstrap is slighly conservative (see

Table 1.A.1). However, it is not a feature particular to the Pen-FM estimator. Even without

the presence of useless factors in the model, bootstrapping risk premia parameters seems to

produce similar slighly conservative confidence bounds, as illustrated in Table 1.A.1, Panel

A.

Figure 1.A.1-1.A.5 also illustrate the ability of Pen-FM estimator to restore the original

quality of fit for the model. Figure 1.A.1 shows the distribution of the cross-sectional R2 for

the various sample size. The measures of fit, produced by the model in the absence of the

useless factor and with it, when estimated by Pen-FM, are virtually identical. At the same

time, R̄2, produced by the conventional Fama-MacBeth approach seems to be inflated by

the presence of a useless factor, consistent with the theoretical findings in Kleibergen and

Zhan (2013). The distribution of the in-sample measure of fit seems to be quite wide (e.g.

for T=100 it fluctuates a good deal from 0 to 80%), again highlighting the inaccuracy of a

single point estimate and a need to construct confidence bounds for the measures of fit (e.g.

as suggested in Lewellen, Nagel, and Shanken (2010). Even if we estimate the true model

specification, empirically the data contains quite a lot of noise (which was also captured in

the simulation design, calibrating data generating parameters to their sample analogues).

Thus it is not surprising to find that the probability of getting a rather low value of the R2

is still high for a moderate sample size. Only when the number of observations is high (e.g.

T=1000), does the peak of the probability density function seem to approach 80%; however,

even then the domain remains quite wide.
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Table 1.1: Estimates of risk premia in a correctly specified model

True parameter Mean Estimate Bias MSE Shrinkage

value Oracle FM Pen-FM Oracle FM Pen-FM Oracle FM Pen-FM rate

Panel A: T=30
Intercept 3.277 3.265 3.273 3.25 -0.012 -0.004 -0.027 2.259 2.26 2.203 0

Useful factor -0.647 -0.673 -0.672 -0.659 -0.026 -0.026 -0.012 2.25 2.247 2.196 0.007
Useless factor - - 0.002 0 - 0.002 0 - 0.317 0 1

Panel B: T=50
Intercept 3.277 3.17 3.149 3.173 -0.107 -0.128 -0.104 1.877 1.837 1.848 0

Useful factor -0.647 -0.553 -0.533 -0.556 0.093 0.114 0.091 1.875 1.827 1.848 0.009
Useless factor - - 0.01 0 - 0.01 0 - 0.314 0 1

Panel C: T=100
Intercept 3.277 3.213 3.195 3.21 -0.064 -0.082 -0.067 1.449 1.447 1.444 0

Useful factor -0.647 -0.593 -0.575 -0.591 0.054 0.072 0.056 1.421 1.427 1.417 0.003
Useless factor - - 0.01 0 - 0.01 0 - 0.318 0 1

Panel D: T=250
Intercept 3.277 3.267 3.271 3.266 -0.011 -0.007 -0.011 0.902 0.894 0.901 0

Useful factor -0.647 -0.642 -0.648 -0.642 0.005 -0.001 0.005 0.887 0.885 0.886 0
Useless factor - - -0.002 0 - -0.002 0 - 0.325 0 1

Panel E: T=500
Intercept 3.277 3.277 3.281 3.276 -0.001 0.004 -0.001 0.628 0.647 0.628 0

Useful factor -0.647 -0.645 -0.65 -0.645 0.001 -0.003 0.002 0.627 0.646 0.627 0
Useless factor - - 0.007 0 - 0.007 0 - 0.31 0 1

Panel F: T=1000
Intercept 3.277 3.286 3.278 3.286 0.009 0 0.009 0.435 0.441 0.435 0

Useful factor -0.647 -0.655 -0.646 -0.654 -0.008 0.001 -0.008 0.421 0.431 0.421 0
Useless factor - -0.012 0 - -0.012 0 - 0.321 0 1

Note. The table summarises the properties of the Fama-MacBeth and Pen-FM estimators with an identity
weight matrix in a model for 25 portfolios with a common intercept and one true factor driving the returns.
λ0 is the value of the intercept, λ1 and λ2 are the corresponding risk premia of the true risk factor and the
useless one. The model is simulated 10 000 times for different values of the sample size (T). The ”Oracle”
estimator corresponds to the Fama-MacBeth procedure omitting the useless factor, ”FM” and ”Pen-FM”
stand for the Fama-MacBeth and Pen-FM estimators in the model with a useful and a useless factor. The
table presents the mean point estimates of the parameters, their bias, and the mean squared error (MSE).
The mean shrinkage rate corresponds to the average percentage of times the corresponding coefficient was
set to exactly 0 during 10,000 simulations.

Returns are generated from the multivariate normal distribution with the mean and variance-covariance
matrix equal to those of the nominal quarterly excess returns on 25 Fama-French portfolios sorted by size
and book-to-market ratio during the period 1962Q2 : 2014Q2. The useful factor drives the cross-section of
asset returns, and is calibrated to have the same mean and variance as the quarterly excess return on the
market. The useless factor is generated from a multivariate normal distribution with the mean and variance
equal to their sample analogues of nondurable consumption growth for the same time period. Betas,
common intercept and risk premium for the useful factor come from the Fama-MacBeth estimates of a one
factor model with market excess return estimated on the cross-section of the 25 Fama-French portfolios.
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The GLS R2, based on either OLS or GLS second stage estimates (Figure 1.A.2 and

1.A.3), seem to have a much tighter spread (in particular, if one relies on the OLS second

stage). As the sample size increases, the measures of fit seem to better indicate the pricing

ability of the true factor. The GLS R2 is less affected by the problem of the useless factor

(as demonstrated in Kleibergen and Zhan (2013)), but there is still a difference between the

estimates, and if the model is not identified, R2 seems to be slighly higher, as in the OLS case.

This effect, however, is much less pronounced. Once again, the distribution of GLS R2 for

Pen-FM is virtually identical to that of the conventional Fama-MacBeth estimator without

the useless factor in the model. A similar spurious increase in the quality of fit may be

noted, considering the distribution of the average pricing errors (Figure 1.A.5), which is

shifted to the left in the presence of a useless factor. The Hansen-Jagannathan distance is

also affected by the presence of the useless factor (as demonstrated in Gospodinov, Kan,

and Robotti (2014a)); however, not as much (Figure 1.A.4). In contrast to the standard

Fama-McBeth estimator, even for a very small sample size the average pricing error and the

Hansen-Jagannathan distance produced by Pen-FM are virtually identical to those of the

model that does not include the spurious factor ex ante.

Figs. 1.A.11 and 1.A.13 demonstrate the impact of the useless factors on the distribution

of the T 2 and q statistics respectively. I compute their values, based on the risk premia

estimates produced by Fama-MacBeth approach with or without the useless factor, but not

Pen-FM, since that would require an assumption on the dimension of the model, and the

shrinkage-based estimation is generally silent about testing the size of the model (as opposed

to identifying its parameters). The distribution of q is extremely wide and when the model is

contaminated by the useless factors is naturally inflated. The impact on the distribution of

T 2 is naturally a combination of the impact coming from the Shanken correction term (which

is affected by the identification failure through the risk premia estimates), and q quadratics.

As a result, the distribution is much closer to that of the oracle estimator; however, it is still

characterised by an appreciably heavy right tail, and is generally slighly inflated.

1.6.2 Misspecified Model

The second simulation design that I consider corresponds to the case of a misspecified model,

where the cause of misspecification is the omitted variable bias. The data is generated from a

3-factor model, based on 3 canonical Fama-French factors (with data generating parameters
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obtained from the in-sample model estimation similar to the previous case). However, in the

simulations I consider estimating a one factor model (thus, the source of misspecification is

omitting the SMB and HML factors). Again, I compare the performance of 3 estimators: (a)

Fama-MacBeth, using the simulated market return as the only factor, (b) Fama-MacBeth,

using the simulated market return and the irrelevant factor, (c) Pen-FM estimator, using

the simulated market return and the irrelevant factor.

Table 1.2 describes the pointwise distribution of the oracle estimator (Fama-MacBeth

with an identity weight matrix, applied using only the market excess return as a risk factor),

Fama-MacBeth and Pen-FM estimators, when the model includes both true and useless

factors.

The results are similar to the case of the correctly specified model. Pen-FM successfully

identifies both strong and useless factors with very high accuracy (the useless one is always

eliminated from the model by shrinking its premium to 0 even when T = 30). The mean

squared error and omitted variable bias for all the parameters are close to those of the

oracle estimator. At the same time, column 9 demonstrates that the risk premium for the

spurious factor, produced by conventional Fama-MacBeth procedure diverges as the sample

size increases (its mean squared error increases from 0.445 for T=50 to 1.979 for T=1000).

However, the risk premia estimates remain within a reasonable range of parameters, so even

if the Fama-MacBeth estimates diverge, it may be difficult to detect it in practice.

Confidence intervals based on t-statistics for the Fama-MacBeth estimator overreject the

null hypohesis of no impact of the useless factors (see Tables 1.A.4 and 1.A.6), and should

a researcher rely on them, she would be likely to identify a useless factor as priced in the

cross-section of stock returns.

Figures 1.A.6-1.A.10 present the quality of fit measures in the misspecified model con-

taminated by the presence of a useless factor and the ability of Pen-FM to restore them.

Figure 1.A.6 shows the distribution of the cross-sectional R2 for various sample sizes. The

similarity between the measures of fit, produced by the model in the absence of the useless

factor and with it, but estimated by Pen-FM, is striking: even for such a small sample size

as 50 time series observations, the distributions of the R2 produced by the Fama-MacBeth

estimates in the absence of a useless factor, and Pen-FM in a nonidentified model, are vir-

tually identical. This is expected, since, as indicated in Table 1.2, once the useless factor is

eliminated from the model, the parameter estimates produced by Pen-FM are nearly iden-

tical to those of the one-factor version of Fama-MacBeth. As the sample size increases, the
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Table 1.2: Estimates of risk premia in a missspecified model

True parameter Mean Estimate Bias MSE Shrinkage

value (λ) Oracle FM Pen-FM Oracle FM Pen-FM Oracle FM Pen-FM rate

Panel A: T=30
Intercept 3.315 3.192 3.041 3.149 -0.123 -0.274 -0.166 1.287 1.514 1.253 0

Useful factor -1.316 -0.619 -0.629 -0.578 0.698 0.687 0.739 1.392 1.58 1.378 0.022
Useless factor - -0.019 0 - -0.019 0 - 0.34 0 1

Panel B: T=50
Intercept 3.315 3.184 3.053 3.177 -0.132 -0.262 -0.138 1.105 1.456 1.097 0

Useful factor -1.316 -0.592 -0.621 -0.587 0.724 0.696 0.729 1.252 1.542 1.25 0.014
Useless factor - -0.021 0 - -0.021 0 - 0.445 0 1

Panel C: T=100
Intercept 3.315 3.253 3.142 3.247 -0.062 -0.173 -0.068 0.781 1.318 0.78 0

Useful factor -1.316 -0.639 -0.692 -0.634 0.677 0.624 0.682 0.986 1.407 0.989 0.003
Useless factor - 0.021 0 - 0.021 0 - 0.605 0 1

Panel D: T=250
Intercept 3.315 3.261 3.159 3.259 -0.054 -0.156 -0.057 0.488 1.138 0.488 0

Useful factor -1.316 -0.637 -0.708 -0.635 0.679 0.609 0.681 0.814 1.255 0.816 0
Useless factor - -0.004 0 - -0.004 0 - 0.979 0 1

Panel E: T=500
Intercept 3.315 3.276 3.246 3.275 -0.04 -0.069 -0.04 0.363 1.117 0.363 0

Useful factor -1.316 -0.649 -0.794 -0.649 0.667 0.522 0.667 0.745 1.212 0.745 0
Useless factor - -0.008 0 - -0.008 0 - 1.374 0 1

Panel F: T=1000
Intercept 3.315 3.262 3.157 3.262 -0.053 -0.158 -0.053 0.255 1.053 0.255 0

Useful factor -1.316 -0.634 -0.703 -0.634 0.682 0.614 0.682 0.72 1.197 0.72 0
Useless factor - 0.049 0 - 0.049 0 - 1.979 0 1

Note. The table summarises the properties of the Fama-MacBeth and Pen-FM estimators with an identity
weight matrix in a model for 25 portfolios with a common intercept and 3 factors driving the returns,
but with only the first and a useless one considered in the estimation. λ0 is the value of the intercept;
λ1 and λ2 are the corresponding risk premia of the first useful factor and the useless one. The model is
simulated 10,000 times for different values of the sample size (T). The ”Oracle” estimator corresponds to the
Fama-MacBeth procedure omitting the useless factor, ”FM” and ”Pen-FM” stand for the Fama-MacBeth
and Pen-FM estimators in the model with a useful and a useless factor. The table summarises the mean
point estimates of the parameters, their bias and the mean squared error. The mean shrinkage rate corre-
sponds to the percentage of times the corresponding coefficient was set to exactly 0 during 10 000 simulations.

Returns are generated from the multivariate normal distribution with the mean and variance-covariance
matrix equal to those of the quarterly nominal excess returns on 25 Fama-French portfolios sorted on size
and book-to-market ratio during the period 1962Q2 : 2014Q2. Returns are simulated from a 3-factor model,
the latter calibrated to have the same mean and variance as the three Fama-French factors (market excess
return, SMB and HML portfolios). The useless factor is generated from a multivariate normal distribution
with the mean and variance equal to their sample analogues of nondurable consumption per capita growth
rate during the same time period. Betas, common intercept and risk premium for the useful factor come
from the Fama-MacBeth estimates of a 3-factor model on the cross-section of 25 Fama-French portfolios.
In the estimation, however, only the market return and the irrelevant factor are used; thus the source of
misspecification is the omitted factors.
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true sample distribution of R2 becomes much tighter, and peaks around 10-15%, illustrating

the model’s failure to capture all the variation in the asset returns, while omitting two out

of three risk factors.

The cross-sectional R2 produced by the conventional Fama-MacBeth method is severely

inflated by the presence of a useless factor, and its distribution is so wide that it looks almost

uniform on [0, 1]. This illustration is consistent with the theoretical findings of Kleibergen

and Zhan (2013) and Gospodinov, Kan, and Robotti (2014b), who demonstrate that under

misspecification, the cross-sectional R2 seems to be particularly affected by the identification

failure.

Figure 1.A.7 describes the distribution of GLS R2, when the second stage estimates

are produced using the identity weight matrix. Interestingly, when the model is no longer

identified, GLS R2 tends to be lower than its true in-sample value, produced by Pen-FM

or the Fama-MacBeth estimator without the impact of the useless factor. This implies that

if a researcher were to rely on this measure of fit, she would be likely to underestimate the

pricing ability of the model. Figure 1.A.8 presents similar graphs for the distribution of

the GLS R2, when the risk premia parameters are estimated by GLS in the second stage.

The difference between various methods of estimation is much less pronounced, although

Fama-MacBeth tends to somewhat overestimate the quality of fit produced by the model.

The average pricing errors displayed in Figure 1.A.10 also indicate a substantial impact of

the useless factor in the model. When such a factor is included, and risk premia parameters

are estimated using the conventional Fama-MacBeth approach, the APE seem to be smaller

than they actually are, resulting in s spurious improvement in the model’s ability to explain

the difference in asset returns. Again, this is nearly perfectly restored once the model is

estimated by Pen-FM.

The Hansen-Jagannathan distance (Figure 1.A.9) is often used to assess model misspec-

ification, since the greater is the distance between the set of SDFs that price a given set

of portfolios and the one suggested by a particular specification, the higher is the degree of

mispricing. When a useless factor is included, HJ in the Fama-MacBeth estimation has a

much wider support than it normally does; and, on average, it tends to be higher.

Figure 1.A.11 and 1.A.13 demonstrate the impact of the useless factors on the distribution

of T 2 and q statistics in a misspecified model. Again, I compute their values on the basis

of the risk premia estimates produced by the Fama-MacBeth approach with or without the

useless factor, but not Pen-FM, since computing these statistics requires using the matrices
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with the dimension, depending on the number of factors in the model (and not just their risk

premia values). When the model contains a spurious factor, the distribution of q becomes

extremely wide and skewed to the right. The effect of spurious factors on the distribution

of T 2 is naturally a combination of the influence coming from the Shanken correction term

(which is affected by the identification failure through the risk premia estimates), and q. T 2

is generally biased towards 0, making it harder to detect the model misspecification in the

presence of a useless factor.

1.6.3 Robustness Check

In order to assess the numerical stability and finite sample properties of the Pen-FM esti-

mator, I study how the survival rates of useful and useless factors depend on the tuning

parameters within the same simulation design of either the correct or the misspecified model

descibed in the earlier sections.

Table 1.3 summarises the survival rates for the useful and useless factors as a function

of the tuning parameter d, which defines the curvature of the penalty. In Proposition 1.1 I

proved the Pen-FM estimator to be consistent and asymptotically normal for all values of

d > 2. In this simulation I fix the other tuning parameter value, η = σ̄, and vary the value of

d from 3 to 10. Each simulation design is once again repeated 10,000 times, and the average

shrinkage rates of the factors are reported. Intuitively, the higher the curvature parameter,

the harsher is the estimated difference between a strong and a weak factor, and hence, one

would also expect a slighly more pronounced difference between their shrinkage rates.

It can be clearly seen that the behaviour of the estimates is nearly identical for different

values of the curvature parameter and within 1% difference from each other. The only case

that stands out, is when the sample is very small (30-50 observations) and d = 3. In this

case the useful factor has been mistakenly identified as the spurious one in 1-2.5% of the

simulations, but these types of fluctuations are fully expected when dealing with such a

small sample with a relatively low signal-to-noise ratio. A similar pattern characterises the

shrinkage rates for the useless factors, which are extremely close to 1.

Table 1.4 shows how the shrinkage rates of Pen-FM depend on the value of the other

tuning parameter, η, which is responsible for the overall weight on the penalty compared with

the standard component of the loss function (see Equation (1.9)) and could be thought of as

the level parameter. Once again, I conduct 10,000 simulations of the correctly or incorrectly
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Table 1.3: Shrinkage rate dependence on the value of the tuning parameter d

Shrinkage rates for the
useful factor, λ1 ̸= 0 useless factor

T d = 3 d = 4 d = 5 d = 7 d = 10 d = 3 d = 4 d = 5 d = 7 d = 10
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Correctly specified model
30 0.0137 0.0032 0.0031 0.0014 0.0000 1.0000 0.9947 0.9915 0.9957 0.9981
50 0.0126 0.0011 0.0013 0.0012 0.0011 1.0000 0.9936 0.9926 0.9968 0.9992
100 0.0095 0.0010 0.0001 0.0002 0.0001 1.0000 0.9989 0.9987 1.0000 1.0000
250 0.0011 0.0001 0.0000 0.0001 0.0001 1.0000 1.0000 1.0000 1.0000 1.0000
500 0.0001 0.0001 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Misspecified model
30 0.0284 0.0063 0.0001 0.0001 0.0000 0.9968 0.9905 0.9821 0.9810 0.9989
50 0.0252 0.0011 0.0000 0.0000 0.0000 0.9976 0.9947 0.9768 0.9922 1.0000
100 0.0063 0.0001 0.0000 0.0000 0.0000 0.9978 0.9968 0.9905 1.0000 1.0000
250 0.0000 0.0000 0.0000 0.0000 0.0000 0.9998 0.9947 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0000 0.0000 0.0000 0.998 0.9999 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note. The table summarises the shrinkage rates for the useful/useless factor produced by the Pen-FM
estimator for various sample sizes (T) and a range of parameters, d = 2, 3, 5, 7, 10, when η0 is set at the
average standard deviation of the residuals from the first stage. Simulation designs for the correctly specified
and misspecified models correspond to those described in Tables 1.1 and 1.2. Each sample is repeated 10,000
times.

specified model for the various sample size, and compute the shrinkage rates for both useful

and useless factors. I fix the curvature tuning parameter, d, at d = 4, and vary η.

I consider the following range of parameters:

1. η = R̄e, the average excess return on the portfolio;

2. η = ln(σ̄2), log of the average volatility of the residuals from the first stage;

3. η = σ̄, the average standard deviation of the first stage residuals;

4. the value of η is chosen by fivefold cross-validation;

5. the value of η is chosen by leave-one-out cross-validation.

I have chosen the values of the tuning parameter η that either capture the scale of the data

(for example, whether excess returns are displayed in percentages or not), or are suggested by
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Table 1.4: Shrinkage rate dependence on the value of the tuning parameter η0

Shrinkage rates for the
useful factor, λ1 ̸= 0 useless factor

T η0 = R̄e η0 = ln(σ2) η0 = σ̄ CV (5) CV (n− 1) η0 = R̄e η0 = ln(σ2) η0 = σ̄ CV (5) CV (n− 1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Correctly specified model
30 0.0008 0.0008 0.0031 0.0014 0.0000 0.9888 0.9873 0.9947 0.9957 0.9981
50 0.0016 0.0001 0.0010 0.0012 0.0011 0.9857 0.9944 0.9936 0.9968 0.9992
100 0.0000 0.0000 0.0007 0.0002 0.0001 0.9976 0.9960 0.9989 1.0000 1.0000
250 0.0000 0.0000 0.0001 0.0001 0.0001 0.9992 0.9992 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0001 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Misspecified model
30 0.0284 0.0063 0.0001 0.0001 0.0000 0.9968 0.9905 0.9640 0.9637 0.9989
50 0.0252 0.0011 0.0000 0.0000 0.0000 0.9976 0.9947 0.9749 0.9912 1.0000
100 0.0063 0.0001 0.0000 0.0000 0.0000 0.9978 0.9968 0.9975 0.9971 1.0000
250 0.0000 0.0000 0.0000 0.0000 0.0000 0.9998 0.9947 1.0000 1.0000 1.0000
500 0.0000 0.0000 0.0000 0.0000 0.0000 0.998 0.9999 1.0000 1.0000 1.0000
1000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note. The table illustrates the shrinkage rates for the useful/useless factor produced by the Pen-FM estimator
for various sample sizes (T) and a range of parameters η0, while d = 4. Simulation designs for the correctly
specified and misspecified models correspond to those described in Tables 1.1 and 1.2. Tuning parameter η0
is set to be equal to 1) average excess return on the portfolio, 2)logarithm of average variance of the residuals
from the first stage, 3) average standard deviation of the residuals from the first stage, 4) the average value of
the tuning parameter chosen by 5-fold cross-validation, 5) the average value of the tuning parameter chosen
by leave-one-out cross-validation. Each sample is repeated 10,000 times.

some of the data-driven techniques1. Cross-validation (CV) is intuitively appealing, because

it is a data-driven method and it naturally allows one to assess the out-of sample performance

of the model, treating every observation as part of the validation set only once. CV-based

methods have been extensively used in many different applications, and have proved to be

extremely useful2. Here I briefly describe the so-called k-fold cross-validation.

The original sample is divided into k equal size subsamples, followed by the following

algorithm.

• Pick a subsample and call it a validation set; all the other subsamples form a training

set.

• Pick a point on the grid for the tuning parameters. For the chosen values of the tuning

1Although the table presents the results for the tuning parameteres selected by cross-validation, I have
also considered such alternative procedures as BIC, Generalised BIC and the pass selection stability criterion.
The outcomes are similar both quantitively and qualitatively, and are available upon request.

2For an excellent overview see, e.g. Hastie, Tibshirani, and Friedman (2011)
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parameters estimate the model on the training set and assess its performnce on the

validation set by the corresponding loss function (LT (λ̂)).

• Repeat the procedure for all the other subsamples.

• Compute the average of the loss function (CV criterion).

• Repeat the calculations for all the other values of the tuning parameters. Since the

location of the minimum CV value is a random variable, it is often suggested that the

one to pick the one that gives the largest CV criterion within 1 standard deviation of

its absolute minimum on the grid, to ensure the robustness of the result (Friedman,

Hastie, and Tibshirani (2010)).

Table 1.4 summarises the shrinkage rates of the useful and useless factors for different

values of the level tuning parameter, η. Similar to the findings in Table 1.3, the tuning

parameter impact is virtually negligible. The useless factor is successfully identified and

eliminated from the model in nearly 100% of the simulations, even for a very small sample

size, regardless of whether the model is correctly or incorrectly specified, while the strong

factor is successfully retained with an equally high probability. The only setting where it

causes some discrepancy (within 2-3% confidence bounds) is the case of a misspecified model

and a very small sample size (T = 30 or 50); but it is again entirely expected for the samples

of such size, and therefore does not raise any concerns.

1.6.4 Comparing Pen-FM with alternatives

In this section I compare the finite sample performance of the sequential elimination proce-

dure proposed in Gospodinov, Kan, and Robotti (2014a) and that of Pen-FM with regard

to identifying the strong and useless factors.

I replicate the simulation designs used in Table 4 of Gospodinov, Kan, and Robotti

(2014a)1, to reflect various combinations of the risk drivers in a potential four-factor model:

strong factors that are either priced in the cross-section of asset returns or not, and irrelevant

factors. For each of the variables I compute the frequency with which it is identified as a

strong risk factor in the cross-section of asset returns and consequently retained in the model.

Each simulation design is repeated 10,000 times.

1I am very grateful to Cesare Robotti for sharing the corresponding routines.
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Panel A in Table 1.5 summarises the factor survival rates for a correctly specified model.

The top panel focuses on the case of 2 priced strong factors, 1 strong factor that is corre-

lated with returns, but not priced, and 1 purely irrelevant factor, which does not correlate

with asset returns1. For each of the variables I present its survival rate, based on the

misspecification-robust tm− statistic of Gospodinov, Kan, and Robotti (2014a)2 for a linear

SDF model, the frequency with which the corresponding risk premium estimate was not set

exactly to 0 by the Pen-FM estimator and one minus the average shrinkage rate from the 10,

000 bootstrap replica. The latter also provides an additional comparison of the performance

of the pointwise estimator with its bootstrap analogue. A good procedure should be able to

recognise the presence of a strong factor and leave it in the model with probability close to

1. At the same time, faced with the useless factor, one needs to recognise it and eliminate

from the model, forcing the survival rate to be close to 0.

Consider the case of a correctly specified model, with 2 useful factors that are priced in

the cross-section of asset returns, 1 useful, but unpriced factor (with a risk premium equal

to zero), and a useless factor, presented in the top panel of Table 1.5. The useless factor is

correctly identified and effectively eliminated from the model by both the misspecification-

robust t−test and the Pen-FM estimator even for a very small sample size (e.g. for a time

series of 100 observations, the useless factor is retained in the model in no more than 1%

of the simulations. For the smallest sample size of 50 observations, Pen-FM seems also to

outperform the sequential elimination procedure, since it retained the useless factor in less

than 1.5% of the models only, while the latter was keeping it as part of the specification in

roughly 15% of the simulations.

The tm-test is designed to eliminate not only the useless factors from the linear model,

but also those factors that correlate with asset returns, but are not priced in the cross-section

of assets. As a result, in 95-99% of cases the useful factor with λ = 0 is also eliminated from

the model. However, the Pen-FM estimator eliminates only the impact of useless factors, and

thus retains the presence of all the strongly identified factors in 92-98% of the simulations,

depending on the sample size (the associated risk premia could still be insignificant).

1The setting proxies the estimation of a 4-factor model on the set of portfolios similar to 25 size and
book-to-market and 17 industry portfolios. For a full description of the simulation design, please refer to
Gospodinov, Kan, and Robotti (2014a)

2The tc−statistic for a correctly specified model performs very similar to tm in terms of the factor survival
rates. Since it is not known ex ante, whether the model is correctly specified or not, I focus on the outcome
of the tm-test.
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Table 1.5: Survival rates of useful and irrelevant factors

Panel A: Correctly specified model

Useful Useful Useful Useless

(λ1 ̸= 0) (λ2 ̸= 0) (λ3 = 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0628 1 0.9995 0.1120 0.9166 0.9245 0.0588 0.9233 0.9426 0.1541 0 0.0126
100 0.1760 1 0.9997 0.2431 0.9403 0.9439 0.0207 0.9539 0.9606 0.0072 0 0.0079
150 0.3444 1 0.9998 0.4623 0.9652 0.9598 0.0232 0.9622 0.9695 0.0031 0 0.0053
200 0.5142 1 0.9998 0.6599 0.9787 0.9686 0.0231 0.9788 0.9749 0.0023 0 0.0040
250 0.6614 1 0.9998 0.8035 0.9761 0.9742 0.0231 0.9746 0.9786 0.0017 0 0.0032
600 0.9864 1 0.9998 0.9987 0.9802 0.9784 0.0141 0.9777 0.9813 0.0006 0 0.0027
1000 0.9999 1 0.9999 1.0000 0.9828 0.9815 0.0117 0.9833 0.9829 0.0003 0 0.0023

Useful Useful Useless Useless

(λ1 ̸= 0) (λ2 ̸= 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0573 1 0.9999 0.0984 1 1 0.1537 0 0.0164 0.1485 0 0.0232
100 0.1739 1 0.9999 0.2351 1 1 0.0068 0 0.0065 0.0085 0 0.0119
150 0.2020 1 1 0.2290 1 1 0.0080 0 0.0059 0.0032 0 0.0079
200 0.5265 1 1 0.6582 1 1 0.0017 0 0.0044 0.0025 0 0.0059
250 0.6742 1 1 0.8080 1 1 0.0015 0 0.0035 0.0015 0 0.0040
600 0.9880 1 1 0.9985 1 1 0.0007 0 0.0029 0.0003 0 0.0034
1000 1 1 1 0.9900 1 1 0.0000 0 0.0025 0.0002 0 0.0029

Panel B: Misspecified model

Useful Useful Useful Useless

(λ1 ̸= 0) (λ2 ̸= 0) (λ3 = 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0640 1 0.9995 0.1167 0.9453 0.9122 0.0676 0.9132 0.9437 0.1790 0 0.0133
100 0.1696 1 0.9996 0.2353 0.9617 0.9415 0.0224 0.9425 0.9614 0.0142 0 0.0075
150 0.3343 1 0.9997 0.4389 0.9733 0.9566 0.0221 0.9566 0.9699 0.0088 0 0.0052
200 0.5016 1 0.9998 0.6298 0.9787 0.9653 0.0240 0.9652 0.9751 0.0080 0 0.0039
250 0.6526 1 0.9998 0.7750 0.9826 0.9713 0.0238 0.9775 0.9786 0.0079 0 0.0031
600 0.9806 1 0.9998 0.9963 0.9850 0.9758 0.0138 0.9751 0.9812 0.0073 0 0.0026
1000 0.9972 1 0.9998 0.9989 0.9871 0.9792 0.0121 0.9764 0.9830 0.0088 0 0.0022

Useful Useful Useless Useless

(λ1 ̸= 0) (λ2 ̸= 0)
T tm(λ1) Pen-FM Bootstrap tm(λ2) Pen-FM Bootstrap tm(λ3) Pen-FM Bootstrap tm(λ4) Pen-FM Bootstrap

50 0.0406 1 0.9986 0.0815 0.7782 0.7805 0.1669 0 0.0228 0.1660 0 0.0279
100 0.0985 1 0.9992 0.1310 0.9246 0.9181 0.0138 0 0.0150 0.0141 0 0.0184
150 0.1928 1 0.9994 0.2493 0.9781 0.9744 0.0083 0 0.0123 0.0093 0 0.0134
200 0.3058 1 0.9996 0.3840 0.9793 0.9717 0.0074 0 0.0101 0.0081 0 0.0103
250 0.4221 1 0.9997 0.5180 0.9921 0.9927 0.0073 0 0.0082 0.0078 0 0.0087
600 0.9026 1 0.9997 0.9516 1 0.9980 0.0097 0 0.0069 0.0086 0 0.0073
1000 0.9822 1 0.9997 0.9922 1 1 0.0102 0 0.0059 0.0096 0 0.0063

Note. The table summarises the survival rates for the useful/useless factors in the simulations of a 4-factor
model (correctly or incorrectly specified) for different sample sizes. For each of the factors, I compute
its survival rate from 10,000 simulations, based on the tm statistic from Gospodinov, Kan, and Robotti
(2014a)(Table 4), the pointwise estimates produced by the Pen-FM estimator (e.g. the frequency with which
the risk premia estimate was not set exactly to 0), and one minus the average shrinkage rate from the
Pen-FM estimator in 10,000 bootstrap replicas. For a complete description of the simulation design, please
refer to Gospodinov, Kan, and Robotti (2014a).
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When the span of the data is not sufficiently large, it is hard to correctly retain a sig-

nificant factor, even if it is strongly identified in the data. For example, when the sample

size is only about 200 observations, the strong factor is mistakenly identified as a use-

less/insignificant one in 40-50% of the simulations. When T = 50, the survival rates for the

strong factors are accordingly only 6 and 11%. The inference is restored once the sample size

is increased to about T = 600, corresponding to roughly 50 years of monthly observations.

The Pen-FM estimator seems to be quite promising for the applications relying on quarterly

or yearly data, where the sample size is rather small, because it retains strong factors in

the model with a very high probability (the first strong factor is retained in 99.9% of the

cases for all the sample sizes, while the second one is retained in 92-98% of the simulations).

It also worth highlighting that the pointwise and bootstrap shrinkage rates of Pen-FM are

very close to each other, with the difference within 2%, supporting the notion that bootstrap

replicas approximate the pointwise distribution of the estimates rather well, even for a very

small sample size.

The second panel presents findings for a correctly specified model with 2 useful (and

priced) and two useless factors. The results are quite similar - both approaches are able to

identify the presence of irrelevant factors starting from a very small sample size (again, for

T = 50, Pen-FM seems to have a little advantage). Pen-FM remains consistent in keeping

strongly identified factors in the model regardless of the sample size.

Panel B in Table 1.5 presents the case of a misspecified model, and the results are quite

similar to the previous case. The only difference arises for T = 50, when the Pen-FM retains

the second strong factor in only 77-78% of the simulations compared with the usual 92-95%

observed for this sample size in other simulations designs; for T = 100 the strong factor is

retained already in 91-92% of the simulations.

Overall, Pen-FM seems to be rather accurate at deciphering the strength of a factor, and

could be particularly useful for working with quarterly or yearly data, where the sample size

is naturally small.

Table 1.6 summarises the factor survival rates produced by the adaptive lasso in the

same simulation design of Gospodinov, Kan, and Robotti (2014a). As discussed in Section

1.4, when the model is no longer identified, the adaptive lasso is not expected to correctly

identify the factors that are priced in the cross-section of asset returns.
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λ̂AdL = argmin
λ∈Θ
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WT

[
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1

|λ̂j,ols|d
|λj|,

When the model includes useless factors, prior OLS-based estimates of the risk premia

that define the individual weights in the penalty no longer have the desired properties,

since weak identification contaminates their estimation. As a result, adaptive lasso produces

erratic behaviour for the second stage estimates, potentially shrinking true risk drivers and/or

retaining the useless ones. Particular shrinkage rates will depend on the strength of the

factor, its relation to the other variables, and the prior estimates of the risk premia.

Table 1.6 summarises the average factor survival rates produced by the Pen-FM estimator

with d = 4 and η = σ̄ (the baseline scenario) with those of the adaptive lasso, when the

tuning parameter is chosen via the BIC1.

For a correctly specified model (Panel A), the adaptive lasso nearly always retains the

second useful factor, but not the first, which is often eliminated from the model for a relatively

moderate sample size (e.g. when T = 250, it is retained in only 62.6% of the simulations).

Furthermore, unlike the Pen-FM, the adaptive lasso estmator is not able to recognise the

presence of a useless factor, and it is never eliminated.

If the model is misspecified, the impact of the identification failure on the original penalty

weights is particularly severe, which results in worse factor survival rates for the adaptive

lasso. The first of the useful factors is eliminated from the model with a high probability

(e.g. for T = 250, it is retained only in 45.66% and 34.31% of the simulations, respectively,

depending on whether the simulation design includes 1 or 2 useless factors). The second

useless factor is always retained in the model, and the first one increasingly so (e.g. for a

sample of 50 observations it is a part of the model in 56.54% of the simulations, while for

T = 1000 already in 96.18%). This finding is expected, since as the sample size increases, the

risk premia for the useless factors in the misspecified models tend to grow larger (along with

their t-statistic) and the adaptive lasso penalty becomes automatically smaller, suggesting

that it would be useful to preserve such factors in the model. The simulations confirm the

different nature of the estimators and a quite drastic difference in the estimation of risk

premia parameters in the presence of useless factors.

1I am grateful to Dennis D. Boos for sharing the routine for R, which is available at his webpage,
http://www4.stat.ncsu.edu/ boos/var.select/lasso.adaptive.html
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Table 1.6: Comparison of the Pen-FM estimator with the adaptive lasso, based on the
survival rates of useful and useless factors.

Panel A: Correctly specified model

Useful Useful Useful Useless

(λ1 ̸= 0) (λ2 ̸= 0) (λ3 = 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.4172 0.9166 1 0.9233 0.7340 0 1
100 1 0.4745 0.9403 1 0.9539 0.8392 0 1
150 1 0.5173 0.9652 1 0.9622 0.9262 0 1
200 1 0.5743 0.9787 1 0.9748 0.9431 0 1
250 1 0.6260 0.9761 1 0.9746 0.9694 0 1
600 1 0.8132 0.9802 1 0.9777 1 0 1
1000 1 0.9099 0.9828 1 0.9833 1 0 1

Useful Useful Useless Useless

(λ1 ̸= 0) (λ2 ̸= 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 1 1 0.9322 0 1 0 1
100 1 1 1 0.9851 0 1 0 1
150 1 1 1 0.9955 0 1 0 1
200 1 1 1 1 0 1 0 1
250 1 1 1 1 0 1 0 1
600 1 1 1 1 0 1 0 1
1000 1 1 1 1 0 1 0 1

Panel B: Misspecified model

Useful Useful Useful Useless

(λ1 ̸= 0) (λ2 ̸= 0) (λ3 = 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.4691 0.9453 1 0.9132 0.6133 0 1
100 1 0.4782 0.9617 1 0.9424 0.7134 0 1
150 1 0.4784 0.9733 1 0.9566 0.7650 0 1
200 1 0.4870 0.9787 1 0.9652 0.7612 0 1
250 1 0.4566 0.9826 1 0.9775 0.8377 0 1
600 1 0.5179 0.9850 1 0.9751 0.9810 0 1
1000 1 0.6433 0.9989 1 0.9764 0.9959 0 1

Useful Useful Useless Useless

(λ1 ̸= 0) (λ2 ̸= 0)
T Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC) Pen-FM AdaLasso (BIC)

50 1 0.5352 0.7782 1 0 0.5654 0 1
100 1 0.4833 0.9246 1 0 0.6132 0 1
150 1 0.5090 0.9781 1 0 0.6911 0 1
200 1 0.4566 0.9793 1 0 0.7177 0 1
250 1 0.3431 0.9921 1 0 0.7432 0 1
600 1 0.3217 1 1 0 0.9210 0 1
1000 1 0.2918 1 1 0 0.9618 0 1

Note. The table summarises the survival rates for the useful/useless factors in the simulations of a 4-factor
model (correctly or incorrectly specified) for different sample sizes. For each of the factors, I compute its
survival rate from 10,000 simulations, based on the shrinkage rate of Pen-FM estimator (d = 4 and ν0 = σ̄)
in 10,000 bootstrap replicas. I then compute the corresponding factor survival rates of the adaptive lasso
with the tuning parameter chosen by BIC. Panel A presents the survival rates for the correctly specified
model when it is generated with 2 useful and 2 useless factors, or a combination of 2 useful (and priced),
1 useful (but not priced) factors, and 1 useless factor. Panel B presents similar results for a misspecified
model. For a complete description of the simulation designs, please refer to Gospodinov, Kan, and Robotti
(2014a)
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1.7 Empirical applications

1.7.1 Data

I apply the Pen-FM estimator to a large set of models that have been proposed in the

empirical literature, and study how using different estimation techniques may alter parameter

estimates and the assessment of model model pricing ability1. I focus on the following list

of models/factors for the cross-section of stock returns.

CAPM . The model is estimated using monthly excess returns on a cross-section of 25

Fama-French portfolios, sorted by size and book-to-market ratio. I use 1-month Treasury rate

as a proxy for the risk-free rate of return. The market portfolio is the value-weighted return

of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ.

Data is taken from Kenneth French website. To be consistent with other applications, relying

on tradable factors, I consider the period of January 1972 - December, 20132.

Fama-French 3 factor model . The model is estimated using monthly excess returns on

a cross-section of 25 Fama-French portfolios, sorted by size and book-to-market ratio. I

use 1-month Treasury rate as a proxy for the risk-free rate of return. Following Fama and

French (1992), I use market excess return, SMB and HML as the risk factors. SMB is a

zero-investment portfolio formed by a long position on the stocks with small capitalisation

(cap), and a short position on big cap stocks. HML is constructed in a similar way, going

long on high book-to-market (B/M) stocks and short on low B/M stocks.

Carhart 4 factor model . I consider two cross-sections of asset returns to test the Carhart

(1997) model: 25 Fama-French portfolios, sorted by size and book-to-market, and 25 Fama-

French portfolios, sorted by value and momentum. In addition to the 3 Fama-French factors,

the model includes the momentum factor (UMD), a zero-cost portfolio constructed by going

long the previous 12-month return winners and short the previous 12-month loser stocks.

“Quality-minus-junk”. A quality-minus-junk factor (QMJ), suggested in Asness, Frazz-

ini, and Pedersen (2014), is constructed by forming a long/short portfolio of stocks sorted

1I have applied the new estimator to a wide set of models; however, for reasons of brevity, in this chapter
I focus on a particular subset. Additional empirical results are available upon request.

2I have also estimated the models, using other time samples, e.g. the largest currently available, 1947-
2013, 1961-2013, or the samples used at the time of the papers publication. There was no qualitative
difference between the relative performance of Pen-FM and the Fama-MacBeth estimator (i.e. if the factor
has been identified as a strong/weak one, it continues to be so when a different time span is used to estimate
the model). Additional empirical results are available upon request.
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by their quality (which is measured by profitability, growth, safety and payout). I use the

set of excess returns on Fama-French 25 portfolios, sorted by size and book-to-market as the

test assets, and consider a 4 factor model, which includes market excess return, SMB, HML

and QMJ.

q-factor model . I consider the so-called q-factor model, various specifications of which

have been suggested in the prior literature linking stock performance to investment-related

factors (e.g. Liu, Whited, and Zhang (2009), Hou, Xue, and Zhang (2014), Li and Zhang

(2010)). I consider the 4 factor specification adopted in Hou, Xue, and Zhang (2014), and

that includes market excess return, the size factor (ME), reflecting the difference between the

portfolios of large and small stocks, the investment factor (I/A), reflecting the difference in

returns on stocks with high/low investment-to-assets ratio, and the profitability factor, built

in a similar way from sorting stocks on their return-on-equity (ROE)1. I apply the model

to several collections of test assets: excess returns on 25 Fama-French portfolios sorted by

size and book-to-market, 25 Fama-French portfolios sorted by value and momentum, 10

portfolios sorted on momentum, and 25 portfolios sorted on price/earnings ratio.

cay-CAPM . This is the version of scaled CAPM suggested by Lettau and Ludvigson

(2001b); it uses the long-run consumption-wealth cointegration relationship in addition to

the market factor and their interaction term. I replicate their results for exactly the same

time sample and a cross-section of the portfolios that were used in the original paper. The

data is quarterly, 1963Q3-1998Q3.

cay-CCAPM . Similar to cay-CAPM, the model relies on nondurable consumption growth,

cay, and their interaction term.

Human Capital CAPM . Jagannathan and Wang (1996) suggested using return on human

capital (proxied by after-tax-labour income), as an additional factor for the cross-section of

stock returns. I estimate the model on the same dataset, as in Lettau and Ludvigson (2001b).

Durable consumption model . Yogo (2006) suggested a model of the representative agent,

deriving utility from the flow of nondurable goods, and the stock of durables. In the linearised

version, the model includes three factors: market excess returns and nondurable/durable

consumption growth. I estimate the model using several cross-sections: 25 portfolios sorted

by size and book-to-market, 24 portfolios sorted by book-to-market within industry, and 24

portfolios sorted by market and HML betas. The data is quarterly, 1951Q3-2001Q4.

1I am very grateful to Lu Zhang and Chen Xue for sharing the factors data.
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1.7.2 Tradable Factors and the Cross-Section of Stock Returns

Panel A in Table 1.7 below summarises the estimation of the linear factor models that rely on

tradable factors. For each of the specifications, I provide the p-value of the Wald test1 for the

corresponding factor betas to be jointly equal to 0. I also apply the sequential elimination

procedure of Gospodinov, Kan, and Robotti (2014a), based on the tm test statistic2 and

indicate whether a particular factor survives it. I then proceed to estimate the models using

the standard Fama-MacBeth approach and Pen-FM, using the identity weight matrix. For

the estimates produced by the Fama-MacBeth cross-sectional regression, I provide standard

errors and p-values, based on t-statistics with and without Shanken correction, and the p-

values based on 10,000 replicas of the stationary bootstrap of Politis and Romano (1994),

and cross-sectional R2 of the model fit. For the Pen-FM estimator, I provide the point

estimates of risk premia, their average bootstrap shrinkage rates, bootstrap-based p-values

and cross-sectional R2. To be consistent, when discussing the statistical significance of the

parameters, I refer to bootstrap-based p-values for both estimators. Greyshading indicates

the factors that are identified as weak (or irrelevant) and eliminated from the model by

Pen-FM.

There is no difference whether CAPM parameters are estimated by the Fama-MacBeth

or the Pen-FM estimator. Both methods deliver identical risk premia (-0.558% per month for

market excess return), bootstrap-based p-values and R2 (13%). A similar result is obtained

when I estimate the Fama-French 3 factor model, where both methods deliver identical

pricing performance. Market premium is significant at 10%, but negative. This is consistent

with other empirical estimates of the market risk premium (e.g. Lettau and Ludvigson

(2001b) also report a negative, but insignificant market premium for the cross-section of

quarterly returns). HML, however, is significant and seems to be a strong factor. Overall,

the model captures a large share of the cross-sectional variation, as indicated by the in-

sample value of R2 at 71%. The common intercept, however, is still quite large, at about

1.3%. There is no significant shrinkage for any of the factors in bootstrap, either, and the

parameter estimates are nearly identical.

1I use heteroscedasticity and autocorrelation-robust standard errors, based on the lag truncation rule in
Andrews (1991).

2Since it is not known ex ante, whether the model is correctly specified or not, I use the misspecification-
robust test. Further note that the test is designed for a GMM-style estimation, and therefore essentially
targets a pairwise correlation between a factor and a panel of assets, not the partial one.
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Table 1.7: Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Panel A: tradable factors

25 portfolios, sorted by size and book-to-market
CAPM Intercept - - 1.431*** 0.4282 0.0008 0.4325 0.0009 0.002 19 1.4307*** 0 0.002 19

MKT 0 yes -0.658 0.4256 0.1222 0.4764 0.1674 0.184 -0.658 0 0.184

25 portfolios, sorted by size and book-to-market
Fama and French Intercept - - 1.252 0.2987 0 0.3054 0 0 70 1.2533 0 0 70
(1992) MKT 0 yes -0.703* 0.3035 0.0205 0.3721 0.0587 0.06 -0.704* 0 0.06

SMB 0 no 0.145 0.0291 0 0.1424 0.3083 0.376 0.145 0 0.376
HML 0 yes 0.43*** 0.031 0 0.1376 0.0018 0.008 0.429*** 0 0.008

25 portfolios, sorted by size and book-to-market
”Quality-minus-junk” Intercept - - 0.7* 0.3257 0.0317 0.3422 0.0409 0.092 84 0.576 0 0.212 83
Asness, Frazzini MKT 0 yes -0.327 0.327 0.3177 0.4013 0.4155 0.412 -0.206 0 0.684
Pedersen (2014) SMB 0 no 0.174 0.0217 0 0.1459 0.2325 0.288 0.172 0 0.292

HML 0 yes 0.398** 0.0265 0 0.1387 0.0041 0.016 0.416*** 0 0.008
QMJ 0 no 0.44** 0.1102 0.0001 0.1599 0.006 0.016 0.324* 0.084 0.084

25 portfolios, sorted by size and book-to-market
Carhart Intercept - - 0.684** 0.3199 0.0325 0.381 0.0726 0.032 76 1.289*** 0 0 71
(1997) MKT 0 no -0.001 0.3208 0.998 0.411 0.9984 0.546 -0.648 0.001 0.085

SMB 0 no 0.111 0.0263 0 0.1044 0.2869 0.276 0.106 0.001 0.301
HML 0 yes 0.408*** 0.024 0 0.0997 0 0 0.385*** 0 0
UMD 0 no 2.257 0.5999 0.0002 0.7276 0.0019 0.29 0 0.996 0.996

25 portfolios sorted by value and momentum
Intercept - - 0.898 0.396 0.0233 0.4076 0.0275 0.12 90 1.074* 0 0.052 90
MKT 0 no -0.146 0.3765 0.6989 0.416 0.7263 0.724 -0.304 0.002 0.434
SMB 0 no 0.201 0.0696 0.0039 0.1227 0.1013 0.196 0.224* 0 0.1
HML 0 no 0.122 0.253 0.6305 0.2773 0.6608 0.832 0 0.374 0.87
UMD 0 yes 0.811*** 0.0258 0 0.1397 0 0 0.804*** 0 0

25 portfolios, sorted by size and book-to-market
q-factor model Intercept - - 1.045*** 0.3164 0.001 0.3354 0.0018 0.004 77 1.034*** 0 0 70
Hou, Xue and Zhang MKT 0 yes -0.553 0.3168 0.0807 0.3937 0.16 0.166 -0.505 0 0.184
(2014) M/E 0 yes 0.363** 0.0542 0 0.1513 0.0165 0.05 0.255 0.002 0.158

I/A 0 no 0.407*** 0.0976 0 0.1329 0.0022 0.004 0.363** 0.004 0.012
ROE 0 no 0.494** 0.2029 0.0148 0.2446 0.0432 0.042 0 0.822 0.822

25 portfolios sorted by value and momentum
Intercept - - 0.256 0.5046 0.6115 0.5381 0.6339 0.66 88 0.454 0 0.218 88
MKT 0 yes 0.285 0.4758 0.5489 0.5474 0.6024 0.604 0.105 0.001 0.921
M/E 0 no 0.5*** 0.0658 0 0.1566 0.0014 0.004 0.482*** 0 0.006
I/A 0 yes 0.063 0.2438 0.796 0.273 0.8174 0.788 0 0.759 0.979
ROE 0 yes 0.665*** 0.1467 0 0.1951 0.0006 0.006 0.63*** 0 0.004

10 portfolios sorted on momentum
Intercept - - 1.164 0.7529 0.1222 0.8086 0.1502 0.432 93 -0.064 0 0.582 90
MKT 0 yes -0.631 0.7234 0.3834 0.8037 0.4327 0.73 0.578 0.001 0.951
M/E 0 yes 0.73 0.7362 0.3213 0.803 0.3632 0.614 0 0.968 0.968
I/A 0 no 0.02 0.5142 0.9685 0.5585 0.971 0.91 0 0.582 0.6
ROE 0 no 0.468 0.3192 0.1425 0.3621 0.1961 0.206 0.742** 0.005 0.033

19 portfolios sorted by P/E ratio
Intercept - - 2.71 1.447 0.0611 1.7586 0.1233 0.504 81 0.2578 0 0.544 76
MKT 0 yes -2.124 1.4002 0.1293 1.714 0.2153 0.7 0.272 0 0.968
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Table 1.7: Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

M/E 0 yes 1.132 0.5639 0.0447 0.6995 0.1056 0.54 0 0.957 0.967
I/A 0 yes 0.056 0.2395 0.8144 0.3027 0.8527 0.374 0.443* 0.051 0.095
ROE 0 no 0.072 0.281 0.798 0.3609 0.842 0.946 0 0.669 0.845

Panel B: nontradable factors

25 portfolios sorted by size and book-to-market
Lettau and Ludvigson
(2001) Intercept - - 3.24 0.6601 0 0.7261 0 0 16 3.8128 0.0000 0 0

∆c 0.0061 no 0.216 0.1653 0.1922 0.1861 0.2468 0.398 0 0.889 0.975

Intercept - - 3.681** 0.9501 0.0001 1.4126 0.0092 0.012 31 4.106*** 0 0.004 1
cay 0.2006 no -0.516 2.1813 0.813 3.3786 0.8786 0.518 0 0.958 0.976

(scaled CAPM) MKT 0 no -0.056 0.9751 0.9545 1.6072 0.9724 0.72 -0.251 0 0.902
cay× MKT 0 no 1.136 0.3035 0.0002 0.4602 0.0136 0.398 0 0.839 0.851

(scaled CCAPM) Intercept - - 4.281*** 0.7043 0 1.0093 0 0 70 4.958*** 0 0 25
cay 0.001 no -0.125 0.2784 0.6526 0.41 0.7599 0.584 -0.385 0.319 0.513
∆c 0.7378 no 0.024 0.1095 0.8292 0.1619 0.884 0.654 0 0.689 0.721
cay × ∆c 0.0002 no 0.057 0.0171 0.0009 0.0254 0.0246 0.298 0 0.989 0.989

(HC-CAPM) Intercept - - 4.467*** 0.9389 0 1.684 0.008 0.008 58 4.160*** 0.0000 0 1
MKT 0 no -1.097 0.9322 0.2392 1.81 0.5445 0.798 -0.296 0 0.918
∆y 0.6566 no 1.259 0.3641 0.0005 0.6569 0.0552 0.1 0 0.815 0.815

(scaled HC-CAPM) Intercept - - 5.184*** 0.9293 0 1.5628 0.0009 0.016 77 4.268*** 0 0.002 7
cay 0.0534 no -0.445 0.2629 0.0908 0.4521 0.3254 0.502 0 0.987 0.987
MKT 0 no -1.987 0.9226 0.0313 1.6995 0.2424 0.564 -0.438 0 0.8
∆y 0.3859 no 0.557 0.254 0.0282 0.4331 0.1982 0.23 0 0.792 0.792
cay× MKT 0 no 0.341 0.1841 0.0643 0.3225 0.2908 0.422 0 0.858 0.87
cay × ∆y 0.5135 no -0.167 0.0678 0.014 0.1153 0.1485 0.422 -0.009 0.809 0.809

25 portfolios, sorted by size and book-to-market
Durable Intercept - - 2.335** 0.9331 0.0123 1.5056 0.1209 0.03 55 3.445*** 0 0.002 11
consumption CAPM ∆cndur 0.1116 no 0.641 0.2197 0.0035 0.3565 0.0721 0.126 0 0.974 0.974

∆cdur 0.6711 no 0.013 0.1305 0.9215 0.2139 0.952 0.884 0 0.99 0.996
MKT 0 no -0.152 0.9662 0.8754 1.6615 0.9273 0.592 -1.03 0.001 0.359

24 portfolios, sorted by book-to-market within industry
Intercept - - 1.767 0.862 0.0404 0.9431 0.061 0.414 11 1.317 0 0.344 3
∆cndur 0.1513 no 0.232 0.1061 0.029 0.1221 0.0579 0.526 0 0.993 0.995
∆cdur 0.6878 no -0.002 0.1836 0.9891 0.2043 0.9902 0.738 0 0.976 0.998
MKT 0 no 0.44 0.8346 0.5977 1.0789 0.6831 0.46 0.89 0.002 0.488

24 portfolios, sorted by market and HML betas
Intercept - - 1.558** 0.6859 0.0231 0.9654 0.1066 0.014 44 2.185*** 0 0.004 1
∆cndur 0.9222 no 0.522 0.1578 9e-04 0.2253 0.0206 0.272 0 0.999 0.999
∆cdur 0.021 no 0.112 0.1277 0.3823 0.1836 0.5434 0.456 0 0.996 0.998
MKT 0 no 0.338 0.6665 0.6122 1.1002 0.7587 0.842 -0.169 0 0.942
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Table 1.7: Models for the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Note. The table presents the risk premia estimates and fit for different models of the cross-section of stocks. Panel A summarises results
for the models that rely on tradable risk factors, while Panel B demonstrated similar results for the models,relying on nontradable
factors. First column describes the estimated model, or refers to the paper where the original factor was first proposed. Column 2
presents the list of the risk factors used in the corresponding speicification. Column 3 presents the p-value of the Wald test for the
factor being a useless one, based on the first stage estimates of betas and heteroscedasticity and autocorrelation-robust standard errors,
based on the lag truncation rule suggested in Andrews (1991). Column 4 indicates whether a particular risk factor has survived the
sequential elimination procedure based on the misspecification-robust tm-statistic of Gospodinov, Kan, and Robotti (2014a). Columns
5-11 present the results of the model estimation based on the Fama-MacBeth procedure with an identity weight matrix (W = In), and
include point estimates of the risk premia, OLS and Shanken standard errors, the corresponding p-values, and the p-value based on 10,000
pairwise block stationary bootstrap of Politis and Romano (1994). Column 11 presents the cross-sectional R2 of the model estimated
by the Fama-MacBeth procedure. Columns 12-15 describe Pen-FM estimation of the model, and summarise the point estimates of the
risk premia, their shrinkage rate in the 10,000 bootstrap samples, the corresponding p-value of the parameter, and the cross-sectional
R2. Grey areas highlight the factors that are identified as useless/weak by the Pen-FM estimator (and, hence, experience a substantial
shrinkage rate)48



1. Spurious Factors in Linear Asset Pricing Models

Including the quality-minus-junk factor improves the fit of the model, asR2 increases from

71 to 83-84%. The QMJ factor risk premium is set exactly to 0 in 8.4% of bootstrap replicas;

however, its impact remains significant at 10%, providing further evidence that including

this factor improves the pricing ability of the model. In the Fama-MacBeth estimation, the

common intercept was weakly significant at 10%, however, in the case of Pen-FM, it is no

longer significant, decreasing from 0.7 to 0.57% (which is partly due to a slightly larger risk

premium for HML).

The Carhart (1997) 4-factor model is estimated on two cross-sections of porfolios, high-

lighting a rather interesting, but at the same time expected, finding, that the sorting mecha-

nism used in portfolio construction affects the pricing ability of the factors. When I estimate

the 4-factor model on the cross-section of 25 portfolios, sorted by size and book-to-market

ratio, momentum factor is identified by the Pen-FM estimator as the irrelevant one, since

the correponsing risk premia is shrunk exactly to 0 in 99.6% of the bootstrap replicas. As a

result of this elimination, cross-sectional R2 in the model estimated by Pen-FM is the same

as for the 3-factor Fama-French model, 71%.

On the other hand, when portfolios are sorted on value and momentum, HML is indicated

as the irrelevant one, while momentum clearly drives most of the cross-sectional variation.

Both models exhibit the same R2, 90%. Interestingly, once HML is eliminated by Pen-FM

from the model, the risk premium on SMB becomes weakly significant at 10%, recovering

the true impact of the size factor. This illustration of different pricing ability of the risk

factors, when facing different cross-sections of asset returns, is not new, but it is interesting

to note that the impact can be so strong as to affect the model identification.

Hou, Xue, and Zhang (2014) suggest a 4 factor model that, the authors claim, manages

to explain most of the puzzles in empirical finance literature, with the main contribution

coming from investment and profitability factors. Their specification outperforms Fama-

French and Carhart models with regards to many anomalies, including operating accrual,

R&D-to-market and momentum. Therefore, it seems to be particularly interesting to assess

model performance on various test assets. For 25 Fama-French portfolios, the profitability

factor impact is not strongly identified, as it is eliminated from the model in 82.2% of the

bootstrap replica. At the same time, investment remains a significant determinant of the

cross-sectional variation, commanding a premium of 0.36%. A different outcome is observed

when using the cross-section of stocks sorted by value and momentum. In this case the

profitability factor is removed from the model as the weak one. Size and ROE factors are
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1. Spurious Factors in Linear Asset Pricing Models

identified as strong determinants of the cross-sectional variation of returns, with risk premia

estimates of 0.484% and 0.63% accordingly. It is interesting to note that, although the I/A

factor is eliminated from the model, the cross-sectional R2 remains at the same high level of

88%.

A particular strength of the profitability factor becomes apparent when evaluating its

performance on the cross-section of stocks sorted on momentum. When the conventional

Fama-MacBeth estimator is applied to the data, none of the factors command a significant

risk premium, although the model explains 93% of the cross-sectional dispersion in portfolio

excess returns. Looking at the estimates produced by Pen-FM, one can easily account for this

finding: it seems that size and investment factors are only weakly related to momentum-

sorted portfolio returns, while it is the profitability factor that drives nearly all of their

variation. The model delivers a positive (but highly insignificant) market risk premium,

and a large and positive risk premium for ROE (0.742%). Although both M/E and I/A are

eliminated from the model, the cross-sectional R2 is at an impressive level of 90%. This may

be due to an identification failure, caused by the presence of useless (or weak) factors, which

was masking the impact of the true risk drivers.

When stocks are sorted in portfolios based on their price/earnings ratio, the Fama-

MacBeth estimator results in high cross-sectional R2 (81%), but insignificant risk premia for

all the four factors, and a rather large average mispricing at 2.71%. In contrast, the Pen-FM

estimator shrinks the impact of the size and profitability factors (which are elimininated in

96.8% and 84.5% of the bootstrap replicas, respectively). As a result, investment becomes

weakly significant, commanding a premium of 0.44%, the market premium is also positive

(but insignificant) at 0.27%, while the common intercept, which is often viewed as the sign

of model misspecification, is only 0.25% (and insignificant). The model again highlights the

ability of the Pen-FM estimator to identify and eliminate weak factors from the cross-section

of returns, while maintaining the impact of the strong ones. In particular, investment and

market factors alone explain 76% of the cross-sectional variation in portfolios, sorted by the

P/E ratio.

1.7.3 Nontradable Factors and the Cross-Section of Stock Returns

Standard consumption-based asset pricing models feature a representative agent who trades

in financial securities in order to optimize her consumption flow (e.g. Lucas (1976), Breeden
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(1979)). In this framework the only source of risk is related to the fluctuations in consump-

tion, and hence, all the assets are priced in accordance with their ability to hedge against

it. In the simplest version of the CCAPM, the risk premium associated with a particular

security is proportional to its covariance with the consumption growth:

E[Re
i ] ≈ λ cov

(
Re
t,i,∆c

)
If the agent has the CRRA utility function, λ is directly related to the relative risk aversion,

γ, and hence, one of the natural tests of the model consists in estimating this parameter and

comparing it with the plausible values for the risk aversion (i.e. < 10). Mehra and Prescott

(1985) and Weil (1989) show that in order to match historical data, one would need to have a

coefficient of risk aversion much larger than any plausible empirically supported value, thus

leading to the so-called equity premium and risk-free rate puzzles. The model was strongly

rejected on US data (Hansen and Singleton (1982), Hansen and Singleton (1983), Mankiw

and Shapiro (1986)), but led to a tremendous growth in the consumption-based asset pricing

literature, which largely developed in two main directions: modifying the model framework

in terms of preferences, production sector and various frictions related to decision-making,

or highlighting the impact of the data used to validate the model1.

Not only the estimates of the risk aversion parameter turn out to be unrealistically large,

but they are also characterised by extremely wide confidence bounds (e.g. Yogo (2006)

reports γ̂ = 142 with the standard errors of 25 when estimating the CCAPM using the

Fama-French 25 portfolios). The impact of low covariance between consumption and asset

returns could not merely explain a high estimate of the risk aversion, but also lead to

the models being weakly identified, implying a potential loss of consistency, nonstandard

asymptotic distribution for the conventional OLS or GMM estimators, and the need to rely

on identification-robust inference procedures.

Panel B in Table 1.7 reports estimation of some widely used empirical models, relying on

nontradable factors, such as consumption. The scaled version of CAPM, motivated by the

long-run relationship between conumption and wealth dynamics in Lettau and Ludvigson

(2001a), seems to be rather weakly identified, as both cay and its product with the market

return are eliminated from the model by the Pen-FM estimator in 97.6% and 85.1% of the

1The literature on consumption-based asset pricing is vast; for an overview see Campbell (2003) and
Ludvigson (2013)
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bootstrap replicas, respectively. The resulting specification includes only the market excess

return as the only factor for the cross-section of quarterly stock returns, which leads to the

well-known illustration of the inability of the classical CAPM to explain any cross-sectional

variation, delivering the R2 of only 1%. The scaled version of Consumption-CAPM also

seems to be contaminated by identification failure. Not only the estimates of the risk preia

of all three factors are shrunk to 0 with a very high frequency, but even the Wald test for

the vector of betas indicates nondurable consumption growth as a rather weak risk factor.

This finding provides a new aspect to the well-known failure of the CCAPM and similar

specifications to both match the equity premium and explain the cross-sectional variation in

returns.

One of the natural solutions to the problem could lie in using alternative measures for

consumption and investment horizons. Kroencke (2013) explicitly models the filtering pro-

cess used to construct NIPA time series, and finds that the unfiltered flow consumption

produces a much better fit of the basic consumption-based asset pricing model and sub-

stantially lowers the required level of risk aversion. Daniel and Marshall (1997) show that

while the contemporaneous correlation of consumption growth and returns is quite low for

the quarterly data, it is substantially increased at lower frequency. This finding would be

consistent with investors’ rebalancing their portfolios over longer periods of time, either due

to transaction costs (market frictions or the costs of information processing), or due to ex-

ternal constraints (e.g. some of the calendar effects). Lynch (1996) further studies the effect

of decision frequency and its synchronisation between agents, demonstrating that it could

naturally result in a lower contemporaneous correlation between consumption risk and re-

turns. Jagannathan and Wang (2007) state that investors are more likely to make decisions

at the end of the year, and, hence, consumption growth, if evaluated then, would be a more

likely determinant of the asset returns. These papers could also be viewed as a means to

improve model identification.

Jagannathan and Wang (1996) and Santos and Veronesi (2004) argue that human capital

(HC) should be an important risk driver for financial securities. I estimate their HC-CAPM

on the dataset used in Lettau and Ludvigson (2001b), and find that this model is also

contaminated by the identification problem. While the true risk factor may command a

significant premium, the model is still poorly identified, as indicated by Table 1.7, and after-

tax labour income, as a proxy for human capital, is eliminated by Pen-FM from the model

for stock returns. The scaled version of the HC-CAPM also seems to be weakly identified,
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since the only robust risk factor seems to be market excess return.

Unlike the baseline models that mainly focus on nondurable consumption goods and

services, Yogo (2006) argues that the stock of durables is an important driver of financial

returns, and taking it into account substantially improves the ability of the model to match

not only the level of aggregate variables (e.g. the equity premium, or the risk-free rate),

but also the cross-sectional spread in portfolios, sorted on various characteristics. Table 1.7

illustrates the estimation of durable consumption CAPM, that includes market returns, as

well as durable and nondurable consumption growth as factors on several cross-sections of

portfolios. Both consumption-related factors seem to be rather weak drivers for the cross-

section of stocks, and are eliminated in roughly 99% of the bootstrap replicas. This finding

is also robust across the different sets of portfolios. Once the weak factors are eliminated

from the model, only the market excess return remains; however, its price of risk is negative

and insignificant, while the resulting R2 is rather low at only 1-11%.

One of the potential explanations behind such a subpar performance of the nontradable

risk factors consists in the measurement error problem. Indeed, if the nondurable consump-

tion growth (or any other variable) is observed with a measurement error, it causes an

attenuation bias in the estimates of betas, which could in turn lead to a weak factor problem

in small sample1. I address this issue by constructing mimicking portfolios of the nontrad-

able factors using a simple linear projection on the cross-section of the corresponding stock

returns. By construction, the resulting projection preserves the pricing impact of the original

variable, however, it does not have the same measurement error component, as before.

Table 1.8 illustrates the use of mimicking portfolios for some of the models with nontrad-

able factors. While there is considerable improvement in the performance of the nondurable

consumption (unless the market return is also included into the model), the main finding

remains unchanged: the model still suffer from the identification failures. Cross-products of

the consumption-to-wealth ratio and consumption, durable consumption growth, labour and

its cross-product still do not generate enough asset exposure to the risk factors to identify

the associated risk premia, even when used as mimicking portfolios.

1Note, that the classical measurement error leads to a a multiplicative attenuation bias, and therefore can
be the sole reason for the lack of identification. In finite sample, however, its presence makes the inference
unreliable and, if large enough, could substantially exacerbate the underlying problem
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Table 1.8: Mimicking portfolios of the nontradeable factor and the cross-section of stock returns

Fama-MacBeth estimator Pen-FM estimator

p-value GKR st.error p-value st.error p-value p-value R2 Shrinkage rate p-value R2

Model Factors (Wald) (2014) λj (OLS) (OLS) (Shanken) (Shanken) (Bootstrap) (%) λj (Bootstrap) (Bootstrap) (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

25 portfolios sorted by size and book-to-market
Intercept - - 2.604 1.0306 0.0115 1.2044 0.0306 0.01 27 3.5769 0 0.008 8
cay 0 no -2.46 0.5413 0 0.7895 0.0018 0.105 -0.382 0.9725 0.9735

Scaled CAPM MKT 0 yes 1.249 1.0998 0.2563 1.4605 0.3926 0.765 0.232 0.0005 0.8125
cay× MKT 0.011 no -0.114 0.0959 0.2344 0.1211 0.3463 0.93 0 0.9955 0.9955

Scaled CCAPM Intercept - - 2.253 0.9141 0.0137 1.0663 0.0346 0.019 69 2.4462 0 0.023 68
cay 0 yes -0.111 0.0731 0.128 0.0974 0.2538 0.321 -0.099 0.071 0.311
∆c 0 yes 0.175 0.0567 0.002 0.0721 0.015 0.024 0.164 0.006 0.015
cay × ∆c 0.056 no -0.005 0.0049 0.3124 0.0061 0.4124 0.806 0 0.9805 0.9845

HC-CAPM Intercept - - 0.704 1.3241 0.595 1.6608 0.6716 0.759 93 4.7047 0 0.111 9
MKT 0 no 2.472 1.3211 0.0613 1.7963 0.1688 0.078 -0.774 0 0.811
∆y 0 no 0.641 0.1689 0.0001 0.2237 0.0042 0.001 0 0.812 0.812

Scaled HC-CAPM Intercept - - 0.338 1.04 0.7454 1.3891 0.8079 0.628 94 4.7453 00 0.1184 8
cay 0 no 0.483 0.3568 0.1757 0.671 0.4715 0.4196 0 0.976 0.9776
MKT 0 yes 2.856 1.0269 0.0054 1.537 0.0632 0.0716 -0.839 0 0.9384
∆y 0.98 no 0.68 0.1213 0 0.1771 0.0001 0.0008 0 0.6938 0.6938
cay× MKT 0.001 no 0.138 0.1173 0.2388 0.1632 0.3974 0.6792 0 0.9888 0.9896
cay × ∆y 0.194 no 0.025 0.0209 0.2332 0.0284 0.3811 0.4956 0 0.9948 0.9948

Durable Intercept - - 2.333 0.9333 0.0124 1.0883 0.0321 0.027 55 3.6587 0 0 21
consumption ∆cndur 0 no 0.136 0.0525 0.0096 0.0643 0.0346 0.073 0 0.976 0.976
model ∆cdur 0 no -0.019 0.0284 0.5011 0.0381 0.6161 0.987 0 0.998 1

MKT 0 yes -0.19 0.9624 0.8433 1.2608 0.88 0.71 -1.252 0 0.22

Note. The table presents the risk premia estimates and fit for different models of the cross-section of stocks using mimicking portfolios
for the nontradable factors. First column describes the estimated model, or refers to the paper where the original factor was first
proposed. Column 2 presents the list of the risk factors used in the corresponding specification. Column 3 presents the p-value of the
Wald test for the factor being a useless one, based on the first stage estimates of betas and heteroscedasticity and autocorrelation-robust
standard errors, based on the lag truncation rule suggested in Andrews (1991). Column 4 indicates whether a particular risk factor
has survived the sequential elimination procedure based on the misspecification-robust tm-statistic of Gospodinov, Kan, and Robotti
(2014a). Columns 5-11 present the results of the model estimation based on the Fama-MacBeth procedure with an identity weight matrix
(W = In), and include point estimates of the risk premia, OLS and Shanken standard errors, the corresponding p-values, and the p-value
based on 10,000 pairwise block stationary bootstrap of Politis and Romano (1994). Column 11 presents the cross-sectional R2 of the
model estimated by the Fama-MacBeth procedure. Columns 12-15 describe Pen-FM estimation of the model, and summarise the point
estimates of the risk premia, their shrinkage rate in the 10,000 bootstrap samples, the corresponding p-value of the parameter, and the
cross-sectional R2. Grey areas highlight the factors that are identified as useless/weak by the Pen-FM estimator (and, hence, experience
a substantial shrinkage rate)
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1.8 Conclusion

Identification conditions play a major role in model estimation, and one must be very cau-

tious when trying to draw quantitaive results from the data without considering this property

first. While in some cases this requirement is fairly easy to test, the use of more complicated

techniques sometimes makes it more difficult to analyze. This chapter deals with one par-

ticular case of underidentification: the presence of useless factors in the linear asset pricing

models. I proposed a new estimator that can be used simulatenously as a model diagnostic

and estimation technique for the risk premia parameters. While automatically eliminating

the impact of the factors that are either weakly correlated with asset returns (or do not

correlate at all), the method restores the identification of the strong factors in the model,

their estimation accuracy, and quality of fit.

Applying this new technique to real data, I find support for the pricing ability of sev-

eral tradable factors (e.g. the three Fama-French factors or the ‘quality-minus-junk’ fac-

tor). I further demonstrate that the profitability factor largely drives the cross-section of

momentum-sorted portfolios, contrary to the outcome of the standard Fama-MacBeth esti-

mation.

It seems that much of the cross-sectional research with nontradable factors, however,

should also be considered through the prism of model identification, as nearly all the specifi-

cations cosidered are contaminated by the problem of rank deficiency. How and whether the

situation is improved in nonlinear models are undoubtedly very important questions, and

form an interesting agenda for future research.
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Table 1.A.1: Empirical size of the bootstrap-based confidence bounds in a correctly spec-
ified model

λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: Fama-MacBeth estimator in a model with only a useful factor

30 0.065 0.029 0.003 0.033 0.009 0.000 - - -
50 0.075 0.037 0.009 0.047 0.016 0.001 - - -
100 0.096 0.055 0.015 0.062 0.026 0.005 - - -
250 0.103 0.049 0.009 0.054 0.023 0.003 - - -
500 0.106 0.057 0.008 0.059 0.027 0.003 - - -
1000 0.101 0.043 0.008 0.048 0.018 0.002 - - -
Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor
25 0.045 0.023 0.003 0.024 0.006 0.001 0.008 0.001 0
50 0.061 0.032 0.002 0.029 0.011 0.002 0.007 0.002 0
100 0.068 0.029 0.004 0.033 0.009 0.000 0.009 0.002 0
250 0.069 0.027 0.003 0.034 0.011 0.001 0.006 0.002 0
500 0.071 0.036 0.008 0.043 0.018 0.001 0.005 0.003 0.001
1000 0.063 0.028 0.007 0.037 0.012 0.006 0.005 0 0

Panel C: Pen-FM estimator in a model with a useful and a useless factor
25 0.051 0.027 0.006 0.027 0.007 0.001 0.002 0 0
50 0.081 0.038 0.005 0.036 0.016 0.002 0 0 0
100 0.09 0.041 0.005 0.047 0.014 0.001 0 0 0
250 0.093 0.05 0.008 0.048 0.025 0.001 0 0 0
500 0.095 0.054 0.013 0.055 0.026 0.004 0 0 0
1000 0.097 0.042 0.01 0.061 0.021 0.007 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the Fama-
MacBeth and Pen-FM estimators with the identity weight matrix in the second stage and at various
significance levels (α=10%, 5%, 1%). The model includes a true risk factor and a useless one. λ0 stands for
the value of the intercept, λ1 and λ2 are the corresponding risk premia of the factors. Panel A corresponds
to the case of the Fama-MacBeth estimator with an identity weight matrix, when the model includes
only the useful factor. Panels B and C present the empirical size of the confidence bounds of the risk
premia when the model includes both a useful and a useless factor, and the parameters are estimated
by Fama-MacBeth or Pen-FM estimator accordingly. The model is simulated 10,000 times for different
values of the sample size (T). The confidence bounds are constructed from 10,000 pairwise bootstrap replicas.

For a detailed description of the simulation design, please refer to Table 1.1.
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Table 1.A.2: Empirical size of the confidence bounds, based on the t-statistic in a correctly
specified model

Intercept, λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor,
without Shanken correction

25 0.1265 0.073 0.0345 0.127 0.07 0.0325 - - -
50 0.114 0.064 0.025 0.1155 0.057 0.0255 - - -
100 0.1115 0.058 0.0275 0.105 0.055 0.0285 - - -
250 0.107 0.051 0.019 0.1065 0.0575 0.0175 - - -
500 0.096 0.0465 0.0195 0.1025 0.052 0.021 - - -
1000 0.09 0.047 0.018 0.095 0.043 0.0175 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.095 0.0435 0.011 0.035 0.0085 0.001 - - -
50 0.092 0.04 0.014 0.04 0.0115 0.003 - - -
100 0.097 0.0445 0.0185 0.051 0.02 0.003 - - -
250 0.1 0.0445 0.0145 0.0585 0.016 0.003 - - -
500 0.0925 0.045 0.0175 0.056 0.023 0.0055 - - -
1000 0.089 0.046 0.017 0.0495 0.019 0.007 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

30 0.1325 0.076 0.035 0.1305 0.0725 0.037 0.123 0.0695 0.034
50 0.117 0.0625 0.0255 0.1225 0.062 0.028 0.1115 0.0595 0.029
100 0.1115 0.0565 0.0245 0.1065 0.053 0.025 0.106 0.0505 0.0205
250 0.101 0.05 0.0195 0.099 0.051 0.02 0.11 0.049 0.0195
500 0.1075 0.0495 0.021 0.111 0.0515 0.0225 0.0935 0.048 0.023
1000 0.089 0.0485 0.0145 0.09 0.0485 0.0175 0.113 0.058 0.021

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

30 0.0875 0.0355 0.011 0.031 0.0055 0.001 0.0285 0.0055 0
50 0.074 0.0365 0.0085 0.033 0.007 0.002 0.033 0.0085 0.0015
100 0.0765 0.033 0.0125 0.037 0.015 0.0035 0.024 0.0065 0.0005
250 0.0755 0.0305 0.0085 0.0435 0.0145 0.0025 0.034 0.005 0
500 0.0835 0.0345 0.01 0.0445 0.0165 0.0025 0.0305 0.0075 0.0005
1000 0.0675 0.0335 0.0095 0.041 0.013 0.005 0.0365 0.0075 0

Note. The table presents the empirical size of the t-statistic-based confidence bounds for the Fama-MacBeth
estimator with an identity weight matrix in a model with a common intercept for 25 portfolios and a single
risk factor, with or without a useless one. λ0 is the value of the intercept; λ1 and λ2 are the corresponding
risk premia of the factors. The model is simulated 10,000 times for different values of the sample size (T).
Panels A and C present the size of the t-statistic, computed using OLS-based heteroscedasticity-robust
standard errors. Panels B and D present results based on Shanken correction.

For a detailed description of the simulation design, please refer to Table 1.1.
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Table 1.A.3: Empirical size of the bootstrap-based confidence bounds for true values in a
misspecified model

λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: Fama-MacBeth estimator in a model with only a useful factor

25 0.004 0 0 0.003 0 0 - - -
50 0.005 0 0 0.003 0.001 0 - - -
100 0.004 0.001 0 0.005 0.002 0 - - -
250 0.001 0 0 0.009 0.001 0 - - -
500 0 0 0 0.05 0.005 0 - - -
1000 0.002 0.001 0 0.183 0.049 0.005 - - -
Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor
25 0.01 0.003 0 0.002 0.001 0 0.002 0 0
50 0.005 0 0 0.002 0 0 0.011 0.002 0
100 0.003 0.001 0 0.002 0.001 0 0.055 0.02 0.001
250 0.004 0.002 0 0.005 0.001 0 0.093 0.052 0.014
500 0.002 0 0 0.01 0.001 0 0.088 0.05 0.01
1000 0.003 0.001 0 0.019 0.005 0 0.122 0.066 0.019

Panel C: Pen-FM estimator in a model with a useful and a useless factor
25 0.007 0.001 0 0.004 0.001 0 0 0 0
50 0.002 0 0 0.002 0 0 0 0 0
100 0.003 0 0 0.003 0 0 0 0 0
250 0.002 0.001 0 0.009 0 0 0 0 0
500 0.004 0.001 0 0.055 0.012 0 0 0 0
1000 0.002 0 0 0.161 0.046 0.002 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the
Fama-MacBeth and Pen-FM estimators with an identity weight matrix in the second stage and at
various significance levels (α=10%, 5%, 1%). The misspecified model includes only 1 out of 3 true
risk factors, and is further contaminated by the presence of a useless one. λ0 stands for the value of
the intercept; λ1 and λ2 are the corresponding risk premia of the factors. Panel A corresponds to the
case of the Fama-MacBeth estimator with an identity weight matrix, when the model includes only
one useful factor. Panels B and C present empirical size of the confidence bounds of the risk premia
when the model includes both a useful and a useless factor, and their parameters are estimated by the
Fama-MacBeth or Pen-FM procedures accordingly. The model is simulated 10 000 times for different
values of the sample size (T). The confidence bounds are constructed from 10 000 pairwise bootstrap replicas.

For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Table 1.A.4: Empirical size of the confidence bounds for the true values of the risk premia,
based on the t-statistic in a mispecified model

Intercept, λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A: Fama-MacBeth estimator in a model with only a useful factor,

without Shanken correction
30 0.0145 0.004 0.001 0.02 0.006 0.002 - - -
50 0.01 0.003 0.0015 0.015 0.004 0.001 - - -
100 0.0035 0 0 0.015 0.002 0 - - -
250 0.0025 0.001 0 0.0555 0.014 0.002 - - -
500 0.004 0.0015 0 0.1535 0.051 0.009 - - -
1000 0.0035 0 0 0.408 0.206 0.0785 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.011 0.0015 5e-04 0.002 0 0 - - -
50 0.0065 0.002 0.001 0.003 0.001 0 - - -
100 0.0015 0 0 0.001 0 0 - - -
250 0.0025 0.001 0 0.014 0.0015 0 - - -
500 0.004 0.0015 0 0.0585 0.0115 0.002 - - -
1000 0.003 0 0 0.238 0.086 0.0115 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

25 0.0355 0.015 0.002 0.0435 0.016 0.003 0.135 0.055 0.016
50 0.0435 0.0175 0.0055 0.0555 0.022 0.007 0.2885 0.139 0.0465
100 0.0745 0.0375 0.015 0.0935 0.0465 0.02 0.5945 0.441 0.2375
250 0.178 0.1115 0.0605 0.2325 0.154 0.084 0.805 0.7595 0.696
500 0.301 0.229 0.162 0.3845 0.2935 0.202 0.872 0.8425 0.806
1000 0.4095 0.347 0.2815 0.5355 0.451 0.3625 0.932 0.915 0.8885

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

25 0.018 0.004 0.0015 0.003 0.001 0 0.0185 0.003 0.001
50 0.0165 0.005 0.0015 0.007 0.001 0 0.054 0.0065 5e-04
100 0.0185 0.0065 0.0015 0.0155 0.003 0.0005 0.249 0.044 0.002
250 0.0305 0.008 0.0015 0.0375 0.011 0.0015 0.672 0.3305 0.051
500 0.0445 0.018 0.006 0.0725 0.027 0.0095 0.8105 0.5845 0.2095
1000 0.056 0.0235 0.011 0.124 0.0595 0.025 0.8895 0.731 0.3965

Note. The table presents the empirical size of the t-statistic-based confidence bounds for the true risk
premia values for the Fama-MacBeth estimator with the identity weight matrix in a model with a common
intercept for 25 portfolios and a single risk factor, with or without a useless one. λ0 is the value of the
intercept, λ1 and λ2 are the corresponding risk premia of the factors. The model is simulated 10,000 times
for different values of the sample size (T). Panels A and C present the size of the t-statistic computed using
heteroscedasticity-robust standard errors. Panels B and D present the results based on Shanken correction.

For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Table 1.A.5: Empirical size of the bootstrap-based confidence bounds for the pseudo-true
values in a misspecified model

λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor
25 0.004 0 0 0 0 0 - - -
50 0.005 0 0 0 0 0 - - -
100 0.004 0.001 0 0.001 0 0 - - -
250 0 0 0 0 0 0 - - -
500 0 0 0 0 0 0 - - -
1000 0.001 0 0 0 0 0
Panel B: Fama-MacBeth estimator in a model with a useful and a useless factor
25 0.01 0.003 0 0.001 0 0 0.002 0 0
50 0.001 0 0 0 0 0 0.011 0.002 0
100 0.003 0.001 0 0 0 0 0.055 0.02 0.001
250 0.004 0 0 0.001 0 0 0.093 0.052 0.014
500 0.002 0 0 0.001 0 0 0.088 0.05 0.01
1000 0.004 0.001 0 0.003 0 0 0.122 0.066 0.019

Panel C: Pen-FM estimator in a model with a useful and a useless factor
25 0.007 0.001 0 0.001 0 0 0 0 0
50 0.002 0 0 0 0 0 0 0 0
100 0.003 0 0 0 0 0 0 0 0
250 0.002 0.001 0 0.001 0 0 0 0 0
500 0.003 0.001 0 0 0 0 0 0 0
1000 0.002 0 0 0 0 0 0 0 0

Note. The table summarises the empirical size of the bootstrap-based confidence bounds for the Fama-
MacBeth and Pen-FM estimators with an identity weight matrix at the second stage and various significance
levels (α=10%, 5%, 1%). The misspecified model includes only 1 out of 3 true risk factors, and is further
contaminated by the presence of a useless one. λ0 stands for the value of the intercept; λ1 and λ2 are the
corresponding risk premia of the factors. The pseudo-true values of the risk premia are defined as the limit
of the risk premia estimates in a misspecified model without the influence of the useless factor. Panel A
corresponds to the case of the Fama-MacBeth estimator with an identity weight matrix, when the model
includes only one useful factor. Panels B and C present the empirical size of the confidence bounds of risk
premia when the model includes both a useful and a useless factor, and their parameters are estimated by
the Fama-MacBeth or Pen-FM procedures accordingly. The model is simulated 10 000 times for different
values of the sample size (T). The confidence bounds are constructed from 10 000 pairwise bootstrap replicas.

For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Table 1.A.6: Empirical size of the confidence bounds for the pseudo-true values of risk
premia, based on the t-statistic in a mispecified model

Intercept, λ0 Useful factor, λ1 ̸= 0 Useless factor, λ2 = 0

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Fama-MacBeth estimator in a model with only a useful factor,
without Shanken correction

30 0.015 0.004 0.001 0.0085 0.002 0 - - -
50 0.0085 0.003 0.0015 0.007 0.002 0.0005 - - -
100 0.003 0 0 0.0015 0 0 - - -
250 0.0025 0.001 0 0.002 0 0 - - -
500 0.0045 0.0015 0 0.0035 5e-04 0 - - -
1000 0.003 0 0 0.0005 0 0 - - -

Panel B: Fama-MacBeth estimator in a model with only a useful factor,
with Shanken correction

30 0.01 0.0015 0.0005 0 0 0 - - -
50 0.0055 0.0015 0.001 0.0015 0 0 - - -
100 0.0015 0 0 0 0 0 - - -
250 0.002 0.001 0 0 0 0 - - -
500 0.004 0.0015 0 0.001 0 0 - - -
1000 0.002 0 0 0 0 0 - - -

Panel C: Fama-MacBeth estimator in a model with a useless factor,
without Shanken correction

30 0.0345 0.015 0.002 0.0225 0.0055 0.0015 0.135 0.055 0.016
50 0.04 0.017 0.0045 0.0315 0.01 0.004 0.2885 0.139 0.0465
100 0.0715 0.036 0.0145 0.06 0.027 0.01 0.5945 0.441 0.2375
250 0.18 0.11 0.0595 0.168 0.1015 0.0515 0.805 0.7595 0.696
500 0.305 0.2245 0.1605 0.297 0.2275 0.158 0.872 0.8425 0.806
1000 0.405 0.342 0.283 0.4145 0.347 0.28 0.932 0.915 0.8885

Panel D: Fama-MacBeth estimator in a model with a useless factor,
with Shanken correction

30 0.0175 0.0035 0.0005 0.001 0 0 0.0185 0.003 0.001
50 0.015 0.0055 0.0015 0.005 0.001 0 0.054 0.0065 0.0005
100 0.0175 0.0065 0.001 0.0055 0.001 0 0.249 0.044 0.002
250 0.028 0.0065 0.0015 0.011 0.002 0 0.672 0.3305 0.051
500 0.0445 0.018 0.006 0.0305 0.007 0.0015 0.8105 0.5845 0.2095
1000 0.055 0.022 0.009 0.0445 0.0155 0.0015 0.8895 0.731 0.3965

Note. The table summarises the empirical size of the t-statistic-based confidence bounds for the Fama-
MacBeth and Pen-FM estimators with an identity weight matrix at the second stage and at various
significance levels (α=10%, 5%, 1%). The misspecified model includes only 1 out of 3 true risk factors, and
is further contaminated by the presence of a useless factor. λ0 stands for the value of the common intercept;
λ1 and λ2 are the corresponding risk premia of the factors. The pseudo-true values of the risk premia are
defined as the limit of the risk premia estimates in a misspecified model without the influence of the useless
factor. Panels A and C present the size of the t-statistic confidence bounds, computed using OLS-based
heteroscedasticity-robust standard errors that do not take into account the error-in-variables problem of
the second stage. The model is estimated with/without the useless factor. Panels B and D present similar
results for the case of Shanken correction. The model is simulated 10,000 times for different values of the
sample size (T).

For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Figure 1.A.1: Distribution of the cross-sectional R2 in a correctly specified model
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(e) T=500
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(f) T=1000

Note. The graphs present the probability density function for the cross-sectional R-squared in a simulation
of a correctly specified model, potentially contaminated by the presence of an irrelevant factor for various
sample sizes (T=30, 50, 100, 250, 500, 1000). For each of the sample sizes, the solid line represents the
p.d.f. of the R-squared in the model without a useless factor, when the risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-sectional
R-squared when the model is estimated by the Fama-MacBeth procedure, and a useless factor is included,
while the dash-dotted line stands for the R2 when the Pen-FM estimator is employed in the same scenario
of the contaminated model. For a detailed description of the simulation design, please refer to Table 1.1.
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Figure 1.A.2: Distribution of the cross-sectional GLS R2 in a correctly specified model
based on the OLS risk premia estimates in the second stage
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Note. The graphs demonstrate the probability density function for the cross-sectionalGLS R2 in a simulation
of a correctly specified model, potentially contaminated by the presence of an irrelevant factor, and estimated
using an identity weight matrix on the second stage (W = In). For each of the sample sizes (T=30, 50,
100, 250, 500, 1000), the solid line represents p.d.f. of the GLS R2 in the model without a useless factor,
when risk premia are estimated by Fama-MacBeth estimator (the oracle case), the dashed line depicts the
distribution of the cross-sectional GLS R2 when the model is estimated by Fama-MacBeth procedure, and
a useless factor is included, while the dash-dotted line stands for the GLS R2 when Pen-FM estimator is
employed in the same scenario of the contaminated model. For a detailed description of the simulation
design, please refer to Table 1.1.
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Figure 1.A.3: Distribution of the cross-sectional GLS R2 in a correctly specified model
based on the GLS risk premia estimates in the second stage
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Note. The graphs present the probability density function for the cross-sectional GLS R2 in a simulation of
a correctly specified model, potentially contaminated by the presence of an irrelevant factor, and estimated
using the FGLS weight matrix on the second stage (W = Ω̂−1). For each of the sample sizes (T=30, 50, 100,
250, 500, 1000), the solid line represents the p.d.f. of the GLS R2 in the model without a useless factor, when
risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the
distribution of the cross-sectional GLS R2 when the model is estimated by Fama-MacBeth procedure, and
a useless factor is included, while the dash-dotted line stands for the GLS R2 when the Pen-FM estimator
is employed in the same scenario of the contaminated model. For a detailed description of the simulation
design, please refer to Table 1.1.
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Figure 1.A.4: Distribution of the Hansen-Jagannathan distance in a correctly specified
model
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Note. The graphs present the probability density function for the Hansen-Jagannathan distance in the
simulations of a correctly specified model, potentially contaminated by the presence of an irrelevant factor,
and the risk premia estimated using an identity weight matrix on the second stage (W = In). For each of the
sample sizes (T=30, 50, 100, 250, 500, 1000), the solid line represents the p.d.f. of HJ in the model without
a useless factor, when the risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the
dashed line depicts the distribution of HJ when the model is estimated by the Fama-MacBeth procedure, and
a useless factor is included, while the dash-dotted line stands for HJ when the Pen-FM estimator is employed
in the same scenario of the contaminated model. For a detailed description of the simulation design, please
refer to Table 1.1.
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Figure 1.A.5: Distribution of the average pricing error in a correctly specified model
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Note. The graphs present the probability density function for the average pricing error (APE) in the
simulations of a correctly specified model, potentially contaminated by the presence of an irrelevant factor,
and the risk premia estimated using an identity weight matrix on the second stage (W = In). For each
of the sample sizes (T=30, 50, 100, 250, 500, 1000), the solid line represents the p.d.f. of the APE in the
model without a useless factor, when the risk premia are estimated by the Fama-MacBeth estimator (the
oracle case), the dashed line depicts the distribution of APE when the model is estimated by Fama-MacBeth
procedure, and a useless factor is included as well, while the dash-dotted line stands for the APE when the
Pen-FM estimator is employed in the same scenario of the contaminated model. For a detailed description
of the simulation design, please refer to Table 1.1.
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Figure 1.A.6: Distribution of the cross-sectional R2 in a misspecified model
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Note. The graphs present the probability density function for the cross-sectional R2 in a simulation of a
misspecified model with omitted variable bias and further potentially contaminated by the presence of an
irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are
produced using an identity weight matrix. For each of the sample sizes, the solid line represents p.d.f. of
the R2 statistic in the model without a useless factor, when the risk premia are estimated by the Fama-
MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-sectional R2 when
the model is estimated by the Fama-MacBeth procedure, including both the useful and the useless factor,
while the dash-dotted line stands for R2 when the Pen-FM estimator is employed in the same scenario of the
contaminated model. For a detailed description of the simulation design for the misspecified model, please
refer to Table 1.2.
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Figure 1.A.7: Distribution of the GLS R2 in a misspecified model based on the OLS
estimates of the risk premia in the second stage
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Note. The graphs illustrate the probability density function for the cross-sectional GLS R2 in a simulation
of a misspecified model with omitted variable bias and further potentially contaminated by the presence of
an irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are
produced using an identity weight matrix. For each of the sample sizes, the solid line represents the p.d.f.
of the GLS R2 statistic in the model without a useless factor, when the risk premia are estimated by the
Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-sectional
GLS R2 when the model is estimated by the Fama-MacBeth procedure, including both the useful and the
useless factor, while the dash-dotted line stands for R2 when the Pen-FM estimator is employed in the same
scenario of the contaminated model. For a detailed description of the simulation design for the misspecified
model, please refer to Table 1.2.
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Figure 1.A.8: Distribution of the cross-sectional GLS R2 in a misspecified model with risk
premia estimates based on the GLS second stage
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Note. The graphs present the probability density function for the cross-sectional GLS R2 in a simulation of
a misspecified model with omitted variable bias and further potentially contaminated by the presence of an
irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates are
produced using the FGLS weight matrix (W = Ω̂−1). For each of the sample sizes, the solid line represents
the p.d.f. of the GLS R2 statistic in the model without a useless factor, when the risk premia are estimated
by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of the cross-
sectional GLS R2 when the model is estimated by the Fama-MacBeth procedure, including both the useful
and the useless factor, while the dash-dotted line corresponds to the case of the Pen-FM estimator employed
in the same scenario of the contaminated model. For a detailed description of the simulation design for the
misspecified model, please refer to Table 1.2.
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Figure 1.A.9: Distribution of the Hansen-Jagannathan distance in a misspecified model
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Note. The graphs present the probability density function for the Hansen-Jagannathan distance (HJ) in a
simulation of a misspecified model with omitted variable bias and further potentially contaminated by the
presence of an irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage
estimates are produced using an identity weight matrix. For each of the sample sizes, the solid line represents
the p.d.f. of HJ in the model without a useless factor, when risk premia are estimated by the Fama-MacBeth
estimator (the oracle case), the dashed line depicts the distribution of HJ when the model is estimated by
the Fama-MacBeth procedure, including both the useful and the useless factor, while the dash-dotted line
corresponds to the case of the Pen-FM estimator employed in the same scenario of the contaminated model.
For a detailed description of the simulation design for the misspecified model, please refer to Table 1.2.
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Figure 1.A.10: Distribution of the average pricing error in a misspecified model
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Note. The graphs present the probability density function for the average pricing error (APE) in a simulation
of a misspecified model with omitted variable bias and further potentially contaminated by the presence of
an irrelevant factor for various sample sizes (T=30, 50, 100, 250, 500, 1000). The second stage estimates
are produced using an identity weight matrix. For each of the sample sizes, the solid line represents the
p.d.f. of APE in the model without a useless factor, when risk premia are estimated by the Fama-MacBeth
estimator (the oracle case), the dashed line depicts the distribution of the APE when the model is estimated
by the Fama-MacBeth procedure, including both the useful and the useless factor, while the dash-dotted
line corresponds to the case of the Pen-FM estimator employed in the same scenario of the contaminated
model. For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Figure 1.A.11: Distribution of the T 2 statistic in a correctly specified model
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Note. The graphs present the probability density function for the T 2 statistic in the simulations of a
correctly specified model, potentially contaminated by the presence of an irrelevant factor, and the risk
premia estimated using an identity weight matrix in the second stage (W = In). For each of the sample sizes
(T=30, 50, 100, 250, 500, 1000), the solid line represents the p.d.f. of the T 2 in the model without a useless
factor, when risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line
depicts the distribution of T 2 when the model is estimated by the Fama-MacBeth procedure in the presence
of a useless factor. For a detailed description of the simulation design, please refer to Table 1.1.
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Figure 1.A.12: Distribution of the T 2-statistic in a misspecified model
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(d) T=250
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(e) T=500
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(f) T=1000

Note. The graphs present the probability density function for the T 2-statistic in a simulation of a misspecified
model, potentially contaminated by the presence of an irrelevant factor for various sample sizes (T=30, 50,
100, 250, 500, 1000). The second stage estimates are produced using an identity weight matrix. For each of
the sample sizes, the solid line represents p.d.f. of T 2 in the model without a useless factor, when risk premia
are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the distribution of
T 2 when the model is estimated by the Fama-MacBeth procedure, including both the useful and the useless
factor. For a detailed description of the simulation design for the misspecified model, please refer to Table
1.2.
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Figure 1.A.13: Distribution of the q-statistic in a correctly specified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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(f) T=1000

Note. The graphs present the probability density function of the q-statistic in the simulations of a correctly
specified model, potentially contaminated by the presence of an irrelevant factor, and the risk premia esti-
mated using an identity weight matrix in the second stage (W = In). For each of the sample sizes (T=30,
50, 100, 250, 500, 1000), the solid line represents the p.d.f. of q in the model without a useless factor, when
risk premia are estimated by the Fama-MacBeth estimator (the oracle case), and the dashed line depicts
the distribution of q when the model is estimated by the Fama-MacBeth procedure under the presence of a
useless factor. For a detailed description of the simulation design, please refer to Table 1.1.
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Figure 1.A.14: Distribution of the q-statistic in a misspecified model
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(b) T=50
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(c) T=100
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(d) T=250
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(e) T=500
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Note. The graphs present the probability density function for q-statistic in a simulation of a misspecified
model, potentially contaminated by the presence of an irrelevant factor for various sample sizes (T=30, 50,
100, 250, 500, 1000). The second stage estimates are produced using an identity weight matrix. For each
of the sample sizes, the solid line represents the p.d.f. of q in the model without a useless factor, when
risk premia are estimated by the Fama-MacBeth estimator (the oracle case), the dashed line depicts the
distribution of q when the model is estimated by the Fama-MacBeth procedure, including both the useful
and the useless factor. For a detailed description of the simulation design for the misspecified model, please
refer to Table 1.2.
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1.B Proofs

1.B.1 Proof of Proposition 1.1

Consider the quadratics in the objective function.[
R̄− β̂λ

]′
WT

[
R̄− β̂λ

]
p→ [E [R]− βnsλns]

′W [E [R]− βnsλns]

For the strong factors that have substantial covariance with asset returns (whether their risk is

priced or not), ηT
1

∥β̂j∥d

1

a∼ ηT−d/2Op(1)
d→ 0, where

a∼ denotes equivalence of the asymptotic

expansion up to op

(
1√
T

)
. For the useless factors we have ηT

1

∥β̂j∥d

1

a∼ ηT−d/2cjT
d/2 d→ c̃j > 0.

Therefore, in the limit the objective function becomes the following convex function of λ:

[E [R]− βnsλns]
′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1{βj = 0}

Since cj are some positive constants,

0 = argmin
λsp∈Θsp

[E [R]− βnsλns]
′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1{βj = 0}

The risk premia for the strong factors are still identified, as

λ0,ns = argmin
λns∈Θns

[E [R]− βnsλns]
′W [E [R]− βnsλns] =

(
β′nsWβns

)−1
β′nsWE [R]

=
(
β′nsWβns

)−1
β′nsWβnsλ0,ns

By the convexity lemma of Pollard (1991), the estimator is consistent.

To establish asymptotic normality, it is first instructive to show the distribution of the usual

Fama-McBeth estimator in the absence of identification failure.

Following Lemma 1.1, the first stage estimates have the following asymptotic representations

β̂ns = βns +
1√
T
Ψβ,ns + op

(
1√
T

)
, R̄ = βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR + op

(
1√
T

)
where Ψβ,ns = vecinv(ψβ,ns) and vecinv is the inverse of the vectorisation operator.
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Consider the WLS estimator of the cross-section regression:

λ̂ns =
(
β̂′nsWT β̂ns

)−1
β̂′nsWT R̄

a
=
(
β̂′nsWT β̂ns

)−1
β̂′ns

(
βnsλ0,ns +

1√
T
ψR

)
=
(
β̂′nsWT β̂ns

)−1
β̂′nsWT

(
β̂nsλ0,ns + (βns − β̂ns)λ0,ns +

1√
T
ψR

)
=

= λ0,ns +
(
β̂′nsWT β̂ns

)−1
β̂′nsWT (β̂ns − βns)λ0,ns +

(
β̂′nsWT β̂ns

)−1
β̂′nsWT

1√
T
ψR

Finally, since as T → ∞

β̂′nsWT β̂ns
a
=

[
βns +

1√
T
Ψβ,ns

]′
WT

[
βns +

1√
T
Ψβ,ns

]
p→ β′nsWβns

β̂ns − βns
a
= − 1√

T
Ψβ,ns =

1√
T
Ψβ,ns

it follows that

√
T (λ̂ns − λ0,ns)

d→
[
β′nsWβns

]−1
β′nsWΨβ,nsλ0,ns +

(
β′1Wβ1

)−1
β′nsWψR

In order to demonstrate the asymptotic distribution of the shrinkage-based estimator, I refor-

mulate the objective function in terms of the centred parameters u = λ−λ0√
T

:

LT (u) =

[
R̄− β̂

(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
+ ηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

∣∣∣∣λ0j + u√
T

∣∣∣∣
Solving the original problem in 1.9 w.r.t. λ is the same as optimizing L̄(u) = T (LT (u)− LT (0))

w.r.t. u.

Since [
R̄− β̂

(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
=

= R̄′WT R̄+

[
λ0 +

u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
− 2

[
λ0 +

u√
T

]′
β̂′WT R̄

λ′0β̂
′WT β̂λ0 +

u′√
T
β̂′WT β̂

u√
T

+
2√
T
u′β̂′WT β̂λ0 − 2

[
λ0 +

u√
T

]′
β̂′WT R̄

= λ′0β̂
′WT β̂λ0 +

u′√
T
β̂′WT β̂

u√
T

− 2λ′0β̂
′WT R̄+

2√
T
u′β̂′WT (β̂λ0 − R̄)
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Therefore, in localized parameters u the problem looks as follows:

û = argmin
u∈K

u′β̂′WT β̂u+ 2
√
Tu′β̂′WT (β̂λ0 − R̄) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]

= argmin
u∈K

u′β̂′WT β̂u+ 2
√
T β̂′WT (β̂ − β)λ0 − 2u′β̂′WTφR+

+TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]

where K is a compact set in Rk.
It is easy to show that since as t→ ∞

β̂′WT β̂
a
=

[
β′ns +

1√
T
Ψ′
β,ns

1√
T
Ψ′
β,sp

]
WT

[
βns +

1√
T
Ψβ,ns

1√
T
Ψβ,sp

]
a
=

[
β′nsWβns 0

0 0

]

the following identities hold:

u′β̂′WT β̂u
a
=
[
u′ns u′sp

] [β′nsWβns 0

0 0

][
uns

usp

]
= u′ns

[
β′nsWβns

]
uns ,

u′β̂′WT (β̂ − β)λ0
a
=
[
u′ns u′sp

] [β′ns + 1√
T
Ψ′
β,ns

1√
T
Ψ′
β,sp

]
W
[

1√
T
Ψβ,ns

1√
T
Ψβ,sp

] [λ0,ns
0

]
a
=

=
[
u′ns u′sp

] [ 1√
T
β′nsWΨβ,ns

1√
T
β′nsWΨβ,sp

0 0

][
λ0,ns

0

]
=

1√
T
u′nsβ

′
nsWΨβ,nsλ0,ns ,

u′β̂′WTφR
a
=
[
u′ns u′sp

] [β′ns + 1√
T
Ψ′
β,ns

1√
T
Ψ′
β,sp

]
WφR .

Finally, this implies that the overall objective function asymptotically looks as follows:

L̄T (u)
a
= u′ns

[
β′nsWβns

]
uns + 2u′nsβ

′
nsWΨβ,nsλ0,ns − 2u′ns(βns +

1√
T
Ψβ,ns)

′WφR

− 2√
T
u′spΨ

′
β,spWφR + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
a
=

= u′nsβ
′
nsWβnsuns − 2u′nsβ

′
nsW (φR −Ψβ,nsλ0,ns) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
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Now, for a spurious factor: TηT
1

∥β̂j∥d

1

[∣∣∣λ0j + uj√
T

∣∣∣− |λ0j |
]
=

√
TηT−d/2cjT

d/2 |uj | =
√
T c̃j |uj |,

while for the strong ones: TηT
1

∥β̂j∥d

1

[∣∣∣λ0j + uj√
T

∣∣∣− |λ0j |
]
= cj

√
TT−d/2ujsgn(λ0j) → 0, since

d > 2.

Therefore, as T → ∞, L̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
−u′

nsβ
′
nsWβnsuns − 2u

′
nsWβns (ϕR −Ψβ,nsλ0,ns) if usp = 0

∞ otherwise

Note that L̄T (u) is a convex function with a unique optimum given by([
β′nsWβns

]−1
β′nsWΨβ,nsλ0,ns +

[
β′nsWβns

]−1
β′nsWψR, 0

)′
.

Therefore, due to the epiconvergence results of Pollard (1994) and Knight and Fu (2000), we

have that

ûns
d→
[
β′nsWβns

]−1
β′nsWΨβ,nsλ0,ns +

[
β′nsWβns

]−1
β′nsWψR ,

ûsp
d→ 0 .

Hence, the distribution of the risk premia estimates for the useful factors coincides with the

one without the identification problem. Therefore, Pen-FM exhibits the so-called oracle property.

1.B.2 Proof of Proposition 1.2

I am going to prove consistency first. Consider the objective function. As T → ∞[
R̄− β̂λ

]′
WT

[
R̄− β̂λ

]
p→ [E [R]− βnsλns]

′W [E [R]− βnsλns]

Also note that for the strong factors ηT
1

∥β̂j∥d

1

∼ ηT−d/2Op(1) → 0, while for the weak ones

ηT
1

∥β̂j∥d

1

∼ ηT−d/2cjT
d/2 → c̃j > 0.

Therefore, the limit objective function becomes

[E [R]− βnsλns]
′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1
{
βj = Op

(
1√
T

)}

Since c̃j are positive constants,

0 = argmin
λsp∈Θsp

[E [R]− βnsλns]
′W [E [R]− βnsλns] +

k∑
j=1

c̃j |λj |1
{
βj = Op

(
1√
T

)}
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However, the risk premia for the strong factors are still strongly identified, since

argmin
λj∈Θns

[E [R]− βnsλns]
′W [E [R]− βnsλns] = λ0,ns +

1√
T

(
β′nsWβns

)−1
β′nsWBspλ0,sp → λ0,ns

Therefore, once again, due to the convexity lemma of Pollard (1991), the estimator is consistent.

Again, I first demonstrate the asymptotic distribution in the usual Fama-McBeth estimator in

the absence of weak factors. Recall that

β̂ns = βns +
1√
T
Ψβ,ns + op

(
1√
T

)
, R̄ = βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR + op

(
1√
T

)
where Ψβ,ns = vecinv(ψβ,ns).

Therefore, the second stage estimates have the following asymptotic expansion

λ̂ns =
(
β̂′nsWT β̂ns

)−1
β̂′nsWT R̄

a
=
(
β̂′nsWT β̂ns

)−1
β̂′ns

(
βnsλ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR

)
=

=
(
β̂′nsWT β̂ns

)−1
β̂′nsWT

(
β̂nsλ0,ns + (βns − β̂ns)λ0,ns +

Bsp√
T
λ0,sp +

1√
T
ψR

)
=

= λ0,ns +
(
β̂′nsWT β̂ns

)−1
β̂′nsWT (β̂ns − βns)λ0,ns +

(
β̂′nsWT β̂ns

)−1
β̂′nsWT

Bsp√
T
λ0,sp

+
(
β̂′nsWT β̂ns

)−1
β̂′nsWT

1√
T
ψR

Finally, since

β̂′nsWT β̂ns
a
=

[
βns +

1√
T
Ψβ,ns

]′
WT

[
βns +

1√
T
Ψβ,ns

]
p→ β′nsWβns

β̂ns − βns
a
= − 1√

T
Ψβ,ns =

1√
T
Ψβ,ns

we get √
T (λ̂ns − λ0,ns)

d→[
β′nsWβns

]−1
β′nsWΨβ,nsλ0,ns +

(
β′1Wβ1

)−1
β′nsWψR +

(
β̂′nsWT β̂ns

)−1
β̂′nsWTBspλ0,sp

The asymptotic distribution of risk premia estimates has three components:

• [β′nsWβns]
−1 β′nsWΨβ,nsλ0,ns, which arises due to the error-in-variables problem, since we

observe not the true values of betas, but only their estimates, i.e. the origin for Shanken

(1992) correction;

• (β′1Wβ1)
−1 β′nsWψR, which corresponds to the usual sampling error, associated with the
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WLS estimator;

•
(
β̂′nsWT β̂ns

)−1
β̂′nsWTBspλ0,sp, which is the 1√

T
omitted variable bias, due to eliminating

potentially priced weak factors from the model.

Similar to the previous case, in order show the asymptotic distribution of the Pen-FM estimator,

I rewrite the objective function in terms of the localised parameters, u = λ−λ0√
T

, as follows:

û = argmin
u∈K

u′β̂′WT β̂u+ 2
√
Tu′β̂′WT (β̂λ0 − R̄) + TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
,

since [
R̄− β̂

(
λ0 +

u√
T

)]′
WT

[
R̄− β̂

(
λ0 +

u√
T

)]
=

= R̄′WT R̄+

[
λ0 +

u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
− 2

[
λ0 +

u√
T

]′
β̂′WT R̄ ,[

λ0 +
u√
T

]′
β̂′WT β̂

[
λ0 +

u√
T

]
= λ′0β̂

′WT β̂λ0 +
u′√
T
β̂′WT β̂

u√
T

+
2√
T
u′β̂′WT β̂λ0

−2

[
λ0 +

u√
T

]′
β̂′WT R̄ = −2λ′0β̂

′WT R̄− 2√
T
u′β̂′WT R̄ .

Recall that

β̂′WT β̂
a
=

[
β′ns +

1√
T
Ψ′
β,ns

1√
T
(B′

sp +Ψ′
β,sp)

]
WT

[
βns +

1√
T
Ψβ,ns

Bsp√
T
+ 1√

T
Ψβ,sp

]
a
=

=

[
β′nsWβns +

2√
T
Ψ′
β,nsWβns

1√
T
β′nsW (Bsp +Ψβ,sp)

1√
T
(Bsp +Ψβ,sp)Wβns 0

]
.

Hence,

u′β̂′WT β̂u
a
=
[
u′ns u′sp

] [β′nsWβns +
2√
T
Ψ′
β1Wβns

1√
T
β′nsW (Bsp +Ψβ,sp)

1√
T
(Bsp +Ψβ,ns)

′Wβns 0

][
uns

usp

]
=

= u′ns

[
β′nsWβns +

2√
T
Ψ′
β,nsWβns

]
uns + u′sp

[
1√
T
(Bsp +Ψβ,sp)

′Wβns

]
uns + u′ns

[
1√
T
β′nsW (Bsp +Ψβ,sp)

]
usp
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u′β̂′WT β̂λ0 − u′β̂′WT R̄ = u′β̂′WT

[
β̂nsλ0,ns − βnsλ0,ns −

Bsp√
T
λ0,sp −

1√
T
φR

]
a
=

=
[
u′ns u′sp

] [ β′ns + 1√
T
Ψ′
β,ns

1√
T
(B′

sp +Ψ′
β,sp)

]
WT

[
1√
T
Ψβ,nsλ0,ns −

Bsp√
T
λ0,sp −

1√
T
φR

]
a
=

=
[
u′ns u′sp

] [ 1√
T
β′nsWΨβ,nsλ0,ns −

1√
T
β′nsWBspλ0,sp − 1√

T
β′nsWφR

0

]

Finally, this implies that the overall objective function asymptotically looks as follows:

L̄T (u)
a
= u′ns

[
β′nsWβns +

2√
T
Ψ′
β,nsWβns

]
uns + u′sp

[
1√
T
(Bsp +Ψβ,sp)

′Wβns

]
uns

+u′ns

[
1√
T
β′nsW (Bsp +Ψβ,sp)

]
usp + 2u′ns

[
β′nsWΨβ,nsλ0,ns − β′nsWBspλ0,sp − β′nsWφR

]
+TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
a
=

= u′nsβ
′
nsWβnsuns + 2u′ns

[
β′nsWΨβ,nsλ0,ns − β′nsWBspλ0,sp − β′nsWφR

]
+TηT

k∑
j=1

1∥∥∥β̂j∥∥∥d
1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]

Now, for a spurious factor

TηT
1∥∥∥β̂j∥∥∥d

1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
=

√
TηT−d/2c2T

d/2 |uj | =
√
T c̃ |uj | ,

while for the strong ones

TηT
1∥∥∥β̂j∥∥∥d

1

[∣∣∣∣λ0j + uj√
T

∣∣∣∣− |λ0j |
]
= c2

√
TT−d/2ujsgn(λ0j) → 0,

since d > 2.

Hence, as T → ∞, L̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
−u′

nsβ
′
nsWβnsuns − 2u

′
nsWβns(ϕR +Bspλ0,ns −Ψβ,nsλ0,ns) if usp = 0

∞ otherwise
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1. Spurious Factors in Linear Asset Pricing Models

Note that L̄T (u) is a convex function with the unique optimum given by([
β′nsWβns

]−1
β′nsW [Ψβ,nsλ0,ns +Bspλ0,sp] +

[
β′nsWβns

]−1
β′nsWψR, 0

)′
.

Therefore, due to the epiconvergence results of Pollard (1994) and Knight and Fu (2000),

ûns
d→
[
β′nsWβns

]−1
β′nsWBspλ0,sp +

[
β′nsWβns

]−1
β′nsW (ψR +Ψβ,nsλ0,ns) ,

ûsp
d→ 0 .

1.B.3 Proof of Proposition 1.3

Consider the bootstrap counterpart of the second stage regression.

λ̂∗ = argmin
λ∈Θ

(R̄∗ − β̂∗λ)′W ∗
T (R̄

∗ − β̂∗λ) + µT

k∑
j=1

1

||β̂∗j ||d
[|λj |]

Similar to Proposition 1.1, in terms of localised parameters, λ = λ̂pen + u√
T
, the centred problem

becomes

û∗ = argmin
u∈K

(λ̂pen +
u√
T
)′β̂∗

′
W ∗
T β̂

∗(λ̂pen +
u√
T
)− 2(λ̂pen +

u√
T
)′β̂∗

′
W ∗
T R̄

∗ +

+µT
∑k

j=1
1

||β̂∗
j ||d

[|λ̂j,pen + u√
T
| − |λ̂j,pen|]

where K is a compact set on Rk+1. Note that the problem is equivalent to the following one

û∗ = argmin
u∈K

u′β̂∗
′
W ∗
T β̂

∗u+ 2
√
Tu′β̂∗

′
W ∗
T β̂

∗λ̂pen − 2
√
Tu′β̂∗′W

∗
T R̄

∗ +

+µT
∑k

j=1
1

||β̂∗
j ||d

[|λ̂j,pen + u√
T
| − |λ̂j,pen|] .

If βsp = 0

[
u′′ns u′sp

]β̂′ns + Ψβ,ns√
T

′

β̂′sp +
Ψβ,sp√
T

′

W ∗
T

[
β̂ns +

Ψβ,ns√
T

β̂sp +
Ψβ,ns√

T

] [uns
usp

]
a
= u′nsβ

′
nsWβnsuns

2
√
Tu′β̂∗

′
W ∗
T β̂

∗λ̂pen − 2
√
Tu′β̂∗

′
W ∗
T R̄

∗ = 2u′

β̂′ns + Ψβ,ns√
T

′

β̂′sp +
Ψβ,sp√
T

′

W ∗
T

√
T
[
β̂∗λ̂pen − β̂∗R̄∗

]
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1. Spurious Factors in Linear Asset Pricing Models

Further,

β̂∗λ̂pen − β̂∗R̄∗ = − 1√
T
ψR +

1√
T
β̂λ̂pen +

[
R̄− β̂λ̂pen

]
[
β0 +

1√
T
Ψβ

]′
W
[
β0λ0 +

1√
T
ψR

]
−
[
β0 +

1√
T
Ψβ

]′
W
[
β0 +

1√
T
Ψβ

] [
λ0 +

1√
T
ψpen

]
= op

(
1√
T

)
since ψpen = [(β′nsβns]

−1Wβ′ns[−ψR + βnsΨR]

This in turn implies that the bootstrap counterpart of the second stage satisfies

û∗ = argmin
u∈K

u′β′nsWβnsu+ 2u′nsβ
′
nsW (−ψR +Ψβ,nsλ0,ns) + ηT

∑k
j=1

1
||β̂∗

j ||d
[|λ̂j,pen + u√

T
| − |λ̂j,pen|]

The weak convergence of
√
T (λ̂∗pen− λ̂pen) to

√
T (λ̂pen−λ0) now follows from the argmax theorem

of Knight and Fu (2000).

1.B.4 Proof of Proposition 1.4

The condition in Proposition 1.4 requires the strict monotonicity of the cdf to the right of a

particular α-quantile. This implies that if BT → B weakly, then B−1
T (α) → B−1(α) as T → ∞.

Hence, P (λ0 ∈ IT,α) → α as T → ∞.

If there is at least one non-spurious component (e.g. a common intercept for the second stage

or any useful factor), the limiting distribution of the estimate will be a continuous random variable,

thus implying the monotonicity of its cdf, and again, driving the desired outcome.

1.B.5 Proof of Proposition 1.5

The argument for the consistency and asymptotic normality of the Pen-GMM estimator is derived

on the basis of the empirical process theory. The structure of the argument is similar to the existing

literature on the shrinkage estimators for the GMM class of models, e.g. Caner (2009), Liao (2013),

and Caner and Fan (2014). I first demonstrate the consistency of the estimator.

The sample moment function can be decomposed in the following way:

1

T

T∑
t=1

gt(θ) =
1

T

T∑
t=1

(gt(θ)− Egt(θ)) +
1

T

T∑
t=1

Egt(θ)

Under Assumption 2, by the properties of the empirical processes (Andrews (1994))

1√
T

T∑
t=1

(gt(θ)− Egt(θ)) = Op(1)
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1. Spurious Factors in Linear Asset Pricing Models

Further, by Assumption 2.2

E

(
1

T

T∑
t=1

gt(θ)

)
p→ g1(θ)

Also note that for the strong factors ηT
1

∥β̂j∥d

1

∼ ηT−d/2Op(1) → 0, while for the spurious ones

ηT
1

∥β̂j∥d

1

∼ ηT−d/2cjT
d/2 → c̃j > 0

Therefore, the whole objective function converges uniformly in θ ∈ S to the following expression

g1(θ)
′W (θ)g1(θ) +

k∑
j=1

c̃j |λj |1{βj = 0}

Finally, since g1(θ0,ns, λsp) = g1(θ0,ns,0k2), and {µf , vec(βf ), λ0,ns, λ0,c} are identified under As-

sumption 2.4, {θ0,ns,0k2} is the unique minimum of the limit objective function.

Therefore

θ̂pen
p→ argmin

θ∈S
g1(θ)

′W (θ)g1(θ) +

k∑
j=1

c̃j |λj |1{βj = 0}

and

θ̂pen,ns = {µ̂f , vec(β̂), λ̂ns, λ̂c} → θ0,ns = {µf , vec(βf ), λ0,ns, λ0,c}

λ̂sp
p→ 0k2

Similar to the case of the Fama-MacBeth estimator, in order to derive the asymptotic distri-

bution of the Pen-GMM, I rewrite the original optimization problem in the centred parameters

u =
√
T (θ̂pen − θ0):

û = argmin
u∈K

LT (u)

where

LT (u) =

[
1

T

T∑
t=1

gt

(
θ0 +

u√
T

)]′
WT

(
θ0 +

u√
T

)[
1

T

T∑
t=1

gt

(
θ0 +

u√
T

)]

−

[
1

T

T∑
t=1

gt (θ0)

]′
WT (θ0)

[
1

T

T∑
t=1

gt (θ0)

]
+ ηT

k∑
j=1

1

||β̂||d1

(∣∣∣∣λj,0 + uλ,j√
T

∣∣∣∣− |λj,0|
)

and K is a compact subset in Rnk+2k+1.
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1. Spurious Factors in Linear Asset Pricing Models

Using the empirical process results (Andrews (1994)), from Assumption 2.1 it follows that

1√
T

T∑
t=1

gt

(
θ0 +

u√
T

)
− Egt

(
θ0 +

u√
T

)
⇒ Z(θ0) ≡ N(0,Γ)

Now, since Egt(θ0) = 0 and by Assumption 2.3,

1√
T

T∑
t=1

Egt
(
θ0 +

u√
T

)
→ G(θ0)u

uniformly in u.

Therefore,

1√
T

T∑
t=1

Egt
(
θ0 +

u√
T

)
⇒ Z(θ0) +G(θ0)u

Note that under the presence of useless factors, G(θ0)u = Gns(θ0)uns for u ∈ K, where uns =

{uµ, uβ; , uλ,ns, uλ,c}, that is all the localized parameters, except for the those corresponding to the

risk premia of the spurious factors.

Therefore, by Assumption 2.4 the first part of the objective function becomes

VT (u) = TLT (u) ⇒ [Z(θ0) +Gns(θ0)uns]
′W (θ0) [Z(θ0) +Gns(θ0)uns]− Z(θ0)

′W (θ0)Z(θ0)

= u′nsGns(θ0)
′W (θ0)Gns(θ0)uns + 2u′nsGns(θ0)

′W (θ0)Z(θ0)

Now, for the spurious factors: TηT
1

∥β̂j∥d

1

[∣∣∣λ0j + uλ,j√
T

∣∣∣− |λ0j |
]

=
√
TηT−d/2c2T

d/2 |uλ,j | =
√
T c̃ |uλ,j |,
while for the usual ones: TηT

1

∥β̂j∥d

1

[∣∣∣λ0j + uλ,j√
T

∣∣∣− |λ0j |
]
= c2

√
TT−d/2uλ,jsgn(λ0j) → 0, since

d > 2

Therefore, V̄T (u)
d→ L̄n for every u, where

L̄(u) =

{
u′nsGns(θ0)

′W (θ0)G(θ0)u+ 2u′nsG(θ0)
′W (θ0)Z(θ0) if uλ,sp = 0k2

∞ otherwise

Due to the epiconvergence theorem of Knight and Fu (2000),

√
T (λ̂pen,sp)

d→ 0k2
√
T (θ̂pen,ns − θ0,ns)

d→ [Gns(θ0)
′W (θ0)Gns(θ0)]

−1Gns(θ0)W (θ0)Z(θ0)

where θ0,ns = {µf , vec(βf ), λ0,ns, λ0,c}
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Chapter 2

Term Structure of Interest Rates and

Unspanned Factors

2.1 Introduction

Understanding the movements of the yield curve along with forecasting their direction and

magnitude are crucial for any economy. While monetary policy is tightly related to the short

term interest rates, most business and individuals heavily rely on the medium and long term

yields in their financing and investment decisions. At the same time, information contained

in the yield spread predicts not only future interest rates (Fama and Bliss (1987), Cochrane

and Piazzesi (2005), Campbell and Shiller (1991)), but also the level of economic activity

(Hamilton and Kim (2002), Ang, Piazzesi, and Wei (2006)). It is therefore natural that

pricing the cross-section of bond returns, in the attempt to uncover the relation between the

yield curve and present/future states of the economy, has been one of the active areas of

research in both theoretical and empirical finance.

Affine term structure models (e.g. Vasicek (1977), Cox, Ingersoll, and Ross (1985), Duffie

and Kan (1996b)) have proven to be a particularly popular modelling choice, due to their

ability to capture the no-arbitrage links between bonds of different maturities, as well as

many stylised time series features of bond returns, while remaining easily tractable. In

particular, Litterman and Scheinkman (1991) demonstrated that 3 common factors (’level’,

’slope’ and ’curvature’) can successfully capture most of the variation in bond returns. Since

then, these factors have been used for a variety of applications related to the term structure

88



2. Term Structure of Interest Rates and Unspanned Factors

of interest rates (see the overview in Piazzesi (2010)). At the same time, the recent years

have seen a considerable and growing body of literature on the role of hidden, or unspanned

factors, that are not identified from the cross-section of bonds due to the lack or covariance

with bond excess returns, but are nevertheless useful for forecasting the yield curve. Usually,

these include various macroeconomic indicators related to inflation and economic activity

(Ang and Piazzesi (2002), Chernov and Mueller (2012), Joslin, Priebsch, and Singleton

(2012), Favero, Niu, and Sala (2012), Ludvigson and Ng (2009)). The impact of these factors

can often be accommodated within the standard estimation approach, but their treatment

usually involves a pretesting procedure to distinguish between the two types of variables and

consecutive risk premia recovery, e.g. as in the regression-based approach of Adrian, Crump,

and Moench (2013). This could have a non-trivial impact on the risk premia estimation,

fitting the yield curve and producing its forecast.

In this chapter I propose an alternative regresion-based approach to estimating the affine

term structure model, the Adaptive Ridge Estimation (ARES). Compared to the alternative

settings, ARES does not require an ex ante distinction between the spanned and unspanned

factors. It combines the ability of adaptive group lasso to correctly identify the groups of non-

zero coefficients (in this case, bond returns exposure to particular spanned risk factors) with

the ridge-type regression to automatically identify the correct nature of the factor and treat

its risk-neutral pricing impact accordingly. In fact, I show that the factor selection procedure

embedded in this estimation does not affect recovering the associated risk premia, and that

the estimates follow the same asymptotic distribution as if the true nature of the factors

had been known ex ante. The key technical feature of the approach lies in the consistent

model selection, produced by adaptive group lasso: as the sample sizes increases, the method

correctly distinguishes between the spanned and hidden factors. Moreover, I demonstrate

that the probability of incorrectly classifying a particular factor tends to 0 at an exponential

rate. At the same time, not only all the non-zero coefficients are correctly retained from the

cross-section of bond excess returns, but also have the correct sign with probability tending to

1 at the same exponential rate. Combined with an adaptive ridge regression, this approach

allows for an efficient recovery of the associated risk-neutral pricing equations, while the

embedded factor classification does not affect the asymptotic distribution of the parameters

driving the yield curve. Simulations also confirm the good finite sample properties of the

new estimator.

The chapter is organised as follows. First, I introduce the exponentially affine factor mod-
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2. Term Structure of Interest Rates and Unspanned Factors

els, and their implications for bond excess returns and yield curve. I present the regression-

based approach of Adrian, Crump, and Moench (2013) for the case when some of the factors

could be unspanned. I then introduce Adaptive Ridge Estimation of the term structure and

discuss its asymptotic properties and conclude by demonstrating the finite-sample properties

of the estimator using simulations.

2.2 Exponentially Affine Factor Model

The exponentially affine term structure model1 (Adrian, Crump, and Moench (2013), Ang,

Piazzesi, and Wei (2006)) assumes that the price of a bond with maturity n is driven by

the innovations in the set of state variables F (the factors) indexed by the time of their

observation, t = 1 . . . T .

P n
t = Et

[
Mt+1P

n−1
t+1

]
,

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tΣ

− 1
2vt+1

)
, (2.1)

λt = Σ− 1
2 (λ0 + λ1Ft) ,

Ft+1 = µ+ ΦFt + vt+1

where P n
t is the price of a bond with maturity n at time t, Mt+1 is a stochastic discount

factor, Et stands for the conditional expectation at time t, λ0 and λ1 are prices of risk, rt is

the short-term interest rate, vt+1|Fsts=0 ∽ N(0,Σ).

Since the log excess return of a bond maturing in n periods can be decomposed as:

rxn−1
t+1 := lnP

(n−1)
t+1 − lnP

(n)
t − rt.

the model in Equation (2.1) also implies that

1 = Et
[
exp

(
rx

(n−1)
t+1 − 1

2
λ′tλt − λ′tΣ

− 1
2vt+1

)]
. (2.2)

1Th exposition of the affine term structure model and its regression-based estimation closely follow those
of Adrian, Crump, and Moench (2013).
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Using the properties of the lognormal distribution, Equation (2.2) becomes:

Et
[
rx

(n−1)
t+1

]
= covt

(
rx

(n−1)
t+1 , λ′tΣ

−1/2vt+1

)
− 1

2
vart

(
rx

(n−1)
t+1

)
.

Denoting β
(n−1)
t = covt

(
rx

(n−1)
t+1 , v′t+1

)
Σ−1, we get

Et
[
rx

(n−1)
t+1

]
= β

(n−1)′
t (λ0 + λ1Xt)−

1

2
vart

(
rx

(n−1)
t+1

)
(2.3)

Unexpected excess returns can be decomposed into the term that correlates with the factor

innovations, vt+1, and the one orthogonal to it:

rx
(n−1)
t+1 − Et

[
rx

(n−1)
t+1

]
= β

(n−1)
t vt+1 + en−1

t+1 (2.4)

Assuming that en−1
t+1 is distributed i.i.d with zero mean and variance σ2, it follows from

Equations (2.3) and (2.4) that

rx
(n−1)
t+1 = β

(n−1)′
t (λ0 + λ1Ft)−

1

2

(
β
(n−1)′
t Σβ

(n−1)
t + σ2

)
+ β

(n−1)′
t vt+1 + en−1

t+1 (2.5)

Stacking the excess returns on the bonds with different maturities together, Equation (2.5)

can be written as

rx = β′ (λ0i
′
T + λ1F−)−

1

2

(
B∗vec(Σ) + σ2iN

)
i′T + β′V + E (2.6)

where rx is N × T matrix of excess returns, β = [β1 β2 ...βN ] is a K × N matrix of factor

loadings, iT and iN are a T × 1 and N × 1 vectors of ones, F− = [F0 F1 ... FT−1] is a K × T

matrix of lagged pricing factors, B∗ = [vec(β(1)β(1)′) ... vec(β(N)β(N)′)]′ is an N×K2 matrix,

V is a K × T matrix, and E is an N × T matrix.

One can also show that the bond prices in this model are exponentially affine functions

of the factors:

lnP
(n)
t = An +B′

nXt + u
(n)
t , (2.7)

where u
(n)
t is the unobservable error component, implying the following dynamics for the
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excess returns:

rxn−1
t+1 = An−1 +B′

n−1Ft+1 + u
(n−1)
t+1 − An −B′

nFt − unt + A1 +B′
1Xt + u

(1)
t (2.8)

Equations (2.5) and (2.8) together imply that

An−1 +B′
n−1Ft+1 + u

(n−1)
t+1 − An −B′

nFt − unt + A1 +B′
1Ft + u

(1)
t

= β
(n−1)′
t (λ0 + λ1Ft)−

1

2
(β

(n−1)′
t Σβ

(n−1)
t + σ2) + β

(n−1)′
t vt+1 + en−1

t+1

Hence, the following system of recursive linear restrictions for the parameters for the bond

prices should hold:

An = An−1 +B′
n−1(µ− λ0) +

1

2
(B′

n−1ΣBn−1 + σ2) + A1

B′
n = B′

n−1(Φ− λ1)−+B′
1

A0 = 0, B′
0 = 0, (2.9)

β(n)′ = B′
n,

u
(n−1)
t+1 − unt + unt = en−1

t+1

which concludes the derivation of the model and can be used to recover the whole yield curve

from the risk premia parameters of the cross-section of bonds.

2.3 Regression-Based Estimation and Unspanned fac-

tors

Adrian, Crump, and Moench (2013) suggest the following way to estimate the model.

Step 1. Decompose factors into their predictable components and innovations using

vector autoregression:

Ft+1 = µ+ ΦFt + vt+1

Stack the residuals from these regressions, v̂t+1 into the matrix V̂ and estimate Σ as Σ̂ = V̂ V̂ ′

T
.
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Step 2. Consider an unrestricted version of Equation (2.6):

rx = ai′T + β′V̂ + cF− + E

Using [i′T , V̂
′, F ′

−]
′ as regressors, get OLS estimates of â, β̂, ĉ and use the corresponding resid-

uals to form the estimate of the variance: σ̂2 = trace( ÊÊ
′

NT
). Construct the matrix B̂∗ from

β̂.

Step 3. According to Equation (2.6)

a = β′λ0 −
1

2

(
B∗vec(Σ) + σ2iN

)
c = β′λ1

Note, that this system of equations is overidentified. Hence, one approach would be to

recover risk premia parameters by OLS1:

λ̂1 = (β̂β̂′)−1β̂ĉ (2.10)

λ̂0 = (β̂β̂′)−1β̂(â+
1

2
(B̂∗vec(Σ̂) + σ̂2iN))

Adrian, Crump, and Moench (2013) provide the asymptotic distribution and properties of

the estimator defined above. These parameters can also be used to forecast the yield curve

using the recursive relationships in Equation (2.9).

Unspanned factors can be easily incorporated into the setting. Assume that the state

variables can be ex ante classified into those which are spanned and those which are not, the

1Vectorised estimators of the risk premia parameters can be written as follows

vec(λ̂1) = argmin
x1∈C⊂Rnk×1

[
vec(ĉ)− (Ik ⊗ β̂′)x1

]′ [
vec(ĉ)− (Ik ⊗ β̂′)x1

]
vec(λ̂0) = argmin

x0∈C̃⊂Rk×1

[
vec

(
â+ 1

2 (B̂
∗vec(Σ̂) + σ̂2iN )

)
− (Ik ⊗ β̂′)x0

]′ [
vec

(
â+ 1

2 (B̂
∗vec(Σ̂) + σ̂2iN )

)
− (Ik ⊗ β̂′)x0

]
,

which, after manipulation, leads to the following estimators:

vec(λ̂1) =
[
Ik ⊗ (β̂β̂′)−1β̂

]
vec(ĉ)

λ̂0 =
[
Ik ⊗ (β̂β̂′)−1β̂

] [
â+

1

2

(
B̂∗vec(Σ̂) + σ̂2iN

)]
Finally, it is easy to see that these expressions are simply the vectorised versions of those in Equation (2.10).
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corresponding sets will have s and u subscripts. Without loss of generality, I will assume that

the list of factors consists first of the spanned state variables, followed by the unspanned:(
F s
t

F u
t

)
= µ+ Φ

(
F s
t−1

F u
t−1

)
+

(
vst

vut

)

where F s
t is of the dimension k1 × 1 and Xu

t is a (k − k1)× 1 vector.

Since excess returns enjoy non-zero exposure only to the spanned factors (by definition

of the latter), the short rate does not load on the unspanned state variables, and the model

can be rewritten as follows:

rx
(n−1)
t+1 = β

(n−1)′
t (λ0 + λ1Ft)−

1

2

(
β
(n−1)′
t Σβ

(n−1)
t + σ2

)
+ β

(n−1)′
t vt+1 + en−1

t+1

= β
(n−1)′
t (λ0 + λ1Ft)−

1

2

(
β
(n−1)′
t Σβ

(n−1)
t + σ2

)
+ β

(n−1)′
t (Ft+1 − µ− ΦFt) + en−1

t+1

= −β(n−1)′
s,t (µ∗

s + Φ∗
ssF

s
t )−

1

2

(
β
(n−1)′
t,s Σssβ

(n−1)
t,s + σ2

)
+ β

(n−1)′
t,s F s

t+1 + e
(n−1)
t+1 , (2.11)

where µ∗
s is the upper k1 × 1 subvector of (µ − λ0), corresponding to the spanned factors,

Φ∗
ss is the k1 × k1 upper-left block of the risk-neutral transition matrix (Φ− λ1).

The estimation proceeds in a way similar to the original setting, with the only difference

that estimating the unrestricted version of Equation (2.11) includes only the spanned factors,

leading to the OLS-type estimate of the upper-left block of the risk-neutral matrix.

Step 1. Decompose factors into their predictable components and innovations using

vector autoregression:

Ft+1 = µ+ ΦFt + vt+1

Stack the residuals from these regressions, v̂t+1 into the matrix V̂ and estimate Σ as Σ̂ = V̂ V̂ ′

T
.

Step 2. Consider an unrestricted version of Equation (2.11), and the regression of

excess returns (rx) on the contemporaneous and lagges spanned factor values (F s and F s
−1

correspondingly):

rx = asi
′
T + csX

s
(−1) + β′

sX
s + E,

where as is a n × 1 vector of intercepts, while βs and cs are n × k1 matrices of the slope

coefficients. Form the matrix Bs∗ from β̂s and use the corresponding residuals to get an

estimate of the variance: σ̂2 = trace( ÊÊ
′

NT
).
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Step 3. According to Equation (2.11)

as = −β′
sµ

∗
s −

1

2

(
Bs∗vec(Σss) + σ2iN

)
(2.12)

cs = −β′
sΦss

Once again, the system of equations is overidentified, and one can apply OLS-type estimation

to recover risk-neutral parameters for the spanned state variables:

µ̂∗
s = −(β̂sβ̂

′
s)

−1β̂s

(
âs +

1

2

(
B̂s∗vec(Σ̂ss) + σ̂2iN

))
(2.13)

Φ̂∗
ss = −(β̂sβ̂

′
s)

−1β̂sĉs

Since the risk-free rate does not load on the unspanned factors, Φ∗
su = 0k1×(k−k1). I also

adopt the convention that those parameters which are not identified (and do not matter for

the dynamics of the cross-section of bond, like λu0 and λuu1 ) are set exactly to zero. Therefore,

the following relations complete the estimator design:

Φ∗
su = 0k1×(k−k1)

λ̂su1 = Φsu

λ̂ss1 = Φss − Φ̂∗
ss (2.14)

λ̂u0 = 0(k−k1)×1

λ̂uu1 = 0(k−k1)×(k−k1)

Adrian, Crump, and Moench (2013) provide the asymptotic distribution and properties of

the resulting risk premia estimates.

2.4 Adaptive Ridge Estimation (ARES)

Adaptive Ridge Estimation of the exponentially affine term structure model combines the

advantages of model selection introduced by adaptive lasso, with the ease of estimation of

the weighted ridge regression. The weights in the risk premia estimation are designed to

automatically distinguish between spanned and unspanned factors, which is not required to

be known ex ante. At the same time, the method preserves the ease of estimation and inter-
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pretation of the conventional regression-based approach. In fact, as Proposition 2.3 reveals,

ARES risk premia estimates have exactly the same distribution as the one in Adrian, Crump,

and Moench (2013), but do not require the prior knowledge of the spanning restrictions.

The estimation approach can be described as follows.

Step 1. Decompose factors into their predictable components and innovations using a

vector autoregression:

Ft+1 = µ+ ΦFt + vt+1

Stack the residuals from these regressions, v̂t+1 into the matrix V̂ and estimate Σ as Σ̂ = V̂ V̂ ′

T
.

Step 2. Consider an unrestricted version of Equation (2.11), and the regression of excess

returns (rx) on the contemporaneous and lagged factor values (F and F− correspondingly):

rx = ai′T + cF− + β′F + E = θF̃ + E,

where as is a n × 1 vector of intercepts, while βs and cs are n × k1 matrices of the slope

coefficients, F̃ = (i′T , F−, F ) and θ = (a, c, β). First, estimate model parameters with OLS:

θ̂ols = (âols, β̂ols, ĉols) = rxF̃ ′
(
F̃ F̃ ′

)−1

Then run adaptive group lasso, using OLS coefficients to define the weights for the corre-

sponding parameters, i.e. in the vectorised form the estimation looks as follows:

vec(θ̂agl) = argmin
θ∈Q⊂R2nk+n

[
vec(rx)− (F̃ ′ ⊗ In)vec(θ)

]′ [
vec(rx)− (F̃ ′ ⊗ In)vec(θ)

]
(2.15)

+γT

k∑
j=1

wj||(βj, cj)||2,

where (βj, cj) = (βj,1, ..., βj,n, cj,1, ..., cj,n)
′ is the vector of parameters that correspond to

bond returns sensitivities to the current and lagged values of the factor j; ||x||l2 :=
√∑n

i=1 x
2
i

stands for the L2 norm of the vector x, wj =
1

||(β̂ols
j ,ĉolsj )||l2

is the adaptive group lasso weight,

which is inversely proportional to the prior OLS estimate of the parameters.

The intuition for this penalty is simple: if the true parameter value is 0, then its OLS

estimate will be relatively small and, hence, the penalty of adaptive lasso becomes large

enough to additionally shrink it towards 0 even in finite sample. The use of the L2-norm in

the penalty allows for the automatic selection of the groups of variables.
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Adaptive lasso allows us to distinguish between spanned and unspanned factors, since

the true bond loadings on the unspanned factors should be zero for all the maturities. Some

of the columns inside the matrix B∗
agl and c will be exactly zeros, reflecting the unspanned

nature of the corresponding factors, while others will reflect the non-zero correlation between

bond returns and the factors. This structure will be exploited in Step 3 in order to distinguish

the risk premia estimation for the spanned and unspanned variables.

Step 3. For each factor j define the following indicator:

pj = 1

{
n∑
i=1

β̂2
ij = 0

}
, j = 1..k

The “span“ indicator is equal to 1 for those factors, that are estimated to have no covariance

with any of the bond holding returns. At the same time, if there is a non-zero exposure with

at least one of the portfolios, the indicator is equal to zero. This set of variables defines the

weights used in the following ridge regression for the risk premia estimates:

Φ̂∗r = argmin
x1∈Q1×Q2 ⊂Rk×Rk

[
vec(ĉagl)− (Ik ⊗ β̂′

agl)vec(x1)
]′ [

vec(ĉagl)− (Ik ⊗ β̂′
agl)vec(x1)

]
+
∑k

i,j=1max(pi, pj)x
2
1,ij

µ̂∗r = argmin
x0∈Q3⊂Rk

[
vec (âint)− (Ik ⊗ β̂′

agl)x0

]′ [
vec (âint)− (Ik ⊗ β̂′

agl)x0

]
+
∑k

j=1 pjx
2
0,j,

(2.16)

λ̂r1,ij = (1−max(pi, pj))
(
Φ̂i,j − Φ̂∗r

i,j

)
i, j = 1..k,

λ̂r0,j = (1− pi)(µ̂j − µ̂∗r
j ) j = 1..k,

where âint = âagl +
1
2

(
B̂∗
aglvec(Σ̂agl) + σ̂2

agliN

)
are all the standard intercept components

stacked together.

2.5 Intuitive Example

Before I proceed with establishing the asymptotic properties of the adaptive ridge estimator,

it may be helpful to present the intuition behind the final stage of the procedure, the weighted

ridge regression.

For simplicity, consider the case of a standard linear regression, where some of the vari-

ables on the right-hand side are the vectors of zeros, for example, as in the following data

97



2. Term Structure of Interest Rates and Unspanned Factors

generating process, where the last one in the matrix of k regressors is ‘ill-behaved‘:
Y1

Y2
...

Yn

 =


X1

1 X2
1 · · · Xk−1

1 0

X1
2 X2

2 · · · Xk−1
2 0

...
...

. . .
...

...

X1
n X2

n · · · Xk−1
n 0




β1

β2
...

βk

+


ϵ1

ϵ2
...

ϵn

 .

Note, that in such a model only the first (k−1) coefficients are identified, and simply running

an OLS regression of Y on the set of X variables will result in the lack of identification, due

to rank deficiency of the regressors matrix.

Consider, however, adding into the estimation the following ridge penalty:

β̂r = argmin
β∈B∈Rk

(Y −Xβ)′(Y −Xβ) +
k∑
j=1

pjβ
2
j ,

where pj = 1 {
∑n

i=1X
2
i = 0}.

The ridge regression has a very convenient property of being rewritten in terms of the

simple OLS regression in the span of augmented variables. In particular, it can be easily

shown that β̂r are the coefficients in the regression of Y ∗ on X∗, where the latter two are

defined as follows:

Y ∗ =



Y1

Y2
...

Yn

0

0
...

0


(n+k)×1

X∗ =



X1
1 X2

1 · · · Xk−1
1 0

X1
2 X2

2 · · · Xk−1
2 0

...
...

. . .
... 0

X1
n X2

n · · · Xk−1
n 0

p1 0 · · · 0 0

0 p2 · · · 0 0
...

...
. . . pk−1 0

0 0 · · · 0 pk


(n+k)×k

In our particular case pj = 0 for j = 1..k− 1 and pk = 1. Hence, the first k− 1 regressors

are followed by the set of zeros, while the last regressor basically become a dummy variable

for the n + k observation. It is a well-known result from the application of Frisch-Waugh-

Lowell theorem, that in such a regression of Y ∗ on X∗, β̂rk will simply be equal to the value of
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Ynk
, which is 0. At the same time, the other parameter estimates would be exactly the same

as if we were to run a simple OLS regression of Y on the set of first k−1 regressors. In other

words, such weighted ridge regression automatically selects a subset of non-zero regressors

and estimates the model by OLS, using them as the only available non-trivial regressors. At

the same time, the elements of β̂, corresponding to the zero vectors, are set exactly to 0.

Intuitively, this is exactly what happens in the third stage of the risk premia estimation,

if there are unspanned factors in the model, driving the corresponding vectors of βj to 0.

One would also have to be careful when recovering Φ̂∗r, keeping different from zero only

those elements Φ̂∗r
i,j where both i and j correspond to the spanned factors.

2.6 Asymptotic Properties

A model selection procedure does not affect the distribution of the resulting parameter

estimates, if it is consistent and fast enough in the sense that the probability of making an

error and incorrectly classifying the given factors between the spanned and hidden, should

be small relative to the rate of convergence of the risk premia estimates to the true values.

In particular, I am going to show that the probability of adaptive group lasso to correctly

classify all the factors, tends to 1 at an exponential rate, as the sample size increases. This, in

turn, allows me to derive the asymptotic distribution of the associated risk premia estimates

that is not affected by the model selection procedure.

Consider again a simple linear regression model with Y = Xβ + ϵ, where the goal is to

correctly identify which elements on the vector β are qual to 0, and which are not. The

following definition will prove useful when discussing the likelihood of adaptive lasso to

correctly distinguish between the two groups of variables.

Proposition 2.1 Consider an adaptive group lasso estimation as in Equation (2.15). If

γT = γ0T
d s.t. d ∈ (0, 1/2) then vec

(
θ̂agls

)
p→ vec(θs) and vec(θ̂

agl
u )

p→ 0. Further,

√
T

 vec
(
θ̂agls − θs

)
vec
(
θ̂aglu

)  d→

(
Zs

0

)

where θ̂agls =
(
âagl, β̂agls , ĉagls

)
, Zs ∼ N(0,Σθs), and Σθs is the asymptotic variance-covariance

matrix of the parameter estimates, if only the spanned factors were included into the model
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(e.g. as in Step 2 of Adrian, Crump, and Moench (2013)).

Proof. One can observe that while the vectorised regression has NT observations, the

effective rate of convergence is still
√
T , since N is fixed, and hence under the assumptions

of the gaussian factor factor all the standard properties of the adaptive group lasso hold.

In particular, Proposition 2.1 is a direct application of Theorem 3.2 of Nardi and Rinaldo

(2008).

In order to define whether a factor selection procedure correctly classifies a set of given

state variables, I introduce the notion of sign consistency.

Definition 1 Factor selection, imposed by θ̂adl, is sign consistent, θ̂agl =s θ, if and only if

vec(θ̂adlu ) = 0

sign(θ̂adli,j ) = sign(θi,j) ∀ i, j s.t. θi ̸= 0,

where sign(z) = 0 if z = 0, 1 if z > 0 and −1 if z < 0.

Sign consistent factor selection imposes not only correct distinction between spanned and

unspanned factors, setting all the corresponding parameters in the latter case to zero. It

further requires that the sign of the factor exposure (e.g. ci,j and βi,j) is equal to the true

one in case there is a non-zero correlation between the excess return on bond with maturity

i and a proposed factor j. It is important to correctly determine the type of the factor,

since an error in either direction affects the estimation of risk premia. The following result

introduces a lower bound on the probability of achieving sign-consistent factor selection.

Proposition 2.2 If γt = γ0T
d, where d ∈ (0, 1/2), then for T large enough

P

{
θ̂agl =s θ

}
≥ 1− o

(
e−T

d
)

Proof. See Appendix A.1

Proposition 2.2 not only states that as the sample size increases, the probability of

correctly identifying the nature of the factor tends to 1, but that it tends towards it at an

exponential rate.

Sign consistency of the adaptive group lasso is a natural extension of Zhao and Yu

(2006) results on the model selection of the standard lasso estimator. The fundamental
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difference between the required conditions consists in the fact, that the adaptive group lasso

treats model parameters in subsets, and hence, one needs to take into account their joint

distribution and magnitude. Further, penalty weights depend on the prior OLS parameter

estimates, and hence, are essentially random numbers. This calls for a separate evaluation

of their tail behaviour and the corresponding upper/lower bounds.

The main implication of Proposition 2.2 is that the probability of making an error when

classifying the factor into the spanned or hidden group, decays too fast to affect the asymp-

totic distribution of the risk premia. Therefore, embedded factor classification does not affect

recovery of the risk premia and other parameters driving the cross-section of yields in the

model.

Proposition 2.3 Consider risk premia estimates in Equation (2.16). If γt = γ0T
d, then

Φ̂∗r
ss

p→ Φ∗r
ss, Φ̂∗r

su

p→ 0k1×(k−k1), Φ̂∗r
us

p→ 0(k−k1)×k1 , Φ̂∗r
uu

p→ 0(k−k1)×(k−k1)

µ̂∗r
s

p→ µ∗
s, µ̂∗r

s

p→ 0(k−k1)×1

λ̂r1,ss
p→ λss, λ̂r0,s

p→ λr0,s

Further,

√
T



vec(λ̂r1,ss − λ1,ss)

λ̂r0,s − λ0,s

vec(λ̂r1,su − Φsu)

λ̂r1,us

λ̂r1,uu

λ̂r0,u


d→



Zλ1,s

Zλ0,s

Zλ1,su

0(k−k1)×k1

0(k−k1)×(k−k1)

0(k−k1)×1


where Zλ1,s ∼ N(0,Σλ1,s), Zλ0,s ∼ N(0,Σλ0,s) and Zλ1,su ∼ N(0,Σλ1,su) are the oracle

asymptotic distributions of risk premia estimates, corresponding to the ex ante distinction

between spanned and unspanned factors.

Proof. See Appendix A.2

Proposition 2.3 shows that risk premia estimates, produced by ARES approach, have

exactly the same distribution as those derived in Adrian, Crump, and Moench (2013), but

without the ex ante knowledge of which factors should be treated as spanned and which

not. In other words, the factor selection procedure, embedded in the second stage of the

estimation, is accurate enough so that it does not influence risk premia recovery.
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2.7 Data

I consider excess returns on Treasury bonds with the following maturities: 3 months, 6

months, 1 year, 18 months, and 2-10 years, giving a panel of 13 bond yields over the period

January, 1989 - December, 2013. The data on zero coupon yields is from Gurkaynak and

Wright (2007), based on fitting Nelson-Siegel-Svensson curves. I use parameter estimates,

provided by the authors, to recover the yields of the corresponding maturities. I use 1 month

Treasury rate obtained from Kenneth French website as a proxy for the risk-free interest rate.

These yields are then transformed into monthly bond holding excess returns, e.g.:

rx
(n−1)
t+1 = log(1 +R

(n−1)
t+1 )− log(1 +R1

t ) = (n− 1)yn−1
t+1 − nynt − r1t ,

where n = (3, 6, 12, 18, 24, 36, 48, 60, 72, 84, 96, 98, 120) stands for bond maturity, expressed

in months.

I also consider two macroeconomic indicators as potentially unspanned factors in the

model:

• CFNAI, Federal Reserve Bank of Chicago National Activity Index, available from

Chicago Fed website1. The index is a weighted average of 85 different indicators of

economic activity and it is released towards the end of each calendar month. Histor-

ically, the index fluctuations captured real-time expansion and contraction periods in

the economy, as well as those related to higher or lower inflationary pressures, e.g.

Stock and Watson (1999), Fisher (2000), Brave (2009).

• PCE Core, monthly inflation in core personal consumption expenditures. Compared to

the standard CPI changes, this indicator reflects long-term trends in inflation, because

the corresponding basket of goods excludes several components, more subject to high

volatility transitory price shocks, such as food and energy expenses.

2.8 Simulations

In order to assess the finite sample performance of the estimator, I build the following

simulation design intended to capture the standard time series and cross-sectional properties

of the panel of bond yields and their return, as well as the affine term structure consequences.

1https://www.chicagofed.org/research/data/cfnai/current-data
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I consider a panel of 13 excess returns on Treasury bonds with maturities from 3 months

to 10 years during the period of January, 1989 - December 2013. Using the regression-

based approach of Adrian, Crump, and Moench (2013), I estimate a five-factor model that

includes 3 principal components as spanned factors, CFNA index and PCE Core inflation as

the unspanned factors. I use the corresponding risk premia to recover a system of recursive

relationships, describing the link between yields and factors. I then simulate a panel of yields

and excess returns from the multivariate normal distribution, using the sample model-implied

parameter values as a data generating process. In particular, in this design risk premia (λ1)

take the following values:

λ1 =


−0.0171 0.0844 −0.1415 1.4011 0.1229

−0.0071 −0.0195 0.0744 0.1196 0.0754

−0.0018 −0.0001 −0.0773 −0.0265 −0.0279

0 0 0 0 0

0 0 0 0 0


I use the sample sizes of T = 60, 120, 300, 600 that stand for the 5, 10, 25 and 50 years of

monthly observations accordingly. For each simulated path of the cross-section of yields and

returns, I estimate model parameters (factor loadings, risk premia, etc) using 2 methods:

regression-based estimation, specifying ex ante that the macroeconomic factors should be

treated as unspanned, and adaptive ridge estimation that does not require ex ante distinction

between the types of the variables. For each sample size I repeat the procedure 2500 times

and report the summary statistics. Tuning parameters for the adaptive group lasso are

obtained via 10-fold cross-validation.

Table 2.B.1 presents the finite sample bias for the risk premia estimates produced by two

alternative approaches. Even for a relatively small sample size, ARES correctly identified the

two simulated ’macroeconomic’ factors as unspanned with a very high degree of accuracy.

The finite sample sample for both estimators is close to each other, and decreases with the

sample size, as expected. Table 2.B.2 summarises the mean squared error for risk premia

coefficients, obtained by two estimators. As expected, both exhibit very close MSE even for

a relatively small sample of T = 60.

Fig. 2.B.2 demonstrates the quality of model fit for a baseline specification for various

maturities. For most of the bonds, model-implied and historical yields almost perfectly

coincide, corresponding to the R-squared of over 98%. This is a well-known result in the

103



2. Term Structure of Interest Rates and Unspanned Factors

literature, since the first three principal components already summarise most of the variation

in the yields. As a result, an affine model with these variables or similar ones (in terms of

their span) typically generates an almost perfect fit. The only case, when the setting did not

manage to fit the data exactly, were the yields corresponding to relatively short maturities

(up to 2 years), which are notoriously hard to model. The use of ARES in parameter

estimation leads to a nearly identical quality of fit, and hence, the graphs are omitted.

Overall, it is easy to see that the finite sample performance of ARES is extremely close

to that of the estimator relying on the ex ante knowledge of which factor should be treated

as spanned, and which - not. Both the small sample bias and the mean squared error are

close that of the ideal procedure, which indicates that although the model selection stage is

embedded in the parameter estimation, it does not affect the distribution of the parameters

and the accuracy of risk premia recovery. This makes the new setting particularly appropriate

for the cases when in addition to the standard level, slope and curvature factors one would

like to incorporate the impact of macroeconomic (or other) variables, without taking a stand

on how the additional factors should be treated within the affine framework.

2.9 Conclusion

This chapter demonstrated the use of lasso-based techniques for the term structure modelling

and forecast. The main advantage of the new estimator is that it does not require the

knowledge of ex ante distinction between spanned and unspanned factors, and hence, could

be widely applied for the settings that include various macroeconomic indicators. Although

all the results have been derived for the regression-based estimation of the gaussian affine

factor model, they could be generalised to the alternative approaches, i.e. Joslin, Singleton,

and Zhu (2011) or Hamilton and Wu (2012).

There are several potential extensions of the chapter. One of the ways to further improve

estimation efficiency could be to allow for the recovery of within-group sparsity, in case some

(but not all) bond returns have zero exposure to a certain factor. While maintaining the

same structure of the affine model, such estimation and forecast approach could lead to

higher efficiency and robustness due to a more parsimonious nature of the factor loadings.

It would be therefore interesting to see whether asymptotic efficiency gains could lead to

better out-of-sample forecasts.

Another important question is whether lasso-related techniques could help to select the
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macroeconomic factors that help to improve the yield curve forecast. Since shrinkage-based

techniques are particularly effective in large dimensional settings, it seems plausible that one

could adapt existing procedures to be able select the list of useful unspanned factors from

a large set of various macroeconomic indicators. This could not only improve our ability to

forecast the term structure, but also provide additional insights on the leading indicators of

the economic activity and the role of expectations.
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Appendix

2.A Proofs

2.A.1 Model selection by adaptive group lasso

Consider the linear model Yt = Xtβ0 + ϵt and the standard parameter estimation by the adaptive

group lasso:

β̂agl = argmin
b∈B

(Y −Xb)′(Y −Xb) + γT

k∑
j=1

waj ||βj ||2,

where YT is a T × 1 vector of the response, XT is a T × nk matrix of regressors, B is a convex

subset of Rnk, waj = ||β̂j ||−1
l2

, for ∈ R, d > 0, β̂ is a nk× 1 vector of the initial OLS estimates of β0.

W.l.o.g., assume β = (β1, · · · , βk1 , βk1+1, · · · , βk) where βj ̸= 0n for j = 1, · · · , k1 and βj = 0n for

j = k1 + 1, · · · , k. Denote by XT
s and XT

s the first nk1 and last n(k − k1) columns of the matrix

XT . Further, let C
T = 1

TX
′
TXT be block-partitioned as follows:

CT =

(
CTss CTsu

CTus CTuu

)

where CTss =
1
TX

′
sXs, C

T
su = 1

TX
′
sXu, Cus =

1
TX

′
uXs, and C

T
uu = 1

TX
′
uXu respectively.

The following lemmas will be useful when deriving conditions for the estimates sign consistency.

Lemma 2.1 If
√
T
(
β̂ − β

)
d→ N(0,Ωβ̂), then

a) P
{
||β̂j ||l2 ≥ cj

}
≥ 1− o(e−T ) for j = 1...k1,

b) P
{
||β̂j ||l2 ≥ c0T

δ−1
2

}
≤ o(e−T

δ
) for j = k1 + 1, ..., k ,

where c0, c1, ..., ck1 ∈ R are finite constants s.t. 0 < cj < min
i=1..n

{
|βi,j |

∣∣∣βi,j ̸= 0
}
, for j = 1..k1,

c0 > 0 and δ ∈ (0, 1).
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Proof. It is known that for z ∼ N(0, 1) and ∀t > 0 P {z ≥ t} ≡ 1 − Φ(t) < 1
2π

1
t e

−1/2t2 , i.e. the

tail probability of a normally distributed random variable has as exponential upper bound.

a) P
{
||β̂j ||l2 ≥ cj

}
≥ P

{√∑n
i=1

βi ̸=0

β̂2i,j ≥ cj

}
≥ P

{
max

i=1..n,βi,j ̸=0
|β̂i,j | ≥ cj

}
= 1−

∑n
i=1

βi,j ̸=0

P

{
|β̂i,j | ≤ cj

}
Consider the case of βi,j > 0 for some i = 1..n (the case of βi,j < 0 is proved in a similar

way). Let √
T (β̂i,j − βi,j)

d→ zi,j ∼ N(0, Vi,j),

where Vi,j ≤M <∞, M ∈ R+. Hence, for large enough T :

P

{
|β̂i,j | ≤ c1

}
= (1 + o(1))P

{∣∣∣βi,j + zi,j√
T

∣∣∣ ≤ cj

}
= (1 + o(1))P

{
2βi,j − cj ≤ βi,j +

zi,j√
T
≤ 2βi,j + cj

}
=

(1 + o(1))P
{√

T (βi,j − cj) ≤ zi,j ≤
√
T (βi,j + c1)

}
≤ (1 + o(1))P

{
zi,j√
Vi,j

≥
√
T (βi,j − cj)

M

}

≤ (1 + o(1))

(
1− Φ

(√
T (βi,j − cj)

M

))
= o(e−T )

The same result holds for all the other elements of β̂j s.t. βi,j ̸= 0. Hence, the desired

inequality follows.

b) First, note that

P

{
||β̂j ||l2 ≥ c0T

δ−1
2

}
≤ P

{√
nmax
i=1..n

|β̂i,j | ≥ c0T
δ−1
2

}
≤

n∑
i=1

P

{
|β̂i,j | ≥

c0√
n
T

δ−1
2

}

Consider any β̂i,j = 0, j = k1 + 1...k, i = 1..n s.t.
√
T (β̂i,j − βi,j)

d→ zi,j ∼ N(0, Vi,j), where

Vi,j ≤M <∞, M ∈ R+. Again, due to the properties of the normal distribution,

P

{
|β̂i,j | ≥ c0√

n
T

δ−1
2

}
= (1 + o(1))P

{∣∣∣ zi,j√
T

∣∣∣ ≥ c0√
n
T

δ−1
2

}
≤ (1 + o(1))

(
1− Φ

(
c0/

√
nT

δ
2

M

))
= o

(
e−T

δ
)

Lemma 2.2 β̂agl is the solution to the adaptive lasso problem if and only if

d(Y−Xβ)′(Y−Xβ)
dβi,j

∣∣∣∣
β=β̂agl

= −γTwaj
β̂i,j

||β̂j ||l2
for j s.t. β̂agl,i,j ̸= 0

d(Y−Xβ)′(YT−XT β)
dbj

∣∣∣∣
β=β̂agl

≤ γTw
a
j for j s.t. β̂agl,i,j = 0

(2.17)
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Proof. This is a direct application of Karush-Kuhn-Tucker conditions.

Lemma 2.3 The lower bound on the probability of sign consistent adaptive group lasso estimates

is given by the following:

P

{
β̂al =s β

}
≥ P {Ss ∩ Su}

where

Ss =

{
vecinv

[
|
(
CTss
)−1

ZTs |
]
i,j
<

√
T

(
|βi,j | − γT

T vecinv
[∣∣∣(CTss)−1

Ws

∣∣∣]
i,j

)}
, for j = 1...k1, i = 1..n, s.t. βi,j ̸= 0,

Su =

{∣∣∣CTus (CTss)−1
ZTs − ZTu

∣∣∣ < γT

2
√
T

[
Wu −

∣∣∣CTus (CTss)−1
Ws

∣∣∣]} ,
where ZTs = 1√

T
X ′

1ϵ and ZTu = 1√
T
X ′

2ϵ. Ws = vec(w1, ...wk1), vecinv : Rnk1×1 → Rn×k1 is the

inverse vectorisation operator, and Wu = vec(wk1+1, .., wk) are nk1 × 1 and n(k − k1) × 1 vectors

of weights wj ∈ Rn defined below.

Proof. Condition S1 states that the groups of the coefficients with at least some non-zero parame-

ters in them are retained in the model. Further, the signs on the non-zero elements in such groups

are correctly recovered. Conditional on Ss, Su further implies that the groups of coefficients, where

all the true values of betas are equal to zero, are correctly identified and set exactly to 0 in sample.

To see this, it is illustrative to rewrite the problem in the centred variables.

Let û = β̂al − β. Since Yt = Xtβ + ϵt, the original problem is equivalent to the following:

û = argmin
u∈U

(ϵ−Xu)′ (ϵ−Xu) + γT

k∑
j=1

waj ||βj + uj ||l2 =

argmin
u∈U

− 2
X ′ϵ√
T

(√
Tu
)
+
(√

Tu
)′ X ′X

T

(√
Tu
)
+ γT

k∑
j=1

waj ||βj + uj ||l2 =

argmin
u∈U

− 2ZT

(√
Tu
)
+
(√

Tu
)′
CT

(√
Tu
)
+ γT

k∑
j=1

waj ||βj + uj ||l2

Note that if the optimal û = (u′s, u
′
u)

′, where us is a k1×1 vector, satisfies the following conditions,

it will be automatically sign consistent:
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2. Term Structure of Interest Rates and Unspanned Factors

Css

(√
T û1

)
− ZTs = − γT√

T
Ws

∀j = 1 . . . k1 and i = 1 . . . n s.t. βi,j ̸= 0, |ûi,j | < |βi,j |∣∣∣Cus (√T û1)− ZTu

∣∣∣ ≤ γT√
T
Wu

where Ws = vec(w1, . . . wk1) ∈ Rnk1 , s.t. ∀j ∈ [1, k1] wj =
wa

j β̂
agl
j

||β̂adl
j ||l2

is a n × 1 vector of weights,

associated with group j, and Wu = vec(wk1+1, . . . wk) ∈ Rn(k−k1), s.t. ∀j ∈ [k1 + 1, k] wj = waj are

adaptive group lasso weights.

These conditions should hold element by element and imply that groupwise β̂j ̸= 0n for those

cases, where there is at least one non-zero component. Condition |ui,j | < |βi,j | further guarantees
that the signs of these non-zero components are correctly recovered. At the same time, when all

the true value of betas in the group are zeros, the penalty of the adaptive group lasso becomes

non-differentiable, and the corresponding parameter estimates are jointly set exactly to zero. It is

easy to see that the existence of such û follows from the structure of the FOC for the solution (see

Lemma 2.2), the constraints imposed in S1, S2 and the minimizer uniqueness.

Proof of Proposition 2.2. By Bonferroni inequality, it follows from Lemma 3 that

P

{
β̂al =s β

}
≥ 1−P {Scs} −P {Scu} ,

where

Ss =

{
vecinv

[
|
(
CTss
)−1

ZTs |
]
i,j

≥
√
T

(
|βi,j | − γT

T vecinv
[∣∣∣(CTss)−1

Ws

∣∣∣]
i,j

)}
, for j = 1...k1, i = 1..n, s.t. βi,j ̸= 0,

Sc2 =

{∣∣∣CTus (CTss)−1
ZTs − ZTu

∣∣∣ ≥ γT

2
√
T

[
Wu −

∣∣∣CTus (CTss)−1
Ws

∣∣∣]}
describe the set of events complementary to Ss and Su. It is left to demonstrate that P {Scs} ≤
o(e−T

d
) and P {Scu} ≤ o(e−T

d
).

Note that under the conditions of the gaussian factor model, vec(QTs ) = (CTss)
−1ZTs

d→ Q ∼
N(0, Vq), vec(Q

T
s ) = vec(qT1 , ..., q

T
k1
) and vec(Q̃T ) = vec(q̃Tk1+1, ..., q̃

T
k ) = (CTss)

−1ZTs − ZTu
d→ Q̃ ∼

N(0, Ṽq), where Vq and Ṽq are variance-covariance matrices such that ∃ M2 ∈ R+, M2 < ∞, s.t.

Vi,j ≤M2, j = 1× k1, i = 1× n and Ṽqi, j ≤M2, j = k1 + 1× k, i = 1× n.

By Proposition 2.1,
√
T
(
β̂agls − βs

)
d→ Z̃, where Z̃ ∼ N(0, Vs) with bounded Vs. Further, Since

for j = 1 × k1 wj = waj β̂
agl
j /||β̂adlj ||l2 , where waj = ||β̂olsj ||−1

l2
. Hence, following the arguments in
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Lemma 2.1, the following is true for T large enough,

P

{
||β̂adlj ||l2 ≥ cj

}
≥ 1− o(e−T )

P

{
|β̂agli,j | ≥ cj

}
≥ 1− o(e−T ) ∀i = 1..n s.t. βi,j ̸= 0,

P
{
waj ≤ 1/cj

}
≥ 1− o(e−T )

P

{
|wj | ≤

|βj |+ c0T
δ−1
2

c2j

}
≥ 1− o(e−T

δ
)

where 0 < cj ≤ min
i=1..n

{
|βi,j |

∣∣∣βi,j ̸= 0
}
, c0 > 0 and δ ∈ (0, 1).

Hence, for b = (b1, ..., bk1) = vecinv(|CTssWs|), b ∈ Rn×k1 , ∃ 0 < M2 < ∞, c ∈ (0,M2) and

c̄ ∈ (0,M2) s.t. P
{
bi,j ≤ c+ c̄T

δ−1
2

}
≥ 1− o(e−T

δ
).

Therefore, since γT = o
(√

T
)

P {Scs} ≤
k1∑
j=1

n∑
i=1

βi,j ̸=0

P

{∣∣qTi,j∣∣ ≥ √
T
(
|βi,j | −

γT
T
bi,j

)}

≤
∑k1

j=1

∑n
i=1

βi,j ̸=0

[
P

{∣∣∣qTi,j∣∣∣ ≥ √
T
(
|βi,j | − γT

T bi,j
) ∣∣∣∣∣bi,j ≤ c+ c̄T

δ−1
2

}
P

{
bi,j ≤ c+ c̄T

δ−1
2

}
+P

{
bi,j ≥ c+ c̄T

δ−1
2

}]

≤
k1∑
j=1

n∑
i=1

βi,j ̸=0

[
P

{∣∣z̃Tj ∣∣ ≥ √
T
(
|βj | −

γT
T

(
c+ c̄T

δ−1
2

))}
+ o(e−T

δ
)
]

≤ (1 + o(1))

k1∑
j=1

n∑
i=1

βi,j ̸=0

[
1− Φ

(
(1 + o(1)

1

M2

√
Tβj)

)
+ o

(
e−T

δ
)]

= o
(
e−T

δ
)

Similarly, for b̃ = (b̃k1+1, ..., b̃k) = vecinv(|CTusCTssWs|), b ∈ Rn×(k−k1), ∃ 0 < M3 < ∞, g ∈
(0,M3) and ḡ ∈ (0,M3) s.t. P

{
bi,j ≤ g + ḡT

δ−1
2

}
≥ 1 − o(e−T

δ
). Further, by Lemma 2.1, for

j = (k1 + 1)...k, P
{
waj ≥ c0T

1−δ
2

}
≥ 1 − o(e)−T

δ
for δ ∈ (0, 2d). Therefore, since γT = γ0T

d, for

T large enough

110



2. Term Structure of Interest Rates and Unspanned Factors

P {Scu} ≤
k∑

j=k1+1

n∑
i=1

P

{
|q̃Ti,j | ≥

γT√
T

(
waj − b̃i,j

)}

≤
k∑

j=k1+1

n∑
i=1

P

{
|q̃Ti,j | ≥

γT√
T

(
waj − b̃i,j

) ∣∣∣∣∣waj ≥ c−1
0 T

1−δ
2 , b̃i,j ≤ g + ḡT

δ−1
2

}
×

× P

{
waj ≥ c−1

0 T
1−δ
2 , b̃i,j ≤ g + ḡT

δ−1
2

}
+

k∑
j=k1+1

n∑
i=1

[
P

{
waj ≤ c−1

0 T
1−δ
2

}
+P

{
b̃i,j ≥ g + ḡT

δ−1
2

}]

≤
k∑

j=k1+1

n∑
i=1

P

{
|q̃Ti,j | ≥

γT√
T

(
c−1
o T

1−δ
2 − g + ḡT

δ−1
2

)}
+ o

(
e−T

δ
)

≤ (1 + o(1))

k∑
j=k1+1

n∑
i=1

(
1− Φ

(
(1 + o(1))

1

c0M3
T d−δ/2

))
+ o

(
e−T

δ
)
= o

(
e−T

min(δ,2d−δ)
)

Finally, it is easy to see that for ∀d ∈ (0, 1/2), min
δ∈(0,2d)

(δ,min(2d− δ, δ)) is obtained when δ = d.

Therefore,

P

{
β̂agl =s β

}
≥ 1− o(e−T

d
),

that is as the sample size increases, the probability of getting sign-consistent estimates from the

adaptive group lasso approaches 1 at an exponential rate.

2.A.2 Adaptive Ridge Estimation

For notational ease, I sketch the proof for a simplified model, however, all the results go through

for the setting in 2.16.

Consider the case of a linear model, where some of the regressors are vectors of zeros (which

corresponds to the case of an unspanned factor, having zero covariance with the portfolio returns,

and hence, zero columns in place βj and cj for some j = k1, .., k). One approach to estimate

such a model (the oracle one), would be to identify such factors ex ante and estimate the model

parameters, using only the subset of regressors:

λ̂or = (X̂ ′
sX̂s)

−1X̂ ′
sŶs

where Ŷs and vec(X̂s) are n× 1 and nk1 × 1 vectors of random variables, s.t. vec(X̂s)
p→
T
vec(Xs),

Ŷs
p→
T
Ys, where

p→
T

stands for convergence in probability when T → ∞, and
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2. Term Structure of Interest Rates and Unspanned Factors

√
T

(
vec(X̂s −Xs)

Ŷs − Ys

)
d→ Z, Z =

(
Zx

Zy

)
∼ N

([
0

0

]
,

[
Σx Σxy

Σ′
xy Σy

])
This is exactly the setting of Adrian, Crump, and Moench (2013), where factor exposures are
√
T -consistently estimated and jointly follow an asymptotically normal distribution with the corre-

sponding variance-covariance matrix. Note, that if Xs is full rank, then λ̂
p→
T
λ0,s = [X ′

sXs]
−1X ′

sYs

and √
T (λ̂or − λ0,s)

d→ (X ′
sXs)

−1
√
T
[
X̂sŶs − X̂ ′

sX̂sλ0,s

]
= Zλ,

After some manipulation one can also show that

Zλ = (X ′
sXs)

−1
[
X ′
sZy + [vecinv(Zx)]

′(Ys −Xsλ0,s)−X ′
svecinv(Zx)λ0,s

]
Further, Zλ ∼ N(0,Σλ0), where Σλ = V ar(Zλ). The variance of the resulting estimator comes

from the following components (and interaction between them):

• (X ′
sXs)

−1X ′
sZy, the usual variation in Ŷ , which plays a role similar to the disturbance term

in the classical linear regression.

• (X ′
sXs)

−1X ′
svecinv(Zx)λ0,s, the error-in-variables problem, stemming from the fact that X̂

is observed only with an error. The origin of this component is similar to that of Shanken

(1992) correction, arising in the cross-sectional Fama-MacBeth regressions.

• (X ′
sXs)

−1[vecinv(Zx)]
′(Ys −Xsλ0,s), coming from the fact that the original relationship be-

tween Ys, Xs and λ0 might not hold exactly. If the equality is exact (e.g. as in restrictions

2.12, this term disappears.

An alternative approach is to follow an adaptive group lasso estimation, followed by a ridge

regression, introduced in Equation (2.16):

λ̂r = argmin
λ∈B⊂Rk

(Ŷ agl
s − X̂adlλ)′(Ŷ agl

s − X̂adlλ) +

k∑
i=1

piλ
2
i (2.18)

where Ŷ adl and X̂adl are adaptive group lasso parameter estimates s.t. s.t. X = [Xs, Xu], Xu =

0n×(k−k1), vec(X̂
adl
s )

p→
T
Xs, vec(X̂

adl
u )

p→
T

0n×(k−k1), Ŷ
adl p→

T
Ys, pi = 1 {Xi = 0n} and

√
T

 vec(X̂adl
s −Xs)

Ŷ adl
s − Ys

vec(X̂adl
u )

 d→

(
Z

0

)
, Z =

(
Zx

Zy

)
∼ N

([
0

0

]
,

[
Σx Σxy

Σ′
xy Σy

])
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Note that by Proposition 2.2, pi
p→
T

0 for i = 1..k1 and pi
p→
T

1 for i = (k1 + 1)...k. Therefore,

(Ŷ agl
s − X̂adlλ)′(Ŷ agl

s − X̂adlλ) +

k∑
i=1

piλ
2
i

p→
T

(Ys −Xsλs)
′(Ys −Xsλs) +

k∑
i=k1+1

λ2i (2.19)

This is a strictly convex function of λ, therefore by convexity lemma of Pollard (1991),

λ̂r =

(
λ̂rs

λ̂ru

)
p→
T

λ0 =

(
λ0,s

0(k−k1)×1

)

The asymptotic normality of the estimator follows from noting that the problem in Equation (2.18)

can be written as follows:

ûr = argmin
u∈B⊂Rk

T

[(
λ0 +

u√
T

)′
X̂adl′X̂adl

(
λ0 +

u√
T

)
− 2

(
λ0 +

u√
T

)′
X̂adl′Ŷ adl +

∑k
i=1 pi

(
λ0,i +

ui√
T

)2
−λ′0X̂adl′X̂adlλ0 + 2λ′0X̂

adl′Ŷ adl −
k∑
i=1

piλ
2
0,i

]
(2.20)

= argmin
u∈B⊂Rk

u′X̂adl′X̂adlu− 2u′
√
T
(
X̂adlŶ adl − X̂adl′X̂adlλ0

)
+ T

k∑
i=1

pi

[(
λ0,i +

ui√
T

)2

− λ20,i

]
,

where u =
√
T (λ− λ0). Note, that by Proposition 2.2:

a) Tpi

[(
λ0,i +

ui√
T

)2
− λ20,i

]
p→ 0 for i = 1..k1, and

b) Tpi

(
λ0,i +

ui√
T

)2 p→
T
u2i for i = (k1 + 1)..k.

Further, note that

(
X̂adl′
s X̂adl

s X̂adl′
s X̂adl

u

X̂adl′
u X̂adl

s X̂adl′
u X̂adl

u

)
p→

(
X ′
sXs 0k1×(k−k1)

0(k−k1)×k1 0(k−k1)×(k−k1)

)
√
T
(
X̂adlŶ adl − X̂adl′X̂adlλ0

)
=

√
T
(
X̂adl′(Ŷ adl − Y ) + X̂adl′Y − X̂adl′X̂adlλ0

)
(2.21)

= X̂adl′√T (Ŷ adl − Y ) +
√
T (X̂adl −X)′(Y −Xλ0) +

√
TX ′(Y −Xλ0)−X ′√T (X̂adl −X)λ0

d→

(
X ′
sZy + [vecinvZx]

′ (Ys −Xsλ0)−X ′
svecinv(Zx)λ0,s

0(k−k1)×1

)

Therefore,
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(
ûrs

ûru

)
d→

(
(X ′

sXs)
−1
[
X ′
sZy + (vecinvZx)

′ (Ys −Xsλ0)−X ′
svecinv(Zx)λ0,s

]
0(k−k1)×1

)

Proposition 2.3 immediately follows, if one notices that controlling for the effective sample size,

the setting described above is the exact analogue of the ridge regression in Equation (2.16). The

only distinction arises when recovering λ1,ss, where in addition to the setting above, adaptive group

lasso is also applied to the corresponding components of Ŷ , before it is vectorised:

√
T


vec(X̂adl

s −Xs)

vec(Ŷ adl
s − Ys)

vec(X̂adl
u )

vec(Ŷ adl
u )

 d→


Zx

Zy

0n(k−k1)×1

0n(k−k1)×1

 , Z =

(
Zx

Zy

)
∼ N

([
0

0

]
,

[
Σx Σxy

Σ′
xy Σy

])

Indicator (1−pi)(1−pj) is therefore used to identify the k1×k1 submatrix of risk premia, correspond-

ing to the spanned factors, similar to the way pi was used to eliminate the impact of unspanned

variables in Equation (2.19). After vectorisation, one can derive the asymptotic distribution of λ̂r,

following the same dimension reduction techniques outlined in Equations (2.19 – 2.21).

2.B Graphs and Tables
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Figure 2.B.1: Typical model-implied and historical yields.
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2. Term Structure of Interest Rates and Unspanned Factors

Figure 3.B.1: Typical model-implied and historical yields. (Cont.)
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Note. The graphs present fitted and historical yields of Treasuries with various maturities, using the monthly
observations for the time period of 1989:01-2013:12. The yields are fitted using 3 principal components, PCE
Core inflation and CFNA index as factors; risk premia and other parameters are estimated following the
regression-based approach of Adrian, Crump, and Moench (2013).
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2. Term Structure of Interest Rates and Unspanned Factors

Table 2.B.1: Average bias of the risk premia estimates

Panel A: T=60
ACM (2013) ARES

-0.0742 0.0859 0.0823 -0.1235 -0.0069 -0.0751 0.0879 0.0678 -0.1235 -0.0069
0.017 -0.1046 0.0091 0.0031 0.0016 0.0169 -0.1044 0.0118 0.0031 0.0016
0.0085 0.0137 -0.0999 -0.0068 -0.0013 0.009 0.0157 -0.0912 -0.0068 -0.0013

0 0 0 0 0 -0.0024 0.0032 -0.013 0.0136 0
0 0 0 0 0 -0.0051 0.0076 -0.004 0.0004 0.0002

Panel B: T=120
ACM (2013) ARES

-0.0296 0.0395 0.0661 -0.0547 0.0004 -0.0304 0.0417 0.0533 -0.0547 0.0004
0.007 -0.0471 -0.0033 -0.0306 0.0012 0.007 -0.0472 0.0016 -0.0305 0.0012
0.004 0.007 -0.048 -0.0015 -0.001 0.0041 0.0079 -0.0406 -0.0015 -0.001
0 0 0 0 0 0 0.0001 -0.0002 -0.0004 0
0 0 0 0 0 0 0 0 0 0

Panel C: T=300
ACM (2013) ARES

-0.011 0.0132 0.0185 -0.039 0.0011 -0.0117 0.0154 0.0065 -0.039 0.0011
0.0026 -0.0156 -0.0052 0.0136 0.0002 0.0027 -0.0161 0.0014 0.0136 0.0002
0.0015 0.0026 -0.0162 0.008 -0.0014 0.0015 0.0029 -0.0094 0.008 -0.0014

0 0 0 0 0 0 0 0 0.0002 0
0 0 0 0 0 0 0 0 0 0

Panel D: T=600
ACM (2013) ARES

-0.0051 0.0073 0.0033 0.001 0.0003 -0.0057 0.0094 -0.0081 0.001 0.0003
0.0013 -0.007 -0.001 -0.008 0.0005 0.0014 -0.0077 0.0064 -0.008 0.0005
0.0008 0.001 -0.0066 -0.003 -0.0005 0.0007 0.0011 0.0001 -0.003 -0.0005

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Note. The table documents average bias in risk premia estimates produced by the regression-based approach

of Adrian, Crump, and Moench (2013) and ARES, based on 2500 simulations of affine model described in

Section 2.8 that includes 3 principal components and 2 unspanned factors. The data-generating process can

include 60, 120, 300 or 600 monthly observations.

117



2. Term Structure of Interest Rates and Unspanned Factors

Table 2.B.2: Mean Squared Error (MSE) of the risk premia estimates

Panel A: T=60
ACM (2013) ARES

0.0786 0.2122 0.5792 2.6107 0.1803 0.079 0.2151 0.5874 2.6107 0.1803
0.0347 0.0972 0.2673 1.1578 0.0818 0.0354 0.0984 0.2739 1.1578 0.0818
0.0137 0.0408 0.1186 0.5259 0.0364 0.0143 0.0427 0.1211 0.5259 0.0364

0 0 0 0 0 0.1211 0.1338 0.4341 0.7789 0.0017
0 0 0 0 0 0.2532 0.3821 0.2009 0.0183 0.0104

Panel B: T=120
ACM (2013) ARES

0.0329 0.1054 0.3432 1.8487 0.1163 0.0331 0.1071 0.3483 1.8487 0.1163
0.0144 0.0464 0.1551 0.7993 0.0527 0.0146 0.0469 0.1589 0.7993 0.0527
0.0064 0.0211 0.0717 0.3708 0.0235 0.0066 0.0217 0.0729 0.3708 0.0235

0 0 0 0 0 0.001 0.0046 0.0119 0.076 0.0003
0 0 0 0 0 0 0 0 0 0

Panel C: T=300
ACM (2013) ARES

0.0134 0.0468 0.184 1.1428 0.0679 0.0134 0.0475 0.1868 1.1428 0.0679
0.0056 0.0211 0.0821 0.505 0.0293 0.0056 0.0213 0.0838 0.505 0.0293
0.0025 0.009 0.0383 0.2264 0.014 0.0025 0.0092 0.0387 0.2264 0.014

0 0 0 0 0 0 0.0001 0.0002 0.0109 0
0 0 0 0 0 0 0 0 0 0

Panel D: T=600
ACM (2013) ARES

0.0071 0.0272 0.1276 0.8191 0.0471 0.0071 0.0276 0.1294 0.8191 0.0471
0.0032 0.0124 0.0578 0.351 0.0211 0.0032 0.0125 0.0589 0.351 0.0211
0.0014 0.0055 0.0265 0.1595 0.0095 0.0014 0.0056 0.0268 0.1595 0.0095

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Note. The table documents average Mean Squared Error of the risk premia estimates produced by the

regression-based approach of Adrian, Crump, and Moench (2013) and ARES. Results are based on 2500

simulations of the affine model described in Section 2.8 that includes 3 principal components and 2 unspanned

factors. The data-generating process can include 60, 120, 300 or 600 monthly observations.
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Chapter 3

Consumption Risk of Bonds and

Stocks

3.1 Introduction

The central insight of consumption based macro-finance models is that equilibrium prices

of financial assets should be determined by their equilibrium risk to households’ marginal

utilities and, in particular, current and future marginal utilities of consumption: agents

are expected to demand a premium for holding assets that are more likely to yield low

returns when the marginal utility of consumption is high i.e. when consumption (current and

expected) is low. Nevertheless, in the data the contemporaneous covariance of asset returns

and consumption growth is small and not disperse cross-sectionally, making it challenging

to rationalised both average risk premia (e.g., Mehra and Prescott (1985), Weil (1989)) and

their wide cross-sectional dispersion (e.g., Hansen and Singleton (1983), Mankiw and Shapiro

(1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996)).1

In this chapter, we document that consumption growth reacts slowly, but significantly,

to bond and stock returns common innovations. These slow consumption adjustment shocks

account for about a quarter of the time series variation of aggregate consumption growth,

and its innovations explain most of the time series variation of stock returns (on average

about 79%), and a significant, but small, share of the time series variation of bond returns,

1Recently, Julliard and Ghosh (2012) show that pricing kernels based on consumption growth alone
cannot explain either the equity premium puzzle, or the cross-section of asset returns, even after taking into
account the possibility of rare disasters.
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3. Consumption Risk of Bonds and Stocks

and generate substantial predictability for future consumption growth.

Since consumption responds with a lag to changes in wealth, the contemporaneous co-

variance of consumption and wealth understates and mismeasures the true risk of an as-

set, rendering empirically measured risk premia hard to rationalise. On the contrary, slow

consumption adjustment (SCA) risk, measured by the cumulated response of consumption

growth to asset return innovations, can jointly explain the average term structure of interest

rates and the cross-section of a broad set of stock returns (including industry portfolios and

Fama-French size and book to market portfolio).

To assess the role of SCA risk in a robust manner, and using post-war data on a large cross

section of both stock and US treasury returns, we perform our empirical analysis following

two very different approaches and identification strategies.

First, we consider a flexible parametric setting in which consumption growth is mod-

elled as being the sum of two independent processes: a (potentially, since parameters are

estimated) long memory moving average component that (potentially) co-moves with as-

set returns and a transitory component orthogonal to financial assets. Innovations to asset

return are in turn modelled as depending (potentially) on the long memory component of

consumption plus an orthogonal component.

Empirically, we find that: a) consumption reacts very slowly (i.e. over a period of two

to four years), but significantly, to asset returns innovations, and these innovations account

for about 27% of the time series variation of consumption growth; b) returns on portfolios

of stocks load significantly on the SCA component, with a pattern that closely mimics the

value and size pricing anomalies, and this component tends to explain between 36% and 95%

of their time series variation; c) returns on US treasury bonds load significantly on the SCA

component, with loadings increasing with the time to maturity, but this component explains

no more than 3.5% of their time series variations (an additional latent variable, independent

from both consumption and stock returns, seems to drive most of the time series variation

of bonds); e) SCA risk, measured as the loading of asset returns on the SCA component,

can explain between 57% and 90% of the joint cross-section of stocks and bond returns.1

Second, not to take an ex-ante stand on a parametric model of consumption dynamics, we

consider a broad class of consumption-based equilibrium models (see, e.g., Ghosh, Julliard,

1In our baseline specification we consider a cross section of 46 asset given by 12 industry portfolios,
25 size and book-to-market portfolios, and 9 bond portfolio, but the results appear robust to alternative
specifications.
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and Taylor (2013)) in which the stochastic discount factor can be factorized into a component

that depends on consumption growth and an additional, model specific, component. In

this setting, following Parker and Julliard (2005), we show that a pricing kernel can be

constructed by measuring asset risk via the covariance between an asset return and the

change in marginal utility over several quarters following the return. Using this measure, we

demonstrate that the SCA risk is priced in the cross-section of bond holding returns, as well

as the joint cross-section of stocks and bonds. Moreover, we show that the slow consumption

adjustment risk creates a ‘fanning out’ pattern in consumption betas, leading to both more

pronounced and dispersed covariance with the stochastic discount factor. As a result, the

model captures 85% of the cross-sectional variation in bonds returns, and 37-94% of the joint

cross-sectional variation in stocks and bonds.

Interestingly, our findings are consistent (both qualitatively and quantitatively) with the

consumption dynamics postulated by the Long Run Risk (LRR) literature (see e.g. Bansal

and Yaron (2004), Hansen, Heaton, Lee, and Roussanov (2007), Bansal, Kiku, and Yaron

(2012)), but are also supportive of a broader class of consumption based asset pricing models.

Our analysis builds upon the finding of Parker and Julliard (2005) that consumption risk

measured by the covariance of an assets return and consumption growth cumulated over

many quarters following the return – that is, measured as slow consumption adjustment

risk – can explain a large fraction of the variation in average returns across the 25 Fama-

French portfolios and, more broadly, on the empirical evidence linking slow movements in

consumption and asset returns (see, e.g., Daniel and Marshall (1997), Bansal, Dittmar, and

Lundblad (2005), Jagannathan and Wang (2007), Hansen, Heaton, and Li (2008), Malloy,

Moskowitz, and Vissing-Jorgensen (2009)). We expand upon this framework by both i)

identifying the SCA risk component from, and quantifying its relevance for, the time series

properties of consumption and asset returns, and ii) by showing that this component can

price jointly different classes of assets and tends to act as a driving factor of the term

structure of interest rates. We also show that an additional, non-spanned (i.e. that does

not seem to require a risk premium), factor is also required to rationalise the time series

behaviour of bonds, and that this factor tends to behave as a slope type component.1

More broadly, our work is connected to the large literature on the co-pricing of stocks

1This last finding is consistent with Chernov and Mueller (2012) that identify an unspanned latent factor
driving in bond yields.
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and bonds.1 In particular, our focus on the role of macroeconomic risk is related to a series

of works that combine the affine asset pricing framework with a parsimonious mix of macro

variables and bond factors for the joint pricing of bonds and stocks. In particular: Bekaert

and Grenadier (1999) and Bekaert, Engstrom, and Grenadier (2010), that presents a linear

model for the simultaneous pricing of stock and bond returns that jointly accommodate the

mean and volatility of equity and long term bond risk premia; Brennan, Wang, and Xia

(2004), that assumes that the investment opportunity set is completely described by two

state variables given by the real interest rate and the maximum Sharpe ratio, and the state

variables (estimated using US Treasury bond yields and inflation data) are shown to be

related to the equity premium, the dividend yield, and the Fama-French size and book-to-

market portfolios; Lettau and Wachter (2011), that focus on matching an upward sloping

bond yield term structure and a downward sloping equity yield curve via an affine model

that incorporates persistent shocks to the aggregate dividend, inflation, risk-free rate, and

price of risk processes; Koijen, Lustig, and Nieuwerburgh (2010), that develops an affine

model in which three factors –the level of interest rates, the Cochrane and Piazzesi (2005)

factor,2 and the dividend-price ratio– have explanatory power for the cross-section of bonds

and stock returns, while the latter two factors have explanatory power for the time series of

these assets; Ang and Ulrich (2012), that considers an affine model in which returns to bonds

(real and nominal) and stocks, are decomposed into five components meant to capture the

real short rate dynamics as well as term premium, inflation related components (a nominal

premium, an expected inflation as well as an inflation risk component) as well as a real cash

flow risk element.

The reminder of the chapter is organized as follows. Section 3.2 formally defines the

concept of slow consumption adjustment risk in a broad class of consumption based asset

pricing models. Sections 3.3 presents the econometric methodology, while a description of

the data is reported in Section 3.4. Our empirical findings are reported in Section 3.5 while

Section 3.6 concludes. Additional methodological details, as well as robustness checks and

1E.g.: Fama and French (1993) expands the original set of Fama and French (1992) stock market factors
(meant to capture the overall market return, as well as the value and the size premia), with two bond factors
(the excess return on a long bond and a default spread), meant to capture term and default premia; Ma-
maysky (2002) built upon the affine term structure framework canonically used in term structure modelling
(see, e.g., Duffie and Kan (1996a)) by adding affine dividend yields to help pricing jointly bonds and stocks.

2Cochrane and Piazzesi (2005) find that a single factor (a single tent-shaped linear combination of forward
rates), predicts excess returns on one- to five-year maturity bonds. This factor tends to be high in recessions,
but forecasts future expansion, i.e. this factor seems to incorporate good news about future consumption.

122



3. Consumption Risk of Bonds and Stocks

additional empirical evidence, are reported in the Appendix.

3.2 The Slow Consumption Adjustment Risk of Asset

Returns

Representative agent based consumption asset pricing models with either CRRA, Epstein

and Zin (1989), or habit based preferences, as well as several models of complementary in

the utility function, and models with either departures from rational expectations, or robust

control, or ambiguity aversion, and even some models with solvency constraints,1 all imply

a consumption Euler equation of the form

C−ϕ
t = Et

[
C−ϕ
t+1ψ̃t+1Rj,t+1

]
(3.1)

for any gross asset return j including the risk free rate Rf
t+1, and where Et is the rational

expectation operator conditional on information up to time t, Ct denotes flow consumption,

ψ̃t+1 depends on the particular form of preferences (and expectation formation mechanism)

considered, and the ϕ parameter is a function of the underlying preference parameters.2

Rearranging terms, moving to unconditional expectations, and using the definition of co-

variance, we can rewrite the above equation as a model of expected returns

E
[
Re
t+1

]
= −

Cov
(
Mt+1;R

e
t+1

)
E [Mt+1]

. (3.2)

whereMt+1 := (Ct+1/Ct)
−ϕ ψ̃t+1 represents the stochastic discount factor between time t and

t+1 and Re ∈ RN denotes a vector of excess returns. Log-linearizing the above relationship,

expected returns can be expressed as

E
[
Re
t+1

]
=
[
ϕCov

(
∆ct,t+1; r

e
t+1

)
− Cov

(
log ψ̃t+1; r

e
t+1

)]
λ (3.3)

1See, e.g.: Bansal and Yaron (2004); Abel (1990), Campbell and Cochrane (1999), Constantinides (1990),
Menzly, Santos, and Veronesi (2004); Piazzesi, Schneider, and Tuzel (2007), Yogo (2006); Basak and Yan
(2010), Hansen and Sargent (2010); Chetty and Szeidl (2015); Ulrich (2010); Lustig and Nieuwerburgh
(2005).

2E.g., ϕ would denote relative risk aversion in the CRRA framework, while it would be a function of
both risk aversion and elasticity of intertemporal substitution with Epstein and Zin (1989) recursive utility.
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where ∆ct,t+1 := ln (Ct+1/Ct), r
e ∈ RN denotes log excess returns, and λ is a positive scalar.

Since, in the data, the covariance between one period consumption growth and asset returns

is small and has a much smaller cross-sectional dispersion than average excess returns, the

first term of the above equation is not sufficient for pricing a cross-section of asset returns, and

most of the modelling effort in the literature has been devoted to identifying a ψ̃ component

that can help rationalise observed returns.

Note that Equation (3.1) above implies that

C−ϕ
t = Et

[
C−ϕ
t+1+Sψt+1+S

]
where ψt+1+S := Rf

t,t+1+S

∏S
j=0 ψ̃t+1+j. Hence, the Euler equation

0N = E

[(
Ct+1

Ct

)−ϕ

ψ̃t+1R
e
t+1

]
(3.4)

where 0N denotes and N -dimensional vector of zeros, can be equivalently rewritten as

0N = E

[(
Ct+1+S

Ct

)−ϕ

ψt+1+SR
e
t+1

]
. (3.5)

Once again, using the definition of covariance, we can rewrite the above equation as a model

of expected returns

E
[
Re
t+1

]
= −

Cov
(
MS

t+1;R
e
t+1

)
E
[
MS

t+1

] . (3.6)

where MS
t+1 := (Ct+1+S/Ct)

−ϕ ψt+1+S. That is, under the null of the model being correctly

specified, there is an entire family of SDFs that can be equivalently used for asset pricing:

MS
t+1 for every S ≥ 0. Log-linearizing the above expression, we have the linear factor model

E
[
Re
t+1

]
=
[
ϕCov

(
∆ct,t+1+S; r

e
t+1

)
− Cov

(
logψt+1+S; r

e
t+1

)]
λS (3.7)

where ∆ct,t+1+S := ln (Ct+1+S/Ct) and λS is a positive scalar.

But why measure risk, and price returns, using the slow consumption adjustment frame-

work as in equations (3.5)-(3.7) instead of the contemporaneous risk as in equations (3.2)-

(3.4)? First, it is a well-known fact that consumption displays excessive smoothness in
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response to the wealth shocks (Flavin (1981), Hall and Mishkin (1982)), which can be

caused by various adjustment costs (Gabaix and Laibson (2001)) and asynchronous con-

sumption/investment decisions (Lynch (1996)). Moreover, the problem could be further

exacerbated if the agent has a nonseparable utility function, potentially including labour or

other state variables that are also costly to adjust, and hence leading to further staggering

in the consumption adjustment in response to wealth innovations. Second, if there is mea-

surement error in consumption, then using a one-period growth rate does not reflect the true

pricing impact of the SDF. Indeed, in a recent paper Kroencke (2013) demonstrates that

one of the reasons for the failure of the standard consumption-based model to solve equity

premium and risk-free rate puzzles, is that NIPA consumption data is filtered to eliminate

the impact of the measurement error. The unfiltered data, in turn, produces substantially

better results. The fourth quarter to fourth quarter consumption growth of Jagannathan

and Wang (2007), as well as the ultimate consumption risk of Parker and Julliard (2005),

are related to the reconstructed unfiltered time series of consumption growth, and therefore

provide a better measure for the overall consumption risk.

To model parametrically the–potential–slow reaction of consumption to financial market

shocks, we postulate that the consumption growth process can be decomposed in two terms:

a white noise disturbance, wc with variance σ2
c , that is independent from financial market

shocks, plus a (covariance stationary) autocorrelated process–the slow consumption adjust-

ment component–that depends on current and past stocks to asset returns. In order not to

have to take an ex ante stand on the particular time series structure of the slow adjustment

component, we work with its (potentially infinite) moving average representation. That is

we model the consumption growth process as:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j + wct ; (3.8)

where S̄ is a positive integer (potentially equal to +∞), the ρj coefficients are square

summable, and most importantly ft, a white noise process normalised to have unit vari-

ance, is the fundamental innovation upon which all asset returns loads contemporaneously

i.e. given a vector of log excess returns, re, we have

ret
N×1

= µr
N×1

+ ρr
N×1

ft + wrt
N×1

(3.9)
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where µτ is a vector of expected values, ρr contains the asset specific loadings on the common

risk factor, wrt is a vector of white noise shocks with diagonal covariance matrix Σr (the

diagonality assumption can be relaxed as explained below and in Appendix 3.A), that are

meant to capture asset specific idiosyncratic shocks.

The dynamic system in equations (3.8)-(3.9) can be reformulated as a state-space model,

and Bayesian posterior inference can be conducted to estimate both the unknown parameters

(µc, µr, {ρj}S̄j=0, ρ
r, σ2

c , Σr) and the time series of the unobservable common factor of

consumption and asset returns ({ft}Tt=1). This estimation procedure is described in detail in

the next section and Appendix 3.A.

Note that, since ∆ct−1,t+S ≡
∑S

j=0∆ct−1+j,t+j ≡ ln (Ct+S/Ct−1), from the one period

consumption growth process in equation (3.8) we can recover the dynamic of cumulated

consumption growth with a simple rotation since

[∆ct−1,t,∆ct−1,t+1, ...,∆ct−1,t+S]
′ ≡ Γ [∆ct−1,t,∆ct,t+1, ...,∆ct−1+S,t+S]

′

where Γ is a lower triangular square matrix of ones (of dimension S). From this last expres-

sion it is easy to see that the ρj coefficients identify the impulse response function of slow

consumption adjustment to the fundamental asset market shock ft as

∂E [∆ct−1,t+S]

∂ft
=

S∑
j=0

ρj (3.10)

where ρj>S̄ := 0. Moreover, the consumption betas of the factor model of asset returns in

equation (3.7) are fully characterised by the loadings of the dynamic system on the factor ft

since

Cov (∆ct−1,t+S; r
e
t ) ≡

S∑
j=0

ρjρ
r. (3.11)

That is, the time series estimates of the latent factor loadings (ρ̂j and ρ̂r) can be used to

assess whether the slow consumption adjustment component has explanatory power for the

cross-section of risk premia (via, for instance, simple cross-sectional regressions of returns

on these estimated covariances).

The formulation in Equations (3.8)-(3.9) can be generalize to allow for a bonds specific

latent factor (gt) to which consumption, potentially, reacts slowly over time. This is an
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appealing extension since the factor ft, as shown in the empirical section, explains most of

the time series variability of stocks, a quarter of the one of consumption growth, but a small

share of the time series variation of bonds. The dynamic system in this case becomes:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j +
S̄∑
j=0

θjgt−j + wct ; (3.12)

ret
N×1

= µr
N×1

+ ρr
N×1

ft +
[
θ′b
Nb×1

, 0′
N−Nb

]′
gt + wrt

N×1

; (3.13)

where Nb is the number of bonds and they are ordered first in the vector ret , θ
b ∈ RNb

contains the bond loadings on the factor gt–a white noise process with variance normalized

to one. Note that in this case the implied covariance of consumption and returns becomes:

Cov (∆ct−1,t+S; r
e
t ) ≡

S∑
j=0

ρjρ
r +

[
θ′b, 0′

N−Nb

]′ S∑
j=0

θj. (3.14)

3.3 Econometric Methodology

Our empirical analysis is based on both parametric and nonparametric inference, ensuring

the results are robust to the methodology employed. The main approach (Section 3.3.1)

consists in rewriting the model in Equations (3.8)-(3.9) in state-space form and employ

standard Bayesian filtering techniques to recover the unobservable latent consumption factor

(ft) and other model parameters. Since the model is tightly parametrised, with the factor

loadings driving not only the time series, but also the cross-sectional relationships between

asset returns, this in turn allows us to assess model performance in both time series and

cross-sectional dimensions, using variance decomposition and Fama-MacBeth (1973) cross-

sectional regressions.

In addition, we also use the standard semi-parametric techniques (e.g. GMM and Em-

pirical Likelihood estimation) to assess whether ultimate consumption risk of Parker and

Julliard (2005) can successfully capture the cross-section of stock and bond returns. Section

3.3.2 provides further details on the moment construction, parameter estimation and tests

used for inference.
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3.3.1 Parametric Inference

We can rewrite the dynamic model in Equations (3.8)-(3.9) in state-space form, assuming

Gaussian innovations, as

zt = Fzt−1 + vt, vt ∼ N (0S̄+1; Ψ) ; (3.15)

yt = µ+Hzt + wt, wt ∼ N (0N+1; Σ) . (3.16)

where yt := [∆ct, r
e′
t ], zt := [ft, ..., ft−S̄]

′, µ := [µc, µ
′
r]
′ , vt :=

[
ft,0

′
S̄

]′
, wt := [wct , w

′r
t ]
′,

Ψ :=

[
1 0′

S̄

0S̄ 0S̄×S̄

]
︸ ︷︷ ︸
(S̄+1)×(S̄+1)

, F :=

[
0′
S̄

0

IS̄ 0S̄

]
︸ ︷︷ ︸
(S̄+1)×(S̄+1)

, (3.17)

Σ :=

[
σ2
c 0′

N

0N Σr

]
︸ ︷︷ ︸
(N+1)×(N+1)

, H :=

[
ρ0 ρ1 ... ρS̄

ρr 0N ... 0N

]
︸ ︷︷ ︸

(N+1)×(S̄+1)

. (3.18)

and IS̄ and 0S̄×S̄ denote, respectively, an identity matrix and a matrix of zeros of dimension

S̄.

Similarly, the dynamic system in Equations (3.12)-(3.13) can be represented in the

state-space form (3.15)-(3.16) with: zt := [ft, ..., ft−S̄, gt, ..., gt−S̄]
′; vt :=

[
ft,0

′
S̄
, gt,0

′
S̄
,
]′ ∼

N (0S̄+1; Ψ); Ψ and F block diagonal with blocks repeated twice and given, respectively, by

the two matrices in equation (3.17); and with space equation coefficients given by

H :=



ρ0 ... ... ρS̄ θ0 ... ... θS̄

ρr1 0 ... 0 θb1 0 ... 0

... ... ... ... ... ... ... ...

ρrNb
0 ... 0 θbNb

0 ... 0

... 0 ... 0 0 0 ... 0

ρrN 0 ... 0 ... 0 ... 0


︸ ︷︷ ︸

(N+1)×2(S̄+1)

. (3.19)
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The above state-space system implies the following conditional likelihood for the data:

yt| It−1, µ,H,Ψ,Σ, zt ∼ N (µ+Hzt; Σ) (3.20)

where It−1 denotes the history of the state and space variables until time t−1. Hence, under

a diffuse (Jeffreys’) prior and conditional on the history of zt and yt, and given the diagonal

structure of Σ, we have the standard Normal-inverse-Gamma posterior distribution for the

parameters of the model (see e.g. Bauwens, Lubrano, and Richard (1999)). Moreover,

the posterior distribution of the unobservable factors zt conditional on the data and the

parameters, can be constructed using a standard Kalman filter and smoother approach (see,

e.g., Primiceri (2005)).

Using equation (3.7), the above specification for the dynamics of consumption and asset

returns implies, in the presence of only one latent factor (ft) common to both assets and

consumption

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf (3.21)

where λf is a positive scalar variable that captures the price of risk associated with the slow

consumption adjustment risk, and α ∈ RN . If consumption fully captures the risk of asset

returns, the above expression should hold with α = 0N , otherwise α should capture the

covariance between the omitted risk factors and asset returns.

Similarly, if we also allow for a bond specific latent factor (gt), the implied cross-sectional

model of returns is

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf +

[
θ′b, 0′

N−Nb

]′ S∑
j=0

θjλg (3.22)

with the additional testable restriction λf = λg.

Equation (3.21) (and similarly Equation (3.21)), conditional on the data and the pa-

rameters of the state-space model, defines a standard cross-sectional regression, hence the

parameters α, λf and λg can be estimated via standard Fama and MacBeth (1973) cross-

sectional regressions. This implies that, not only we can compute posterior means and

confidence bands for both the coefficients of the state space model and for the unobservable

factor’s time series, but we can also compute means and confidence bands for the Fama and

MacBeth (1973) estimates of the cross sectional regressions defined in Equations (3.21) and
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(3.22). That is, we can jointly test the ability of the slow consumption adjustment risk of

explaining both the time series and the cross-section of asset returns with a simple Gibbs

sampling approach described in detail in Appendix 3.A.

3.3.2 Semi-parametric Inference

We start with the pricing restriction in Euler Equation (3.5):

0 = E
[
MS

t+1R
e
t+1

]
where MS

t+1 := (Ct+1+S/Ct)
−ϕ ψt+1+S and S ≥ 0.

The fact that the stochastic discount factor can be decomposed into the product of

the consumption growth over several consecutive periods (Ct+1+S/Ct) and an additional,

potentially unobservable, component, makes the above setting particularly appealing for

the application of Empirical Likelihood -based techniques (for an excellent overview, see

Kitamura (2006)) as discussed in Ghosh, Julliard, and Taylor (2013).

Consider the following transformation of the Euler equation:

0 = E
[
MS

t R
e
t

]
≡
∫ (

Ct+S
Ct−1

)−ϕ

ψt+SR
e
tdP =

∫ (
Ct+S
Ct−1

)−ϕ
ψt+S
ψ̄

Re
tdP

=

∫ (
Ct+S
Ct−1

)−ϕ

Re
tdΨ = EΨ

[(
Ct+S
Ct−1

)−ϕ

Re
t

]
(3.23)

where P is the unconditional physical probability measure, ψ̄ = E [ψt+S], Ψ is another

probability measure, related to the physical one through the Radon-Nikodym derivative1

dΨ
dP

= ψt+S

ψ̄
.

Empirical Likelihood provides a natural framework for recovering parameter estimates

and probability measure Ψ defined by Equation (3.23), by minimising Kullback-Leibler In-

formation Criterion (KLIC):

(Ψ̂, ϕ̂) = argmin
Ψ,ϕ

D(P ||Ψ) ≡ argmin
Ψ

∫
ln
dP

dΨ
dP s.t. 0 = EΨ

[(
Ct+S
Ct−1

)−ϕ

Re
t

]
(3.24)

Equation (3.24) provides a nonparametric maximum likelihood estimation of the probability

1We assume absolute continuity of both P and Ψ.
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measure, induced by the unobservable components of the SDF, and has been used in various

applications, including the recovery of the risk-neutral probability density (Stutzer (1995)).

For more information on the rationale behind this change of measure, see Ghosh, Julliard,

and Taylor (2013).

Following Csiszar (1975) duality approach, one can easily show that:

Ψ̂t =
1

T

(
1 + λ̂(θ)′

(
Ct+S

Ct−1

)−ϕ̂
Re
t

) ∀t = 1..T, (3.25)

where ϕ̂ and λ̂ ≡ λ̂(ϕ̂) ∈ Rn are the solution to the dual optimisation problem:

ϕ̂ = argmin
ϕ∈R

−
T∑
t=1

ln

(
1 + λ̂(ϕ)′

(
Ct+S
Ct−1

)−ϕ

Re
t

)
(3.26)

λ̂(ϕ) = argmin
λ∈Rn

−
T∑
t=1

ln

(
1 + λ(ϕ)′

(
Ct+S
Ct−1

)−ϕ

Re
t

)
(3.27)

The dual problem is usually solved via the combination of internal and external loops (Ki-

tamura (2001)): first, for each ϕ find the optimal values of the Langrange multipliers λ,

as in Equation (3.27); then minimize the value of the dual objective function w.r.t. ϕ(λ̂),

following Equation (3.26).

Empirical likelihood estimator is known not only for its nonparametric likelihood inter-

pretation, but also for its convenient asymptotic representation and properties. It belongs

to the family of Generalised Empirical Likelihood estimators (Newey and Smith (2004)),

with other notable members including the Exponentially Tilted Estimator (ET, Kitamura

and Stutzer (1997)) and the Continuously Updated GMM (CU-GMM, Hansen, Heaton,

and Yaron (1996)). While the whole family enjoys the same asymptotic distribution of the

parameter estimates, achieves the semiparametric efficiency bound of Chamberlain (1987),

and shares the standard battery of tests for moment equalities (e.g. J -test), the empiri-

cal likelihood estimator is also higher-order efficient (Newey and Smith (2004), Anatolyev

(2005)).

We can also capture the average pricing error of the model implied by Equation (3.5)
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simply by introducing additional parameters in the following way:

0 = E
[
MS

t+1

(
Re
t+1 − α

)]
, (3.28)

where α stands for the average rate of return that is not cross-sectionally captured through

the covariance between MS
t+1 and Re

t+1, since Equation (3.28) implies

E
[
Re
t+1

]
= α−

Cov
(
MS

t+1, R
e
t+1

)
E[MS

t+1]
. (3.29)

Parameter estimation proceeds in exactly the same way, following the procedure outlined

in Equations (3.24)-(3.27). We consider several versions of Equation (3.28): α = 0 (correct

model specification); average pricing errors; error specific to a particular asset class (αb ̸= αs);

and a common level of mispricing for both stocks and bonds (αb = αs).

For each model we also report the cross-sectional adjusted R-squared

R2
adj = 1− n−2

n−1
V̂ arc

(
1
T
Ri,t+1 − α̂−

Ĉov
(
(Ct+1+S/Ct)

−ϕ̂,Re
t+1

)
E[(Ct+1+S/Ct)

−ϕ̂

)/
V̂ arc

(
1
T
Ri,t+1

)
(3.30)

where V̂ arc is the sample cross-sectional variance and Ĉov is the sample time series covari-

ance.

Finally, for the sake of completeness we also use two-stage Generalised Method of Mo-

ments (GMM, Hansen (1982)) to estimate consumption-based asset pricing models on the

cross-section of stock and bond returns, and report its results alongside those for EL. While

the estimator-implied probabilities no longer have the convenient nonparametric maximum

likelihood interpretation (unlike those in Equation (3.25)), if one restricts the class of ad-

missible SDF to the external habit models, asset pricing implications and inference based

on the ultimate consumption risk only, remain valid. Under fairly general conditions, this

result is a direct consequence of Proposition 1 in Parker and Julliard (2003), implying that

GMM estimates of risk aversion retain consistency and asymptotical normality, and do not

require an explicit knowledge of the habit function, if one relies on the ultimate consumption

risk in the estimation.
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3.4 Data Desciption

Bond holding returns are calculated on a quarterly basis using the zero coupon yield data

constructed by Gurkaynak and Wright (2007)1 from fitting the Nelson-Siegel-Svensson curves

daily since June 1961, and excess returns are computed subtracting the return on a three-

month Treasury bill. We consider the set of the following maturities: 6 months, 1, 2, 3, 4,

5, 6, 7, and 10 years, which gives us a set of 9 bond portfolios.

We consider several portfolios of stock returns. The baseline specification relies, in addi-

tion to the bond portfolios, on the 25 size and book-to-market Fama-French portolios (Fama

and French (1992)), and 12 industry portfolios, available from Kenneth French data library.

We consider monthly returns from July, 1961 to December, 2013, and accumulate them to

form quarterly returns, matching the frequency of consumption data. Excess returns are

then formed by subtracting the correponding return on the three-month Treasury bill.

Consumption flow is measured as real (chain-weighted) consumption expenditure on non-

durable goods per capita available from the National Income and Product Accounts (NIPA).

We use the end-of-period timing convention and assume that all of the expenditure occurs

at the end of the period between t and t+1. We make this (common) choice because under

this convention the entire period covered by time t consumption is part of the information

set of the representative agent before time t + 1 returns are realised. All the returns are

made real using the corresponding consumption deflator.

Overall, this gives us consumption growth and matching real excess quarterly holding

returns on a number of portfolios, from the forth quarter of 1961 to the end of 2013.

3.5 Empirical Evidence

While our model allows for a potentially infinite number of lags for the consumption process,

in order to proceed with the actual estimation one has to choose a particular value of S̄. For

the rest of the section we use S = 15 for a number of reasons.

First, we rely on the previous results of Parker and Julliard (2003), who demonstrate that

most of the pricing ability of the ultimate consumption risk is contained within the time span

of 15 quarters. They define a proxy for the signal-to-noise ratio, taking into account both

1The data is regularly updated and available at:
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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the time-series and cross-sectional variation of the data, and find that the maximum (as well

as the best overall fit) is obtained around S = 11.

Second, Equation (3.8) implies a certain autocorrelation structure of the nondurable con-

sumption growth through the combination of the common factor lags and its loadings. Hence,

the value of S should be high enough to capture most of the time series autocorrelation in

the consumption growth. Figure 3.C.1 in the Appendix presents the sample autocorrelation

coefficients and the results of Ljung-Box (1978) and Box-Pierce (1970) tests. Since most of

the dependence occurs within the first 15 lags, this value also becomes a natural choice for

the lag truncation.

Further, intuitively most of the pricing impact from the consumption adjustment is prob-

ably taking place within the business cycle frequency, consistent with a number of recent

empirical studies (e.g. Bandi and Tamoni (2015)). Therefore, S = 15 is a rather conserva-

tive choice, since it provides a 4 year window to capture most of the interaction between the

ultimate consumption and returns.

Finally, our results remain robust to including additional lags.

3.5.1 Parametric Approach

We start our analysis by examining the time-series properties of a one (common) factor model

implied by Equations (3.8)–(3.9). We then turn to the 2-factor specification described by

Equations (3.12)–(3.13). Finally, we present the cross-sectional properties of the model and

demonstrate that the slow consumption adjustment risk is a priced factor, explaining a

significant proportion of the cross-sectional variation in returns.

3.5.1.1 Time Series Properties of Stocks and Bonds

Our baseline cross-section consists of 9 bond portfolios, 25 Fama-French portfolios sorted by

size and book-to-market, and 12 industry portfolios. We estimate the model in Equations

(3.8)–(3.9) using the inference procedure outlined in Section 3.3.1. Figures 3.1 and 3.2 present

stock and bond loadings on the common factor, along with the 68% and 90% confidence

bounds.

All the portfolios in Figure 3.1 display significant and positive exposures to the common

factor. However, even more interesting is a widely recognisable pattern in the factor loadings:

decreasing from the smallest to the largest decile on size, with a similar effect for book-to-
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Figure 3.1: Common factor loadings (ρr) of the stock portfolios in the one-factor model.

Note. The graph presents posterior means (continuous line with circles) and centred posterior 90% (dashed
line) and 68% (dotted line) coverage regions. Ordering of portfolios: 25 Fama and French (1992) size and
book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size and the second smaller decile
of book-to-market ratio), and 12 industry portfolios.

market sorting. This is in line with the size and value anomalies and, in addition, provides

some preliminary evidence that the SCA risk plays an important role in explaining the cross-

sectional dispersion of stocks returns. These findings also remain unchanged, when a second,

bond-specific factor is added into the model (see Figure 3.3, lower panel).

In a single factor model, bond loadings, however, are not as prominent (Figure 3.2). While

there is some evidence in favour of their increase with the bond maturity, the magnitude is

still considerably smaller than that of the stocks.

Figures 3.2 (upper panel) and 3.4 highlight the importance of adding a bond-specific

factor into the model. While the cross-section of bonds reveals a very pronounced maturity-

driven pattern of loadings on the bond-specific factor, gt, its presence also allows to highlight

the effect of the consumption-related component. Compared to a one factor specification,

these loadings are still not as high as those of the stocks, however, they are contained within

very tight confidence bounds, are significantly different from zero (except for the 6 months

return), and generally increase with maturity.

135



3. Consumption Risk of Bonds and Stocks

0.
00
0

0.
00
5

0.
01
0

0.
01
5

Bond loadings on common factor

maturities

ρr

.5Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y 10Y

Figure 3.2: Bond loadings (ρr) on the common factor (ft).

Note. The graph presents posterior means (continuous line with circles) and centred posterior 90% (dashed
line) and 68% (dotted line) coverage regions.

To summarise, not only (nearly) all the assets in the mixed cross-section of stocks and

bonds have a significant positive exposure to the innovations in the ultimate consumption

growth, the pattern of those loadings reflects well-known features of the data: size and value

anomalies for stocks, and positive slope of the yield curve for bonds.

One of the possible concerns could be that we inadvertently capture a factor that heavily

loads on one of the principal components of the cross-section of asset returns and thus me-

chanically has rather high factor loadings (Lewellen, Nagel, and Shanken (2010)). However,

this is not the case. While there is indeed some correlation with the principal components

of the cross-sections, composed of different assets (see Table 3.1), the common factor does

not heavily correlate with any of them in particular, but rather displays a certain degree of

spread in loadings. For example, it is related to the first, third and fourth principal compo-

nents of the joint cross-section of stocks and bonds. Therefore, we conclude that our results

are not driven by a particular implied factor structure of a given cross-section, but rather

reflect a more general feature of the data.

The economic magnitude of asset exposure to the SCA risk can in turn be assessed by

the standard variance decomposition techniques. Figure 3.5 summarises our results. The

common factor explains on average 79% of the time series variation in the stock returns,
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Table 3.1: Correlation of Slow Consumption Adjustment with Principal Components

Correlation of:∑S̄
j=0 ρ̂j f̂t−j

∑S̄
j=0 θ̂j ĝt−j

PCA of: I II III IV V I II III IV V
re -.37 .01 -.13 -.17 .03 -.03 -.32 -.01 -.54 .04

rebonds .11 -.12 .10 .15 -.03 .64 -.10 .01 .06 -.08
restocks .38 .08 -.11 .01 -.01

ranging from 36% to nearly 95% for individual portfolios. Moreover, this level of fit in

our model is produced by a single consumption-based factor, as opposed to some of the

alternative successful specifications, relying on 3 and sometimes 4 explanatory variables.

The same common factor accounts for a small (about 1.5%), but significant proportion of

the time series variation in bond returns as well. The bond-specific factor, in turn, manages to

capture most of the residual time series in variation in returns. While the model captures just

about 55% of the variation in the 6-month bond returns, its performance rapidly improves

with maturity and results in a nearly perfect fit for the time horizon of 2 years and more.

3.5.1.2 Consumption Process and its Properties

Slow consumption adjustment explains a significant proportion of the time series variation

in consumption growth. As Figure 3.5 demonstrates, the common factor is responsible for

roughly 27% of the variation in the one-period nondurable consumption growth, 33% of the

two-period consumption growth, and so on, followed by a slow decline towards just above

5% for the 15-period growth. The bond-specific factor amounts for an additional 5% of

the explanatory power. While these numbers may not seem as impressive as those for the

cross-section of stocks, the pattern is highly persistent and significant, confirming a common

factor structure between nondurable consumption growth and asset returns. Further, it also

allows to use the model in Equations (3.12)–(3.13) for predictive purposes.

The upper right panel in Figure 3.5 displays the outcome of the predictive regression for

the one-period consumption growth, should one rely on the factor loadings from Equation

3.12. Ultimate consumption risk predicts about 27% of the time series variation in the next

period consumption and 18% of the consumption growth 2 quarters from now. Interestingly,
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Figure 3.3: Bond and stock loadings on the common factor (ft).

Note. Upper panel: loadings of bonds (ρr) on common factor (ft). Lower panel: loadings of stock portfolios
(ρr) on common factor (ft). The graph presents posterior means (continuous line with circles) and centred
posterior 90% (dashed line) and 68% (dotted line) coverage regions. Ordering of the portfolios: 25 Fama
and French (1992) size and book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size
and the second smaller decile of book-to-market ratio), and 12 industry portfolios.
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Figure 3.4: Bond loadings (θb) on the bond-specific factor (gt).

Note. The graph presents posterior means (continuous line with circles) and centred posterior 90% (dashed
line) and 68% (dotted line) coverage regions.
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Figure 3.5: Variance decomposition box-plots of asset returns and consumption growth
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Figure 3.6: Slow consumption adjustment (∆ct,t+1+S) response to shocks.

Note. Upper panel: SCA response to common factor (ft) shocks, lower panel: SCA response to bond only
factor (gt) shocks. The graph presents posterior means (continuous line with circles) and centred posterior
90% (dashed line) and 68% (dotted line) coverage regions. Triangles denote Bansal and Yaron (2004) implied
values.

the model retains significant predictive power (albeit, much lower) even for the one-period

consumption that will occur nearly 4 years from now. A bond-specific factor increases the

quality of predictive regressions by roughly another 5%.

The consumption growth process in Equation (3.12) is similar to the moving average

decomposition, which allows us to model the dynamics of the slow consumption adjustment

(∆ct,t+1+S) in response to a common and/or a bond-specific shock. Figure 3.6 depicts SCA

loadings on the factors as a function of the horizon S. If S = 0, the case of a standard

consumption-based asset pricing model, SCA virtually does not load on the common factor.

This is expected, since the factor manifests itself at a lower frequency. Indeed, as S increases,
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the impact of the common factor becomes more and more pronounced, levelling off at around

S = 11. Interestingly, the pattern of the loadings observed in our two-factor model, is very

similar to the one implied by the moving average representation of the consumption process

in Bansal and Yaron (2004)1. In short, our setting reveals a similar degree of persistency

and response rates, as their consumption process. The pricing of stocks and bonds, however,

differs, because we consider a more flexible, reduced form model that nevertheless uncovers

a very similar consumption-related pattern in the data as the one implied by the long-run

risk model.

As a robustness check, we recover the long-run impact of common innovations to finan-

cial market returns and nondurable consumption using a simple bivariate SVAR model for

the market excess return and consumption growth. We achieve identification via long-run

restrictions on the impulse response functions á la Blanchard and Quah (1989). In par-

ticular, we distinguish a fundamental long-run shock, that can have a long-run impact on

both market return and consumption, and a transitory shock that is restricted not to have

a long-run impact on asset prices.
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Figure 3.7: Cumulated response functions to a long-run shock

Note. The shock identified via a VAR and imposed long-run restrictions. Left panel depicts the cumulated
response function for the market return, while the right one - for consumption growth. The graphs include
posterior median (continuous line), mean (circles), and centred 95% coverage region (dotted lines).

Figure 3.7 displays the cumulated impulse response functions to a long-run fundamental

shock, that is allowed to have a potemtially permanent impact on both the market excess

1For more details on the construction of the MA representation, see Appendix 3.B
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3. Consumption Risk of Bonds and Stocks

return and nondurable consumption. In line with our previous reasoning, the latter response

to a shock (right panel) is very similar to the one we observed from the SCA loadings on

the common factor (Figure 3.6), while the response of the market returns (left panel), is

consistent with an immediate and complete reaction of asset returns to the long-run shock

as in our state-space model in Equations (3.8)-(3.9).

All these observations confirm that within the stream of nondurable consumption flow

there is a rather persistent slow-moving component, accounting for 28% of the one-period

time series variation in consumption growth, with innovations of that factor driving most

of the contemporaneous changes in stocks returns and a small, but significant proportion in

bonds. Next, we investigate whether this risk is actually priced in the cross-section of assets.

3.5.1.3 The Price of Consumption Risk

Recovering factor loadings in Equations (3.12)–(3.13) also produces a cross-section of average

returns on the set of portfolios. Figure 3.8 displays the scatterplot of the average vs. fitted

excess returns for the baseline mixed cross-section of 46 assets. While the subset of bond

returns demonstrates an almost perfect fit (lower left corner of the plot), the variation in the

cross-section of stocks is also well-captured.

Further, as Equation (3.22) demonstrates, model-implied factor loadings of the asset

returns determine their full exposure of the SCA risk and thus allow not only to assess the

cross-sectional fit of the model, but also to test whether the slow consumption adjustment is

indeed a priced risk factor, and whether the common and bond factors share the same value

of the risk premium.

Following the critique of Lewellen, Nagel, and Shanken (2010), we are using a mixed

cross-section of assets to ensure that there is no dominating implied factor structure of the

returns. Indeed, if that was the case, it could lead to spuriously high significance levels,

quality of fit, and significantly complicate the overall model assessment. However, as Table

3.1 indicated, the slow consumption adjustment factor does not heavily load on any of the

main principal components of the returns. Further, we provide confidence bounds for the

cross-sectional measure of fit to ensure the point estimates reflect the actual pricing ability

of the model. Finally, since both stocks and bonds have significant loadings on the common

factor (and in the case of bonds, also on the bond-specific one), we do not face the problem

of irrelevant, or spurious factors (Kan and Zhang (1999b)), that could also lead to the
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Figure 3.8: SCA risk: Average and Fitted Excess returns.

Note. Fitted versus average returns using the consumption betas implied by the latent factor specification
in Equations (3.12)–(3.13).

unjustifiably high significance levels.

Table 3.2 summarizes the cross-sectional pricing performance of our parametric model of

consumption on a mixed cross-section of 9 bond portfolios, 25 Fama-French portfolios sorted

by size and book-to-market, and 12 industry portfolios. For each of the specifications, we

recover the full posterior distribution of the factor loadings, and estimate the associated risk

premia using Fama-MacBeth (1973) cross-sectional regressions. Regardless of the specifica-

tion, there is strong support in favour of the slow consumption adjustment being a priced risk

in the composite cross-section of assets with the risk premia of about 14-20% per quarter.

The average pricing error is about 0.005% per quarter, and the cross-sectional R2 varies

from 57% to 91%, depending on whether the intercept is included in the model. While

allowing for a common intercept in the estimation substantially lowers cross-sectional fit,

95% posterior coverage bounds remain very tight, providing a reliable indicator of the model
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Table 3.2: Cross-Sectional Regressions with State-Space Loadings

Row: α λf λg λf = λg R̄2

One latent factor specification
(1) .0056

[0.0051, .0062]
14.77

[8.89, 26.01]
.57

[.54, .60]

(2) 20.00
[12.05, 35.16]

.90
[.89, .91]

Two latent factor specification
(3) .0057

[.0052, .0061]
14.97

[8.72, 27.45]
.57

[.54, .60]

(4) 20.30
[11.85, 37.18]

0.90
[0.89, 0.91]

(5) .0069
[−539.5, 497.7]

13.79
[7.96, 25.49]

−1.44
[−539.5, 497.7]

.56
[0.53, 0.59]

(6) 20.27
[11.83, 37.12]

19.57
[−1140, 1218]

.91
[.90, .92]

(7) .0053
[.0042, 0.0064]

15.24
[8.80, 28.40]

.57
[.53, .60]

(8) 20.29
[11.85, 37.19]

.90
[.89, .91]

Note. The table presents posterior means and centred 95% posterior coverage (in square brackets) of the

Fama and MacBeth (1973) cross-sectional regression of excess returns on
∑S

j=0 ρjρ
r (with associated co-

efficient λf ) and
[
θ′b, 0′

N−Nb

]′∑S
j=0 θj (with associated coefficient λg). The column labeled λf = λg

reports restricted estimates. Cross-section of assets: 25 Fama and French (1992) size and book-to-market
portfolio; 12 industry sorted portfolios; 9 bond portfolios.

performance.

While the risk premium on the common factor is strongly identified and seems to play

an important role in explaining the cross-section of both stock and bond returns, the bond

factor loadings do not provide an equally large spread for recovering its pricing impact with

the same degree of accuracy. As a result, the risk premium appears to be insignificant, unless

its value is restricted to that of the common factor. To summarise, the bond-specific factor

is unspanned, in the sense that while it is essential for explaining most of the time series

variation in bond returns and producing a correct slope of the yield curve, it does not have

any cross-sectional impact on bond returns.

3.5.2 Semi-parametric approach

Since the relevance of slow consumption adjustment risk for the cross-section of stocks has

already been highlighted by Parker and Julliard (2005), we first focus on the cross-section

144



3. Consumption Risk of Bonds and Stocks

of bonds only, and provide empirical evidence that the SCA risk is important for explaining

their cross-section of returns. We then turn to analysing the model performance for pricing

a composite set of bonds and stocks.

Table 3.3 summarizes the performance of the consumption-based asset pricing model on

the cross-section of bond returns for various values of S of the ultimate consumption measure

of Parker and Julliard (2005). While EL estimation remains valid in the presence of the

multiplicative unobservable part of the stochastic discount factor, evaluating GMM output

requires a certain degree of caution, since in this case, to the best of our knowledge, the

same robustness is achieved only within the class of external habit models (see Proposition

1 of Parker and Julliard (2003)). Nevertheless, for the sake of completeness we report both

sets of results.

The S = 0 case corresponds to the standard consumption-based asset pricing model,

where the spread of the returns is driven only by their contemporaneous correlation with the

consumption growth. Both EL and GMM output reflect the well-known failure of the classical

model to capture the cross-section of bond returns: according to the J-test, the model is

rejected in the data, and the cross-sectional adjusted R-squared is negative. Increasing the

span of consumption growth to 2 or more quarters drastically changes the picture: J-test no

longer rejects the model, and the level of cross-sectional fit increases up to 85% for S = 12,

for example.

Further, the estimates of the power coefficient ϕ (which in the case of additively sep-

arable CRRA utility corresponds to the Arrow-Pratt relative risk-aversion coefficient) not

only appear to be much smaller (hence more in line with the economic theory), but also

more precisely estimated. The large standard error associated with this parameter for the

standard consumption-based model (S = 0) is due to the fact that the level and spread of

the contemporaneous correlation between asset returns and consumption growth is rather

low. This in turn leads to substantial uncertainty in parameter estimation. As the num-

ber of quarters used to measure consumption risk increase, the link between bond returns

and the slow moving component of the consumption becomes more pronounced, resulting

in lower standard errors, better quality of fit, and the overall ability of the model to match

the cross-section of bond returns. In fact, model-implied average excess returns are very

close to the actual ones, in drastic contrast to the standard consumption-based asset pricing

model. This is shown in Figure 3.9 which presents fitted and actual average excess returns

on the cross-section of 9 bond portfolios for several values of the consumption horizon S.
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Table 3.3: Cross-Section of Bond Returns and Ultimate Consumption Risk

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α ϕ J-test R2

adj(%) α ϕ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

0 -837 0.0007 100 13.0888 -10 0.0000 4 19.5597
(0.0003) (28.5) [0.0700] (0.0002) (73.5) [0.0066]

1 -167 0.0009 88 7.6457 -35 0.0005 42 11.5448
(0.0004) (24.8) [0.3649] (0.0005) (47.3) [0.1166]

2 70 0.0030 120 2.8778 43 0.0009 50 4.6351
(0.0005) (21.8) [0.8961] (0.0011) (52.6) [0.7044]

3 39 0.0010 70 4.5187 61 0.0006 35 5.1968
(0.0004) (16.2) [0.7185] (0.0005) (20.5) [0.6360]

4 69 0.0008 55 3.4531 48 0.0004 33 3.2207
(0.0003) (13.4) [0.8402] (0.0004) (16.1) [0.8639]

5 5 0.0008 45 6.8134 38 0.0004 27 6.0294
(0.0003) (10.5) [0.4486] (0.0003) (13.0) [0.5363]

6 3 0.0008 42 8.9256 42 0.0002 23 6.8397
(0.0003) (10.0) [0.2580] (0.0003) (11.5) [0.4458]

7 64 0.0004 33 9.8236 64 0.0001 22 6.4740
(0.0003) (9.9) [0.1988] (0.0003) (10.7) [0.4856]

8 70 0.0006 35 9.6027 69 0.0003 24 6.5862
(0.0003) (10.1) [0.2122] (0.0003) (12.3) [0.4732]

9 53 0.0008 55 8.2778 67 0.0004 26 6.8314
(0.0003) (10.5) [0.3087] (0.0003) (14.7) [0.4466]

10 77 0.0008 38 10.2472 73 0.0004 25 6.8649
(0.0002) (12.3) [0.1750] (0.0003) (18.4) [0.4431]

11 77 0.0008 44 8.2683 72 0.0006 26 7.7110
(0.0002) (14.3) [0.3095] (0.0003) (23.7) [0.3588]

12 85 0.0008 78 6.1561 88 0.0008 34 6.8054
(0.0002) (16.3) [0.5216] (0.0003) (26.5) [0.4494]

13 69 0.0007 85 5.8494 89 0.0007 37 6.0817
(0.0002) (17.5) [0.5574] (0.0003) (28.7) [0.5302]

14 88 0.0006 72 8.0283 90 0.0007 41 6.7445
(0.0002) (19.6) [0.3301] (0.0004) (30.3) [0.4560]

15 77 0.0006 70 7.3656 69 0.0008 46 7.2723
(0.0002) (22.1) [0.3918] (0.0005) (36.4) [0.4011]

Note. The table reports the pricing of 9 excess bond holding returns for various values of the horizon S, and
allowing for an intercept. Standard errors are reported in parentheses and p-values in brackets. Estimation
is done using EL and two-stage GMM.
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Figure 3.9: Slow consumption adjustment factor and the cross-section of bond returns

Note. The figures show average and fitted returns on the cross-section of 9 bond portfolios (1961Q1-2013Q4),
sorted by maturity. The model is estimated by Empirical Likelihood for various values of consumption horizon
S. S = 0 corresponds to the standard consumption-based asset pricing model; S = 12 corresponds to the
use of ultimate consumption risk, where the cross-section of returns is driven by the their correlation with
the consumption growth over 13 quarters, starting from the contemporaneous one.

The contemporaneous correlation between bond returns and consumption growth (Panel A,

S = 0) is so low that not only it results is rather poor fit, but actually reverses the order of

the portfolios: i.e. the fitted average return from holding long-term bonds is smaller than

that of the short term ones. And again, once the horizon used to measure consumption risk

is increased, the quality of fit substantially improves, leading to an R-squared of 85% for

S = 12 (see Panel on the right).

The ability of slow consumption adjustment risk to capture a large proportion of the cross-

sectional variation in returns is not a feature of the bond market alone: it works equally

well on the joint cross-section of stocks and bonds, providing a simple and parsimonious one

factor model for co-pricing securities in both asset classes.

Table 3.4 summarises the model performance with various joint cross-sections of stocks

and bonds for different consumption horizons S. Compared to the standard case of S = 0,

slow consumption adjustment substantially improves model performance in a number of

ways. While a simple consumption-based asset pricing model is rejected by the J-test on all

the cross-section of stocks, the test values are dramatically improved over the range of S =
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Table 3.4: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) ϕ J-test R2

adj(%) ϕ J-test

(Quarters) (1) (2) (3) (4) (5) (6)

Panel A: 9 Bonds and Fama-French 6 portfolios

0 -13 -7 36.8568 70 60 36.3730
(26.3) [0.0013] (27.7) [0.0016]

10 95 23 7.275274 89 30 28.3589
(6.0) [0.9495] (6.8) [0.0194]

11 94 23 6.389318 94 32 29.3379
(6.5) [0.9724] (8.5) [0.0145]

12 91 22 5.864083 96 35 30.5354
(6.3) [0.9819] (9.4) [0.0101]

Panel B: 9 Bonds and Fama-French 25 portfolios

0 46 41 56.7788 64 73 157.2452
(17.8) [0.0084] (15.0) [0.0000]

10 75 20 24.3141 24 41 31.8799
(3.8) [0.8899] (6.1) [0.5719]

11 76 20 21.2727 45 21 26.3571
(3.7) [0.9563] (6.3) [0.8224]

12 70 18 20.9430 49 22 22.3989
(3.4) [0.9612] (7.7) [0.9364]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 -6 -3 59.7497 59 68 156.2215
(21.2) [0.0003] (15.0) [0.0000]

10 54 13 24.2148 -68 40 22.9235
(3.9) [0.6184] (7.0) [0.6891]

11 51 12 24.2189 -38 42 22.0777
(3.7) [0.6181] (7.0) [0.7334]

12 52 12 22.1532 -3 45 22.0186
(3.5) [0.7295] (6.4) [0.7364]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 22 19 82.6606 50 86 213.7053
(15.1) [0.0007] (14.2) [0.0000]

10 37 8 52.2543 -48 42 48.9612
(2.5) [0.2440] (5.3) [0.3551]

11 37 8 49.6145 -7 44 47.8821
(2.3) [0.3312] (5.6) [0.3963]

12 36 8 47.4384 16 48 41.7552
(2.2) [0.4138] (6.3) [0.6506]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for no intercept. Standard

errors are reported in parentheses and p-values in brackets. Estimation is done using EL and GMM.
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Figure 3.10: Cross-sectional spread of exposure to slow consumption adjustment risk
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Note. Panels present the spread of normalised betas for the various sets of assets and horizon S (0-15): (a)
9 bonds and 6 Fama-French portfolios, (b) 9 bonds and 25 Fama-French portfolios, (c) 9 bonds, 12 Industry
and 6 Fama-French portfolios, (d) 9 bonds, 12 Industry and 25 Fama-French portfolios. All the parameters
were estimated by Empirical Likelihood.

10− 12: in fact, based on Empirical Likelihood Estimation, the model is no longer rejected

in any of the cross-sections. Combined with the improved values of the power parameter
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(ϕ), the accuracy of its estimation (lower standard errors), and a substantial increase in the

cross-sectional quality of fit, measured by the R2, Table 3.4 presents compelling evidence

in favour of the slow consumption adjustment risk being an important driver for the cross-

sections of both stocks and bonds. Appendix ?? provides similar empirical evidence for the

alternative model specifications that also include a common or asset class-specific intercept

as a proxy for model misspecification.

But why does the slow consumption adjustment risk provide a better fit for the cross-

sectional spread in expected returns? The empirical evidence, presented in the previous

section, suggests that both stocks and bonds tend to co-vary more with the consumption

growth over the next few periods (captured by the common unobservable factor and the

loadings on it). However, not only the SCA risk measure increases the average asset exposure

to consumption growth, it also improves the spread of the latter. While the standard one-

period consumption growth does not perform well in either dimensions, leading to the equity

premium puzzle and a relatively poor cross-sectional fit, the SCA factor seems to achieve both

objectives: it increases the amount of measured risk as well as its cross-sectional dispersion.

Figure 3.10 displays the dispersion of the model-implied scaled betas,1 associated with the

consumption growth over different horizon values and for different cross-sections of assets.

As we move away from the standard case of S = 0, two observations immediately arise. First,

there is a substantial improvement in the average asset exposure to consumption growth,

which leads to lower and more accurate estimates of the risk aversion. However, it is the

increase in the spread of betas, with a particular contribution from the stocks, which is most

striking. The ‘fanning out’ effect, observed for the higher values of the consumption horizon

S, further supports the hypothesis that the fundamental source of risk in the asset returns

is related to the aggregate consumption growth, and should take into account its slow speed

of adjustments to the common shocks.

Finally, the fact that there is a significant correlation between asset returns and con-

sumption growth over the several periods (both in terms of its level and spread), also serves

as an additional robustness check against a potential problem of spurious factors type (Kan

and Zhang (1999b)), i.e. factors that are only weakly related to the asset returns and thus

only appear to be driving the cross-section of asset returns.

1We define betas as the ratio between the asset covariance with the model-implied scaled SDF and its
variance.
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3.6 Conclusion

This paper provides empirical evidence that the slow consumption adjustment risk is an

important driver for both stock and bond returns. A flexible parametric model with com-

mon factors driving asset dynamics and consumption identifies a slow varying component

of consumption that responds to financial shocks. Both stocks and bonds load significantly

load on SCA risk factor, generating a sizeable risk premium and a dispersion in returns,

consistent with the size and value anomalies, as well as the positive slope of the yield curve.

As a result, our model explains between 36% and 95% of the time series variation in returns

and between 57% and 90% of the joint cross-sectional variation in stocks and bonds.

Moreover, we find that slow consumption adjustment innovations drive more than a

quarter of the time series variation of consumption growth, indicating that financial market

related shocks are first order drivers of consumption risk.

While generally consistent with the consumption dynamics postulated in the long run

risk framework, these empirical findings nevertheless pose several important questions. Can

the results be applied to other asset classes, such as currencies or commodities? What is the

nature of the unspanned factor, driving most of the time series variation in bonds?
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Appendix

3.A State Space Estimation and Generalisations

Let Π′ := [µ,H] , x′t := [1, z′t]. Under a (diffuse) Jeffreys’ prior the likelihood of the data in equation

(3.20) implies the posterior distribution

Π′∣∣Σ, {zt}Tt=1 , {yt}
T
t=1 ∼ N

(
Π̂′
OLS ; Σ⊗

(
x′x
)−1
)

where x contains the stacked regressors, and the posterior distribution of each element on the main

diagonal of Σ is given by

σ2j
∣∣ {zt}t=1 ∼ Inv-Γ

(
(T −mj − 1) /2, T σ̂2j,OLS/2

)
where mj is the number of estimated coefficients in the j-th equation. Moreover, F and Ψ have a

Dirac posterior distribution at the points defined in equation (3.17). Therefore, the missing part

necessary for taking draws via MCMC using a Gibbs sampler, is the conditional distributions of

zt. Since

yt

zt

∣∣∣∣∣ It−1,H,Ψ,Σ ∼ N

([
µ

Fzt−1

]
;

[
Ω H

H ′ Ψ

])
,

where Ω := V art−1 (yt) = HΨH ′ + Σ, this can be constructed, and values can be drawn, using a

standard Kalman filter and smoother approach. Let

zt|τ := E [zt|yτ , H,Ψ,Σ] ; Vt|τ := V ar (zt|H,Ψ,Σ) .

where yτ denotes the history of yt until τ. Then, given z0|0 and V0|0, the Kalman filer delivers:

zt|t−1 = Fz′t−1|t−1; Vt|t−1 = FV t−1|t−1F
′ +Ψ; Kt = Vt|t−1H

′ (HVt|t−1H
′ +Σ

)−1

zt|t = zt|t−1 +Kt

(
yt − µ−Hzt|t−1

)
; Vt|t = Vt|t−1 −KtHV t|t−1.
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The last elements of the recursion, zT |T and VT |T , are the mean and variance of the normal distri-

bution used to draw zT . The draw of zT and the output of the filter can then be used for the first

step of the backward recursion, which delivers the zT−1|T and VT−1|T values necessary to make a

draw for zT−1 from a gaussian distribution. The backward recursion can be continued until time

zero, drawing each value of zt in the process, with the following updating formulae for a generic

time t recursion:

zt|t+1 = zt|t + Vt|tF
′V −1
t+1|t

(
zt+1 − Fzt|t

)
; Vt|t+1 = Vt|t − Vt|tF

′V −1
t+1|tFV t|t.

Hence parameters and states can be drawn via Gibbs sampler using the following algorithm:

1. Take a guess Π̃′ and Σ̃−1 (e.g. freq. estimate), and use it to construct initial draws for µ and

H. Using also F and Ψ, draw the zt history using the Kalman recursion above with (Kalman

step)

zt ∼ N
(
zt|t+1; zt|t+1

)
.

2. Conditioning on {zt}Tt=1 (drawn at the previous step) and {yt}Tt=1 run OLS imposing the

zero restrictions and get Π̂′
OLS and Σ̂OLS , and draw Π̃′ and Σ̃−1 from the N-i-Γ. Use the

draws as the initial guess for the previous point of the algorithm (N-i-Γ step), and repeat.

Computing posterior confidence intervals for the cross-sectional performance of the model, con-

ditional on the data, is relatively simple since, conditional on a draw of the time series parameters,

estimates of the risk premia (λ’s in equations (3.21) and (3.22)) are just a mapping obtainable

via the linear projection of average returns on the asset loadings in H. Hence, to compute pos-

terior confidence intervals for the cross-sectional analysis, we repeat the cross-sectional estimation

for each posterior draw of the time series parameters, and report the posterior distribution of the

cross-sectional statistics across these draws.

3.B The Moving Average Representation of The Long

Run Risk Process

We we assume the same data generating process as in Bansal and Yaron (2004), with the only

exception that we introduce a square-root process for the variance, as in Hansen, Heaton, Lee, and

Roussanov (2007), that is:

∆ct,t+1 = µ+ xt + σtηt+1; xt+1 = ρxt + ϕeσtet+1; σ2t+1 = σ2(1− ν1) + ν1σ
2
t + σwσtwt+1,
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where ηt, et, wt, ∼ iid N (0, 1). The calibrated monthly parameter values are: µ = 0.0015, ρ =

0.979, ϕe = 0.044, σ = 0.0078, ν1 = 0.987, σw = 0.00029487. To extract the quarterly frequency

moving average representation of the process, we proceed in two steps. First, we simulate a long

sample (five million observations) from the above system treating the given parameter values as

the truth. Second, we aggregate the simulated data into quarterly observation and we use them to

estimate, via MLE, the moving average representation of consumption growth in equation (3.8).

3.C Additional Empirical Results
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Figure 3.C.1: Autocorrelation structure of consumption growth.

Note. Left panel: autocorrelation function of consumption growth (∆ct,t+1+S) with 95% and 99% confidence
bands. Right panel: p−values of Ljung and Box (1978) (triangles) and Box and Pierce (1970) (circles) tests.
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Table 3.C.1: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) αb αs ϕ J-test R2

adj(%) αb αs ϕ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 9 Bonds and Fama-French 6 portfolios

0 -6 0.0001 0.0162 -74 59.7497 71 0.0003 0.0137 33 38.3181
(0.0002) (0.0045) (21.2) [0.0003] (0.0003) (0.0069) (42.1) [0.0001]

10 54 0.0004 0.0105 22 24.2148 29 0.0006 0.0132 28 17.3421
(0.0003) (0.0046) (3.9) [0.6184] (0.0004) (0.0046) (6.9) [0.1372]

11 51 0.0005 0.0099 24 24.2189 44 0.0008 0.0131 30 17.6300
(0.0003) (0.0047) (3.7) [0.6181] (0.0003) (0.0048) (8.3) [0.1274]

12 52 0.0005 0.0093 22 22.1532 53 0.0009 0.0136 32 18.6997
(0.0003) (0.0049) (3.5) [0.7295] (0.0003) (0.0050) (9.0) [0.0960]

Panel B: 9 Bonds and Fama-French 25 portfolios

0 50 -0.0006 0.0130 60 62.3266 61 0.0011 0.0125 50 226.2077
(0.0002) (0.0045) (21.2) [0.0007] (0.0001) (0.0038) (15.3) [0.0000]

10 72 -0.0002 0.0104 19 23.1802 26 0.0019 0.0063 37 44.4437
(0.0003) (0.0038) (3.9) [0.8425] (0.0003) (0.0018) (5.9) [0.0558]

11 79 -0.0002 0.0096 18 20.8589 56 0.0020 0.0052 39 33.7601
(0.0002) (0.0039) (3.9) [0.9156] (0.0003) (0.0020) (6.5) [0.3355]

12 78 -0.0001 0.0096 17 20.4496 64 0.0018 0.0065 42 28.8556
(0.0002) (0.0040) (3.7) [0.9257] (0.0002) (0.0015) (7.2) [0.5768]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 64 0.0000 0.0119 -14 59.4323 -33 0.0006 0.0239 31 124.6547
(0.0002) (0.0041) (22.3) [0.0001] (0.0001) (0.0027) (18.4) [0.0000]

10 72 0.0003 0.0131 14 21.9269 -77 0.0016 0.0140 32 44.9201
(0.0003) (0.0039) (4.3) [0.5836] (0.0003) (0.0024) (6.3) [0.0060]

11 70 0.0004 0.0119 11 24.8752 -53 0.0018 0.0140 34 37.2377
(0.0002) (0.0040) (3.9) [0.4126] (0.0003) (0.0023) (7.0) [0.0414]

12 72 0.0004 0.0115 10 24.4976 2 0.0019 0.0107 38 29.5539
(0.0002) (0.0041) (3.7) [0.4335] (0.0003) (0.0024) (7.7) [0.2000]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 54 0.0005 0.0124 23 78.2258 36 0.0007 0.0146 58 269.4971
(0.0002) (0.0036) (16.7) [0.0008] (0.0002) (0.0027) (13.4) [0.0000]

10 61 -0.0002 0.0114 6 55.7091 -29 0.0018 0.0093 36 71.4739
(0.0003) (0.0034) (2.5) [0.0926] (0.0003) (0.0013) (4.7) [0.0041]

11 62 -0.0002 0.0112 6 53.6016 8 0.0020 0.0090 37 60.1299
(0.0002) (0.0034) (2.4) [0.1289] (0.0003) (0.0013) (4.8) [0.0430]

12 62 -0.0002 0.0111 6 51.8898 25 0.0019 0.0082 42 47.2360
(0.0002) (0.0034) (2.2) [0.1659] (0.0003) (0.0012) (5.4) [0.3036]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for separate asset class-

specific intercepts. Standard errors are reported in parentheses and p-values in brackets. Estimation is done

using EL and GMM.
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Table 3.C.2: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α ϕ ELR-test R2

adj(%) α ϕ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: B Bonds and Fama-French 6 portfolios

0 -30 0.0002 -16 30.1955 73 0.0007 73 35.0646
(0.0002) (25.0) [0.0044] (0.0003) (27.1) [0.0008]

10 94 0.0008 23 11.5946 91 0.0009 29 24.9738
(0.0003) (6.0) [0.5611] (0.0004) (6.8) [0.0233]

11 95 0.0006 24 10.4758 94 0.0011 32 24.4029
(0.0003) (6.7) [0.6546] (0.0003) (8.5) [0.0276]

12 92 0.0005 23 11.1154 96 0.0012 34 25.2110
(0.0003) (6.5) [0.6011] (0.0003) (9.3) [0.0217]

Panel A: B Bonds and Fama-French 25 portfolios

0 54 -0.0004 52 78.6597 60 0.0018 61 321.3738
(0.0002) (18.2) [0.0000] (0.0001) (15.3) [0.0000]

10 74 -0.0001 19 68.5008 38 0.0025 38 48.0606
(0.0002) (3.7) [0.0002] (0.0003) (5.7) [0.0340]

11 76 0.0000 20 67.9188 62 0.0024 40 35.1659
(0.0002) (3.7) [0.0002] (0.0003) (6.0) [0.3205]

12 70 0.0000 18 71.0791 67 0.0029 44 30.5687
(0.0002) (3.4) [0.0001] (0.0002) (7.4) [0.5390]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 -6 0.0001 -6 63.2328 61 0.0017 55 273.0204
(0.0002) (21.9) [0.0002] (0.0002) (15.2) [0.0000]

10 56 0.0009 14 56.6896 -24 0.0037 35 51.9830
(0.0003) (4.0) [0.0003] (0.0003) (6.4) [0.0012]

11 51 0.0009 12 58.4329 -9 0.0042 37 38.4378
(0.0002) (3.7) [0.0002] (0.0003) (6.9) [0.0419]

12 52 0.0009 12 58.0225 10 0.0039 41 29.1776
(0.0002) (3.6) [0.0002] (0.0003) (6.5) [0.2566]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 26 -0.0003 22 146.685 54 0.0016 69 356.9325
(0.0002) (15.2) [0.0000] (0.0002) (13.5) [0.0000]

10 38 -0.0002 8 141.4802 -25 0.0039 39 77.4115
(0.0002) (2.5) [0.0000] (0.0003) (4.8) [0.0014]

11 38 -0.0002 8 140.6384 16 0.0041 39 66.0979
(0.0002) (2.3) [0.0000] (0.0003) (4.9) [0.0172]

12 37 -0.0002 8 140.8904 29 0.0041 43 51.9741
(0.0002) (2.2) [0.0000] (0.0003) (5.6) [0.1912]

Note. The table reports the pricing of excess returns of stocks and bonds, allowing for a common intercept.

Standard errors are reported in parentheses and p-values in brackets. Estimation is done using EL and

GMM.
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Table 3.C.3: Expected Excess Returns and Consumption Risk, 1967:Q3-2013:Q4

Empirical Likelihood Generalised Method of Moments

Horizon S R2
adj(%) α ϕ ELR-test R2

adj(%) α ϕ J-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

0 -30 0.0002 -16 30.1955 73 0.0007 73 35.0646
(0.0002) (25.0059) [0.0044] (0.0003) (27.1) [0.0008]

1 50 0.0005 55 19.8352 64 0.0006 50 26.7987
(0.0003) (16.5936) [0.0994] (0.0003) (16.4) [0.0133]

2 3 0.0008 50 15.9515 39 0.0008 45 20.5230
(0.0004) (11.4430) [0.2517] (0.0004) (11.3) [0.0829]

3 27 0.0007 45 14.3198 55 0.0007 40 20.5313
(0.0004) (9.3960) [0.3517] (0.0004) (9.4) [0.0827]

4 -33 0.0004 40 12.6842 16 0.0004 36 18.8278
(0.0003) (7.8412) [0.4725] (0.0003) (7.7) [0.1285]

5 58 0.0004 29 11.8102 42 0.0005 31 19.6120
(0.0003) (6.5887) [0.5433] (0.0003) (6.7) [0.1053]

6 67 0.0004 27 12.0794 53 0.0005 29 20.0162
(0.0003) (6.0256) [0.5211] (0.0003) (6.2) [ 0.0948]

7 61 0.0002 26 11.9012 43 0.0004 28 22.5791
(0.0003) (5.8619) [0.5358] (0.0003) (6.0) [0.0470]

8 89 0.0003 25 12.3113 74 0.0006 29 23.9049
(0.0003) (5.8866) [0.5023] (0.0003) (6.3) [0.0320]

9 95 0.0003 25 13.0312 92 0.0009 29 24.9160
(0.0003) (5.9862) [0.4454] (0.0003) (6.4) [0.0237]

10 94 0.0008 23 11.5946 91 0.0009 29 24.9738
(0.0003) (5.9595) [0.5611] (0.0004) (6.8) [0.0233]

11 95 0.0006 24 10.4758 94 0.0011 32 24.4029
(0.0003) (6.7275) [0.6546] (0.0003) (8.5) [0.0276]

12 92 0.0005 23 11.1154 96 0.0012 34 25.2110
(0.0003) (6.5436) [0.6011] (0.0003) (9.3) [0.0217]

13 86 0.0004 22 11.8978 96 0.0012 35 26.5862
(0.0003) (6.3313) [0.5360] (0.0003) (9.6) [0.0142]

14 85 0.0004 23 11.7044 97 0.0013 42 18.5716
(0.0003) (6.5983) [0.5520] (0.0005) (13.2) [0.1370]

15 79 0.0005 21 13.4734 96 0.0021 43 32.4073
(0.0003) (6.1575) [0.4120] (0.0004) (12.7) [0.0021]

Note. The table reports the pricing of 9 excess bond holding returns and 6 Fama-French portfolios, sorted

on size and book-to-market. We report the results for various values of the horizon parameters S and allow

for a common intercept. Standard errors are reported in parentheses and p-values in brackets. Estimation

is done using EL and GMM.
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