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Abstract

The focus of this thesis are the equilibrium problem under derivative market imbalance, the

sequential analysis problems for some time-inhomogeneous diffusions and multidimensional

Wiener processes, and the first passage times of certain non-affine jump-diffusions.

First, we investigate the impact of imbalanced derivative markets - markets in which not all

agents hedge - on the underlying stock market. The availability of a closed-form representation

for the equilibrium stock price in the context of a complete (imbalanced) market with terminal

consumption allows us to study how this equilibrium outcome is affected by the risk aversion

of agents and the degree of imbalance. In particular, it is shown that the derivative imbalance

leads to significant changes in the equilibrium stock price process: volatility changes from

constant to local, while risk premia increase or decrease depending on the replicated contingent

claim, and become stochastic processes. Moreover, the model produces implied volatility smiles

consistent with empirical observations.

Secondly, we study the sequential hypothesis testing and quickest change-point (disorder)

detection problem with linear delay penalty costs for certain observable time-inhomogeneous

Gaussian diffusions and fractional Brownian motions. The method of proof consists of the

reduction of the initial problems into the associated optimal stopping problems for one-

dimensional time-inhomogeneous diffusion processes and the analysis of the associated free

boundary problems. We derive explicit estimates for the Bayesian risk functions and optimal

stopping boundaries for the associated weighted likelihood ratios and obtain their exact rates

of convergence under large time values.

Thirdly, we study the quickest change-point detection problems for the correlated compo-

nents of a multidimensional Wiener process changing their drift rates at certain random times.

These problems seek to determine the times of alarm which are as close as possible to the

unknown change-point (disorder) times at which some of the components have changed their

drift rates. The optimal times of alarm are shown to be the first times at which the appropri-
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ate posterior probability processes exit certain regions restricted by the stopping boundaries.

We characterize the value functions and optimal boundaries as unique solutions of the associ-

ated free boundary problems for partial differential equations. We provide estimates for the

value functions and boundaries which are solutions to the appropriately constructed ordinary

differential free boundary problems.

Fourthly, we compute the Laplace transforms of the first times at which certain non-affine

one-dimensional jump-diffusion processes exit connected regions restricted by two constant

boundaries. The method of proof is based on the solution of the associated integro-differential

boundary problems for the corresponding value functions. We derive analytic expressions for the

Laplace transforms of the first exit times of the jump-diffusion processes driven by compound

Poisson processes with multi-exponential jumps. The results are illustrated on the constructed

non-affine pure jump analogues of the diffusion processes which represent closed-form solutions

of the appropriate stochastic differential equations.

Finally, we obtain closed-form expressions for the values of generalised Laplace transforms

of the first times at which two-dimensional jump-diffusion processes exit from regions formed by

constant boundaries. It is assumed that the processes form the models of stochastic volatility

with independent driving Brownian motions and independent compound Poisson processes

with exponentially distributed jumps. The proof is based on the solution to the equivalent

boundary-value problems for partial integro-differential operators. We illustrate our results

in the examples of Stein and Stein, Heston, and other jump analogues of stochastic volatility

models.
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Introduction

I. Description of the subject

The main themes of this thesis are the equilibrium problem in mathematical finance under

derivative market imbalance, the sequential analysis problems of mathematical statistics and

the first passage times of non-affine jump-diffusions driven by solvable equations.

The question of how the market of financial derivatives impacts the underlying asset prices

in equilibrium plays an important role in financial economics and mathematical finance. With

the current market of over-the-counter derivatives having outstanding notional amount of more

than ten times that of the world stock market, it is crucial to understand the potential impact

trading in such contracts can have on the stock prices. In standard frictionless (complete)

models of financial markets the introduction of structured financial products does not have an

influence on asset prices in equilibrium - this is due to the fact that derivatives are assumed

to be in zero net supply and long positions can be offset by taking the corresponding short

ones. In reality, however, a lot of the counterparties in such contracts do not hedge them or do

so only infrequently. Effectively, the market in the underlying asset becomes imbalanced - an

extra supply or demand is created which could potentially impact the dynamics of asset prices.

Apart from the intuitive considerations, there has been number of studies supporting the

idea that hedging has an effect on market risk premia and volatility (see e.g. Basak [6] and

Grossman and Zhou [49]). The event that triggered investigations into the impact of dynamic

hedging strategies was the market crash of 1987. The rise of the so-called portfolio insurance

strategies, which guarantee a minimum level of wealth at some horizon, together with auto-

mated trading in the years surrounding the crash, led researchers to study them as a possible

cause for the high volatility during the crash. Moreover, after the crash the implied volatility

started exhibiting the now characteristic smile, suggesting that the Black-Scholes model may

not describe the dynamics of the stock prices accurately. There is still no consensus, however,
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on the magnitude and direction of the market impact and our main motivation here is to pro-

vide a general setting which can account for both increasing/decreasing risk premia and market

volatilities.

In practice, in order to be able to find the equilibrium stock prices in the above problem, we

need to have some externally given quantities (e.g. the dividend growth rate of the underlying

asset) that we have estimated through statistical methods. However, no agent has perfect

information - the dividends contain noise and the growth rate can change without the agent

realizing it. Nevertheless we have to rely on observable data, as it arrives, in order to infer the

true value - this is a problem of statistical sequential analysis.

Sequential analysis problems are concerned with the analysis of data that doesn’t have a

fixed sample size. These problems were initially used in improving industrial quality control

but later numerous applications were found in many real-world systems in which the amount

of observation data is increasing over time (see, e.g. Carlstein et al. [20] for an overview). Two

of the classical problems of this type are the sequential hypothesis testing and quickest change-

point (disorder) detection. In the sequential hypothesis testing problem the aim is to determine

the true value, among two alternatives, for the parameter of some observable quantity. The

problem was first studied for sequences of independent and identically distributed observations

by Wald and Wolfowitz [115, 116]. The problem of quickest change-point detection seeks to

determine a stopping time which is as close as possible to the time of change-point at which the

observable quantity changes its probabilistic properties. Originating from the control charts

introduced by Shewhart [100], different variants of the problem were subsequently developed

(see Page [84]).

In both of the sequential analysis problems described above one faces a tradeoff between min-

imizing the observation time and the error due to noise in the observations. The usual method

of solving these problems, as developed in Mikhalevich [79] and Shiryaev [101, 102, 103, 104],

is to reduce them to optimal stopping problems for Markov processes called sufficient statis-

tics, and then prove verification theorems that characterize the value functions and optimal

stopping boundaries as unique solutions to free boundary problems for ordinary or partial

(integro-)differential operators. In order to carry out the verification arguments additional

conditions are imposed, which guarantee the uniqueness of the solution of the free boundary

problem. The smooth-fit condition was seen to hold for the value functions when the underly-

ing sufficient statistics can leave the continuation region determined by the optimal stopping

boundaries continuously. An extensive treatment of sequential analysis problems and the as-
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sociated optimal stopping theory can be found in the books of Shiryaev [105] and Peskir and

Shiryaev [90].

The link between optimal stopping and free boundary problems led to the availability of

analytic expressions for the solutions of the sequential analysis problems. Nevertheless, even for

simple model specifications (e.g. when the observable is one-dimensional Brownian motion with

changing/unknown constant drift), finding explicit solutions to the associated free boundary

problems is nontrivial and additional relations between the model parameters are often assumed.

Thus, one is often lead to search for estimates of the original value functions and optimal

stopping times, which are easier to compute. Our aim here is to provide verification theorems

and estimates in new and more general models for the observable processes.

Stochastic processes representing solutions to stochastic differential equations are used in

modelling phenomena that exhibit random behaviour. Therefore, in the theory of stochastic

differential equations, it is important to have analytical tractability of the resulting models. A

lot of problems in these models become computationally feasible if probabilistic properties of

the related stochastic processes, such as the probability densities or characteristic functions of

their marginal distributions, have closed-form expressions. Well-known examples can be found,

beginning with the seminal work of Bachélier [5], where he constructed a discrete pre-image

of Brownian motion for the description of the stock prices on a financial market, in Ornstein

and Uhlenbeck [112], where the authors used a mean-reverting process to study velocity of a

massive particle in a fluid under the bombardment by molecules, and in the geometric Brownian

motion proposed by Samuelson [97] for modelling the behavior of financial assets. A recently

popularized general class of tractable models, for which the form of the characteristic function

is known, are the affine processes (see Duffie et al. [33]). An alternative class of continuous

processes that can be used in modelling, and which can be non-affine, are those that satisfy

solvable stochastic differential equations. These equations can be solved explicitly as shown

in Gard [45; Chapter IV] or can be reduced to first-order ordinary differential equations as in

Øksendal [83; Chapter V], and thus provide tractability of the resulting models. Another form

of model tractability comes from the ability to compute the Laplace transforms of the first

passage times of a stochastic process - these are the times at which the process crosses given

values. Knowledge of the Laplace transform of the first passage times gives rise to numerous

applications in engineering (e.g. see Blake and Lindsey [17]) and mathematical finance (see Kou

and Wang [68]). Our objective in the final part of the thesis is to obtain analytic expressions

and, in certain cases, closed-form solutions for these Laplace transforms for non-affine processes
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solving stochastic differential equations, which contain jumps and are extensions of the solvable

class, as well as for certain jump analogues of stochastic volatility models.

II. Historical notes and references

We present here historical notes and references to the relevant literature on the problems solved

in this thesis, by also pointing out the position of our results.

The problem of finding equilibrium on the market is central in economic theory and has

received a lot of attention in mathematical finance recently. The essence of equilibrium is to

regard the asset prices as results of the aggregate trading decisions of rational agents on the

market, that bring the supply and demand in balance. Starting from microeconomic principles

one usually works with agents which have concave preferences, maximize expected consumption

and possess exogenously given income streams (i.e. endowments).

The concept of an economy in equilibrium, by looking at prices as a result of supply and

demand forces, was introduced in Walras [117]. For the first time existence of equilibrium was

proved in a static mathematical framework containing several agents and commodities by Ar-

row and Debreu [4]. The earlier equilibrium models were in discrete-time and extending them

to continuous-time introduced an infinite dimensional problem. This difficulty was overcome

in Karatzas et al. [61, 62, 59] in a continuous-time complete market setting. There the au-

thors present the now standard method of finding equilibrium, by using results from portfolio

optimization (see Karatzas et al. [60]) together with a finite-dimensional fixed point argument

first introduced in Negishi [81]. Numerous extensions to the above classical setting has been

considered - see Karatzas and Shreve [64; Chapter 4] for an overview.

The study of equilibrium with agents that are not pure utility maximizers was motivated

by the emergence of the volatility smile effect after the market crash of 1987 and the possible

influence that dynamic hedging strategies had on the stock price volatility (see Grossman

[47], Grossman and Villa [48] ). In Brennan and Schwarz [18] the effect of portfolio insuring

on the equilibrium stock prices was investigated. The final wealth of a portfolio insurer was

given by a fixed terminal payoff containing an implicit put option on a proportion of the

total market wealth. This lead to increase in market risk premium and (implied) volatilities.

Portfolio insurers were modelled as final wealth utility maximizers having lower bound on wealth

in Grossman and Zhou [49]. Existence of equilibrium prices was proved for logarithmic and

power utility with risk aversion coefficient 1/2. While the main focus of the authors was the
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magnitude of change in market quantities like volatilities and risk premia in different market

states, they provided evidence that market volatility increases. In a related setting Basak [6]

proved existence of equilibrium where the portfolio insurers maximized CRRA utility from

consumption, and had insurance horizon which ended before the terminal market date. The

conclusion was that the market price of risk level stays the same, while the volatility decreases

due to the presence of portfolio insurers, which hinted at the importance of the specification

of agent’s utilities and the market investment horizon (see also Basak [7] for an alternative

modelling of the agents’ utilities).

In equilibrium literature the completeness of the market is often assumed to hold apriori.

However it is more desirable to obtain a complete market as an outcome of equilibrium, which

gives rise to the notion endogenous completeness. Recently a series of papers concentrated in

proving endogenous completeness of equilibrium - see Anderson and Raimondo [2], Hugonnier

et al. [52], Riedel and Hirzberg [94] and Kramkov and Predoiu [70]. The key assumptions in

the above articles are the Markov property of the model primitives (e.g. dividends or market

factors) as well as the real analyticity of the exogenous volatility. In Chapter 1 we prove the

existence of equilibrium and its endogenous completeness in a setting where not all agents

hedge - i.e. some contingent claims are not in zero net supply and the market for them is

imbalanced. We achieve this effect by including a hedging agent in the market that acts as

a risk minimizer and wants to perfectly replicate a contingent claim underwritten to another

agent that is outside of the market and does not hedge. This is more in line with the definition

used in [18] and we have a clear separation of the risk-minimizing and the utility-maximizing

effects on the market prices.

The problems of statistical sequential analysis that we are interested in seek to determine

the distributional properties of continuously observable stochastic processes with minimal costs.

The problem of sequential testing for two simple hypotheses about the drift rate of an observable

Gaussian process is to detect the form of its drift rate from one of the two given alternatives.

In the Bayesian formulation of this problem, it is assumed that these alternatives have an a

priori given distribution. The problem of quickest change-point (disorder) detection for an ob-

servable Gaussian process is to find a stopping time of alarm τ which is as close as possible

to the unknown time of change-point θ at which the local drift rate of the process changes

from one form to another. In the classical Bayesian formulation, it is assumed that the random

time θ takes the value 0 with probability π and is exponentially distributed given that θ > 0.

These problems were originally formulated and solved for sequences of observable independent
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identically distributed random variables (see, e.g. Shiryaev [105; Chapter IV, Sections 1,3]).

The first solutions of the problems in the continuous-time setting were obtained in the case

of observable Wiener processes with constant drift rates (see Shiryaev [105; Chapter IV, Sec-

tions 2 and 4]). The standard disorder problem for observable Poisson processes with unknown

intensities was introduced and solved in Davis [25], under certain restrictions on the model

parameters. Peskir and Shiryaev [88, 89] solved both sequential analysis problems for Poisson

processes in full generality (see also [90; Chapter VI, Sections 23 and 24]). The case of observ-

able compound Poisson processes, in which the unknown characteristics were the intensity and

distribution of jumps, was investigated in Dayanik and Sezer [27, 28]. Other formulations based

on the exponential delay penalty setting were studied in Beibel [12] for a Wiener process and

in Bayraktar and Dayanik [8] for a Poisson process. These problem settings are suitable when

modelling situations in which the costs of delay in disorder detection are not necessarily linear

and another measure of the error due to false alarms is preferable (e.g. continuous compound-

ing of interest rate in financial applications). The classical change-point detection problem for

Poisson processes for various types of probabilities of false alarm and delay penalty costs was

studied in Bayraktar et al. [9]. More general versions of the standard Poisson disorder problem

were solved by Bayraktar et al. [10], where the intensities of the observable processes changed

to unknown values. These problems for observable jump processes were solved by successive

approximations of the value functions of the corresponding optimal stopping problems. This

method was also applied in the solution of the disorder problem for observable Wiener process

in Sezer [99], in which disorder happens at one of the arrival times of an observable Poisson

process. Further extensions of both sequential analysis problems for observable Wiener pro-

cesses were studied in Gapeev and Peskir [41, 42] in the finite horizon setting, and for certain

time-homogeneous diffusions in Gapeev and Shiryaev [43, 44] on infinite time intervals.

In the classical infinite horizon setting for the observable Wiener processes explicit solutions

can be obtained, since the corresponding differential operator is an ordinary one. This fails

to hold in the finite horizon setting, because the corresponding partial differential operator

contains a time derivative. However, in the studies of more realistic models with non-stationary

increments, the equivalent free boundary problem becomes parabolic and no explicit solutions

exist in general, even in the infinite horizon case (see Chapter 2).

Multidimensional versions of the quickest disorder detection problems naturally arise when

one models real-world systems described by several stochastic processes which may have de-

pendent components. Bayraktar and Poor [11] solved the disorder problem for two observable
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independent Poisson processes, in which stopping times were sought as close as possible to the

minimum of the two disorder times. Dayanik et al. [26] solved the disorder problem for ob-

servable multidimensional Wiener and Poisson processes with independent components, which

change their local characteristics simultaneously. The quickest change-point detection problem

for observable multidimensional Wiener process with correlated components that change their

local drift rates at different disorder times is studied in Chapter 3. Possible applications of

the solutions of these quickest detection problems include: assembly line breakdown in plant

production of an item when we aim to detect the minimum of all disorder times (see [11]);

abnormal returns in one of many stocks when we aim to detect just one of the disorder times;

total system breakdown when we aim to detect the maximum of all disorder times.

The method of reducing stochastic differential equations to solvable ones was studied in

Gard [45; Chapter IV], where closed-form strong solutions to a class of stochastic differential

equations with linear coefficients were obtained, by introducing an integrating factor process.

The idea is further developed in Øksendal [83; Chapter V], for equations with general drift

coefficients, which are reduced to the ordinary differential form. Certain reducibility criteria

were provided in Gapeev [38] for diffusions driven by a Wiener process and a Poisson random

measure of a finite intensity. Jump analogues of continuous diffusions satisfying solvable equa-

tions were constructed and shown to have the same support of marginal distributions as the

original processes, making them a suitable modelling alternative. The latter fact was justified

by Iyigunler et al. [54], where simulations studies were provided for this model.

An introduction to the topic of financial modelling with jump-diffusions is provided in

Runggaldier [96], where asset price and term structure models are studied in the context of

pricing and hedging. An extensive overview of Lévy process models with multiple numerical

and empirical examples is given in the book of Cont and Tankov [21]. The general class of affine

processes, which includes Lévy processes, was introduced in Duffie et al. [33]. The logarithm

of the characteristic function of these processes is affine in their initial value and is known in

an analytic form through a solution of a family of ordinary differential equations. This leads

to tractability of the resulting models and makes them suitable for applications to the term-

structure of interest rates (see [33; Chapter 13] and references therein), credit risk (see Duffie

[32]), stochastic volatility (see Kallsen [57]) and option pricing by Fourier methods (see e.g.

Kallsen et al. [58]). Despite the recent focus on affine processes, there are still models that fall

outside this general framework. Some well-known examples are the CEV and SABR models

introduced in Cox [23] and Hagan et al. [50], respectively, and for which model-dependent
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calibration methods are known (see [50]). An overview of both affine and non-affine models for

interest rates can be found in Shiryaev [106; Chapter III, Section 4].

The Laplace transform of the first time to a given drawdown of a Brownian motion with

linear drift and the running maximum stopped at that time was computed by Taylor [110], and

the joint law of those variables was obtained by Lehoczky [74]. Some explicit expressions for

other related characteristics such as the expectation and the density of the maximum drawdown

of the Brownian motion with linear drift were derived by Douady, Shiryaev and Yor [31] and

Magdon-Ismail et al. [76], respectively. More recently, Sepp [98] derived closed-form expressions

for the Laplace transforms of the first hitting time of constant boundaries for double-exponential

jump-diffusion process. Mijatović and Pistorius [78] obtained the laws of the first-passage times

of spectrally positive and negative Lévy processes over constant levels as well as analytically

explicit identities for a number of characteristics of drawdowns and drawups in those models.

III. Contribution of the thesis

Let us now describe the contribution of the thesis to the problems of equilibrium, sequential

analysis and stochastic modelling described above.

We prove the existence of endogenous equilibrium in an imbalanced derivative market

(Chapter 1). We begin by specifying the financial market, which consists of a (representa-

tive) agent that maximizes utility from final wealth and a hedging agent that wants to exactly

replicate the payoff of a given contingent claim. There is a bond and a risky stock that rep-

resents a claim to a dividend at the final trading date. The dividend is the final value of an

exogenously given Markov process. We prove existence of an equilibrium stock price process

that makes the market complete, and provide its local volatility form for utilities having index

of relative risk aversion less than 1. This is in contrast with the constant volatility resulting

from classical equilibrium setting containing only power utility maximizers. By varying the

replicated contingent claim we can obtain any volatility smile shape. Thus we can explain

the presence of volatility smile by the presence of hedgers on the market, confirming one of

the explanations for the Black Monday market crash of 1987. In particular, in comparison to

the usual setting with only a representative agent, hedging strategies corresponding to long

positions in European options lead to higher implied volatility levels at their associated strike

prices, while risk premia increase.
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In order to find the equilibrium stock price process we use results from portfolio optimiza-

tion in complete markets (see [60]), to obtain a guess for the state-price density. Indeed, if

equilibrium exists and the resulting market is complete, the hedger can replicate exactly the

contingent claim and, assuming zero initial wealth, his final wealth will be equal to the con-

tingent claim minus its arbitrage-free price. By market clearance we obtain the final wealth

of the utility-optimizing agent and we use duality results from Kramkov and Schachermayer

[71] to find the state-price density process as conditional expectation of the marginal utility

at the agent’s final wealth. Knowing the state-price density we can obtain the stock price

process again as conditional expectation of the terminal dividend. We find the arbitrage-free

price of the contingent claim as a solution to a fixed point problem. Finally, we prove that the

obtained guess for the stock price process results in complete market by using the recent result

on endogenous completeness in [70].

We consider the two classical problems of sequential analysis in their Bayesian formula-

tions for certain Gaussian processes with non-stationary increments (Chapter 2). We begin

by providing a unifying optimal stopping problem for the likelihood ratio processes, which are

time-inhomogeneous diffusions. This allows us to work with both original problems in a con-

sistent way. We prove a verification theorem and show that the optimal stopping times are the

first times at which the associated likelihood ratios exit from certain regions. Such regions are

restricted by the curved stopping boundaries, which are solutions to the equivalent parabolic

free boundary problems. Since we intend to provide an explicit analysis for the asymptotic rates

of the solutions, we introduce an auxiliary ordinary differential free boundary problem in which

the time variable is a parameter, by removing the time derivative from the initial parabolic

operator. The resulting ordinary differential equation admits an explicit solution, and we can

obtain closed-form estimates for the solutions of the original parabolic problem. We derive

analytic expressions for the optimal boundaries in the auxiliary problem, and specify their ex-

act asymptotic behaviour under large time values. Combining these results with the estimates

of the solutions of the original optimal stopping problem, we can check that the assumption

of the main verification theorem, that the optimal stopping time has finite expectation, is in-

deed satisfied. We demonstrate this in a setting in which the observable process is a fractional

Brownian motion with a constant drift rate. In that case we can reduce the sequential analysis

problems to the original unifying optimal stopping problem for time-inhomogeneous diffusion

processes.

We study the quickest change-point (disorder) detection problem for observable multidi-
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mensional Wiener process (Chapter 3). This problem seeks to determine the times of alarm at

which some of the components of the process change their local drift rates as soon as possible

and with minimal error probabilities. The classical Bayesian formulation of these problems con-

sists of minimization of linear combinations of the probabilities of false alarm and the expected

linear penalty costs in detecting the change-points correctly. It is customary assumed that the

change-point (disorder) times are independent exponentially distributed random variables. Our

setting is closer to the one of [11], since the component disorder times are different, but is more

general in the sense that we observe multiple correlated components.

We begin by reducing the original disorder problem to an optimal stopping problem for a

multidimensional Markov diffusion. The components of the diffusion form a family of posterior

probability processes, corresponding to every subset of disorder times, and play the role of

sufficient statistics for the original disorder problem. When doing the reduction, we use the

ideas from [40], where the filtering equations for the posterior probabilities are derived for two

observable correlated Wiener processes. It is shown that the optimal stopping times are the

first times at which one of the posterior probability processes exits from a region restricted by a

stochastic boundary surface, determined by the current values of the other sufficient statistics.

We formulate the equivalent free boundary problem and prove a verification theorem that

identifies its unique solution with the value function of the optimal stopping problem. The

main complication in our setting arises from the higher dimensions of the sufficient statistics

needed to formulate the optimal stopping problem for a Markov process, due to the presence

of several disorder times. Moreover, the correlation structure of the observable processes has

to be taken into account when deriving the filtering equations. The proof of the verification

theorem uses the change-of-variable formula with local time on surfaces from Peskir [87]. As

we do not have explicit solutions to the free boundary problem, we provide lower estimates for

the value functions, which inherently construct the upper estimates for the stochastic boundary

surfaces, in the case in which we aim to detect the infimum of component disorder times. These

estimates are solutions to free boundary problems for ordinary differential equations.

We introduce an analytically tractable framework in which the Laplace transforms of cer-

tain exit times for non-affine jump analogues of continuous diffusion models can be computed

(Chapter 4). We begin by extending the method of [45; Chapter IV] for finding solvable

stochastic differential equations to a general class of jump-diffusions. By applying a smooth

invertible transformation, the original equation is reduced to a simpler one with linear diffusion

and jump coefficients, and we can choose an appropriate integrating factor process to obtain
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closed-form solutions. Moreover, we construct jump analogues of certain continuous diffusion

models driven by solvable equations, by following the method described in [38]. We provide

examples of reducing solvable equations and constructing their non-affine jump-diffusion ana-

logues for several popular models. Finally, we consider the first times at which non-affine jump

analogues of continuous diffusion models, with compensator measures correspond to compound

Poisson processes, exit from an open interval on the real line. We characterize the integrals of

the Laplace transforms of these exit times as solutions to ordinary differential boundary value

problems, by reducing the integro-differential equation corresponding to the original jump ana-

logue generator. Explicit solutions are provided for the pure jump analogues of the CIR, CEV

and the nonlinear filter models with compensator measures corresponding to a compound Pois-

son process with one-sided exponentially distributed jumps.

We derive closed-form expressions for the generalised Laplace transforms of the first exit

times of the two-dimensional jump-diffusion processes from certain connected regions formed by

constant boundaries (Chapter 5). We consider two-dimensional jump-diffusion processes driven

by independent standard Brownian motions and independent compound Poisson processes

with exponential jumps. We provide closed-form solutions of the partial integro-differential

boundary-value problems associated with the values of the generalised Laplace transforms as

iterated stopping problems for the two-dimensional jump-diffusion processes forming the mod-

els of stochastic volatility. In particular, we derive closed-form expressions for the generalised

Laplace transforms in jump analogues of Stein and Stein and Heston as well as in other stochas-

tic volatility models.

IV. Structure of the thesis

In Section 1.1 we specify our financial market and remark on some useful properties of the

exogenous Markov process that models the dividends. In Section 1.2 we prove the existence of

endogenously complete equilibrium and provide analytic expressions for the equilibrium stock

price drift and diffusion coefficients as well as the optimal portfolio of the representative agent.

Moreover we prove the local volatility form of the stock price process for certain utility functions.

Finally, in Section 1.3, we illustrate our results when the exogenous Markov process modelling

the dividends is of Black-Scholes type, and the representative agent maximizes power utility.

In this simple setting, we show the effect of the replicated contingent claim on the implied

volatility and the market price of risk of the stock.
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In Section 2.1 we formulate a unifying optimal stopping problem for the time-inhomogeneous

diffusion likelihood ratio process and show how this problem arises from the Bayesian sequential

testing and quickest change-point detection settings. We formulate an equivalent free boundary

problem and derive explicit solutions of the auxiliary ordinary free boundary problems which

have the time variable as a parameter. In Section 2.2 we study the asymptotic behavior of

the resulting stopping boundaries under large time values, by means of deriving their Taylor

expansions with respect to the local drift rate of the observable process. In Section 2.3 we

apply these results to models with observable fractional Brownian motions by proving that the

optimal stopping times have finite expectations and, hence, the verification theorem can be

applied to characterize the solutions of the sequential analysis problems.

In Section 3.1 we introduce the setting of the model for the quickest change-point detection

problem for observable multidimensional Wiener processes. We derive stochastic differential

equations for a family of posterior probability processes corresponding to subsets of the disorder

times, by means of generalized Bayes’ formula (see [75; Theorem 7.23]). In Section 3.2 we

construct the associated optimal stopping problem for the posterior probability processes and

formulate the equivalent high-dimensional free boundary problem. The verification theorem

is proved providing characterization of the optimal stopping boundary surface as the unique

solution to the free boundary problem. Finally, in Section 3.3, we provide estimates for the

original solution to the problem of detection of the infimum of all disorder times.

In Section 4.1, we apply the method of [45; Chapter IV] to obtain explicit solutions to

jump-diffusion stochastic differential equations with linear coefficients. Then we follow [83;

Chapter V, Example 5.16] to reduce the equations with general drift and linear diffusion and

jump coefficients to ordinary differential equations that are satisfied pathwise (see also [38]). In

Section 4.2, we extend the class of solvable stochastic differential equations via smooth invertible

transformations, and provide sufficient conditions for their reducibility. We also construct jump

analogues of continuous diffusions and give some examples. In Section 4.3, we show that the

Laplace transforms of the first exit times from a region restricted by two constant boundaries for

certain finite activity pure jump analogues of continuous diffusions can be obtained by solving

ordinary differential equations, and provide explicit solutions for some popular models.

In Section 5.1, we first introduce the setting and notation of the model with a two-

dimensional jump-diffusion Markov process which has the price of the risky asset and the

volatility rate as the state space components. We define the generalised Laplace transforms of

the first times at which the process exits certain regions restricted by constant boundaries. In
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Section 5.2, we obtain a closed-form solution to the partial integro-differential boundary-value

problem under several additional conditions on the parameters of the model. In Section 5.3,

we verify that the resulting solution to the boundary-value problem provides the joint Laplace

transform. The main results of the paper are stated in Theorem 5.3.1.
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Chapter 1

Equilibrium with imbalance of the

derivative market

This chapter is based on joint work with Dr. Albina Danilova.

1.1. Financial market and model primitives

Let (Ω,F ,P) be a probability space rich enough to support a Brownian motion (Wt)t∈[0,T ] and

let (Ft)t∈[0,T ] be its filtration satisfying the usual conditions, where T ≥ 0 is a terminal time.

Consider a financial market consisting of two assets:

� A riskless zero yield bond with maturity T and in total supply of K ∈ R units.

� A risky asset, i.e. a stock with an adapted price process S = (St)t∈[0,T ] , which is in total

supply of 1 unit and represents a time T claim to an exogenously given random dividend.

Both assets are continuously traded on the time interval [0, T ] and we assume that the market

terminates after this time. Let the exogenously given log-dividend process Z = (Zt)t∈[0,T ] be

the unique strong solution of the stochastic differential equation (SDE)

dZt = µZ(t, Zt) dt+ σZ(t, Zt) dWt for t ∈ [0, T ], (1.1.1)

with initial condition Z0 = z0 ∈ R and some functions µZ(t, z) : [0, T ]× R→ R and σZ(t, z) :

[0, T ]× R→ R . Denote by Cb(R) the space of bounded and continuous real-valued functions

on R .
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Assumption 1.1.1. The functions µZ(t, z) and σZ(t, z) satisfy the following conditions:

(C1) Uniform ellipticity: σ2
Z(t, z) is uniformly bounded away from zero, i.e. there exists σ > 0

such that σ2
Z(t, z) ≥ σ on [0, T ]× R.

(C2) Boundedness and analyticity: µZ(t, z) and σ2
Z(t, z) are bounded on [0, T ]×R. The maps

t → µZ(t, ·) and t → σZ(t, ·) from [0, T ] to Cb(R) are analytic on (0, T ), i.e. for all

t ∈ (0, T ) there is a constant ε(t) > 0 and sequences (An(t))n≥0 , (Bn(t))n≥0 in Cb(R)

such that

µZ(s, ·) =
∞∑
n=0

An(t)(s− t)n and σZ(s, ·) =
∞∑
n=0

Bn(t)(s− t)n,

for any s ∈ (0, T ) with |s− t| < ε(t).

(C3) Continuity: µZ(t, z) and σZ(t, z) are uniformly Hölder-continuous in t for all z ∈ R,

and σ2
Z(t, z) is uniformly Hölder-continuous in z for all t ∈ [0, T ]. Moreover, µZ(t, z)

and σZ(t, z) are locally Lipschitz-continuous in z for all t ∈ [0, T ].

Remark 1.1.1. From Theorems 5.3.11 and 5.3.7 in [35] we can see that (C2) and (C3) guar-

antee the existence of a weak solution to (1.1.1) that is pathwise unique up to an explosion time.

From the boundedness in (C2) we get that the explosion time is a.s. infinite (see Chapter IX,

Exercise 2.10 in [93]) and therefore the solution is pathwise unique for all t ∈ [0, T ]. From

Theorem IV.1.1 in [53] it follows that there exists a unique strong solution to (1.1.1) with initial

condition Z0 = z0 ∈ R. Moreover, for any (t, z) ∈ [0, T ] × R, the SDE in (1.1.1) has unique

strong solution Z(t,z) on [t, T ] satisfying P[Z
(t,z)
t = z] = 1.

We use conditions (C1)-(C3) to prove some properties of the marginal distributions of Z

(see Lemma 1.A.1 in the Appendix) and to obtain unique solutions to certain terminal value

(Cauchy) problems with respect to the infinitesimal generator LZ of (t, Zt)t∈[0,T ] . Moreover, we

can apply Theorem 9.2 in [37] to obtain a fundamental solution (see Definition 5.7.9 in [63])

of the partial differential equation (PDE)

LZG(t, z) :=
∂G

∂t
(t, z) + µZ(t, z)

∂G

∂z
(t, z) +

σ2
Z(t, z)

2

∂2G

∂z2
(t, z) = 0, (1.1.2)

for (t, z) ∈ [0, T ) × R. We denote this fundamental solution by p(t1, z; t2, v) where 0 ≤ t1 <

t2 ≤ T and z, v ∈ R.

The analyticity condition in (C2) allows us to use results from [70] on the analiticity of

solutions to Cauchy problems and prove that the volatility of the stock price in our market is
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nonzero a.e. a.s., which will lead to the endogenous completeness of the equilibrium market (see

[69]).

Let us now specify the properties of the stock price processes on the market.

Definition 1.1.1. The stock price process S is admissible if the following conditions are sat-

isfied:

� S is a continuous, strictly positive semimartingale with absolutely continuous finite vari-

ation part, meaning that it satisfies

dSt = St(µtdt+ σtdWt) for t ∈ [0, T ], (1.1.3)

for some Ft -progressively measurable processes (µt)t∈[0,T ] and (σt)t∈[0,T ] such that∫ T

0

|µt|dt <∞,
∫ T

0

σ2
t dt <∞, a.s..

� The equality ST = exp(ZT ) holds.

� The market is complete, i.e. we have that∫ T

0

µ2
t

σ2
t

dt <∞, a.s.,

the process

exp
(
−
∫ t

0

µ2
s

σ2
s

dWs −
1

2

∫ t

0

µ2
s

σ2
s

ds
)
,

is a martingale and σt 6= 0 a.e. a.s..

Remark 1.1.2. It is known from Theorem 7.2 in [29] (see [65, 13] for more recent results) that

the No Free Lunch with Vanishing Risk (NFLVR) property together with the local boundedness

of the stock price process implies its semimartingality. This fact is used in [3] to show that

the boundedness of an agent’s expected utility implies the NFLVR property, and therefore that

the stock price is a semimartingale (see also [15, 73, 65]). The continuity of the stock price

process is a consequence of its local martingality under some equivalent measure change and the

fact that we work in a Brownian filtration. Therefore, the assumption that S is a continuous

1For a discussion as to why the conditions on the stock price process imply this representation, see [64;
Appendix B]
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semimartingale is not too restrictive. Furthermore, the intuitive requirement that the stock price

should be equal to the random dividend at time T , i.e. ST = exp(ZT ), can be justified by the

fact that, otherwise, an obvious arbitrage opportunity exists and NFLVR is not satisfied.

It is reasonable to expect that an admissible stock price process S leads to a complete financial

market, since there is a single source of risk and an asset that allows agents to trade this risk.

Our definition of a complete market follows the one of a standard market in Definition 1.5.1

in [64] together with the characterization of a complete market in Theorem 1.6.6 in [64].

There are two agents trading in the bond and the stock on the financial market – the hedger

and the optimizer. The agents differ in their endowments and portfolio optimization problems.

The hedger wants to replicate a nontraded contingent claim h(ST ), where h(z) : [0,∞) → R
is a payoff function. The optimizer has utility from final wealth u(z) : (0,∞)→ R and wants

to maximize its expectation. In the following definition we specify the admissible portfolios on

the market.

Definition 1.1.2. Let S be an admissible stock price process. An Ft -progressively measurable

process π = (πt)t∈[0,T ] is called a self-financing portfolio process if we have∫ T

0

|πtµt|dt <∞ and

∫ T

0

π2
t σ

2
t dt <∞ a.s., (1.1.4)

and the corresponding wealth process Xπ = (Xπ
t )t∈[0,T ] satisfies

Xπ
t = Xπ

0 +

∫ t

0

πudSu for t ∈ [0, T ], (1.1.5)

for some initial wealth Xπ
0 ∈ R. We define the set Ab of all (self-financing) portfolios with

wealth processes that are bounded from below by a constant b ∈ R as

Ab :=
{
π is a self-financing portfolio process : Xπ

t ≥ b a.s. for t ∈ [0, T ]
}
,

and denote AB :=
⋃
b∈RAb . The portfolio process π will be called admissible if π ∈ AB .

We set the initial endowments (i.e. wealth) of the agents are zero for the hedger and S0 +K

for the optimizer, respectively. The following conditions on the payoff h will be needed:

Assumption 1.1.2.

� h(z) is a continuous function and there exist k, k > 0 such that

h(z) = a1z + b1 for z ∈ [0, k] and h(z) = a2z + b2 for z ≥ k, (1.1.6)

for some a1, a2, b1, b2 ∈ R.



1.1. Financial market and model primitives 23

� h(z) is bounded from below, h 6≡ 0, and the condition

h(z) < z + h0 for z > 0, (1.1.7)

holds for some constant h0 ≥ 0.

� We have that h1 ≤ K − h0 where

h1 := max
(

0,−min
z≥0

h(z)
)
. (1.1.8)

Remark 1.1.3. The assumption that h(z) is linear for small and large z allows us to prove

integrability of certain expressions of the marginal utility (see Lemma 1.A.1 in the Appendix).

The boundedness from below of h(z) guarantees that the hedger will be able to replicate the

claim with an admissible portfolio.

We require that the upper bounds on h(z) and h1 hold, because they guarantee that the

optimizer has a strictly positive final wealth (see Theorem 1.2.1 below). One can easily see this

in the case when the payoff h(z) is nonnegative, since then we have from (1.1.8) that K ≥ h0

and, hence, condition (1.1.7) leads to ST +K > h(ST ), i.e., the total endowment on the market,

which is initially held by the optimizer, is larger than the replicated claim by the hedger.

Let us precisely define the solutions to both agents’ problems.

Definition 1.1.3. Let S be an admissible stock price process.

1. The process π is a solution to the hedger’s problem if π is an admissible portfolio and

the corresponding wealth process Xπ , with Xπ
0 = 0, satisfies Xπ

T = h(ST ) − xh , where

xh ∈ R is the arbitrage-free price of the contingent claim h(ST ) given by

xh = E
[
h(ST ) exp

(
−
∫ T

0

µ2
t

σ2
t

dWt −
1

2

∫ T

0

µ2
t

σ2
t

dt
)]
. (1.1.9)

2. The process π is a solution to the optimizer’s problem if π is an admissible portfolio that

solves the final wealth utility maximization problem

sup
π∈A

E[u(Xπ
T )],

where A :=
{
π ∈ A0 : E[min(0, u(Xπ

T ))] > −∞
}

and the corresponding wealth process

satisfies Xπ
0 = S0 +K .
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Since we want the above utility maximization problem to be well-posed we introduce the

following set of assumptions:

Assumption 1.1.3.

� u(z) is a strictly increasing, strictly concave, C2((0,∞)) function satisfying

lim
z→0+

u′(z) =∞, lim
z→∞

u′(z) = 0 (Inada conditions). (1.1.10)

� The asymptotic elasticity of u(z) is less than 1, meaning that

lim sup
z→∞

zu′(z)

u(z)
< 1. (1.1.11)

� The index of relative risk aversion of u(z) is bounded, i.e.

−zu′′(z)

u′(z)
≤ R for z > 0, (1.1.12)

for some constant R > 0.

Remark 1.1.4. We need the standard assumptions (1.1.10)-(1.1.11) on the utility function

u(z) in order to guarantee the existence of a unique solution to the optimizer’s problem. The

condition (1.1.12) was used in [69] to prove the completeness of the financial market in equi-

librium. In particular, from (1.1.12) we can see that the decreasing function log u′(ez) has

derivative bounded from below by −R and, hence, there exists a constant N > 0 such that

lnu′(ez) < N(1 + |z|). It follows that (see also Lemma 6.1 in [69])

u′(ez) ≤ eN(1+|z|), −u′′(ez) ≤ ReN+(N+1)|z| for z > 0. (1.1.13)

Example 1.1.5. Some payoff functions h(z) that satisfy the above conditions are bounded from

below linear combinations of European call and put options, such that the sum of the coefficients

in front of the call payoffs is at most 1, i.e.

h(z) =
n∑
i=1

αi(z −Ki)
+ + βi(Ki − z)+,

where αi, βi ∈ R and
∑n

i=1 αi ∈ [0, 1] for n ∈ N. For the utility function u(z) we can take

u(z) = log(z) or u(z) = z1−p/(1− p) for p ∈ (0, 1) ∪ (1,∞).

Let us define what is equilibrium in our finite-horizon financial market.
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Definition 1.1.4. Equilibrium in the finite-horizon financial market is a process triple (S, πh, π̂)

such that the stock price process S is admissible, the processes πh and π̂ solve the hedger’s and

optimizer’s problems in Definition 1.1.3, respectively, and the following condition holds:

� Clearing of the stock market:

πh + π̂ = 1 λ([0, T ])⊗ P a.e. a.s., (1.1.14)

where λ([0, T ]) denotes the Lebesgue measure on the interval [0, T ].

Since the wealth processes of both agents are of the form (1.1.5) and their initial wealth is

given, from the clearing of stock market condition it follows:

� Clearing of the bond market:

Xh − πhS + X̂ − π̂S = K λ([0, T ])⊗ P a.e. a.s., (1.1.15)

where we have denoted the hedger’s and optimizer’s wealth processes by Xh = (Xh
t )t∈[0,T ] and

X̂ = (X̂t)t∈[0,T ] respectively.

Remark 1.1.6. Let us comment on the form of condition (1.1.15). The quantities Xh − πhS
and X̂ − π̂S on its left hand side correspond to the wealth of each agent that is invested in

bonds. However, since the bonds have zero yield, these quantities also represent the number of

bonds held by each agent. Since on the right hand side we have the total number of bonds on

the market, the condition (1.1.15) indeed means that the bond market clears, i.e. the supply

and demand of bonds are equal. In combination with (1.1.14) this also leads to the clearing of

the whole market wealth, i.e. Xh + X̂ = S +K a.e. a.s..

Remark 1.1.7. We have assumed, without loss of generality, that the interest rate on the

market is 0. This is due to the fact that the optimizer derives utility only from final wealth at

time T and, therefore, does not have a time preference for money. This means that the price

processes of the bond and the money market account will be constant, and the total amount

invested by the equilibrium economy in the money market account will be equal to K . Actually,

by discounting, we could obtain an equilibrium for any integrable interest rate (see e.g. Chapter

1, Definition 1.3 in [64]).
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While our notion of equilibrium is the classical one, our model is nonstandard, as the market

contains an agent that does not maximize utility – the hedger. The introduction of a hedging

agent in the market allows us to study how equilibrium prices are affected when there are

derivatives which are not in zero net supply, as is the case with the contingent claim h(ST ).

1.2. Main results

In order to find the equilibrium stock price process S we use ideas from portfolio optimization

in complete markets. We describe below the heuristic argument through which we obtain a

guess for the state-price density and, subsequently, the stock price process.

Suppose that equilibrium exists and the resulting market is complete. The hedger can

replicate exactly the contingent claim with final wealth given by Xh
T = h(ST )− xh , where the

constant xh is the arbitrage-free price of h(ST ). Since the market clears at time T , the final

wealth of the optimizer will be X̂T = ST + K − h(ST ) + xh . Now we can use duality results

(e.g. see Theorems 2.0 and 2.2 in [71]) to get that the state-price density process L at time T

is given by

LT =
u′(ST +K − h(ST ) + xh)

E[u′(ST +K − h(ST ) + xh)]
.

If, moreover, L is a martingale, we obtain L at any t ∈ [0, T ) as Lt = E[LT |Ft] . Thus we have

obtained a guess for the state-price density. Finally, if the process LS is a martingale (and

not only a local martingale), we can obtain a guess for the stock price process St by taking

conditional expectation, i.e. LtSt = E[LTST |Ft] for any t ∈ [0, T ).

After obtaining the guess for the stock price process S , what is left is to check that the

resulting market is indeed complete and in equilibrium. However, for this line of reasoning

to work, we need to apriori specify the arbitrage-free price xh of the contingent claim h(ST ),

which, by looking at the form of LT , should satisfy

xh = E[h(ST )LT ] =
E[h(ST )u′(ST +K − h(ST ) + xh)]

E[u′(ST +K − h(ST ) + xh)]
.

Let us first prove a lemma that gives the existence and uniqueness of a solution to the

equation for xh .

Lemma 1.2.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. There exists a constant

xh ≥ −h1 satisfying

E[(xh − h(exp(ZT )))u′(exp(ZT ) +K − h(exp(ZT )) + xh)] = 0, (1.2.1)
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where xh > −h1 if h(z) is not a negative constant, and xh = −h1 otherwise. Moreover, if u(z)

satisfies

−zu′′(z)

u′(z)
≤ 1 for z > 0, (1.2.2)

then the equation (1.2.1) has a unique solution.

Proof. We begin by proving the existence of a solution in the interval [−h1,∞) via an appli-

cation of the intermediate value theorem.

Denote ξ(z) = (z − h(Z))u′(Z + K + z − h(Z)) for z ≥ −h1 , where Z := exp(ZT ). Since

K ≥ h0+h1 and (1.1.7)-(1.1.8) hold, we have that Z+K+z−h(Z) > 0 and ξ(z) is well-defined.

We will first prove that E[ξ(z)] is a continuous function for z ≥ −h1 . Choose z ≥ −h1 and

δ > 0 and let z′ ∈ [−h1, z + δ). Since u′(z) is decreasing and the conditions in (1.1.7)-(1.1.8)

are satisfied, we obtain

|ξ(z′)| ≤
∣∣z′ − h(Z)

∣∣u′(Z +K + z′ − h(Z))

≤ (z + δ + max(h1, h0 + Z))u′(Z + h0 − h(Z)).

From Lemma 1.A.1 in the Appendix we conclude that (z+δ+max(h1, h0 +Z))u′(Z+h0−h(Z))

is an integrable random variable and we have by the dominated convergence theorem

lim
z→z

E[ξ(z)] = E[lim
z→z

ξ(z)] = E[ξ(z)].

Hence E[ξ(z)] is a continuous function for z ≥ −h1 .

Let us now find z ≥ −h1 such that E[ξ(z)] > 0. Since h(z) satisfies (1.1.6)-(1.1.7) and is

bounded from below, we have that

h(z) = akz + bkh0 for z ≥ k,

where ak, bk ∈ R are such that ak ∈ [0, 1] and akk + bkh0 < k + h0 . In particular, h(z) and

h(z) := z + K − h(z) are nondecreasing for z ≥ k . Denoting pk = P
[
Z ∈ [k, k + 1]

]
, from

Lemma 1.A.1 we have pk > 0. Since h(z) satisfies (1.1.7) we also have E[max(h(Z), 0)] <∞ .

Therefore we can choose z ≥ −h1 such that

max

(
sup
z∈[0,k]

h(z) , h(k + 1) +
E[max(h(Z), 0)]

pk

)
< z <∞,
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and we obtain

E [ξ(z)] ≥ E
[
ξ(z)|Z ∈ [k, k + 1]

]
pk + E

[
ξ(z)|Z ≥ k + 1

]
P
[
Z ≥ k + 1

]
≥ (z − h(k + 1))u′

(
z + h(k + 1)

)
pk − u′(z + h(k + 1))E[max(h(Z), 0)]

= u′(z + h(k + 1))
(
(z − h(k + 1))pk − E[max(h(Z), 0)]

)
> 0.

On the other hand, by using (1.1.8) we have

E [ξ(−h1)] =E[(−h1 − h(Z))u′(Z +K − h1 − h(Z))] ≤ 0.

Therefore, by the intermediate value theorem, a solution xh ≥ −h1 to (1.2.1) exists. Notice

that if h is not a negative constant function then there exists an open set A ⊆ R such that

h(z) > −h1 for z ∈ A and from Lemma 1.A.1 it follows that

E [ξ(−h1)] = E[(−h1 − h(Z))u′(Z +K − h1 − h(Z))]

≤ E[(−h1 − h(Z))u′(Z +K − h1 − h(Z))|Z ∈ A]P[Z ∈ A] < 0.

Hence, when h is not a negative constant the solution xh to (1.2.1) satisfies xh > −h1 . If h is

a negative constant then h ≡ −h1 and the solution to (1.2.1) is trivially seen to be xh = −h1 .

We will now show the uniqueness of xh under the condition (1.2.2). To establish this result,

we need to show that ξ′(z) is integrable for z > −h1 and then prove, by differentiating, that

E[ξ(z)] is strictly increasing for z > −h1 .

Differentiating ξ(z) gives

ξ′(z) = u′(Z +K + z − h(Z)) + (z − h(Z))u′′(Z +K + z − h(Z)).

For the first term, by the strict concavity of u and z > −h1 , we have u′(Z +K + z − h(Z)) <

u′(Z + h0 − h(Z)). Therefore, from Lemma 1.A.1, we obtain that u′(Z + K + z − h(Z)) is

bounded by an integrable random variable, and, hence, it is integrable. For the second term,

from the negativity of u′′ and (1.2.2) we have

0 > u′′(Z +K + z − h(Z)) ≥ −u
′(Z +K + z − h(Z))

Z +K + z − h(Z)
,

and therefore

|(z − h(Z))u′′(Z +K + z − h(Z))| ≤ |ξ(z)|
Z +K + z − h(Z)

≤ |ξ(z)|
z + h1

.



1.2. Main results 29

Since z+h1 > 0 and ξ(z) is integrable for z > −h1 , we see that |(z−h(Z))u′′(Z+K+z−h(Z))|
is bounded by an integrable random variable and is therefore integrable. It follows that the

random variable ξ′(z) is integrable for any z > −h1 .

Next, we show that E[ξ(z)] is differentiable and its derivative is strictly positive. Let us fix

z + h1 > δ > 0 and notice that

E

[
sup

z∈(z−δ,z+δ)
|ξ′(z)|

]
≤ E

[
sup

z∈(z−δ,z+δ)
u′(Z +K + z − h(Z))

+
|(z − h(Z))|u′(Z +K + z − h(Z))

Z +K + z − h(Z)

]

≤ E
[
u′(z + h1 − δ) + u′(z + h1 − δ)

z + δ + h(Z)

z + h1 − δ

]
<∞.

By the mean value theorem for any h ∈ (−δ, δ) we get for some θ ∈ (0, 1)∣∣∣∣ξ(z + h)− ξ(z)

h

∣∣∣∣ = |ξ′(z + θh)| ≤ sup
z∈(z−δ,z+δ)

|ξ′(z)| ,

and applying the dominated convergence theorem we get

E[ξ′(z)] = E
[

lim
h→0

ξ(z + h)− ξ(z)

h

]
= lim

h→0

E[ξ(z + h)]− E[ξ(z)]

h
=

d

dz
E[ξ(z)].

Additionally, by using (1.2.2) and the strict negativity of u′′ we get

ξ′(z) = u′(Z +K + z − h(Z)) + (z − h(Z))u′′(Z +K + z − h(Z))

= u′(Z +K + z − h(Z))×

×
(

1 +
(Z +K + z − h(Z)− Z −K)u′′(Z +K + z − h(Z))

u′(Z +K + z − h(Z))

)
> 0,

and therefore for any z > −h1 we obtain

d

dz
E[ξ(z)] = E[ξ′(z)] > 0.

It follows that E[ξ(z)] is strictly increasing in z for z > −h1 and since E[ξ(z)] is continuous

for z ≥ −h1 the solution xh to (1.2.1) is unique in [−h1,∞) under condition (1.2.2).

We are now ready to prove the following theorem, which is the main result of this paper.

Theorem 1.2.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. The stock price process

given by

St :=
E[LT exp(ZT )|Ft]

Lt
for t ∈ [0, T ], (1.2.3)
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is an admissible price process. In the above, the (state-price density) process L is defined as

Lt :=
E[u′(exp(ZT ) +K − h(exp(ZT )) + xh)|Ft]

λ
for t ∈ [0, T ], (1.2.4)

with the constant λ ≥ 0 given by

λ := E
[
u′(exp(ZT ) +K + xh − h(exp(ZT )))

]
, (1.2.5)

and xh being a solution to (1.2.1). Moreover, there exist processes πh and π̂ such that (S, πh, π̂)

is an equilibrium (in the sense of Definition 1.1.4). Finally, if u(z) satisfies (1.2.2) then for

any other equilibrium (S, π(1), π(2)) we have that (S, πh, π̂) = (S, π(1), π(2)) a.e. a.s..

Remark 1.2.2. The condition in (1.2.2), which is satisfied for u(z) = log(z) or u(z) =

z1−p/(1 − p) for 0 < p < 1, is also used in Chapter 4 in [64] to prove the uniqueness of

equilibrium in a standard setting. Moreover, it will be proved in Theorem 1.2.4 below that the

stock price S from (1.2.3) follows a local volatility model if we assume that (1.2.2) holds. In

particular, from (1.2.3)-(1.2.4) and the fact that Z is a Markov process, we will obtain that St

is a deterministic function of t and Zt for any t ∈ [0, T ]. The invertibility of that function

would follow if u satisfies (1.2.2) and h(ST ) is a linear combination of European call and put

option payoffs with nonnegative coefficients.

Remark 1.2.3. In the case of no hedger on the market (i.e. h ≡ 0 and h0 = h1 ), we have

that xh = 0 and the state-price density process from (1.2.4) is given by

Lt =
E[u′(ST )|Ft]
E[u′(ST )]

for t ∈ [0, T ],

which is just the expectation of the marginal utility evaluated at the total market endowment

(we have set K = 0), and in agreement with the known complete market case (see e.g. Chapter

4.5 in [64]).

Proof of Theorem 1.2.1. Let us outline the steps of the proof. First we will show that the stock

price process is admissible. In particular, we will check that the state-price density process L ,

given by (1.2.4), is a martingale and the stock price process S given by (1.2.3) satisfies an SDE

of the form

dSt = St (µtdt+ σtdWt) , (1.2.6)
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for t ∈ [0, T ] , where µ and σ are Ft -progressively measurable processes satisfying σt 6= 0 a.e.

a.s. and ∫ T

0

|µt|dt <∞,
∫ T

0

σ2
t dt <∞,

∫ T

0

µ2
t

σ2
t

dt <∞, a.s.. (1.2.7)

Then, after obtaining the solutions πh and π̂ to the hedger and the optimizer problems given

in Definition 1.1.3, we will check the clearing of the stock market condition from Definition

1.1.4. Finally, we will prove the uniqueness of the equilibrium financial market when (1.2.2) is

satisfied.

First notice that by the definition in (1.2.3) we obtain ST = exp(ZT ). To check that (1.2.6)

and (1.2.7) are satisfied, we will obtain martingale representations for the process L and the

process f defined by

ft := E[LTST |Ft] for t ∈ [0, T ],

and subsequently apply Ito’s formula to f/L . First, observe that for the constant λ defined

in (1.2.5) we have λ ∈ (0,∞). Indeed, by the strict concavity of u(z) on (0,∞) and Lemma

1.A.1 in the Appendix, we have that

E
[
u′(ST +K + xh − h(ST ))

]
≤ E [u′(ST + h0 − h(ST ))] <∞,

E
[
u′(ST +K + xh − h(ST ))

]
> E

[
u′(ST +K + xh + h1)|ST < 1

]
P [ST < 1] ,

> u′(1 +K + xh + h1)P [ST < 1] > 0.

Moreover, if h(z) is not a negative constant we have that xh > −h1 and therefore u′(z +K +

xh − h(z)) ≤ u′(xh + h1) <∞ , while if h is a negative constant we have that xh = −h1 = −K
and h1 > 0, leading to u′(z +K + xh − h(z)) ≤ u′(h1) <∞ for z ≥ 0. Therefore

u′(z +K + xh − h(z)) ≤ u <∞, for z ≥ 0,

where we have denoted the constant u as

u =

u
′(xh + h1), if xh > −h1

u′(h1), if xh = −h1.

The process L is obviously a nonnegative local martingale that is bounded from above by u/λ

and therefore it is a martingale. Since the constant λ defined in (1.2.5) is positive and u is
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strictly concave on (0,∞), by using Lemma 1.A.1 in the Appendix, we see that

E[L2
t ] = E[E[LT |Ft]2] ≤ E[L2

T ] =
E[(u′(ST +K + xh − h(ST )))2]

λ2
<
u2

λ2
<∞,

E[f 2
t ] = E[E[fT |Ft]2] ≤ E[f 2

T ] =
E[(u′(ST +K + xh − h(ST ))ST )2]

λ
<
u2E[S2

T ]

λ2
<∞,

for any t ∈ [0, T ] . Therefore, L and f are square-integrable martingales which we assume,

without loss of generality, to be right-continuous (see Theorem 1.3.13 in [63]). Now we can

apply Theorem 3.4.15 in [63] to L and f to conclude that they are continuous processes and

there exist Ft -progressively measurable processes (σLt )t∈[0,T ] and (σft )t∈[0,T ] such that

E
[∫ T

0

(σLt )2dt

]
<∞, E

[∫ T

0

(σft )2dt

]
<∞, (1.2.8)

and

dLt = σLt dWt, dft = σft dWt for t ∈ [0, T ]. (1.2.9)

Moreover, this representation is unique in the following sense – for any other Ft -progressively

measurable processes σL and σf satisfying (1.2.8)-(1.2.9) we have σL = σL and σf = σf a.e.

a.s. on [0, T ]× Ω.

Noting that u′ is strictly positive and decreasing, the Inada conditions (1.1.10) are satisfied

and the process Z does not have a point mass at ∞ (see Lemma 1.A.1), it follows that L, f

and, consequently, S = f/L are strictly positive processes. We conclude that S is a continuous

process, and, by applying Ito’s formula, we obtain that it is of the form (1.2.6) where µt and

σt are given by

µt =
(σLt )2

L2
t

+
−σLt σ

f
t

Ltft
, σt =

−σLt
Lt

+
σft
ft

for t ∈ [0, T ].

Using the fact that both L and f are continuous and strictly positive processes, the Hölder’s

inequality and (1.2.8), we obtain

∫ T

0

σ2
t dt ≤

∫ T

0

(σLt )2

L2
t

dt+ 2

(∫ T

0

(σLt )2

L2
t

dt

∫ T

0

(σft )2

f 2
t

dt

) 1
2

+

∫ T

0

(σft )2

f 2
t

dt <∞ a.s.,

∫ T

0

|µt|dt =

∫ T

0

|σtσLt |
Lt

dt ≤
(∫ T

0

σ2
t dt

∫ T

0

(σLt )2

L2
t

dt

) 1
2

<∞ a.s.,∫ T

0

µ2
t

σ2
t

dt =

∫ T

0

(σLt )2

L2
t

dt <∞ a.s..
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Let us now prove that σt is a.e. a.s. nonzero by providing a Markovian form for the processes

L and f . Since µZ and σZ satisfy conditions (C1)-(C3), and u′(ez +K+xh−h(ez)) < u <∞
for z ∈ R , we can apply Theorem 9.3 in [37] to obtain that there exists a solution L(t, z) ∈
C1,2 ([0, T )× R) ∩ C ([0, T ]× R) to the PDE in (1.1.2) with the terminal condition

L(T, z) =
1

λ
u′(ez +K + xh − h(ez)) for z ∈ R. (1.2.10)

Moreover, from Theorem 2.10 in [37], this solution is unique in the class of functions satisfying

the growth condition |L(t, z)| ≤ c1 exp(c2z
2) for some positive constants c1 and c2 . Further-

more, the solution has the form

L(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)u′(ev +K + xh − h(ev))dv for (t, z) ∈ [0, T )× R, (1.2.11)

where p is the fundamental solution defined in Remark 1.1.1.

We want to find a Feynman-Kac representation for L(t, z) and, therefore, we need to obtain

some bounds on it. From (1.2.11) we obtain the uniform bound L(t, z) ≤ u/λ for (t, z) ∈
[0, T ) × R . Moreover, from (C1)-(C3) the martingale problem for µZ and σ2

Z is well-posed

and the corresponding family of measures on the canonical space {Pt,z : (t, z) ∈ [0, T ] × R} is

strongly Markov (see Theorem 7.2.1 in [109]). In particular, from Corollary 5.4.8 in [63] we

have that Pt,z = P(Z(t,z))−1 and, therefore, for any nonnegative function g : R→ [0,∞) we get

Et,z[g(X(T ))] = E[g(Z
(t,z)
T )], (1.2.12)

where X is the coordinate process on the canonical space. Hence, by (C2)-(C3) and the fact

that L(T, z) > 0, we can apply (1.2.12) and the Feynman-Kac representation of Theorem 5.7.6

in [63], to obtain that L(t, z) has the form

L(t, z) =
1

λ
E
[
u′
(

exp(Z
(t,z)
T ) +K + xh − h

(
exp(Z

(t,z)
T )

))]
=

1

λ
Et,z

[
u′
(
exp(XT ) +K + xh − h (exp(XT ))

)]
for (t, z) ∈ [0, T )× R,

where X is the coordinate process on the canonical space. Since the family of measures on the

canonical space {Pt,z : (t, z) ∈ [0, T ] × R} is Markov, by using Lemma 1.A.2 in the Appendix

and (1.2.12), we get

L(t, Zt) =
1

λ
E
[
u′
(

exp(Z
(0,z0)
T ) +K + xh − h

(
exp(Z

(0,z0)
T )

))∣∣∣Ft]
=

1

λ
E[u′(ST +K + xh − h(ST ))|Ft] = Lt for t ∈ [0, T ].

2Strictly speaking, the solution exists on a strip [0, T ′] with T ′ = min{T, c/a2} , where c is a positive
constant depending only on µZ and σZ , and a1, a2 are positive constants such that L(T, z) ≤ a1 exp(a2z

2).
Since L(T, z) is bounded we can choose a2 arbitrarily small so that T ′ = T .
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By using (C1)-(C3) we can apply Theorem 2.11 in [37] to obtain that p(t1, z; t2, v) > 0 and,

since u′(ev + K + xh − h(ev)) > 0 for all v ∈ R , from (1.2.10) and (1.2.11) we also get that

L(t, z) > 0 for (t, z) ∈ [0, T ]× R .

Now we can apply the Ito’s formula to the function L(t, z) to obtain

dLt = dL(t, Zt) = σL(t, Zt)dWt for t ∈ [0, T ), (1.2.13)

where σL(t, z) is given by

σL(t, z) = σZ(t, z)
∂L

∂z
(t, z) (1.2.14)

=
σZ(t, z)

λ

∫ +∞

−∞

∂p

∂z
(t, z;T, v)u′(ev +K + xh − h(ev))dv for (t, z) ∈ [0, T )× R.

The interchange of differentiation and integration in (1.2.14) is justified by using the bounds on

the first derivative of the fundamental solution p from Theorem 9.2 in [37] and the dominated

convergence theorem.

By using similar arguments as above, since ezu′(ez +K + xh − h(ez)) < ezu ≤ a1 exp(a2z
2)

with a1, a2 positive constants and a2 arbitrarily small, we obtain that there exists a unique

solution f(t, z) ∈ C1,2 ([0, T )× R) ∩ C ([0, T ]× R) to the PDE in (1.1.2) with the terminal

condition

f(T, z) =
ez

λ
u′(ez +K + xh − h(ez)) for z ∈ R, (1.2.15)

satisfying the growth condition |f(t, z)| ≤ c1 exp(c2z
2) for some constants c1, c2 > 0, and

having the form

f(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)evu′(ev +K + xh − h(ev))dv for (t, z) ∈ [0, T )× R. (1.2.16)

By using (C1)-(C3) we can apply Theorem 9.2 in [37] to obtain the bound

p(t, z;T, v) ≤ C√
T − t

exp

(
−c(v − z)2

T − t

)
,

for some constants C, c > 0. Therefore from (1.2.16), by using change of variables and the fact

that for any (t, v) ∈ [0, T )× R and any constant c > 0

c v2 − v
√
T − t+

T

4c
≥ c v2 − v

√
T − t+

T − t
4c

=

(
v
√
c−
√
T − t
2
√
c

)2

≥ 0,
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it follows that

f(t, z) ≤ u

λ

∫ +∞

−∞

C√
T − t

exp

(
v − c(v − z)2

T − t

)
dv

=
Cuez

λ

∫ +∞

−∞
ev
√
T−t−cv2dv ≤ Cuez+

T
4c

λ

∫ +∞

−∞
e(c−c)v2dv.

By choosing the constant c such that c < c holds we get that f(t, z) ≤ const ez ≤
const exp(c̃ z2 + 1/(4c̃)) for any constant c̃ > 0. Hence again, by (C2)-(C3) and the fact

that f(T, z) > 0, we can apply a Feynman-Kac representation (see Theorem 5.7.6 in [63])

together with Problem 5.7.7 in [63], to obtain that f(t, z) has the form

f(t, z) =
1

λ
E
[

exp(Z
(t,z)
T )u′

(
exp(Z

(t,z)
T ) +K + xh − h

(
exp(Z

(t,z)
T )

))]
=

1

λ
Et,z

[
exp(XT )u′

(
exp(XT ) +K + xh − h (exp(XT ))

)]
for (t, z) ∈ [0, T )× R.

and, by analogy to the case for L(t, z), we get

f(t, Zt) =
1

λ
E[STu

′(ST +K + xh − h(ST ))|Ft] = ft for t ∈ [0, T ].

From (1.2.15) and (1.2.16), as in the case for L(t, z), we also get f(t, z) > 0 for (t, z) ∈ [0, T ]×R
since evu′(ev +K + xh − h(ev)) > 0 for all v ∈ R .

Applying Ito’s formula to the function f(t, z) we get

d ft = d f(t, Zt) = σf (t, Zt)dWt for t ∈ [0, T ), (1.2.17)

where σf (t, z) is given by

σf (t, z) = σZ(t, z)
∂f

∂z
(t, z) (1.2.18)

=
σZ(t, z)

λ

∫ +∞

−∞

∂p

∂z
(t, z;T, v)evu′(ev +K + xh − h(ev))dv for (t, z) ∈ [0, T )× R,

and the interchange of differentiation and integration is justified as in (1.2.14).

The equations (1.2.13)-(1.2.14) and (1.2.17)-(1.2.18), apart from providing analytic expres-

sions for the SDE coefficients, give us martingale representations for the processes Lt and ft

for t ∈ [0, T ). Comparing (1.2.9) with (1.2.13) and (1.2.17), by using the uniqueness of σL and

σf , we get that σLt = σL(t, Zt) and σft = σf (t, Zt) a.e. a.s. on [0, T ) × Ω. In particular, we

have µt = µ(t, Zt) and σt = σ(t, Zt) a.e. a.s. on [0, T )× Ω, and

dSt = St (µ(t, Zt)dt+ σ(t, Zt)dWt) , (1.2.19)
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for t ∈ [0, T ), where µ(t, z) and σ(t, z) are given by

µ(t, z) =
σ2
L(t, z)

L2(t, z)
+
−σL(t, z)σf (t, z)

L(t, z)f(t, z)
, σ(t, z) =

−σL(t, z)

L(t, z)
+
σf (t, z)

f(t, z)
, (1.2.20)

for (t, z) ∈ [0, T )× R .

Note that to prove that σt is a.e. a.s. nonzero it is enough to show that σ(t, Zt) is a.e. a.s.

nonzero because σt = σ(t, Zt) a.e. a.s. on [0, T )× Ω. For this purpose, we will check that our

setting satisfies the conditions (A1)-(A3) from Section 2 in [70].

From (C3) we have that σZ(t, z) is continuous and from (C1) it follows that σZ(t, z) doesn’t

change sign. Therefore from (C1) we have for z1, z2 ∈ R and t ∈ [0, T ]

|σ2
Z(t, z1)− σ2

Z(t, z2)| = |σZ(t, z1)− σZ(t, z2)||σZ(t, z1) + σZ(t, z2)| ≥ 2σ |σZ(t, z1)− σZ(t, z2)|,

and from (C3) it follows that σZ(t, z) is also uniformly Hölder-continuous in z . From this and

the conditions (C1)-(C3) we see that condition (A1) in [70] is satisfied. Moreover, by using

(1.1.13), the functions ez and u′(ez + K + xh − h(ez)) satisfy condition (A2). In our case

condition (A3) is trivially satisfied because all functions in its statement are identically zero

in our setting. We also note that the filtration considered in [70] is the (augmented) filtration

generated by the exogenously given process Z , but from Lemma 1.A.2 in the Appendix this

filtration coincides with (Ft)t∈[0,T ] . Now we can apply Lemma 4.3 in [70] to obtain that the

functions L(t, z) and f(t, z) coincide with the functions that are solutions to the two Cauchy

problems from Lemma 4.1 in [70]. Rewriting (1.2.20) as

σ(t, z) =
−σL(t, z)

L(t, z)
+
σf (t, z)

f(t, z)
=

σZ(t, z)

L(t, z)f(t, z)

(
L(t, z)

∂f

∂z
(t, z)− f(t, z)

∂L

∂z
(t, z)

)
,

and using Lemma 4.2 in [70], the continuity of L(t, z) and f(t, z) and the fact that σZ(t, z)

is bounded away from 0, we get that σ(t, z) is a.e. a.s. nonzero with respect to the Lebesgue

measure on [0, T ) × R . Since the law of Zt is equivalent to the Lebesgue measure on R for

t ∈ [0, T ] , it follows that σ(t, Zt) is a.e. a.s. nonzero. Therefore we conclude that S is an

admissible stock price process.

Since the stock price process S is admissible and u(z) satisfies the asymptotic elasticity

condition (1.1.11), we can use the results on portfolio optimization from [71] in order to find

the wealth process of the optimizer X̂ . Indeed, comparing Definition 1.1.2 with the definitions

of complete market in [51], by using that S is a martingale under the equivalent measure Q
with Radon-Nikodym derivative dQ

dP = LT , we obtain from the theorem of [51] that the set of
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equivalent martingale measures is a singleton. Therefore, denoting the inverse of u′(z) as I(z),

we can apply Theorems 2.0 and 2.2 (i) in [71] to get

X̂T = I
(
λLT

)
, (1.2.21)

LtX̂t = E[LT X̂T |Ft] for t ∈ [0, T ], (1.2.22)

where λ is the unique solution for z to the equation X̂0 = E[LT I(zLT )]. By using the definition

of L and λ in (1.2.4) and (1.2.5), and the fact that xh solves (1.2.1) we get

E[LT I(λLT )] =
1

λ
E[u′(ST +K + xh − h(ST ))I(u′(ST +K + xh − h(ST )))]

=
1

λ
E[u′(ST +K + xh − h(ST ))(ST +K + xh − h(ST ))]

=
1

λ
E[u′(ST +K + xh − h(ST ))(ST +K)] = E[LT (ST +K)] = S0 +K = X π̂

0 ,

and this means that λ = λ . Therefore, by evaluating (1.2.4) at time T and substituting in

(1.2.21), we get

X̂T = ST +K + xh − h(ST ), (1.2.23)

and from (1.2.22) we can obtain X̂ for all t ∈ [0, T ). From the fact that L is bounded we can

see that Assumption 3.2.2 in [64] holds. Moreover, since the utility function u satisfies (1.1.10)

and (1.1.11) we can apply Theorems 2.0 (iii) and 2.2 (i) in [71] to obtain that E[LT I(yLT )] is

continuous for y > 0 and, therefore, Assumption 3.7.2 in [64] also holds. Hence, we can apply

Theorem 3.7.6 (iii) in [64] to obtain the unique a.e. a.s. solution π̂ to the optimizer’s problem

in Definition 1.1.3 through a martingale representation of the process LX̂ .

Consider the portfolio process πh := 1 − π̂ and let us check that πh solves the hedger’s

problem as specified in Definition 1.1.3. From (1.1.5) we obtain

Xh
t =

∫ t

0

(1− π̂u)dSu = St − S0 − X̂t + S0 +K = St −X π̂
t +K, (1.2.24)

for t ∈ [0, T ] and by using (1.2.23) it follows that

Xh
T = h(ST )− xh. (1.2.25)

Now, since S and X̂ are martingales under the measure Q , from (1.2.24) we have that Xh is

also a Q-martingale. Therefore, by using (1.2.25) we get

Xh
t = EQ[Xh

T |Ft] = EQ[h(ST )− xh|Ft] ≥ −xh − h1 for t ∈ [0, T ],
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so that πh ∈ A−xh−h1 and, hence, πh ∈ AB . Therefore, since xh satisfies (1.1.9) by definition,

we have that πh solves the hedger’s problem.

Now we will prove the uniqueness of the hedger’s portfolio πh for the admissible stock price

process S . Assume there is another process π̃h ∈ AB such that the corresponding wealth

process X h̃ satisfies X h̃
T = h(ST )− xh with X h̃

0 = 0. Since E[X h̃
TLT ] = 0 = X h̃

0 it follows that

LX h̃ is a martingale. Therefore

X h̃
t = EQ[X h̃

T ] = EQ[(ST +K −X π̂
T )LT ] = St −X π̂

t +K for t ∈ [0, T ],

and from (1.2.24) we have X h̃ ≡ Xh . In particular we have∫ t

0

πhudSu = Xh
t = X h̃

t =

∫ t

0

π̃hudSu for t ∈ [0, T ]. (1.2.26)

Notice that Xh is a square-integrable Q-martingale because for any t ∈ [0, T ] we have

EQ[(Xh
t )2] = EQ[EQ[Xh

T |Ft]2] ≤ EQ[(Xh
T )2] = E[LT (Xh

T )2]

=
E[u′(ST +K + xh − h(ST ))(h(ST )− xh)2]

λ
<
uE[(max(h1, ST + h0) + |xh|)2]

λ
<∞.

Hence from the fact that πh and π̃h satisfy (1.2.26), applying Lemma 1.A.3 in the Appendix,

we have that ∫ T

0

(πht − π̃ht )2 dt = 0 a.s.,

and the optimal hedger’s portfolio πh is unique a.e. a.s.. By the definition of πh we conclude

that the stock market clears and, therefore, the triple (S, πh, π̂) is an equilibrium.

Let us now prove the uniqueness of the equilibrium market under condition (1.2.2). Assume

that there exists an equilibrium (S, π(1), π(2)) and denote the corresponding wealth processes of

the hedger and the optimizer by X(1) and X(2) , respectively. Denote the corresponding unique

equivalent local martingale measure by Q and its density process with respect to P by L . By

the definition of admissibility we know that the process L is a martingale with L0 = 1, and we

have ST = exp(ZT ) = ST .

At time T we know that X
(1)
T = h(ST ) − xh , where xh is given by xh = E[h(ST )LT ] . By

market clearance at time T we have X
(2)
T = ST +K−h(ST ) +xh . Applying the duality results

from [71], as in (1.2.21), we get that X
(2)
T = I(λLT ) for a constant λ > 0, and we also obtain

that LX(2) is a martingale. This leads to

λLT = u′
(
ST +K − h(ST ) + xh

)
, (1.2.27)
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where, by using that L is a martingale and taking expectations, we have that the constant

λ > 0 is given by

λ = E
[
u′(ST +K − h(ST ) + xh)

]
. (1.2.28)

Since X(1) is the wealth process corresponding to the hedger’s portfolio π(1) , from (1.1.5),

we know that X(1) is a local martingale under Q , and, since it is bounded from below, it is in

fact a Q-supermartingale. Therefore, by using that EQ[X
(1)
T ] = EQ[h(ST )− xh] = 0 = X

(1)
0 , it

follows that LX(1) is in fact a martingale.

Market clearance implies St = X
(1)
t + X

(2)
t − K for all t ∈ [0, T ] , and, therefore, LS is a

martingale. Hence, taking into account that X
(2)
0 = S0 +K and ST = ST we obtain

E[(ST +K)u′(ST +K − h(ST ) + xh)] = E[(ST +K)λLT ] = λ(S0 +K) = λX
(2)
0 (1.2.29)

= E[X
(2)
T λLT ] = E[X

(2)
T u′

(
ST +K − h(ST ) + xh

)
].

From (1.2.29) it follows that x satisfies (1.2.1). Moreover it is clear that x ≥ −h1 since

otherwise E[ξ(x)] < 0. Now since (1.2.1) has a unique solution in [−h1,∞) under condition

(1.2.2) it follows that x = xh . Using (1.2.5) and (1.2.28) we get

λ = E[u′(ST +K + xh − h(ST ))] = λ. (1.2.30)

Finally, taking expectations in (1.2.27) and using (1.2.30) we obtain

Lt =
E[u′(ST +K + xh − h(ST ))|Ft]
E[u′(ST +K + xh − h(ST ))]

= Lt,

and

St =
E[LTST |Ft]

Lt
=

E[LTST |Ft]
Lt

= St, (1.2.31)

for t ∈ [0, T ] and uniqueness follows.

In the following corollary, which directly follows from the proof above, we give the Markovian

form of the SDE satisfied by the stock price process S . The analytic expressions will be used

later, when we discuss specific examples.

Corollary 1.2.1. Under the assumptions of Theorem 1.2.1 the equilibrium stock price process

S satisfies the SDE

dSt = St (µ(t, Zt)dt+ σ(t, Zt)dWt) , (1.2.32)
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where the functions µ(t, z) and σ(t, z) are given by

µ(t, z) =
σ2
L(t, z)

L2(t, z)
+
−σL(t, z)σf (t, z)

L(t, z)f(t, z)
, σ(t, z) =

−σL(t, z)

L(t, z)
+
σf (t, z)

f(t, z)
, (1.2.33)

with

L(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)u′(ev +K + xh − h(ev))dv, (1.2.34)

f(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)evu′(ev +K + xh − h(ev))dv, (1.2.35)

σL(t, z) = σZ(t, z)
∂L

∂z
(t, z) =

σZ(t, z)

λ

∫ +∞

−∞

∂p

∂z
(t, z;T, v)u′(ev +K + xh − h(ev))dv, (1.2.36)

σf (t, z) = σZ(t, z)
∂f

∂z
(t, z) =

σZ(t, z)

λ

∫ +∞

−∞

∂p

∂z
(t, z;T, v)evu′(ev +K + xh − h(ev))dv, (1.2.37)

for (t, z) ∈ [0, T )× R. Moreover Lt = L(t, Zt) and LtSt = f(t, Zt) for t ∈ [0, T ).

We can also obtain analytic expressions for the portfolios of both agents and the corre-

sponding wealth processes.

Corollary 1.2.2. Under the assumptions of Theorem 1.2.1 the wealth process of the optimizer

X̂ satisfies X̂t = X(t, Zt)/L(t, Zt) where

X(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)(ev +K + xh − h(ev))u′(ev +K + xh − h(ev))dv, (1.2.38)

for (t, z) ∈ [0, T )×R. The portfolio of the optimizer π̂ satisfies π̂t = π̂(t, Zt) and the function

π̂(t, z) is given by

π̂(t, z) =
σ̂(t, z)X(t, z)

σ(t, z)f(t, z)
, (1.2.39)

where

σ̂(t, z) =
−σL(t, z)

L(t, z)
+
σX(t, z)

X(t, z)
, (1.2.40)

σX(t, z) =
σZ(t, z)

λ
× (1.2.41)

×
∫ +∞

−∞

∂p

∂z
(t, z;T, v)(ev +K + xh − h(ev))u′(ev +K + xh − h(ev))dv,

for (t, z) ∈ [0, T )× R.
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Proof. By using that the process X := LX̂ is a martingale and following the same reasoning

as for the process LS in the proof of Theorem 1.2.1, we get that Xt = X(t, Zt) for t ∈ [0, T ]

where the function X(t, z) ∈ C1,2 ([0, T )× R)∩C ([0, T ]× R) is solution to the PDE in (1.1.2)

with terminal condition

X(T, z) =
ez +K + xh − h(ez)

λ
u′(ez +K + xh − h(ez)),

and has the form

X(t, z) =
1

λ

∫ +∞

−∞
p(t, z;T, v)(ev +K + xh − h(ev))u′(ev +K + xh − h(ev))dv,

for (t, z) ∈ [0, T )× R . Applying Ito’s formula to the function X(t, z) we get

dXt = dX(t, Zt) = σX(t, Zt)dWt for t ∈ [0, T ), (1.2.42)

where σX(t, z) is given by

σX(t, z) = σZ(t, z)
∂X

∂z
(t, z) (1.2.43)

=
σZ(t, z)

λ

∫ +∞

−∞

∂p

∂z
(t, z;T, v)(ev +K + xh − h(ev))u′(ev +K + xh − h(ev))dv,

for (t, z) ∈ [0, T )× R . Since X̂ = X/L by applying Ito’s formula we obtain

dX̂t = X̂t (µ̂(t, Zt)dt+ σ̂(t, Zt)dWt) for t ∈ [0, T ), (1.2.44)

where µ̂(t, z) and σ̂(t, z) are given by

µ̂(t, z) =
σ2
L(t, z)

L2(t, z)
+
−σL(t, z)σX(t, z)

L(t, z)X(t, z)
, σ̂(t, z) =

−σL(t, z)

L(t, z)
+
σX(t, z)

X(t, z)
, (1.2.45)

for (t, z) ∈ [0, T )×R . Comparing (1.2.44) and (1.1.5), by using (1.2.32) and the fact that X is

a square-integrable martingale (with a right-continuous modification), we can apply Theorem

3.4.15 in [63] to get that π̂t = π̂(t, Zt) a.e. a.s. on [0, T )×Ω where the function π̂(t, z) is given

by

π̂(t, z) =
σ̂(t, z)X(t, z)

σ(t, z)f(t, z)
for (t, z) ∈ [0, T )× R.

Now we will prove the local volatility form of the equilibrium stock price process under

the condition (1.2.2). For this purpose we will assume that µZ(t, z) and σZ(t, z) satisfy the

following additional conditions:
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Assumption 1.2.1.

(D1) Differentiability: µZ(t, z) is once differentiable and σ2
Z(t, z) is twice differentiable in z

on [0, T ]× R.

(D2) Boundedness: ∂µZ
∂z

(t, z),
∂σ2
Z

∂z
(t, z) and

∂2σ2
Z

∂z2
(t, z) are bounded on [0, T ]× R.

(D3) Continuity: ∂µZ
∂z

(t, z),
∂σ2
Z

∂z
(t, z) and

∂2σ2
Z

∂z2
(t, z) are continuous in t for t ∈ [0, T ] and

locally Hölder-continuous in z on [0, T ]× R.

Theorem 1.2.4. Let the Assumptions 1.1.1, 1.1.2, 1.1.3 and 1.2.1 hold. Suppose that the

optimizer’s utility u(z) satisfies (1.2.2) and h(z) is of the form

h(z) =
n∑
i=1

αi(z −Ki)
+ + βi(Ki − z)+ (long puts and calls),

where αi, βi ≥ 0 and max(αi, βi) > 0 for 1 ≤ i ≤ n for some n ∈ N, and 0 < K1 < K2 <

· · · < Kn <∞. Then the function f(t, z)/L(t, z) has an inverse g(t, s) w.r.t. z and the SDE

satisfied by the stock price process St is in the local volatility form

dSt = St (µ(t, g(t, St))dt+ σ(t, g(t, St))dWt) for t ∈ [0, T ).

Proof. We will prove that for any t ∈ [0, T ) the stock price St is strictly increasing function of

Zt and the result will follow from (1.2.32).

Recall from Theorem 1.2.1 and Corollary 1.2.1 that

St =
E[LTST |Ft]

Lt
=
f(t, Zt)

L(t, Zt)
for t ∈ [0, T ], (1.2.46)

where L(t, z) and f(t, z) are the unique solutions of the PDE

∂G

∂t
(t, z) + µZ(t, z)

∂G

∂z
(t, z) +

σ2
Z(t, z)

2

∂2G

∂z2
(t, z) = 0 for (t, z) ∈ [0, T )× R, (1.2.47)

in the class of functions satisfying the growth condition |G(t, z)| ≤ c1 exp(c2z
2) for some con-

stants c1, c2 > 0, with the final conditions

L(T, z) =
1

λ
u′(ez +K + xh − h(ez)), f(T, z) =

ez

λ
u′(ez +K + xh − h(ez)), (1.2.48)

for z ∈ R , where the constant λ > 0 is given by (1.2.5). In what follows we will prove that

L(t, z) is decreasing function in z and f(t, z) is strictly increasing function in z for t ∈ [0, T ] .
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Consider K = {logK1, . . . , logKn} and notice that L(T, z) and f(T, z) belong to the class

C(R) ∩ C1(R \ K). Using that h(z) is nonnegative we obtain from (1.1.8) that h1 = 0 and

therefore K := K − h0 ≥ h1 = 0 and xh > 0. Notice that since h(z) < z + h0 for z > 0 (from

condition (1.1.7)) we have
∑n

i=1 αi ≤ 1. Hence, denoting

γj =

(
1−

j∑
i=1

αi +
n∑

i=j+1

βi

)
, δj =

j∑
i=1

(αi + βi)Ki,

for 0 ≤ j ≤ n , we have that γ0 > 1, δ0 = 0, γj ≥ 0 and δj > 0 for 1 ≤ j ≤ n . Differentiating

the final conditions in (1.2.48) we get

∂L

∂z
(T, z) =

γje
z

λ
u′′(γje

z +K + xh + δj), (1.2.49)

∂f

∂z
(T, z) =

ez

λ

(
γje

zu′′(γje
z +K + xh + δj) + u′(γje

z +K + xh + δj)
)
, (1.2.50)

for z ∈ (logKj, logKj+1) and 0 ≤ j ≤ n , with the convention K0 = 0 and Kn+1 = +∞ . Since

u is strictly concave and γj ≥ 0 for 0 ≤ j ≤ n , from (1.2.49) we have that L(T, z) is decreasing

for z ∈ R , and since γ0 > 1 we have that L(T, z) is strictly decreasing for z ∈ (−∞, log h1).

From (1.2.2), the strict concavity of u and the fact that K + xh + δj > 0 and γj ≥ 0, we have

that

γje
zu′′(γje

z +K + xh + δj) + u′(γje
z +K + xh + δj)

> (γje
z +K + xh + δj)e

zu′′(γje
z +K + xh + δj) + u′(γje

z +K + xh + δj) ≥ 0.

Therefore from (1.2.50) we get that f(T, z) is strictly increasing for z ∈ R . Moreover, by using

(1.1.13), we have that there exist constants N1, N2, N3, N4 > 0 such that

|L(t, z)| ≤ eN1(1+|z|), |f(t, z)| ≤ eN2(1+|z|) for z ∈ R,∣∣∣∣∂L∂z (T, z)

∣∣∣∣ ≤ eN3(1+|z|),

∣∣∣∣∂f∂z (T, z)

∣∣∣∣ ≤ eN4(1+|z|) for z ∈ R \ K.

Therefore, since Assumption 1.2.1 holds, we can apply Lemma 1.A.4 in the Appendix to obtain

that L(t, z) is strictly decreasing and f(t, z) is strictly increasing in z for t ∈ [0, T ). So there

exists a function g(t, s) which is the inverse of f(t, z)/L(t, z), i.e.

f(t, g(t, s))

L(t, g(t, s))
= s for (t, s) ∈ [0, T )× R.

From (1.2.46) we see that Zt = g(t, St). Hence, by substituting in (1.2.32), the stock price

process SDE can be written in the local volatility form

dSt = St (µ(t, g(t, St))dt+ σ(t, g(t, St))dWt) for t ∈ [0, T ).
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Remark 1.2.5. Under the assumptions of Theorem (1.2.4) we can deduce that the stock volatil-

ity coefficient σ(t, Zt) is a.e. a.s. nonzero without referring to the endogenous completeness

results in [70]. Indeed, let us assume without loss of generality that σZ(t, z) is strictly positive

on [0, T )×R. Then, by using that L(t, z) is strictly decreasing and f(t, z) is strictly increasing

in z , from (1.2.36)-(1.2.37) we can see that σL(t, z) is strictly negative and σf (t, z) is strictly

positive on [0, T )×R. Hence, from (1.2.33) we can conclude that σ(t, z) is strictly positive on

[0, T )× R and therefore σ(t, Zt) is a.e. a.s. nonzero.

1.3. An example with power utility

In this section we illustrate our results by studying how the imbalance of the derivative market,

modelled by the presence of the hedger, impacts the equilibrium stock price S in a simple

example. In particular, we will show the changes that occur in the market price of risk, stock

volatility and implied volatility as we vary the degree of imbalance and the risk aversion of the

optimizer.

Let us specify the primitives of the model. We assume that the hedger’s payoff function

h(z) is given by the European call payoff

h(z) = α(z −K)+ for z ≥ 0, (1.3.1)

for some weight α ∈ (0, 1] and strike price K > 0. The European call payoff weight α is

the parameter controlling the degree of imbalance on the market. The optimizer has a power

utility function u(z) = z1−p/(1 − p) with the risk aversion parameter p ∈ (0, 1) ∪ (1,∞). Let

the process Z be given by

Zt = µt+ σWt for t ∈ [0, T ],

where we have taken µZ(t, z) ≡ µ ∈ R and σZ(t, z) ≡ σ ∈ R for (t, z) ∈ [0, T ] × R . The

functions h(z) and u(z), and the process Z clearly satisfy the assumptions from Section 1.1.

From (1.1.7)-(1.1.8) we have that h1 = 0 and letting h0 = 0 it follows that the total supply of

bonds on the market K can be set to 0.

In order to compute the stock price SDE coefficients µ(t, z) and σ(t, z) we will use Corollary

1.2.1. Let us obtain analytic expressions for the functions L(t, z), f(t, z), σL(t, z) and σf (t, z).

Denote

d(t, z) =
log(K/ez)− µ(T − t)

σ
√
T − t

, e(t, T, z) = eσz
√
T−t+µ(T−t),



1.3. An example with power utility 45

for (t, z) ∈ [0, T )×R . By straightforward computation of the conditional expectations in (1.2.3)

and (1.2.4), and using that from Corollary 1.2.1 we have Lt = L(t, Zt) and LtSt = f(t, Zt) for

t ∈ [0, T ), we obtain

L(t, z) =
1

λ
√

2π

(∫ d(t,z)

−∞
e−

v2

2 u′(eze(t, T, v) + xh)dv (1.3.2)

+

∫ ∞
d(t,z)

e−
v2

2 u′((1− α)eze(t, T, v) + αK + xh)dv

)
,

f(t, z) =
1

λ
√

2π

(∫ d(t,z)

−∞
eze(t, T, v)e−

v2

2 u′(eze(t, T, v) + xh)dv (1.3.3)

+

∫ ∞
d(t,z)

eze(t, T, v)e−
v2

2 u′((1− α)eze(t, T, v) + αK + xh)dv

)
,

for (t, z) ∈ [0, T )×R , where λ is defined in (1.2.5). Direct calculations from (1.2.36)-(1.2.37),

by differentiating (1.3.2)-(1.3.3), lead to

σL(t, z) =
σez

λ
√

2π

(∫ d(t,z)

−∞
e(t, T, v)e−

v2

2 u′′(eze(t, T, v) + xh)dv (1.3.4)

+

∫ ∞
d(t,z)

(1− α)e(t, T, v)e−
v2

2 u′′((1− α)eze(t, T, v) + αK + xh)dv

)
,

σf (t, z) =
σez

λ
√

2π
× (1.3.5)

×
(∫ d(t,z)

−∞
(eze2(t, T, v)u′′(eze(t, T, v) + xh) + e(t, T, v)u′(eze(t, T, v) + xh))e−

v2

2 dv

+

∫ ∞
d(t,z)

((1− α)eze2(t, T, v)u′′((1− α)eze(t, T, v) + αK + xh)

+ e(t, T, v)u′((1− α)eze(t, T, v) + αK + xh))e−
v2

2 dv

)
,

for (t, z) ∈ [0, T ) × R . Now, substituting (1.3.2)-(1.3.5) into (1.2.33), we can compute µ(t, z)

and σ(t, z). Similarly, we can also obtain an analytic expression for the optimizer’s portfolio

π̂(t, z) from (1.2.39).

Our reference case will be a market without a hedger , i.e. h ≡ 0 and xh = 0. In this case

we set K = 0 and for the equilibrium stock price we have

St =
E[LTST |Ft]

Lt
=

E[S1−p
T |Ft]

E[S−pT |Ft]
= eZte(T−t)(µ+

(1−2p)σ2

2
).

This means that µ(t, z) ≡ pσ2 and σ(t, z) ≡ σ for (t, z) ∈ [0, T )×R . In particular, we have a

simple Black-Scholes model for the stock price process and the implied volatility is equal to σ .
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We are interested in the dependence of the stock volatility σ(t, z) and the market price

of risk µ(t, z)/σ(t, z) on α and p . Comparison will be made with the case when there is no

imbalance (i.e. no hedger) on the market. Below we work with the parameters T = 1, K = 0.5,

µ = 0.02 and σ = 0.2.

1.3.1. Optimal portfolio and market price of risk Figure 1.1 shows the optimal port-

folio function π̂(t, z) of the optimizer for different levels of the market imbalance α , where we

have taken t = 0.1 and p = 6. It can be seen that the hedger holds more of the stock for

larger values of the “dividend process” exp(Zt), with most of the hedging activity happening

near the strike price. We interpret this as the process exp(Z) serving as a proxy for the stock

price S , and the hedging activity being similar to a delta hedging strategy but with respect to

exp(Z).

Figure 1.1: Optimizer’s portfolio π̂(t, z) for different values of α

Figure 1.2 shows the market price of risk µ(t, z)/σ(t, z) for different levels of the market

imbalance α , where we have taken t = 0.1 and p = 6. We notice that as α increases, the

market price of risk decreases. This is explained by the need of the hedger to hold more of the

underlying when α is larger. Since the market price of risk is a measure of the attractiveness
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of the stock to the risk averse agents, it should decrease as the optimizer should be willing to

hold less of the stock.

Figure 1.2: Market price of risk µ(t, z)/σ(t, z) for different values of α

Figure 1.3 shows the market price of risk µ(t, z)/σ(t, z) for different levels of the optimizer

risk aversion parameter p , where we have taken t = 0.1 and α = 0.5. We notice that as p

increases, the market price of risk increases. This is due to the fact that when the optimizer is

more risk averse, more compensation is required for holding the same amount of risk.
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Figure 1.3: Market price of risk µ(t, z)/σ(t, z) for different values of p

1.3.2. Stock volatility Figure 1.4 shows the stock volatility σ(t, z) for different levels of

the market imbalance α , where we have taken t = 0.1 and p = 6. The volatility function is

exhibiting a spike at the strike price K of the European payoff. We notice that as α increases,

the volatility spike around the strike price increases. This is explained by the increase in trading

volume when the amount of the replicated European call option is higher. Since most of the

hedging activity occurs near the strike price, as can be seen from Figure 1.1, this will lead to

higher volatility levels.

Figure 1.5 shows the stock volatility σ(t, z) for different levels of the optimizer risk aversion

parameter p , where we have taken t = 0.1 and α = 0.5. We notice that as p increases, the

volatility spike around the strike price increases. The intuition behind this effect is that, as risk

aversion of the optimizer increases, it takes larger moves in the stock price to make the trades

with the hedger possible.
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Figure 1.4: Stock volatility σ(t, z) for different values of α

Figure 1.5: Stock volatility σ(t, z) for different values of p

1.3.3. Implied volatility smile We illustrate how the implied volatility smile is affected by

the imbalance on the derivative market for various payoff functions, i.e. we drop the assumption

that h(z) is given by (1.3.1). In each of the Figures 1.6, 1.7 and 1.8 we show the replicated

payoff h(z) on the left side together with the implied volatility at the initial time 0 for different
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strikes at the right side.

The hedger’s contingent claims that we illustrate are butterfly spreads, strangles, condors

and straddles. Long butterfly and long condor positions correspond to betting on low volatility,

while short butterfly and long strangle/straddle positions correspond to betting on high volatil-

ity. Keeping in mind that the stock volatility with no imbalance on the market is σ = 0.2, we

can see that the presence of a hedger on the market increases the chance of the hedged payoff

h(z) to expire in the money. This is due to the fact that for bets on high/low volatility the

whole implied volatility curve shifts above/below the base volatility level of 0.2.

Assume for a moment that the hedged contingent claim was originally underwritten by the

hedger to a speculating agent which is not trading on the market. We can conclude that this

betting on volatility by the speculator becomes a self-fulfilling prophecy as the hedging activity

of the counterparty (i.e. the hedger) affects the equilibrium stock price such that the price of

the hedged payoff increases.

In general, the high/low points in the implied volatility coincide with long/short positions

in the European options constituting the payoff h(z), and this allows us to obtain any possible

shape of the volatility smile, where strikes that correspond to higher/lower implied volatilities

are evidence of hedging of long/short positions in European call and put options.
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Figure 1.6: Butterfly spread implied volatility

(a) Long butterfly h(z) = (z − 0.8)+ − 2(z − 1)+ + (z − 1.2)+

(b) Short butterfly h(z) = −(z − 0.8)+ + 2(z − 1)+ − (z − 1.2)+
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Figure 1.7: Strangle implied volatility

(a) Long strangle h(z) = (0.8− z)+ + (z − 1.2)+

(b) Long condor h(z) = (z − 0.6)+ − (z − 0.8)+ − (z − 1.2)+ + (z − 1.4)+

Figure 1.8: Straddle implied volatility

(a) Long straddle h(z) = (1− z)+ + (z − 1)+
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1.4. Appendix

Lemma 1.A.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. Then we have that P[Zt =

a] = 0 and P[ZT < a] > 0 for any a ∈ R. Moreover, E[exp(nZT )] <∞ and E[exp(n|ZT |)] <∞
for all n ∈ N, and we also have

E[exp(nZT )u′(exp(ZT ) + h0 − h(exp(ZT )))] <∞ for n ∈ N ∪ {0}.

Proof. Since (C1)-(C3) are satisfied, we can apply Theorem 9.1.9 in [109] to obtain that the

law of Zt admits density under the Lebesgue measure on R and therefore does not have a point

mass, i.e. P[Zt = a] = 0 for any a ∈ R and t ∈ [0, T ] . Again, from (C1)-(C3), by applying

Theorem 3.1 in [108], we have that the measure PZ−1 has full support on the set of real-valued

continuous functions f(t) on [0, T ] such that f(0) = z0 . In particular exp(ZT ) has full support

on (0,∞). Indeed, for any a ∈ R and ε > 0, consider f(t) ∈ C([0, T ]) such that f(0) = z0

and f(T ) = a− ε , and observe that

P[ZT < a] ≥ P[|ZT − a+ ε| < ε] ≥ P
[

sup
t∈[0,T ]

|Zt − f(t)| < ε

]
> 0,

where the last inequality follows from the full support of the measure PZ−1 . Note also that

due to the boundedness of coefficients in (C2) we can apply Problem 3.4.12 in [63] to the

process Z to obtain that it has all exponential moments and, therefore, E[exp(nZT )] <∞ and

E[exp(n|ZT |)] <∞ for all n ∈ N .

Note that, from the fact that h(z) is continuous and the condition (1.1.7), we have h0 ≥
h(0). Hence, since h(z) also satisfies (1.1.6), we get that

min
z≥0

(z + h0 − h(z)) > 0, if h(0) < 0 or h0 > h(0),

min
z≥ε

(z + h0 − h(z)) > 0, if h(0) ≥ 0 and h0 = h(0),

for all ε > 0. Moreover, if h(0) ≥ 0 and h0 = h(0), from (1.1.6) we also have that

h(z) = a1z + h0 for z ∈ [0, k],

where a1 < 1. This means that, if h(0) ≥ 0 and h0 = h(0), we obtain

z + h0 − h(z) ≥ 1{z<k}(1− a1)z + 1{z≥k}min
z≥k

(z + h0 − h(z)) for z > 0.
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Therefore, from the fact that u′ is strictly decreasing, if h(0) < 0 or h0 > h(0) we get that

E[exp(nZT )u′(exp(ZT ) + h0 − h(exp(ZT )))] < u′
(

min
z≥0

(z + h0 − h(z))
)
E[exp(nZT ))] <∞,

and if h(0) ≥ 0 and h0 = h(0), by using the bounds in (1.1.13), we obtain

E[exp(nZT )u′(exp(ZT ) + h0 − h(exp(ZT )))]

≤ P[exp(ZT ) < k]E[exp(nZT )u′((1− a1) exp(ZT ))| exp(ZT ) < k]

+ P[exp(ZT ) ≥ k]u′
(

min
z≥k

(z + h0 − h(z))
)
E[exp(nZT )]

≤ E[exp(nZT ))u′((1− a1) exp(ZT ))] + u′
(

min
z≥k

(z + h0 − h(z))
)
E[exp(nZT ))]

≤ E[exp((N + n)(1 + | log(1− a1)|+ |ZT |))] + u′
(

min
z≥k

(z + h0 − h(z))
)
E[exp(nZT ))] <∞,

for any n ∈ N ∪ {0} .

Lemma 1.A.2. Under Assumption 1.1.1 the filtration generated by the process Z defined in

(1.1.1) coincides with the filtration (Ft)t∈[0,T ] generated by the Brownian motion W .

Proof. Denote by (FZt )t∈[0,T ] the filtration generated by Z . Since Z is a strong solution to

(1.1.1) it is Ft -adapted and therefore FZt ⊆ Ft . On the other hand from (C1)-(C2), letting

N1 > 0 be a lower bound for |σZ | and N2 > 0 be an upper bound for |µZ | and |σZ | , we notice

that ∣∣∣∣µZ(t, z1)

σZ(t, z1)
− µZ(t, z2)

σZ(t, z2)

∣∣∣∣ =
|µZ(t, z1)σZ(t, z2)− µZ(t, z2)σZ(t, z1)|

|σZ(t, z1)σZ(t, z2)|

≤ |σZ(t, z2)||µZ(t, z1)− µZ(t, z2)|+ |µZ(t, z2)||σZ(t, z2)− σZ(t, z1)|
N2

1

≤ N2
|µZ(t, z1)− µZ(t, z2)|+ |σZ(t, z2)− σZ(t, z1)|

N2
1

,

and it follows from (C3) that µZ/σZ is locally Lipschitz. By similar arguments the same

holds for 1/σZ . Moreover, from (C1)-(C2) it follows that µZ/σZ and 1/σ2
Z are also bounded.

Therefore the SDE

dW̃t = −µZ(t, Zt)

σZ(t, Zt)
dt+

1

σZ(t, Zt)
dZt for t ∈ [0, T ], (1.A.1)

has a unique strong solution W̃ which is FZt -adapted. But from (1.1.1), by substituting the

expression for Z in (1.A.1), we get that W̃ = W a.e.a.s. and therefore W is also FZt -adapted,

which means that Ft ⊆ FZt . This leads to Ft = FZt .
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Lemma 1.A.3. In the setting of Theorem 1.2.1 let (Mt)t∈[0,T ] be a square-integrable martingale

under the equivalent martingale measure Q with Radon-Nikodym derivative dQ
dP = LT . Then

there exists an Ft -progressively measurable process ϕ = (ϕt)t∈[0,T ] such that

E
[∫ T

0

ϕ2
sds

]
<∞, (1.A.2)

Mt = M0 +

∫ t

0

ϕs dW̃s a.e.a.s., (1.A.3)

where W̃ is a Brownian motion under Q. Moreover for any other Ft -progressively measurable

process ϕ̃ = (ϕ̃t)t∈[0,T ] satisfying (1.A.2)-(1.A.3) we have∫ T

0

(ϕt − ϕ̃t)2 dt = 0 a.s.. (1.A.4)

Proof. From Lemma 1.6.7 in [64] we know that there exists an Ft -progressively measurable

process ϕ = (ϕt)t∈[0,T ] satisfying condition (1.A.3) such that∫ T

0

ϕ2
sds <∞ a.s..

However, since M is square-integrable we can use Ito isometry together with (1.A.3) to get

E
[∫ T

0

ϕ2
sds

]
= E

[(∫ T

0

ϕsdW̃s

)2
]

= E[(MT −M0)2] <∞,

and therefore ϕ satisfies (1.A.2).

Assume that there exists another Ft -progressively measurable process ϕ̃ = (ϕ̃t)t∈[0,T ] satis-

fying conditions (1.A.2)-(1.A.3). Then we have that the process M̃ defined as

M̃t :=

∫ t

0

(ϕs − ϕ̃s) dW̃s for t ∈ [0, T ],

is a square-integrable martingale that is identically zero, and therefore its quadratic variation

is also zero. By the Ito isometry we conclude that (1.A.4) holds.

Lemma 1.A.4. Let Assumptions 1.1.1 and 1.2.1 hold, and the function g(z) : R→ R belongs

to the class C(R) ∩ C1(R \ A), where A = {a1, . . . , am} ⊂ R is the set of points for which

g(z) is not differentiable and a1 < a2 < · · · < am , for some m ∈ N. Assume also that

g(z) is decreasing for z ∈ R and strictly decreasing for z < a1 , and that |g(z)| ≤ eN1(1+|z|)

for z ∈ R and |g′(z)| ≤ eN2(1+|z|) for z ∈ R \ A, for some constants N1, N2 > 0. Let

G(t, z) ∈ C1,2 ([0, T )× R) ∩ C ([0, T ]× R) be the unique solution of the PDE

LZG(t, z) = 0 for (t, z) ∈ [0, T )× R, (1.A.5)
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with the terminal condition

G(T, z) = g(z) for z ∈ R, (1.A.6)

in the class of functions satisfying the growth condition |G(t, z)| ≤ c1 exp(c2z
2) for some con-

stants c1, c2 > 0. Then we have that G(t, z) is strictly decreasing function in z for all t ∈ [0, T ).

Proof. That the solution G(t, z) to the PDE in (1.A.5) exists and is unique follows from the

fact that (C1)-(C3) are satisfied by Theorems 9.3 and 2.10 in [37].

Since G(T, z) = g(z) is not differentiable only for z ∈ A , we introduce a class of functions

which approximate G(T, z) and smoothen the m discontinuities of ∂G
∂z

(T, z). First let n ∈ N
be defined as

n =

[
1

minai 6=aj∈A |ai − aj|

]
+ 1,

and denote M = {1, . . . ,m} ⊂ N . For any l ∈ M and n ∈ N , such that n ≥ n , denote

k1,l,n = al − 1/n and k2,l,n = al + 1/n , and introduce the constants

εl,n =
2(G(T, k2,l,n)−G(T, k1,l,n))
∂G
∂z

(T, k1,l,n) + ∂G
∂z

(T, k2,l,n)
, (1.A.7)

δl,n = n(G(T, k2,l,n)−G(T, k1,l,n))− 1

2

(
∂G

∂z
(T, k1,l,n) +

∂G

∂z
(T, k2,l,n)

)
. (1.A.8)

Notice that, since G(T, z) is decreasing and not differentiable at al , we have that G(T, k2,l,n)−
G(T, k1,l,n) < 0. Moreover G(T, z) is differentiable at z = k1,l,n and z = k2,l,n since n ≥ n .

Therefore εl,n is well-defined and εl,n ∈ {−∞} ∪ (0,∞). Denote B =
⋃

1≤l≤m(k1,l,n, k2,l,n) and

define the function Gn(z) as

Gn(z) := G(T, z) for z ∈ R \B,

Gn(z) :=

∫ z

k1,l,n

ϕl,n(v)dv +G(T, k1,l,n) for z ∈ (k1,l,n, k2,l,n),

where the piecewise linear function ϕl,n(z) defined for z ∈ [k1,l,n, k2,l,n] is given by

ϕl,n(z) =
k1,l,n + εl,n − z

εl,n

∂G

∂z
(T, k1,l,n)1{z∈[k1,l,n,k1,l,n+εl,n]}

+
z − (k2,l,n − εl,n)

εl,n

∂G

∂z
(T, k2,l,n)1{z∈[k2,l,n−εl,n,k2,l,n]} if εl,n ∈ (0, 1/n],

ϕl,n(z) =n

(
(al − z)

∂G

∂z
(T, k1,l,n) + (z − k1,l,n)δl,n

)
1{z∈[k1,l,n,al]}

+n

(
(z − al)

∂G

∂z
(T, k2,l,n) + (k2,l,n − z)δl,n

)
1{z∈[al,k2,l,n]} if εl,n ∈ {−∞} ∪ (1/n,+∞).
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Since G(T, z) is decreasing, and noticing from (1.A.7)-(1.A.8) that δl,n < 0 when εl,n ∈ {−∞}∪
(1/n,+∞), we get that ϕl,n(z) is nonpositive and continuous, and moreover it satisfies∫ k2,l,n

k1,l,n

ϕl,n(v)dv = G(T, k2,l,n)−G(T, k1,l,n), (1.A.9)

ϕl,n(k1,l,n) =
∂G

∂z
(T, k1,l,n), ϕl,n(k2,l,n) =

∂G

∂z
(T, k2,l,n). (1.A.10)

By the fact that G(T, z) ∈ C1(R \ A) and the continuity of ϕl,n(z) for l ∈ M , we have that

Gn ∈ C1(R \B) ∩ C1(B). By using the continuity of ϕl,n(z) and (1.A.9)-(1.A.10) we obtain

lim
z↓k1,l,n

Gn(z) = lim
z↓k1,l,n

∫ z

k1,l,n

ϕl,n(v)dv +G(T, k1,l,n) = G(T, k1,l,n) = lim
z↑k1,l,n

Gn(z),

lim
z↑k2,l,n

Gn(z) = lim
z↑k2,l,n

∫ z

k1,l,n

ϕl,n(v)dv +G(T, k1,l,n) = G(T, k2,l,n) = lim
z↓k2,l,n

Gn(z),

lim
z↓k1,l,n

G′n(z) = lim
z↓k1,l,n

ϕl,n(z) =
∂G

∂z
(T, k1,l,n) = lim

z↑k1,l,n
G′n(z),

lim
z↑k2,l,n

G′n(z) = lim
z↑k2,l,n

ϕl,n(z) =
∂G

∂z
(T, k2,l,n) = lim

z↓k2,l,n
G′n(z),

and it follows that Gn(z) ∈ C1(R). Since G(T, z) is nonincreasing and ϕl,n is nonpositive for

l ∈M it follows that Gn(z) is nonincreasing. Therefore we have

|Gn(z)−G(T, z)| ≤ G(T, k1,l,n)−G(T, k2,l,n) for z ∈ (k1,l,n, k2,l,n),

and from the fact that Gn(z) = G(T, z) for z ∈ R \ B and the continuity of G(T, z) for

z ∈ A , it follows that Gn(z) converge uniformly to G(T, z) as n → ∞ . In particular, since

|G(T, z)| ≤ eN1(1+|z|) and supz∈B Gn(z) = Gn(z∗) <∞ for some z∗ ∈ B , where B denotes the

closure of the set B , it follows that |Gn(z)| ≤ egn(1+|z|) for some constant gn > 0. Moreover

we have

|G′n(z)| =
∣∣∣∣∂G∂z (T, z)

∣∣∣∣ = |g′(z)| ≤ eN2(1+|z|) for z ∈ R \B,

|G′n(z)| = |ϕl,n(z)| for z ∈ (k1,l,n, k2,l,n),

and, similarly, since ϕl,n(z) achieves its maximum in the closed interval [k1,l,n, k2,l,n] , we obtain

that |G′n(z)| ≤ egn(1+|z|) for some constant gn > 0 and for all z ∈ R .

By using conditions (C1)-(C3) and the fact that |Gn(z)| ≤ egn(1+|z|) , from Theorem 9.3 in

[37] we have that there exists a solution Gn(t, z) ∈ C1,2 ([0, T )× R)∩C ([0, T ]× R) to the PDE

in (1.A.5) with the final condition Gn(T, z) = Gn(z). The solution is of the form

Gn(t, z) =

∫ +∞

−∞
p(t, z;T, v)Gn(v)dv for (t, z) ∈ [0, T )× R, (1.A.11)
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where we recall that p(t1, z; t2, v) is the fundamental solution of (1.A.5). Moreover, from

Theorem 9.2 in [37] we have the bound∣∣∣∣∂p∂z (t, z;T, v)

∣∣∣∣ ≤ C

T − t
exp

(
−c(v − z)2

T − t

)
, (1.A.12)

for some positive constants C and c . Therefore, by differentiating (1.A.11) and using a change-

of-variable formula and the fact that exp(gnv
√
T − t) ≤ exp(c v2 + Tg2

n/(4c)) for any (t, v) ∈
[0, T )× R and any constant c > 0, it follows that∣∣∣∣∂Gn

∂z
(t, z)

∣∣∣∣ ≤ egn
∫ +∞

−∞

C

T − t
exp

(
gn|v| − c

(v − z)2

T − t

)
dv ≤ egn+|z|C√

T − t

∫ +∞

−∞
egn
√
T−t|v|−cv2dv

=
2egn+|z|C√
T − t

∫ +∞

0

egn
√
T−tv−cv2dv ≤ egn+|z|+Tg2n

4c C√
T − t

∫ +∞

−∞
e(c−c)v2dv.

for (t, z) ∈ [0, T )× R . Hence, if we choose c such that c < c we get∣∣∣∣∂Gn

∂z
(t, z)

∣∣∣∣ ≤ egn+|z|+Tg2n
4c C
√
π√

(c− c)(T − t)
,

for (t, z) ∈ [0, T )× R . Hence for any c̃ > 0 we obtain∫ T

0

∫ +∞

−∞

∣∣∣∣∂Gn

∂z
(t, z)

∣∣∣∣ e−c̃z2dzdt ≤ egn+
Tg2n
4c C
√
Tπ√

c− c

∫ +∞

−∞
e|z|−c̃z

2

dz <∞. (1.A.13)

From condition (D1) we can differentiate (1.A.5) once with respect to z to get that ∂Gn
∂z

(t, z)

solves the PDE

∂K

∂t
(t, z) +

∂µZ
∂z

(t, z)K(t, z) +
(
µZ(t, z) +

1

2

∂σ2
Z

∂z
(t, z)

)∂K
∂z

(t, z)+
σ2
Z(t, z)

2

∂2K

∂z2
(t, z) = 0

(1.A.14)

for (t, z) ∈ [0, T )× R,

with the final condition

∂Gn

∂z
(T, z) = G′n(z). (1.A.15)

Moreover, since (C1)-(C3) and (D1)-(D3) are satisfied, and since we know that |G′n(z)| ≤
egn(1+|z|) and ∂Gn

∂z
(t, z) satisfies (1.A.13), we can apply Theorems 9.3 and 9.6 in [37] to get that

∂Gn
∂z

(t, z) is the unique solution to (1.A.14)-(1.A.15) and has the form

∂Gn

∂z
(t, z) =

∫ +∞

−∞
p̃(t, z;T, v)G′n(v)dv for (t, z) ∈ [0, T )× R, (1.A.16)
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where p̃(t1, z; t2, v) is the fundamental solution of (1.A.14). From Theorem 2.11 in [37] we have

that p̃(t, z;T, v) > 0, and using that G′n(z) ≤ 0 together with the fact that G(T, z) is strictly

decreasing for z < a1 , we have that for any n ≥ n

∂Gn

∂z
(t, z) =

∫ +∞

−∞
p̃(t, z;T, v)G′n(v)dv ≤

∫ k1,1,n

−∞
p̃(t, z;T, v)G′n(v)dv

=

∫ k1,1,n

−∞
p̃(t, z;T, v)

∂G

∂z
(T, v)dv < 0 for (t, z) ∈ [0, T )× R.

This means that Gn(t, z) is strictly decreasing in z for (t, z) ∈ [0, T ) × R . Moreover, by

the mean value theorem, for any z1, z2 ∈ R such that z1 < z2 and for any n ≥ n , there is

zθ ∈ [z1, z2] such that

Gn(t, z1)−Gn(t, z2) = (z1 − z2)
∂Gn

∂z
(t, zθ) ≥ (z1 − z2)

∫ k1,1,n

−∞
p̃(t, zθ;T, v)

∂G

∂z
(T, v)dv (1.A.17)

≥ (z1 − z2) sup
z∈[z1,z2]

∫ k1,1,n

−∞
p̃(t, z;T, v)

∂G

∂z
(T, v)dv > 0 for t ∈ [0, T ).

Notice that from (1.A.11) we get

|Gn(t, z)−G(t, z)| ≤
∫ +∞

−∞
p(t, z;T, v)|Gn(v)−G(T, v)|dv,

and, since Gn(z) converge uniformly to G(T, z), we get that Gn(t, z) converge uniformly to

G(t, z) with respect to z for (t, z) ∈ [0, T ) × R as n → ∞ . Now taking z1, z2 ∈ R such that

z1 < z2 we have from (1.A.17)

G(t, z1)−G(t, z2) = lim
n→∞

(Gn(t, z1)−Gn(t, z2))

≥ (z1 − z2) sup
z∈[z1,z2]

∫ k1,1,n

−∞
p̃(t, z;T, v)

∂G

∂z
(T, v)dv > 0 for t ∈ [0, T ),

and it follows that G(t, z) is strictly decreasing in z for t ∈ [0, T ).
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Chapter 2

On the sequential testing and quickest

change-point detection problems for

Gaussian processes

This chapter is based on joint work with Dr. Pavel V. Gapeev.

2.1. Preliminaries

In this section, we give a formulation of the unifying optimal stopping problem for a one-

dimensional time-inhomogeneous regular diffusion process and consider the associated partial

and ordinary differential free-boundary problems.

2.1.1. For a precise formulation of the problem, let us consider a probability space (Ω,G, P )

with a standard Brownian motion B = (Bt)t≥0 . Let Φ = (Φt)t≥0 be a one-dimensional time-

inhomogeneous diffusion process with the state space [0,∞), which is a pathwise (strong)

solution of the stochastic differential equation

dΦt = η(t,Φt) dt+ ζ(t,Φt) dBt (Φ0 = φ), (2.1.1)

where η(t, φ) and ζ(t, φ) > 0 are some continuously differentiable functions of at most linear

growth in φ on [0,∞). Let us consider an optimal stopping problem with the value function

V∗(t, φ) = inf
τ
Et,φ

[
G(Φt+τ ) +

∫ τ

0

F (Φt+s) ds

]
, (2.1.2)
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where Et,φ denotes the expectation under the assumption that Φt = φ , for some φ ∈ [0,∞).

Here, the gain function G(φ) and the cost function F (φ) are assumed to be non-negative,

continuous and bounded, G(φ) is concave and continuously differentiable on ((0, c′) ∪ (c′,∞))

for some c′ ∈ [0,∞] , and the infimum in (2.1.2) is taken over all stopping times τ such that the

integral above has a finite expectation, so that Et,φτ < ∞ holds. Such time-inhomogeneous

optimal stopping problems for diffusion processes within a finite horizon setting have been

considered in McKean [77], van Moerbeke [113], Jacka [55], Broadie and Detemple [19], Myneni

[80], Peskir [87, 86], and [41, 42] among others (see also Peskir and Shiryaev [90; Chapter VII]

and Detemple [30] for an overview and further references). Other time-inhomogeneous optimal

stopping problems with infinite time horizon were recently considered in [39].

Example 2.1.1 (Sequential testing problem.). Suppose that we observe a continuous

process X = (Xt)t≥0 of the form Xt = θµ(t) + Bt , where µ(t) > 0 is increasing and two

times continuously differentiable function for t > 0, µ(0) = 0, and B = (Bt)t≥0 is a standard

Brownian motion which is independent of the random variable θ . We assume that P (θ = 1) = π

and P (θ = 0) = 1 − π holds for some π ∈ (0, 1) fixed. The problem of sequential testing of

two simple hypotheses about the values of the parameter θ can be embedded into the optimal

stopping problem of (2.1.2) with G(φ) = ((aφ) ∧ b)/(1 + φ) and F (φ) = 1, where a, b > 0 are

some given constants (see, e.g. [105; Chapter IV, Section 2] and [90; Chapter VI, Section 21]).

In this case, the likelihood ratio process Φ takes the form

Φt =
π

1− π
Lt with Lt = exp

(∫ t

0

µ′(s) dXs −
1

2

∫ t

0

(µ′(s))2 ds

)
, (2.1.3)

and thus solves the stochastic differential equation of (2.1.1) with the coefficients η(t, φ) =

(µ′(t)φ)2/(1 + φ) and ζ(t, φ) = µ′(t)φ , where the process B = (Bt)t≥0 defined by

Bt = Xt −
∫ t

0

µ′(s)Φs

1 + Φs

ds (2.1.4)

is the innovation standard Brownian motion generating the same filtration (Ft)t≥0 as the

process X .

Example 2.1.2 (Quickest change-point detection problem.). Suppose that we observe

a continuous process X = (Xt)t≥0 of the form Xt = (µ(t) − µ(θ))+ + Bt , where µ(t) > 0

is increasing and two times continuously differentiable function for t > 0, µ(0) = 0, and

B = (Bt)t≥0 is a standard Brownian motion which is independent of the random variable θ .

We assume that P (θ = 0) = π and P (θ > t | θ > 0) = e−λt holds for all t ≥ 0, and some
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π ∈ (0, 1) and λ > 0 fixed. The problem of quickest detection of the change-point parameter

θ can be embedded into the optimal stopping problem of (2.1.2) with G(φ) = 1/(1 + φ) and

F (φ) = cφ/(1 + φ), where c > 0 is a given constant (see, e.g. [105; Chapter IV, Section 4] and

[90; Chapter VI, Section 22]). In this case, the likelihood ratio process Φ takes the form

Φt =
Lt
e−λt

(
π

1− π
+

∫ t

0

λe−λs

Ls
ds

)
(2.1.5)

with L = (Lt)t≥0 given by (2.1.3), and thus solves the stochastic differential equation (2.1.1)

with the coefficients η(t, φ) = λ(1 + φ) + (µ′(t)φ)2/(1 + φ) and ζ(t, φ) = µ′(t)φ , where the

innovation standard Brownian motion B = (Bt)t≥0 is given by (2.1.4).

2.1.2. It follows from the general theory of optimal stopping for Markov processes (see, e.g.

[90; Chapter I, Section 2.2]) that the optimal stopping time in the problem of (2.1.2) is given

by

τ∗ = inf{s ≥ 0 |V∗(t+ s,Φt+s) = G(Φt+s)} (2.1.6)

whenever it exists. We further search for an optimal stopping time of the form

τ∗ = inf{s ≥ 0 |Φt+s /∈ (g∗(t+ s), h∗(t+ s))} (2.1.7)

for some functions 0 ≤ g∗(t) < h∗(t) ≤ ∞ to be determined (see, e.g. [90; Chapter IV,

Section 14] for a time-inhomogeneous finite-horizon setting).

2.1.3. By means of standard arguments (see, e.g. [63; Chapter V, Section 5.1]), it can be

shown that the infinitesimal generator L of the process (t,Φ) = (t,Φt)t≥0 is given by the

expression

L = ∂t + η(t, φ) ∂φ +
ζ2(t, φ)

2
∂2
φφ (2.1.8)

for all (t, φ) ∈ (0,∞)2 . In order to find analytic expressions for the unknown value function

V∗(t, φ) from (2.1.2) and the unknown boundaries g∗(t) and h∗(t) from (2.1.7), we use the

results of general theory of optimal stopping problems for continuous time Markov processes

(see, e.g. [105; Chapter III, Section 8] and [90; Chapter IV, Section 8]). We formulate the
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associated free boundary problem

(LV )(t, φ) = −F (φ) for g(t) < φ < h(t) (2.1.9)

V (t, g(t)+) = G(g(t)) and V (t, h(t)−) = G(h(t)) (instantaneous stopping) (2.1.10)

V (t, φ) = G(φ) for φ < g(t) and φ > h(t) (2.1.11)

V (t, φ) < G(φ) for g(t) < φ < h(t) (2.1.12)

(LG)(φ) > −F (φ) for φ < g(t) and φ > h(t) (2.1.13)

for some 0 ≤ g(t) < c′ < h(t) ≤ ∞ and all t ≥ 0. Note that the superharmonic characterization

of the value function (see, e.g. [105; Chapter III, Section 8] and [90; Chapter IV, Section 9])

implies that V∗(t, φ) from (2.1.2) is the largest function satisfying (2.1.9)-(2.1.13) with the

boundaries g∗(t) and h∗(t). Moreover, since the system in (2.1.9)-(2.1.13) may admit multiple

solutions, we need to use some additional conditions which would uniquely determine the value

function and the optimal stopping boundaries for the initial problem of (2.1.2). For this reason,

we will need to assume that the smooth-fit conditions

∂φV (t, g(t)+) = ∂φG(g(t)) and ∂φV (t, h(t)−) = ∂φG(h(t)) (smooth fit) (2.1.14)

hold for all t > 0.

We further provide an analysis of the parabolic free boundary problem of (2.1.9)-(2.1.13),

satisfying the conditions of (2.1.14), and such that the resulting boundaries are continuous and

of bounded variation. Since such free-boundary problems cannot normally be solved explic-

itly, the existence and uniqueness of classical as well as viscosity solutions of the variational

inequalities, arising in the context of optimal stopping problems, have been extensively studied

in the literature (see, e.g. Friedman [36], Bensoussan and Lions [14], Krylov [72], or Øksendal

[83]). Although the necessary conditions for existence and uniqueness of such solutions in [36;

Chapter XVI, Theorem 11.1], [72; Chapter V, Section 3, Theorem 14] with [72; Chapter VI,

Section 4, Theorem 12], and [83; Chapter X, Theorem 10.4.1] can be verified by virtue of the

regularity of the coefficients of the diffusion process in (2.1.1), the application of these classical

results would still have rather inexplicit character. We therefore continue with the following

verification assertion related to the free boundary problem formulated above, which is proved

in the Appendix.

Theorem 2.1.3. Let the process Φ be a pathwise unique solution of the stochastic differential

equation in (2.1.1). Suppose that the functions G(φ) and F (φ) are bounded and continuous,
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and G is concave and continuously differentiable on ((0, c′) ∪ (c′,∞)) for some c′ ∈ [0,∞].

Assume that the couple g∗(t) and h∗(t), such that 0 ≤ g∗(t) < c′ < h∗(t) ≤ ∞, together with

V (t, φ; g∗(t), h∗(t)) form a solution of the free boundary problem of (2.1.9)-(2.1.14), while the

boundaries g∗(t) and h∗(t) are continuous and of bounded variation. Define the stopping time

τ∗ as the first exit time of the process Φ from the interval (g∗(t), h∗(t)) as in (2.1.7), and

assume that Et,φτ∗ <∞ holds. Then, the value function V∗(t, φ) takes the form

V∗(t, φ) =

V (t, φ; g∗(t), h∗(t)), if g∗(t) < φ < h∗(t)

G(φ), if φ ≤ g∗(t) or φ ≥ h∗(t)
(2.1.15)

with

V (t, φ; g∗(t), h∗(t)) = Et,φ

[
G(Φt+τ∗) +

∫ τ∗

0

F (Φt+s) ds

]
, (2.1.16)

and the boundaries g∗(t) and h∗(t) are uniquely determined by the smooth-fit conditions of

(2.1.14).

2.1.4. Note that the solution of the free boundary problem in (2.1.9)-(2.1.14) cannot be found

in an explicit form for the sequential testing and quickest change-point detection problems

formulated in Examples 2.1 and 2.2 above. In this respect, let us introduce the function V̂ (t, φ)

and the boundaries ĝ(t) and ĥ(t) satisfy the second-order ordinary differential equation

(LV )(t, φ) = −F (φ) + ∂tV (t, φ) for g(t) < φ < h(t), (2.1.17)

and the conditions of (2.1.10)-(2.1.14), where the variable t plays the role of a parameter. We

further provide a connection of the original and the auxiliary free boundary problems associated

with the differential equations in (2.1.9) and (2.1.17), respectively. In particular, we will show

that, under certain conditions, the lower and upper optimal stopping boundaries ĝ(t) and ĥ(t)

of the auxiliary problem provide lower and upper estimates of the optimal stopping boundaries

g∗(t) and h∗(t) of the original problem.

Let us first state the corresponding verification assertion for the modified free boundary

problem which directly follows from Theorem 2.1.3.

Corollary 2.1.1. Let the process Φ be a pathwise unique solution of the stochastic differential

equation in (2.1.1). Suppose that the functions G(φ) and F (φ) are bounded and continuous,

and G is concave and continuously differentiable on ((0, c′) ∪ (c′,∞)) for some c′ ∈ [0,∞].

Assume that the couple ĝ(t) and ĥ(t), such that 0 ≤ ĝ(t) < c′ < ĥ(t) ≤ ∞, together with
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V (t, φ; ĝ(t), ĥ(t)) form a unique solution of the ordinary differential free boundary problem of

(2.1.17)+(2.1.10)-(2.1.14), the derivative ∂tV (t, φ; ĝ(t), ĥ(t)) exists and is continuous, and the

boundaries ĝ(t) and ĥ(t) are continuous and of bounded variation. Then, the function V̂ (t, φ)

defined by

V̂ (t, φ) =

V (t, φ; ĝ(t), ĥ(t)), if ĝ(t) < φ < ĥ(t)

G(φ), if φ ≤ ĝ(t) or φ ≥ ĥ(t)
(2.1.18)

is the value function for the optimal stopping problem

V̂ (t, φ) = inf
τ
Et,φ

[
G(Φt+τ ) (2.1.19)

+

∫ τ

0

(
F (Φt+s)− ∂tV̂ (t+ s,Φt+s) I

(
Φt+s ∈ (ĝ(t+ s), ĥ(t+ s))

))
ds

]
where I(·) denotes the indicator function and the stopping time τ̂ of the form

τ̂ = inf{s ≥ 0 |Φt+s /∈ (ĝ(t+ s), ĥ(t+ s))} (2.1.20)

is optimal in (2.1.19), whenever the integral above is of finite expectation, and τ̂ = 0 otherwise.

Remark 2.1.4. Let us fix some t ≥ 0 and assume that ∂tV̂ (t+s, φ) ≥ 0 holds for all s ≥ 0 and

φ ∈ (ĝ(t+ s), ĥ(t+ s)). Then, the value function V̂ (t+ s, φ) of the auxiliary optimal stopping

problem in (2.1.19) represents a lower estimate for the value function V∗(t + s, φ) of (2.1.2),

i.e. V̂ (t + s, φ) ≤ V∗(t + s, φ) for all s ≥ 0 and φ > 0. Indeed, it follows from the fact that

∂tV̂ (t+ s, φ) ≥ 0 for all s ≥ 0 and φ ∈ (ĝ(t+ s), ĥ(t+ s)) that the stopping times τ over which

the infimum is taken in (2.1.19) include those for which Et,φτ < ∞ holds. Hence, comparing

the right-hand sides of (2.1.2) and (2.1.19), and using again the property ∂tV̂ (t+ s, φ) ≥ 0, we

obtain V̂ (t+ s, φ) ≤ V∗(t+ s, φ) for all s ≥ 0 and φ > 0. It thus follows from the structure of

the optimal stopping times τ∗ and τ̂ in (2.1.7) and (2.1.20) that the inequality τ∗ ≤ τ̂ should

hold (Pt,φ -a.s.). In this case, the optimal stopping boundaries ĝ(t + s) and ĥ(t + s) from

(2.1.20) are lower and upper estimates for the original optimal stopping boundaries g∗(t + s)

and h∗(t+ s) in (2.1.7), that is ĝ(t+ s) ≤ g∗(t+ s) and h∗(t+ s) ≤ ĥ(t+ s) for all s ≥ 0.

Example 2.1.5 (Sequential testing problem.). Let us first solve the free-boundary problem

in (2.1.17)+(2.1.10)–(2.1.14) with G(φ) = (aφ ∧ b)/(1 + φ) and F (φ) = 1 as in Example 2.1.1

above. For this, we follow the arguments of [105; Chapter IV, Section 2] and [90; Chapter VI,

Section 21] and integrate the second-order ordinary differential equation in (2.1.17) twice with
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respect to the variable φ/(1 + φ) as well as use the conditions of (2.1.10) and (2.1.14) at the

upper boundary ĥ(t) to obtain

V (t, φ; ĝ(t), ĥ(t)) =
b

1 + φ
− 2

(µ′(t))2

(( ĥ(t)

1 + ĥ(t)
− φ

1 + φ

)
Υ(ĥ(t))−Ψ(ĥ(t)) + Ψ(φ)

)
, (2.1.21)

where we denote

Ψ(φ) = −1− φ
1 + φ

lnφ and Υ(φ) = φ− 1

φ
+ 2 lnφ, (2.1.22)

for all φ > 0. Then, applying the conditions of (2.1.10) and (2.1.14) at the lower boundary

ĝ(t), we obtain that the functions ĝ(t) and ĥ(t) solve the system of arithmetic equations

a(µ′(t))2g(t)

2(1 + g(t))
=

b(µ′(t))2

2(1 + g(t))
−Υ(h(t))

(
h(t)

1 + h(t)
− g(t)

1 + g(t)

)
+ Ψ(h(t))−Ψ(g(t)), (2.1.23)

(b+ a)(µ′(t))2

2
= Υ(h(t))−Υ(g(t)), (2.1.24)

which is equivalent to the system

(b− a)(µ′(t))2

2
= h(t) +

1

h(t)
− g(t)− 1

g(t)
, (2.1.25)

b(µ′(t))2

2
= h(t) + lnh(t)− g(t)− ln g(t), (2.1.26)

for all t > 0. It is shown in [105; Chapter IV, Section 2] and [90; Chapter VI, Section 21] that

the system in (2.1.25)-(2.1.26) admits the unique solution 0 < ĝ(t) < b/a < ĥ(t) <∞ , for any

µ′(t) and t ≥ 0 fixed. Moreover, by using the implicit function theorem, we can differentiate

(2.1.25)-(2.1.26) to get

(b− a)µ′(t)µ′′(t) = h′(t)− h′(t)

h2(t)
− g′(t) +

g′(t)

g2(t)
, (2.1.27)

b µ′(t)µ′′(t) = h′(t) +
h′(t)

h(t)
− g′(t)− g′(t)

g(t)
, (2.1.28)

from which we deduce that

g′(t) =
µ′(t)µ′′(t)(b− ah(t))g2(t)

(g(t) + 1)(h(t)− g(t))
and h′(t) =

µ′(t)µ′′(t)(b− ag(t))h2(t)

2(h(t) + 1)(h(t)− g(t))
(2.1.29)

holds for all t > 0. In particular, we also obtain that the partial derivative ∂tV̂ (t, φ) exists and

is continuous.
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Example 2.1.6 (Quickest change-point detection problem.). Let us now solve the free-

boundary problem in (2.1.17)+(2.1.10)–(2.1.14) with G(φ) = 1/(1 +φ) and F (φ) = cφ/(1 +φ)

as in Example 2.1.2 above, where we set ĝ(t) = 0 for all t ≥ 0. For this, we follow the arguments

of [105; Chapter IV, Section 4] or [90; Chapter VI, Section 22] and integrate the second-order

ordinary differential equation in (2.1.17) twice with respect to the variable φ/(1 + φ) as well

as use the conditions of (2.1.10) and (2.1.14) at the upper boundary ĥ(t) to obtain

V (t, φ; ĥ(t)) =
1

1 + ĥ(t)
+

∫ ĥ(t)

φ

C(t)

(1 + y)2

∫ y

0

exp
(
− Λ(t)(H(y)−H(x))

)1 + x

x
dxdy, (2.1.30)

where we denote

C(t) =
2c

(µ′(t))2
, Λ(t) =

2λ

(µ′(t))2
, and H(x) = ln x− 1 + x

x
, (2.1.31)

for all t ≥ 0 and φ > 0. It thus follows from the condition of (2.1.14) that the boundary ĥ(t)

solves the arithmetic equation

C(t)

∫ h(t)

0

exp
(
− Λ(t) (H(h(t))−H(x))

) 1 + x

x
dx = 1, (2.1.32)

for all t ≥ 0. It is shown in [105; Chapter IV, Section 4] and [90; Chapter VI, Section 22] that

the equation in (2.1.32) admits the unique solution λ/c ≤ ĥ(t), for any µ′(t) and t ≥ 0 fixed.

Moreover, by using the implicit function theorem, we can also obtain that ĥ(t) is continuosly

differentiable, as well as the partial derivative ∂tV̂ (t, φ) exists and is continuous.

2.2. Asymptotic behaviour of the stopping boundaries

In this section, we are interested in how the optimal stopping boundaries ĝ(t) and ĥ(t) in the

modified problem behave asymptotically with respect to the derivative µ′(t) of the drift function

µ(t) in Example 2.1.1 and Example 2.1.2, as t→∞ . More precisely, we will obtain the limits

and the asymptotic expansions of ĝ(t) and ĥ(t) with respect to µ′(t) in some particular cases,

when either µ′(t)→ 0 or µ′(t)→∞ holds as t→∞ .

Example 2.2.1 (Sequential testing problem.). Let us introduce the function W (x) which

is the inverse of exx , and thus, solves the equation

eW (x)W (x) = x for x ≥ 0 (2.2.1)



2.2. Asymptotic behaviour of the stopping boundaries 68

(see, e.g. [22; Formula (1.5)]). Note that W (x) is strictly increasing and satisfy the properties

W (0) = 0, and W (x)→∞ as x→∞ , and it has the asymptotic series expansion

W (x) ∼ ln(x)− ln(ln(x)) as x→∞ (2.2.2)

(see, e.g. [22; Formula (4.19)]). Then, by solving the quadratic equation in (2.1.25) for h(t),

we obtain that ĝ(t) and ĥ(t) satisfy

h±(t) =
g(t)

2
+

1

2g(t)
+

(b− a)(µ′(t))2

4
±

√(
g(t)

2
+

1

2g(t)
+

(b− a)(µ′(t))2

4

)2

− 1, (2.2.3)

where ĥ(t) = ĥ−(t) or ĥ(t) = ĥ+(t), for all t ≥ 0. Hence, by substituting the expression of

(2.2.3) into the formula of (2.1.26) and taking exponentials on both sides, we have that ĝ(t)

satisfies the following equation

g(t)

2
+

1

2g(t)
+

(b− a)(µ′(t))2

4
±

√(
g(t)

2
+

1

2g(t)
+

(b− a)(µ′(t))2

4

)2

− 1 (2.2.4)

= W
(
eg(t)+b(µ

′(t))2/2g(t)
)
,

which contains both the positive and negative branch of the function on the left-hand side,

depending on the root which we have chosen for ĥ(t) in (2.2.3). If we rearrange the terms and

square both sides of the expression in (2.2.4), we get that ĝ(t) should satisfy

1 +W 2
(
eg(t)+b(µ

′(t))2/2g(t)
)

=

(
g(t) +

1

g(t)
+

(b− a)(µ′(t))2

2

)
W
(
eg(t)+b(µ

′(t))2/2g(t)
)
, (2.2.5)

for all t ≥ 0.

Let us first consider the case in which b > a and µ′(t)→∞ holds as t→∞ . If we assume

that ĥ(t) = ĥ−(t), by using the assumption that b > a and 0 < ĝ(t) < b/a , we obtain that

ĥ−(t) → 0, which contradicts the fact that b/a < ĥ(t) < ∞ holds for all t ≥ 0. It follows

that ĥ(t) = ĥ+(t) and ĝ(t) should solve the equation in (2.2.4) with the positive branch of

the function taken on the left-hand side. Hence, the left-hand side of the expression in (2.2.4)

converges to ∞ as t → ∞ , so that eĝ(t)+b(µ
′(t))2/2ĝ(t) → ∞ holds by virtue of the properties

of the function W (x) defined in (2.2.1). In particular, the functions on both sides of (2.2.5)

converge to ∞ with the same speed, and thus, the following expression holds

W (eĝ(t)+b(µ
′(t))2/2ĝ(t)) ∼ (b− a)(µ′(t))2

2
+ ĝ(t) +

1

ĝ(t)
as t→∞. (2.2.6)
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Furthermore, taking into account the asymptotic series expansion of (2.2.2), we see that

W (eĝ(t)+b(µ
′(t))2/2ĝ(t)) ∼ b(µ′(t))2

2
+ ĝ(t) + ln(ĝ(t)) as t→∞. (2.2.7)

Since ĝ(t) is bounded from above by b/a for all t ≥ 0 and using the equation of (2.2.3) for

ĥ(t), we therefore conclude that

ĝ(t) ∼ 2

a(µ′(t))2
and ĥ(t) ∼ b(µ′(t))2

2
as t→∞. (2.2.8)

Let us now consider the case in which b < a and µ′(t) → ∞ holds as t → ∞ . Since the

function on the left-hand side of (2.1.25) converges to −∞ as t→∞ , taking into account the

fact that ĝ(t) < b/a < ĥ(t) holds for t ≥ 0, we obtain that ĝ(t) → 0 as t → ∞ . Assuming

that W (eĝ(t)+b(µ
′(t))2/2ĝ(t)) does not converge to ∞ implies that there exists a sequence (tn)n∈N ,

such that tn → ∞ and ĝ(tn) = O(e−b(µ
′(tn))2/2) as n → ∞ . Now if ĥ(t) = ĥ+(t), we obtain

that ĥ(tn) → ∞ as n → ∞ , while the assumption that the right-hand side of (2.2.4) does

not converge to ∞ leads to contradiction. On the other hand, if ĥ(t) = ĥ−(t), we obtain that

ĥ(t) → 0, which contradicts the assumption that b/a < ĥ(t) < ∞ holds for all t ≥ 0. We

therefore obtain that W (eĝ(t)+b(µ
′(t))2/2ĝ(t)) → ∞ , and by the same considerations as in the

case b > a above, regarding the asymptotic behaviour of the both sides of (2.2.5), we obtain

(2.2.8).

Let us finally consider the case in which µ′(t)→ 0 holds as t→∞ . Since the left-hand side

of (2.1.26) converges to 0 in this case, by using the fact that the function x+ ln(x) is strictly

increasing for x > 0, and 0 < ĝ(t) < b/a < ĥ(t) < ∞ holds for all t ≥ 0, we may conclude

that ĝ(t)→ b/a and ĥ(t)→ b/a holds as t→∞ .

Example 2.2.2 (Quickest change-point detection problem.). Integrating by parts and

using the notations of (2.1.31), we obtain

C(t)

∫ y

0

(1 + x)

x
exp

(
− Λ(t) (H(y)−H(x))

)
dx =

cy

λ

(
1− Q(−Λ(t)− 1,Λ(t)/y)

Λ(t) + 1

)
, (2.2.9)

where we denote

Q(z, y) = −zy−zeyΓ(z, y) with Γ(z, y) =

∫ ∞
y

e−uuz−1 du, (2.2.10)

for all z ≤ 0 and y ≥ 0. In this case, the expression in (2.1.32) takes the form

h(t)

(
1− Q(−Λ(t)− 1,Λ(t)/h(t))

Λ(t) + 1

)
=
λ

c
, (2.2.11)
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for all t ≥ 0. We also recall the properties of the function Q(z, y) in [111; Section 9] (see also

[46; Section 2.5]) and note that 0 ≤ Q(z, y) ≤ 1 as well as Q(z, 0) = 1 holds for all z ≤ 0.

Let us first consider the case in which µ′(t) → ∞ , and thus Λ(t) → 0 as t → ∞ . Since

λ/c ≤ ĥ(t) holds, we have Λ(t)/ĥ(t) → 0, so that Q(−Λ(t) − 1,Λ(t)/ĥ(t)) → 1 as t → ∞ .

Therefore, by using the fact that ĥ(t) satisfies the equation in (2.2.11), we get that ĥ(t)→∞
holds as t→∞ .

Suppose that µ′(t) → 0, so that Λ(t) → ∞ holds as t → ∞ . Then, using the property

0 ≤ Q(z, y) ≤ 1, it follows from (2.2.11) that

ĥ(t) ∼ λ

c
as t→∞. (2.2.12)

Let us now determine the exact rate of increase for ĥ(t) in the case in which µ′(t) → ∞ as

t ≥ ∞ . In this case, the expression in (2.1.32) can be written as

Λ(t)

∫ h(t)

0

exp
(

Λ(t)H(x)
)1 + x

x
dx =

λ

c
exp

(
Λ(t)H(h(t))

)
, (2.2.13)

for t ≥ 0. Then, using the definition of the function H(x) in (2.1.31), we obtain the expansion

on the right-hand side of (2.2.13) in the form

λ

c
exp

(
Λ(t)H(ĥ(t))

)
∼ λ ĥ(t)Λ(t)

c
, (2.2.14)

under µ′(t)→∞ . Note that the assumption of

lim sup
t→∞

ĥ(t)Λ(t) =∞ (2.2.15)

implies that there exists a sequence (tn)n∈N , such that tn →∞ and exp(Λ(tn)H(ĥ(tn)))→∞
as n → ∞ . Since we have ĥ(t) → ∞ , there exists t′ ≥ 0 such that 2λ/c < ĥ(t) holds for all

t ≥ t′ . Moreover, since the function H(x) is strictly increasing for x > 0, by evaluating the

left-hand side of (2.2.13) at ĥ(t), we obtain that∫ ĥ(t)

0

Λ(t) exp
(

Λ(t)H(x)
)1 + x

x
dx =

∫ ĥ(t)

0

x d exp
(

Λ(t)H(x)
)

(2.2.16)

>

∫ ĥ(t)

2λ
c

x d exp
(

Λ(t)H(x)
)
>

2λ

c

(
exp

(
Λ(t)H(ĥ(t))

)
− exp

(
Λ(t)H

(2λ

c

)))
holds for all t ≥ t′ . This fact means that the leading term of the left-hand side of (2.2.13)

is larger than the leading term on the right-hand side of (2.2.13) along the sequence tn as

n → ∞ , and thus, the assumption of (2.2.15) cannot be satisfied. Since ĥ(t) → ∞ and

Λ(t)→ 0, we have ĥ(t)Λ(t) & 1 as t→∞ . The latter fact implies that ĥ(t)Λ(t) is bounded, so

that ln ĥ(t) = O((µ′(t))2) as t→∞ .
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2.3. The fractional Brownian motion setting

In this section, we apply the asymptotic results obtained above to demonstrate the existence of

solutions in the problems of sequential analysis for an observable fractional Brownian motion

with linear drift. In particular, we will prove that the optimal stopping time τ∗ has a finite

expectation.

Example 2.3.1 (Sequential testing problem.). Suppose that in the setting of Example

2.1.1 the observable continuous process X ≡ Y H = (Y H
t )t≥0 is given by Y H

t = θρt+BH
t , where

BH = (BH
t )t≥0 is a fractional Brownian motion with parameter H ∈ (1/2, 1) independent of

θ , and ρ > 0 is a constant. Introduce the process M
H

= (M
H

t )t≥0 by

M
H

t = ZH
t − c1

∫ t

0

ρ
s1−2HΦs

1 + Φs

ds with 〈MH〉t = 〈ZH〉t =
c1t

2−2H

2− 2H
, (2.3.1)

where the process ZH = (ZH
t )t≥0 is defined by

ZH
t =

∫ t

0

s1/2−H(t− s)1/2−H

2HΓ(3/2−H)Γ(H + 1/2)
dY H

s and c1 =
Γ(3/2−H)

2HΓ(H + 1/2)Γ(2− 2H)
, (2.3.2)

with Φ being the likelihood ratio process as in (2.1.3).

It follows from the result of [82; Theorem 3.1] that the process M
H

is a fundamental

martingale with respect to the filtration (Ft)t≥0 and thus admits the following representation

with respect to the innovation standard Brownian motion

M
H

t =
√
c1

∫ t

0

s1/2−H dBs so that Bt =
1
√
c1

∫ t

0

sH−1/2 dM
H

s . (2.3.3)

for all t ≥ 0 (see, e.g. [82; Section 5.2]). In this case, the process L from (2.1.3) is given by

Lt = exp

(
ρZH

t −
ρ2

2
〈ZH〉t

)
, (2.3.4)

so that the process Φ satisfies the stochastic differential equation in (2.1.1) with η and ζ as in

Example 2.1.1 with µ′(t) = ρ
√
c1t

1/2−H , for all t ≥ 0. Hence, the analysis from the previous

section can be applied for the drift rate µ′(t)→ 0 when 1/2 < H < 1 as t→∞ .

Let us fix a starting time t ≥ 0 and introduce the deterministic time change β(t, s) with

the rate (µ′(s))2 defined as

β(t, s) =

∫ t+s

t

(µ′(u))2 du ≡ c1ρ
2((t+ s)2−2H − t2−2H)

2− 2H
, (2.3.5)
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and its inverse γ(t, s) shifted by t , such that β(t, γ(t, s) − t) = s for all s ≥ 0. Since the

process Φ satisfies the stochastic differential equation of (2.1.1), by applying the time-change

formula for Itô integrals in [83; Theorems 8.5.1 and 8.5.7], we obtain

Φγ(t,s) = Φt exp

(
B̃s −

s

2
+

∫ s

0

Φγ(t,u)

1 + Φγ(t,u)

du

)
with B̃s =

∫ γ(t,s)

t

µ′(u) dBu, (2.3.6)

where B̃ = (B̃s)s≥0 is a standard Brownian motion with respect to the filtration (Fγ(t,s))s≥0 .

Therefore, by using the definition of τ̂ in (2.1.20) and taking into consideration the time change

β(t, s) from (2.3.5), we conclude that the stopping time β(t, τ̂) with respect to the filtration

(Fγ(t,s))s≥0 can be represented as

β(t, τ̂) = inf

{
s ≥ 0

∣∣∣∣ B̃s −
s

2
+

∫ s

0

Φγ(t,u)

1 + Φγ(t,u)

du+ ln Φt /∈
(

ln ĝ(γ(t, s)), ln ĥ(γ(t, s))
)}
,(2.3.7)

for all t ≥ 0.

Assume that b 6= a in Example 2.1.1. In this case, noticing from (2.3.5) that γ(t, s) → ∞
and using the fact that ĝ(t) → b/a and ĥ(t) → b/a as t → ∞ , it follows that for any ε > 0

there exists t∗ > 0 large enough such that the inequalities

b

a
− ε < ĝ(γ(t, s)) <

b

a
< ĥ(γ(t, s)) <

b

a
+ ε (2.3.8)

hold for all t > t∗ and s ≥ 0. Let us now fix an arbitrary ε > 0 such that ε < b/a , and assume

from now on that t > t∗ . Then, introducing the sets of sample paths A0 = {ω ∈ Ω | ĝ(t) <

Φt < ĥ(t)} ,

As =
{
ω ∈ A0

∣∣ ĝ(γ(t, s)) < Φγ(t,s) < ĥ(γ(t, s))
}
, Cs =

{
ω ∈ Ω

∣∣ |Φγ(t,s) − b/a| < ε
}
, (2.3.9)

and using the inequalities in (2.3.8), we get the inclusion As ⊆ Cs for any s ≥ 0. Therefore,

by the definition of the event Cs , for the upper bounds c1(ε) and c2(ε) defined below, we have

c1(ε) ≡ b− aε
a+ b− aε

<
Φγ(t,s)

1 + Φγ(t,s)

<
b+ aε

a+ b+ aε
≡ c2(ε), for ω ∈ As, (2.3.10)

for any ε > 0. It follows from the notations in (2.3.6) and the structure of the event A0 that

As ⊆ Ds holds, where we define

Ds =

{
ω ∈ Ω

∣∣∣∣ B̃s −
s

2
∈
(

ln
( ĝ(γ(t, s))

ĥ(t)

)
− c2(ε) s, ln

( ĥ(γ(t, s))

ĝ(t)

)
− c1(ε) s

)}
, (2.3.11)

for all s ≥ 0. Define the stopping time τ as

τ = inf

{
s ≥ 0

∣∣∣∣ B̃s −
s

2
/∈
(

ln
( ĝ(γ(t, s))

ĥ(t)

)
− c2(ε) s, ln

( ĥ(γ(t, s))

ĝ(t)

)
− c1(ε) s

)}
, (2.3.12)
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and notice that the stopping times β(t, τ̂) = β(t, τ̂(ω)) and τ = τ(ω) admit the representations

β(t, τ̂(ω)) = sup

{
s ≥ 0

∣∣∣∣ω ∈ ⋂
0≤u≤s

Au

}
and τ(ω) = sup

{
s ≥ 0

∣∣∣∣ω ∈ ⋂
0≤u≤s

Du

}
, (2.3.13)

for any ω ∈ Ω. Then, it follows from the inclusion As ⊆ Ds for s ≥ 0 that β(t, τ̂) ≤ τ

holds. Because of the assumption b 6= a , we can choose ε < b/a such that either 1 − ε > b/a

holds when b < a or 1 + ε < b/a holds when b > a . Hence, assuming that b < a , we have

1/2− c2(ε) > 0. Thus, it follows from the expressions in (2.3.8) and (2.3.12) that τ ≤ τ ′ holds,

where we set

τ ′ = inf
{
s ≥ 0 | B̃s ≤ ln(b− aε)− ln(aĥ(t)) + (1/2− c2(ε))s

}
, (2.3.14)

which is a stopping time with polynomial moments of all orders (see, e.g. [107; Chapter IV]).

Therefore, it follows from the fact that β(t, τ̂) ≤ τ ≤ τ ′ holds and the structure of the time

change in (2.3.5) that Et,φτ̂ ≤ Et,φγ(t, τ ′)− t <∞ is satisfied, and we get the same inequalities

in the case of b > a , similarly.

Let us now prove that ∂tV (t, φ; ĝ(t), ĥ(t)) > 0 holds for all φ ∈ (ĝ(t), ĥ(t)) and t > 0 large

enough. For this purpose, by differentiating the expression in (2.1.21) and using the expressions

in (2.1.22) and (2.1.29), we get

∂tV (t, φ; ĝ(t), ĥ(t)) = 2(2H − 1)(Ψ(ĥ(t))−Ψ(φ))/(t(µ′(t))2) (2.3.15)

− 2

(µ′(t))2

(
ĥ(t)

1 + ĥ(t)
− φ

1 + φ

)(
(2H − 1)ξ(ĥ(t))

t
+
ĥ′(t)(ĥ(t) + 1)2

ĥ(t)2

)
=

2(2H − 1)Ξ(t, φ)

t(µ′(t))2
,

where we denote

Ξ(t, φ) = φ+ lnφ− ĥ(t)− ln ĥ(t) +
φ

1 + φ

(
Υ(ĥ(t))−Υ(φ)

)
+

(ĥ(t)− φ)(b− aĝ(t))

2(ĥ(t)− ĝ(t))(1 + φ)
, (2.3.16)

for all t > 0 and φ > 0. It is clear that Ξ(t, ĥ(t)) = 0 holds and, thus, we obtain from the

expressions in (2.1.24) and (2.1.26) that

Ξ(t, ĝ(t)) =
(µ′(t))2

2

(
ĝ(t)(a+ b)

1 + ĝ(t)
− b
)

+
(b− aĝ(t))

2(1 + ĝ(t))
=

(b− aĝ(t))

2(1 + ĝ(t))

(
1− (µ′(t))2

2

)
, (2.3.17)

holds for t > 0. Since b/a > ĝ(t) > 0 is satisfied, and there exists t′ > 0 such that µ′(t) <
√

2

holds for all t ≥ t′ , we have Ξ(t, ĝ(t)) > 0 for t ≥ t′ . Then, by differentiating the expression in

(2.3.16), we get

∂φΞ(t, φ) =
1

(1 + φ)2

(
Υ(ĥ(t))−Υ(φ)− (b− aĝ(t))(1 + ĥ(t))

2(ĥ(t)− ĝ(t))

)
, (2.3.18)
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for all t > 0 and φ > 0. Observe that, since Υ(φ) is an increasing function, it follows

that ∂φΞ(t, φ) changes its sign at most once in the region φ ∈ (ĝ(t), ĥ(t)) for all t ≥ t′ .

It is easily seen that the inequality ∂φΞ(t, ĥ(t)) < 0 holds, which means that either Ξ(t, φ)

is decreasing for φ ∈ (ĝ(t), ĥ(t)) or there exists some φ∗ ∈ (ĝ(t), ĥ(t)) such that Ξ(t, φ) is

increasing for φ ∈ (ĝ(t), φ∗] and decreasing for φ ∈ (φ∗, ĥ(t)). Hence, since Ξ(t, ĝ(t)) > 0

and Ξ(t, ĥ(t)) = 0 holds, we get that Ξ(t, φ) > 0 is satisfied in both cases for φ ∈ (ĝ(t), ĥ(t))

and t ≥ t′ . For 1/2 < H < 1, it follows from the expressions in (2.3.15) that the inequality

∂tV (t, φ; ĝ(t), ĥ(t)) > 0 holds for all φ ∈ (ĝ(t), ĥ(t)) and t ≥ t′ . We can therefore apply the

assertions of Remark 2.1.4 and use the fact that Et,φτ̂ <∞ to obtain that Et,φτ∗ ≤ Et,φτ̂ <∞
holds when the starting time t satisfies t > t′ ∨ t∗ .

Example 2.3.2 (Quickest disorder detection problem.). Suppose that in the setting of

Example 2.1.2 the observable continuous process X ≡ Y H = (Y H
t )t≥0 is given by Y H

t = (t −
θ)+ρ+BH

t , where BH = (BH
t )t≥0 is a fractional Brownian motion with parameter H ∈ (1/2, 1)

independent of θ , and ρ > 0 is a constant. Let the likelihood ratio process Φ be defined as

in (2.1.5), where the process L is given by (2.3.4). Therefore, by using the same reasoning as

in Example 2.3.1, we obtain that the process Φ satisfies the stochastic differential equation in

(2.1.1) with η(t, φ) and ζ(t, φ) as in Example 2.1.2, where µ′(t) = ρ
√
c1t

1/2−H for all t ≥ 0.

Hence, the analysis from the previous section can be applied for the drift rate µ′(t)→ 0 when

1/2 < H < 1 as t→∞ .

Let us fix a starting time t ≥ 0 and define the deterministic time change β(t, s) and its

inverse γ(t, s) as in (2.3.5) for all s ≥ 0. By using the expression in (2.1.5) we get that

Φs ≥ Φ0e
λsLs holds for all s ≥ 0. Therefore, if we define the stopping time τ̃ as

τ̃ = inf{s ≥ 0 |Φ0 e
λ(t+s)Lt+s ≥ ĥ(t+ s)}, (2.3.19)

we have that τ̂ ≤ τ̃ holds, where τ̂ is defined in (2.1.20). In order to simplify further notations,

we define the process Φ̃ = (Φ̃s)s≥0 by Φ̃s = Φ0e
λγ(t,s)Lγ(t,s) for s ≥ 0. Since L has the form of

(2.3.4), by applying the time-change formula for Itô integrals in [83; Theorems 8.5.1 and 8.5.7],

we obtain

Φ̃s = Φ̃0 exp

(
B̃s −

s

2
+ λ(γ(t, s)− t) +

∫ s

0

Φ̃u

1 + Φ̃u

du

)
, (2.3.20)

where the process B̃ = (B̃s)s≥0 defined in (2.3.6) is a standard Brownian motion. Therefore, by

using the definition of τ̃ in (2.3.19) and taking into consideration the time change, the stopping
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time β(t, τ̃) can be represented as

β(t, τ̃) = inf

{
s ≥ 0

∣∣∣∣ B̃s −
s

2
+ λ(γ(t, s)− t) +

∫ s

0

Φ̃u

1 + Φ̃u

du+ ln Φ̃0 ≥ ln ĥ(γ(t, s))

}
. (2.3.21)

Since γ(t, s) → ∞ as t → ∞ , it follows from (2.2.12) that for any ε > 0 there exists t∗ > 0

large enough such that the inequalities

λ

c
< ĥ(γ(t, s)) <

λ

c
+ ε (2.3.22)

hold for all t > t∗ and s ≥ 0.

Let us now fix an arbitrary ε > 0 and assume from now on that t > t∗ . By using the fact

that Φ̃ is a nonnegative process, we obtain from (2.3.5) that the inequalities

λ(γ(t, s)− t) +

∫ s

0

Φ̃u

1 + Φ̃u

du ≥ λ(γ(t, s)− t) ≥ λ
(s(2− 2H)

c1ρ2

)1/(2−2H)

(2.3.23)

hold for all s ≥ 0. Define the random variable ∆t as

∆t = sup
s≥0

(
s+ ln

(λ+ cε

c Φ̃0

)
− λ

(s(2− 2H)

c1ρ2

)1/(2−2H)

+
s

2

)
, (2.3.24)

and notice that it follows from the inequalities in (2.3.22) and (2.3.23) that

ln
( ĥ(γ(t, s))

Φ̃0

)
− λ(γ(t, s)− t)−

∫ s

0

Φ̃u

1 + Φ̃u

du+
s

2
< ∆t − s (2.3.25)

holds for all s ≥ 0. Subsequently, we obtain from (2.3.21) that β(t, τ̃) ≤ τ ′′ , where we set

τ ′′ = inf{s ≥ 0 | B̃s ≤ ∆t − s}, (2.3.26)

for any t > t∗ . Moreover, by introducing the event A = {ω ∈ Ω | Φ̃0 < ĥ(t)} , we also obtain

that β(t, τ̃) = 0 on Ω \A , and hence, we conclude that β(t, τ̃) ≤ τ ′′I(A) holds. Since we have

that ∆t > 0 on the event A and ∆t < ∞ (Pt,φ -a.s.), for 1/2 < H < 1, we get that τ ′′I(A)

has polynomial moments of all orders (see, e.g. [107; Chapter IV]). Therefore, it follows from

the fact that β(t, τ̂) ≤ β(t, τ̃) ≤ τ ′′I(A) holds and the structure of the time change in (2.3.5)

that Et,φτ̂ ≤ Et,φγ(t, τ ′′)− t <∞ is satisfied.

Let us finally show that ∂tV (t, φ; ĥ(t)) > 0 holds for all φ ∈ (0, ĥ(t)) and t > 0. For this

purpose, differentiating the expression in (2.1.30) and using the expressions in (2.1.32) and

(2.2.9), we get

∂tV (t, φ; ĥ(t)) =

∫ ĥ(t)

φ

∂

∂t

(
C(t)

(y + 1)2

∫ y

0

(1 + x)

x
exp

(
− Λ(t)(H(y)−H(x))

)
dx

)
dy (2.3.27)

=

∫ ĥ(t)

φ

cy

λ(y + 1)2

∂

∂t

(
1− Q(−Λ(t)− 1,Λ(t)/y)

Λ(t) + 1

)
dy
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for all φ < ĥ(t) and t > 0. Note that we also have

x−aexΓ(a, x) = x−aex
∫ ∞
x

e−uua−1du =

∫ ∞
0

e−xu(u+ 1)a−1du, (2.3.28)

for a < 0 and x > 0. It is shown by differentiation of the expressions in (2.3.28) that the

function x−aexΓ(a, x) is decreasing in x and increasing in a (see, e.g. [46; Section 2.5] for

similar results). Hence, the function

y

x+ 1
Q
(
− x− 1,

x

y

)
= y
(x
y

)x+1

ex/yΓ
(
− x− 1,

x

y

)
(2.3.29)

is decreasing in x for x, y > 0, where the functions Q(z, y) and Γ(z, y) are defined in (2.2.10).

Recall that, for 1/2 < H < 1, the function µ′(t) is decreasing, so that Λ(t) is increasing in

t . Hence, by using the formulas from (2.3.29), we obtain from the expressions in (2.3.27) that

V (t, φ; ĥ(t)) is increasing in t , which leads to ∂tV (t, φ; ĥ(t)) > 0 for all φ ∈ (0, ĥ(t)) and t > 0.

We can therefore apply the assertions of Remark 2.1.4 and use the fact that Et,φτ̂ < ∞ to

conclude that Et,φτ∗ ≤ Et,φτ̂ <∞ , when the starting time t satisfies t > t∗ .

2.4. Appendix

Let us now prove the verification assertion stated in Theorem 2.1.3 above.

Proof. In order to verify the assertions stated above, let us denote by V (t, φ) the right-hand

side of the expression in (2.1.15). Then, using the fact that the function V (t, φ) satisfies the

conditions of (2.1.11)-(2.1.13) by construction, we can apply the local time-space formula from

Peskir [85] (see also [90; Chapter II, Section 3.5] for a summary of the related results and further

references) to obtain

V (t+ u,Φt+u) +

∫ u

0

F (Φt+s) ds = V (t, φ) +Mu +Ku (2.4.1)

+

∫ u

0

(LV + F )(t+ s,Φt+s) I
(
Φt+s 6= g∗(t+ s),Φt+s 6= h∗(t+ s)

)
ds

for all t ≥ 0, where the process M = (Mu)u≥0 defined by

Mu =

∫ u

0

Vφ(t+ s,Φt+s) ζ(t+ s,Φt+s) I
(
Φt+s 6= g∗(t+ s),Φt+s 6= h∗(t+ s)

)
dBs (2.4.2)
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is a continuous local martingale with respect to the probability measure Pt,φ . Here, the process

K = (Ku)u≥0 is given by

Ku =
1

2

∫ u

0

∆φV (t+ s, g∗(t+ s)) I
(
Φt+s = g∗(t+ s)

)
d`g∗s (2.4.3)

+
1

2

∫ u

0

∆φV (t+ s, h∗(t+ s)) I
(
Φt+s = h∗(t+ s)

)
d`h∗s

where ∆φV (t+s, g∗(t+s)) = Vφ(t+s, g∗(t+s)+)−Vφ(t+s, g∗(t+s)−), ∆φV (t+s, h∗(t+s)) =

Vφ(t+ s, h∗(t+ s)+)−Vφ(t+ s, h∗(t+ s)−), and the processes `g∗ = (`g∗u )u≥0 and `h∗ = (`h∗u )u≥0

defined by

`g∗u = Pt,φ − lim
ε↓0

1

2ε

∫ u

0

I
(
g∗(t+ s)− ε < Φt+s < g∗(t+ s) + ε

)
ζ2(t+ s,Φt+s) ds (2.4.4)

and

`h∗u = Pt,φ − lim
ε↓0

1

2ε

∫ u

0

I
(
h∗(t+ s)− ε < Φt+v < h∗(t+ s) + ε

)
ζ2(t+ s,Φt+s) ds (2.4.5)

are the local times of Φ at the curves g∗(t) and h∗(t), at which Vφ(t, φ) may not exist. It follows

from the concavity and continuous differentiability of the gain function G(φ) in (2.1.2), and

the stopping time τ∗ in (2.1.7), that the inequalities ∆φV (t, g∗(t)) ≤ 0 and ∆φV (t, h∗(t)) ≤ 0

should hold for all t ≥ 0, so that the continuous process K defined in (2.4.3) is non-increasing.

We may therefore conclude that Ku = 0 can hold for all u ≥ 0 if and only if the smooth-fit

conditions of (2.1.14) are satisfied.

Using the assumption that the inequality in (2.1.13) holds for the function G(φ) with the

boundaries g∗(t) and h∗(t), we conclude that (LV + F )(t, φ) ≥ 0 holds for any φ 6= g∗(t) and

φ 6= h∗(t). Moreover from the conditions in (2.1.10)-(2.1.12) the inequality V (t, φ) ≤ G(φ)

holds for all (t, φ) ∈ [0,∞)2 . Thus, for any stopping time τ such that Et,φτ < ∞ , the

expression in (2.4.1) yields the inequalities

G(Φt+τ ) +

∫ τ

0

F (Φt+s)ds−Kτ ≥ V (t+ τ,Φt+τ ) +

∫ τ

0

F (Φt+s)ds−Kτ (2.4.6)

≥ V (t, φ) +Mτ .

Let (τn)n∈N be a localizing sequence of stopping times for the process M such that τn = inf{s ≥
0 | |Ms| ≥ n} . Taking the expectations with respect to the probability measure Pt,φ in (2.4.6),

by means of the optional sampling theorem (see, e.g. [75; Chapter III, Theorem 3.6] or [63;
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Chapter I, Theorem 3.22]), we get the inequalities

Et,φ

[
G(Φt+τ∧τn) +

∫ τ∧τn

0

F (Φt+s) ds−Kτ∧τn

]
(2.4.7)

≥ Et,φ

[
V (t+ τ ∧ τn,Φt+τ∧τn) +

∫ τ∧τn

0

F (Φt+s) ds−Kτ∧τn

]
≥ V (t, φ) + Et,φMτ∧τn = V (t, φ).

Hence, letting n go to infinity and using Fatou’s lemma, we obtain

Et,φ

[
G(Φt+τ ) +

∫ τ

0

F (Φt+s) ds−Kτ

]
(2.4.8)

≥ Et,φ

[
V (t+ τ,Φt+τ ) +

∫ τ

0

F (Φt+s) ds−Kτ

]
≥ V (t, φ)

for any stopping time τ such that Et,φτ < ∞ and Et,φKτ > −∞ , and all (t, φ) ∈ [0,∞)2 ,

where Kτ = 0 holds whenever the conditions of (2.1.14) are satisfied. By virtue of the structure

of the stopping time in (2.1.7) and the conditions of (2.1.11), it is readily seen that the equalities

in (2.4.6) hold with τ∗ instead of τ when either φ ≤ g∗(t) or φ ≥ h∗(t), respectively.

Let us now show that the equalities are attained in (2.4.8) when τ∗ replaces τ and the

smooth-fit conditions of (2.1.14) hold for g∗(t) < φ < h∗(t). By virtue of the fact that the

function V (t, φ) and the boundaries g∗(t) and h∗(t) solve the partial differential equation in

(2.1.9) and satisfy the conditions in (2.1.10) and (2.1.14), it follows from the expression in

(2.4.1) and the structure of the stopping time in (2.1.7) that

G(Φt+τ∗∧τn) +

∫ τ∗∧τn

0

F (Φt+s) ds (2.4.9)

≥ V (t+ τ∗ ∧ τn,Φt+τ∗∧τn) +

∫ τ∗∧τn

0

F (Φt+s) ds = V (t, φ) +Mτ∗∧τn

holds for g∗(t) < φ < h∗(t). Hence, taking expectations and letting n go to infinity in (2.4.9),

using the assumptions that G(φ) is bounded and the integral in (2.1.16) is of finite expectation,

we apply the Lebesgue dominated convergence theorem to obtain the equality

Et,φ

[
G(Φt+τ∗) +

∫ τ∗

0

F (Φt+s) ds

]
= V (t, φ) (2.4.10)

for all (t, φ) ∈ [0,∞)2 . We may therefore conclude that the function V (t, φ) coincides with

the value function V∗(t, φ) of the optimal stopping problem in (2.1.2) whenever the smooth-fit

conditions of (2.1.14) hold.

In order to prove the uniqueness of the value function V∗(t, φ) and the boundaries g∗(t)

and h∗(t) as solutions to the free-boundary problem in (2.1.9)-(2.1.13) with the smooth-fit
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conditions of (2.1.14), let us assume that there exist other continuous boundaries of bounded

variation g̃(t) and h̃(t) such that 0 ≤ g̃(t) < c′ < h̃(t) ≤ ∞ holds. Then, define the function

Ṽ (t, φ) as in (2.1.15) with Ṽ (t, φ; g̃(t), h̃(t)) satisfying (2.1.9)-(2.1.14) and the stopping time τ̃

as in (2.1.7) with g̃(t) and h̃(t) instead of g∗(t) and h∗(t), respectively, such that Et,φτ̃ <∞ .

Following the arguments from the previous part of the proof and using the fact that the function

Ṽ (t, φ) solves the partial differential equation in (2.1.9) and satisfies the conditions of (2.1.10)

and (2.1.14) with g̃(t) and h̃(t) instead of g(t) and h(t) by construction, we apply the change-

of-variable formula from [85] to get

Ṽ (t+ u,Φt+u) +

∫ u

0

F (Φt+s) ds = Ṽ (t, φ) + M̃u (2.4.11)

+

∫ u

0

(LṼ + F )(t+ s,Φt+s) I
(
Φt+s /∈ (g̃(t+ s), h̃(t+ s))

)
ds

where the process M̃ = (M̃u)u≥0 defined as in (2.4.2) with Ṽφ(t, φ) instead of Vφ(t, φ) is a

continuous local martingale with respect to the probability measure Pt,φ . Thus, taking into

account the structure of the stopping time τ̃ , from (2.4.11) we obtain that

G(Φt+τ̃∧τ̃n) +

∫ τ̃∧τ̃n

0

F (Φt+s) ds (2.4.12)

≥ Ṽ (t+ τ̃ ∧ τ̃n,Φt+τ̃∧τ̃n) +

∫ τ̃∧τ̃n

0

F (Φt+s) ds = Ṽ (t, φ) + M̃τ̃∧τ̃n

holds for g̃(t) < φ < h̃(t) and any localizing sequence (τ̃n)n∈N of M̃ . Hence, taking expectations

and letting n go to infinity in (2.4.12), using the assumptions that G(φ) and F (φ) are bounded

and the integral in (2.1.16) taken up to τ̃ is of finite expectation, by means of the Lebesgue

dominated convergence theorem, we have that the equality

Et,φ

[
G(Φt+τ̃ ) +

∫ τ̃

0

F (Φt+s) ds

]
= Ṽ (t, φ) (2.4.13)

is satisfied. Therefore, recalling the fact that τ∗ is the optimal stopping time in (2.1.2) and

comparing the expressions in (2.4.10) and (2.4.13), we see that the inequality Ṽ (t, φ) ≥ V (t, φ)

should hold for all (t, φ) ∈ [0,∞)2 .

We finally show that g̃(t) and h̃(t) should coincide with g∗(t) and h∗(t). By using the

fact that Ṽ (t, φ) and V (t, φ) satisfy (2.1.10)-(2.1.12), and Ṽ (t, φ) ≥ V (t, φ) holds for all

(t, φ) ∈ [0,∞)2 we get that g∗(t) ≤ g̃(t) and h̃(t) ≤ h∗(t). Inserting τ∗ ∧ τ̃n into (2.4.11) in

place of u and using the assumptions that G(φ) is bounded and the appropriate integrals are
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of finite expectation, by means of the arguments similar to the ones above, we obtain

Et,φ

[
Ṽ (t+ τ∗,Φt+τ∗) +

∫ τ∗

0

F (Φt+s) ds

]
= Ṽ (t, φ) (2.4.14)

+ Et,φ

∫ τ∗

0

(LṼ + F )(t+ s,Φt+s) I
(
Φt+s /∈ (g̃(t+ s), h̃(t+ s))

)
ds.

for all (t, φ) ∈ [0,∞)2 . Thus, since we have Ṽ (t, φ) = V (t, φ) = G(φ) for φ = g∗(t) and

φ = h∗(t), and Ṽ (t, φ) ≥ V (t, φ), we see from the expressions in (2.4.10) and (2.4.14) that the

inequality

Et,φ

∫ τ∗

0

(LṼ + F )(t+ s,Φt+s) I
(
Φt+s /∈ (g̃(t+ s), h̃(t+ s))

)
ds ≤ 0, (2.4.15)

should hold. Due to the assumption of continuity of g̃(t) and h̃(t) we may therefore conclude

that g∗(t) = g̃(t) and h∗(t) = h̃(t), so that Ṽ (t, φ) coincides with V (t, φ) for all (t, φ) ∈ [0,∞)2 .
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Chapter 3

Quickest change-point detection

problems for multidimensional Wiener

processes

This chapter is based on joint work with Dr. Pavel V. Gapeev.

3.1. The problem formulation

Let (Ω,G, P~π) be a probability space, B = (B1, . . . , Bn) is an n-dimensional Wiener process

with constantly correlated components, where ~π is an n-dimensional vector such that ~π =

(π1, . . . , πn) ∈ [0, 1]n and n ∈ N . Denote N := {1, . . . , n} and let, for any i ∈ N , the

nonnegative random variable θi be such that P~π(θi = 0) = πi and P~π(θi > t | θi > 0) = e−λit

with λi > 0, for all t ≥ 0. Let also θi be independent of Bj for all i, j ∈ N , and θi be

independent of θj for all i 6= j ∈ N . Assume that we observe the processes X i = (X i
t)t≥0

satisfying the stochastic differential equation

dX i
t = µi I(θi ≤ t) dt+ νi dB

i
t (X i

0 = 0), (3.1.1)

where µi, νi > 0 for i ∈ N . Let the functions fi : [0,∞)n 7→ [0,∞) be given for i = 1, . . . ,m ,

m ∈ N , and denote ~θ := (θ1, . . . , θn). Our aim is to find a stopping time of alarm τ∗ with

respect to the (observable) filtration (Ft)t≥0 generated by all X i for i ∈ N , that is Ft =

σ(X i
s, i ∈ N | 0 ≤ s ≤ t), which is as close as possible to every function fj(~θ) for j = 1, . . . ,m .

Specifically, the quickest change-point detection problem for a multidimensional Wiener process
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is to compute the Bayesian risk function

V∗(~π) = inf
τ

( m∑
i=1

(
bi P~π

(
τ < fi(~θ)

)
+ ciE~π

[
(τ − fi(~θ))+

]))
, (3.1.2)

and find the optimal stopping time τ∗ at which the infimum is attained in (3.1.2), where

bi, ci > 0 are given constants for i = 1, . . . ,m . Here P~π(τ < fi(~θ)) represents the probability

of false alarm and E~π[(τ − fi(~θ))+] represents the average delay of detecting the function fi(~θ)

for i = 1, . . . ,m .

By using standard arguments (see [105; pages 195-197]) we get that

P~π
(
τ < fi(~θ)

)
= E~π

[
I(τ < fi(~θ))

]
= E~π

[
E~π
[
I(τ < fi(~θ))

∣∣Fτ]] (3.1.3)

= E~π
[
P~π
(
τ < fi(~θ)

∣∣Fτ)],
and

E~π
[
(τ − fi(~θ))+

]
= E~π

∫ τ

0

I(fi(~θ) ≤ t) dt = E~π

∫ ∞
0

I(fi(~θ) ≤ t, t ≤ τ) dt (3.1.4)

= E~π

∫ ∞
0

E~π
[
I(fi(~θ) ≤ t, t ≤ τ)

∣∣Ft] dt = E~π

∫ τ

0

P~π
(
fi(~θ) ≤ t

∣∣Ft) dt,
holds for i = 1, . . . ,m , where I(·) denotes the indicator function.

3.1.1. Sufficient statistics and filtering equations Let us now reduce the original prob-

lem of (3.1.2) to an optimal stopping problem for a multidimensional (strong) Markov process.

We define the posterior probability processes (Π∗,it )t≥0 as Π∗,it = P~π(fi(~θ) ≤ t|Ft) for t ≥ 0 and

i = 1, . . . ,m , and observe that it follows from (3.1.3)-(3.1.4) that the Bayesian risk function in

(3.1.2) can be represented as

V∗(~π) = inf
τ
E~π

[ m∑
i=1

bi (1− Π∗,iτ ) + ci

∫ τ

0

Π∗,it dt

]
. (3.1.5)

For each J ⊆ N , we define the posterior probability process (ΠJ
t )t≥0 as ΠJ

t := P~π(
⋂
i∈J{θi ≤ t}|Ft).

In order to simplify the notation, we will order the processes ΠJ by choosing an arbitrary

integer-valued bijection O : {1, . . . , 2n} 7→ 2N from the set of integers {1, . . . , 2n} to the power

set (i.e. the set of all subsets) of N and denoting by ~Π = (Π1, . . . ,Π2n) the 2n -dimensional

process with components given by Πj = ΠO(j) for j = 1, . . . , 2n . Let us now assume that the

functions fi are such that Π∗,i is of the form

Π∗,it ≡ P~π(fi(~θ) ≤ t | Ft) =
2n∑
j=1

aji Π
j
t , (3.1.6)
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for some constants aji , for all t ≥ 0 and every i = 1, . . . ,m and j = 1, . . . , 2n (examples of

such functions fi will be provided in Section 3.3). In what follows, we prove that the process

~Π has the strong Markov property.

We introduce the probability measure P J(·) := P~π(· |
⋂
i∈J{θi = 0}

⋂⋂
j∈N\J{θj = ∞})

and the (weighted) density process (ZJ
t )t≥0 as

ZJ
t := exp

(
t
∑
i∈J

λi

)
d(P J |Ft)
d(P∅|Ft)

, (3.1.7)

for J ⊆ N , where P J | Ft denotes the restriction of the measure P J to Ft . Let the correlation

matrix Σ = (σij)i,j∈N of the n-dimensional process X = (X1, . . . , Xn) be given by

σij =
〈X i, Xj〉1
νiνj

, (3.1.8)

for i, j ∈ N , and denote the entries of the inverse correlation matrix as Σ−1 = (νij)i,j∈N ,

which exists because Σ is a symmetric and positive definite matrix. We can express the

density process from (3.1.7) in terms of processes adapted to the observable filtration, and

these processes will be linear combinations of the observed processes X i for i ∈ N , as the

following lemma shows. The arguments are essentialy based on the application of the Girsanov

theorem for a multidimensional Wiener process.

Lemma 3.1.1. We have

ZJ
t = exp

(∑
i∈J

λit+
∑
i∈J

Y i
t −

1

2

(∑
i,j∈J

µi
νi

µj
νj
νlj

)
t

)
, (3.1.9)

for J ⊆ N , where we have defined

Y i
t :=

µi
νi

n∑
j=1

νij
νj
Xj
t , (3.1.10)

for i ∈ N and t ≥ 0.

Proof. See Appendix.

Let us now define the process (Φα,L
t )t≥0 recursively as

Φα,L
t := λαk

∫ t

0

Φ[α1,...,αk−1],L
u

ZK∪L
t

ZK∪L
u

du, Φ∅,L
t := πLZL

t , Φ∅,∅ ≡ 1, (3.1.11)

for K,L ⊆ N such that K 6= ∅, K∩L = ∅ , and any permutation α := [α1, . . . , αk] ∈ Perm(K),

where Perm(K) denotes the set of all permutations of K , and πL :=
∏

l∈L πl . The process Φα,L
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can be regarded as a (weighted) likelihood ratio process corresponding to the event
⋂
l∈L{θl = 0}⋂

{0 < θα1 ≤ · · · ≤ θαk ≤ t}
⋂⋂

i∈N\(K∪L){t < θi} since it can be written in the form

Φα,L
t = πL exp

(
t
∑
i∈N

λi

)∫
At

d(P u,L|Ft)
d(P∅|Ft)

k+r∏
i=1

λαie
−uiλαidk+r~u, (3.1.12)

where r is the number of elements of the set N \ (K ∪ L) and

{αk+1, . . . , αk+r} = N \ (K ∪ L), (3.1.13)

At = {x ∈ Rk+r | 0 < x1 ≤ · · · ≤ xk ≤ t and t < xk+i for i = 1, . . . , r}, (3.1.14)

P u,L(·) = P~π(· |
⋂
i∈L{θi = 0}

⋂⋂
j=1,...,k+r{θαj = uj}), (3.1.15)

for ~u = (u1, . . . , uk+r) ∈ Rk+r and t ≥ 0. Therefore, the processes (ΨJ,L
t )t≥0 and (ΨJ

t )t≥0

defined as

ΨJ,L
t :=

∑
J⊆K⊆N\L

∑
α∈Perm(K)

Φα,L
t and ΨJ

t :=
∑

L1⊆N\J,L2⊆J

Ψ
J\L2,L1∪L2

t , (3.1.16)

for J, L ⊆ N such that J ∩ L = ∅ , can be regarded as a (weighted) likelihood ratio pro-

cesses corresponding to the events {(θl = 0)l∈L}
⋂
{(0 < θi ≤ t)i∈J}

⋂
{(0 < θi)i∈N\(J∪L)} and

{(θi ≤ t)i∈J} , respectively. Hence, by using the generalized Bayes formula from [75; Theorem

7.23], we obtain that the posterior probability process (ΠJ
t )t≥0 takes the form

ΠJ
t =

ΨJ
t

Ψ∅
t

, (3.1.17)

for J ⊆ N .

It follows from the expression in (3.1.9) that ZJ satisfies the following stochastic differential

equation

dZJ
t = ZJ

t

(∑
i∈J

λi dt+
∑
i∈J

dY i
t

)
, (3.1.18)

for J ⊆ N . By using Itô’s formula, from (3.1.18) and (3.1.11) we get

dΦα,L
t =

(
λαkΦ

[α1,...,αk−1],L
t +

∑
i∈K∪L

λiΦ
α,L
t

)
dt+

∑
i∈K∪L

Φα,L
t dY i

t , (3.1.19)

dΦ∅,L
t =

∑
i∈L

λiΦ
∅,L
t dt+

∑
i∈L

Φ∅,L
t dY i

t , (3.1.20)
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for K,L ⊆ N such that K 6= ∅ , K ∩L = ∅ and any α := [α1, . . . , αk] ∈ Perm(K). Therefore,

by using (3.1.16), we further obtain

dΨJ,L
t =

(∑
i∈J

λiΨ
J\{i},L
t +

∑
i/∈J

λiΨ
J,L
t

)
dt+

∑
i∈J∪L

ΨJ,L
t dY i

t +
∑
i/∈J∪L

Ψ
J∪{i},L
t dY i

t , (3.1.21)

and, by aggregating, we get

dΨJ
t =

(∑
i∈J

λiΨ
J\{i}
t +

∑
i/∈J

λiΨ
J
t

)
dt+

∑
i∈J

ΨJ
t dY

i
t +

∑
i/∈J

Ψ
J∪{i}
t dY i

t , (3.1.22)

for J, L ⊆ N such that J ∩ L = ∅ . Hence, by applying Itô’s formula to (3.1.17), we conclude

that

dΠJ
t =

∑
i∈J

λi

(
Π
J\{i}
t − ΠJ

t

)
dt+

∑
i∈N

(
Π
J∪{i}
t − ΠJ

t Π
{i}
t

)(
dY i

t −
n∑
j=1

Π
{j}
t d〈Y i, Y j〉t

)
, (3.1.23)

for J ⊆ N .

Furthermore, we get from (3.1.10) that

〈Y i, Y j〉t =
µiµj
νiνj

t
n∑

k,l=1

νikνjlσkl =
µiµj
νiνj

νjit, (3.1.24)

and, therefore, we can write the equation in (3.1.23) as

dΠJ
t =

∑
i∈J

λi

(
Π
J\{i}
t − ΠJ

t

)
dt+

∑
i∈N

(
Π
J∪{i}
t − ΠJ

t Π
{i}
t

) n∑
j=1

µi
νi

νji
νj

(
dXj

t − µjΠ
{j}
t dt

)
. (3.1.25)

Defining the innovation processes B
i

= (B
i

t)t≥0 , i ∈ N , by

B
i

t :=
X i
t

νi
− µi
νi

∫ t

0

Π{i}s ds, (3.1.26)

and using the Lévy’s characterization theorem (see, e.g. [75; Chapter IV, Theorem 4.1]), we

see that B
i

is a standard Brownian motion with respect to the filtration (Ft)t≥0 under the

probability measure P~π . Moreover, we have 〈Bi
, B

j〉t = σijt for all t ≥ 0 and every i, j ∈ N ,

and we can rewrite (3.1.25) as

dΠJ
t =

∑
i∈J

λi

(
Π
J\{i}
t − ΠJ

t

)
dt+

∑
i∈N

(
Π
J∪{i}
t − ΠJ

t Π
{i}
t

) n∑
j=1

µi
νi
νji dB

j

t . (3.1.27)

Alternatively, by defining the processes B̂i = (B̂i
t)t≥0 , i ∈ N , as

B̂i
t :=

Y i
t −

∑n
j=1

∫ t
0

Π
{j}
s d〈Y i, Y j〉s√

〈Y i, Y i〉t

√
t =

(
Y i
t −

n∑
j=1

∫ t

0

Π{j}s
µiµj
νiνj

νji ds

)
νi

µi
√
νii
, (3.1.28)
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and using the Lévy’s characterization theorem we see that B̂i is a Brownian motion with respect

to the filtration (Ft)t≥0 under the probability measure P~π . Moreover, by (3.1.24), we have

〈B̂i, B̂j〉t =
νji√
νiiνjj

t, (3.1.29)

for all i, j ∈ N and t ≥ 0, and we can rewrite (3.1.23) as

dΠJ
t =

∑
i∈J

λi

(
Π
J\{i}
t − ΠJ

t

)
dt+

∑
i∈N

(
Π
J∪{i}
t − ΠJ

t Π
{i}
t

) µi√νii
νi

dB̂i
t. (3.1.30)

Therefore, by using either (3.1.27) or (3.1.30), we obtain that the process ~Π satisfies the condi-

tions of [83; Chapter V, Theorem 5.2.1]) about the existence and uniqueness of strong solutions

of stochastic differential equations, and thus, by virtue of [83; Chapter VII, Theorem 7.2.4],

it has the strong Markov property with respect to its natural filtration which coincides with

(Ft)t≥0 . Moreover, since we have the representations

ΠJ
t ≡ P~π(

⋂
i∈J{θi ≤ t} |Ft) =

∑
J⊆K⊆N

P~π(
⋂
i∈K{θi ≤ t}

⋂⋂
i∈N\K{t < θi} |Ft), (3.1.31)

P~π(
⋂
i∈K{θi ≤ t}

⋂⋂
i∈N\K{t < θi} |Ft) = ΠK

t −
∑
i∈N\K

Π
K∪{i}
t +

∑
i 6=j∈N\K

Π
K∪{i,j}
t + (3.1.32)

· · ·+ (−1)n−k−1
∑
i∈N\K

Π
N∪{i}
t + (−1)n−kΠN

t ,

for J,K ⊆ N , where k is the number of elements of K and∑
K⊆N

P~π({(θi ≤ t)i∈K}
⋂
{(t < θi)i∈N\K}|Ft) = 1, (3.1.33)

holds, it follows that the state space of the process ~Π is given by

D :=

{
~p ∈ [0, 1]2

n

∣∣∣∣ for some ~q ∈ [0, 1]2
n

with
2n∑
j=1

qj = 1 (3.1.34)

we have that pi =
∑

O(i)⊆O(j)⊆N

qj for i = 1, . . . , 2n
}
.

Finally, by using (3.1.5)-(3.1.6) and the strong Markov property of the process ~Π, we can

reduce the problem of (3.1.2) to the Markovian optimal stopping problem

V∗(~p) = inf
τ
E~p

[ m∑
j=1

bj

(
1−

2n∑
i=1

aijΠ
i
τ

)
+ cj

∫ τ

0

2n∑
i=1

aij Πi
t dt

]
, (3.1.35)
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where the infimum is taken over all stopping times τ with respect to (Ft)t≥0 such that the

integrals above have finite expectation, so that E~p τ <∞ (see, e.g. [105; Chapter IV, Section 4]

and [90; Chapter VI, Section 22]). Here, the process ~Π starts at some ~p ∈ D under the

probability measure P~p . Notice that from the linearity of the representations in (3.1.31)-(3.1.32)

it follows that the value function V∗(~p) is concave.

3.2. Main results

The main results of the paper are presented in this section. We obtain certain properties of the

optimal stopping time and the optimal boundaries in the problem of (3.1.35). We also provide

characterization of the optimal stopping boundary surface and value function V∗ as the unique

solution to a multidimensional free boundary problem.

Let us first introduce some further notations. For any j = 1, . . . , 2n , we denote by J the

subset of N corresponding to the index j , that is J := O(j) ⊆ N . For any set K ⊆ N , we

denote the number of its elements by |K| , and λ(K) :=
∑

k∈K λk .

3.2.1. The structure of the optimal stopping time Define the linear function F j(~p) as

F j(~p) =
2n∑
i=1

fjipi, (3.2.1)

where the constants fji are given by

fjj = − 1

λ(J)
, if J 6= ∅, (3.2.2)

fji = −
∏

k∈(J\O(i)) λk

λ(O(i))

∑
α∈Perm(J\O(i))

|J\O(i)|∏
q=1

1

λ(O(i)) +
∑q

r=1 λαr
, if ∅ 6= O(i) ⊂ J, (3.2.3)

fji = 0, otherwise, (3.2.4)

for any ~p ∈ D and j = 1, . . . , 2n . Applying Itô’s formula to F j(~Πτ ) and the optional sampling

theorem (see, e.g. [75; Chapter III, Theorem 3.6] or [63; Chapter I, Theorem 3.22]), by using

(3.1.30), we can see that

E~p
[
F j(~Πτ )

]
= F j(~p) + E~p

[ ∫ τ

0

Πj
t dt− τ

]
, (3.2.5)
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for any ~p ∈ D and j = 1, . . . , 2n , and for any stopping time τ such that E~pτ <∞ . Therefore,

the optimal stopping problem (3.1.35) can be rewritten as

V ∗(~p) := V∗(~p) +
m∑
k=1

( 2n∑
i=1

ckaikF
i(~p)

)
− bk = inf

τ
E~p
[
G(~Πτ ) + cτ

]
, (3.2.6)

where we have defined

G(~p) :=
m∑
k=1

( 2n∑
i=1

ckaikF
i(~p)

)
− bkaikpi and c :=

m∑
k=1

2n∑
i=1

ckaik, (3.2.7)

for ~p ∈ D . Note that we can conclude from (3.1.6) that the constants aji satisfy

0 ≤
2n∑
j=1

ajipj ≤ 1, (3.2.8)

for i = 1, . . . ,m and ~p ∈ D , and we obtain that c ≥ 0, so that the optimal stopping problem

in (3.2.6) is well-posed. Moreover, by using (3.2.1), we can rewrite G as

G(~p) =
2n∑
i=1

gipi with gi =
m∑
k=1

( 2n∑
j=1

ckajkfji

)
− bkaik, (3.2.9)

and from the concavity of V∗(~p) and the linearity of F j(~p), j = 1, . . . , 2n , we also get that the

value function V ∗(~p) is concave.

From the general optimal stopping theory for Markov processes (see, e.g. [90; Chapter I,

Section 2.2]) and the form of the value function in (3.2.6), we know that the optimal stopping

time in (3.1.35) is given by

τ∗ = inf
{
s ≥ 0

∣∣V ∗(~Πs) = G(~Πs)
}
, (3.2.10)

whenever it exists.

Let us choose an integer l such that 1 ≤ l ≤ 2n and denote by ~Π−l the process ~Π without

its l -th component, and by ~pl the vector ~p ∈ D without its l -th component pl . Assume that

gl < 0 (the case gl > 0 can be considered similarly) and G(~p) achieves its minimum for all

~p ∈ D such that pl = 1. We see from (3.2.9) that the linear function G(~p) is decreasing in pl ,

and by the concavity of V ∗(~p) and the fact that V ∗(~p) = G(~p) for all ~p ∈ D such that pl = 1,

we get that the optimal stopping time from (3.2.10) is of the form

τ∗ = inf
{
s ≥ 0 |Πl

s ≥ b∗(~Π
−l
s )
}
, (3.2.11)
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for some function 0 ≤ b∗(~pl) ≤ 1 and all ~p ∈ D . Finally, we may conclude from the fact that

G(~p) is linear and V ∗(~p) is concave that the boundary b∗(~pl) is continuous and of bounded

variation.

Summarising the facts proved above, we are now in a position to state the following result.

Lemma 3.2.1. Let the posterior probability processes Π∗,i be such that the expression in (3.1.6)

holds. Assume there exists an integer l such that gl < 0 and G(~p) achieves its minimum for

all ~p ∈ D with pl = 1, for some l = 1, . . . , 2n . Then, the optimal stopping time τ∗ in

the problems (3.1.35) and (3.2.6) is of the form (3.2.11), whenever it exists, and the optimal

stopping boundary b∗(~pl) is continuous and of bounded variation for ~p ∈ D .

In what follows, we work under the assumptions of Lemma 3.2.1.

3.2.2. The free-boundary problem By means of standard arguments (see, e.g. [63; Chap-

ter V, Section 5.1]), it can be seen from (3.1.30) that the infinitesimal operator L of the process

~Π is given by the expression

L =
2n∑
j=1

∑
i∈J

λi (pO−1(J\{i}) − pj) ∂pj (3.2.12)

+
1

2

2n∑
j=1

2n∑
i=1

∑
k,l∈N

µkµlνkl
νkνl

(pO−1(J∪{k}) − pjpO−1({k}))(pO−1(O(i)∪{l}) − pipO−1({l}))∂
2
pjpi

,

for all ~p ∈ D . In order to find analytic expressions for the unknown value function V ∗(~p)

from (3.2.6) and the unknown boundary b∗(~pl) from (3.2.11), we will use results from the

general theory of optimal stopping problems for continuous time Markov processes (see, e.g.

[105; Chapter III, Section 8] and [90; Chapter IV, Section 8]). Specifically, we formulate the

associated free boundary problem

(LV )(~p) = −c for pl < b(~pl), (3.2.13)

V (p1, . . . , pl−1, b(~pl)−, pl+1, . . . , p2n) = G(p1, . . . , pl−1, b(~pl), pl+1, . . . , p2n), (3.2.14)

V (~p) = G(~p) for pl > b(~pl), (3.2.15)

V (~p) < G(~p) for pl < b(~pl), (3.2.16)

(LV )(~p) > −c for pl > b(~pl), (3.2.17)
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for some 0 ≤ b(~pl) ≤ 1, where the instantaneous stopping condition of (3.2.14) is satisfied

at b(~pl) for all ~pl ∈ [0, 1]2
n−1 such that ~p ∈ D . Since the problem in (3.2.13)-(3.2.17) may

admit multiple solutions, we need to use some additional conditions which would specify the

appropriate solution, and thus provide the value function and the optimal stopping boundary

for the initial problem of (3.2.6) (and (3.1.35)). Therefore, we will assume that

∂plV (p1, . . . , pl−1, b(~pl)−, pl+1, . . . , p2n) = gl (smooth fit), (3.2.18)

holds for all ~p ∈ D . Note that the smooth-fit conditions of (3.2.18) are naturally used for the

value function at the optimal stopping boundary, whenever the general payoff function G(~p) is

continuously differentiable in pl at the boundary b(~pl) (see [90; Chapter IV, Section 9] for an

extensive overview).

We further search for analytic solutions of the elliptic-type free boundary problem in

(3.2.13)-(3.2.16) satisfying the conditions of (3.2.17)-(3.2.18) and such that the resulting bound-

ary is continuous and of bounded variation. Since such free boundary problems cannot normally

be solved explicitly, the existence and uniqueness of classical as well as viscosity solutions of

the variational inequalities arising in the context of optimal stopping problems have been ex-

tensively studied in the literature (see, e.g. Friedman [36], Bensoussan and Lions [14], Krylov

[72], or Øksendal [83]). Although the necessary conditions for existence and uniqueness of such

solutions in [36; Chapter XVI, Theorem 11.1], [72; Chapter V, Section 3, Theorem 14] with

[72; Chapter VI, Section 4, Theorem 12], and [83; Chapter X, Theorem 10.4.1] can be verified

by virtue of the properties of the coefficients of the process ~Π, the application of these classical

results would still have a rather inexplicit character.

We therefore continue with the following verification assertion related to the free boundary

problem formulated above.

Theorem 3.2.1. Assume that V (~p; b∗(~pl)) together with 0 ≤ b∗(~pl) ≤ 1 form a solution of

the free boundary problem of (3.2.13)-(3.2.17), and the boundary b∗(~pl) is continuous and of

bounded variation. Define the stopping time τ∗ as the first exit time of the process Πl from the

interval [0, b∗(~Π
−l)) as in (3.2.11), and assume that E~pτ∗ < ∞ holds for ~p ∈ D . Then, the

value function V ∗(~p) takes the form

V ∗(~p) =

V (~p; b∗(~pl)), if pl < b∗(~pl)

G(~p), if pl ≥ b∗(~pl)
(3.2.19)



3.2. Main results 91

with

V (~p; b∗(~pl)) = E~p
[
G(~Πτ∗) + cτ∗

]
, (3.2.20)

and the boundary b∗(~pl) is uniquely determined by the smooth-fit condition of (3.2.18).

Proof. In order to verify the assertions stated above, let us denote by V (~p) the right-hand side

of the expression in (3.2.19). Then, using the fact that the function V (~p) satisfies the conditions

of (3.2.15)-(3.2.16) by construction, we can apply the local time-space formula from [87] (see

also [90; Chapter II, Section 3.5] for a summary of the related results and further references)

to obtain

V (~Πt) + c t = V (~p) +Mt + Lt +

∫ t

0

(
(LV )(~Πs) + c

)
I
(
Πl
s ≥ b∗(~Π

−l
s )
)
ds, (3.2.21)

where the process M = (Mt)t≥0 defined by

Mt =
2n∑
i=1

∑
k∈N

∫ t

0

Vpi(
~Πs)

µk
√
νkk

νk

(
ΠO−1(O(i)∪{k})
s − Πi

sΠ
O−1({k})
s

)
I
(
Πl
s 6= b∗(~Π

−l
s )
)
dB̂k

s , (3.2.22)

is a continuous local martingale under the probability measure P~p with respect to the filtration

(Ft)t≥0 . Here, the process L = (Lt)t≥0 is given by

Lt =
1

2

∫ t

0

∆plV (~Πs) I(Πl
s = b∗(~Π

−l
s )) d`is, (3.2.23)

where the function ∆plV (~p) is given by

∆plV (~p) = Vpl(p1, . . . , pl−1, pl+, pl+1, . . . , p2n)− Vpl(p1, . . . , pl−1, pl−, pl+1, . . . , p2n), (3.2.24)

and the process `i = (`it)t≥0 defined by

`t = P~p − lim
ε↓0

1

2ε

∫ t

0

I
(
b∗(~Π

−l
s )− ε < Πl

s < b∗(~Π
−l
s ) + ε

)
d〈Πl − b∗(~Π−l)〉s, (3.2.25)

is the local time of Πl at the surface b∗(~pl), at which the partial derivative Vpl(~p) may not

exist. It follows from the fact that the gain function G(~p) in (3.2.6) is decreasing in pl and the

conditions (3.2.15)-(3.2.16) that the inequality ∆plV (~p) ≤ 0 should hold for all ~p ∈ D , so that

the continuous process L defined in (3.2.23) is non-increasing. We may therefore conclude that

Lt = 0 can hold for all t ≥ 0 if and only if the smooth-fit condition of (3.2.18) is satisfied.

Using the assumption that the inequality in (3.2.17) holds with the boundary b∗(~pl), we

conclude from the condition in (3.2.15) that (LV )(~p) + c ≥ 0 holds for any ~p ∈ D such that
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pl 6= b∗(~pl). Moreover, it follows from the conditions of (3.2.14)-(3.2.16) that the inequality

V (~p) ≤ G(~p) holds for all ~p ∈ D . Thus, the expression in (3.2.21) yields that the inequalities

G(~Πτ ) + c τ − Lτ ≥ V (~Πτ ) + c τ − Lτ ≥ V (~p) +Mτ , (3.2.26)

hold for any finite stopping time τ . Let (τn)n∈N be a localizing sequence of stopping times for

the process M such that τn = inf{t ≥ 0 | |Mt| ≥ n} . Taking the expectations with respect to

the probability measure P~p in (3.2.26), by means of the optional sampling theorem, we get the

inequalities

E~p
[
G(~Πτ∧τn) + c (τ ∧ τn)− Lτ∧τn

]
≥ E~p

[
V (~Πτ∧τn) + c (τ ∧ τn)− Lτ∧τn

]
(3.2.27)

≥ V (~p) + E~pMτ∧τn = V (~p).

Hence, letting n go to infinity and using Fatou’s lemma, we obtain

E~p
[
G(~Πτ ) + c τ − Lτ

]
≥ E~p

[
V (~Πτ ) + c τ − Lτ

]
≥ V (~p), (3.2.28)

for any stopping time τ such that E~pτ < ∞ and E~pLτ > −∞ , and all ~p ∈ D , where Lτ = 0

holds whenever the condition of (3.2.18) is satisfied. By virtue of the structure of the stopping

time in (3.2.11) and the condition (3.2.15), it is readily seen that the equalities in (3.2.26) hold

with τ∗ instead of τ when pl ≥ b∗(~pl).

Let us now show that the equalities are attained in (3.2.28) for pl < b∗(~pl), when τ∗ replaces

τ and the smooth-fit condition of (3.2.18) hold. By virtue of the fact that the function V (~p)

and the continuous boundary of bounded variation b∗(~pl) solve the partial differential equation

in (3.2.13) and satisfy the conditions in (3.2.14) and (3.2.18), it follows from the expression in

(3.2.21) and the structure of the stopping time in (3.2.11) that

G(~Πτ∗∧τn) + c (τ∗ ∧ τn) = V (~Πτ∗∧τn) + c (τ∗ ∧ τn) = V (~p) +Mτ∗∧τn , (3.2.29)

holds for pl < b∗(~pl). Hence, taking expectations and letting n go to infinity in (3.2.29), using

the facts that G(~p) is bounded and E~pτ∗ <∞ , we apply the Lebesgue dominated convergence

theorem to obtain the equality

E~p
[
G(~Πτ∗) + c τ∗

]
= V (~p), (3.2.30)

for all ~p ∈ D . We may therefore conclude that the function V (~p) coincides with the value

function V ∗(~p) of the optimal stopping problem in (3.2.6) whenever the smooth-fit condition

of (3.2.18) holds.
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In order to prove the uniqueness of the value function V ∗(~p) and the boundary b∗(~pl)

as solutions of the free-boundary problem in (3.2.13)-(3.2.17) with the smooth-fit condition of

(3.2.18), let us assume that there exists another continuous boundary of bounded variation b′(~pl)

such that 0 ≤ b′(~pl) ≤ 1 holds. Then, define the function V ′(~p) as in (3.2.19) with V ′(~p; b′(~pl))

satisfying (3.2.13)-(3.2.17) and the stopping time τ ′ as in (3.2.11) with b′(~pl) instead of b∗(~pl),

such that E~p τ
′ < ∞ . Following the arguments from the previous part of the proof and using

the fact that the function V ′(~p) solves the partial differential equation in (3.2.13) and satisfies

the conditions of (3.2.14) and (3.2.18) with b′(~pl) instead of b∗(~pl) by construction, we apply

the change-of-variable formula from [87] to get

V ′(~Πt) + c t = V ′(~p) +M ′
t +

∫ t

0

(
(LV ′)(~Πs) + c

)
I
(
Πl
s ≥ b′(~Π−ls )

)
ds, (3.2.31)

where the process M ′ = (M ′
t)t≥0 defined as in (3.2.22) with V ′pi(~p) instead of Vpi(~p) is a

continuous local martingale with respect to the probability measure P~p . Thus, taking into

account the structure of the stopping time τ ′ , we obtain from (3.2.31) that

G(~Πτ ′∧τ ′n) + c (τ ′ ∧ τ ′n) ≥ V ′(~Πτ ′∧τ ′n) + c (τ ′ ∧ τ ′n) = V ′(~p) +M ′
τ ′∧τ ′n , (3.2.32)

holds for pl < b′(~pl) and any localising sequence (τ ′n)n∈N of M ′ . Hence, taking expectations

and letting n go to infinity in (3.2.32), using the fact that G(~p) is bounded and E~p τ
′ < ∞ ,

by means of the Lebesgue dominated convergence theorem, we have that the equality

E~p
[
G(~Πτ ′) + c τ ′

]
= V ′(~p), (3.2.33)

is satisfied. Therefore, recalling the fact that τ∗ is the optimal stopping time in (3.2.6) and

comparing the expressions in (3.2.30) and (3.2.33), we see that the inequality V ′(~p) ≥ V (~p)

should hold for all ~p ∈ D .

Finally, we show that b′(~pl) should coincide with b∗(~pl). By using the fact that V ′(~p) and

V (~p) satisfy (3.2.14)-(3.2.16), and V ′(~p) ≥ V (~p) holds for all ~p ∈ D we get that b′(~pl) ≤ b∗(~pl).

Inserting τ∗ ∧ τ ′n into (3.2.31) in place of t and using arguments similar to the ones above, we

obtain

E~p
[
V ′(~Πτ∗) + cτ∗

]
= V ′(~p) + E~p

∫ τ∗

0

(
(LV ′)(~Πs) + c

)
I
(
Πl
s ≥ b′(~Π−ls )

)
ds, (3.2.34)

for all ~p ∈ D . Thus, since we have V ′(~p) = V (~p) = G(~p) for pl = b∗(~pl), and V ′(~p) ≥ V (~p),

we see from the expressions in (3.2.30) and (3.2.34) that the inequality

E~p

∫ τ∗

0

(
(LV ′)(~Πs) + c

)
I
(
Πl
s ≥ b′(~Π−ls )

)
ds ≤ 0 (3.2.35)
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should hold. Due to the assumption of continuity of b′(~pl) we may therefore conclude that

b∗(~pl) = b′(~pl), so that V ′(~p) coincides with V (~p) for all ~p ∈ D .

3.2.3. The location and structure of the optimal stopping boundary Let us define

the linear function Hj(~p) as

Hj(~p) =
∑
i∈J

λi
(
pO−1(J\{i}) − pj

)
=

2n∑
i=1

hjipi, (3.2.36)

where the constants hji are given by

hjj = −λ(J), for J 6= ∅, (3.2.37)

hji = λk, if O(i) = J \ {k} with k ∈ J, (3.2.38)

hji = 0, otherwise. (3.2.39)

for any ~p ∈ D and j = 1, . . . , 2n . By using (3.1.30) and the optional sampling theorem, we get

E~p

∫ τ

0

Hj(~Πt) dt+ pj = E~p Πj
τ , (3.2.40)

for any ~p ∈ D and j = 1, . . . , 2n , and for any stopping time τ such that E~p τ <∞ . Therefore,

the optimal stopping problem of (3.1.35) is equivalent to

Ṽ∗(~p) := V∗(~p) +
m∑
k=1

( 2n∑
i=1

bkaik

)
− bk = inf

τ
E~p

∫ τ

0

H(~Πt) dt, (3.2.41)

where we denote

H(~p) =
m∑
k=1

( 2n∑
i=1

ckaikpi

)
− bkaikH i(~p), (3.2.42)

for ~p ∈ D . By using (3.2.36), we can rewrite H as

H(~p) =
2n∑
i=1

hipi with hi =
m∑
k=1

(
ckaik −

2n∑
j=1

bkajkhji

)
. (3.2.43)

It is seen from (3.2.41) that, whenever H(~Πt) < 0, it is not optimal to stop, or equivalently

H(~p) ≥ 0 for ~p ∈ S, (3.2.44)

where the stopping region S is defined as (compare with (3.2.11))

S :=
{
~p ∈ D

∣∣ pl ≥ b∗(~pl)
}
. (3.2.45)
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By using (3.2.43), this means that the set{
~p ∈ D

∣∣∣∣ 2n∑
i=1

hipi < 0

}
(3.2.46)

belongs to the continuation region C defined by

C :=
{
~p ∈ D

∣∣ pl < b∗(~pl)
}
. (3.2.47)

If we assume hl > 0, the above leads to

b∗(~pl) ≥ b∗(~pl) ≡
hlpl −

∑2n

i=1 hipi
hl

, (3.2.48)

so that b∗(~pl) ≤ b∗(~pl) holds for all ~pl ∈ [0, 1]2
n−1 such that ~p ∈ D . Therefore we call admissible

the parameters of the model that satisfy (3.2.48), because otherwise the optimal stopping time

is not of the form (3.2.11), whenever it exists.

Let us take ~p, ~q ∈ D such that pl < b∗(~pl), qk ≤ pk , and ~qk = ~pk , for some k 6= l , and

assume hk > 0. Using the fact that ~Π is a time-homogeneous strong Markov process and

taking into account the comparison resuts for solutions of stochastic differential equations in

[114] we get

V ∗(~q)−G(~q) ≡ Ṽ∗(~q) ≤ E~q

∫ τ∗(~p)

0

H(~Πt) dt ≤ E~p

∫ τ∗(~p)

0

H(~Πt) dt (3.2.49)

= Ṽ∗(~p) ≡ V ∗(~p)−G(~p) < 0,

which leads to pl ≡ ql < b∗(~ql). Since we can choose pl arbitrarily close to b∗(~pl), it follows that

b∗(~pl) ≤ b∗(~ql) and therefore the boundary b∗(~pl) is decreasing in pk . The case when hk < 0

leads by analogy to the fact that b∗(~pl) is increasing in pk .

Let us summarise the results proved above in the following assertion.

Proposition 3.2.1. Under the assumption that hl > 0 the inequality (3.2.48) holds and the

parameters of the model are admissible. Moreover, if for some k 6= l we have that hk > 0

(hk < 0), the boundary b∗(~pl) is decreasing (increasing) in pk for ~p ∈ D .

3.3. Examples and estimates

In the previos sections we characterized the Bayesian risk function of (3.1.2) as the solution

to the Markovian optimal stopping problem in (3.1.35) and, under certain assumptions, to the
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free boundary problem in (3.2.13)-(3.2.18). However, explicit solutions to this multidimensional

free boundary problem are not available in general. Therefore, in what follows, we first study

specific examples that satisfy the assumptions in Lemma 3.2.1 and Proposition 3.2.1, and then

provide estimates for the value function and optimal boundaries in (3.1.35) which are easier to

compute. We assume for notational convenience that the bijection O satisfies O(1) = ∅ , so

that we have Π1 = Π∅ ≡ 1.

3.3.1. The case of infimum and supremum Let us now present an example, in which we

can can indeed find l = 1, . . . , 2n such that gl < 0 and hl > 0, and G(~p) achieves its minimum

for all ~p ∈ D with pl = 1. Let m = 2 and the functions f1(~θ) and f2(~θ) in (3.1.2) be given

by f1(~θ) =
∧
i∈N θi and f2(~θ) =

∨
i∈K θi for some ∅ 6= K ⊆ N . This means that the posterior

probability processes Π∗,1 and Π∗,2 from (3.1.5) are of the form (3.1.6) with

a11 = 0, aj1 = (−1)|O(j)|−1 for j = 2, 3, . . . , 2n, (3.3.1)

ak2 = 1, aj2 = 0 for j = 1, . . . , k − 1, k + 1, . . . , 2n, (3.3.2)

where we have taken 1 < k ≤ 2n to be such that O(k) = K . Notice that from (3.2.2)-(3.2.4)

we have ∑
K⊆O(j)⊆N

(−1)|O(j)\K|fjk =
1

λ(N)
, (3.3.3)

and by using (3.2.9), (3.2.43) and (3.3.1)-(3.3.2) we get

gj = −aj1
(
b1 +

c1

λ(N)

)
− b2aj2 + c2fkj if O(j) ⊆ K, (3.3.4)

gj = −aj1
(
b1 +

c1

λ(N)

)
otherwise, (3.3.5)

and

hk = ak1(b1λ(N) + c1) + b2λ(K) + c2, (3.3.6)

hj = aj1(b1λ(N) + c1)− b2λi if ∅ 6= O(j) = K \ {i} with i ∈ K, (3.3.7)

h1 = −b1λ(N)− b2λi if K ≡ {i}, (3.3.8)

hj = aj1(b1λ(N) + c1) if ∅ 6= O(j) 6= K \ {i} with i ∈ K, (3.3.9)

h1 = −b1λ(N) if K 6≡ {i}. (3.3.10)

If |K| is odd number we can choose l ≡ k and from (3.3.4)-(3.3.10) and the fact that al1 ≡
ak1 = 1, it follows that gl < 0 and hl > 0. If |K| is even number and K 6= N we can choose l
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such that O(l) = K ∪{k} with k ∈ N \K , and from (3.3.4)-(3.3.10) and the fact that al1 = 1,

it follows that gl < 0 and hl > 0. If K ≡ N and |K| is even number we additionally assume

that

b1 − b2 +
c1 − c2

λ(N)
< 0. (3.3.11)

Therefore we can again choose l ≡ k and from (3.3.4)-(3.3.10) with (3.3.11) and the fact that

al1 ≡ ak1 = −1 it follows that gl < 0 and hl > 0.

By using the definition of D in (3.1.34), we obtain that

pj = 1 if O(j) ⊆ O(l), (3.3.12)

pj = pi if O(j) = O(i) ∪ {r} with r ∈ O(l), (3.3.13)

holds for all ~p ∈ D with pl = 1. Therefore, by using that aj1 = −ai1 for O(i) = O(j) \ {r}
with r ∈ O(j), we get that

∑2n

j=1 aj1pj = 1. If we choose j such that O(j) ⊆ K , it follows

that fkj is negative and K ⊆ O(l) implies pj = 1. Hence, we conclude from (3.2.8), (3.2.9)

and (3.3.4)-(3.3.5) that G(~p) achieves its minimum for all ~p ∈ D with pl = 1.

Let us finally note that, in the case when m = 1 and the function f1(~θ) is defined as above,

we can choose l = 2, 3 . . . , 2n, such that |O(l)| = 1, and we will have that gl < 0 and hl > 0,

and G(~p) achieves its minimum for all ~p ∈ D with pl = 1.

3.3.2. Estimates in the infimum case In order to find estimates for the value function

V∗(~p) from (3.1.35) and the boundary b∗(~pl) from (3.2.11) we will use the solution to the

ordinary free boundary problem from [105; pages 203-204] (see also [90; Chapter VI, Section

22.1]). We assume that m = 1, the function f1(~θ) is given as in Section 3.3.1. and b1 = 1 in

(3.1.2). Therefore, the problem in (3.1.2) reduces to finding a stopping time of alarm τ∗ , with

respect to the observable filtration (Ft)t≥0 , which is as close as possible to the infimum of all

disorder times.

Denote ki = µi
√
νii/νi for i ∈ N and define the ordinary differential operator L∗ as

L∗ :=
π2
∗(1− π∗)2

2

∑
i,j∈N

|kikj|
d2

dπ2
∗

+ λ(N)(1− π∗)
d

dπ∗
. (3.3.14)
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Let us formulate the ordinary free boundary problem

(L∗V1)(π∗) = −c1π∗ for π∗ ∈ [0, h), (3.3.15)

V1(h−) = 1− h (continuous fit), (3.3.16)

V ′1(h−) = −1 (smooth fit), (3.3.17)

V1(π∗) < 1− π∗ for π∗ ∈ [0, h), (3.3.18)

V1(π∗) = 1− π∗ for π∗ ∈ (h, 1], (3.3.19)

for some 0 ≤ h ≤ 1. It is shown in [105; pages 203-204] that there exist a unique concave

solution V1(π∗) to the problem in (3.3.15)-(3.3.19) with the property that V ′1(0+) = 0. In

particular, the solution is given by

V1(π∗) =

(1− h)−
∫ h
π∗
ψ(x)dx if π∗ ∈ [0, h),

1− π∗ if π∗ ∈ [h, 1],
(3.3.20)

and the constant h is the unique root of the equation

ψ(h) = −1, (3.3.21)

and satisfies h ≥ λ(N)/(λ(N) + c1), where

ψ(π∗) := −c1

γ
e−λ(N)δ(π∗)/γ

∫ π∗

0

eδ(x)

x(1− x)2
dx, (3.3.22)

δ(π∗) := log
π∗

1− π∗
− 1

π∗
, γ :=

∑
i,j∈N |kikj|

2
, (3.3.23)

for π∗ ∈ (0, 1). By using the fact that V1(π∗) satisfies (3.3.19), we obtain

(L∗V1)(π∗) ≥ −c1π∗, (3.3.24)

for π∗ ∈ (λ(N)/(λ(N) + c1), 1] and, hence, for all π∗ ∈ [0, h) ∪ (h, 1] since V1(π∗) satisfies

(3.3.15) and h ≥ λ(N)/(λ(N) + c1).

Denoting Π∗ ≡ Π∗,1 , we obtain from (3.1.6) and (3.3.1) that

Π∗t ≡ P~π(θ1 ∧ θ2 · · · ∧ θn ≤ t | FXt ) =
∑
i∈N

Π
{i}
t −

∑
i 6=j∈N

Π
{i,j}
t +

∑
i 6=j 6=k∈N

Π
{i,j,k}
t − . . . (3.3.25)

+ (−1)n−2
∑
i∈N

Π
N\{i}
t + (−1)n−1ΠN

t ,
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and applying Itô’s formula, by using (3.1.30) and (3.3.1)-(3.3.2), we can see that the process

Π∗ satisfies

dΠ∗t =
∑
i∈N

λi(1− Π∗t ) dt+
∑
i∈N

kiΠ
{i}
t (1− Π∗t ) dB̂

i
t, (3.3.26)

for all t ≥ 0. Therefore, using the fact that the function V1(π∗) satisfies the smooth-fit condition

(3.3.17) and (3.3.19), we can apply the local time-space formula from [85] to obtain

V1(Π∗t ) = V1(Π∗0) +

∫ t

0

V ′1(Π∗s)λ(N)(1− Π∗s) ds+
∑
i∈N

∫ t

0

V ′1(Π∗s) ki Π
{i}
s (1− Π∗s) dB̂

i
s (3.3.27)

+
1

2

∫ t

0

V ′′1 (Π∗s)
∑
i,j∈N

(
kikjνji√
νiiνjj

Π{i}s Π{j}s

)
(1− Π∗s)

2 I(Π∗t 6= h) ds.

From (3.3.18)-(3.3.19), by means of the optional sampling theorem, we get that

E~p

[
1− Π∗τ + c1

∫ τ

0

Π∗t dt

]
≥ E~p

[
V1(Π∗τ ) + c1

∫ τ

0

Π∗t dt

]
(3.3.28)

= V1(Π∗0) + E~p

∫ τ

0

(
V ′1(Π∗t )λ(N) (1− Π∗t ) + c1Π∗t

)
dt

+
1

2
E~p

∫ τ

0

V ′′1 (Π∗t )
∑
i,j∈N

(
kikjνji√
νiiνjj

Π
{i}
t Π

{j}
t

)
(1− Π∗t )

2 I(Π∗t 6= h) dt,

for any stopping time τ such that E~p τ <∞ for ~p ∈ D . Since V1(π∗) is two times differentiable

and concave we have that V ′′1 (π∗) ≤ 0 for π∗ ∈ [0, h) ∪ (h, 1]. From (3.3.28) and the fact that

−1 ≤ νji/
√
νiiνjj ≤ 1, we therefore have

E~p

[
1− Π∗τ + c1

∫ τ

0

Π∗t dt

]
≥ V1(Π∗0) + E~p

∫ τ

0

(
V ′1(Π∗t )λ(N)(1− Π∗t ) + c1Π∗t

)
dt (3.3.29)

+
1

2
E~p

∫ τ

0

V ′′1 (Π∗t )
∑
i,j∈N

(
|kikj|Π{i}t Π

{j}
t

)
(1− Π∗t )

2 I(Π∗t 6= h) dt.

By using that

Π
{i}
t ≡ P~π (θi ≤ t|Ft) ≤ P~π(θ1 ∧ θ2 · · · ∧ θn ≤ t | FXt ) ≡ Π∗t (3.3.30)

holds for any i ∈ N and t ≥ 0, and (3.3.24) is satisfied, we obtain

E~p

[
1− Π∗τ + c1

∫ τ

0

Π∗t dt

]
≥ V1(Π∗0) + E~p

∫ τ

0

(
(L∗V1)(Π∗t ) + c1Π∗t

)
I(Π∗t 6= h) dt (3.3.31)

≥ V1(Π∗0),
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for any stopping time τ such that E~p τ < ∞ for ~p ∈ D . Since Π∗0 =
∑2n

j=1 aj1pj under the

measure P~p , by using (3.1.35), we have

V∗(~p) ≡ inf
τ
E~p

[
1− Π∗τ + c1

∫ τ

0

Π∗t dt

]
≥ V1

( 2n∑
j=1

aj1pj

)
, (3.3.32)

for ~p ∈ D .

Using the results from Section 3.3.1. in the case m = 1, we can choose l = 1, . . . , 2n , where

O(l) = {r} for some r ∈ N , and apply Lemma 3.2.1 to obtain that the optimal stopping time

τ∗ is of the form (3.2.11). Therefore, by using the fact that Π∗ is of the form (3.3.25), we have

that al1 = 1 and, hence, τ∗ is of the form

τ∗ = inf
{
t ≥ 0

∣∣Π∗t ≥ g∗1(~Πt)
}
, (3.3.33)

with g∗1(~p) given by

g∗1(~p) = b∗(~pl) +
2n∑
j=1

aj1pj − pl, (3.3.34)

for ~p ∈ D . Moreover from (3.2.48) and (3.3.6)-(3.3.10) we obtain that

b∗(~pl) ≥ b∗(~pl) = pl −
2n∑
j=1

aj1pj +
λ(N)

λ(N) + c1

, (3.3.35)

and it follows that 0 < λ(N)/(λ(N) + c1) ≤ g∗1(~p) for ~p ∈ D .

We can deduce from Theorem 3.2.1 that the function V ∗(~p) defined in (3.2.6) satisfies

(3.2.15)-(3.2.16) and therefore, by using (3.3.34), we have that V∗(~p) < 1 −
∑2n

j=1 aj1pj holds

for all ~p ∈ D such that 0 ≤
∑2n

j=1 aj1pj < g∗1(~p). Since V1(π∗) satisfies (3.3.18)-(3.3.19), it

follows from (3.3.32) that g∗1(~p) ≤ h and we also get from (3.3.34) that

b∗(~pl) ≤ h+ pl −
2n∑
j=1

aj1pj, (3.3.36)

for ~p ∈ D .

Summarising the facts proved above, we are now ready to state the main result of this

section.

Theorem 3.3.1. Suppose that the function V1(π∗) is concave and, together with the constant

h ∈ [0, 1], solves the ordinary free boundary problem in (3.3.15)-(3.3.19). Then we have that the
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lower bound in (3.3.32) holds for the value function V∗(~p) from (3.1.35) and the upper bound

in (3.3.36) holds for the boundary b∗(~pl) from (3.2.11). Moreover, the optimal stopping time in

(3.1.35) can be written in the form of (3.3.33), where the optimal boundary g∗1(~p) is such that

0 < λ(N)/(λ(N) + c1) ≤ g∗1(~p) ≤ h ≤ 1 for ~p ∈ D .

3.4. Appendix

3.A.1. Proof of Lemma 3.1.1 Define the n-dimensional row vector µJ = (µJ1 , . . . , µ
J
n) and

the row process X = (X
1
, . . . , X

n
) as

µJi =
µi
νi

for i ∈ J, µJi = 0 for i ∈ N \ J, X
i

t =
X i
t

νi
for i ∈ N, (3.A.1)

for t ≥ 0. From the definition of X in (3.1.1), under the measure P∅ we have

X i
t

νi
= Bi

t for i ∈ N, (3.A.2)

and under the measure P J we have

X i
t

νi
=
µi
νi
t+Bi

t for i ∈ J, X i
t

νi
= Bi

t for i ∈ N \ J, (3.A.3)

for t ≥ 0. Therefore, by the Girsanov theorem for an n-dimensional Brownian motion (see, e.g.

[75; Chapter VI, Theorem 6.4]), we conclude that the weighted density process ZJ satisfies

ZJ
t = exp

(
t
∑
i∈J

λi

)
d(P J |Ft)
d(P∅|Ft)

= exp

(∑
i∈J

λit+ µJΣ−1(X t)
T − 1

2
µJΣ−1(µJ)T t

)
(3.A.4)

= exp

(∑
i∈J

λit+
∑
i∈J

µi
νi

n∑
j=1

νij
νj
Xj
t −

1

2

∑
i,j∈J

µi
νi

µj
νj
νljt

)
= exp

(∑
i∈J

λit+
∑
i∈J

Y i
t −

1

2

∑
i,j∈J

µi
νi

µj
νj
νljt

)
,

for t ≥ 0, where the processes Y i are defined as in (3.1.10) for i ∈ N and (·)T denotes the

vector transpose. �

3.A.2. Sufficient statistics in the case of an exponential delay penalty costs We

describe here the sufficient statistics and their corresponding stochastic differential (filtering)

equations in the case of exponential delay penalty costs. We are interested in detecting the

so-called kth -to-default event, which is a generalization of the infimum and the supremum of
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all disorder times. Specifically, keeping the notation from Section 3.1, let m = 1 and let the

Bayesian risk function from (3.1.2) be of the form

V∗(~π) = inf
τ

(
b1 P~π

(
τ < f1(~θ)

)
+ c1E~π

[
eβ(τ−f1(~θ))+ − 1

])
, (3.A.5)

where β > 0 and the function f1(~θ) is equal to the k -th element θik in the ordering θi1 ≤ θi2 ≤
· · · ≤ θin of the elements of ~θ , that is, it is given by

f1(~θ) =
∧

J⊆N,|J |=k

∨
j∈J

θj, (3.A.6)

for some k ∈ N . The term E~π[eβ(τ−f1(~θ))+ − 1] represents the average exponential delay of

detecting the function f1(~θ). We also notice that

E~π
[
eβ(τ−f1(~θ))+ − 1

]
= E~π

∫ ∞
0

I(f1(~θ) ≤ t, t ≤ τ)βeβ(t−f1(~θ)) dt (3.A.7)

= E~π

∫ ∞
0

E~π
[
I(f1(~θ) ≤ t, t ≤ τ)βeβ(t−f1(~θ))

∣∣Ft] dt
= E~π

∫ τ

0

βE~π
[
I(f1(~θ) ≤ t)eβ(t−f1(~θ))

∣∣Ft] dt.
In order to reduce the problem in (3.A.5) to an optimal stopping problem for a multidimen-

sional Markov process we define the process (Π̃∗,1t )t≥0 as Π̃∗,1t = E~π[I(f1(~θ) ≤ t)eβ(t−f1(~θ)) | Ft]
for t ≥ 0. Hence, from (3.1.3) and (3.A.7), it follows that the Bayesian risk function in (3.A.5)

can be written as

V∗(~π) = inf
τ
E~π

[
b1 (1− Π∗,1τ ) + c1

∫ τ

0

β Π̃∗,1t dt

]
. (3.A.8)

Define the posterior probability process (Π̃J
t )t≥0 as Π̃J

t := E~π[I(
⋂
i∈J{θi ≤ t})eβ(t−f1(~θ))+ | Ft] ,

for J ⊆ N , and denote by Π̃ = (Π̃1, . . . , Π̃2n) the 2n -dimensional process with components

given by Π̃j = Π̃O(j) for j ∈ {1, . . . , 2n} . Notice that, by the inclusion-exclusion principle, we

have that

I(f1(~θ) ≤ t) =
n∑
i=k

(−1)i−k
(i− 1)!

(k − 1)!(i− k)!

∑
J⊆N,|J |=i

I(
⋂
j∈J{θj ≤ t}), (3.A.9)

and, therefore, the representation in (3.1.6) is satisfied and Π̃∗,1 is of the form

Π̃∗,1t ≡ E~π
[
I(f1(~θ) ≤ t)eβ(t−f1(~θ))

∣∣Ft] =
2n∑
j=1

aj1 Π̃j
t , (3.A.10)
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where

aj1 = (−1)i−k
(i− 1)!

(k − 1)!(i− k)!
for k = 1, . . . , |O(j)| = i, aj1 = 0 otherwise, (3.A.11)

for j = 1, . . . , 2n . Moreover, by using the fact that

I(
⋂
i∈J{θi ≤ t}

⋂
{f1(~θ) ≤ t}) (3.A.12)

=
n∑
i=k

(−1)i−k
(i− 1)!

(k − 1)!(i− k)!

∑
L⊆N,|L|=i

I(
⋂
j∈L∪J{θj ≤ t}),

I(
⋂
i∈J{θi ≤ t})eβ(t−f1(~θ))+ = I(

⋂
i∈J{θi ≤ t}

⋂
{f1(~θ) ≤ t})eβ(t−f1(~θ)) (3.A.13)

+ (1− I(f1(~θ) ≤ t)) I(
⋂
i∈J{θi ≤ t}),

we get that

Π̃J
t = ΠJ

t +
n∑
i=k

(−1)i−k
(i− 1)!

(k − 1)!(i− k)!

∑
L⊆N,|L|=i

(Π̃J∪L
t − ΠJ∪L

t ), (3.A.14)

for J ⊆ N and t ≥ 0. It follows that, for any J ⊆ N such that |J | < k , the process Π̃J can

be written as a linear combination of the processes ΠJ , ΠJ∪L and Π̃J∪L where L ⊆ N and

|J ∪L| ≥ k . Therefore, we only need to obtain the stochastic differential equations satisfied by

the processes Π̃J for all J ⊆ N such that |J | ≥ k .

For any R,L ⊆ N such that R 6= ∅ , R ∩ L = ∅ and any permutation α := [α1, . . . , αr] ∈
Perm(R) we define the process (Φ̃α,L

t )t≥0 recursively as

Φ̃α,L
t := λαr

∫ t

0

Φ̃[α1,...,αr−1],L
u

ZR∪L
t eβt

ZR∪L
u eβu

du for |R ∪ L| ≥ k, (3.A.15)

Φ̃α,L
t := Φα,L

t for |R ∪ L| < k, Φ̃∅,L
t := πLeβtZL

t for |L| ≥ k, (3.A.16)

where ZL and Φα,L are given by (3.1.7) and (3.1.11). By analogy to Section 2, from the

generalized Bayes formula in [75; Theorem 7.23], we obtain that the posterior probability

process (Π̃J
t )t≥0 takes the form

Π̃J
t =

Ψ̃J
t

Ψ∅
t

, (3.A.17)

where

Ψ̃J
t :=

∑
L1⊆N\J
L2⊆J

∑
R⊇J\L2

R⊆N\(L1∪L2)

∑
α∈Perm(R)

Φ̃α,L1∪L2
t , (3.A.18)
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for J ⊆ N and Ψ∅ as in (3.1.16). By using Itô’s formula, from (3.1.18) and (3.A.15) we get

dΦ̃α,L
t =

(
λαrΦ̃

[α1,...,αr−1],L
t +

(
β +

∑
i∈R∪L

λi

)
Φ̃α,L
t

)
dt+

∑
i∈R∪L

Φ̃α,L
t dY i

t , (3.A.19)

for R,L ⊆ N such that R 6= ∅ , R ∩ L = ∅ and |R ∪ L| ≥ k , and any α := [α1, . . . , αr] ∈
Perm(R). We also obtain from (3.A.16) that

dΦ̃∅,L
t =

(
β +

∑
i∈L

λi

)
Φ̃∅,L
t dt+ Φ̃∅,L

t

∑
i∈L

dY i
t (3.A.20)

holds for L ⊆ N such that |L| ≥ k . Therefore, by using (3.A.18) and aggregating, we further

obtain

dΨ̃J
t =

(∑
i∈J

λiΨ̃
J\{i}
t +

(
β +

∑
i/∈J

λi

)
Ψ̃J
t

)
dt+

∑
i∈J

Ψ̃J
t dY

i
t +

∑
i/∈J

Ψ̃
J∪{i}
t dY i

t . (3.A.21)

Hence, by applying Itô’s formula to (3.A.17) and using the same reasoning as in Section 3.1,

we conclude that

dΠ̃J
t =

(∑
i∈J

λiΠ̃
J\{i}
t +

(
β −

∑
i∈J

λi

)
Π̃J
t

)
dt+

∑
i∈N

(
Π̃
J∪{i}
t − Π̃J

t Π
{i}
t

) µi√νii
νi

dB̂i
t, (3.A.22)

for J ⊆ N such that |J | ≥ k . It follows that (~Π, Π̃) is a (time-homogeneous strong) Markov

process, even after removing all components Π̃J , where J ⊆ N and |J | < k .

Finally, by using (3.A.8), (3.1.6) and (3.A.10), we can reduce the problem of (3.A.5) to the

optimal stopping problem

V∗(~p) = inf
τ
E~p

[
b1

(
1−

2n∑
i=1

ai1Πi
τ

)
+ c1

∫ τ

0

2n∑
i=1

ai1Π̃i
t dt

]
. (3.A.23)

Here, the processes ~Π and Π̃ start at the same ~p ∈ D under the probability measure P~p .

3.A.3. Filtering equations in the case of a two-dimensional Poisson process Our

aim in this section is to describe the sufficient statistics in a setting with dependent observable

Poisson processes and for that purpose we will obtain the corresponding filtering equations.

Let in the setting of Section 3.1 we have that n = 2 and πi = 0 for i = 1, 2 and for ease of

notation let P ≡ P~π . Let N i = (N i
t )t≥0 for i = 0, 1, 2, be pure jump processes, and assume

that they are independent of the disorder times θj , and also independent of one another. In
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particular, we assume that N i
t ,i = 0, 1, 2, are Poisson processes with intensities

κ1,0λ1,0, (1− κ1,0)λ1,0, (1− κ2,0)λ2,0, for 0 ≤ t < θ1 ∧ θ2, (3.A.24)

κ1,1λ1,1, (1− κ1,1)λ1,1, (1− κ2,1)λ2,0, for θ1 ≤ t < θ2, (3.A.25)

κ1,3λ1,0, (1− κ1,3)λ1,0, (1− κ2,3)λ2,1, for θ2 ≤ t < θ1, (3.A.26)

κ1,2λ1,1, (1− κ1,2)λ1,1, (1− κ2,2)λ2,1, for θ1 ∨ θ2 ≤ t, (3.A.27)

respectively, for some constants 0 < κi,j < 1 , i = 1, 2, j = 0, 1, 2, 3, and λi,j > 0, i = 1, 2,

j = 0, 1, which satisfy

κ1,0λ1,0 = κ2,0λ2,0, κ1,1λ1,1 = κ2,1λ2,0, κ1,3λ1,0 = κ2,3λ2,1, κ1,2λ1,1 = κ2,2λ2,1. (3.A.28)

Let the pure jump (observable) processes X1 and X2 be given as X i
t = N i

t +N0
t for i = 1, 2.

Specifically, from (3.A.24)-(3.A.27)+(3.A.28), we conclude that X i has the form

dX i
t = I(t ≤ θi)dX

i,0
t + I(t > θi)dX

i,1
t , (3.A.29)

where X i,j
t is Poisson process with intensity λi,j for i = 1, 2, j = 0, 1 and t ≥ 0. Note that

the dependence between the observable processes X1 and X2 is realised through the common

pure jump process N0 .

Let us introduce the processes Φi = (Φi
t)t≥0 and Ψi = (Ψi

t)t≥0 defined as

Φi
t = λi

∫ t

0

Zi,0
t

Zi,0
v

dv and Ψi
t = λ3−i

∫ t

0

Φi
u

Zi,0
t

Zi,0
u

Z3−i,1
t

Z3−i,1
u

du, (3.A.30)

where the (weighted) density process Zi,j = (Zi,j
t )t≥0 is given by

Zi,0
t = eλit

d(P (· | {θi = 0}
⋂
{θ3−i =∞})|Ft)

d(P (· | {θi = θ3−i =∞})|Ft)
, (3.A.31)

Zi,1
t = eλit

d(P (· | {θi = 0}
⋂
{θ3−i = 0})|Ft)

d(P (· | {θi = θ3−i = 0})|Ft)
(3.A.32)

for i = 1, 2. The process Zi,j satisfies (see [75; Theorem 19.7])

Zi,j
t = exp

( 2∑
l=0

αi,j,lN
l
t − δi,jt

)
, (3.A.33)

for t ≥ 0, where we have defined the constants

αi,j,i = ln
(1− κi,2i+3j−2ij−1)λi,1

(1− κi,j(5j−2i))λi,0
, αi,j,3−i = ln

(1− κ3−i,2i+3j−2ij−1)λ3−i,j

(1− κ3−i,j(5j−2i))λ3−i,j
(3.A.34)

αi,j,0 = ln
κi,2i+3j−2ij−1λi,1
κi,j(5j−2i)λi,0

(3.A.35)

δi,j = −λi + λi,1 − λi,0 + λ3−i,j(κ3−i,j(5j−2i) − κ3−i,2i+3j−2ij−1) (3.A.36)
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for i = 1, 2 and j = 0, 1. Here, the processes Φi
t and Ψi

t can be regarded as the (weighted)

likelihood ratio processes corresponding to the events {θi ≤ t < θ3−i} and {θi < θ3−i ≤ t} ,
respectively, for all t ≥ 0 and i = 1, 2.

By means of standard arguments, resulting from the application of the generalized Bayes

formula from [75; Theorem 7.23], it is shown that the posterior probability processes Π =

(Πt)t≥0 and Πi = (Πi
t)t≥0 defined by Πt = P (θ1 ≤ t, θ2 ≤ t | FXt ) and Πi

t = P (θi ≤ t | FXt ),

i = 1, 2, respectively, take the form

Πt =
Ψt

1 + Ξt

and Πi
t =

Υi
t

1 + Ξt

, (3.A.37)

where the processes Ψ = (Ψt)t≥0 , Υi = (Υi
t)t≥0 and Ξ = (Ξt)t≥0 are given by

Ψt = Ψi
t + Ψ3−i

t , Υi
t = Φi

t + Ψt and Ξt = Φi
t + Φ3−i

t + Ψt (3.A.38)

for all t ≥ 0 and i = 1, 2.

Applying Itô’s formula, we get that the process Zi,j from (3.A.33) admits the representation

dZi,j
t = Zi,j

t−λidt+ Zi,j
t−

2∑
l=0

∫
(eαi,j,lv − 1) (µl(dt, dv)− ej α3−i,0,lvν∞l (dt, dv)), (3.A.39)

with Zi,j
0 = 1 for i = 1, 2 and j = 0, 1. Here the measures ν∞l (dt, dv) are given by

ν∞0 (dt, dv) = ε1(dv)κ1,0λ1,0dt, ν∞i (dt, dv) = ε1(dv)(1− κi,0)λi,0dt, for i = 1, 2, (3.A.40)

and represent the compensators, conditional on {θ1 > t, θ2 > t} and with respect to the

observable filtration Ft = σ(X1
s , X

2
s | 0 ≤ s ≤ t), of the jump measures µl(dt, dv) of N l on

B(R+)⊗B(R) for l = 0, 1, 2, where ε1 is the Dirac measure at the point 1. Then, defining the

process U i = (U i
t )t≥0 by U i

t = Zi,0
t Z

3−i,1
t we see that the following expression holds

dU i
t = U i

t−(λi + λ3−i)dt+ U i
t−

2∑
l=0

∫ (
eklv − 1

)
(µl − ν∞l )(dt, dv), (3.A.41)

for all t ≥ 0, where U i
0 = 1, ki = αi,0,i + α3−i,1,i and k0 = αi,0,0 + α3−i,1,0 , for i = 1, 2. Let us

introduce the notation

dRi
t =

dZi,0
t

Zi,0
t−
, dSt =

dU i
t

U i
t−

=
dU3−i

t

U3−i
t−

, Z̃i,j
t = e−λitZi,j

t , dR̃i
t =

dZ̃i,0
t

Z̃i,0
t−

= dRi
t − λidt (3.A.42)

Ũ i
t = Z̃i,0

t Z̃
3−i,1
t , dS̃t =

dŨ i
t

Ũ i
t−

=
dŨ3−i

t

Ũ3−i
t−

= dSt − (λ1 + λ2)dt, δ̃i,j = δi,j + λi. (3.A.43)
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Hence, using again the Itô’s formula, we obtain that the processes Φi and Ψi from (3.A.30)

solve the stochastic differential equations

dΦi
t = λi(1 + Φi

t−)dt+ Φi
t−dR̃

i
t (3.A.44)

with Φi
0 = 0, and

dΨi
t =

(
λ3−iΦ

i
t + (λ1 + λ2)Ψi

t−
)
dt+ Ψi

t−dS̃t (3.A.45)

with Ψi
0 = 0, for i = 1, 2. Thus, the processes defined in (3.A.38) admit the representations

dΨt =
(
λ3−iΦ

i
t + λiΦ

3−i
t + (λ1 + λ2)Ψt−

)
dt+ Ψt−dS̃t (3.A.46)

with Ψi
0 = 0,

dΥi
t =

(
λi(1 + Ξt) + λ3−iΥ

i
t

)
dt+ Υi

t−dR̃
i
t + Ψt−d(S̃t − R̃i

t) (3.A.47)

with Υi
0 = 0, and

dΞt = (λi + λ3−i)(1 + Ξt)dt+ Υi
t−dR̃

i
t + Υ3−i

t− dR̃
3−i
t + Ψt−d(S̃t − R̃i

t − R̃3−i
t ) (3.A.48)

with Ξ0 = 0, for i = 1, 2. We therefore conclude, due to the Itô’s formula, that the processes

defined in (3.A.37) solve the stochastic differential equations

dΠt =
(
(Π1

t − Πt)λ2 + (Π2
t − Πt)λ1

)
dt+

2∑
i=0

∫
fi(Πt−,Π

1
t−,Π

2
t−)(µi − νi)(dt, dv), (3.A.49)

with Π0 = 0, where

fi(π, π
1, π2) =

πgi(π, π
1, π2)

ekiv − gi(π, π1, π2)
(3.A.50)

gj(π, π
1, π2) =(1− π)(ekjv − 1) + (π − πj)(eαj,0,jv − 1) (3.A.51)

+ (π − π3−j)(eα3−j,1,jv − 1)

g0(π, π1, π2) =(1− π)(ek0v − 1) + (π − π1)(eα1,0,0v − 1) + (π − π2)(eα2,0,0v − 1), (3.A.52)

for i = 0, 1, 2 and j = 1, 2, and

dΠi
t = λi(1− Πi

t)dt+
2∑
j=0

∫
f ij(Πt−,Π

1
t−,Π

2
t−)(µj − νj)(dt, dv), (3.A.53)
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with Πi
0 = 0, where

f ij(π, π
1, π2) =

gij(π, π
1, π2)

ekjv − gj(π, π1, π2)
, for j = 0, 1, 2, (3.A.54)

gij(π, π
1, π2) =π(1− πi)(ekjv − 1) + (1− πi)(πi − π)(eαj,0,jv − 1) (3.A.55)

+ πi(π − π3−i)(eα3−j,1,jv − 1), for j = 1, 2,

gi0(π, π1, π2) =π(1− πi)(ek0v − 1) + (1− πi)(πi − π)(eα1,0,0v − 1) (3.A.56)

+ πi(π − π3−i)(eα2,0,0v − 1),

for i = 1, 2 and (π, π1, π2) ∈ [0, 1]3 . In the equations (3.A.49)+(3.A.53) the measures νl(dt, dv)

are given by

νi(dt, dv) = ε1(v)
(
1 + Πt−(ekiv − 1) + (Πt− − Πi

t−)(eαi,0,iv − 1) (3.A.57)

+ (Πt− − Π3−i
t− )(eα3−i,1,iv − 1)

)
(1− κi,0)λi,0dt, for i = 1, 2,

ν0(dt, dv) = ε1(v)
(
1 + Πt−(ek0v − 1) + (Πt− − Π1

t−)(eα1,0,0v − 1) (3.A.58)

+ (Πt− − Π2
t−)(eα2,0,0v − 1)

)
κ1,0λ1,0dt,

and represent the compensators of the jump measures µl(dt, dv) for l = 0, 1, 2 with respect to

the observable filtration Ft for (t, v) ∈ R+ × R .
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Chapter 4

On the Laplace transforms of the first

exit times in one-dimensional

non-affine jump-diffusion models

This chapter is based on joint work with Dr. Pavel V. Gapeev.

4.1. Solvable stochastic jump differential equations

In this section, we suppose that on a complete probability space (Ω,F , P ) there exists a stan-

dard Wiener process W = (Wt)t≥0 and a homogeneous Poisson random measure µ(dt, dv) on

(R+×R,B(R+)⊗B(R)) with the intensity (compensator) measure ν(dt, dv) = dtF (dv) (see [56;

Definition II.1.20]), where F is a positive σ -finite measure on (R,B(R)) such that F ({0}) = 0

and W is assumed to be independent of µ(dt, dv).

4.1.1. Let us consider the stochastic differential equation

dXt = β(t,Xt) dt+ γ(t,Xt) dWt (4.1.1)

+

∫
h(δ(t,Xt−, v)) (µ− ν)(dt, dv) +

∫
h(δ(t,Xt−, v))µ(dt, dv),

where h(x) = xI{|x|≤1} with I{·} as the indicator function, h(x) = x − h(x), and β(t, x),

γ(t, x) > 0 and δ(t, x, v) are continuous functions on R+ × R and R+ × R2 , respectively.

Assume that, for any n ∈ N , there exist a constant Cn > 0 and a function ρn(v) with
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∫
ρ2
n(v)F (dv) <∞ such that

|β(t, x)− β(t, y)|+ |γ(t, x)− γ(t, y)| ≤ Cn |x− y|, (4.1.2)

|β(t, x)|+ |γ(t, x)| ≤ Cn (1 + |x|), (4.1.3)

|h(δ(t, x, v))− h(δ(t, y, v))| ≤ ρn(v) |x− y|, (4.1.4)

|h(δ(t, x, v))| ≤ ρn(v) (1 + |x|), (4.1.5)

|h(δ(t, x, v))− h(δ(t, y, v))| ≤ ρ2
n(v) |x− y|, (4.1.6)

|h(δ(t, x, v))| ≤ (ρ2
n(v) ∧ ρ4

n(v)) (1 + |x|), (4.1.7)

for all 0 ≤ t ≤ n and x, y, v ∈ R . These conditions guarantee the existence of a unique strong

solution X = (Xt)t≥0 to (4.1.1) for a given X0 ∈ R (see [56; Chapter III, Theorem 2.32]). We

additionally assume that

γ(t, x) = γ0(t) + γ1(t)x and δ(t, x, v) = δ0(t, v) + δ1(t, v)x, (4.1.8)

where γi(t) and δi(t, v) for i = 0, 1 are continuous functions such that δ1(t, v) > −1, for all

t ≥ 0 and x, v ∈ R . Finally, the equation in (4.1.1) takes the form

dXt = β(t,Xt) dt+ (γ0(t) + γ1(t)Xt) dWt (4.1.9)

+

∫
h(δ0(t, v) + δ1(t, v)Xt−) (µ− ν)(dt, dv) +

∫
h(δ0(t, v) + δ1(t, v)Xt−)µ(dt, dv).

4.1.2. Following the arguments in [45; Chapter IV], we see that if we have

β(t, x) = β0(t) + β1(t)x, (4.1.10)

for all t ≥ 0 and x ∈ R , then the stochastic differential equation (4.1.9) can be solved explicitly.

For this, we assume that the condition∫ t

0

∫ (
δ2

1(s, v)I{|δ(s,x,v)|≤1}

1 + |δ1(s, v)|
+ | log(1 + δ1(s, v))− δ1(s, v)I{|δ(s,x,v)|≤1}|

)
F (dv)ds <∞, (4.1.11)

holds for all t ≥ 0 and x ∈ R . Therefore, the integrating factor process Z = (Zt)t≥0 given by

Zt = exp

(∫ t

0

γ2
1(s)

2
ds−

∫ t

0

γ1(s) dWs −
∫ t

0

∫
δ1(s, v)I{|δ(s,Xs−,v)|≤1} (µ− ν)(ds, dv) (4.1.12)

−
∫ t

0

∫ (
log(1 + δ1(s, v))− δ1(s, v)I{|δ(s,Xs−,v)|≤1}

)
µ(ds, dv)

)
,
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is well-defined according to [106; Chapter VII, §3a, Theorem 2]. Hence, applying Itô’s formula

to (4.1.12), we get that the process Z satisfies the equation

dZt = Zt−

(
γ2

1(t) dt− γ1(t) dWt −
∫
δ1(t, v)I{|δ(s,Xs−,v)|≤1} (µ− ν)(dt, dv) (4.1.13)

−
∫
δ1(t, v)I{|δ(s,Xs−,v)|>1} − δ2

1(t, v)I{|δ(s,Xs−,v)|≤1}

1 + δ1(t, v)
µ(dt, dv)

)
.

It follows from the expressions in (4.1.9) and (4.1.10) that the process F = (Ft)t≥0 defined by

Ft = R−1
t ZtXt with Rt = exp

(∫ t

0

β1(s) ds

)
, (4.1.14)

admits the representation

dFt = R−1
t

(
Zt− dXt +Xt− dZt + d〈Zc, Xc〉t + ∆Zt∆Xt − Zt−Xt−β1(t) dt

)
(4.1.15)

= R−1
t Zt−

((
β0(t)− γ0(t)γ1(t)

)
dt+ γ0(t) dWt +

∫
δ0(t, v)I{|δ(s,Xs−,v)|≤1} (µ− ν)(dt, dv)

+

∫ (
δ0(t, v)

1 + δ1(t, v)
− δ0(t, v)I{|δ(s,Xs−,v)|≤1}

)
µ(dt, dv)

)
.

Therefore, we may conclude from the expressions in (4.1.14) and (4.1.15) that the process

X = (Xt)t≥0 given by

Xt =Z−1
t Rt

(
X0 +

∫ t

0

R−1
s Zs

(
β0(s)− γ0(s)γ1(s)

)
ds+

∫ t

0

R−1
s Zsγ0(s) dWs (4.1.16)

+

∫ t

0

R−1
s−Zs−

(∫
δ0(s, v)I{|δ(s,Xs−,v)|≤1} (µ− ν)(ds, dv)

+

∫ (
δ0(s, v)

1 + δ1(s, v)
− δ0(s, v)I{|δ(s,Xs−,v)|≤1}

)
µ(ds, dv)

))
,

provides a (unique strong) solution of the equation in (4.1.9) under the condition of (4.1.10)

for a given X0 ∈ R .

4.1.3. Following the arguments in [83; Chapter V, Example 5.16], we now show that the

stochastic differential equation in (4.1.9) can be reduced to an ordinary differential equation

if we assume that γ0(t) = δ0(t, v) = 0 in (4.1.8), for all t ≥ 0 and v ∈ R . By applying the

integration-by-parts formula to the process G = (Gt)t≥0 given by Gt = ZtXt , and using the
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form of the functions h and h , and the expressions in (4.1.9) and (4.1.13), we obtain

dGt = Zt− dXt +Xt− dZt + d〈Zc, Xc〉t + ∆Zt ∆Xt (4.1.17)

= Zt−

(
β(t,Xt−) dt+ γ1(t)Xt− dWt

+

∫
h(δ1(t, v)Xt−) (µ− ν)(dt, dv) +

∫
h(δ1(t, v)Xt−)µ(dt, dv)

)
+ Zt−Xt−

(
γ2

1(t) dt− γ1(t) dWt −
∫
h(δ1(t, v)Xt−)

Xt−
(µ− ν)(dt, dv)

−
∫
h(δ1(t, v)Xt−)− δ1(t, v)h(δ1(t, v)Xt−)

(1 + δ1(t, v))Xt−
µ(dt, dv)

)
− Zt−Xt−γ

2
1(t) dt− Zt−Xt−

∫
δ2

1(t, v)

1 + δ1(t, v)
µ(dt, dv).

Therefore, if β(t, x) satisfies the conditions in (4.1.2)-(4.1.3), then the (unique strong) solution

X of (4.1.9) is given by Xt = GtZ
−1
t , where for all ω ∈ Ω the process G(ω) = (Gt(ω))t≥0 is

the unique solution of the ordinary differential equation

dGt(ω) = Zt(ω) β(t, Z−1
t (ω)Gt(ω)) dt. (4.1.18)

4.1.4. Let us finally consider the stochastic differential equation of (4.1.1) with the truncation

function h(x) = x , so that it takes the form

dXt = β(t,Xt) dt+ γ(t,Xt) dWt +

∫
δ(t,Xt−, v) (µ− ν)(dt, dv). (4.1.19)

Now the conditions in (4.1.4)-(4.1.7) can be written as

|δ(t, x, v)− δ(t, y, v)| ≤ ρn(v) |x− y| and |δ(t, x, v)| ≤ ρn(v) (1 + |x|), (4.1.20)

for all 0 ≤ t ≤ n , n ∈ N , and x, y, v ∈ R . In this case, the equation of (4.1.9) takes the form

dXt = β(t,Xt) dt+ (γ0(t) + γ1(t)Xt) dWt +

∫ (
δ0(t, v) + δ1(t, v)Xt−

)
(µ− ν)(dt, dv). (4.1.21)

The condition in (4.1.11) can then be simplified to∫ t

0

∫ (
δ2

1(s, v)

1 + |δ1(s, v)|
+
∣∣ log(1 + δ1(s, v))− δ1(s, v)

∣∣)F (dv) ds <∞. (4.1.22)

Then, the integrating factor process Z from (4.1.12) admits the representation

Zt = exp

(∫ t

0

γ2
1(s)

2
ds−

∫ t

0

γ1(s) dWs −
∫ t

0

∫
δ1(s, v) (µ− ν)(ds, dv) (4.1.23)

−
∫ t

0

∫ (
log(1 + δ1(s, v))− δ1(s, v)

)
µ(ds, dv)

)
.
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Hence, the application of Itô’s formula to the expression in (4.1.23) yields

dZt = Zt−

(
γ2

1(t)dt− γ1(t)dWt −
∫
δ1(t, v)(µ− ν)(dt, dv) +

∫
δ2

1(t, v)

1 + δ1(t, v)
µ(dt, dv)

)
. (4.1.24)

In a way similar to the one presented above, by using the expressions from (4.1.21) and (4.1.24),

we apply the Itô’s formula to the processes F and G defined as in (4.1.14) and Section 4.1.3.,

respectively, and obtain the equations of (4.1.15) and (4.1.17). We again conclude that if β(t, x)

satisfies conditions (4.1.2)-(4.1.3), then the (unique strong) solution X of equation (4.1.19) is

given by (4.1.16) in the setting of Section 4.1.2. and given by Xt = Z−1
t Gt in the setting of

Section 4.1.3.. Note that in this case, however, the indicator functions appearing in (4.1.15)-

(4.1.16) are equal to one and h(x) ≡ 0 holds in (4.1.17).

4.2. Reducibility to solvable equations

4.2.1. Let us consider the stochastic differential equation

dYt = η(t, Yt) dt+ σ(t, Yt) dWt (4.2.1)

+

∫
h(θ(t, Yt−, v)) (µ(dt, dv)− ν(dt, dv)) +

∫
h(θ(t, Yt−, v))µ(dt, dv),

where η(t, y), σ(t, y) > 0 and θ(t, y, v) are continuous functions on R+×DY and R+×DY ×R ,

respectively, for some open set DY ⊆ R . Suppose that f(t, y) is an invertible function from the

class C1,2(R+,DY ) in the sense that there exists a function g(t, x) such that f(t, g(t, x)) = x

and g(t, f(t, y)) = y for all t ≥ 0, x ∈ DX and y ∈ DY , where DX denotes the range of f(t, y).

Let the functions β(t, x), γ(t, x), and δ(t, x, v) be given by

β(t, x) = ∂tf(t, g(t, x)) + η(t, g(t, x))∂yf(t, g(t, x)) +
σ2(t, g(t, x))

2
∂2
yyf(t, g(t, x)), (4.2.2)

γ(t, x) = σ(t, g(t, x)) ∂yf(t, g(t, x)), (4.2.3)

h(δ(t, x, v)) = h(θ(t, g(t, x), v)) ∂yf(t, g(t, x)), (4.2.4)

h(δ(t, x, v)) = f(t, g(t, x) + θ(t, g(t, x), v))− f(t, g(t, x)) (4.2.5)

− h(θ(t, g(t, x), v)) ∂yf(t, g(t, x)),

for t ≥ 0, x ∈ DX , and v ∈ R , and assume that they satisfy the conditions (4.1.2)-(4.1.7),

so that the equation in (4.1.1) has a (unique strong) solution X with a state space DX and

X0 ∈ DX . By virtue of the invertibility of the function f(t, y) and an application of Itô’s
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formula, we conclude that Y defined as Yt = g(t,Xt) is a (unique strong) solution to the

equation (4.2.1) with a state space DY and Y0 = g(0, X0) ∈ DY . Moreover, if the functions

γ(t, x) and δ(t, x, v) satisfy (4.1.8), the equation (4.2.1) is reduced to the equation (4.1.9),

which is solvable in a closed form under one of the conditions (4.1.10) or γ0(t) = δ0(t, v) = 0.

On the other hand, if the equation in (4.2.1) has a (unique strong) solution Y with a state

space DY , by means of Itô’s formula applied to the process Xt = f(t, Yt), we get

dXt =
(
∂tf(t, Yt) + η(t, Yt) ∂yf(t, Yt) +

σ2(t, Yt)

2
∂2
yyf(t, Yt)

)
dt (4.2.6)

+ σ(t, Yt) ∂yf(t, Yt) dWt +

∫
h(θ(t, Yt−, v)) ∂yf(t, Yt−) (µ(dt, dv)− ν(dt, dv))

+

∫ (
f(t, Yt− + θ(t, Yt−, v))− f(t, Yt−)− h(θ(t, Yt−, v)) ∂yf(t, Yt−)

)
µ(dt, dv).

Therefore, if f(t, y) solves the equations

∂tf(t, y) + η(t, y) ∂yf(t, y) +
σ2(t, y)

2
∂2
yyf(t, y) = β(t, f(t, y)), (4.2.7)

σ(t, y) ∂yf(t, y) = γ0(t) + γ1(t)f(t, y), (4.2.8)

h(θ(t, y, v)) ∂yf(t, y) = h(δ0(t, v) + δ1(t, v)f(t, y)), (4.2.9)

f(t, y + θ(t, y, v))− f(t, y)− h(θ(t, y, v)) ∂yf(t, y) = h(δ0(t, v) + δ1(t, v)f(t, y)), (4.2.10)

for some continuous functions β(t, x), γi(t), and δi(t, v), i = 0, 1, t ≥ 0, x ∈ DX , y ∈ DY and

v ∈ R , we obtain that the equation in (4.2.1) is reduced to the one of (4.1.9), which is solvable

in a closed form under one of the conditions of either (4.1.10) or γ0(t) = δ0(t, v) = 0.

Example 4.2.1. (Black-Karasinski model [16].) Suppose that in (4.2.1) we have η(t, y) =

y(η0(t) + η1(t) log y), σ(t, y) = σ0(t)y and θ(t, y, v) = 0 for all t ≥ 0, y > 0 and v ∈ R . Then

the function f(t, y) = log y , y > 0, with the inverse g(t, x) = ex , x ∈ R , reduces the equation

in (4.2.1) to the equation of (4.1.9) with (4.1.10), where β0(t) = η0(t)− σ2
0(t)/2, β1(t) = η1(t),

γ0(t) = σ0(t), γ1(t) = δi(t, v) = 0, i = 0, 1, for all t ≥ 0 and v ∈ R .

Example 4.2.2. (Stochastic population model [83; Chapter V, Example 5.15].) Suppose that

in (4.2.1) we have η(t, y) = η0(t)y(η1(t) − y), η0(t) > 0, η1(t) > 0, σ(t, y) = σ0(t)y and

θ(t, y, v) = 0 for all t ≥ 0, y > 0 and v ∈ R . Then the function f(t, y) = 1/y , y > 0, with

the inverse g(t, x) = 1/x , x > 0, reduces (4.2.1) to the equation (4.1.9) with (4.1.10), where

β0(t) = η0(t), β1(t) = σ2
0(t) − η0(t)η1(t), γ1(t) = −σ0(t), γ0(t) = δi(t, v) = 0, i = 0, 1, for all

t ≥ 0 and v ∈ R .
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Remark 4.2.3. Observe that in Examples 4.2.1 and 4.2.2 the function η(t, y) does not satisfy

the condition (4.1.3), but we see that the equation in (4.2.1) has a unique solution, since it is

reducible to the linear equation of (4.1.9) with (4.1.10).

4.2.2. Let us now describe the invertible transformations f(t, y) that reduce the equation in

(4.2.1) to the equation in (4.1.9), and thus, to a solvable equation, in the time-homogeneous case.

Suppose that (4.2.1) has a (unique strong) solution Y , where η(t, y) = η(y), σ(t, y) = σ(y),

θ(t, y, v) = θ(y, v) and f(t, y) = f(y), g(t, x) = g(x) for all t ≥ 0, x ∈ DX , y ∈ DY and v ∈ R .

Assume that η(y), σ(y), and θ(y, v) are twice continuously differentiable functions, σ(y) > 0,

and denote

r(y) =

∫ y dz

σ(z)
, p(y) =

η(y)

σ(y)
− 1

2
σ′(y), and q(y, v) = exp

(
r(y + θ(y, v))− r(y)

)
, (4.2.11)

for all y ∈ DY and v ∈ R . Let us introduce the following set of conditions:

(C1) either the equality

(q∂yq + σ(∂yq)
2)(y, v) = (q∂yσ∂yq − σ(∂yq)

2 + σ∂2
yyq)(y, v) = 0, (4.2.12)

or the equality (
q∂yσ∂yq − σ(∂yq)

2 + σ∂2
yyq

q∂yq + σ(∂yq)2

)
(y, v) = c1, (4.2.13)

is satisfied for some constant c1 ∈ R and all y ∈ DY and v ∈ R ;

(C2) either the equality p′(y) = 0 or the condition(
(σp′)′

p′

)
(y) = c2, and

(σp′)′

p′
=
q∂yσ∂yq − σ(∂yq)

2 + σ∂2
yyq

q∂yq + σ(∂yq)2
with (4.2.13), (4.2.14)

is satisfied for some constant c2 ∈ R and all y ∈ DY and v ∈ R ;

(C3) the equality (
σ∂yq

q

)
(y, v) = c3(v) (4.2.15)

is satisfied for some function c3(v) and all y ∈ DY and v ∈ R .

We are now ready to state the reducibility criterion for jump-diffusion processes solving the

equation (4.2.1).
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Theorem 4.2.4. (i) Let the condition of (C1) be satisfied and the assumptions

|θ(y, v)| > 1 if and only if
∣∣c(eγ1r(y+θ(y,v)) − eγ1r(y)

)∣∣ > 1, (4.2.16)

0 < |θ(y, v)| ≤ 1 if and only if eγ1r(y+θ(y,v)) − eγ1r(y) = γ1
θ(y, v)

σ(y)
eγ1r(y), (4.2.17)

hold for all y ∈ DY and v ∈ R and some constants c ∈ R and γ1 6= 0. Then the equation in

(4.2.1) is reducible to the one of (4.1.9), where the appropriate invertible transformation f(y)

is given by

f(y) = ceγ1r(y) − γ0

γ1

, (4.2.18)

for all y ∈ DY and some constant γ0 ∈ R. Moreover, if the condition of (C2) is also satisfied,

we can choose γ0 and γ1 such that the expression in (4.1.16) holds. On the other hand, if the

equality (∂yq)(y, v) = 0 holds for all y ∈ DY and v ∈ R, we can choose γ0 = 0 and reduce the

equation in (4.1.9) to the ordinary differential equation of (4.1.18).

(ii) Let (C3) be satisfied and the assumptions

|θ(y, v)| > 1 if and only if |γ0(r(y + θ(y, v))− r(y))| > 1, (4.2.19)

0 < |θ(y, v)| ≤ 1 if and only if r(y + θ(y, v))− r(y) =
θ(y, v)

σ(y)
, (4.2.20)

for some γ0 6= 0, y ∈ DY and v ∈ R. Then, the equation in (4.2.1) is reducible to the one of

(4.1.9) with γ1 = 0, where the appropriate invertible transformation f(y) is given by

f(y) = γ0r(y) + c, (4.2.21)

for all y ∈ DY and some constant c ∈ R. Moreover, if the equality (σp′)′(y) = 0 also holds for

all y ∈ DY , we can choose γ0 such that the expression in (4.1.16) holds.

Proof. In order to prove the reducibility of the equation in (4.2.1) to the one of (4.1.9), we

need to check whether the equalities in (4.2.7)-(4.2.10) are satisfied for some β(t, x) = β(x),

γi(t) = γi , δi(t, v) = δi(v), i = 0, 1, and f(t, y) = f(y) for all t ≥ 0, y ∈ DY , and v ∈ R .

(i) By using the notations of (4.2.11) and the fact that σ(y) > 0 for y ∈ DY , we obtain

that the function f(y) given by (4.2.18) is invertible. It can be shown by means of direct

calculations that the equality in (4.2.8) is satisfied. Then, by summing up the equations in

(4.2.9) and (4.2.10), instead of checking the equality in (4.2.10), we can verify whether

f(y + θ(y, v))− f(y) = δ0(v) + δ1(v)f(y) (4.2.22)
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holds. It follows by substituting the expressions of (4.2.18) with (4.2.11) for f(y) that the

equation in (4.2.22) is equivalent to(
qγ1(y, v)− (1 + δ1(v))

)
eγ1r(y) =

γ1δ0(v)− γ0δ1(v)

cγ1

. (4.2.23)

Then, differentiating the expression in (4.2.23), we see that we can verify whether(
qγ1(y, v)− (1 + δ1(v)) +

σ(y)

γ1

∂yq
γ1(y, v)

)
γ1e

γ1r(y)

σ(y)
= 0 (4.2.24)

holds, while after multiplying both parts of (4.2.24) by e−γ1r(y)σ(y)/γ1 and differentiating again,

we see that the expression

γ1∂yq
γ1(y, v) + ∂y(σ∂yq

γ1)(y, v) = 0 (4.2.25)

needs to be verified. It follows from the direct calculations that the equality of (4.2.25) is

equivalent to

γ1(q∂yq + σ(∂yq)
2)(y, v) + (q∂yσ∂yq − σ(∂yq)

2 + σ∂2
yyq)(y, v) = 0. (4.2.26)

Hence, the equality in (4.2.25) can be verified by means of either the equality in (4.2.12) or

γ0 = 0 and γ1 = −
(
q∂yσ∂yq − σ(∂yq)

2 + σ∂2
yyq

q∂yq + σ(∂yq)2

)
(y, v), (4.2.27)

combined with the one of (4.2.13). By choosing

δ1(v) = qγ1(y, v)− 1 +
σ(y)

γ1

∂yq
γ1(y, v), (4.2.28)

we get that (4.2.24) is also verified. Thus, if we set γ0 = 0 and

δ0(v) =
(
qγ1(y, v)− (1 + δ1(v))

)
ceγ1r(y), (4.2.29)

we have that (4.2.22) holds.

Let us now check whether (4.2.9) is satisfied. For this, we define the auxiliary sets

Θ0 = {(y, v) ∈ DY × R : |θ(y, v)| = 0} , Θ1 = {(y, v) ∈ DY × R : |θ(y, v)| > 1} , (4.2.30)

∆0 = {(y, v) ∈ DY × R : |δ(f(y), v)| = 0} , ∆1 = {(y, v) ∈ DY × R : |δ(f(y), v)| > 1} ,
(4.2.31)

and note that from the invertibility of f(y) and (4.2.22) we have Θ0 = ∆0 . It follows from

(4.2.9) that we should verify that Θ1 ⊆ ∆1 , but on ∆1\Θ1 we get f ′(y) = 0, which contradicts
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invertibility. Therefore, we need to verify that Θ1 = ∆1 , but by means of the equality in

(4.2.22), the former is just the condition of (4.2.16). Then, substituting (4.2.22) into (4.2.9),

on (DY × R) \ (∆0 ∪∆1) we also need to verify that

f(y + θ(y, v))− f(y) = θ(y, v)f ′(y) (4.2.32)

holds, but the latter equality is equivalent to the condition of (4.2.17). Thus, the conditions of

(4.2.16)-(4.2.17) are equivalent to the one in (4.2.9). Finally, the equality (4.2.7) is satisfied if

we choose β(x) as in (4.2.2) for x ∈ DX .

Assuming additionally that the condition of (C2) holds, let us now check that the equality

in (4.2.7) is satisfied with β(x) of the form (4.1.10), for some β0, β1 ∈ R . If the expressions in

(4.2.14) are satisfied, we can set

γ0 = 0 and γ1 = −
(

(σp′)′

p′

)
(y), (4.2.33)

and notice that if the expression in (4.2.13) hold then γ0 and γ1 agree with the ones from

(4.2.27). Substituting the expression (4.2.18) with (4.2.11) for f(y) into (4.2.7) and using

(4.1.10), we need to check whether(
γ1p(y) +

γ2
1

2
− β1

)
eγ1r(y) =

γ1β0 − γ0β1

cγ1

(4.2.34)

holds. It follows by differentiating the expression in (4.2.34) and using (4.2.11) that(
γ1p(y) +

γ2
1

2
− β1 + σ(y)p′(y)

)
γ1e

γ1r(y)

σ(y)
= 0 (4.2.35)

needs to be verified, and multiplying both parts of (4.2.35) by e−γ1r(y)σ(y)/γ1 and differentiating

again, we see that

γ1p
′(y) + (σp′)′(y) = 0, (4.2.36)

should also hold. Hence, the equality in (4.2.36) is satisfied under the condition of p′(y) = 0 or

(4.2.14) with (4.2.33). It follows that the equality in (4.2.35) holds if we set

β1 = γ1p(y) +
γ2

1

2
+ σ(y)p′(y). (4.2.37)

Thus, the equality in (4.2.34) is verified if we set γ0 = 0 and

β0 =

(
γ1p(y) +

γ2
1

2
− β1

)
ceγ1r(y). (4.2.38)
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We may therefore conclude that the equality in (4.2.7) holds with β(x) of the form (4.1.10)

and we can solve the equation in (4.1.9) by the expression of (4.1.16).

On the other hand, if the equality (∂yq)(y, v) = 0 holds for all y ∈ DY and v ∈ R , it follows

from (4.2.28)-(4.2.29) that δ0(v) = 0 holds, so that we can set γ0 = 0 and reduce the equation

in (4.1.9) to the ordinary differential equation of (4.1.18).

(ii) By using the notations of (4.2.11) and the fact that σ(y) > 0 for y ∈ DY , we obtain that

the function f(y) given by (4.2.21) is invertible. Direct calculations show that f(y) satisfies

the equality in (4.2.8). It follows by substituting the expression of (4.2.21) with (4.2.11) for

f(y) into (4.2.22) that we can equivalently check whether(
log q(y, v)− δ1(v)r(y)

)
γ0 = δ0(v) + δ1(v)c (4.2.39)

holds for some constant c ∈ R . Then, differentiating the equality in (4.2.39) and multiplying

both parts of the resulting expression by σ(y), we see that we can verify whether(
σ∂yq

q

)
(y, v)− δ1(v) = 0 (4.2.40)

holds. It follows from the expression in (4.2.15) that the equation above is satisfied if we set

δ1(v) =

(
σ∂yq

q

)
(y, v) (4.2.41)

for all y ∈ DY and v ∈ R . Hence, the equality in (4.2.39) is verified if we choose

δ0(v) =
(

log q(y, v)− δ1(v)r(y)
)
γ0 − δ1(v)c (4.2.42)

for some c ∈ R . By means of the arguments similar to the ones used in case (i), the conditions

in (4.2.19)-(4.2.20) are equivalent to the ones of (4.2.9). Again, the equality in (4.2.7) holds if

we choose β(x) as in (4.2.2) for x ∈ DX .

Finally, assuming additionally that the equality (σp′)′(y) = 0 holds for all y ∈ DY , let

us check whether the equality in (4.2.7) is satisfied with β(x) of the form (4.1.10), for some

β0, β1 ∈ R . It follows by substituting the expression of (4.2.21) with (4.2.11) for f(y) into the

one of (4.2.7) with (4.1.10) that we can equivalently check whether(
p(y)− β1r(y)

)
γ0 = β0 + cβ1 (4.2.43)

holds for some constant c ∈ R . Then, by differentiating the equality in (4.2.43), applying the

notations of (4.2.11), and multiplying both parts of the resulting expression by σ(y), we can

verify whether

σ(y)p′(y)− β1 = 0 (4.2.44)
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holds. Hence, by using the equality (σp′)′(y) = 0, we get that the equality in (4.2.44) is satisfied

if we set

β1 = σ(y)p′(y) (4.2.45)

for all y ∈ DY . Thus, the equality in (4.2.43) is verified if we set

β0 = cβ1 −
(
p(y)− β1r(y)

)
γ0. (4.2.46)

We may therefore conclude that the equality in (4.2.7) holds with β(x) of the form (4.1.10)

and any γ0 6= 0, so that we can solve the equation in (4.1.9) by the expression of (4.1.16).

Remark 4.2.5. It follows from the proof presented above that if the truncation function h(x)

is non-zero, that is, if the equation in (4.2.9) is not trivially satisfied, the process Y should

have the diffusion coefficient σ(y) which satisfies either the condition of (4.2.17) or (4.2.20).

This is relevant only in the case of infinite jump activity, because the condition of (4.2.9) is

always satisfied by putting h(x) ≡ 0 for finite jump activity.

Example 4.2.6. (Cox-Ingersoll-Ross model I [24].) Suppose that in (4.2.1) we have η(y) =

η0 + η1y , σ(y) = σ0
√
y , η0 ≥ σ2

0/2, η1 6= 0 and θ(y, v) = 0 for all y > 0 and v ∈ R . Then

the function f(y) = exp(2
√
y), y > 0, with the inverse g(x) = (log x/2)2 , x > 1, reduces the

equation in (4.2.1) to the one of (4.1.9), where β(x) = x(2η0+η1 log2 x/2+σ2
0(log x−1)/2)/ log x ,

γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0 for all x > 1 and v ∈ R .

Example 4.2.7. (Cox-Ingersoll-Ross model II [24].) Suppose that in (4.2.1) we have η(y) =

η0y(η1 − y), σ(y) = σ0

√
y3 and θ(y, v) = 0 for all y > 0 and v ∈ R , where η0 , η1 ∈ R and

σ0 > 0. The function f(y) = exp(−2/
√
y), y > 0, with the inverse g(x) = 4/ log2 x , x ∈ (0, 1),

reduces the equation in (4.2.1) to the one of (4.1.9), where β(x) = −η0x(η1 log x−4/ log x)/2+

σ2
0x(1 + 3/ log x)/2, γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0 for all x ∈ (0, 1) and v ∈ R .

Example 4.2.8. (Constant elasticity of variance model [23] and [50].) Suppose that in (4.2.1)

we have η(y) = η1y , σ(y) = σ0y
α and θ(y, v) = 0 for all y > 0 and v ∈ R , where η1 ∈ R

and σ0 , α > 0. In the case when α = 1, the function f(y) = y , y > 0, with the inverse

g(x) = x , x > 0, reduces the equation in (4.2.1) to the one of (4.1.9), where β(x) = xη1 ,

γ1 = σ0 and γ0 = δ0(v) = δ1(v) = 0 for all x > 0 and v ∈ R . In the case when α ∈ (0, 1),

the function f(y) = exp(y1−α/(1− α)), y > 0, with the inverse g(x) = (log(x)(1− α))1/(1−α) ,
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x > 1, reduces the equation in (4.2.1) to the one of (4.1.9), where β(x) = η1(1 − α)x log x +

σ2
0x(1 − α/((1 − α) log x))/2, γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0 for all x > 1 and v ∈ R .

The case α > 1 yields the same reduced equation as the case α ∈ (0, 1) does, but with β(x)

defined for x ∈ (0, 1).

Example 4.2.9. (Shiryaev filtering model [75; Chapter IX].) Suppose that in (4.2.1) we have

η(y) = η0(1 − y), σ(y) = σ0y(1 − y) and θ(y, v) = 0 for all y ∈ (0, 1) and v ∈ R . Then the

function f(y) = y/(1 − y), y ∈ (0, 1), with the inverse g(x) = x/(1 + x), x > 0, reduces the

equation in (4.2.1) to the one of (4.1.9), where β(x) = η0(1 + x) + σ2
0x

2/(1 + x), γ1 = σ0 , and

γ0 = δ0(v) = δ1(v) = 0 for all x > 0 and v ∈ R .

Example 4.2.10. (Jacobi diffusion model [66; p. 335].) Suppose that in (4.2.1) we have

η(y) = σ2
0(η0(1 − y) − η1y)/2, σ(y) = σ0

√
y(1− y), η0 ≥ 1, η1 ≥ 1, and θ(y, v) = 0 for all

y ∈ (0, 1) and v ∈ R . Then the function f(y) = exp(2 arcsin
√
y), y ∈ (0, 1), with the inverse

g(x) = sin2(log
√
x), x ∈ (1, eπ), reduces the equation in (4.2.1) to the one of (4.1.9), where

β(x) = σ2
0x(η0 cos2(log

√
x)− η1 sin2(log

√
x) + (sin(log x)− cos(log x))/2)/ sin(log x), γ1 = σ0 ,

and γ0 = δ0(v) = δ1(v) = 0 for all x ∈ (1, eπ) and v ∈ R .

4.2.3. In the rest of this section we will construct jump analogues of some diffusions. For this,

we will use the Wiener process W = (Wt)t≥0 and the Poisson random measure µ(dt, dv) with

the compensator ν(dt, dv) = dtF (dv) existing on the probability space (Ω,F , P ).

Let Y = (Yt)t≥0 be a continuous process with a state space DY solving the stochastic

differential equation (4.2.1) with θ(t, y, v) = 0 for t ≥ 0, y ∈ DY and v ∈ R . Suppose that

there exists an invertible transformation f(t, y) ∈ C1,2(R+,DY ) satisfying (4.2.7)-(4.2.10) and

such that the process X = (Xt)t≥0 , Xt = f(t, Yt), solves the equation (4.1.9) with δi(t, v) = 0

for i = 0, 1, t ≥ 0, v ∈ R . Let us take a continuous function δ̂(t, x, v) = δ̂0(t, v) + xδ̂1(t, v)

such that δ̂1(t, v) > −1 holds and the expression in (4.1.11) is satisfied with δ(t, x, v) replaced

by δ̂(t, x, v). Assume also that

δ̂i(t, v) 6= 0 if and only if γi(t) 6= 0, (4.2.47)

for i = 0, 1 and all t ≥ 0, v ∈ R . Consider the stochastic differential equation

dX̂t = β(t, X̂t) dt+ (γ0(t) + γ1(t)X̂t) dWt (4.2.48)

+

∫
h(δ̂0(t, v) + δ̂1(t, v)X̂t−) (µ(dt, dv)− ν(dt, dv)) +

∫
h(δ̂0(t, v) + δ̂1(t, v)X̂t−)µ(dt, dv),
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where β(t, x) satisfies (4.1.10) or the condition

γ0(t) = δ̂0(t, v) = 0 (4.2.49)

holds for all t ≥ 0 and v ∈ R , and assume that its (unique strong) solution X̂ = (X̂t)t≥0 has

the state space DX . Then, according to the arguments in Section 2, we conclude that equation

(4.2.48) is solvable in a closed form, and applying to the solution X̂ the inverse transformation

g(t, x) for t ≥ 0, x ∈ DX , we obtain that the process Ŷt = g(t, X̂t) solves the equation

dŶt = η(t, Ŷt) dt+ σ(t, Ŷt) dWt (4.2.50)

+

∫
θ̂0(t, Ŷt−, v) (µ(dt, dv)− ν(dt, dv)) +

∫
θ̂1(t, Ŷt−, v)µ(dt, dv),

with

θ̂0(t, y, v) = h(δ̂0(t, v) + δ̂1(t, v)f(t, y))∂xg(t, f(t, y)), (4.2.51)

θ̂1(t, y, v) = g(t, δ̂0(t, v) + (1 + δ̂1(t, v))f(t, y))− g(t, f(t, y))− θ̂0(t, y, v), (4.2.52)

for t ≥ 0, y ∈ DY and v ∈ R . We will call such process Ŷ = (Ŷt)t≥0 a jump analogue of the

diffusion process Y = (Yt)t≥0 (see [38; Section 4]). Note that when h ≡ 0 the jump analogue

Ŷ also solves equation of the form (4.2.1).

Remark 4.2.11. Let us now introduce the pure jump analogue Ỹ = (Ỹt)t≥0 of the given

Y = (Yt)t≥0 by setting σ(t, y) = 0 in (4.2.50) for all t ≥ 0 and y ∈ DY . Such a process Ỹ can

be defined as a (unique strong) solution of the stochastic differential equation

dỸt = η(t, Ỹt) dt+

∫
θ̂0(t, Ỹt−, v) (µ(dt, dv)− ν(dt, dv)) +

∫
θ̂1(t, Ỹt−, v)µ(dt, dv), (4.2.53)

with θ̂i(t, y, v), i = 0, 1, given by (4.2.51)-(4.2.52).

Let us now give some examples of jump analogues of diffusion processes presented in this

section. We assume throughout that the truncation function h(x) satisfies h(x) ≡ 0, and

therefore θ̂0(t, y, v) ≡ 0.

Example 4.2.12. (Extended Black-Karasinski model.) Suppose that in (4.2.50) we have the

same η(t, y) and σ(t, y) as in Example 4.2.1. Then for a jump analogue in (4.2.52) we can take

δ̂1(t, v) = 0, and thus θ̂1(t, y, v) = y(exp(δ̂0(t, v))− 1) for all t ≥ 0, y > 0, and v ∈ R .



4.3. The Laplace transforms of first passage times 123

Example 4.2.13. (Extended stochastic population model.) Suppose that in (4.2.50) we have

the same η(t, y) and σ(t, y) as in Example 4.2.2. Then for a jump analogue in (4.2.52) we can

take δ̂0(t, v) = 0, and thus θ̂1(t, y, v) = −y(δ̂1(t, v)/(1 + δ̂1(t, v))) for all t ≥ 0, y > 0, and

v ∈ R .

Example 4.2.14. (Extended Cox-Ingersoll-Ross model I.) Suppose that in (4.2.50) we have

the same η(y) and σ(y) as in Example 4.2.6. Then for a jump analogue in (4.2.52) we can take

θ̂1(y, v) =
√
y log(1 + δ̂1(v)) + log2(1 + δ̂1(v))/4 for all y > 0, and v ∈ R .

Example 4.2.15. (Extended Cox-Ingersoll-Ross model II.) Suppose that in (4.2.50) we have

the same η(y) and σ(y) as in Example 4.2.7. Then for a jump analogue in (4.2.52) we can take

θ̂1(y, v) = y
√
y log

√
1 + δ̂1(v)(2−

√
y log

√
1 + δ̂1(v))/(

√
y log

√
1 + δ̂1(v)− 1)2 for all y > 0,

and v ∈ R .

Example 4.2.16. (Extended constant elasticity of variance model.) Suppose that in (4.2.50)

we have the same η(y) and σ(y) as in Example 4.2.8. In the case when α = 1 for a jump

analogue in (4.2.52) we can take θ̂1(y, v) = δ̂0(v) + δ̂1(v)y for all y > 0 and v ∈ R . In the

cases when α ∈ (0, 1) or α > 1, for a jump analogue in (4.2.52) we can put δ̂0(v) = 0 and

θ̂1(y, v) = (y1−α + (1− α) log1−α(1 + δ̂1(v)))1/(1−α) − y for all y > 0 and v ∈ R .

Example 4.2.17. (Extended Shiryaev filtering model.) Suppose that in (4.2.50) we have the

same η(y) and σ(y) as in Example 4.2.9. Then for a jump analogue in (4.2.52) we can take

θ̂1(y, v) = y(1− y)δ̂1(v)/(1 + yδ̂1(v)) for all y ∈ (0, 1) and v ∈ R (see, e.g. [75; Chapter XIX]).

Example 4.2.18. (Extended Jacobi diffusion model.) Suppose that in (4.2.50) we have the

same η(y) and σ(y) as in Example 4.2.10. Then for a jump analogue in (4.2.52) we can take

θ̂1(y, v) = sin(2 arcsin
√
y + log

√
1 + δ̂1(v)) sin(log

√
1 + δ̂1(v)) for all y ∈ (0, 1) and v ∈ R .

4.3. The Laplace transforms of first passage times

In this section, we derive closed-form expressions for the Laplace transforms of first passage

times on constant boundaries for some of the jump-diffusion processes constructed above.

4.3.1. The setting. Let the continuous process Y = (Yt)t≥0 , with the state space DY ⊆ R ,

solve the time-homogeneous stochastic differential equation in (4.2.1) with η(t, y) = η(y),

σ(t, y) = σ(y), θ(t, y, v) = 0 for all t ≥ 0, y ∈ DY and v ∈ R . Suppose that there exists
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a strictly increasing function f(y) ∈ C2(DY ) such that the process X = (Xt)t≥0 given by

Xt = f(Yt) has a state space DX = (d1, d2) with 0 ≤ d1 < d2 ≤ ∞ . Moreover, assume that

f(y) satisfies the equalities (4.2.7)-(4.2.10), and hence, X solves the equation in (4.1.9), with

β(t, x) = β(x), γi(t) = γi , δi(t, v) = 0, i = 0, 1 for all t ≥ 0, x ∈ DX , and v ∈ R . Consider

a jump analogue Ŷ = (Ŷt)t≥0 of the process Y , such that Ŷt = g(X̂t), where the process

X̂ = (X̂t)t≥0 solves the equation of the form (4.2.48) and has the state space DX .

For some a, b ∈ DX , a < b , fixed, let us define the first passage times τa and ζb as

τa = inf{t ≥ 0 | Ŷt ≤ g(a)} ≡ inf{t ≥ 0 | X̂t ≤ a}, (4.3.1)

ζb = inf{t ≥ 0 | Ŷt ≥ g(b)} ≡ inf{t ≥ 0 | X̂t ≥ b}, (4.3.2)

so that g(a) < g(b) holds. Our aim is to find analytic expressions for the Laplace transform of

τa ∧ ζb . For this purpose, we will compute the value function V∗(x) given by

V∗(x) = Ex
[
e−κ(τa∧ζb) I{τa<ζb}

]
≡ Ex

[
e−κτa I{τa<ζb}

]
, (4.3.3)

for any x ∈ DX and some κ > 0 fixed. Here Ex denotes the expectation with respect to the

probability measure Px under which the one-dimensional time-homogeneous (strong) Markov

process X̂ starts at x ∈ DX .

We consider the case in which the process X̂ satisfies

dX̂t = (β(X̂t)−KX̂t) dt+ γ1X̂t dWt + X̂t−

(
exp

( m∑
i=1

∆Zi,+
t −

n∑
j=1

∆Zj,−
t

)
− 1
)
, (4.3.4)

where Zi,+ = (Zi,+
t )t≥0 and Zj,− = (Zj,−

t )t≥0 are independent compound Poisson processes with

intensities λi,+, λj,− > 0 and exponentially distributed jump sizes with parameters αi, βj > 0,

αi 6= 1, for i = 1, . . . ,m and j = 1, . . . , n , m,n ∈ N , and

K =
m∑
i=1

λi,+
αi − 1

−
n∑
j=1

λj,−
βj + 1

. (4.3.5)

In this case, the compensator measure ν(dt, dv) in the equation of (4.2.48) is given by

ν(dt, dv) = dt

(
I{v>0}

m∑
i=1

λi,+αi e
−αiv + I{v<0}

n∑
j=1

λj,−βj e
βjv

)
dv, (4.3.6)

and δ̂(x, v) = (ev − 1)x and γ(x) = γ1x holds for all x ∈ DX , v ∈ R , where the truncation

function is h(v) = v , for v ∈ R .
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4.3.2. The boundary value problem. By means of standard arguments based on the

application of Itô’s formula for semimartingales, it is shown that the infinitesimal generator L
of the process X̂ acts on a function V (x) ∈ C2(DX) according to the rule

(LV )(x) =
γ2

1x
2

2
V ′′(x) + (β(x)−Kx)V ′(x)−

( m∑
i=1

λi,+ +
n∑
j=1

λj,−

)
V (x) (4.3.7)

+

( m∑
i=1

λi,+αi

∫ ∞
0

V (xey) e−αiy dy +
n∑
j=1

λj,−βj

∫ 0

−∞
V (xey) eβjy dy

)
,

for all x ∈ DX . In order to find analytic expressions for the unknown value function V∗(x)

in (4.3.3), let us build on the results of the general theory of Markov processes (see, e.g. [34;

Chapter V]). We reduce the problem of computing V∗(x) to the problem of finding a solution

V (x) to the boundary value problem

(LV )(x) = κ V (x), for a < x < b, (4.3.8)

V (x) = 1, for x ≤ a, and V (x) = 0, for x ≥ b, (4.3.9)

V (a+) = V (a) ≡ 1 and V (b−) = V (b) ≡ 0, (4.3.10)

where the continuous fit conditions of (4.3.10) hold in the cases in which the process X̂ can

pass continuously through the boundaries a and b , respectively. On the other hand, if γ1 = 0

holds, the equation of (4.3.4) for X̂ does not contain a diffusion part, so that the function

V∗(x) may be discontinuous at the points a or b , depending on the sign of the local drift rate

β(x) −Kx in (4.3.4), since X̂ may pass through either of them only by jumping. Therefore,

in order to determine which of the continuous fit conditions in (4.3.10) should hold for V (x),

we will assume that one of the following four cases is satisfied.

(ia) There exists some constant c ∈ DX such that

β(x)−Kx < 0 for x > c, β(x)−Kx > 0 for x < c, and β(c)−Kc = 0 (4.3.11)

holds, so that the process X̂ is reverting continuously to the level c . If a < c < b then the

continuous fit condition does not holds at either a or b . On the other hand, if either a > c

or b < c holds, the process X̂ can pass continuously through a or b , respectively, and thus,

we assume that V (x) satisfies the left-hand condition of (4.3.10) if a > c , and the right-hand

condition of (4.3.10) if b < c .

(iia) There exists some constant c ∈ DX such that

β(x)−Kx > 0 for x > c, β(x)−Kx < 0 for x < c, and β(c)−Kc = 0 (4.3.12)
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holds, so that the process X̂ moves away from the level c continuously. If a < c < b then

the function V solves the equation in (4.3.8) not on the whole interval (a, b), but on the parts

(a, c) and (c, b), separately. Moreover, the process X̂ can pass through a or b continuously,

and thus, we assume that V (x) satisfies the conditions of (4.3.10). On the other hand, if either

a > c or b < c holds, the process X̂ can pass continuously through a or b , respectively, and

thus, we assume that V (x) satisfies the right-hand part of (4.3.10) if a > c , and the left-hand

part of (4.3.10) if b < c .

(iiia) If β(x)−Kx > 0 holds for all x ∈ DX , then the process X̂ can pass through b continu-

ously, and thus, we assume that V (x) satisfies the right-hand part of (4.3.10).

(iva) If β(x)−Kx < 0 holds for all x ∈ DX , then the process X̂ can pass through a continu-

ously, and thus, we assume that V (x) satisfies the left-hand part of (4.3.10).

When γ1 = 0, we will additionally assume that the solution V (x) is bounded. Note that,

in the case when γ1 6= 0, this fact follows directly from the condition of (4.3.10).

We now describe a procedure which reduces the integro-differential boundary value problem

of (4.3.8)-(4.3.10) to an ordinary differential one based on the exponential distribution of the

jump sizes of the compound Poisson processes Zi,+ and Zj,− . For this purpose, by applying

the conditions in (4.3.9), we obtain that the equation in (4.3.8) with (4.3.7) takes the form

a2,0(x)V ′′(x) + a1,0(x)V ′(x) + a0,0(x)V (x) + b0(x) (4.3.13)

+

( m∑
i=1

λi,+αix
αi

∫ b

x

V (y) y−αi−1 dy +
n∑
j=1

λj,−βj x
−βj
∫ x

a

V (y) yβj−1 dy

)
= 0, for a < x < b,

where we set

a2,0(x) =
γ2

1x
2

2
, a1,0(x) = β(x)−Kx, (4.3.14)

a0,0(x) = −
m∑
i=1

λi,+ −
n∑
j=1

λj,− − κ, and b0(x) =
n∑
j=1

λj,−a
βj x−βj . (4.3.15)

The idea is to get rid of the integrals in (4.3.13), by successively making an appropriate Ansatz

and applying integration by parts. Indeed, let us define recursively the functions

G0,0(x) = V (x), Gi,0(x) =

∫ b

x

Gi−1,0(y)

y1+αi−αi−1
dy, and Gm,j(x) =

∫ x

a

Gm,j−1(y)

y1−βj+βj−1
dy, (4.3.16)

for every i = 1, . . . ,m and j = 1, . . . , n , and all a ≤ x ≤ b , where we have denoted α0 = 0

and β0 = −αm . Define the differential operators

Li = −xαi−αi−1+1 d

dx
and Lm+j = xβj−1−βj+1 d

dx
(4.3.17)
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and introduce the notation Lk,k′ = Lk ◦ Lk+1 ◦ · · · ◦ Lk′ , where Lk,k′ is the identity operator if

k > k′ , and notice that the expressions

Gi,0(x) = (Li+1,i′Gi′,0)(x), for i′ = i, . . . ,m, (4.3.18)

Gm,j(x) = (Lm+j+1,m+j′Gm,j′)(x), for j′ = j, . . . , n, (4.3.19)

Gi,0(x) = (Li+1,m+jGm,j)(x), (4.3.20)

hold by definition, as well as Gi,0(b) = 0 and Gm,j(a) = 0, for i = 0, . . . ,m and j =

1, . . . , n . Therefore, substituting the expressions of (4.3.18)-(4.3.20) into (4.3.13) and using

the integration-by-parts formula, we get that (4.3.13) is equivalent to each of the following

boundary value problems

i+2∑
k=0

ak,i(x)G
(k)
i,0 (x) + bi(x) + (−1)i

( m∑
k=1

λk,+αkx
αk

∫ b

x

Gi,0(y)yαi−αk−1dy
i∏

k′=1

(αk′ − αk) (4.3.21)

+
n∑
l=1

λl,−βl x
−βl
∫ x

a

Gi,0(y) yαi+βl−1 dy
i∏

k′=1

(αk′ + βl)

)
= 0,

(Lk+1,iGi,0)(b) = 0, for k = 1, . . . , i, (4.3.22)

for i = 1, . . . ,m , and

m+j+2∑
l=0

al,m+j(x)G
(l)
m,j(x) + bm+j(x) (4.3.23)

+ (−1)m
n∑
l=1

λl,−βl x
−βl
∫ x

a

Gm,j(y) yβl−βj−1 dy
m∏
k=1

(αk + βl)

j∏
l′=1

(βl′ − βl) = 0,

(Lm+l+1,m+jGm,j)(a) = 0, for l = 1, . . . , j, (4.3.24)

(Li+1,m+jGm,j)(b) = 0, for i = 1, . . . ,m, (4.3.25)

for j = 1, . . . , n and all x ∈ (a, b), where the coefficients are given by

ak,i(x) =
i+2∑
k′=k

ak′−1,i−1(x) (xαi−αi−1+1)(k′−k) (k′ − 1)!

(k′ − k)!(k − 1)!
, (4.3.26)

a0,i(x) = (−1)i−1 xαi
( n∑

l=1

λl,−βl

i−1∏
k=1

(αk + βl)−
m∑
k=1

λk,+αk

i−1∏
k′=1

(αk′ − αk)
)
, (4.3.27)

bi(x) = (−1)i
n∑
l=1

λl,−a
βl x−βl

(
1 + βl

i∑
k=1

aαkGk,0(a)
k−1∏
k′=1

(αk′ + βl)

)
, (4.3.28)
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for k = 1, . . . , i+ 2 and i = 1, . . . ,m , and

al,m+j(x) =

m+j+2∑
l′=l

al′−1,m+j−1(x)(xβj−1−βj+1)(l′−l) (l′ − 1)!

(l′ − l)!(l − 1)!
, (4.3.29)

a0,m+j(x) = (−1)mx−βj
n∑
l=1

λl,−βl

m∏
k=1

(αk + βl)

j−1∏
l′=1

(βl′ − βl), (4.3.30)

bm+j(x) = bm(x) = (−1)m
n∑
l=1

λl,−a
βlx−βl

(
1 + βl

m∑
k=1

aαkGk,0(a)
k−1∏
k′=1

(αk′ + βl)

)
, (4.3.31)

for l = 1, . . . ,m+ j + 2 and j = 1, . . . , n .

In particular, the integro-differential equation (4.3.13) is equivalent to

m+n+2∑
k=0

ak,m+n(x)G(k)
m,n(x) + bm+n(x) = 0, for a < x < b, (4.3.32)

(Lm+j+1,m+nGm,n)(a) = 0, for j = 1 . . . , n, (4.3.33)

(Li+1,m+nGm,n)(b) = 0, for i = 1, . . . ,m, (4.3.34)

which is an ordinary differential boundary problem. Moreover, by using that V (x) = G0,0(x) =

(L1,m+nGm,n)(x) = 0, we can rewrite conditions (4.3.9) and (4.3.10) as

(L1,m+nGm,n)(a) = 1, (L1,m+nGm,n)(b) = 0, (4.3.35)

(L1,m+nGm,n)(a+) = (L1,m+nGm,n)(a), (L1,m+nGm,n)(b−) = (L1,m+nGm,n)(b). (4.3.36)

Therefore we have transformed the integro-differential boundary problem (4.3.8)-(4.3.10) for the

function V (x) to the ordinary differential boundary problem (4.3.32)-(4.3.36) for the function

Gm,n(x).

The general solution of the ordinary (nonhomogeneous) differential equation in (4.3.32) has

the form

Gm,n(x) = Gm,n(x) +
m+n+2∑
k=1

Ck Uk(x), for a < x < b, (4.3.37)

where Ck , k = 1, . . . ,m + n + 2, are some arbitrary constants, Uk(x), k = 1, . . . ,m + n + 2,

constitute the fundamental system of solutions (i.e. nontrivial linearly independent particular

solutions) of the homogeneous version of (4.3.32) and Gm,n(x) is a particular solution of (4.3.32)

(see [91; Chapter III, Section 18]). Therefore, we further look for a solution of the equation

(4.3.13) in the form

V (x; a, b) = (L1,m+nGm,n)(x) +
m+n+2∑
k=1

Ck(a, b) (L1,m+nUk)(x), for a < x < b, (4.3.38)
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where the constants Ck(a, b), k = 1, . . . ,m+n+2, are specified from the appropriate boundary

conditions. It follows from the expressions in (4.3.33)-(4.3.34) that the constants Ck(a, b),

k = 1, . . . ,m+ n+ 2, solve the equations

(Lm+j+1,m+nGm,n)(a) +
m+n+2∑
k=1

Ck (Lm+j+1,m+nUk)(a) = 0, for j = 1, . . . , n, (4.3.39)

(Li+1,m+nGm,n)(b) +
m+n+2∑
k=1

Ck (Li+1,m+nUk)(b) = 0, for i = 1, . . . ,m, (4.3.40)

If γ1 6= 0, then from the conditions of (4.3.10), we get that Ck(a, b), k = 1, . . . ,m+n+ 2, also

satisfy

(L1,m+nGm,n)(a) +
m+n+2∑
k=1

Ck (L1,m+nUk)(a) = 1, (4.3.41)

(L1,m+nGm,n)(b) +
m+n+2∑
k=1

Ck (L1,m+nUk)(b) = 0. (4.3.42)

The existence and uniqueness of solutions for Ck(a, b), k = 1, . . . ,m+ n+ 2, follows from the

linear independence of the fundamental solutions Uk(x), k = 1, . . . ,m+ n+ 2, of the ordinary

differential equation in (4.3.32).

On the other hand, if γ1 = 0 holds, the ordinary differential equation (4.3.32) is of order

m + n + 1 and the general solution of (4.3.13) has the form of (4.3.38) with Cm+n+2 = 0. In

order to find the constants Ck , k = 1, . . . ,m + n + 1, we will revisit each of cases (ia)-(iva)

above:

(ib) Assume that the conditions in case (ia) are satisfied. If a < c < b neither of the conditions

(4.3.41)-(4.3.42) is satisfied. In this case we assume, without loss of generality, that

|(L1,m+nUm+n+1)(c−)| = |(L1,m+nUm+n+1)Um+n+1(c+)| =∞, (4.3.43)

and, hence, that Cm+n+1 = 0 holds. Therefore, we have that V (x) is of the form (4.3.38) with

Ck , k = 1, . . . ,m+ n , solving the equations (4.3.39)-(4.3.40).

If either a > c or b < c holds we have that V (x) is of the form (4.3.38) with Ck ,

k = 1, . . . ,m + n + 1, solving the equations (4.3.39)-(4.3.40)+(4.3.42) if b < c , and (4.3.39)-

(4.3.40)+(4.3.41) if a > c .

(iib) Assume that the conditions in case (iia) are satisfied. If a < c < b the function V (x) is
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of the form

V (x; a) = (L1,m+nGm,n)(x) +
m+n+1∑
k=1

Ck(a) (L1,m+nUk)(x), for a < x < c, (4.3.44)

V (x; b) = (L1,m+nGm,n)(x) +
m+n+1∑
k=1

Ck(b) (L1,m+nUk)(x), for c < x < b, (4.3.45)

for some constants Ck(a) and Ck(b) for k = 1, . . . ,m+ n+ 1. By similar considerations, these

constants solve the equations (4.3.39)-(4.3.40) together with (4.3.41) or (4.3.42), respectively.

On the other hand, if either a > c or b < c holds, the function V (x) is of the form (4.3.38)

with Ck , k = 1, . . . ,m + n + 1, solving (4.3.39)-(4.3.40)+(4.3.42) if a > c , and (4.3.39)-

(4.3.40)+(4.3.41) if b < c .

(iiib) Assume that the conditions of the case (iiia) are satisfied. Then V (x) is of the form of

(4.3.38) with Ck , k = 1, . . . ,m+ n+ 1, solving the equations in (4.3.39)-(4.3.40)+(4.3.42).

(ivb) Assume that the conditions of the case (iva) are satisfied. Then V (x) is of the form of

(4.3.38) with Ck , k = 1, . . . ,m+ n+ 1, solving the equations in (4.3.39)-(4.3.40)+(4.3.41).

Summarising the facts exposed above, we now state and prove the corresponding verification

assertion relating the solution of the boundary-value problem to the original value function.

Theorem 4.3.1. Suppose that the process X̂ provides a (unique strong) solution of the stochas-

tic differential equation in (4.3.4). Then, the Laplace transform V∗(x) from (4.3.3) of the

associated with X̂ random variable τa , given that τa < ζb from (4.3.1)-(4.3.2), admits the

representation

V∗(x) = V (x; a, b), for a < x < b, (4.3.46)

for any fixed a, b ∈ DX with a < b, where the function V (x; a, b) is specified as follows:

(i) if γ1 6= 0 then the function V (x; a, b) admits the representation of (4.3.38) with the

coefficients Ck(a, b), k = 1, . . . ,m + n + 2, which provide a unique solution to the system in

(4.3.39)-(4.3.42);

(ii) if γ1 = 0 then the function V (x; a, b) is bounded and takes the form of either V (x; a)

in (4.3.44) or V (x; b) in (4.3.45), respectively, with the coefficients Ck(a) or Ck(b), k =

1, . . . ,m + n + 1, which provide a unique solution to the systems in the case (iia)-(iib), while

if β(x) satisfies one of the conditions from the cases (ia), (iiia), or (iva), then V (x; a, b) is

bounded and of the form (4.3.38) with Ck(a, b), k = 1, . . . ,m+n+1, satisfying the corresponding

conditions from the cases (ib), (iiib), or (ivb).
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Proof. In order to verify the assertion formulated above, it remains us to show that the function

defined in (4.3.46) coincides with the value function in (4.3.3). For this, let us denote by V (x)

the right-hand side of the expression in (4.3.46).

(i) Let us first consider the case γ1 6= 0. Then, applying the change-of-variable formula

for semimartingales with jumps of bounded variation from [87; Theorem 3.1] to the stopped

process e−κ(t∧τa∧ζb)V (X̂t∧τa∧ζb) we get that

e−κ(t∧τa∧ζb) V (X̂t∧τa∧ζb) = V (x) +

∫ t∧τa∧ζb

0

e−κs (LV − κV )(X̂s) ds+Mt (4.3.47)

holds for all a < x < b , where the process M = (Mt)t≥0 defined by

Mt =

∫ t∧τa∧ζb

0

e−κs V ′(X̂s) I{X̂s 6=a,X̂s 6=b} γ1X̂s dWs (4.3.48)

+

∫ t∧τa∧ζb

0

∫
e−κs

(
V (X̂s−e

y)− V (X̂s−)
)

(µ− ν)(ds, dy)

is a local martingale under Px .

By virtue of straightforward calculations and the arguments of the previous section, it is veri-

fied that the function V (x) solves the ordinary (integro-)differential equation in (4.3.7)+(4.3.8),

so that the expression in (4.3.47) takes the form

e−κ(t∧τa∧ζb) V (X̂t∧τa∧ζb) = V (x) +Mt (4.3.49)

for a < x < b . Since the function V (x) satisfies the boundary conditions of (4.3.9)-(4.3.10),

it is continuous and bounded for all x ∈ DX . Thus, it follows from the expression in (4.3.49)

that the process M is a uniformly integrable martingale. Hence, taking the expectation with

respect to Px in both sides of (4.3.49), by means of the optional sampling theorem (see, e.g.

[56; Chapter I, Theorem 1.39]), we get

Ex
[
e−κ(t∧τa∧ζb) V (X̂t∧τa∧ζb)

]
= V (x) + Ex

[
Mt∧τa∧ζb

]
= V (x) (4.3.50)

for all x ∈ DX and t ≥ 0. Therefore, letting t go to infinity and using the conditions in

(4.3.9)-(4.3.10) as well as the fact that V (X̂τa∧ζb) = I{τa<ζb} on the set {τa ∧ ζb <∞} , we can

apply the Lebesgue dominated convergence theorem for (4.3.50) to obtain the equalities

Ex
[
e−κ(τa∧ζb) I{τa<ζb}

]
= Ex

[
e−κ(τa∧ζb) V (X̂τa∧ζb) I{τa∧ζb<∞}

]
= V (x) (4.3.51)

for all x ∈ DX , that completes the proof in the case γ1 6= 0.
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(ii) Assume now that γ1 = 0 and V (x) satisfies the right-hand condition in (4.3.10), so

that V (b−) = V (b) ≡ 0 holds, while it does not satisfy the left-hand condition there, that is

V (a+) 6= V (a) ≡ 1 holds (the other cases can be dealt with similarly). This feature corresponds

to the case in which the process X̂ can pass through the boundary a only by jumping and we

particularly have that Px(X̂τa = a) = 0 holds for x ∈ DX \{a} . Following the idea of the proof

in [67; Theorem 3.1], by using the assumption that V is bounded, we can introduce a sequence of

bounded functions (Vk)k∈N from the class C1(DX) such that Vk(a) = V (a+), |Vk(x)−V (x)| ≤
|Vk(a) − V (a)| for all x ∈ DX , and Vk(x) = V (x) for x ∈ DX \

(
(a − 1/k, a] ∪ (b, b + 1/k)

)
.

Clearly, we have Vk(x) → V (x) for all x ∈ DX \ {a} as k → ∞ . By applying the change-of-

variable formula for finite variation processes from [92; Chapter II, Theorem 31] to the stopped

process e−κ(t∧τa∧ζb)Vk(X̂t∧τa∧ζb), we get that

e−κ(t∧τa∧ζb) Vk(X̂t∧τa∧ζb) = Vk(x) +

∫ t∧τa∧ζb

0

e−κs (LVk − κVk)(X̂s) ds+Mk
t (4.3.52)

holds for a < x < b , where the process Mk = (Mk
t )t≥0 , k ∈ N , defined by

Mk
t =

∫ t∧τa∧ζb

0

∫
e−κs

(
Vk(X̂s−e

y)− Vk(X̂s−)
)

(µ− ν)(ds, dy), (4.3.53)

is a local martingale. It follows from the construction of the functions Vk(x) above that the

inequality |Vk(x)− V (x)| ≤ |Vk(a)− V (a)| holds for all x ∈ DX , so that, we have

∣∣(LVk − κVk)(x)
∣∣ ≤ λ

( m∑
i=1

αi

∫ log(b+1/k)−log x

log b−log x

|Vk(xey)− V (xey)|dy (4.3.54)

+
n∑
j=1

βj

∫ log a−log x

log(a−1/k)−log x

∣∣Vk(xey)− V (xey)
∣∣dy)

≤ λ|Vk(a)− V (a)|
(

log
(b+ 1/k

b

) m∑
i=1

αi + log
( a

a− 1/k

) n∑
i=1

βi

)
→ 0,

for a < x < b uniformly in x as k →∞ . Hence, we obtain from the expression in (4.3.52) and

the fact that Vk(x) is bounded that the inequality

|Mk
t | ≤ C + λ

∣∣Vk(a)− V (a)
∣∣ ( log

(b+ 1/k

b

) m∑
i=1

αi + log
( a

a− 1/k

) n∑
i=1

βi

)
t (4.3.55)

holds for some constant C > 0 and all t ≥ 0, so that the process Mk is a martingale. Thus,

taking the expectation with respect to Px in (4.3.52), we get

Ex

[
e−κ(t∧τa∧ζb) Vk(X̂t∧τa∧ζb)−

∫ t∧τa∧ζb

0

e−κs (LVk − κVk)(X̂s) ds

]
= Vk(x), (4.3.56)
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for all a < x < b and t ≥ 0. Note that, by virtue of the facts that Px(X̂τa = a) = 0 and

Vk(x) → V (x) holds for all x ∈ DX \ {a} , we get that Vk(X̂t∧τa∧ζb) → V (X̂t∧τa∧ζb) (Px -a.s.).

Therefore, we have by the dominated convergence that

lim
k→∞

Ex
[
e−κ(t∧τa∧ζb) Vk(X̂t∧τa∧ζb)

]
= Ex

[
e−κ(t∧τa∧ζb) V (X̂t∧τa∧ζb)

]
, (4.3.57)

and by the uniform convergence in (4.3.54), we obtain

lim
k→∞

Ex

[ ∫ t∧τa∧ζb

0

e−κs (LVk − κVk)(X̂s) ds

]
= 0, (4.3.58)

for a < x < b . Hence, we conclude that

Ex
[
e−κ(t∧τa∧ζb) V (X̂t∧τa∧ζb)

]
= lim

k→∞
Vk(x) = V (x) (4.3.59)

holds for all a < x < b and t ≥ 0. Therefore, the same dominated convergence arguments

which were used above complete the proof for the case γ1 = 0 as well.

4.3.3. The case of a single compound Poisson process We now show how to find the

solution V (x) of the boundary value problem (4.3.7)-(4.3.10) in a single compound Poisson

process setting. In particular, we let m = 1 and n = 0 in (4.3.4) and notice that from (4.3.6)

the compensator measure ν(dt, dv) in (4.2.48) is given by

ν(dt, dv) = λ dt α1e
−α1vI{v>0} dv, (4.3.60)

for some λ, α1 > 0, and α1 6= 1. For notational convenience, we set G(x) = G1,0(x) for

a ≤ x ≤ b . Note that the equations in (4.3.32)-(4.3.35) read as

γ2
1x

3

2
G′′′(x) +

(
x β(x) + x2 (γ2

1(α1 + 1)−K)
)
G′′(x)− λα1G(x) (4.3.61)

+

(
(α1 + 1) (β(x)− xK) +

γ2
1(α1 + 1)α1x

2
− (λ+ κ)x

)
G′(x) = 0, for a < x < b,

G′(a) = −a−α1−1, G′(b) = 0, G(b−) = G(b) ≡ 0. (4.3.62)

The general solution of (4.3.61) has the form

G(x) = C1 U1(x) + C2 U2(x) + C3 U3(x), for a < x < b, (4.3.63)

where U1(x), U2(x), and U3(x) constitute the fundamental system of solutions (i.e. nontrivial

linearly independent particular solutions) of (4.3.61), which we assume to be continuously
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differentiable at x = a and x = b . By the definition of G1,0 in (4.3.16), we obtain that

V (x) = −xα1+1G′(x) holds, so that V (x) has the form

V (x) = −xα1+1
(
C1 U

′
1(x) + C2 U

′
2(x) + C3 U

′
3(x)

)
, for a < x < b. (4.3.64)

It follows from (4.3.62) that the constants C1 , C2 and C3 satisfy the equality

C1 U1(b) + C2 U2(b) + C3 U3(b) = 0. (4.3.65)

Note that when γ1 6= 0, by using (4.3.36) we get

G′(a+) = G′(a) ≡ −a−α1−1 and G′(b−) = G′(b) ≡ 0, (4.3.66)

and we obtain from the expression of (4.3.63) that

C1 U
′
1(b) + C2 U

′
2(b) + C3 U

′
3(b) = G′(b) ≡ 0, (4.3.67)

C1 U
′
1(a) + C2 U

′
2(a) + C3 U

′
3(a) = G′(a) ≡ −a−α1−1, (4.3.68)

while when γ1 = 0, we again follow the case-by-case analysis as in the previous subsection to

find the constants C1 , C2 , and C3 .

4.3.4. Some examples In the setting of the latter subsection, let us finally find explicit

solutions for the functions G(x), and thus, for the Laplace transform V∗(x) of the first exit

time τa ∧ ζb for the process X̂ , in several examples considered above.

In the examples considered below, we assume that γ1 = 0. In this case, the first derivative

G′(x) of every solution below has a right-hand limit G′(a+) at x = a and a left-hand limit

G′(b−) at x = b , so that the function V (x) is bounded and we can apply Theorem 4.3.1. More-

over, in every example, one of the conditions in case (ia)-(iva) is satisfied and we can determine

the constants C1 and C2 in the expression of (4.3.64) from the corresponding conditions in

cases (ib)-(ivb), where we put C3 = 0.

Example 4.3.2. (Extended Cox-Ingersoll-Ross model I.) Let the drift coefficient β(x) of the

process X be given as in Example 4.2.6 and note that DX = (1,∞). However, we still do

not have explicit solutions for the equation in (4.3.61) when η0 6= 0 and η1 6= 0. Therefore,

we assume that η0 = 0, so that we have β(x) = xη log(x) for x ∈ DX , where η = η1/2. By

making the Ansatz of H(y) = G(ey), we get from the equation in (4.3.61) that H(y) solves

the second-order ordinary differential equation(
ηy − λ

α− 1

)
H ′′(y) +

(
ηαy − αλ

α− 1
− λ− κ

)
H ′(y)− λαH(y) = 0, (4.3.69)



4.3. The Laplace transforms of first passage times 135

for y ∈ (log a, log b). In particular, it follows from [118; Formulas 2.1.2.108 and 2.1.2.70] that

the equation in (4.3.69) admits a general solution H(y) = G(ey) with G(x) being of the form

of (4.3.63) and C3 = 0, where we have

U1(x) = xr Φ(p, q; z(x)), U2(x) = xr Ψ(p, q; z(x)), (4.3.70)

when q 6= 0,−1,−2, . . . , and

U1(x) = xr z(x)1−q Φ(p− q + 1, 2− q; z(x)), (4.3.71)

U2(x) = xr z(x)1−q Ψ(p− q + 1, 2− q; z(x)), (4.3.72)

when q = 0,−1,−2, . . . . Here, we denote

p =

{
−κ/η, if η < 0,

−λ/η, if η > 0,
, q = −(λ+ κ)

η
, r =

{
−α, if η < 0,

0, if η > 0,
, (4.3.73)

z(x) = − sign(η)α
(

log(x)− λ

η(α− 1)

)
, (4.3.74)

and the functions Φ(x, y; z) and Ψ(x, y; z) are the Kummer’s and Tricomi’s confluent hyper-

geometric functions (see, e.g. [1; Chapter XIII]), respectively. In particular, we have

Φ(x, y; z) =
Γ(y)

Γ(x)Γ(y − x)

∫ 1

0

ezv vx−1(1− v)y−x−1 dv, (4.3.75)

Ψ(x, y; z) =
1

Γ(x)

∫ ∞
0

e−zv vx−1(1 + v)y−x−1 dv, (4.3.76)

for y > x > 0 and z > 0, where Γ is the gamma function.

Example 4.3.3. (Extended Cox-Ingersoll-Ross model II.) Let the drift coefficient β(x) of the

process X be given as in Example 4.2.7 and recall that DX = (0, 1). However, we still do

not have explicit solutions for the equation in (4.3.61) when η0 6= 0 and η1 6= 0. Therefore,

we assume that η1 = 0 holds, so that we have β(x) = 2η0x/ log x for x ∈ DX . By making

the Ansatz of H(y) = G(ey), it follows from the equation in (4.3.61) that the function H(y)

satisfies the ordinary differential equation(
2η0 −

λ

α1 − 1
y
)
H ′′(y) +

(
2α1η0 −

( α1λ

α1 − 1
+ λ+ κ

)
y
)
H ′(y)− λα1 y H(y) = 0, (4.3.77)

for log a < y < log b . Therefore, by analogy to Example 4.3.2, we get that G(x) is of the form

of (4.3.63) with C3 = 0 and the functions U1(x) and U2(x) satisfy (4.3.71)-(4.3.72) when q is
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a nonpositive integer, and (4.3.70) otherwise, where we set

D =
((α1 − 1)κ − λ)2

(α1 − 1)2
+

4κλα1

α1 − 1
, r = −(α1 − 1)

√
D + α1λ+ (α1 − 1)(κ + λ)

2λ
, (4.3.78)

p =
2η0r(r + α1)√

D
, q =

2η0(α1 − 1)2(λ+ κ)

λ2
, (4.3.79)

z(x) =

√
D(α1 − 1)

λ

(
log x− 2η0(α1 − 1)

λ

)
. (4.3.80)

Example 4.3.4. (Extended constant elasticity of variance model.) Let the drift coefficient

β(x) of the process X be given as in Example 4.2.8 with the elasticity parameter α , where

DX = (1,∞) if α ∈ (0, 1) and DX = (0, 1) if α ∈ (1,∞). Notice that, by definition, we

have β(x) = ηx log x for x ∈ DX , where η = η1(1 − α). By making the Ansatz of H(y) =

G(ey), we get from (4.3.61) that H(y) solves the ordinary differential equation in (4.3.69), for

y ∈ (log a, log b). Therefore, we get that G(x) is of the form (4.3.63) with C3 = 0, and the

functions U1(x) and U2(x) satisfy (4.3.71)-(4.3.72) if q is a nonpositive integer, and (4.3.70)

otherwise, where p, q, r and z(x) are defined as in (4.3.73)-(4.3.74).

Example 4.3.5. (Extended Shiryaev filtering model.) Let the drift coefficient β(x) of the

process X be given as in Example 4.2.9 and note that DX = (0,∞). Notice that, by definition,

we have β(x) = η0(1 + x) for x ∈ DX , where η = η0 − λ/(α− 1).

If we assume that η 6= 0 holds, it follows from (4.3.61) that G(x) satisfies the ordinary

differential equation of(η0

η
+ x
)
xG′′(x) +

((
α + 1− λ+ κ

η

)
x+

η0(α + 1)

η

)
G′(x)− λα

η
G(x) = 0, (4.3.81)

for a < x < b . It follows from [118; Formulas 2.1.2.172 and 2.1.2.171] that the general solution

of the second-order ordinary differential equation in (4.3.81) is of the form (4.3.64) with C3 = 0

and

U1(x) = z(x)1−q
2F1(p1 − q + 1, p2 − q + 1, 2− q; z(x)), (4.3.82)

U2(x) =

U1(x)
∫ x Z(y)

U1(y)2
dy, if q is a (negative) integer,

2F1 (p1, p2, q; z(x)) , otherwise,
(4.3.83)

where 2F1(p, q, r; z) is the Gauss hypergeometric function (see, e.g. [1; Chapter XV]) and we
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denote

p1,2 =
αη − (λ+ κ)±

√
(λ+ κ − αη)2 − 4λαη

2η
, q = −α− 1, z(x) = − η

η0

x, (4.3.84)

Z(x) = exp

(
−
∫ x y(η(α + 1)− λ− κ) + (η0(α + 1))

y(ηy + η0)
dy

)
. (4.3.85)

On the other hand, if we assume that η = 0 holds, it follows from (4.3.61) that G(x)

satisfies the ordinary differential equation

η0 xG
′′(x) +

(
η0(α + 1)− (λ+ κ)x

)
G′(x)− λαG(x) = 0, (4.3.86)

for a < x < b . Therefore, by analogy to Example 4.3.2, we get that G(x) is of the form of

(4.3.63) with C3 = 0 and

U1(x) = exr Φ(p, q; z(x)), U2(x) = exr Ψ(p, q; z(x)), (4.3.87)

where we denote

p = 1 +
ακ
λ+ κ

, q = α + 1, r =
λ+ κ
η0

, and z(x) = −x(λ+ κ)

η0

, (4.3.88)

and the functions Φ(x, y; z) and Ψ(x, y; z) are defined as in (4.3.75)-(4.3.76).
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Chapter 5

On the generalised Laplace transforms

of the first exit times in jump-diffusion

models of stochastic volatility

This chapter is based on joint work with Dr. Pavel V. Gapeev.

5.1. Preliminaries

In this section, we introduce the setting and notation in the problem of computation of the

Laplace transforms of the first exit times in (two-dimensional) jump-diffusion models of financial

markets with stochastic volatility and formulate the associated boundary value problem.

5.1.1. The model. Let us consider a probability space (Ω,F , P ) supporting two indepen-

dent standard Brownian motions Bj = (Bj
t )t≥0 , j = 1, 2. The processes X = (Xt)t≥0 and

Y = (Yt)t≥0 are defined by Xt =
∑N1

t
k=1 J

1
k and Yt =

∑N2
t

k=1 J
2
k , where N i = (N i

t )t≥0 , i = 1, 2,

are independent Poisson processes of intensity λi , i = 1, 2, and (J ik)k∈N are independent expo-

nentially distributed random variables with probability density e−η
+
i x I(x > 0)+e−η

−
i x I(x < 0)

where η+
i ≥ 0 and η−i ≤ 0, for i = 1, 2, and I(·) denotes the indicator function. Suppose that

there exists a process (S,Q) = (St, Qt)t≥0 which is a (pathwise) unique solution of the system
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of stochastic differential equations

dSt = δ σ2(Qt)St dt+ ε σ(Qt)St dB
1
t (5.1.1)

+ St−

∫ (
ex − 1

)
σ2(Qt−) (µX − νX)(dt, dx) (S0 = s)

and

dQt = φ(Qt) dt+ ψ(Qt) dB
2
t (5.1.2)

+Qt−

∫ (
ey − 1

)
(µY − νY )(dt, dy) (Q0 = q)

for some s, q > 0 fixed, where δ and ε are some constants, and σ(q) > 0 and φ(q) are contin-

uously differentiable functions of at most linear growth on (0,∞) (see, e.g. [75; Chapter IV,

Theorem 4.6] and [56; Chapter III, Theorem 2.32] for the existence and uniqueness of solu-

tions of stochastic differential equations). Here, µX(dt, dx) and µY (dt, dy) are the measures

of jumps of the processes X and Y , and νX(dt, dx) and νY (dt, dy) are their compensators

with respect to the probability measure P , respectively. It follows from the structure of the

processes X and Y that the compensators have the form νX(dt, dx) = dtF1(x;λ1, η
+
1 , η

−
1 )dx

and νY (dt, dy) = dtF2(y;λ2, η
+
2 , η

−
2 ) dy with

Fi(x;λi, η
+
i , η

−
i ) = λi

(
e−η

+
i x I(x > 0) + e−η

−
i x I(x < 0)

)
dx. (5.1.3)

Without loss of generality and because of the nature of the problems as well as the examples

considered below, we can further assume that the state space of the process S is (0,∞).

Observe that the process Q forms a one-dimensional (strong) Markov jump-diffusion process,

while (S,Q) provides a two-dimensional jump-diffusion Markov process. We further assume

that the state space of Q is (0,∞), so that the state space of (S,Q) is (0,∞)2 . Let us also

define the associated with the processes S and Q first hitting (stopping) times

τ−a = inf{t ≥ 0 |St ≤ a} and τ+
b = inf{t ≥ 0 |St ≥ b} (5.1.4)

and

ζ−g = inf{t ≥ 0 |Qt ≤ g} and ζ+
h = inf{t ≥ 0 |Qt ≥ h} (5.1.5)

for some 0 ≤ a < b ≤ ∞ and 0 ≤ g < h ≤ ∞ fixed.

5.1.2. Formulation of the problem. The main aim in the present paper is to derive

closed form expressions for the generalised Laplace transforms and other related functionals of
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the random variables τ−a , τ+
b , ζ−g , and ζ+

h . In this respect, let us introduce the value functions

V ∗−(s, q; a) and V ∗+(s, q; b) given by

V ∗−(s, q; a) = Es,q

[
e
−2κA

τ−a U∗(Qτ−a
) I(τ−a ≤ ζ−g ∧ ζ+

h ) (5.1.6)

+ e
−2κA

ζ−g W ∗
−(Sζ−g , Qζ−g

; a) I(ζ−g < τ−a ∧ ζ+
h )
]

and

V ∗+(s, q; b) = Es,q

[
e
−2κA

τ+
b U∗(Qτ+b

) I(τ+
b ≤ ζ−g ∧ ζ+

h ) (5.1.7)

+ e
−2κA

ζ−g W ∗
+(Sζ−g , Qζ−g

; b) I(ζ−g < τ+
b ∧ ζ

+
h )
]

where the function U∗(q) is defined as

U∗(q) = Eq

[
e
−κA

ζ−g I(ζ−g < ζ+
h )
]

(5.1.8)

the functions W ∗
−(s, q; a) and W ∗

+(s, q; b) are given by

W ∗
−(s, q; a) = Es,q

[
e
−κA

τ−a

]
and W ∗

+(s, q; b) = Es,q

[
e
−κA

τ+
b

]
(5.1.9)

for κ > 0 and all (s, q) ∈ (0,∞)2 . Here, the process A = (At)t≥0 is defined by

At =

∫ t

0

σ2(Qu) du. (5.1.10)

5.1.3. The boundary-value problems. By means of standard arguments based on Itô’s

formula, it can be shown that the infinitesimal operator L(S,Q) of the process (S,Q) from

(5.1.1)-(5.1.2) under the probability measure P acts on a function V (s, q) from the class C2,2

on (0,∞)2 according to the rule:

(L(S,Q)V )(s, q) = (δ −K1)σ2(q) s ∂sV (s, q) +
ε2σ2(q)

2
s2 ∂ssV (s, q) (5.1.11)

+ (φ(q)− qK2) ∂qV (s, q) +
ψ2(q)

2
∂qqV (s, q) +

∫ (
V
(
sex, q

)
− V (s, q)

)
σ2(q)F1(x;λ1, η

+
1 , η

−
1 ) dx

+

∫ (
V
(
s, qey

)
− V (s, q)

)
F2(y;λ2, η

+
2 , η

−
2 ) dy

for all (s, q) ∈ (0,∞)2 , while the infinitesimal operator LQ of the process Q under the proba-

bility measure P acts on a function U from the class C2 on (0,∞) like

(LQU)(q) = (φ(q)− qK2)U ′(q) +
ψ2(q)

2
U ′′(q) (5.1.12)

+

∫ (
U
(
qey
)
− U(q)

)
F2(y;λ2, η

+
2 , η

−
2 )dy
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for all q > 0, where

Ki = λi

(
1

η+
i − 1

+
1

η−i − 1

)
for i = 1, 2. (5.1.13)

In order to find analytic expressions for the unknown value functions from (5.1.6)-(5.1.7), let

us use the results of general theory of Markov processes (see, e.g. [34; Chapter V]). We reduce

the problems of (5.1.6)-(5.1.7) for the functions V ∗−(s, q; a) and V ∗+(s, q; b) to the equivalent

boundary value problem

(L(S,Q)V − 2κ σ2(q)V )(s, q) = 0 for a < s or s < b and g < q < h (5.1.14)

V (s, q) = U(q) for s ≤ a or V (s, q) = U(q) for s ≥ b (5.1.15)

V (s, q)
∣∣
s=a+

= U(q) or V (s, q)
∣∣
s=b− = U(q) (5.1.16)

V (s, q) = W±(s, q) for q ≤ g and V (s, q) = 0 for q ≥ h (5.1.17)

V (s, q)
∣∣
q=g+

= W±(s, q) and V (s, q)
∣∣
q=h− = 0 (5.1.18)

where the conditions in (5.1.16) and (5.1.18) are satisfied for each s > 0 and q > 0, respectively.

Here, the functions U(q) solve the boundary-value problem

(LQU − κ σ2(q)U)(q) = 0 for g < q < h (5.1.19)

U(q) = 1 for q ≤ g and U(q) = 0 for q ≥ h (5.1.20)

U(q)
∣∣
q=g+

= 1 and U(q)
∣∣
q=h− = 0 (5.1.21)

while the functions W ∗
−(s, q; a) and W ∗

+(s, q; b) solve the problem

(L(S,Q)W − κ σ2(q)W )(s, q) = 0 for a < s < b (5.1.22)

W (s, q) = 1 for s ≤ a or W (s, q) = 1 for s ≥ b (5.1.23)

W (s, q)
∣∣
s=a+

= 1 or W (s, q)
∣∣
s=b− = 1 (5.1.24)

for all q > 0.

5.2. Solutions of the boundary value problems

In this section, we derive the solutions of the boundary value problems associated with the

value functions in (5.1.6)-(5.1.7).
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5.2.1. Solutions of the system (5.1.19)-(5.1.21). (i) Let us assume that λ2 = 0 holds.

In this case, it is known that the general solution of the second-order differential equation of

(5.1.19) has the form

U(q) = D+ U+(q) +D− U−(q) (5.2.1)

where D± are some arbitrary constants, and the two functions U+(q) and U−(q) represent the

two fundamental positive solutions (i.e. nontrivial linearly independent particular solutions) of

the second-order ordinary differential equation in (5.1.12)+(5.1.19) (see [91; Chapter III, Section

18]). Without loss of generality, we may assume that U+(q) and U−(q) are (strictly) increasing

and decreasing (convex) functions satisfying the properties U+(∞) =∞ and U+(0+) = +0 as

well as U−(0+) =∞ and U−(∞) = +0, respectively (see, e.g. [95; Chapter V, Section 50] for

further details in the purely continuous case). Then, by applying the instantaneous-stopping

conditions of (5.1.21) to the function in (5.2.1), we obtain that the equalities

D+ U+(g) +D− U−(g) = 1 and D+ U+(h) +D− U−(h) = 0 (5.2.2)

hold. Solving the system of linear equations in (5.2.2), we obtain the function

U(q; g, h) =
U−(h)U+(q)− U+(h)U−(q)

U+(g)U−(h)− U+(h)U−(g)
(5.2.3)

which satisfies the system in (5.1.19)-(5.1.21). Note that, in the cases g = 0 and h = ∞ , we

see that D− ≡ D−(0, h) = 0 and D+ ≡ D+(g,∞) = 0 should hold in (5.2.3), since otherwise

U(q) → ±∞ as q ↓ 0 and q ↑ ∞ , respectively, which must be excluded, by virtue of the

obvious fact that the function U∗(q) in (5.1.8) is bounded. Therefore, using arguments similar

to the ones above, we conclude that the functions U(q; 0, h) and U(q; g,∞) have the form

U(q; 0, h) =
U+(q)

U+(h)
and U(q; g,∞) =

U−(q)

U−(g)
(5.2.4)

for all q < h and q > g , respectively.

(ii) Let us now assume that λ2 > 0, η+
2 > 0, and η−2 = 0 holds. In this case, by using the

boundary conditions in (5.1.20), we can rewrite the equation in (5.1.19) as

ψ2(q)

2
U ′′(q) +

(
φ(q)− qK2

)
U ′(q)−

(
κ σ2(q) + λ2

)
U(q) (5.2.5)

+ λ2η
+
2 q

η+2

∫ h

q

U(y) y−η
+
2 −1 dy = 0.
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We define the function G(q) as

G(q) =

∫ h

q

U(y) y−η
+
2 −1 dy, (5.2.6)

for g ≤ q ≤ h , and notice that solving the ordinary integro-differential boundary problem in

(5.2.5)+(5.1.20)-(5.1.21) is equivalent to solving the third-order ordinary differential boundary

problem

ψ2(q)q2

2
G′′′(q) +

(
(φ(q)− qK2)q + (η+

2 + 1)ψ2(q)
)
q G′′(q) (5.2.7)

+

((
− κ σ2(q)− λ2

)
q2 + (η+

2 + 1)
(
φ(q)− qK2

)
q + (η+

2 + 1)η+
2

ψ2(q)

2

)
G′(q)

− λ2η
+
2 q G(q) = 0 for g < q < h,

G(q)
∣∣
q=h− = G(h) ≡ 0, (5.2.8)

G′(q)
∣∣
q=g+

= G′(g) ≡ −g−η
+
2 −1 and G′(q)

∣∣
q=h− = G′(h) ≡ 0. (5.2.9)

It is known that the general solution of the third-order differential equation of (5.2.7) has the

form

G(q) = D1G1(q) +D2G2(q) +D3G3(q), (5.2.10)

where Di , i = 1, 2, 3, are some arbitrary constants, and the functions Gi(q) represent the three

fundamental positive solutions (i.e. nontrivial linearly independent particular solutions) of the

third-order ordinary differential equation in (5.2.7) for i = 1, 2, 3 (see [91; Chapter III, Section

18]). Hence the solution of (5.1.19)-(5.1.21) is of the form

U(q; g, h) = D1 U1(q) +D2 U2(q) +D3 U3(q), (5.2.11)

where we set Ui(q) = −qη+2 +1G′i(q) for g ≤ q ≤ h and i = 1, 2, and the constants Di , i = 1, 2, 3,

satisfy the equations

D1G1(h) +D2G2(h) +D3G3(h) = 0, (5.2.12)

D1G
′
1(g) +D2G

′
2(g) +D3G

′
3(g) = −g−η

+
2 −1, (5.2.13)

D1G
′
1(h) +D2G

′
2(h) +D3G

′
3(h) = 0. (5.2.14)

5.2.2. Solutions of the system (5.1.14)-(5.1.18). (i) Let us assume that λ1 = λ2 = 0

holds. In this case, let us now look for a solution of the partial differential equation in (5.1.14)
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in the form

V (s, q) = sθ+
(
C1,+ U1(q) + C2,+ U2(q)

)
+ sθ−

(
C1,− U1(q) + C2,− U2(q)

)
(5.2.15)

where θ± are given by the roots of the equation

ε2

2
θ(θ − 1) + δ θ = κ, (5.2.16)

so that θ− < 0 < θ+ holds, and we have

θ± =
1

2
− δ

ε2
±

√(
δ

ε2
− 1

2

)2

+
2κ
ε2
. (5.2.17)

Here, Ci,± are arbitrary constants, and Ui(q) are the appropriate fundamental positive solutions

of the second-order ordinary differential equation in (5.1.12)+(5.1.19) considered above, for

i = 1, 2. Note that the equalities C1,+ = C2,+ = 0 should hold in (5.2.15) if we consider

a solution for V ∗−(s, q; a) in (5.1.6), while the equalities C1,− = C2,− = 0 should hold there

if we consider a solution for V ∗+(s, q; b) in (5.1.7). These properties occur since otherwise

V (s, q)→ ±∞ as s ↓ 0 or s ↑ ∞ , which must be excluded, by virtue of the obvious fact that

the functions V ∗−(s, q; a) in (5.1.6) and V ∗+(s, q; b) in (5.1.7) are bounded. Then, by applying

the instantaneous-stopping conditions of (5.1.16)-(5.1.18) to the function in (5.2.15), we obtain

that the equalities

aθ−
(
C1,− U1(q) + C2,− U2(q)

)
= U(q; g, h) (5.2.18)

and

bθ+
(
C1,+ U1(q) + C2,+ U2(q)

)
= U(q; g, h) (5.2.19)

hold. Solving the equations in (5.2.18)-(5.2.19), we obtain the functions

V−(s, q; a; g, h) =
(s
a

)θ−
U(q; g, h) and V+(s, q; b; g, h) =

(s
b

)θ+
U(q; g, h) (5.2.20)

which satisfy the system in (5.1.14)-(5.1.18), where the functions U(q; g, h) is given by (5.2.3).

(ii) Let us now assume that λ1 > 0, λ2 = 0, η+
1 > 0, and η−1 = 0 holds. In this case, let

us look for a solution of the partial differential equation in (5.1.14) in the form

V (s, q) = sθ+
(
C1,+ U1(q) + C2,+ U2(q)

)
+ sθ−

(
C1,− U1(q) + C2,− U2(q)

)
(5.2.21)

where θ± are given by two roots of the equations

(δ −K1) θ2 − (η+
1 (δ −K1) + λ1) θ = κ if λ1, η

+
1 > 0, and ε = 0, (5.2.22)

(θ − η+
1 )

(
ε2

2
θ(θ − 1) + (δ −K1) θ − λ1

)
− η+

1 λ1 = κ, if λ1, η
+
1 , ε > 0, (5.2.23)
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so that θ− < 0 < θ+ holds, and we set

θ± =
η+

1

2
+

λ1

2(δ −K1)
±

√(η+
1

2
+

λ1

2(δ −K1)

)2

+
κ

δ −K1

if λ1, η
+
1 > 0, and ε = 0. (5.2.24)

Here Ci,± are arbitrary constants and Ui(q) are the appropriate fundamental positive solutions

from (5.2.11) of the ordinary integro-differential equation (5.2.5) considered above for i = 1, 2.

Moreover, in order for (5.1.14)+(5.1.15) to be satisfied, we choose η+
1 > 0 such that

η+
1 b

θ± + θ± − η+
1 = 0. (5.2.25)

Note that the equalities Ci,+ = 0 should hold in (5.2.21) if we consider a solution for V ∗−(s, q; a)

in (5.1.6), while the equalities Ci,− = 0 should hold there if we consider a solution for V ∗+(s, q; b)

in (5.1.7), for i = 1, 2. These properties occur since otherwise V (s, q)→ ±∞ as s ↓ 0 or s ↑ ∞ ,

which must be excluded, by virtue of the obvious fact that the functions V ∗−(s, q; a) in (5.1.6)

and V ∗+(s, q; b) in (5.1.7) are bounded. Then, by applying the instantaneous-stopping conditions

of (5.1.16)-(5.1.18) to the function in (5.2.21), we obtain that the equalities

aθ−
(
C1,− U1(q) + C2,− U2(q)

)
= U(q; g, h) (5.2.26)

and

bθ+
(
C1,+ U1(q) + C2,+ U2(q)

)
= U(q; g, h) (5.2.27)

should hold. Solving the equations in (5.2.26)-(5.2.27), we obtain the functions

V−(s, q; a; g, h) =
(s
a

)θ−
U(q; g, h) and V+(s, q; b; g, h) =

(s
b

)θ+
U(q; g, h) (5.2.28)

which satisfy the system in (5.1.14)-(5.1.18), where the function U(q; g, h) is given by (5.2.11).

3.3. Solutions of the system (5.1.22)-(5.1.24). (i) Let us assume that λ1 = λ2 = 0

holds and look for a solution of the partial differential equation in (5.1.22) in the form

W (s, q) = C+ s
θ+ + C− s

θ− (5.2.29)

where C± are some arbitrary constants, and θ± are given by (5.2.17). Then, by applying the

instantaneous-stopping conditions of (5.1.24) to the function in (5.2.29), we obtain that the

equalities

C+ a
θ+ + C− a

θ− = 1 or C+ b
θ+ + C− b

θ− = 1 (5.2.30)

hold. Note that, in the cases s ↓ 0 or s ↑ ∞ , we see that C− = 0 or C+ = 0 should hold

in (5.2.29), since otherwise W (s, q) → ±∞ as s ↓ 0 and s ↑ ∞ , respectively, which must be
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excluded, by virtue of the obvious fact that the functions W ∗
−(s, q; b) in (5.1.9) and W ∗

+(s, q; a)

in (5.1.10) are bounded. Therefore, using arguments similar to the ones above, we conclude

that the functions W ∗
+(s, q; b) and W ∗

−(s, q; a) have the form

W ∗
+(s, q; b) = (s/b)θ+ and W ∗

−(s, q; a) = (s/a)θ− (5.2.31)

for all s < b and s > a , respectively.

(ii) Let us now assume that λ1 > 0, λ2 = 0, η+
1 > 0, and η−1 = 0 holds. We look for

solution of the form (5.2.29), where θ± are given by (5.2.24) or by a positive and a negative

root of the cubic equation (5.2.23) when ε = 0 or ε > 0, respectively, and η+
1 satisfies the

equality in (5.2.25). Then, similarly as in the previous case, by applying the instantaneous-

stopping conditions of (5.1.24) to the function in (5.2.29), we obtain the equalities in (5.2.30)

and conclude that W ∗
+(s, q; b) and W ∗

−(s, q; a) have the form (5.2.31).

5.2.3. Some examples. Let us now consider several examples in which we can obtain

explicit solutions of the boundary value problems formulated above.

Example 5.2.1. Let us consider the case of the (mean-reverting) exponential Stein-Stein model

of stochastic volatility for (S,Q). In this case, we set σ(q) = ln q , φ(q) = q(α− β ln q + γ2/2),

and ψ(q) = γq , for some constants α ≥ 0, β , and γ > 0, so that Q is an exponential

Ornstein-Uhlenbeck process (Black-Karasinski model) with the state space E = (0,∞).

Let us assume that λ2 = 0 and denote U(q) = U(eq) for q ∈ R . Then, the equation in

(5.2.5) can be written as

γ2

2
U
′′
(q) +

(
α− βq

)
U
′
(q)− κq2 U(q) = 0. (5.2.32)

It follows from [118; Formulas 2.1.31 and 2.1.108] that second-order ordinary differential equa-

tion in (5.2.32) admits a general solution U(q) of the form (5.2.1) with

U+(eq) = ekq
2+rq Φ(p, 1/2, z(q)) and U−(eq) = ekq

2+rq Ψ(p, 1/2, z(q)), (5.2.33)

where the constant k solves the quadratic equation 4γ2k2 − 4βk − 2κγ = 0. Here, we denote

p =
γ2r2 + 2αr + 2γ2k

4(2γ2k − β)
, z(q) =

β − 2γ2k

γ2

(
q − αβ

2γ2k − β

)2

, (5.2.34)

where

r = − 2αk

2γ2k − β
, (5.2.35)
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and the functions Φ and Ψ are the Kummer’s and Tricomi’s confluent hypergeometric functions

(see, e.g. [1; Chapter XIII]), respectively. In particular, we have

Φ(x, y, z) =
Γ(y)

Γ(x)Γ(y − x)

∫ 1

0

ezv vx−1(1− v)y−x−1 dv, (5.2.36)

Ψ(x, y, z) =
1

Γ(x)

∫ ∞
0

e−zv vx−1(1 + v)y−x−1 dv, (5.2.37)

for y > x > 0 and z > 0, where Γ is the gamma function.

Example 5.2.2. Let us consider the case of the (mean-reverting) Heston model of stochastic

volatility for (S,Q). In this case, we set σ(q) =
√
q , φ(q) = α−βq , and ψ(q) = γ

√
q , for some

constants α ≥ 0, β , and γ > 0 such that α > γ2/2, so that Q is a Feller square root process

(Cox-Ingersoll-Ross model) with the state space E = (0,∞).

Let us assume that λ2 = 0. Then, the equation in (5.2.5) is given by

γ2q

2
U ′′(q) + (α− βq)U ′(q)− κq U(q) = 0. (5.2.38)

It follows from [118; Formula 2.1.108] that second-order ordinary differential equation in (5.2.38)

admits a general solution U(q) of the form (5.2.1) with

U+(q) = erq Φ(p1, p2, z(q)), U−(q) = erq Ψ(p1, p2, z(q)), (5.2.39)

when p2 6= 0,−1,−2, . . . , and

U+(q) = erq z(q)1−p2 Φ(p1 − p2 + 1, 2− p2, z(q)), (5.2.40)

U−(q) = erq z(q)1−p2 Ψ(p1 − p2 + 1, 2− p2, z(q)), (5.2.41)

when p2 = 0,−1,−2, . . . . Here, we have denoted

p1 =
αr√
D
, p2 =

2α

γ2
, and z(q) = −2

√
Dq

γ2
, (5.2.42)

where

r =

√
D + β

γ2
, D = β2 + 2κγ2, (5.2.43)

and the functions Φ and Ψ are defined as in (5.2.36)-(5.2.37).

Let us now assume that λ2 > 0, η+
2 > 0, and η−2 = 0 holds. Moreover, let us assume that

ψ(q) ≡ 0 holds and denote β = β +K2 . Then, the equation in (5.2.7) takes the form

q(α− βq)G′′(q) +
(
(η+

2 + 1) (α− βq)− κ q2 − λ2 q
)
G′(q)− λ2η

+
2 G(q) = 0. (5.2.44)
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If we additionally assume that α = 0, it follows from [118; Formulas 2.1.139 and 2.1.108] that

the second-order ordinary equation admits the general solution G(q) of the form (5.2.10) with

D3 = 0, where we have

G1(q) = qk erq Φ(p1, p2, z(q)), G2(q) = qk erq Ψ(p1, p2, z(q)), (5.2.45)

when p2 6= 0,−1,−2, . . . , and

G1(q) = qk erq z(q)1−p2 Φ(p1 − p2 + 1, 2− p2, z(q)), (5.2.46)

G2(q) = qk erq z(q)1−p2 Ψ(p1 − p2 + 1, 2− p2, z(q)), (5.2.47)

when p2 = 0,−1,−2, . . . . Here, we denote

p1 =
(−2βk − λ2 − β(η+

2 + 1))r − κk
κ

, p2 =
2βk + λ2 + β(η2 + 1)

β
, z(q) =

κq
β
, (5.2.48)

where

r =
−κ
2β

, −βk2 + (−λ2 − βη+
2 )k − λ2η

+
2 = 0, (5.2.49)

and the functions Φ and Ψ are defined as in (5.2.36)-(5.2.37).

Example 5.2.3. Let us consider the case of the Dothan model of stochastic volatility for

(S,Q). In this case, we set σ(q) = q , φ(q) = βq , and ψ(q) = γq , for some constants β and

γ > 0, so that Q is a geometric Brownian motion with the state space E = (0,∞).

Let us assume that λ2 = 0 holds. Then, the equation in (5.2.5) takes the form

γ2q

2
U ′′(q) + β U ′(q)− κq U(q) = 0. (5.2.50)

It follows from [118; Formula 2.1.108] that the general solution of the second-order ordinary

equation in (5.2.50) is of the form of (5.2.1) with the functions U+(q) and U−(q) satisfying

(5.2.40)-(5.2.41) if p2 is a nonpositive integer, and (5.2.39) otherwise, where we have denoted

p1 =
βr√
D
, p2 =

2β

γ2
, z(q) = −2

√
Dq

γ2
, (5.2.51)

with

r =

√
D

γ2
, D = 2κγ2. (5.2.52)



5.2. Solutions of the boundary value problems 149

Let us now assume that λ2 > 0, η+
2 > 0, and η−2 = 0 holds Moreover, let us assume that

ψ(q) ≡ 0 holds and denote β = β −K2 . Then, the equation in (5.2.7) takes the form

βq2G′′(q) +
(
(η+

2 + 1)β − λ2 − κ q2
)
q G′(q)− λ2η

+
2 G(q) = 0. (5.2.53)

If we additionally assume that β = 0, the equation in (5.2.53) admits an explicit solution which

is of the form of (5.2.10) with D2 = D3 = 0, and the function G1(q) is given by

G1(q) =
(λ2 + κq2

q2

)η+2 /2
. (5.2.54)

Example 5.2.4. Let us finally consider the case of the (two-dimensional) Black-Merton-Scholes

model for (S,Q). In this case, we set σ(q) = 1, φ(q) = βq , and ψ(q) = γq , for some constants

β and γ > 0, so that Q is a geometric Brownian motion with the state space E = (0,∞).

Let us assume that λ2 = 0. Then, the equation in (5.2.5) takes the form

γ2q2

2
U ′′(q) + β q U ′(q)− κ U(q) = 0. (5.2.55)

It follows from [118; Formula 2.1.123] that the general solution of the second-order ordinary

differential equation in (5.2.55) is of the form (5.2.1) with

U+(q) = q(1−p1+2p2)/2, U−(q) = q(1−p1−2p2)/2, (5.2.56)

where we denote

p1 =
2β

γ2
, p2 =

1

2

√
(1− p1)2 + 4κ. (5.2.57)

Let us now assume that λ2 > 0, η+
2 > 0, and η−2 = 0 holds. Moreover, let us assume that

ψ(q) ≡ 0 holds and denote β = β −K2 . Then, the equation in (5.2.7) takes the form

βq2G′′(q) + (η+
2 + 1− κ − λ2) q G′(q)− λ2η

+
2 G(q) = 0. (5.2.58)

It follows from [118; Formula 2.1.123] that the second-order ordinary differential equation ad-

mits the general solution G(q) of the form (5.2.10) with D3 = 0, and the functions G1(q) and

G2(q) satisfying the same equation (5.2.56) as the functions U+(q) and U−(q), respectively,

where we set

p1 =
η+

2 + 1− κ − λ2

β
, p2 = −λ2η

+
2 . (5.2.59)
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5.3. Main result and proof

In this section, taking into account the facts proved above, we formulate and prove the main

results of the paper.

Theorem 5.3.1. Suppose that the coefficients σ(q) > 0, φ(q), and ψ(q) > 0 of the jump-

diffusion process (S,Q) defined by (5.1.1)-(5.1.2) are continuously differentiable functions of

at most linear growth. Then, the generalised transforms V ∗−(s, q; θ−ρ; a) and V ∗+(s, q; θ+ρ; b) in

(5.1.6)-(5.1.7) of the associated with (S,Q) random times τ−a , τ+
b , ζ−g , and ζ+

h from (5.1.4)-

(5.1.5) admit the representations

V ∗−(s, q; a) = V−(s, q; a; g, h) = W ∗
−(s, q; a)U(q; g, h) (5.3.1)

and

V ∗+(s, q; b) = V+(s, q; b; g, h) = W ∗
+(s, q; b)U(q; g, h) (5.3.2)

for all a < s < b and g < q < h, and any 0 < a < b <∞ and 0 < g < h <∞ fixed. Here, the

function U(q; g, h) takes the form of (5.2.3)-(5.2.4) and (5.2.11), and the functions W ∗
−(s, q; a)

and W ∗
+(s, q; b) take the form of (5.2.31).

Since the assertions stated above are proved using essentially similar arguments for all the

cases of ε > 0 and ψ(q) > 0, ε > 0 and ψ(q) = 0, ε = 0 and ψ(q) > 0, and ε = 0 and

ψ(q) = 0, we only give a proof for the case ε > 0 and ψ(q) > 0 in which both processes S and

Q have continuous diffusion parts. Note that the corresponding verification assertions for the

value functions U∗(q) = U(q; g, h) for g < q < h in (5.1.8) and (5.2.3)-(5.2.4), and W ∗
−(s, q; a)

and W ∗
+(s, q; b) for a < s < b in (5.1.9) and (5.2.31) can be proved using the arguments similar

to the ones presented below.

Proof. In order to verify the assertion stated above, it remains to show that the functions defined

in (5.3.1)-(5.3.2) coincides with the value functions in (5.1.6)-(5.1.7). For this purpose, let us

denote by V (s, q) the right-hand side of the expression in (5.3.1) (the case (5.3.2) is analogical).

Then, taking into account the fact that the function V (s, q) is continuous on (0,∞)2 and C2

on (a,∞)× (g, h), by applying the change-of-variable formula for semimartingales with jumps

of bounded variation from [87; Theorem 3.1] to e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧tV (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
),
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we obtain

e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
) (5.3.3)

= V (s, q) +

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

e−2κAu (L(S,Q)V (Su, Qu)− 2κ σ2(Qu)V (Su, Qu)) du+Mt

for all a < s and g < q < h , where the process M = (Mt)t≥0 defined by

Mt =

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

e−2κAu ∂sV (Su, Qu)σ(Qu)Su dB
1
u (5.3.4)

+

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

e−2κAu ∂qV (Su, Qu)ψ(Qu) dB
2
u

+

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

∫
e−2κAu

(
V (Su−e

x, Qu−)− V (Su−, Qu−)
)

(µX − νX)(du, dx)

+

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

∫
e−2κAu

(
V (Su−, Qu−e

y)− V (Su−, Qu−)
)

(µY − νY )(du, dy)

is a local martingale under Ps,q .

By virtue of straightforward calculations and the arguments of the previous section,

it is verified that the function V (s, q) solves the partial (integro-)differential equation in

(5.1.11)+(5.1.14), so that the expression in (5.3.3) takes the form

e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
) = V (s, q) +Mt (5.3.5)

for all a < s and g < q < h . Since the function V (s, q) satisfies the boundary conditions in

(5.1.15)-(5.1.18) and is therefore bounded, it follows from the representation of (5.3.5) that the

process M is a uniformly integrable martingale. Then, taking the expectation with respect to

Ps,q in both sides of the expression in (5.3.5), by means of the optional sampling theorem (see,

e.g. [56; Chapter I, Theorem 1.39]), we get

Es,q
[
e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
)
]

= V (s, q) + Es,qMt = V (s, q) (5.3.6)

for all a < s and g < q < h . Therefore, letting t go to infinity and using the boundary condi-

tions in (5.1.15)-(5.1.18) as well as the fact that e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
) =

0 on {τ−a ∧ ζ−g ∧ ζ+
h = ∞} (Ps,q -a.s.), we can apply the Lebesgue dominated convergence

theorem for the expression in (5.3.6) to obtain the equalities

Es,q

[
e
−2κA

τ−a U∗(Qτ−a
) I(τ−a ≤ ζ−g ∧ ζ+

h ) + e
−2κA

ζ−g W ∗
−(Sζ−g , Qζ−g

; a) I(ζ−g < τ−a ∧ ζ+
h )
]

(5.3.7)

= Es,q
[
e
−2κA

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V (Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
)
]

= V (s, q)

or for all a < s and g < q < h , which directly implies the desired assertion.
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