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Abstract

This thesis consists of three chapters that explore the estimation and identification of networks

from observable outcomes and covariates only. This problem is equivalent to estimating the spatial

neighbouring matrix from a spatial econometric model. Under three settings, I show how the

networks can be recovered entirely from observable non-network data.

In the first chapter, networks are treated as a source of unobserved heterogeneity and dealt with

data collected from observing many groups in one period of time. The proposed method estimates

the probability that pairs of individuals form connections, which may depend on exogenous factors

such as common gender. I derive a maximum likelihood estimator for network effects that is not

conditional on network observation, accomplished with recourse to a spatial econometric model

with unobserved and stochastic networks. I apply the model to estimate network effects in the

context of a program evaluation.

The second chapter assumes the observation of one group over many periods of time and

estimates the networks as a collection of pairwise links. We estimate the spatial neighbouring

matrix with recourse to the Adaptive Lasso. Non-asymptotic Oracle inequalities, together with

the asymptotic sign consistency of the estimators, are presented and proved.

The third chapter shows how the procedure developed in the preceding paper can be used

to classify individuals into groups based on similarity of observed behavior. We propose a Lasso

estimator that captures the block structure of the spatial neighboring matrix. The main results

show that off-diagonal block elements are estimated as zeros with high probability. We correctly

identified US Senate’s blocks based on party affiliation using only voting data.

Empirical research on social and economic networks has been constrained by the limited avail-

ability of data regarding such networks. This collection of papers may therefore provide an useful

tool for applied research.
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Chapter 1

Estimating Network Effects without

Network Data

Abstract. Empirical research on social and economic networks has been con-

strained by the limited availability of data regarding such networks. This paper de-

velops a method that does not rely on network data to estimate network effects. The

proposed method also estimates the probability that pairs of individuals form connec-

tions, which may depend on exogenous factors such as common gender. The method

may incorporate imperfect network data, such as with self-reported data, with the

dual purpose of refining the estimates and testing whether the reported connections

positively affect the probability that a link is formed. To achieve those goals, I derive

a maximum likelihood estimator for network effects that is not conditional on network

observation. Networks are treated as a source of unobserved heterogeneity and dealt

with data collected from observing many groups. This is accomplished with recourse

to a spatial econometric model with unobserved and stochastic networks. I then ap-

ply the model to estimate network effects in the context of a program evaluation. I

demonstrate theoretically and empirically that including network effects has important

implications for policy assessments.1

Keywords: social networks, spillovers, spatial econometrics.

JEL Codes: C21, C49, O12, D85.
1I am very grateful to Javier Hidalgo, Steve Pischke, Robin Burgess and Oriana Bandiera for extensive support

and feedback on this project. I also thank Clare Balboni, Francisco Costa, Jan-Emmanuel De Neve, Samuel Marden,
Priscilla Negreiros, Taisuke Otsu, João Pessoa, Markus Riegler, Munir Squires, Dimitri Szerman, and participants
at Econometric Society European Winter Meeting 2014, 61st North American Meeting of the Regional Science
Association International 2014, LSE Econometrics, Development, Labour and Summer seminars for extremely
helpful comments.
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CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA 10

1.1 Introduction

Personal interconnectedness is an important and pervasive feature of human life. Social and

economic networks enhance learning in classrooms (Angrist and Lang, 2004; Ammermuller and

Pischke, 2009), influence decisions regarding technology adoption (Foster and Rosenzweig, 1995;

Conley and Udry, 2010) and serve as mechanisms for informal contractual enforcement (Ambrus

et al., 2014). In recent years, the many ways in which social networks affect choices and behavior

have been the subject of extensive research (Jackson, 2010). However, incorporating these mecha-

nisms in applied research remains challenging because of the limited availability of network data.

Even when networks are able to be observed, these observations are often imperfect, such as when

data are self-reported or subject to measurement errors.

This paper develops a method for estimating network effects when network data are either

unobserved or imperfectly observed. The method does not rely on network data and derives

network effects using only individuals’ dependent and explanatory variables data. I specifically

propose an estimator that accomplishes three objectives. First, I estimate network spillovers

– the difference between expected outcomes when networks are and are not relevant – without

network data.2 Spillovers also capture the extent to which social networks amplify the effect of

explanatory variables on outcomes (Miguel and Kremer, 2004). Second, I illuminate structural

mechanisms that give rise to network spillovers. I separately identify and estimate Manski’s (1993)

endogenous effects (the dependence of one’s own choices on the choices of others) from exogenous

effects (the dependence of one’s own choices on the exogenous variables of others), controlling for

correlated effects (the similarity of peers in terms of unobservable characteristics).3 The method

also estimates and predicts the probability that pairs of individuals form a connection, which is

allowed to depend on exogenous factors such as common gender. Third, I incorporate imperfect

network data, such as self-reported network data, with the dual purpose of refining the estimates

and providing a test for whether reported connections positively affect the probability that a

connection is formed. Rejection of the null demonstrates self-reported network data validity.

To achieve these goals, I propose a spatial econometric model with unobserved and stochastic

networks that is coupled with a model for random network formation. I derive a likelihood for the

model which is not conditional on network. This likelihood is equivalent to integrating the likeli-

hood conditional on observing the true network with respect to the probability density function
2This is also important because OLS estimates are often inconsistent for individual reaction parameters when

networks are irrelevant if network spillovers are not included in the regression, and the size of inconsistency depends
on the unobserved network.

3Endogenous effects are the autoregressive component of a spatial model. Exogenous effects is exogenous compo-
nent of a spatial model. Correlated effects are captured by fixed effects at the individual level. These are precisely
defined with recourse to the model in Section 1.2. The reflection problem is solved if there are asymmetries in the
expected network (Kelejian and Prucha (1998), Bramoullé et al. (2009) and De Giorgi et al. (2010) explore similar
assumptions when networks are observed) or observation of groups with distinct sizes is available (see also Lee,
2007).
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of the stochastic network4. Observation of data on individuals’ outcomes and explanatory vari-

ables in many self-contained groups, such as classrooms in a school, then provides the identifying

condition to estimate the model that serves as a substitute for network observation. In essence,

networks are treated as a source of unobserved heterogeneity. I allow for time and fixed effects at

the individual or group level when panel data are available and when networks are invariant over

time.

The estimator for network spillovers is consistent and asymptotically normally distributed

under weak identification assumptions because in this case it is not necessary to separately identify

endogenous and exogenous effects. In other words, the parameters of the model are identified up to

a set and, as I will show, the network spillovers are constant if evaluated at a parameter that belongs

to the identified set. Consistency and confidence regions for the structural parameters are provided

making use of the set identification framework.5 To provide point identification for structural

parameters of the model, I explore the difference between observed second moments of the data

and those implied by the model. I utilize the fact that the presence of social interactions creates

dispersion in average outcomes across groups that cannot be explained by independent variables or

peer group heterogeneity alone. Such "excess" variance is explored to build an additional moment

restriction and to solve a Generalized Method of Moments (GMM) problem which also includes

the score conditions implied by the maximizing the likelihood. This completes the requirements

for point identification and consistent estimation of the structural parameters of the model.6

To illustrate how this method can be applied in practice, I employ the estimator developed

herein to investigate treatment effects both on treated and their peers in a setting potentially

conducive to spillovers. The randomized intervention of Bandiera et al. (2013)7 studies the effect

on the treated of the provision of livestock and training to low-income households in Bangladesh

and finds that the lack of capital and skills is a strong determinant of the occupational choices of

the poor. Targeted households begin new livestock-rearing businesses, increase self-employment

hours and reduce wage hours. Due to village-level randomization, a large portion of the individuals

in the selected villages are treated, which raises the possibility that network effects are important

in determining these outcomes, particularly for peers of those who are treated.

Without using network data, I first demonstrate that network spillovers are economically and

statistically significant in determining certain outcomes, especially food expenditure and food

security. In these cases, spillovers amount to half of the original treatment for both treated house-

holds and their peers. Spillovers of occupational choice and livestock are either insignificant or

of a small magnitude. To analyze the structural mechanisms that lead to these results, I then
4Due to computational reasons, I will focus on an alternative to integrating the likelihood, based on substituting

the unknown networks by expected networks
5 Chernozhukov et al. (2007), Bugni (2010) and Romano and Shaikh (2010).
6Graham (2008) uses a similar idea in the context where networks are observed, within the linear-in-means

model.
7I thank the authors for sharing data.
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decompose spillovers into exogenous and endogenous effects. I demonstrate that, regarding occu-

pational choice and assets, a marginal connection to a treated household has an effect in opposite

direction to the effect on the treated: an additional connection decreases self-employment hours,

increases wage hours and decreases livestock value.8 On the other hand, a marginal connection to

the treated increases food per capita expenditure and food security to a significant extent. These

results are consistent with the phenomenon in which peers of treated households partially fill the

vacancies left by those who begin new livestock-rearing businesses and suggests a specialization

at the village level, where treated households gain comparative advantage in livestock rearing.

Estimating the network structure also demonstrates that network densities are fairly low in the

majority of cases, suggesting local interactions via personal contacts as opposed to changes in

prices in village-level markets. Finally, inclusion of self-reported network data indicates that fam-

ily links convey meaningful interactions between households, whereas economic (i.e., non-family)

links are much less capable of explaining these social dynamics. This result thus reinforces the

idea that families are natural loci for sharing information and conducting business.

The methods developed in this paper contribute to the spatial econometrics literature, which

has to date considered estimation only when networks are observed, non-stochastic and measured

without error. The role of randomness in network formation has also received scant attention

in spatial models, despite its importance in social networks (Diestel, 2010). The dependence of

existing methods on acquiring knowledge of true networks has been stressed as a limitation of the

previous literature (Anselin, 2010; Plümper and Neumayer, 2010).9 Representative papers in the

spatial econometrics literature include those by Anselin (1988) and Kelejian and Prucha (1998,

1999, 2001, 2010). Lee (2004, 2007) and Lee et al. (2010) also consider a maximum likelihood

estimator. The case in which networks are not observed is explored in Chapters 2 and 3 of the

current thesis10 and Manresa (2013), who consider the estimation of networks when one group is

observed for many periods of time and, as a consequence, clearly suit different applications. It

is useful to highlight that the latter papers estimate networks as a collection of pairwise links.

In contrast, the current paper is concerned with the probability that a link is formed and the

role of exogenous factors therein. The identification results reported by Manski (1993), Graham

(2008), Bramoullé et al. (2009) and De Giorgi et al. (2010) are also derived under the assumption

that networks are observed. In another strand of the literature, stochastic network formation

models, such as those described by Holland and Leinhardt (1981), Frank and Strauss (1986) and
8The magnitudes of the estimates imply that peers of treated households compensate around 25-30% of the

reduction in treated households’ wage hours due to exogenous effects. Endogenous effects move in opposite direction
reducing the size of the overall spillover effects. Additional details can be found in Section 1.5.

9Plümper and Neumayer (2010) show that misspecification of the networks causes serious bias in parameters of
the model, which should be a particular concern for the study of social interactions, where these issues frequently
appear. Another facet of the same problem emerges in estimation techniques that proposes using peers of peers’
exogenous variables as instruments for one’s own endogenous variable, such as Kelejian and Prucha (1998, 1999),
Bramoullé et al. (2009) and De Giorgi et al. (2010). To the extent that network data suffers from measurement
errors, one risks violating relevance or validity assumptions without awareness.

10See also Lam and Souza (2013, 2014)
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Strauss and Ikeda (1990), also consider the estimation of network structure only when network

observations are available.

Beyond its contribution to the spatial econometric literature, this paper provides a method

for systematically investigating network effects, with potential applications in many fields, such

as peer effects in education (Sacerdote, 2001; Angrist and Lang, 2004; Ammermuller and Pischke,

2009; Bramoullé et al., 2009; De Giorgi et al., 2010), information diffusion and technology adop-

tion (Foster and Rosenzweig, 1995; Bandiera and Rasul, 2006; Conley and Udry, 2010), social

networks and labor outcomes (Rees, 1966; Granovetter, 1973; Montgomery (1991); Conley and

Topa, 2002; Munshi, 2003; Pellizzari, 2004; Calvó-Armengol and Jackson, 2004) and crime and

delinquent behavior (Glaeser et al., 1996; Dell, 2012). In the macroeconomic and trade literature,

these methods can be used to study networks as sources of aggregate fluctuations (Acemoglu et

al., 2012) and to estimate parameters of gravity equations (Anderson and van Wincoop, 2003).

These approaches are particularly relevant when obtaining data on networks is difficult, time-

consuming or expensive, which frequently occurs with social network data because reported links

are frequently subjective and prone to behavioral biases.

The remainder of the paper is structured as follows. In Section 2, I introduce the model, define

network spillovers and illustrate the inconsistencies that arise when networks are not accounted

for. In Section 3, I present the estimator for network effects in the absence of network data and

explore its asymptotic properties. Section 4 provides a simulation to validate the performance

of the estimator in small samples. Section 5 compares the methods in this paper with existing

alternatives for estimating spillovers. It also provides an application to treatment spillovers based

on the study of Bandiera et al. (2013). Section 6 concludes.

1.2 Model

The model consists of two parts: a model for stochastic network formation and, given a network,

a spatial econometric model that connects explanatory variables to outcomes. The former is suf-

ficiently flexible to allow the probability link formation to depend on exogenous characteristics,

such as sharing race or gender or the distance between households.11 This model may also incor-

porate individual-level characteristics that attract links or, conversely, that make an individual

more inclined to form links with others. In this Section, I assume a simple Bernoulli model for

network formation; a full account is provided in Appendix 1.B.12 Given a network, the spatial

econometric model has been extensively considered in the literature, such as by Anselin (1988),

Lee (2004), Bramoullé et al. (2009), Lee et al. (2010) and De Giorgi et al. (2010); however, in
11The model also falls into the Exponential Random Markovian Graphs category. See Holland and Leinhardt

(1981), Frank and Strauss (1986) and Strauss and Ikeda (1990).
12See also Wasserman and Faust (1994) and Jackson (2010).
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contrast to previous papers, I consider the estimation of network effects in the absence of network

data.

I assume that data are available for groups j = 1, . . . , v and individuals i = 1, . . . , nj . Individ-

uals interact within groups with observed boundaries, but data with respect to networks within

groups are not available. For example, information is available on classes that students belong

to but information regarding intra-classroom networks is not available; households are known

to be located in villages, but the researcher does not have information regarding the pattern of

interaction between households.

For each group j, a network is described with a directed graph Gj , an unordered collection of

ordered pairs of individuals among nj individuals. This set lists links along with their associated

directions: {i, k} ∈ Gj implies individual i affects individual k in group j. For example, if

individual 1 affects 2, 2 affects 3 and 3 affects 2, then Gj = {{1, 2}, {2, 3}, {3, 2}}. As noted by

Wasserman and Faust (1994, Ch. 4), Diestel (2010, Ch. 1), Jackson (2010, Ch. 2), Ballobás (2013,

Ch. 1) and others, this representation is quite general. For example, Figure 1.1 portrays estimated

links between United States senators, as described by Lam and Souza (2014), based on their 2013

voting records. It is also convenient to express the graph with a so-called neighboring or spatial

matrix Wj , of nj × nj dimensions, a representation of Gj with {Wj}ik = 1 if {i, k} ∈ Gj and

{Wj}ik = 0 otherwise. It is assumed that no individual affects him or herself; thus {Wj}ii = 0,

for all i ∈ {1, . . . , nj}.13

Network formation is random with a probability law, indexed by parameters of interest θg. I use

a simple model for clarity of explanation only. Suppose a link between individuals is formed with

probability δ1 when the pair shares a characteristic and δ0 otherwise. To write the probability

distribution function, allow nj × nj matrix Qj to register the commonality of this individual

characteristic. If i and k have the same gender, for example, let the elements of the matrix

{Qj}ik = {Qj}ki = 1 and zero otherwise. Matrix Qj could also capture if i self-reported a

connection with k. In these cases, P{{Wj}ik = 1|{Qj}ik} = δ0(1 − {Qj}ik) + δ1{Qj}ik. The

vector of parameters of interest, carried to estimation, is θg = (δ1, δ0)′. Under the assumptions

that link formation is homogenous and independent across pairs of individuals, the probability

distribution function is14

P{Wj = wj |Qj} =
∏

i,k<nj

(δ
{Qj}ik
1 δ

1−{Qj}ik
0 ){wj}ik ·

·((1− δ1){Qj}ik (1− δ0)1−{Qj}ik)1−{wj}ik . (1.1)

Model (1.1) is a simple but arguably truthful representation of situations where differential patterns
13Gj andWj are arrays which depend on the group sizes nj . In order to keep notation concise, I adopt Gj ≡ Gnj ,j

and Wj ≡Wnj ,j .
14This assumption is maintained here only simplicity. In general, link formation may not be independent.
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Figure 1.1: Graph example from Lam and Souza (2014).

Note: Red nodes are Senators that belong to the Republican party, blue are Democrats and white are independents.

of associations dominates coalition or strategic behavior, cases in which independence of link

formation is violated. A classroom divided along gender or racial lines is possibly an example that

satisfies assumption above.

Given a network, it remains to describe a model linking explanatory variables to outcomes.

Denote W 0
j and M0

j as two random and unobserved realizations of a network-generating process,

such as the one introduced above. This network is embedded is a spatial econometric model, which

incorporates dependence of one’s own outcome variable on others’ outcome variables and others’

exogenous variables. For a particular group j = 1, . . . , v composed of nj individuals, the model is

given by

yj = λ0W
0
j yj + xjβ10 +W 0

j xjβ20 + vj (1.2)

where yj is a column vector of dimension nj × 1, xj is nj × k, and vj is the nj × 1 disturbance

vector. Disturbance term vj is assumed to follow a structure that allows for spatial dependence,

vj = ρ0M
0
j vj + εj , where εj is nj × 1, independent and normally distributed with variance σ2

0. As

a particular example, this includes group-level clustering and heteroskedasticity that arises from

heterogeneous exposure to disturbances of others.

In Manski’s (1993) taxonomy, the term W 0
j yj corresponds to the endogenous effects, or the

dependence of one’s own behavior on the behavior of others through link strength scalar parameter

λ0. Parameter β1, of dimension k × 1, captures the direct effect of one’s own exogenous variables
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on one’s own dependent variables. Parameter β2, of the same dimension, describes the effects of

others’ exogenous variables on one’s own dependent variable. Thus, W 0
j xj is denoted as contextual

or exogenous effects. Correlated effects are represented by the error vj = ρ0M
0
j vj + εj and fixed

effects, which I describe in Section 1.3.4. This model is similar to the model in Bramoullé et al.

(2009) and Lee et al. (2010), among other studies, and is known as the "mixed regressive-spatial

autoregressive model" in the spatial econometrics literature (Anselin, 1988). I am then interested

in the estimation of usual spatial parameters θs = (λ0, β
′
10, β

′
20, ρ0, σ

2
0)′ and θg = (δ0, δ1). Hence,

the complete set of structural parameters of interest is θ = (θ′s, θ
′
g)
′.

Dependence of one’s own outcomes on other’s outcomes and exogenous variables often means

that the overall response to exogenous variation exceeds β10. As a consequence, to the extent that

individual network spillovers depend on one’s own exogenous variation, estimators for β10 that

do not account for network spillovers are frequently inconsistent, as I demonstrate immediately

below.

Using the series decomposition15 (Inj −λ0W
0
j )−1 =

∑∞
s=0 λ

s
0(W 0

j )s to obtain the reduced-form

model, the expected outcomes are separated into two components: the individual reaction or

elasticity with respect to xj and its effect through the network,

Eyj = xjβ10 +W 0
j xjβ20 +

∞∑
s=1

(
λ0W

0
j

)s (
xjβ10 +W 0

j xjβ20

)
. (1.3)

The term xjβ10 is understood as the individual-level elasticity with respect to xj if networks were

irrelevant, whereas the second and third terms jointly denote network spillovers, the additional

effect on the mean exclusively due to individual interconnectedness:

ϕ (xj , θ0) ≡ W 0
j xjβ20 +

∞∑
s=1

(
λ0W

0
j

)s (
xjβ10 +W 0

j xjβ20

)
=

∞∑
s=1

λs−1
0

(
W 0
j

)s
xj (λ0β10 + β20) . (1.4)

Clearly, if λ0 = 0 and β20 = 0k×1, or δ1 = δ0 = 0, then ϕ (xj , θ0) = 0. Spillover ϕ(xj , θ0) is a

nj × 1 vector because each individual accrues his or her own spillover.

Separate identification of the individual reaction and network spillovers is relevant in at least

two scenarios. Provided that the ultimate goal is to consistently estimate β10, ϕ (xj , θ0) is a con-

founding factor. As shown in Subsection 1.2.1, when networks are unaccounted for, consistent

estimating β10 requires an underlying network structure such that one’s own network spillovers

are independent of one’s own exogenous variation, a condition that breaks down in simple coun-

terexamples.
15Conditions for existence of this decomposition are derived in Section 1.3.
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Moreover, network spillovers are of interest in their own right, as shown by the plethora of ex-

amples in the literature. Glaeser et al. (1996) argue that social interactions explain petty criminal

behavior very well, but are also of moderate importance in explaining more serious offenses. Hence,

crime prevention policies have indirects effects by reducing of others’ proclivity toward criminal

activity, and the effect’s magnitude then shapes and informs the public policy debate. In another

example, Foster and Rosenzweig (1995) reason that farmers’ decision to adopt high-yielding seed

varieties depends on other farmers’ decisions regarding adoption and their accrued profit; con-

sequently, a single farmer’s adoption decision multiplies itself by inducing others to adopt also.

Finally, note that parameter ϕ (xj , θ) can be explored to optimize treatment effects under a given

budget of resources. To the extent that network spillovers are prevalent and positive, often average

treatment effects can frequently be maximized by concentrating treatment in fewer groups.

Remark 1. Panel or spatiotemporal models can be naturally introduced from equation (1.2). Index

explanatory variables and outcomes at time t = 1, . . . , T and the complete model reads

yjt = λ0W
0
j yjt + xjtβ10 +W 0

j xjtβ20 + αj + γt + vjt (1.5)

where αj is a vector of nj × 1 time-invariant coefficients (but allowed to vary at the group or

individual levels), which are also denoted, following Manski (1993), as correlated effects. The

vector γt represents time effects. Under the invariance of networks with respect to time, I propose

a data transformation that eliminates these nuisance parameters in Subsection 1.3.4. When xjt
is a treatment indicator, model (1.5) can be described as a differences-in-differences estimator

supplemented with a network component. In the absence of network effects (λ0 = 0 and β20 =

0k×1), the model is reduced to a standard differences-in-differences. In this context, the terms

λ0W
0
j and W 0

j xjtβ20 measure the treatment spillovers through the network.

1.2.1 Inconsistency when Networks are Unaccounted for

Equations (1.3) and (1.4) immediately imply that the aggregate group response to a shock is the

sum of one’s own variation in the absence of networks (β10) and network spillovers (ϕ),

yj = xjβ10 + ϕ(xj , θ0) + εj . (1.6)

On the one hand, disentangling the two components provides insights into the mechanisms that

determine the responses to the shock. In particular, the role of networks is separated from the

response in its absence; this construct is useful for example to provide external validity to ran-

domized controlled trials prior to reimplementation in settings in which networks might differ. On

the other hand, the omission of ϕ(xj , θ0) biases OLS estimates when one’s own spillover is not

orthogonal to one’s own shock.
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Consistency for β10 requires that E(ϕ(xj , θ0)|xj) = 0 for all i = 1, . . . , nj , the case in which

the researcher would be oblivious to network spillovers. At the other extreme, only under perfect

correlation between xj and ϕ(xj , θ0) the OLS estimates are consistent for the sum of β10 and full

spillovers. In general, however, independence is not generally attained, failing in particular under

reciprocated networks or correlation between xij and xkj for i 6= k16. In this case, the biasing

term (x′jxj)
−1x′jE(ϕ(xj , θ0)|xj) depends on the network structure, which is unknown; thus, the

size and presence of bias are also unknown. I now provide some examples.

Example 1. (Classrooms and the linear-in-means model). Manski (1993) proposes the linear-in-

means network model in which individuals interact with all others in a given classroom and

W 0
j =


0 1

n−1 · · · 1
n−1

1
n−1 0 · · · 1

n−1
...

...
. . .

...
1

n−1
1

n−1 · · · 0

 =
1

n− 1
ιnι
′
n −

1

n− 1
In

where In is the n×n identity matrix and ιn is the n× 1 vector of ones. Suppose xj is a treatment

dummy and α is the proportion of the individuals in the group that were treated. The expectation

of response conditional on treatment is obtained via the reduced-form model

yj =
(
S0
j

)−1
xjβ10 +

(
S0
j

)−1
W 0
j xjβ20 +

(
S0
j

)−1 (
R0
j

)−1
εj

where S0
j = In−λ0W

0
j , R

0
j = In−ρ0M

0
j , (S0

j )−1 = n−1
n−1+λ0

In+ λ0
(n−1+λ0)(1−λ0) ιnι

′
n and (S0

j )−1W 0
j =

− 1
n−1+λ0

In + 1+λ0
(n−1+λ0)(1−λ0) ιnι

′
n. The expectation of the outcome of individual i in group j,

conditional on not receiving a treatment, is

E [yij |xij = 0] = αn
λ0β10 + (1 + λ0)β20

(n− 1 + λ0) (1− λ0)

and describes the network spillovers to untreated individuals. Conditioned on receiving a treat-

ment,

E [yij |xij = 1] =
(n− 1)β10 − β20

n− 1 + λ0
+ αn

λ0β10 + (1 + λ0)β20

(n− 1 + λ0) (1− λ0)
(1.7)

thus, in general, the population difference E[yij |xij = 1]−E[yij |xij = 0] is approximately β10 for

a typical classroom size, such as n = 25. This result implies that OLS estimates are consistent for

β10 even if oblivious to network spillovers.

Example 2. (Households and local interaction). Households typically interact with few others,
16This type of violation would occur in the case in which individuals who are eligible for a treatment are also

more likely to have other eligible individuals in their social networks. Snowballing a treatment is another clear
example of violation of the no self-spillover condition E(ϕ(xj , θ0)|xj) = 0.
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and relations are generally reciprocated. For the sake of example, suppose a network consists of

isolated subgroups of five households, in which interaction across subgroups is negligible in com-

parison with interactions within. In this setting,W 0
j is a block-diagonal matrix with n

5 blocks17, or

W 0
j = In

5
⊗ (1

4 ι5ι
′
5− 1

4I5). Suppose a proportion α receive a treatment. In contrast to the previous

example, the difference E[yij |xij = 1]− E[yij |xij = 0] is no longer approximately β10, which can

be shown by replacing n = 5 in equation (1.7). As a consequence, OLS estimates are biased for β10

and capture the portion of one’s own spillovers that correlate with one’s own treatment status.

Generally, OLS is only consistent for β10 in particular network structures. When networks

remain unbserved, the implementation of such a strategy depends on hypotheses that rule out

feedback mechanisms. In Section 1.3, I provide a method for consistently estimating ϕ(xj , θ)

under few identifying assumptions that address both motivating elements. The method is based

on a maximum likelihood integrated with respect to unobserved networks, resulting in a likelihood

that is independent of network observation. In essence, I deal with the networks as unobserved

heterogeneity. As will be shown, although the point identification of θ is not obtained without

additional assumptions, spillover ϕ (x, θ) is constant within the identified set and thus point-

identified. Section (1.3.3) uses additional identifying information to sort through the identified set

and reestablish point identification for the structural parameters.

1.3 Estimation of Network Effects

Spatial econometric models dealt with the case of known W0 and M0. Under certain conditions,

including network observation, Lee (2004) and Lee et al. (2010) show consistency and asymptotic

normality of a quasi-maximum likelihood estimator for θs. In this scenario, accounting for network

effects would not pose a challenge. However, these results are of no use ifW0 andM0 are unobserved

or imperfectly observed, such as when there are measurement errors18 or data are self-reported.

Recently, other papers suggested similar approaches to this problem. Hsieh and Lee (2015)19 are

concerned with a social interactions model in which an observed network is formed endogenously

and, for this purpose, propose a bias corrections using a network formation model. In contrast,

the current paper does not assume the observation of the network.

In contrast, I deal with networks as a form of unobserved heterogeneity. Networks are ran-

domly formed with certain probability law, homogenous across groups, and observation of many

groups is available. More formally, I propose an integrated likelihood approach. The likelihood

unconditional on network observation is the integral of the likelihood given a network (from a
17For simplicity, assume n is a multiple of 5.
18Observation of networks with measurement errors constitute a challenge for methods that are, directly or

indirectly, based on network-generated instruments, as validity assumptions are often violated. This is the case of
Kelejian and Prucha (1998, 1999), Bramoullé et al. (2009) and others. Also see Plümper and Neumayer (2010).

19see also Goldsmith-Pinkham and Imbens (2013)
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spatial model soon introduced) with respect to the probability density function for a stochastic

network model:

lnL (θ| yn, xn, Qn) =

∫
lnL (θ| yn, xn,Wn,Mn) dP (Wn,Mn|Qn, xn, θ) (1.8)

where yn = (y′1, . . . , , y
′
v)
′, xn = (x′1, . . . , x

′
v)
′, Wn and Mn are a random block matrix with

W1, . . . ,Wv and M1, . . . ,Mv along the main diagonal. Therefore Wn and Mn have dimension

n × n, n =
∑v

j=1 nj . Likelihood lnL (θ| yn, xn,Wn,Mn) is derived from a spatial model and

for simplicity it is assumed independent of Qn.20 The probability density function of networks,

P (Wn,Mn|Qn, xn, θ), depends on exogenous variables Qn and xn and parameters θ. In this way,

the probability that peers form a link is affected by individual characteristics Qn which do not

directly affect the mean and exogenous variables xn. For example, connections may depend on a

treatment status dummy21.

Since there is a finite number of possible graphs, labelled s = 1, . . . , gnv, with gnv = 2
∑v
j=1 nj(nj−1),

the full likelihood can be exactly approximated by

lnL (θ| yn, xn, Qn) =

gnv∑
s=1

lnL (θ| yn, xn,W s
n)P (W s

n|Qn, xn, θ) . (1.9)

Even for relatively small numbers of nj and v, gnv is an enormous number. Taking v = 5 and

nj = 10 for j = 1, . . . , v, the total of number of graphs gnv exceeds 10135. Therefore, evaluation

of this integral is computationally costly and burdensome.

I propose a modification that implements a computationally efficient estimator. I substitute

W0 and M0 for their expected values22 W e
n (Qn, θ) =

∫
WndP (Wn|Qn, xn, θ) and M e

n (Qn, θ) =∫
MndP (Mn|Qn, xn, θ). Estimation of network spillovers and structural parameters is based on

the likelihood of the model

yj = λW e
j (Qj , θ) yj + xjβ1 +W e

j (Qj , θ)xjβ2 + vej (1.10)

with vej (Qj , θ) = ρM e
j (Qj , θ)vj + εj . The term "pseudo-likelihood" is used to distinguish the

likelihood of this model from the likelihood of the model with known networks.

Model (1.10) is equivalent to the model if networks were observed in addition to mispecification
20This assumption means that characteristics that underpin the network formation do not affect the spatial model

directly, but only via the networks.
21I rule out endogeneity with respect to outcomes yn. This is the topic of a future extension to the current paper.
22For simplicity of explanation, momentarily assuming W 0

j and M0
j are independent, which does not hold for the

rest of the paper.
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terms that are close23 to zero when θ = θ0,

yj = λW 0
j yj + xjβ10 +W 0

j xjβ20 + λ
{
W e
j (Qj , θ)−W 0

j

}
yj

= +
{
W e
j (Qj , θ)−W 0

j

}
xjβ20 + vej . (1.11)

Intuitively, the misspecification terms containing {W e
j (Qj , θ) −W 0

j } are of small relevance when

a large number of groups is observed. This point is best exemplified if group sizes are constant,

condition that is not carried for the remainder of the paper. Under certain conditions, a Law of

Large Numbers ensures that v−1
∑v

j=1W
0
j

p−→ W e
j (Qj , θ). Averaging the model across groups

then implies that misspecification terms are small when v −→∞.

The substitution of true networks for expected networks has two consequences. First, the fact

that model is inherently misspecified implies that the equality between information matrix and

expected hessian does not hold, which will have implications for the expression of the asymptotic

variance. Second, the introduction of expected networks implies that pointwise identification of

parameters θ is generally not achieved. There are multiple combinations of λ, θ and β2 such that

the model (1.10) is observationally equivalent.

Subsections 1.3.1 to 1.3.3 discuss identification in three scenarios. In Subsection 1.3.1, I show

that knowledge of one parameter (I arbitrarily focus the discussion on λ0) restores identification

under the mild additional assumption that there are at least three distinct group sizes. I will show

that variation in group sizes allows me to separately identify endogenous and exogenous effects.24

Knowledge of λ0 separately identifies the case of a weak connections with high probability (low λ,

high δ0 and δ1) from the case of strong connections with low probability (high λ, low δ0 and δ1).

This is then sufficient to fully identify the model.

Subsection 1.3.2 considers the estimation of θ when λ0 is unknown and no additional informa-

tion is provided. In this case, the true parameter θ0 is identified up to a set Θ0. Importantly, I

demonstrate that parameters in the identified set yield network spillovers equal to the spillovers

evaluated at the true parameter. That is, for all θ ∈ Θ0, ϕ(xj , θ) = ϕ(xj , θ0). Hence, network

spillovers are point-identified. I provide the set estimator and confidence regions for the parame-

ters. In the interest of generality, the test for network data validity is also proposed in this context.

I adapt the ideas of Chernozhukov et al. (2007), Romano and Shaikh (2010) and Bugni (2010) to

provide confidence regions for the structural parameter θ.

The problem with unknown λ0 can be analogously interpreted as an under-identified General-

ized Method of Moments (GMM) problem in which moment conditions are given by the score of
23Comparison between likelihood computed with expected network and true networks can be found in Tables

1.F.1 and 1.F.2 in the Appendix.
24As also shown by Lee (2007) for the case in which networks are known. Asymmetries in the network, such as

those considered by Kelejian and Prucha (1998,1999), Bramoullé et al. (2009) and De Giorgi et al. (2010) could
also be used to provide identification. These would in turn require asymmetries in Qn.
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the likelihood. The previous non-identification result manifests itself as the absence of one moment

condition relative to the number of parameters. In Subsection 1.3.3, I then make full use of the

model to obtain one additional moment condition which restores point identification of θ.

Earlier work on identification of social interactions observed that the presence of social interac-

tions generates dispersion of average group outcomes beyond what can be explained by variance of

explanatory variables of peer group heterogeneity alone (Glaeser et al., 1996; Graham, 2008). I im-

plement this idea in the case where networks are unknown. This introduces an additional moment

condition: the difference between observed and model-implied across-group outcome variance.

As I will show, this restores identification. Consistency and asymptotic normality of the GMM

estimator follows. Before proceeding, I formally derive the likelihood.

Define Sej (Qj , θ) ≡ I−λW e
j (Qj , θ), S0

j (λ) ≡ I−λW 0
j , S

0
j ≡ S0

j (λ0), Rej (θ) ≡ I−ρM e
j (Qj , θ),

R0
j (ρ) ≡ I − ρM0

j , R
0
j ≡ R0

j (ρ0), Zej (Qj , θc) = (xj ,W
e
j (Qj , θc)xj) and the block matrices

W 0
n (Qn, θc) = diag(W 0

1 (Q1, θc) , . . . ,W
0
v (Qv, θc)), W e

n (Qn, θc) = diag(W e
1 (Q1, θc) , . . . ,

W e
v (Qv, θc)), M e

n (Qn, θc) = diag(M e
1 (Q1, θc) , . . . , M e

v (Qv, θc)), Sen (Qn, θc) =

diag (Se1 (Q1, θc) , . . . , S
e
v (Q1, θc)), and Zen (Qn, θc) = (Ze

′
1 (Q1, θc) , . . . , Z

e′
v (Qv, θc))

′. Model (1.2)

can be denoted yn = λ0W
0
nyn + xnβ10 + W 0

nxnβ20 + vn, where vn = (v′1, . . . , v
′
v)
′. The pseudo-

likelihood is

lnLen (θ| y, x,Qn) = −n
2

ln
(
2πσ2

)
+ ln |Sen (Qn, θ)|+ ln |Ren (Qn, θ)|

− 1

2σ2
εe
′
n (Qn, θ) ε

e
n (Qn, θ) (1.12)

with εen (Qn, θ) = Ren (Qn, θ) (Sen (Qn, θ) yn − Zen (Qn, θ)β) for β = (β′1, β
′
2)′. Parameters β and

σ2 are concentrated out of the likelihood, simplifying derivations and implementation. Denote

θc = θ \
{
β, σ2

}
the non-concentrated parameters. At each θc, the closed-form solutions for the

concentrated parameters are

β̂ (Qn, θc) = (Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)Z

e
n (Qn, θc))

−1 ·

·Ze′n (Qn, θc)R
e′
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

σ̂2 (Qn, θc) =
1

n
(Sen (Qn, θc) yn − Zen (Qn, θc) β̂ (θc))

′Re
′
n (Qn, θc)R

e
n (Qn, θc) (Sen (Qn, θc) yn

−Zen (Qn, θc) β̂ (θc))

=
1

n
y′nS

e′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

where P en is the projection matrix

P en (Qn, θc) = In −Ren (Qn, θc)Z
e
n (Qn, θc) (Ze

′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)Z

e
n (Qn, θc))

−1 ·

·Ze′n (Qn, θc)R
e′
n (Qn, θc)
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and P en ≡ P e
(
Qn, θ

0
c

)
. The final form for the concentrated pseudo-likelihood brought to maxi-

mization is

lnLcn (θc| yn, xn, Qn) = −n
2

(ln (2π) + 1)− n

2
ln σ̂2 (Qn, θc) + |Sen (Qn, θc)|

+ |Re (Qn, θc)| . (1.13)

The final estimator is θ̂ = (θ̂′c, β̂(θ̂c)
′, σ̂2(θ̂c))

′, where θ̂c ≡ argmaxθ∈Θc lnLcn (θc| yn, xn, Qn). I now

lay formal hypothesis to guarantee asymptotic properties of the estimator.

1.3.1 Pointwise identification of θ when λ0 is known

In this subsection, I present the basic assumptions for consistent estimation and pointwise iden-

tification of the parameters in the model. Identification Assumption 6, required for pointwise

identification of θ, holds only if λ0 is known to the researcher25. Assumptions 1-5 are maintained

throughout the remaining subsections.

The first assumption defines the true model, properties of the networks and homogeneity of the

probability law (P ) that generates (unobserved) networks across groups. The zero main diagonal

is essentially an identification condition and implies that no individual affects him or herself.

The independence of P with respect to β and σ2 allows me to concentrate these parameters, as

described previously, and is taken for simplicity only as results do not depend crucially on it.

Assumption 1. For each group j = 1, . . . , v, data are generated according to the model

yj = λ0W
0
j yj + xjβ10 +W 0

j xjβ20 + vj

with vj = ρ0M
0
j vj + εj and εj ∼ N

(
0, σ2I

)
. The elements of xn and Qn are uniformly bounded

constants. Let matnj ({0, 1}) denote the space of nj-by-nj-by-2 matrices with entries in {0, 1} and
zero main diagonal, let (Ω,F , P ) be a a probability space with F as σ-algebra of subsets of Ω and P

as probability measure. {W 0
j ,M

0
j } is particular realization from a random matrix26, a measurable

map from (Ω,F) to matnj ({0, 1}), with probability distribution function P (Wj ,Mj | θ, xj) with

common functional form across groups. P does not depend on β or σ2.

In some applications, it is customary to conduct a row-sum normalization ofWj , the operation

consisting of replacing Wj by a W ∗j with {W ∗j }ik = {Wj}ik/
∑nj

s=1{Wj}is (Anselin, 1988, Kelejian

and Prucha, 1998, 1999, 2001, 2010, Lee, 2004, 2007, Lee et al., 2010). This implies that all

individuals in the group are affected by and affect others to the same extent: row sums of W ∗j add

25In fact, Assumption 6 holds in the case where one parameter among λ0, β20 and θ0
g is known. For simplicity, I

arbitrarily focus the argument on λ0.
26In fact, {W 0

j ,M
0
j } are arrays and full notation should include respective dimensions, {W 0

nj ,j ,M
0
nj ,j}. This is

suppressed for simplicity.
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to one. This assumption is avoided here on the basis of anecdotal observation that individuals are

generally not homogenous in terms of their connection to others in the group. In classrooms, for

example, some students may be more affected by peers than others. I leave networks to be, more

simply, a collection of binary numbers.

It is well-known that under row-sum normalization condition, |λ0| < 1 suffices for uniform

boundedness of W 0
j and (S0

j )−1, with S0
j ≡ Inj − λ0W

0
j (Anselin, 1988). In the current setting,

I propose the following notion of boundedness: let maxi |λ0
∑n

k=1{W 0
j }ik| ≤ 1, and so no row

multiplied by λ0 in absolute value exceeds one. This includes row-sum normalization as a special

case; for constant row sums W 0
j across rows, λ0

∑n
k=1{W 0

j }ik = λ∗0
∑n

k=1{W ∗0j }ik with λ∗0 =

λ0
∑nj

s=1{Wj}1s. In this case, it is clear that letting W 0
j as a collection of binary numbers and |λ0|

closer to zero is only a normalization option. Formally,

Assumption 2. The sequence of n-by-n realized matrices λ0W
0
n and (S0

n)−1 and expected matrices

λW e
n (Qn, θ) and (Sen(Qn, θ))

−1 are uniformly bounded. W e
n(Qn, θ) exists for all θ ∈ Θ.

The next assumption guarantees yj has an equilibrium and its mean and variance are well

defined.

Assumption 3. S0
j is nonsingular, j = 1, . . . , n.

Asymptotics on v and nj , without any specific order of divergence, is necessary to guarantee

that the misspecification term goes to zero asymptotically and variance terms are consistently

estimated in the limit.

Assumption 4. n→∞ where n =
∑v

j=1 nj.

As a minor technical point, it is only necessary that non-concentrated parameters belong to a

compact parameter set Θc.

Assumption 5. The parameter set Θc is compact and the true parameter θ0
c ∈ Θ0

c .

Next, I lay out the identifications conditions required for point identification of parameters.

The Assumption resembles similar conditions of Bramoullé et al. (2009) and Lee et al. (2010).

Assumption 6. (Identification). λ0 is known, network effects do not cancel out (β20 6= λ0β10),

and xn, W e
n

(
Qn, θ

0
c

)
xn and

(
W e
n

(
Qn, θ

0
c

))2
xn are linearly independent.

It is useful to note that variation in group sizes is often sufficient to assure independence

between xn, W e
n

(
Qn, θ

0
c

)
xn and

(
W e
n

(
Qn, θ

0
c

))2
xn. This is also seen in the subgroup model

of Lee (2007) where individuals are sorted in many groups. In particular, let the probabilistic

model for network formation be the pure Bernoulli, where links are formed with probability δ0,
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independent of exogenous characteristic. ThenW e
j (Qj , θ

0
c ) = δ0(ιnj ι

′
nj −Inj ) and (W e

j (Qj , θ
0
c ))

2 =

δ2
0(nj − 2)(ιnj ι

′
nj + Inj ). With at least three distinct values of nj , independence condition in the

previous Proposition is guaranteed27.

Under the conditions introduced above, I present the basic Theorem. Proofs are found in the

Appendix 1.D.

Theorem 1. Under assumptions 1-6, θ̂ is a consistent estimator for θ0, i.e., θ̂
p−→θ0.

Asymptotic distribution can be obtained from a Taylor expansion around the point
∂ lnLe( θ̂|yn,xn,Qn)

∂θ = 0. For a point θ̃ between θ̂ and θ0,

√
n
(
θ̂ − θ0

)
=

 1

n

∂2 lnLe( θ̃
∣∣∣ yn, xn, Qn)

∂θ∂θ′

−1

1√
n

∂ lnLe (θ0| yn, xn, Qn)

∂θ
. (1.14)

The variance matrix of the score vector is Σn(λ0) ≡ E[ 1√
n
∂ lnLe( θ0|yn,xn,Qn)

∂θ · 1√
n
∂ lnLe( θ0|yn,xn,Qn)

∂θ′ ].

In the limit, θ̂ p−→θ0, which implies θ̃ p−→θ0 and so the Hessian matrix converges to Ωn(λ0) =

E[ 1
n
∂ lnLe( θ0|yn,xn,Qn)

∂θ∂θ′ ]. As the model is inherently misspecified, the Hessian is not equal to the

expected outer product of the gradient. The asymptotic variance-covariance matrix converges

instead to the usual sandwich estimator. That is,

Theorem 2. Under assumptions 1-5,
√
n(θ̂− θ0)

p−→N(0,Σ−1(λ0)Ω(λ0)Σ−1(λ0)), where Σ(λ0) =

limn→∞Σn(λ0) and Ω(λ0) = limn→∞Ωn(λ0).

1.3.2 Set identification of θ when λ0 is unknown

There is one simple way asymptotic independence of the matrices is violated. Any path {λ+, β2+, θ
+
c }

such that W e
n (Qn, θ

+
c )xnβ2+ = W e

n

(
Qn, θ

0
c

)
xnβ20 and λ+W

e
n (Qn, θ

+
c ) =

λ0W
e
n

(
Qn, θ

0
c

)
results in a similar reduced-form, constituting a breakdown of Assumption 6. Pa-

rameters are not individually identified, which is compatible with the difficulty in separately iden-

tifying a large number of weak connections from a small number of strong connections. I now turn

to the problem of estimation and inference on the identified set.

Using assumptions 1-5 only, I employ methods of estimation and inference on set-identified

models of Chernozhukov et al. (2007), Romano and Shaikh (2010) and Bugni (2010) to establish

desired results. The point of departure from classic asymptotic analysis is the observation that

the identified set Θ0 = {θ̃ ∈ Θ : Fn(θ̃) = Fn(θ0)}, for Fn (θ) = E lnLen (θ), and the estimated set

Θ̂ = {θ̃ ∈ Θ : lnLen(θ̃) = infθ∈Θ lnLen (θ)} are not singletons.
27That is, if there are three distinct values of nj , the only conformable vectors c1, c2 and c3 such that xc1 +

δ0(diag(ιn1 ι
′
n1
, . . . , ιnj ι

′
nj
)− In)xc2 + (diag((n1 − 2)ιn1 ι

′
n1
, . . . , (nj − 2)ιnj ι

′
nj
) + In)

2xc3 = 0 are c1 = c2 = c3 = 0.
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In the current case, the identified set is of considerable importance because for any θ ∈ Θ0,

network spillovers are constant and equal to network spillovers evaluated at the true parameter

vector, ϕ (xn, θ0). In order to establish this result, define the subset Φ (θ| yn, xn) ⊆ Θ as the

parameters such that spillovers are equal to ϕ(xn, θ), that is,

Φ (θ| yn, xn) =
{
θ+ ∈ Θ : λ+W

e
n(Qn, θ

+
c ) = λW e

n (Qn, θc) ,

W e
n(Qn, θ

+
c )xnβ

+
2 = W e

n (Qn, θc)xnβ2

}
. (1.15)

The next Proposition states that θ0 belongs to the identified set Θ0 and that it is fully characterized

by the subset of Θ such that spillovers are equal to ϕ(xn, θ0).

Proposition 1. For any θ ∈ Φ(θ0
∣∣ yn, xn), the network spillovers evaluated at θ are equal to net-

work spillovers evaluated at θ0, ϕ (xn, θ) = ϕ (xn, θ0). Also, this is the identified set, Φ(θ0
∣∣ yn, xn) =

Θ0.

The objective then is to produce a sequence of sets such that: (i) in the limit, they are

consistent estimates of Θ0, in a sense that the Hausdorff set distance metric28 dh converges to

zero in probability, and (ii) select a set Θ̂α such that the coverage probability is asymptotically

controlled, that is, limn→∞ P{Θ0 ⊆ Θ̂α}) = 1− α for α ∈ [0, 1].

These objectives can be fulfilled with the definition of contour sets of the rescaled likelihood

Ln (θ| yn, xn, Qn) = −n−1[lnLen (θ| yn, xn, Qn)−infθ∈Θ lnLen (θ| yn, xn, Qn)] and Θ̂ (cn) = {θ ∈ Θ :

Ln (θ| yn, xn, Qn) ≤ cn}. The next Theorem proves that the estimator Θ̂ = Θ̂ (0) is consistent for

Θ0, i.e, dh(Θ̂,Θ0)
p−→0. In fact, this result can be obtained if any sequence cn such that n−1cn

p−→0

is used to produce an alternative estimator Θ̂(cn). For the construction of a set that covers Θ0

with probability α, it is necessary to select cn = ĉn (α) such that Θ̂ (ĉn (α)) possesses the desired

property.

Notice the event {Θ0 ⊆ Θ̂ (cn)} is equivalent to the event {supθ∈Θ0
Ln (θ| yn, xn, Qn) ≤ cn},

and hence, in order to build coverage regions for the identified set Θ0 with predetermined proba-

bility α, it suffices to input a cn = ĉn (α) such that ĉα consistently estimates the α-quantile of the

test statistic supθ∈Θ0
Ln (θ| yn, xn, Qn). That is, for any set K ⊆ Θ, use

ĉn (α) = inf

{
c̃ : P

{
sup
θ∈K

Ln (θ| yn, xn, Qn) ≤ c̃
}
≥ 1− α

}
.

Given the probability is not known, I will use a bootstrap algorithm to produce usable estimates of

ĉn (α). For the moment, assume ĉn (α) is known. The next Theorem shows asymptotic properties
28The Hausdorff set distance metric is defined

dh (A,B) = max

{
sup
a∈A

d (a,B) , sup
b∈B

d (b, A)

}
with d (b, A) = infa∈A‖b− a‖ and dh (A,B) =∞ if A or B are empty.
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of the estimated contour sets Θ̂ (cn) for the various choices of cn.

Theorem 3. Let cn be such that n−1cn
p−→0. (1) Under Assumptions 1-5, if Θ0 6= Θ and Θ com-

pact, Θ0 ⊆ Θ̂ (cn) with probability approaching one, dh(Θ̂ (cn) ,Θ0) = op (1) and dh(Θ̂ (cn) ,Θ0) =

Op(n
− 1

2 ). (2) For c = ĉn (α) consistent estimator of the α-quantile of supθ∈Θ0
Ln (θ| yn, xn, Qn),

limn→∞ P{Θ0 ⊆ Θ̂ (ĉn (α))}) = 1 − α. (3) Given Proposition 1, the network spillover is point-

identified. (4) Point-identification for β10 and σ2
0 is obtained and (β̂1, σ̂

2)
p−→(β10, σ

2
0).

Obtaining confidence regions for known functions of the identified set is important at least in

two circumstances. First, it provides confidence regions for the network spillovers, i.e., confidence

regions for Φ0, the image of Θ0 under the known function ϕ (x, θ) for given θ ∈ Θ0. Second, I will

show it provides a framework for validation of network data, when it is available. I now develop

these points.

Following Romano and Shaikh (2010), in general terms, let f be a known function with

f : Θ → Υ, with Υf
0 being the image of Θ0 under f , and also let f−1 (υ) = {υ ∈ Υ : f (θ) = υ}.

This suggests a modification of the inferential test statistic in the following way: note υ ∈ Υf
0

if, and only if, there exists some θ ∈ f−1 (υ) subject to Qn (θ) = 0, which in turn implies

that infθ∈f−1(υ)Qn (θ) = 0. As before, the objective is to construct a set Υ̂α such that cover-

age probability is 1 − α, i.e., limn→∞ P{Υ0 ⊆ Υ̂α} = 1 − α and, in analogy to the previous

case, this set can be defined by selecting cfn (α) such that the event {Υf
0 ⊆ Υ̂α} is equivalent to

{sup
υ∈Υf0

infθ∈f−1(υ) Ln (θ) ≤ cfn (α)}.

Again, if the α-quantiles of the test statistic sup
υ∈Υf0

infθ∈f−1(υ) Ln (θ) were available, coverage

region with asymptotically controlled error probability α would be obtained directly. Appendix 1.E

details a bootstrap algorithm for obtaining consistent estimates ĉfn (α) of cfn (α). For the moment,

I now describe the two important applications of this procedure for the context of inference on the

network spillovers and network effects.

Remark 2. (Confidence region for network spillovers). The procedure above can be applied directly

replacing function f with known function ϕ (x; θ). In this case, because ϕ (xn; θ) is a function from

Θ to R1, and given Proposition 1 states the network spillovers are constant in the identified set,

the image Υϕ
0 is a scalar in R and the confidence region is actually a confidence interval, a subset

of R1.

Remark 3. (Testing for reported network connections). Introduce reporting of network data with

recourse to matrix Qj , making {Qj}ik = 1 if individual i in group j reports a link with individual k

in the same group, through which it is believed that i affects k. In this case, a reasonable network

model is given by a collection of Bernoulli trials with probability link formation depending on

link observed reports, that is, model (1.1) with Qn as described above. In this setting, structural

parameter δ1 is the the estimated probability given observation of link reports, and δ0 otherwise.
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The null hypothesis of interest is H0 : δ1 − δ0 = 0, with alternative HA : δ1 − δ0 6= 0. In the

setting above, suffices to take f̃ : Θ → R1 as f̃ (θ) = δ1 − δ0 and build appropriate confidence

intervals.

1.3.3 Pointwise identification when λ0 is unknown using outcome dispersion

In the previous subsection, I showed that parameters of interest are identified up to a set and

network spillovers are constant within the identified set. A theoretically feasible restriction to

fully identify the model is to assume λ0 is known: under certain conditions, Theorem 1 proves

consistency. Nevertheless, this assumption is unlikely to be satisfied in practice, as λ0 is rarely

observed. In this Section, I increment the problem with one additional restriction which restores

point identification, selecting a parameter in the identified set.

This restriction is derived from matching the observed to the model-implied variance of the

group-average outcome. The intuition is straightforward. When social interactions are not present,

sufficiently large group sizes implies that group averages should be relatively close to population

averages conditional on observables. Introduction of social interactions affects dispersion in the fol-

lowing way. Since individuals mirror the choices of the others, outcomes within a group positively

correlate. In other words, a positive shock to the group affects individuals not only through indi-

vidual decision, but also through peer composition. As a consequence, average of group outcome

increases to greater extent than in the counterfactual in which social interactions are irrelevant. A

similar reasoning applies to a bad shock. It follows that average outcome across groups are more

disperse relative to the case in which social interactions are irrelevant.

It has been observed elsewhere29 that group outcomes are substantially dispersed across groups

even when similar along observable characteristics. This anecdotal observation has been denoted

as "excess variance" and used to provide identification when networks are known (Graham, 2008).

Other papers have contributed to identification using covariance restrictions in the context of social

interactions, such as in the survey paper by Blume et al. (2011, p. 872) and references therein.

Since network formation depends on a model described in Section 1.2, the dispersion across

groups provides a restriction that includes link strength, probability of link formation and depen-

dence on exogenous characteristics of the others. The relation is usually non-linear and I will show

it is sufficient to provide identification. The main idea is that, accounting for variance originating

from explanatory variables and the individual or group heterogeneity, the remaining variance can

only be explained by social interactions and pattern of association therein. Define, from the outset,

the within and between group variance,

VW,j(yn) = n−1
j

nj∑
i=1

(yij − ȳj)2 ; VB,j(yn) = (ȳj − ȳ)2

29Hanushek (1971), Rivkin et al. (2005), Glaeser et al. (1996).
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where ȳj = n−1
j

∑nj
i=1 yij and ȳ = v−1

∑v
j=1 ȳj . It is useful to derive the expectation of these

quantities in terms of the variance of outcomes as predicted by the model. Then, EVW,j(y) =

n−1
j

∑nj
i=1 [V(yj)]ii and EVB,j (y) = n−2

j ι′njV(yj)ιnj . From the reduced-form of model (1.2), the

covariance matrix of outcomes for group j is given by30

V(yj) = E(sjxjβ10β
′
10x
′
js
′
j + 2s∗jxjβ10β

′
20x
′
js
′
j + s∗jxjβ20β

′
20x
′
js
∗′
j )

+E((S0
j )−1εjε

′
j(S

0
j )−1′) (1.16)

for sj = (S0
j )−1 − E((S0

j )−1) and s∗j = (S0
j )−1W 0

j − E((S0
j )−1W 0

j ). In absence of networks, sj =

Inj and s∗j = 0nj×nj and, therefore, outcome variance is increased when social interactions are

considered. As pointed out above, in applications it is usually the case that the latter is larger

than the former in the positive semi-definite sense although the reverse relation is theoretically

possible for certain parameters. The distance between variances VB,j and VW,j and their theoretical

expected counterparts as implied by the model, EVB,j(yn) and EVW,j(yn), is used to distinguish

between competing parameters that belong to the identified set. Given VB,j and VW,j are observed

from data, we only need to generate predictions from the model (1.16). Naturally, this strategy

depends on the theoretical calculation of V(yj), which are often difficult to evaluate analytically

but straightforward to compute. I now introduce one particular example where identification is

throughoutly proven only with between-variance of outcomes.

Example 3. (Bernoulli network model). In a simple setting where link formation is independent

and equal to δ1, I conduct a Series Expansion and take a first-order approximation. That is,

(S0
j )−1 − E(S0

j )−1 = λ0(W 0
j − EW 0

j ) + · · · which is approximately λ0(W 0
j − EW 0

j ) as remaining

terms decay in exponential rates. Using independence of the Bernoulli trials that generate links,

equation (1.16) simplifies to

V {yj} = diag
(
V {Wj}

(
λ2diag

(
x11
j

)
+ 2λdiag

(
x12
j

)
+ diag

(
x22
j

)
+ λ2σ2ιnj

))
+ σ2Inj(1.17)

where V{W 0
j } is the variance of W 0

j , x
11
j = diag(xjβ10β

′
10x
′
j), x

12
j = diag(xjβ10β

′
20x
′
j) and x22

j =

diag(xjβ20β
′
20x
′
j) extracts the main diagonal of a matrix into a column vector or vice-versa, as

appropriate. Off-diagonal terms are zero. In the Bernoulli model without dependence on exogenous

characteristics, V{Wj} = δ1(1− δ1)ιnj ι
′
nj and, in this case,

V {yj} = diag
(
δ1(1− δ1)ιnj ι

′
nj

(
λ2diag

(
x11
j

)
+ 2λdiag

(
x12
j

)
+ diag

(
x22
j

)
+ λ2σ2ιnj

))
+σ2Inj

= δ1(1− δ1)
(
λ2ι′njdiag

(
x11
j

)
+ 2λι′njdiag

(
x12
j

)
+ diag

(
x22
j

)
+ njλ

2σ2
)
Inj + σ2Inj

30For the panel data with fixed effects, proceed as described in Subsection 1.3.4. In this Section, for simplicity I
assume ρ0 = 0. This is not substantial as all results are maintained in the more general case.
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and the between-group variance is

VB,j = n−1
j δ1 (1− δ1)

(
λ2ι′njdiag

(
x11
j

)
+ 2λι′njdiag

(
x12
j

)
+ ι′njdiag

(
x22
j

)
+ njλ

2σ2
)

+ n−1
j σ2.

This provides the additional restriction required for the identification of θ. Formally, the Jacobian

of the matrix formed by stacking restrictions, including those originating from reduced-form esti-

mation, has full rank, and then Theorem 6 of Rothenberg (1971, p. 585) is applied. Proofs can

be found in Appendix 1.D.8.

The approach suggests a Genaralized Method of Moments estimator with moment conditions

given by q1,j(yj , xj , θ) = EVB,j(yj , xj , θ) − VB,j(yj , xj , θ) and q2,j(yj , xj , θ) =

EVW,j(yj , xj , θ)− VW,j(yj , xj , θ) minimized on the estimated set Θ̂,

θ̂ = argmin
θ∈Θ̂

 v∑
j=1

qj(yj , xj , θ)

′Ω
 v∑
j=1

qj(yj , xj , θ)


where qj(yj , xj , θ) = [q1,j(yj , xj , θ), q2,j(yj , xj , θ)]

′ and 2×2 weight matrix Ω. It is equally possible

to estimate the same GMM problem on the unrestricted parameter set Θ and introduce score

conditions given by the solution of the pseudo-likelihood and assigning arbitrarily large weights

to them. Unfortunately, the expected variances are generally difficult to compute. Even in simple

examples, one has to rely on very crude approximations of to obtain the expectation of (S0
j )−1.

Next, I outline a general procedure for simulating the moment conditions (Gouriéroux and Monfort,

1997) and prove the desired asymptotic properties, including consistency for θ̂. The final estimator

is the solution to

θ̂ = argmin
θ∈Θ̂

 v∑
j=1

S−1
S∑
s=1

qs,j(yj , xj , θ)

′ Ω
 v∑
j=1

S−1
S∑
s=1

qs,j(yj , xj , θ)

 (1.18)

where qs,j(yj , xj , θ) = [VB,j(yj , xj , θ)− VB,j(ŷj,s, xj , θ);VW,j(yj , xj , θ)− VB,j(ŷj,s, xj , θ)] with ŷj,s =

(Ssj )
−1(xjβ1 +W s

j xjβ2+esj), S
s
j = (Inj−λW s

j )−1,W s
j sampled from the distribution of the network-

generating model with parameters θ and εsj is sampled from a normal distribution with variance

σ2. If the simulator is unbiased, one can expect that S−1
∑S

s=1 qs,j(yj)
p−→qj(yj) as S −→ ∞

and asymptotic properties follow. In addition, given Θ̂ is
√
n-consistent for Θ0 on the Hausdorff

metric, one might expect minimizing on the set Θ̂ is asymptotically equivalent to minimizing on

the identified set Θ0.

Theorem 4. If parameters are identified, (i) estimator (1.18), minimized on the estimated set

Θ̂, as defined in Section 1.3.2, is consistent for θ0, θ̂
p−→θ0, and (ii) if S → ∞ sufficiently

fast,
√
n(θ̂ − θ0)

d−→N(0,Σ∗), where Σ∗ = (G′ (Ω∗)−1G)−1, G = E∇θqn(yn, xn, θ0) and Ω∗ =

(Eqn(yn, xn, θ0)qn(yn, xn, θ0)′)−1 with optimal choice of weight matrix Ω∗ and qn(yn, xn, θ0) =
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∑v
j=1 qj(yj , xj , θ0).

1.3.4 Fixed and Time Effects

In this subsection, I propose a data transformation to eliminate fixed effects, along with corre-

sponding treatment of the variance-covariance matrix induced by this transformation. This is

of considerable importance given that explanatory variables xj may correlate with unobserved

components that vary at the group or individual-level, for example an unobserved "good teacher"

shock in a classroom or unobserved peer characteristic that may affect learning.

Bramoullé et al. (2009) and Lee (2007) propose eliminating fixed effects subtracting average

of connected peers (local differencing) or average of all individuals in a group in a given time

period, regardless of connection status (global differencing). Neither approach is available in the

current setting: by definition of the problem in the current paper, networks are unobserved, and

hence local differencing is not defined. Yet, global differencing cannot be applied in the absence

of row-sum normalization. Group fixed effects with the row-sum normalization condition implies

that all individuals are affected to the same degree by network spillovers originating for them.

When the row-sum normalization condition is removed, heterogeneity of individual responses to

fixed effects through networks implies that no data manipulation possibly removes them in the

absence of network observation.

For this purpose, I introduce time dimension and time-difference data in order to remove fixed

effects. This approach also has the advantage of allowing for individual fixed effects. Let the

spatio-temporal model be, for t = 1, . . . , T ,

yjt = λWjyjt + xjtβ1 +Wjxjtβ2 + αj + γt + vjt (1.19)

where vjt = ρMjvjt + εjt. Here, αj represents a nj × 1 vector of individual or group fixed effects,

or both. In the classical fixed effects case, αj is allowed to vary over individuals; the group effect

case is when αj = α̇jιnj , with constant scalar α̇j throughout individuals in group j and does not

vary over time. Notation is left sufficiently general to incorporate both cases. Group effects, in

Manski’s (1993) terminology, are denominated correlated effects.

Define ẏjt = yjt − ȳj·, ȳj· = T−1
∑T

t=1 yjt , ẋjt = xjt − x̄j·, x̄j· = T−1
∑T

t=1 xjt, γ̄t = γt − γ̇·
and γ̄· = T−1

∑T
t=1 γt. The transformed model is

ẏjt = λWj ẏjt + ẋjtβ1 +Wj ẋjtβ2 + γ̇t + v̇jt. (1.20)

which is a consequence of (1.19) because the time-differencedWjyjt is equal toWj ẏjt, and similarly

for the Wj ẋjtβ, under the hypothesis of invariance of the network over time. Explicitly, the k-th
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line of the time-differenced Wjyjt is

nj∑
i=1

{Wj}ki {yjt}i − T
−1

T∑
t=1

nj∑
i=1

{Wj}ki {yjt}i =

nj∑
i=1

{Wj}ki
(
{yjt}i − {ȳj·}i

)
(1.21)

Letting ẏnT = (ẏ′11, . . . ẏ
′
1T , . . . , ẏ

′
v1, . . . , ẏ

′
vT )′ and ẋnT = (ẋ′11, . . . , ẋ

′
1T , . . . , ẋ

′
v1, . . . , ẋ

′
vT )′, and sim-

ilarly for v̇ and γ̇, the full model can be rewritten ẏnT = λWnT ẏnT +ẋnTβ1+WnT ẋnTβ2+γ̇T + v̇nT ,

where WnT = diag {IT ⊗W1, . . . , IT ⊗Wv}. Remaining matrices are defined in a similar way

and carry the subscript nT for clarity. The variance-covariance matrix of v̇nT is E (v̇nT v̇
′
nT ) =

σ2
0(R0

nT )−1Σ̇nT (R0′
nT )−1, where Σ̇nT = σ2

0InT − σ2
0T
−1 · diag(ιT ι

′
T ⊗ In1 , . . . , ιT ι

′
T ⊗ Inv). This

more complicated form recognizes the dependence in v̇nT introduced by time-average subtraction.

Finally, likelihood (1.12) is adjusted to

lnLenT (θ| ynT , xnT , QnT ) = −nT
2

ln
(
2πσ2

)
+ ln |SenT (QnT , θ)|+ ln |RenT (QnT , θ)|

− 1

2σ2
εenT (QnT , θ)

′ Σ̇nT ε
e
nT (QnT , θ) (1.22)

where εenT (QnT , θ) = RenT (QnT , θ) (ẏnT − λW e
nT (QnT , θ) ẏnT − ẋnTβ1 − W e

nT (QnT , θ) ẋnTβ2 −
γ̇) = RenT (QnT , θ) (SenT (QnT , θ) ẏnT−ŻenT (QnT , θ) β̃) and ŻenT (QnT , θ) now also incorporate time

effects: Żejt (Qj , θ) = (xjt, W
e
j (Qj , θ)xjt,1 {t = 1} ιnj , . . . ,1 {t = T} ιnj ) and β̃ = (β′, γ1, . . . , γT )′.

In fact, any variable not subject to exogenous effects can be incorporated by adding columns to

Żejt(QnT , θ). The concentrators are now

ˆ̃
β (QnT , θ) = (Ze

′
nT (QnT , θ) Σ̈nTZ

e
nT (QnT , θ))

−1Ze
′
nT (QnT , θ) Σ̈nTS

e
nT (QnT , θ) ynT

ˆ̃σ2 (QnT , θ) =
1

n
(SenT (QnT , θ) y − ZenT (QnT , θ)

ˆ̃
β)Σ̈nT (SenT (QnT , θ) ynT − ZenT (QnT , θ)

ˆ̃
β)

where Σ̈nT = Re
′
nT (QnT , θ) Σ̇nTR

e
nT (QnT , θ). Concentrated likelihood (1.12) remains unchanged

with σ̂2(QnT , θ) substituted for ˆ̃σ2(QnT , θ). Preceding theorems are applied with obvious modifi-

cations.

1.4 Simulations and Implementation

In this Section, I conduct a simulation exercise to demonstrate the small-sample empirical proper-

ties of the estimator. MATLAB codes are available upon request31. The algorithms are presented

in Appendix 1.E.

Four simulations sets are performed: purely cross-sectional model (1.2), under T = 1 and

absence of fixed effects; the panel (1.5) with T = 5 and fixed effects but no time effects; with

time effects but no fixed effects; and, finally, with both time and fixed effects. Sample sizes are
31STATA codes will soon be available.
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(n = 25, v = 250), (n = 100, v = 250), (n = 25, v = 1000) and (n = 100, v = 1000). Simulations

with smaller n and v can be found in Appendix 1.F.1. In every case, I allow for heterogeneity in

group sizes, by sampling nj from a standard normal distribution with mean n and standard error

5, rounded to the nearest integer.

True parameters are θs = (0.0125, 1, 1, 0.04, 0.04, 1)′ and θg = (0.75, 0.30)′ . In a row-normalized

model and with this combination of parameters, λ = 0.0125 would roughly correspond to an au-

toregressive parameter of 0.16 for n = 25, 0.32 for n = 50 and 0.65 for n = 75. The probability

of common exogenous characteristic is 50%. That is, P {{Qj}ik = 1} = 0.5 and zero otherwise.

Finally, x and ε are drawn from a normal distribution with mean 0 and variance 1. The simu-

lation is composed of 500 repetitions.32 The average of the estimated standard errors, following

the procedure outlined in 1.3.2, is shown in parentheses, while standard deviations of the point

estimates computed across replications is shown in square brackets. Simulations are conducted in

the absence of information on λ0.

Simulated results are largely satisfactory in all cases. Convergence to spatial parameters and

those that underpin the randomness in networks, is observed, even with small n = 25 and v = 25.

Moreover, the network spillover is correctly estimated. In Table 1.F.3 of Appendix 1.F.1, I show

that OLS estimates would be inconsistent at averages β̂OLS = 1.0670 for n = 25 and β̂OLS = 1.1127

for n = 50. This bias is eliminated with the proposed method. Introduction of time dimension and

fixed effects do not change the results, despite the fact that estimates of σ2 now take into account

that cross-section and time variation has been eliminated as the consequence of data transformation

(Subsection 1.3.4). For the case without time and fixed effects, estimates of disturbance variance

is, in most cases, larger than the true value, but this is expected as it captures the misspecification

component due to the fact that the observed model is considered under expected networks –

naturally different from the true networks. It is also noteworthy that estimated standard errors

are very close in most cases to standard errors of point estimates across iterations, demonstrating

good performance of the hypothesis testing procedure.

I also show results on three additional cases in Appendix 1.F.1. Tables 1.F.4 and 1.F.5 shows

the performance of the estimator with very low sample sizes. It shows that even with small samples

up to n = 25 and v = 50, estimates are acceptably close to true parameters and confidence intervals

are correctly estimated. Then, I introduce across-group connections by randomly assigning value

1 to off-block elements of matrix W 0
j with probability δA. Although not explicitly incorporated

in theory, it is shown that a small amount of violation from the isolated-group assumption does

not deteriorate empirical performance of the estimator. Performance was good up to δA = 0.05 or

δA = 0.075. Finally I conduct estimation and hypothesis testing when λ0 is known but misspecified,

shown in Table 1.F.7 of Appendix 1.F.1. I assume incorrectly λ = 0.0250, twice the true value.
32Using a MacBook Pro 13”, Core i7, Early 2013 specification, the average computing time was <1 minute for

(n = 25, v = 250) and around 5 minutes for (n = 100, v = 1000).
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As expected, I observe halved δ̂1 and δ̂0 and β̂2 estimated twice the true parameter. Associated

standard errors followed the same expected pattern.

I also implement the multivariate network model described in example 4 of Subsection 1.B,

where probability of link formation is described by

P {{Wj}ik = 1|Qj} = Q1
jikδ1 +Q0

jikδ0

where Q1
jik is the distance between individuals i and k who belong to group j, and respectively

for Q0
jik. Distances are sampled independently from a uniform distribution between −2.5 and 2.5,

and probabilities are cut such they do not exceed 1 or fall below 0. True values are δ1 = 0.25 and

δ0 = 0.50, and remaining parameters remain unchanged from previous setting. Results are shown

in Table 1.F.8 of Appendix 1.F.1 and are also satisfactory with convergence to true parameters

and standard errors also being observed at small values of n and v. Estimation of λ using second

moments is also satisfactory.



T
ab

le
1.
1:

Si
m
ul
at
io
ns
.

T
=

1.
T

=
5,

fix
ed

eff
ec
ts
.

(1
)

(2
)

(3
)

(4
)

(1
)

(2
)

(3
)

(4
)

n
25

10
0

25
10
0

25
10
0

25
10
0

v
25
0

25
0

10
00

10
00

25
0

25
0

10
00

10
00

λ̂

0.
01

17
0.
01

22
0.
01

26
0.
01

19
0.
01

19
0.
01

20
0.
01

18
0.
01

19
(0
.0
0
2
)

(0
.0
0
6
)

(0
.0
0
2
)

(0
.0
0
1
)

(0
.0
0
4
)

(0
.0
0
1
)

(0
.0
0
1
)

(0
.0
0
0
)

[0
.0
0
2
]

[0
.0
0
5
]

[0
.0
0
2
]

[0
.0
0
1
]

[0
.0
0
3
]

[0
.0
0
1
]

[0
.0
0
0
]

[0
.0
0
0
]

β̂
1

0.
99

99
1.
00

01
0.
99

98
0.
99

99
1.
00

06
1.
00

00
1.
00

02
0.
99

99
(0
.0
0
9
)

(0
.0
0
5
)

(0
.0
0
5
)

(0
.0
0
3
)

(0
.0
0
4
)

(0
.0
0
3
)

(0
.0
0
2
)

(0
.0
0
1
)

[0
.0
0
9
]

[0
.0
0
5
]

[0
.0
0
5
]

[0
.0
0
3
]

[0
.0
0
4
]

[0
.0
0
2
]

[0
.0
0
2
]

[0
.0
0
1
]

β̂
2

0.
04

61
0.
04

02
0.
04

00
0.
04

01
0.
04

28
0.
03

98
0.
04

08
0.
04

00
(0
.0
1
8
)

(0
.0
0
3
)

(0
.0
0
8
)

(0
.0
0
1
)

(0
.0
0
8
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
1
)

[0
.0
1
8
]

[0
.0
0
3
]

[0
.0
0
6
]

[0
.0
0
2
]

[0
.0
0
7
]

[0
.0
0
1
]

[0
.0
0
3
]

[0
.0
0
1
]

δ̂ 1

0.
71

66
0.
74

97
0.
76

05
0.
74

92
0.
72

47
0.
75

10
0.
73

89
0.
74

99
(0
.1
6
4
)

(0
.0
2
4
)

(0
.0
9
7
)

(0
.0
1
2
)

(0
.0
8
5
)

(0
.0
1
2
)

(0
.0
3
1
)

(0
.0
0
4
)

[0
.1
6
2
]

[0
.0
2
5
]

[0
.0
8
1
]

[0
.0
1
3
]

[0
.0
7
3
]

[0
.0
1
1
]

[0
.0
3
6
]

[0
.0
0
6
]

δ̂ 0

0.
28

92
0.
29

95
0.
30

15
0.
29

92
0.
29

18
0.
30

10
0.
29

66
0.
30

02
(0
.0
6
2
)

(0
.0
0
7
)

(0
.0
3
1
)

(0
.0
0
4
)

(0
.0
3
2
)

(0
.0
0
3
)

(0
.0
1
5
)

(0
.0
0
2
)

[0
.0
6
3
]

[0
.0
0
7
]

[0
.0
3
0
]

[0
.0
0
4
]

[0
.0
2
7
]

[0
.0
0
3
]

[0
.0
1
4
]

[0
.0
0
2
]

σ̂
2

1.
05

71
1.
21

99
1.
05

47
1.
22

28
0.
84

21
0.
97

78
0.
84

51
0.
97

74
(0
.0
1
8
)

(0
.0
0
3
)

(0
.0
0
8
)

(0
.0
0
2
)

(0
.0
0
8
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
1
)

[0
.0
1
9
]

[0
.0
1
1
]

[0
.0
0
9
]

[0
.0
0
6
]

[0
.0
0
7
]

[0
.0
0
4
]

[0
.0
0
3
]

[0
.0
0
2
]

-0
.0
00

7
0.
01

37
0.
00

07
-0
.0
09

9
0.
00

08
-0
.0
09

6
0.
00

05
0.
00

20
ϕ

(x
,θ̂

)
(0
.0
2
3
)

(0
.0
9
2
)

(0
.0
0
8
)

(0
.0
4
8
)

(0
.0
0
9
)

(0
.0
5
0
)

(0
.0
0
6
)

(0
.0
2
0
)

[0
.0
0
6
]

[0
.0
0
7
]

[0
.0
0
1
]

[0
.0
0
2
]

[0
.0
0
1
]

[0
.0
0
1
]

[0
.0
0
0
]

[0
.0
0
0
]

N
ot
e:

T
ru
e
pa

ra
m
et
er
s
ar
e
β

1
=

1
,
β

2
=

0
.0

4
,
δ 1

=
0
.7

5
,
δ 0

=
0
.3

0
,
σ

2
=

1
an

d
ϕ

(x
,θ

)
=

0
.
λ

=
0
.0

1
2
5
.

St
an

da
rd

er
ro
r
in

ro
un

d
br
ac
ke
ts
.
St
an

da
rd

er
ro
r
ac
ro
ss

it
er
at
io
ns

in
sq
ua

re
br
ac
ke
ts
.



T
ab

le
1.
2:

Si
m
ul
at
io
ns
.

T
=

5,
ti
m
e
eff

ec
ts
.

T
=

5,
ti
m
e
an

d
fix

ed
eff

ec
ts
.

(1
)

(2
)

(3
)

(4
)

(1
)

(2
)

(3
)

(4
)

n
25

10
0

25
10
0

25
10
0

25
10
0

v
25
0

25
0

10
00

10
00

25
0

25
0

10
00

10
00

λ̂

0.
01

21
0.
01

19
0.
01
23

0.
01

18
0.
01

32
0.
01

21
0.
01

20
0.
01

17
(0
.0
0
6
)

(0
.0
0
5
)

(0
.0
0
2
)

(0
.0
0
0
)

(0
.0
0
2
)

(0
.0
0
5
)

(0
.0
0
6
)

(0
.0
0
1
)

[0
.0
0
5
]

[0
.0
0
5
]

[0
.0
0
1
]

[0
.0
0
0
]

[0
.0
0
2
]

[0
.0
0
5
]

[0
.0
0
5
]

[0
.0
0
1
]

β̂
1

1.
00

01
0.
99

96
0.
99

95
0.
99

99
1.
00

05
0.
99

98
1.
00

00
1.
00

02
(0
.0
0
4
)

(0
.0
0
2
)

(0
.0
0
2
)

(0
.0
0
1
)

(0
.0
0
5
)

(0
.0
0
2
)

(0
.0
0
2
)

(0
.0
0
1
)

[0
.0
0
4
]

[0
.0
0
2
]

[0
.0
0
2
]

[0
.0
0
1
]

[0
.0
0
4
]

[0
.0
0
2
]

[0
.0
0
2
]

[0
.0
0
1
]

β̂
2

0.
04

13
0.
04

00
0.
03

96
0.
04

02
0.
04

11
0.
03

99
0.
04

03
0.
04

02
(0
.0
0
7
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
7
)

(0
.0
0
2
)

(0
.0
0
4
)

(0
.0
0
1
)

[0
.0
0
6
]

[0
.0
0
1
]

[0
.0
0
3
]

[0
.0
0
1
]

[0
.0
0
6
]

[0
.0
0
1
]

[0
.0
0
3
]

[0
.0
0
1
]

δ̂ 1

0.
73

87
0.
75

08
0.
75

88
0.
74

86
0.
74

45
0.
75

24
0.
74

79
0.
74

83
(0
.0
7
0
)

(0
.0
0
9
)

(0
.0
3
4
)

(0
.0
0
7
)

(0
.0
7
4
)

(0
.0
1
3
)

(0
.0
4
6
)

(0
.0
0
6
)

[0
.0
7
1
]

[0
.0
1
1
]

[0
.0
3
6
]

[0
.0
0
6
]

[0
.0
7
1
]

[0
.0
1
1
]

[0
.0
4
7
]

[0
.0
0
6
]

δ̂ 0

0.
29

58
0.
29

92
0.
30

18
0.
30

03
0.
29

80
0.
29

82
0.
29

69
0.
30

08
(0
.0
2
8
)

(0
.0
0
4
)

(0
.0
1
4
)

(0
.0
0
2
)

(0
.0
2
9
)

(0
.0
0
5
)

(0
.0
1
7
)

(0
.0
0
2
)

[0
.0
2
7
]

[0
.0
0
3
]

[0
.0
1
3
]

[0
.0
0
2
]

[0
.0
2
7
]

[0
.0
0
3
]

[0
.0
1
5
]

[0
.0
0
2
]

σ̂
2

0.
01

14
0.
01

95
0.
01

10
0.
06

03
0.
04

23
0.
00

29
0.
00

02
0.
00

19
(0
.0
0
7
)

(0
.0
0
1
)

(0
.0
0
3
)

(0
.0
0
1
)

(0
.0
0
7
)

(0
.0
0
2
)

(0
.0
0
5
)

(0
.0
0
1
)

[0
.0
1
4
]

[0
.0
0
8
]

[0
.0
0
7
]

[0
.0
0
1
]

[0
.0
1
2
]

[0
.0
0
3
]

[0
.0
0
7
]

[0
.0
0
1
]

0.
00

05
-0
.0
05

0
0.
00

11
0.
00

36
0.
00

12
0.
00

82
-0
.0
00
2

0.
00

03
ϕ

(x
,θ̂

)
(0
.0
0
9
)

(0
.0
3
9
)

(0
.0
0
5
)

(0
.0
1
6
)

(0
.0
0
8
)

(0
.0
3
5
)

(0
.0
0
5
)

(0
.0
2
1
)

[0
.0
0
1
]

[0
.0
0
1
]

[0
.0
0
0
]

[0
.0
0
1
]

[0
.0
0
1
]

[0
.0
0
1
]

[0
.0
0
1
]

[0
.0
0
0
]

N
ot
e:

T
ru
e
pa

ra
m
et
er
s
ar
e
β

1
=

1
,
β

2
=

0
.0

4
,
δ 1

=
0
.7

5
,
δ 0

=
0
.3

0
,
σ

2
=

1
an

d
ϕ

(x
,θ

)
=

0
.
λ

=
0
.0

1
2
5
.

St
an

da
rd

er
ro
r
in

ro
un

d
br
ac
ke
ts
.
St
an

da
rd

er
ro
r
ac
ro
ss

it
er
at
io
ns

in
sq
ua

re
br
ac
ke
ts
.



CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA 37

1.5 Application

Empirical research has led to substantial interest in evaluating the effects of randomized policies

on targeted individuals. Much less progress has been made on evaluating the spillovers related to

those policies, possibly because of problems associated with observing and defining interactions

among people. The method developed in the present paper provides a comprehensive evaluation of

programs when networks are unknown or unreliable, and information on a large number of groups

is available and network effects are suspected.

The importance of assessing spillovers is further highlighted when a large proportion of in-

dividuals are subject to a shock. This effect raises the possibility that spillovers or externalities

play a key role in overall program results (Angelucci et al., 2010). As an example of this setting,

I analyze the effect of a randomized intervention in which a large proportion of individuals was

simultaneously targeted. This example also illustrates that randomization in treatment variables

can be used to estimate network effects, as opposed to randomization in the group formation

(Sacerdote, 2001).

I employ data for a large-scale randomized intervention, which provided compelling evidence

that occupational choice of the world’s poor is determined by a lack of capital and skills (Bandiera

et al., 2013). The intervention consisted of the assignment of livestock and skills training, both

relevant in terms of the outlay (at approximately USD $140) and duration (training lasted for

two years). The authors found significant changes in the occupational choices of the poor, who

moved from wage jobs toward self-employment associated with livestock rearing. The program

was instituted in 1409 communities, which consisted of clusters of 84 households on average. In

each community, households belonging to the bottom quintile of the wealth distribution were

identified, and all were eligible for treatment, with certain exceptions. In total, 7953 beneficiaries

were surveyed, and all eligible households in the randomly selected communities were treated.

The baseline results comparing the treatment group in selected villages against the treatment

group in non-selected villages indicate a dramatic change in the occupational status of targeted

households. Four years after treatment, poor women dedicated 92% additional hours to self-

employment running their livestock-rearing businesses and moved away from wage hours that were

frequently insecure and temporary. This lasting change in occupational status was also associated

with higher earnings, higher per capita expenditure, better general wellbeing and higher measures

of life satisfaction. After treatment, poor households were classified between near-poor and middle

class according to a host of economic indicators.

With recourse to the estimation method developed in this paper, and without network data,

I supplement these results with several network-dependent findings. I show that specific program

effects are not contained to targeted individuals. Network spillovers affect food expenditure and

food security at magnitude around half of the original treatment, but are either insignificant or
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small determinants of occupational choice and livestock assets. I also shed light on the underly-

ing network structural mechanisms that give rise to these externalities. By separately identifying

endogenous and exogenous effects, I am able to estimate the marginal effects of a connection to

treated households. I find that the occupational choice of peers of the treated households move

in an opposite direction to the treated households: a marginal connection to treated households

reduces self-working hours, increases wage hours and decreases livestock value. The magnitudes

of the effects are such that exogenous effects counteract 25-30% of the reduction in treated house-

holds’ wage hours.33 However, connections to the treated households strongly increase food ex-

penditure and food security. These results are consistent with the interpretation that the treated

households gained comparative advantage in livestock rearing, which partially changed the occu-

pational choices of their peers. Overall, network effects are shown to form an integral component

of the program evaluation.

There is wide consensus that capital, opportunities, income, information and choices affect the

outcomes of peers (Jackson, 2010). In fact, the opportunities of others have been regarded as a

form of social capital (Glaeser et al., 2002). In this way, a shock to one’s peers can be interpreted

in the same fashion as a shock to one’s self, and the example described here provides evidence

of this mechanism. Now, I turn to a description of the program, followed by the identification

strategy and the results.

1.5.1 Program Description

Selection of targeted individuals proceeded in stages. In collaboration with BRAC, a local non-

profit organization, the most vulnerable districts were selected based on food-security measures,

as described by the World Food Program. Second, BRAC employees selected the poorest com-

munities within each district. Finally, within each community, a combination of a participatory

rural appraisal exercise and survey data were used to allocate households to one of five wealth

bins. Households belonging to the poorest wealth bins were selected as a potential beneficiary if

other eligibility criteria were met, such as not participating as microfinance borrowers and owning

no productive assets. Randomization was conducted at the local BRAC branch level, among its

40 offices in Bangladesh, and stratified at the subdistrict level to ensure balance between treated

and control groups. Within each subdistrict, one branch was randomly allocated to treatment and

another to the control group, and asset transfer was conducted for all selected individuals within

the communities covered by the treated BRAC branches. Consequently, a substantial fraction

of the community population was treated, raising the possibility that aggregate community-level
33This is the ratio between the increase of wage hours due to exogenous effects and the direct effect of reduction

of wage hours. These are numbers are averages across all individuals in treated villages, considering the number of
treated households in each village and the network parameters which affect the number of expected connections. In
this case, endogenous effects counteract exogenous effects which combined produce spillovers of smaller magnitudes.
See also Subsection 1.5.2.
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effects are substantially larger than the sum of isolated individual treatment effects, including, for

example, as a consequence of learning, insurance and informal skills reinforcement from neighbors,

who in turn may or may not be in the treatment group themselves. If eligible and selected through

the randomization process, households received a transfer of live animals (valued at approximately

USD $140) and subsequent skills training for two years that were specifically designed for the cho-

sen asset. Program beneficiaries could select among cows, goats or chickens that added up to the

same face value; the large majority chose cows. Participants were required to keep possession of

the asset for a minimum of two years, but in practice there were no sanctions in case of noncom-

pliance. All potential beneficiaries of the program and a sample of households across the village

wealth distribution were surveyed just before the intervention in 2007 and in two additional waves

in 2009 and 2011. The comprehensive survey consisted of household members’ sociodemographic

characteristics, business assets and activities, land holdings and transfers, financial assets and

liabilities, non-business assets, homestead ownership status and improvements, women’s empow-

erment and vulnerability (such as earnings seasonality and food security), and a health module.

Network self-reported links were registered when applicable, and data included family outside the

household, their business activities, land transfers (through inheritance, mortgage, rent, share,

received as dowry or gift, bought or sold), business asset transfers (same possibilities as above),

finance links (loans, outstanding lending or transfers) and letting of house ownerships. The ques-

tionnaire was applied to all selected and a sample of non-selected households in both treatment

and control groups.

1.5.2 Evaluation and Identification Strategies

Treatment effects on the treated could be evaluated comparing the change before and after treat-

ment in the outcomes of selected households who live in a treated village against similar changes

in the outcomes of selected households who live in non-treated villages. However, this approach

would be unsuitable for estimating the network effects due to two reasons.

First, exclusion of non-treated households in treated and control villages prevents wider eval-

uation of policy for those groups. Second, as I showed in Subsection 1.2.1, the outcome of the

differences-in-differences estimator is unclear when network effects are present because it may or

may not capture network spillovers (ϕ). The extent to which the spillovers are estimated depends

on the degree of reciprocation in the network, which is unobserved. When reciprocation is not

present or interaction groups are large enough, Example 1 shows that the estimator is consistent

for the individual elasticity in the counterfactual in which households are unconnected (β10). On

the other hand, separately estimating network-independent β10 from network-dependent ϕ is also

important when the researcher desires to evaluate the policy impact in a setting where networks

might considerably differ.

To tackle these issues, I consider a triple differences-in-differences with all households in treated
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and non-treated villages regardless of selection status. Momentarily ignoring network effects, one

could specify a double differences-in-differences which would compare changes in outcomes of the

selected households before and after treatment against similar changes in outcomes of the non-

selected households. However, this strategy would not be sufficient because randomization was

conducted at the village level: selection of potential beneficiaries within the villages was determined

according to wealth at the baseline. I take two remedial actions. I introduce household fixed effects

and I use the control villages to account for different trends in absence of treatment. The third

difference eliminates the change before and after treatment in the outcomes of selected households

who live in a non-treated village against similar changes in outcomes of non-selected households

who also live in non-treated villages.

The final model is then a triple differences-in-differences with household fixed effects. The

identification assumption is that trends as observed in the non-treated villages are a good counter-

factuals for trends in treated villages. I denote Sij = 1 if individual i of village j was selected as a

potential beneficiary of the program and Tij = 1 if village j was randomly selected for treatment.

The model without networks is

yijt =
3∑
s=2

β1sSijTij1{s = t}+
3∑
s=2

η1sSij1{s = t}

+
3∑
s=2

η2sTij1{s = t}+ γt + αij + εijt (1.23)

where yijt represents the outcome for individual i in village j at time t, s = 2 and 3 are the

second and third survey wave (two and four years after treatment, respectively), αij is a fixed

effect at the individual level, γt is a full set of time effects, 1 {·} is an indicator function, and εijt
is the disturbance term, clustered at the village level. The program impact on the treated in the

counterfactual in which households are unconnected are β12 and β13.

I next introduce network spillovers, which take the form of two additional network-dependent

terms attached to equation (1.23). Identification in the network setting follows after identification

of the treatment effects on the treated, as introduced above, with added assumptions on variability

of group sizes and moment condition based on outcome dispersion, as explained in Section 1.3.

The full model in vector notation is

yjt = λW 0
j yjt +

3∑
s=2

β1sSTj1{s = t}+

3∑
s=2

W 0
j STj1{s = t}β2s +

+

3∑
s=2

η1sSj1{s = t}+

3∑
s=2

η2sTj1{s = t}+ γt + αj + εjt (1.24)

where W 0
j is the unobserved household-level network and STj is a column vector with the ith

line indicating whether individual i was selected and lives in treated village j. Vector αj =
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[α1j , . . . , αnjj ] are household-level fixed effects. The term λW 0
j yjt represents the endogenous effects

– the fact that one’s own choice depends on others’ choices – and W 0
j STj1{s = t}β2s represents

exogenous effects, i.e., the dependence of one’s own choices on others’ treatment status. As

explained in Subsection 1.3.4, the correlated effects are captured by the fixed effects and eliminated

via the subtraction of time averages. Coefficients β22 and β23 are interpreted as the marginal effect

of treating a peer. Finally, I average network spillovers ϕ(xjt, θ̂) for treated individuals after two

and four years (denoted ϕ̂T,2 and ϕ̂T,4, respectively) and similarly for non-treated individuals

(denoted as ϕ̂NT,2 and ϕ̂NT,4, respectively). It is notable that the overall treatment effect for

the treated individuals is the sum of the program effect and spillovers. The construction of the

confidence intervals and standard errors is described in Subsection 1.3.2.

Alternative Methods for Estimating Network Effects

There are a variety of methods in the literature to estimate network effects. For example, a

possibility in the current setting is to compare non-selected households in treated villages against

non-selected households in control villages. Other alternatives explored in the literature introduce

variation in the fraction of the population assigned to treatment across groups (Crépon et al.,

2012). There are two reasons why the current method improves on these approaches.

The first reason is related to precision of the estimates. Consider two polar cases: general

equilibrium effects in which social interactions are intermediated solely by the markets (decrease

in the supply of wage hours increases wage in the market) and local interactions (wage jobs left

by treated households are occupied through network acquaintances). General equilibrium effects

means that all individuals are affected to a small extent by the decisions of others. Networks are

dense with weak links. In contrast, local interactions imply strong network spillovers only for those

connected to treated households and null for unconnected individuals. The latter case generates

large variation in individual outcome which then affects the precision of the estimates.

Second, comparison of non-selected households estimates network spillovers only, which can

originate from a combination of endogenous and exogenous effects. In the current setting, for

instance, the marginal effect of a connection requires separately identifying endogenous and ex-

ogenous effects, which is not possible by comparing non-selected households in treated villages

against non-selected households in non-treated villages.

1.5.3 Empirical Results

I consider four sets of outcomes: occupational choice indicators (self-working hours, wage employ-

ment hours and specialization in self-employment in Table 1.3), earnings and seasonality (house-

hold earnings, in thousands of Bangladeshi Takas, share of income originating from seasonal and
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regular activities in Table 1.4), livestock assets (number of cows, poultry and livestock value in

thousands of Takas in Table 1.5) and per capita expenditures (nonfood and food items and food

security in Table 1.6). As an indicator of differential patterns of association, I allow the proba-

bility of link formation to depend on the proximity of household identifiers, registered as Qij = 1

and zero otherwise. It has been anecdotally observed that identifiers were allocated while field

surveyors followed local streets and roads, and therefore serve as a proxy for geographical distance.

This pattern is only a generalization from the purely naive network in which the probability of

link formation is constant and independent of any variable.34

For each outcome, I show the triple differences-in-differences estimates of the program effects

for the treated households ignoring networks, as in equation (1.23). These are shown in odd

numbered columns in Tables 1.3-1.6. For example, column 1 of Table 1.3 indicates that treated

increased self-working hours in 468.9 and 465.1 hours per year, two and four years after treatment

respectively, and these results are significant at the 1% confidence level. Even columns display the

results of the triple differences-in-differences augmented with the network module, as in equation

(1.24). For example, column 2 of Table 1.3 also indicates treated increased self-working hours in

469.8 and 460.0 hours per year, two and four years after treatment respectively. These numbers are

not significantly different from the cases in which networks were ignored in column 1. Therefore,

in this particular case, inconsistency due to omission of networks was not a relevant problem.

The following four rows display the results for the network spillovers. Results in this case

are not significant at 10% level two years after treatment for treated and nontreated, and point

estimates are -6.3 and -3.2 hours per year. However, spillovers are positive and significant four

years after treatment at 28.8 and 14.7 self-working hours per year for treated and nontreated

respectively, indicating a slight increase in the supply of self-working hours due to spillovers for

both types of households. The estimates for the program effect on treated and spillovers, as

discussed above, does not depend on separately identifying endogenous and exogenous effects and,

hence, do not rely on the presence of group size asymmetries and the moment condition based on

outcome dispersion.

Breaking down spillovers in endogenous and exogenous effects then allows me to estimate the

marginal effect of the connection to a treated household. These rows are labelled "Link to T".

A marginal connection reduces working hours in 24.6 and 17.9 hours per year two and four years

after treatment respectively, and are significant at the 1% confidence level. The probabilities of

link formation are very high, at 98.3% if individuals live in close vicinity, and 39.6% otherwise

indicating that, in this case, network effects operate via general equilibrium. The hypothesis that

these numbers are equal is rejected at the 1% level.
34Estimation with naive model for probability of link formation is conducted as a robustness in Table 1.F.13 in

Appendix 1.F.2. In addition, estimation without fixed effects, time effects and both are also shown to highlight
that in their absence network estimates are highly biased.
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I present the remaining results in three stages. First, I describe the results for network spillovers

for all outcomes. These are followed by the estimates of the network structure and the marginal

effect of a connection to a treated household. Finally, I incorporate network data directly into the

procedure and demonstrate that the main conclusions remain unchanged. I also show that family

self-reported links convey meaningful interaction and mixed results for economic (non-family)

links.

Network Spillovers.

As shown in Subsection 1.3.2, it is not necessary to identify the parameters that underpin network

formation or those that link explanatory variables to outcomes in a given network, and it is also

not necessary to separate endogenous and exogenous effects. It is sufficient that Proposition 1

ensures that spillovers are constant within the identified set.

The current application shows that spillovers on treated and non-treated individuals deter-

mined outcomes to a relevant degree. The effect of spillovers was particularly salient in explaining

food per capita expenditures. For example, spillovers amounted to 207.0 Takas per year for non-

treated individuals after two years, compared with an estimated program effect of 423.9 Takas

for treated individuals over the same period. This difference corresponds to a 6.9% increase on

top of baseline levels of consumption, or 48.8% of the treatment effect on the treated individuals.

The spillover effect is even larger for the treated subpopulation. After two years, spillovers from

the treated households to themselves were responsible for an expenditure increase of 380.0 Takas,

or 89.6% of the treatment effects. Notably, column 3 of Table 1.3 shows that estimates of treat-

ment effects when networks are not included in the analysis are approximately 40% higher. This

difference is attributed to the fact that OLS estimates, as presented in Subsection 1.2.1, may be

inconsistent when networks effects are not accounted for.

This result is further confirmed by estimates of food security that are measured by respondents

that reported having at least two meals on most days, indicating a positive effect for both the

treated and the non-treated groups, across two and four years, ranging from 2.7 percentage points

for the non-treated group two years after treatment to 7.1 percentage points for the treated group

at the same time. The direct program effect is estimated at 16.9 and 7.6 percentage points (after

two years and four years, respectively). Nonfood expenditures are either constant or exhibit a slight

increase for the treated group, whereas the non-treated group reduced nonfood consumption after

four years. As discussed below, this result can be explained by the reduction in productive assets

following the specialization of the peers of the treated group in terms of wage labor.

Spillovers were significant to a small extent in determining self-employment and wage hours,

specialization in self-employment, the share of seasonal and regular activities and asset holdings.

As discussed above, network spillovers are reduced-form estimates that consist of endogenous
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effects, or the fact that one’s own choice depends on others’ choices, and exogenous effects, the

fact that one’s own choices depend on the treatment of others. Disentangling these structural

mechanisms is useful in shedding light on the causes of these results, and this is undertaken in the

next Subsection.

Endogenous and Exogenous Effects (or Marginal Value of Connections to the Treated)

I now provide point estimates of structural parameters. Given a network, its full set consists of link

strength (λ), one’s own response to one’s own treatment after two and four years (β11 and β12) and

exogenous effects (or, in the current setting, the effect of one additional connection to a treated

individual, β21 and β22). The parameters that capture the network link are the probability of link

formation if households are located in close proximity (δ1), such that Qij = 1 if the difference in

household identifiers is less than two35, and if households are not in close proximity (δ0). These

parameters discriminate between the polar cases in which interactions occur on a localized scale,

through personal interconnections and without intermediation of the markets (equivalent to low-

density networks, or low δ0 and δ1) or through general equilibrium effects in which one’s own choices

affect all others to a small degree and result in dense networks (high δ0 and δ1). As demonstrated

in Theorem 4, identification is achieved using the comparison between observed and theoretical

across-group dispersion of outcomes as implied by the model. In a social setting, the across-group

variation of outcomes cannot be explained by outcome dispersion, peer group heterogeneity or

disturbance variance alone. This indicates a moment condition and suggests the use of a GMM

criterion that is capable of sorting among structural parameters within the identified set.

In the current application, the estimates show that, whereas treated individuals reduced wage

hours (113.5 and 141.9 hours per year, two and four years after treatment, respectively) and in-

creased self-employment hours (469.8 and 460.0 hours per year) associated with livestock rearing,

a marginal connection to a treated household had the opposite effect, increasing wage hours (24.6

and 17.9 hours per year for each treated peer) and decreasing self-working hours (13.9 and 13.0

hours per year for each treated peer). Treated individuals specialize in self-employment, and con-

nected peers modestly decrease specialization. Individuals who received treatment left vacancies

on wage jobs that were partially filled by individuals located in close geographic proximity36. The

density of estimated networks is high only for self-employment and wage hours; above 90% for

households that live in close proximity and approximately 40% otherwise. The interaction patterns

of all other outcomes are much more localized, with densities of approximately 20% or lower in

most cases.
35Robusteness checks are conducted in Table 1.F.13 of Appendix 1.F.2.
36The null hypothesis of no differential association is rejected at the 5% level for all specifications, as shown in

Tables (1.3)-(1.6). Given the estimated parameters and the number of treated households in each households, a
simple simulation exercise shows that exogenous effects counterbalanced 25-30% of the reduction in wage hours of
treated households.
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The results demonstrate that treated individuals increased their livestock assets by more than

the original treatment. Meanwhile, non-treated individuals reduced their stock of assets. This

outcome was not observed for poultry, which is consistent with the low takeover rate of this type

of asset. Livestock value followed the same pattern for both groups. Since the treatment also

consisted of skills training – specifically targeted for the type of assets provided – and was of long

duration (2 years), treated individuals were endowed with a stronger comparative advantage in

livestock rearing, whereas connected peers tended to specialize in wage jobs instead.

The final component of the analysis involves the food staples. A marginal connection to a

treated peer significantly increases food consumption per capita and food security. In fact, one

connection may be responsible for an effect on food expenditures that is equivalent to the direct

effect of treatment on the treated individual (443.6 versus 423.9 Takas) and a 9.6 percentage point

increase in food security. This finding shows that comovements of occupational choices of the

treated and their peers were largely beneficial to all.

Including Network Data

Finally, I make use of network data collected in the survey to reassess the conclusions obtained in

their absence. Inclusion of network data serves two primary purposes. First, I show that the main

conclusions summarized above remain unchanged (Tables 1.F.9 to 1.F.12 of Appendix 1.F.2). Sec-

ond, allowing link formation to depend on link reporting enables me to test whether the associated

coefficient is significant, which constitutes as a test of
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Table 1.3: Occupational Choice.

(1) (2) (3) (4) (5) (6)
Outcome Self hours. Wage hours. Self emp. only.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 468.928∗∗∗ 469.774∗∗∗ −110.799∗∗∗ −113.531∗∗∗ 0.107∗∗∗ 0.114∗∗∗

after 2 years (β̂11). (28.62) (23.20) (31.07) (10.61) (0.02) (0.01)

Program effect 465.075∗∗∗ 460.039∗∗∗ −137.255∗∗∗ −141.918∗∗∗ 0.112∗∗∗ 0.120∗∗∗

after 4 years (β̂12). (31.32) (23.21) (34.10) (8.63) (0.02) (0.01)

Spillover on T — −6.347 — 26.855∗∗∗ — −0.032∗∗∗

after 2 years (ϕ̂T,2). (10.55) (8.45) (0.01)
Spillover on T — 28.847∗∗∗ — 19.369∗∗ — −0.025∗∗∗

after 4 years (ϕ̂T,4). (9.68) (8.54) (0.00)
Spillover on NT — −3.229 — 14.491∗∗∗ — −0.018∗∗∗

after 2 years (ϕ̂NT,2). (5.37) (4.55) (0.00)
Spillover on NT — 14.676∗∗∗ — 10.452∗∗∗ — −0.013∗∗∗

after 4 years (ϕ̂NT,4). (1.09) (0.75) (0.00)

Fu
nc
ti
on

of
λ̂
.

Link to T — −24.604∗∗∗ — 13.904∗∗∗ — −0.050∗∗∗

after 2 years (β̂21). (2.76) (2.52) (0.01)

Link to T — −17.932∗∗∗ — 13.030∗∗∗ — −0.043∗∗∗

after 4 years (β̂22). (2.76) (1.59) (0.01)

Link probability — 0.983∗∗∗ — 0.639∗∗∗ — 0.192∗∗∗

if Qij = 1 (δ̂1). (0.03) (0.03) (0.01)

Link probability — 0.396∗∗∗ — 0.331∗∗∗ — 0.106∗∗∗

if Qij = 0 (δ̂0). (0.01) (0.01) (0.00)

Link strength — 0.05∗∗∗ — 0.05∗∗∗ — 0.15∗∗∗

(λ̂). (0.01) (0.00) (0.01)

p-value HNV . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 0.303

Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes: *, ** and *** indicates significance at 10%, 5% and 1% levels. All regressions have household fixed effects. Standard errors clustered at

the village level. "Spillover on T" refers to the average ϕ(xt, θ̂) on the treated only. "Spillovers on NT" refers to equivalent calculation on the

non-treated only. "Link to T" refers to the marginal effect of a connection to a treated individual. "Avg treated outcome" refers to the mean

outcome of treated at the baseline. "p-value HNV " is the p-value of testing the null hypothesis that household proximity does not affect the

probability of link formation. Estimates dependent on the identification strategy for λ̂ are denoted under the tab "Function of λ̂". "Self hours"

refers to self-working hours per year. "Wage hours" refers to wage working hours per year. "Self emp. only" is a dummy variable if individual

is specialized in self-employment.
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Table 1.4: Earnings and Seasonality.

(1) (2) (3) (4) (5) (6)
Outcome Earnings. Share Seas. Share Reg.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 0.475 0.506∗∗∗ 0.012 −0.028∗∗∗ 0.201∗∗∗ 0.181∗∗∗

after 2 years (β̂11). (0.46) (0.12) (0.02) (0.01) (0.02) (0.01)
Program effect 2.598∗∗∗ 2.729∗∗∗ −0.089∗∗∗ −0.074∗∗∗ 0.191∗∗∗ 0.165∗∗∗

after 4 years (β̂12). (0.54) (0.31) (0.02) (0.01) (0.02) (0.01)
Spillover on T — −0.045 — −0.051∗∗∗ — 0.023∗∗

after 2 years (ϕ̂T,2). (0.10) (0.02) (0.01)
Spillover on T — 0.008 — −0.005 — 0.029∗∗

after 4 years (ϕ̂T,4). (0.11) (0.02) (0.01)
Spillover on NT — −0.025 — −0.023∗∗∗ — 0.012∗∗

after 2 years (ϕ̂NT,2). (0.06) (0.01) (0.00)
Spillover on NT — 0.004 — −0.002 — 0.015∗∗∗

after 4 years (ϕ̂NT,4). (0.09) (0.01) (0.00)

Fu
nc
ti
on

of
λ̂
.

Link to T — −0.447 — −0.010∗∗∗ — −0.022∗∗∗

after 2 years (β̂21). (0.46) (0.01) (0.01)
Link to T — −0.326 — −0.016∗∗∗ — −0.015∗∗

after 4 years (β̂22). (0.29) (0.01) (0.00)
Link probability — 0.075∗∗∗ — 0.272∗∗∗ — 0.238∗∗∗

if Qij = 1 (δ̂1). (0.00) (0.01) (0.00)
Link probability — 0.023∗∗∗ — 0.136∗∗∗ — 0.106∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.00)
Link strength — 0.50∗∗∗ — 0.20∗∗∗ — 0.20∗∗∗

(λ̂). (0.17) (0.08) (0.05)

p-value HNV . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478

Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes: Earnings in thousand of Takas per year. "Share Seas." refers to the share of seasonal earnings relative to total earnings. "Share Reg."

refers to share of regular earnings, as reported by the respondent, relative to total earnings. See also Table 1.3.

network data validity. I combine network reports into two categories: family and economic (non-

family) links. Non-family links include an ensemble of many categories of self-reported links, such

as business and labor relationships, financial assets and liabilities and household ownership. The

null hypothesis of no network validity was rejected at the 1% level for all specifications regarding

occupational choice, earnings and seasonality. The results for livestock holding and expenditures

are more nuanced. Whereas for most specifications, the null of no validity was rejected for family

links, economic links are much less capable of conveying interactions that influence the outcomes of

others. This result suggests that families are natural loci that favor asset transactions, particularly

when those transactions involve cows, and through which food consumption and expenditures flow.
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Table 1.5: Livestock.

(1) (2) (3) (4) (5) (6)
Outcome Cows. Poultry. Livestock Value.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 1.119∗∗∗ 1.131∗∗∗ 2.147∗∗∗ 2.120∗∗∗ 10.326∗∗∗ 10.417∗∗∗

after 2 years (β̂11). (0.04) (0.03) (0.42) (0.50) (0.56) (0.39)
Program effect 1.078∗∗∗ 1.102∗∗∗ 1.294∗∗ 1.326∗∗∗ 10.984∗∗∗ 11.175∗∗∗

after 4 years (β̂12). (0.03) (0.03) (0.62) (0.50) (0.64) (0.40)
Spillover on T — −0.033∗∗∗ — 0.099 — −0.221∗∗∗

after 2 years (ϕ̂T,2). (0.01) (0.17) (0.07)
Spillover on T — −0.057∗∗∗ — −0.087 — −0.459∗∗∗

after 4 years (ϕ̂T,4). (0.00) (0.20) (0.07)
Spillover on NT — −0.020∗∗∗ — 0.059 — −0.132∗∗∗

after 2 years (ϕ̂NT,2). (0.01) (0.10) (0.04)
Spillover on NT — −0.033∗∗∗ — −0.052 — −0.274∗∗∗

after 4 years (ϕ̂NT,4). (0.01) (0.08) (0.04)

F
un

ct
io
n
of
λ̂
.

Link to T — −0.996∗∗∗ — 1.277 — −10.456∗∗∗

after 2 years (β̂21). (0.16) (4.12) (1.90)
Link to T — −1.285∗∗∗ — −2.725 — −16.464∗∗∗

after 4 years (β̂22). (0.17) (4.11) (2.33)
Link probability — 0.024∗∗∗ — 0.007∗∗ — 0.013∗∗∗

if Qij = 1 (δ̂1). (0.00) (0.00) (0.00)
Link probability — 0.012∗∗∗ — 0.009∗∗∗ — 0.007∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.00)
Link strength — 0.50∗∗∗ — 0.50 — 0.50∗∗∗

(λ̂). (0.03) (0.38) (0.16)

p-value HNV . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940

Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes: "Cows" refers to the number of cows held by the household, and similarly for poultry. Livestock value evaluates in thousands of Takas at

market value. See also Table 1.3.
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Table 1.6: Expenditures.

(1) (2) (3) (4) (5) (6)
Outcome Nonfood PCE. Food PCE. Food Security.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect −242.239 −220.509 585.304∗∗ 423.929∗∗∗ 0.189∗∗∗ 0.169∗∗∗

after 2 years (β̂11). (293.34) (164.53) (247.19) (134.22) (0.03) (0.01)
Program effect 175.022 278.277 585.415∗∗∗ 445.063∗∗∗ 0.010∗∗∗ 0.076∗∗∗

after 4 years (β̂12). (375.16) (174.72) (227.38) (134.27) (0.03) (0.01)
Spillover on T — −8.526 — 380.002∗∗∗ — 0.017∗∗∗

after 2 years (ϕ̂T,2). (68.25) (55.82) (0.00)
Spillover on T — −171.985∗∗ — 243.172∗∗∗ — 0.071∗∗∗

after 4 years (ϕ̂T,4). (68.15) (56.88) (0.02)
Spillover on NT — −5.039 — 206.992∗∗∗ — 0.027∗∗∗

after 2 years (ϕ̂NT,2). (40.34) (30.14) (0.00)
Spillover on NT — −101.655∗ — 132.459∗∗∗ — 0.032∗∗∗

after 4 years (ϕ̂NT,4). (52.65) (40.73) (0.01)

Fu
nc
ti
on

of
λ̂
.

Link to T — −14.185 — 443.619∗∗∗ — 0.096∗∗∗

after 2 years (β̂21). (988.46) (85.36) (0.01)
Link to T — −2649.43∗∗∗ — 249.126∗∗∗ — 0.087∗∗∗

after 4 years (β̂22). (980.96) (84.79) (0.01)
Link probability — 0.032∗∗∗ — 0.132∗∗∗ — 0.128∗∗∗

if Qij = 1 (δ̂1). (0.00) (0.01) (0.00)
Link probability — 0.009∗∗∗ — 0.080∗∗∗ — 0.052∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.00)
Link strength — 0.50∗∗∗ — 0.20∗∗ — 0.50∗∗

(λ̂). (0.14) (0.11) (0.21)

p-value HNV . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457

Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes: "Nonfood PCE" refers to non-food per capita expenditure in thousands of Takas per year, and similarly for food per capita expenditures.

Food security is a dummy equal to one if households have at least two meals in most days. Estimates of the program impact on nonfood per capita

expenditure on the treated using the triple differences model (column 1) was the only case which does not match well the estimates obtained from

the double differences which compares the selected individuals in treated villages against selected in nontreated villages. See Bandiera et al. (2013)

and Table 1.3.
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1.6 Conclusion

Social and economic networks are useful for understanding many aspects of individual choice,

decisions and behavior. Although there has recently been substantial progress on the theoreti-

cal underpinnings of network formation, empirical research frequently remains constrained by the

availability of network data. The contribution of this paper is then to provide a method for esti-

mating network effects in the absence of network data. The method also estimates the probability

that pairs of individuals form a connection based on individual characteristics such as common

gender. I also incorporate imperfect network data with the dual purpose of refining the estimates

and providing a test for its validity.

The key contribution of the paper was to derive a maximum likelihood estimator that is not

conditional on network data. It is obtained by integrating a likelihood conditional on networks

which originates from a spatial econometric model with respect to the probability density func-

tion of the stochastic network. In this setting, I showed how the observation of outcomes and

explanatory variables for many groups such as classrooms serves as a substitute for the network

observation. This approach then offers a procedure for estimating network effects using datasets

that were previously not suited for this purpose.

Empirical research has led to substantial interest in evaluating the effects of randomized policies

on targeted individuals. Much less progress has been made on evaluating the spillovers related to

those policies. To illustrate how the method can be applied in practice, I employed the estimator

to investigate the impact of a large-scale randomized intervention on the peers of those who were

treated. This is the intervention of Bandiera et al. (2013), which consisted of the provision of

livestock and skill training to low-income households in Bangladesh.

The proposed estimator met three objectives and yielded useful insights on the wider effects of

the policy. The first objective was to provide – in the absence of network data – a consistent and

asymptotically normal estimator of network spillovers. In the application, I found that network

spillovers were economically and statistically significant in determining some outcomes, especially

food per capita expenditure and food security. Network spillovers were responsible for an increase

of 206.9 Takas in yearly food per capita expenditure compared with a treatment effect of 423.9

Takas on the treated.37

The second objective of the paper was to elucidate the structural mechanisms that gave rise

to these spillovers. I derived a method to separately identify endogenous and exogenous effects,

controlling for correlated effects, in the absence of network data by using the variability in group

sizes. I further solved the problem of separately identifying a few strong links from a large number

of weak links by using the "excess" outcome variance that cannot be explained by independent
37Respectively an 14% and 7% increase relative to food consumption levels at the baseline.
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variables or peer group heterogeneity alone.38 For this purpose, I reinterpreted the estimator

as the solution of a Generalized Method of Moments problem in which moment conditions were

given by the score of the likelihood. In this case, the earlier identification difficulty originated from

the absence of one moment condition relative to the number of parameters. I then explored the

difference between observed second moments of the outcomes and those implied by the model to

provide an additional restriction which completes the identification requirements. I am then able

to show that the solution of this problem is a consistent and asymptotically normal estimator to

the structural parameters of the model.

In the application studied herein, I found that a marginal connection to the treated led to

effects in opposite direction to the treatment effect on the treated. Regarding occupational choice

and livestock value, one additional connection to a treated household decreased self-employment

by 24.6 hours per year, added 13.9 wage hours per year and decreased livestock value by 10.4

thousand Takas. Treated households increased their self-employment hours, decreased their wage

hours and increased the value of their livestock. In contrast, regarding food per capita expenditure

and food security, a marginal connection to the treated was in the same direction to the treatment

effect on the treated, and often of strong magnitudes. A marginal connection to the treated

increased food per capita expenditure by 443.6 Takas per year and increased food security by 9.6

percentage points, compared with direct treatment effects of, respectively, 424.0 Takas per year

and 16.9 percentage points. With the exception of self-employment and wage hours, I also found

that network densities were fairly low, which suggested local interactions through personal contacts

rather than through prices and markets. These results are consistent with the interpretation that

treated individuals gained comparative advantage in livestock rearing. The randomized policy then

generated a village-level occupational specialization in which treated households were employed in

rearing the livestock, partially changing the occupational choice and well-being of their peers as

measured by food consumption.

The third objective of this paper was to incorporate imperfect network data, such as when data

are self-reported, with the dual purpose of refining the estimates and proposing a test for whether

reported connections positively affect the estimated connection probability. In the application, I

found that reported family links have a greater effect than the reported economic (non-family)

links in determining the outcomes of others. The test rejected the null hypothesis that family links

do not influence the number of cows but failed to reject the similar influence of economic links.

The same holds true for livestock value, indicating that family ties facilitated asset transactions.

The method developed in the present paper contributes to the spatial econometrics literature

that has to date considered only models for which networks are accurately known (Anselin (2010)

and references therein). Similarly, the literature on the identification of network models addressed
38These are similar in essence to the identification ideas in Lee (2007) and Graham (2008), which explore the

case in which networks are observed.
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a number of techniques only when networks could be observed (Manski (1993), Bramoullé et al.

(2009), De Giorgi et al. (2010) and others). This novel method can be applied in many fields,

from peer effects (Ammermuller and Pischke, 2009), crime and delinquent behavior (Glaeser et al.,

1996) to the estimation of parameters of gravity equations (Anderson and van Wincoop, 2003).

The interest in networks to this date has not been matched with availability of network data,

possibly because of problems associated with observing and defining interactions among people.

The method developed in the present paper provided a systematic procedure for estimating network

effects when networks are unknown or unreliable and information on a large number of groups

is available. This ability has shown to be particularly relevant in estimating effects of exogenous

variation policy through randomized controlled trials both on treated and their peers. In this way,

the paper demonstrated both theoretically and empirically that including network effects may have

important implications for policy assessments. Estimating network spillovers and distinguishing

among endogenous, exogenous and correlated effects in the absence of network data is certainly a

useful empirical tool for future applied research.
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1.A Summary of Notation.

β =
(
β′1, β

′
2

)
, θc = θ \

{
β, σ2

}
, n =

∑v
j=1 nj .

In an identity matrix of dimensions n× n, ιn is a n× 1 vector of ones.
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y′1, . . . , y

′
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′
v

)′
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Zej (Qj , θc) = Zenj ,j
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j (Q, θc)xj
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n = diag
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)
, W e

n (Qn, θc) = diag
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W e

1 (Q1, θc) , . . . ,W e
v (Qv , θc)

)
.

S0
j (λ) = S0

nj ,j
(λ) = Inj − λW 0

j , S
0
j = S0

j (λ0), S0
n = diag
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S0
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0
v

)
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= λ0G0
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)−1.

Sej (Qj , θ) = Inj − λW e
j (Qj , θ), Sen (Qj , θc) = diag

(
Se1 (Q1, θc) , . . . , Sev (Q1, θc)

)
.

(Sen (Q, θc))
−1 = In + λGen (Qn, θc), Gen (Qn, θc) ≡W e

n (Qn, θc) (Sen (Qn, θc))
−1.

R0
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j (ρ0), R0
n = diag
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R0
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0
v

)
.

Rej (θ) = Inj − ρMe
j (Qj , θ), Ren (Qn, θc) = diag

(
Re1 (Q1, θc) , . . . , Rev (Qv , θc)

)
.
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n = diag
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1 , . . . ,M
0
v

)
, Me

n (Qn, θc) = diag
(
Me

1 (Q1, θc) , . . . ,Me
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)
.

P en (Qn, θc) = In −Ren (Qn, θc)Zen (Qn, θc)
[
Ze
′
n (Qn, θc)Re

′
n (Qn, θc)Ren (Qn, θc)Zen (Qn, θc)
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′
n (Qn, θc)Re

′
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W 0
n −W e
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n

)
.

µ [A] and Σ [A] denote the expectation and variance-covariance matrix of vector A.

1.B Alternative network models.

I previously described the probability of link formation as dependent on a dummy for sharing exogenous characteristic with

independence link formation. I now expand the classes of models in two different directions: I first allow the probability of
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link formation to depend on a continuous measure, such as distance between households location. Because many modes of

social interactions can occur in parallel, it is also important to allow for a multivariate network formation model. In second

place, I drop link independence assumption with recourse to the Exponential Random Markovian Graphs (ERMG) family of

models, as introduced by Frank and Strauss (1986) and expanded by Wasserman and Pattison (1996). These are presented

in form of examples.

Example 4. (Multivariate network model). Several forms of relations coexist; arguably, a truthful representation of the

probability of link formation will then depend on a number of factors. Allow then QIji as 1×kI to be a matrix of individual’s i

characteristics that underpin probability of link formation and depend exclusively on individual, non-relational, characteristics.

For example, this may encompass testing whether males may tend to form more connections than the rest of the population,

or personal income may have a relation to social interactions. Let QRjk be characteristics of the potential recipient of the link

that may generate attraction, of dimension 1×kR and, finally, QBjik common, shared characteristics, such as belonging to the

same gender, or continuous geographic distance between households, with dimension 1× kB . Coefficients are captured with

recourse to θIg , θRg and θBg of compatible dimensions.

P
{
{Wj}ik = 1|Qj

}
= QIjiθ

I
g +QRjkθ

R
g +QBjikθ

B
g . (1.25)

Because probabilities should stay in the range [0, 1], it is plausible to use, instead, P
{
{Wj}ik = 1|Qj

}
= logit(QIjiθ

I
g +

QRjkθ
R
g + Qjikθ

B
g ) or the equivalent probit version. It is important to note that, even without using the second moments to

provide identification, it is still possible to conduct hypothesis testing in the partial identification framework, as long as there

is no collinearity among QIji, Q
R
ji and QBjik for all i, k and j. More specifically, suppose one is interested in whether race

commonality affects the probability of link formation. The researcher can then test H0 : θBg = 0, with the procedure outlined

in Subsection 1.3.2, although it will not be possible to identify the magnitude of the effect unless as a solution to equation

(1.18) is provided.

Example 5. (ERMG family). Models of statistic network formation have a long tradition in the literature of estimation

of network structure given observations from random graphs generators (Holland and Leinhardt (1981), Frank and Strauss

(1986), Strauss and Ikeda (1990) and Snijders (2011)) and are of considerable generality, including the case where link

formation are not independent. In particular, Frank and Strauss (1986) proved that, if the graph is such that edges without

common nodes are independent conditional on all remaining edges (that is, the graph is Markovian39) and homogeneous40,

and all isomorphic graphs have same probability,

P {Wj = wj} =
1

κ(θg)
· exp

{
θ0
gT (wj) +

n−1∑
s=1

θsgSs(wj)

}
(1.26)

where T (wj) =
∑
i,k,l {wj}ik {wj}kl {wj}li is the number of triangles, and Ss(wj) is the number of s-stars in wj . κ(θg) is a

normalization constant that depends on parameters θg = (θ0
g , θ

1
g , . . . , θ

n−1
g )′. The Markovian assumption is a relatively mild

hypothesis and states that, although dependence between the existence of edges may happen, this cannot be so for edges

which do not possess a common node. This formulation is particularly appealing as it provides a probability law for network

formation under minimal hypothesis, along with its sufficient statistics. Wasserman and Pattison (1996) expand the class of

models to incorporate any set of sufficient statistics Z(wj), such that

P {Wj = wj} =
1

κ(θg)
· exp

{
θ′gZ(wj)

}
. (1.27)

39Let D be a graph whose nodes are all possible edges of G, that is, all pairs of nodes of G, containing therefore
n! (n− 1) ! nodes. If the existence of an edge between {a, b} in G depends on the existence of an edge between
{c, d}, conditional on all rest of the graph, then {a, b} and {c, d} are neighbors in D. The Markovian assumption
means, therefore, that all {s, t} and {u, v} are nonneighbors for different s, t, u and v.

40That is, nodes are a priori indistinguishable.
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Note that, as a consequence of homogeneity, edges have equal probability of being formed with expected network W e
j (θg) =

pιnj ι
′
nj
−pInj . This is the same expectation as the one obtained in the simple Bernoulli model.

1.C Score Vector and Hessian Matrix.
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σ2 x
′
nR

e′
n (Qn, θ)Me

n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)

∂2 lnLe(θ)
∂β1∂θgi

= ρ 1
σ2 x
′
n∇θgiM

e′
n (Q, θ) εen (Q, θ)

+ρ 1
σ2 xnR

e′
n (Qn, θ)∇θgiM

e
n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)

+ 1
σ2 x
′
nR

e′
n (Qn, θ)Ren (Qn, θ)∇θgiW

e
n (Qn, θ) (λyn + xnβ2) .

∂2 lnLe(θ)
∂β2∂β

′
2

= 1
σ2 x
′
nW

e′
n (Qn, θ)Re

′
n (Qn, θ)W e

n (Qn, θ)xn

∂2 lnLe(θ)

∂β2∂σ2 = 1
σ4 x
′
nW

e′
n (Qn, θ)Re

′
n (Qn, θ) εen (Qn, θ)

∂2 lnLe(θ)
∂β2∂ρ

= ρ 1
σ2 x
′
nW

e′
n (Qn, θ)Me′

n (Qn, θ) εen (Qn, θ) +

1
σ2 x
′
nW

e′
n (Qn, θ)Re

′
n (Qn, θ)Me

n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)
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∂2 lnLe(θ)
∂β2∂θgi

= − 1
σ2 x
′
n∇θgiW

e′
n (Qn, θ)Re

′
n (Qn, θ) εen (Qn, θ) + ρ 1

σ2 x
′
nW

e′
n (Qn, θ)∇θgiM

e′
n (Qn, θ) εen (Qn, θ)

ρ 1
σ2 x
′
nW

e′
n (Qn, θ)Re

′
n (Qn, θ)Me

n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)

1
σ2 x
′
nW

e′
n (Qn, θ)Re

′
n (Qn, θ)Ren (Qn, θ)∇θgiW

e
n (Qn, θ) (λyn + xnβ2)

∂2 lnLe(θ)

∂σ2∂σ2 = n
2σ4 − 1

σ6 ε
e′
n (Qn, θ) εen (Qn, θ)

∂2 lnLe(θ)

∂σ2∂ρ
= − 1

σ4 (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)Me′

n (Qn, θ) εen (Qn, θ)

∂2 lnLe(θ)

∂σ2∂θgi
= 1

σ4 ε
e′
n (Qn, θ)Ren (Qn, θ)∇θgiW

e
n (Qn, θ) (λyn + xnβ2)

−ρ 1
σ4 ε

e′
n (Qn, θ)∇θgiM

e
n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)

∂2 lnLe(θ)
∂ρ∂ρ

= tr
[
(Ren (Qn, θ))

−1Me
n (Qn, θ) (Ren (Qn, θ))

−1Me
n (Qn, θ)

]
∂2 lnLe(θ)
∂ρ∂θgi

= ρtr
[
(Ren (Qn, θ))

−1∇θgiM
e
n (Qn, θ) (Ren (Qn, θ))

−1 Me
n (Qn, θ)

]
−tr

[
(Ren (Qn, θ))

−1∇θgiM
e
n (Qn, θ)

]
− 1
σ2 (λyn + xnβ2)′∇θgiW

e
n (Qn, θ)

′Me′
n (Qn, θ) εen (Qn, θ)

+ 1
σ2 (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)′∇θgiM
e′
n (Qn, θ) εen (Qn, θ)

−ρ 1
σ2 (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)′Me′
n (Qn, θ)∇θgiM

e
n (Qn, θ) ·

· (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)

−λ 1
σ2 (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)′Me′
n (Qn, θ)Ren (Qn, θ)

∇θgiW
e
n (Qn, θ) (λyn + xnβ2)

∂2 lnLe(θ)
∂θgi∂θgk

= λ2tr
[
(Sen (Qn, θ))

−1∇θgkW
e
n (Qn, θ) (Sen (Qn, θ))

−1∇θgiW
e
n (Qn, θ)

]
−λtr

[
(Sen (Qn, θ))

−1∇θgiθgkW
e
n (Qn, θ)

]
+ρ2tr

[
(Ren (Qn, θ))

−1∇θgkM
e
n (Qn, θ) (Ren (Qn, θ))

−1∇θgiM
e
n (Qn, θ)

]
−ρtr

[
(Ren (Qn, θ))

−1∇θgiθgkM
e
n (Qn, θ)

]
+ρ 1

2σ2∇θgiθgkM
e
n (Qn, θ)

′ (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)′ εen (Qn, θ)

−ρ 1
2σ2∇θgiM

e
n (Qn, θ)

′∇θgkW
e
n (Qn, θ) (λyn + xnβ2)′ εen (Qn, θ)

−ρ2 1
2σ2∇θgiM

e
n (Qn, θ)

′ (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)′ ·

·∇θgkM
e
n (Qn, θ) (Sen (Qn, θ) yn − xnβ1 −W e

n (Qn, θ)xnβ2)

−ρ 1
2σ2∇θgiM

e
n (Qn, θ)

′ (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)′Ren (Qn, θ) ·

·∇θgkW
e
n (Qn, θ) (λyn + xnβ2)

−ρ 1
2σ2∇θgkM

e
n (Qn, θ)

′∇θgiW
e
n (Qn, θ) (λyn + xnβ2)′ εen (Qn, θ)

+ 1
2σ2R

e
n (Qn, θ)

′∇θgiθgkW
e
n (Qn, θ) (λyn + xnβ2)′ εen (Qn, θ)

−ρ 1
2σ2R

e
n (Qn, θ)

′∇θgiW
e
n (Qn, θ) (λyn + xnβ2)′∇θgkM

e
n (Qn, θ) ·

· (Sen (Qn, θ) yn − xnβ1 −W e
n (Qn, θ)xnβ2)

− 1
2σ2R

e
n (Qn, θ)

′∇θgiW
e
n (Qn, θ) (λyn + xnβ2)′Ren (Qn, θ)∇θgkW

e
n (Qn, θ) (λyn + xnβ2)

Derivatives ∇θgiW
e
j (Qj , θ) =

∂We
j (Qj ,θ)
∂θgi

, ∇θgiθgkW
e
j (Qj , θ) =

∂2We
j (Qj ,θ)

∂θgi∂θgk
and similarly for derivatives of Me

j (Qj , θ) and

model-dependent and so are omitted here.
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1.D Proofs.

1.D.1 Useful Lemmas.

Lemmas without proofs can be found in Kelejian and Prucha (2001), Lee (2004) or Lee et al. (2010).

Lemma 1. For any n×n matrix Λn with uniformly bounded column sums in absolute value, uniformly bounded n×k matrix

Zn, and if un ∼ N
(
0, σ2I

)
of dimension n× 1, then 1√

n
Z′nΛnun = Op (1).

Lemma 2. E (u′nΛnun) = σ2tr (Λn) and Var (u′nΛnun) =
(
µ4 − 3σ4

)
vec′D (Λn) vecD (Λn) + σ4

[
tr (ΛnΛ′n) + tr

(
Λ2
n

)]
.

Lemma 3. Define Λ−1
n ≡ (S0′

n )−1Λ̃−1
n

(
S0
n

)−1, (Λen)−1 ≡ (Se
′
n

(
Qn, θ0

c

)
)−1Λ̃−1

n

(
Sen
(
Qn, θ0

c

))−1 and Λ̃n ≡ (Se
′
n (Qn, θc)

Re
′
n (Qn, θc)P en (Qn, θc)Ren (Qn, θc)Sen (Qn, θc))

−1. Then, for any randomly distributed vector εn of dimension n × 1 such

that Eεiεj = 0 for i 6= j with Eε2i <∞ and if link formation is independent, 1
n
E(ε′nΛ−1

n εn) = 1
n
E(ε′n(Λen)−1εn) + op (1).

Proof. For simplicity, consider Ren
(
Qn, θ0

c

)
= R0

n = In. Proof generalizes immediately otherwise. Then

1
n
E
{
ε′n

[
Λ−1
n − (EΛn)−1

]
εn
}

= 1
n
E
{
ε′nΛ−1

n [EΛn − Λn] (EΛn)−1 εn
}

= 1
n
E
{∑n

i=1

∑n
j=1 εiεj

[
Λ−1
n (EΛn − Λn)EΛ−1

n

]
ij

}
=

1
n

∑n
i=1 E

{
ε2i
}
E
[
Λ−1
n (EΛn − Λn)EΛ−1

n

]
ii

as εi is independent of εj for i 6= j. Because E
[
Λ−1
n (EΛn − Λn) (EΛn)−1

]
ij

p→ 0 and E
{
ε2i
}
< ∞, then 1

n
E
{
ε′n

[
Λ−1
n − (EΛn)−1

]
εn
}

= op (1). Remains to show EΛn = Λen. By definition, Λn =(
In − λ0W 0

n

)
Λ̃n(In−λ0W 0′

n ) = Λ̃n−λ0W 0
nΛ̃n−λ0Λ̃nW 0′

n +λ2
0W

0
nΛ̃nW 0′

n . It follows that EΛn = Λ̃n−λ0W e
n

(
Qn, θ0

c

)
Λ̃n−

λ0Λ̃nW e′
n

(
Qn, θ0

c

)
+ λ2

0EW 0
nΛ̃nW 0′

n = Λ̃n − λ0W e
n

(
Qn, θ0

c

)
Λ̃n − λ0Λ̃nW e′

n

(
Qn, θ0

c

)
+λ2

0W
e
n

(
Qn, θ0

c

)
Λ̃nW e′

n

(
Qn, θ0

c

)
= Λe where the second equality holds only if link formation is independent, i.e., if

E{W 0
j }ik{W 0

j }i′k′ = E{W 0
j }ikE{W 0

j }i′k′ if either i 6= i′ or k 6= k′.

Lemma 4. Let εn be a n× 1 stationary, ergodic process with Eεn = 0. Then 1
n
E(ε′nΛ−1

n εn) = 1
n
E(ε′n (Λen)−1 εn) + op (1).

Proof. Lemma 3 applies with the following modification. Given
∑n
i=1

∑n
j=1 εiεj

[
Λ−1
n (EΛn − Λn)EΛ−1

n

]
ij

is a weighted

U -statistic, with summable weights, Theorem 3 of Hsing and Wu (2004) is applied to obtain convergence in probability to

zero.

Lemma 5. 1
n
E{β′0Z0′

n (S0′
n )−1Se

′
n

(
Qn, θ0

c

)
Re
′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Sen
(
Qn, θ0

c

) (
S0
n

)−1
Z0
nβ0} = op (1).

Proof. Apply Lemma 4 with minor modifications twice. First, note that 1
n
E{β′0Z0′

n (S0′
n )−1Se

′
n

(
Qn, θ0

c

)
Re
′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Sen
(
Qn, θ0

c

) (
S0
n

)−1
Z0
nβ0} = 1

n
E{β′0Z0′

n R
e′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Z0
nβ0} +

op (1). Secondly, 1
n
E{β′0Z0′

n R
e′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Z0
nβ0} = 1

n
E
{
β′0Z

e′
n

(
Qn, θ0

c

)
Re
′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Zen
(
Qn, θ0

c

)
β0

}
+ op (1) . Properties of projection matrix ensures P en

(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Zen
(
Qn, θ0

c

)
= 0.
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Lemma 6. 1
n
E{ε′n(R0′

n )−1(S0′
n )−1Se

′
n

(
Qn, θ0

c

)
Re
′
n

(
Qn, θ0

c

)
P en
(
Qn, θ0

c

)
Ren
(
Qn, θ0

c

)
Sen
(
Qn, θ0

c

) (
S0
n

)−1 (
R0
n

)−1
εn} = σ2

0 +

op (1).

Proof. Direct consequence of Lemma 4 taken with θc = θ0
c .

1.D.2 Derivation of pdf of networks.

For the p1-reciprocity model, the probability that random matrix W takes a particular value w is

P (W = w) =
∏
i<j

δ
wijwji

F

∏
i<j

δ
wij(1−wji)+(1−wij)wji

A

∏
i<j

δ
(1−wij)(1−wji)
N

= exp

ln δF
∑
i<j

wijwji + ln δA
∑
i<j

wij (1− wji) + (1− wij)wji + ln δN
∑
i<j

(1− wij) (1− wji)


=

1

κ
exp

θ1
g

∑
i 6=j

wij + θ2
g

∑
i<j

wijwji



where θ1
g = ln δA

δN
, θ2
g = δF δN

δ2
A

and κ =
(∏

i<j δN

)−1
. Introducing dependence on sharing exogenous characteristics, the pdf

is

P (W = w|Q = q) =
∏
i<j

(
δ
qij
1F δ

1−qij
0F

)wijwji ∏
i<j

(
δ
qij
1A δ

1−qij
0A

)(1−wij)wji+wij(1−wji) ∏
i<j

(
δ
qij
1N δ

1−qij
0N

)(1−wij)(1−wji)

= exp

ln

∏
i<j

(
δ
qij
1F δ

1−qij
0F

)wijwji ∏
i<j

(
δ
qij
1A δ

1−qij
0A

)(1−wij)wji+wij(1−wji) ·

·
∏
i<j

(
δ
qij
1N δ

1−qij
0N

)(1−wij)(1−wji)




= exp

∑
i<j

wijwji (qij ln δ1F + (1− qij) ln δ0F ) +
∑
i<j

(1− wij)wji (qij ln δ1A + (1− qij) ln δ0A)

+
∑
i<j

wij (1− wji) (qij ln δ1A + (1− qij) ln δ0A)

+
∑
i<j

(1− wij) (1− wji) (qij ln δ1N + (1− qij) ln δ0N )


=

1

κ
exp

θ1
g

∑
i 6=j

wij + θ2
g

∑
i6=j

wijqij + θ3
g

∑
i<j

wijwji + θ4
g

∑
i<j

wijwjiqij



where θ1
g = ln δ0A

δ0N
, θ2
g = ln δ0N δ1A

δ0Aδ1N
, θ3
g = ln δ0F δ0N

δ2
0A

, θ4
g = ln

δ1F δ
2
0Aδ1N

δ0F δ
2
1A
δ0N

and

κ−1 = exp

ln

δ1N δ0N∑
i<j

qij

∏
i<j

δ0N .
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1.D.3 Lemma.

Lemma 7. (i) Under Assumption 6, Zen
(
Qn, θ0

c

)
and Gen

(
Qn, θ0

c

)
Zen
(
Qn, θ0

c

)
β0 are asymptotically independent. (ii)

Define

γ (Qn, θc) =
1

n
E{β′0Z0′

n (S0′
n )−1P̃ en (Qn, θc) (S0

n)−1Z0
nβ0}

with P̃ en (Qn, θc) = Se
′
n (Qn, θc)Re

′
n (Qn, θc)P en (Qn, θc)Ren (Qn, θc)Sen (Qn, θc). For every point θc ∈ Θc, the condition

γ (Qn, θc) > 0 holds.

Proof. (i) Under the assumption, full column rank means that the only solutions for the constants c1, c2 and c3 in the

equation xnc1 + W e
n

(
Qn, θ0

c

)
xnc2 + Gen

(
Qn, θ0

c

)
xnβ10c3 + Gen

(
Qn, θ0

c

)
W e
n

(
Qn, θ0

c

)
xnβ20c3 = 0 are c1 = c2 = c3 =

0. Under the assumption that Gen
(
Qn, θ0

c

)
≡ W e

n

(
Qn, θ0

c

) (
Sen
(
Qn, θ0

c

))−1
=
(
Sen
(
Qn, θ0

c

))−1
W e
n

(
Q, θ0

c

)
, i.e., assum-

ing symmetry of W e
n

(
Qn, θ0

c

)
, expression is equal to xnc1 + W e

n

(
Qn, θ0

c

)
xnc2 +

(
Sen
(
Qn, θ0

c

))−1
W e
n

(
Qn, θ0

c

)
xnβ10c3 +(

Sen
(
Qn, θ0

c

))−1 (
W e
n

(
Qn, θ0

c

))2
xnβ20c3, then equivalent to assessing

Sen
(
Qn, θ

0
c

)
xnc1 + Sen

(
Qn, θ

0
c

)
W e
n

(
Qn, θ

0
c

)
xnc2 +W e

n

(
Qn, θ

0
c

)
xnβ10c3 +

(
W e
n

(
Qn, θ

0
c

))2
xnβ20c3

=
(
In + λW e

n

(
Qn, θ

0
c

))
xnc1 +

(
In + λW e

n

(
Qn, θ

0
c

))
W e
n

(
Qn, θ

0
c

)
xnc2 +W e

n

(
Qn, θ

0
c

)
xnβ10c3

+
(
W e
n

(
Qn, θ

0
c

))2
xnβ20c3

= xnc1 + λW e
n

(
Qn, θ

0
c

)
xnc1 +W e

n

(
Qn, θ

0
c

)
xnc2 + λ

(
W e
n

(
Qn, θ

0
c

))2
xnc2 +W e

n

(
Qn, θ

0
c

)
xnβ10c3

+
(
W e
n

(
Qn, θ

0
c

))2
xnβ20c3

= xnc1 +W e
n

(
Qn, θ

0
c

)
xn (λc1 + c2 + β10c3) +

(
W e
n

(
Qn, θ

0
c

))2
xn (λc2 + β20c3)

As xn,W e
n

(
Qn, θ0

c

)
xn and (W e

n (Qn, θc))
2 xn are linearly independent, c1 = 0, then implying c2+β10c3 = 0 and λc2+β20c3 =

0. Together, (−λβ10 + β20) c3 = 0. Given β20 6= λβ10, c3 = c2 = 0. If W e
n(Qn, θ0

c ) is not symmetric, premultiply the initial

expression by W e
n(Qn, θ0

c )Sen(Qn, θ0
c )(W e

n(Qn, θ0
c ))−1 = In + λ0W e

n(Qn, θ0
c ) and same result follows.

(ii) The reduced-form of the model evaluated at the true vector of parameter θ0 is

y =
(
Sen
(
Qn, θ

0
c

))−1
Zen
(
Qn, θ

0
c

)
β0 +

(
Sen
(
Qn, θ

0
c

))−1 (
Ren
(
Qn, θ

0
c

))−1
εen. (1.28)

As
(
Sen
(
Qn, θ0

c

))−1
= In+λ0Gen

(
Qn, θ0

c

)
, where Gen

(
Qn, θ0

c

)
≡W e

n

(
Qn, θ0

c

) (
Sen
(
Qn, θ0

c

))−1, the expression above can also

be written as

yn = Zen
(
Qn, θ

0
c

)
β0 + λ0G

e
n

(
Qn, θ

0
c

)
Zen
(
Qn, θ

0
c

)
β0 +

(
Sen
(
Qn, θ

0
c

))−1 (
Ren
(
Qn, θ

0
c

))−1
εen. (1.29)
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For separate identification of λ0 and β0 =
(
β′10, β

′
20

)′, it is necessary to guarantee that matrices Zen
(
Qn, θ0

c

)

Gen
(
Qn, θ

0
c

)
Zen
(
Qn, θ

0
c

)
β0 = W e

n

(
Qn, θ

0
c

)
(Sen

(
Qn, θ

0
c

)
)−1Zen

(
Qn, θ

0
c

)
β0

are not dependent asymptotically. In turn, asymptotic independence of the concerned matrices is a necessary and sufficient

condition for γ (Qn, θc) > 0, as I now show. Following Lemma 3, γ (Qn, θc) is well approximated by γe (Qn, θc), where

γe (Qn, θc) =
1

n
β′0Z

e′
n

(
Qn, θ

0
c

)
(Se
′
n

(
Qn, θ

0
c

)
)−1P̃ en (Qn, θc) (Sen

(
Qn, θ

0
c

)
)−1Zen

(
Qn, θ

0
c

)
β0.

Given that P̃ en (Qn, θc) = Se
′
n (Qn, θc)Re

′
n (Qn, θc)P en (Qn, θc)Ren (Qn, θc)Sen (Qn, θc) is positive definite, then γ (Qn, θc) = 0

if, and only if,
(
Sen
(
Qn, θ0

c

))−1
Zen
(
Qn, θ0

c

)
β0 = 0, which is equivalent to Zen

(
Qn, θ0

c

)
β0 +λ0Gen

(
Qn, θ0

c

)
Zen
(
Qn, θ0

c

)
β0 = 0

using
(
Sen
(
Qn, θ0

c

))−1
= In + λ0Gen

(
Qn, θ0

c

)
or, essentially, that Zen

(
Qn, θ0

c

)
and Gen

(
Qn, θ0

c

)
Zen
(
Qn, θ0

c

)
β0 are asymptot-

ically independent.

1.D.4 Theorem 1.

Proof. (Uniform Convergence). The goal is to show that the concentrated log-likelihood (n)−1 [lnLcn (θc)−Qn (θc)] converges

uniformly to zero on Θc, where Fn (θc) = maxβ,σ2 E lnLcn (θc), that is,

sup
θc∈Θc

∣∣∣∣ 1n lnLn (θc)−
1

n
Fn (θc)

∣∣∣∣ = sup
θc∈Θc

∣∣ln σ̃2 (θc)− ln σ̂2 (θc)
∣∣ = op (1) .

In first place, misspecification component in σ̂2 (Qn, θc) is made explicit. Given Sen (Qn, θc) = In−λW e
n (Qn, θc) and

(
S0
n

)−1
=

λ0G0
n + In where G0

n = W 0
n

(
S0
n

)−1, then Sen (Qn, θc)
(
S0
n

)−1
= λ0G0

n + In − λλ0W e
n (Qn, θc)G0

n − λW e
n (Qn, θc). Now

λ0W e
n (Qn, θc) = λ0W 0

n + λ0

(
W e
n (Qn, θc)−W 0

n

)
= In − S0

n + λ0

(
W e
n (Qn, θc)−W 0

n

)
and

Sen (Qn, θc)
(
S0
n

)−1
= (λ0 − λ)G0

n + In + Bn (Qn, θc) where the misspecification term is defined Bn (Qn, θc) ≡

λ
(
W 0
n −W e

n (Qn, θc)
)

+ λλ0

(
W 0
n −W e

n (Qn, θc)
)
G0
n = λ

(
W 0
n −W e

n (Qn, θc)
) (

I + λ0G0
n

)
. Therefore, using the reduced-

form equation Sen (Qn, θc) yn = Sen (Qn, θc)
(
S0
n

)−1
Z0
nβ0 + Sen (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn,

P en (Qn, θc)R
e
n (Qn, θc)S

e
n (Qn, θc) yn = P en (Qn, θc)R

e
n (Qn, θc)Z

0
nβ0 + (λ0 − λ)P en (Qn, θc)R

e
n (Qn, θc)G

0
nZ

0
nβ0

+P en (Qn, θc)R
e
n (Qn, θc)Bn (Qn, θc)Z

0
nβ0

+P en (Qn, θc)R
e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn.
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Given that σ̂2 (Qn, θc) = 1
n
y′nS

e′
n (Qn, θc)Re

′
n (Qn, θc)P en (Qn, θc)Ren (Qn, θc)Sen (Qn, θc) yn, σ̂2 (Qn, θc) =

∑10
i=1Ki (Qn, θg),

where

K1 (Qn, θg) =
1

n

[
Ren (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)Z

0
nβ0

]
K2 (Qn, θg) =

2

n
(λ0 − λ)

[
Ren (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)G

0
nZ

0
nβ0

]
K3 (Qn, θg) =

2

n

[
Ren (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)Bn (Qn, θc)Z

0
nβ0

]
K4 (Qn, θg) =

2

n

[
Ren (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn
]

K5 (Qn, θg) =
1

n
(λ0 − λ)2 [Ren (Qn, θc)G

0
nZ

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)G

0
nZ

0
nβ0

]
K6 (Qn, θg) =

2

n
(λ0 − λ)

[
Ren (Qn, θc)G

0
nZ

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)Bn (Qn, θc)Z

0
nβ0

]
K7 (Qn, θg) =

2

n
(λ0 − λ)

[
Ren (Qn, θc)G

0
nZ

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn
]

K8 (Qn, θg) =
1

n

[
Ren (Qn, θc)Bn (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)Bn (Qn, θc)Z

0
nβ0

]
K9 (Qn, θg) =

2

n

[
Ren (Qn, θc)Bn (Qn, θc)Z

0
nβ0

]′
P en (Qn, θc)

[
Ren (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn
]

K10 (Qn, θg) =
1

n

[
Ren (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn
]′
P en (Qn, θc)

[
Ren (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn
]

Given Lemma 1, K4 (Q, θg), K7 (Q, θg) and K9 (Q, θg) are op (1). Remains to show the problem in expectation. The

concentrators are

β̃ (Qn, θc) =
[
Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)Z

e
n (Qn, θc)

]−1
·

·Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)Eyn

σ̃2 (Qn, θc) =
1

n
E
{[
Sen (Qn, θc) yn − Zen (Qn, θc) β̃ (θc)

]′
Re
′
n (Qn, θc)P

e
n (Qn, θc) ·

·Ren (Qn, θc)
[
Sen (Qn, θc) yn − Zen (Qn, θc) β̃ (θc)

]}
.

Noticing P en (Qn, θc)Ren (Qn, θc)Zen (Qn, θc) = 0, the expectation

σ̃2 (Qn, θc) =
1

n
E
{
y′nS

e′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

}
=

1

n
E
{[(

S0
n

)−1 (
R0
n

)−1
εn
]′
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn

}
+

1

n
E
{[(

S0
n

)−1
Z0
nβ0

]′
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1
Z0
nβ0

}
=

1

n
E
{[(

S0
n

)−1 (
R0
n

)−1
εn
]′
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
ε

}
+

1

n
E
{
β′0Z

0′
n

[
(λ0 − λ)G0

n + In +B (Qn, θc)
]′
Re
′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)[

(λ0 − λ)G0
n + In +Bn (Qn, θc)

]
Z0
nβ0

}
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and so σ̃2 (Q, θc) =
∑7
i=1 K̃i (Q, θc) with

K̃1 (Qn, θc) =
1

n
E
{
ε′n

(
R0′
n

)−1 (
S0′
n

)−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn

}
K̃2 (Qn, θc) =

1

n
E
{

(λ0 − λ)2 β′0Z
0′
n G

0′
n R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)G

0
nZ

0
nβ0

}
K̃3 (Qn, θc) =

2

n
E
{

(λ0 − λ)β′0Z
0′
n G

0′
n R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)Z

0
nβ0

}
K̃4 (Qn, θc) =

2

n
E
{

(λ0 − λ)β′0Z
0′
n G

0′
n R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e (Qn, θc)B (Qn, θc)Z
0
nβ0

}
K̃5 (Qn, θc) =

1

n
E
{
β′0Z

0′
n R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)Z

0
nβ0

}
K̃6 (Qn, θc) =

2

n
E
{
β′0Z

0′
n R

e′
n (Qn, θc)P

e (Qn, θc)R
e
n (Qn, θc)Bn (Qn, θc)Z

0
nβ0

}
K̃7 (Qn, θc) =

1

n
E
{
β′0Z

0′
n Bn (Qn, θc)

′Re
′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)Bn (Qn, θc)Z

0
nβ0

}
.

By Lemma 2, K̃1 (Qn, θc) = K10 (Qn, θc)+op (1). Also, K̃2 (Qn, θc) = K5 (Qn, θc)+op (1), K̃3 (Qn, θc) = K2 (Qn, θc)+op (1),

K̃4 (Qn, θc) = K6 (Qn, θc) + op (1), K̃5 (Qn, θc) = K1 (Qn, θc) + op (1), K̃6 (Qn, θc) = K3 (Qn, θc) + op (1) and K̃7 (Qn, θc) =

K8 (Qn, θc) + op (1). As a consequence, σ̂2 (Qn, θc) − σ̃2 (Qn, θc) = op (1) uniformly on θc. Convergence is uniform on the

parameter space as λ, ρ and θc appear as polynomial factors.

(Identification for λ = λ0). Consider the non-stochastic auxiliary model yj = λ0W e
j

(
Qj , θ

0
c

)
yj + xjβ1

+W e
j

(
Qj , θ

0
c

)
xjβ2 + vj where true neighboring matrices are given by expected network at true parameter values, W 0

j =

W e
j

(
Qj , θ

0
c

)
and M0

j = Me
j

(
Qj , θ

0
c

)
. Its likelihood is

lnL∗∗n (θ) = −
n

2
ln
(
2πσ2

)
+ ln |Sen (Qn, θ)|+ ln |Ren (Qn, θ)| −

1

2σ2

v∑
j=1

εe
′
j (Qj , θ) ε

e
j (Qj , θ)

where εej (Qj , θ) = Rej (Qj , θ)
(
Sej (Qj , θ) yj − xjβ1 −W e

j (Qj , θ)xjβ2

)
. As usual, parameters β and σ2 can be concentrated

out of the likelihood. The concentrators are given by

β̂∗∗ (Qn, θc) =
[
Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)Z

e
n (Qn, θc)

]−1
Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

σ̂∗∗2 (Qn, θc) =
1

n

[
Se (Qn, θc) yn − Ze (Qn, θc) β̂ (θc)

]′
Re
′
n (Qn, θc)R

e
n (Qn, θc)

[
Sen (Qn, θc) yn − Ze (Qn, θc) β̂ (θc)

]
=

1

n
y′nS

e′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

The final form for the concentrated likelihood is lnLc∗∗n (θc) = −n
2

(ln (2π) + 1)− n
2

ln σ̂2 (θc)+ln |Sen (Qn, θ)|+ln |Ren (Qn, θ)|.

The problem in expectation F ∗∗n (θ) = maxβ,σ2 E lnL∗∗n (θ) is F ∗∗n (θ) = −n
2

(ln (2π) + 1) + ln |Sen (Qn, θ)|+ ln |Ren (Qn, θ)| −
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n
2
σ̃∗∗2 (θ), where σ̃∗∗2 (Qn, θc) is given by

1

n
E
{
y′nS

e′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc) yn

}
=

1

n
E
{
ε′n

(
Re
′
n

(
Qn, θ

0
c

))−1 (
Se
′
n

(
Qn, θ

0
c

))−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n ·

· (Qn, θc)Ren (Qn, θc)S
e
n (Qn, θc)

(
Sen
(
Qn, θ

0
c

))−1 (
Ren
(
Qn, θ

0
c

))−1
εn
}

+
1

n
E
{
β′0Z

e′
n

(
Qn, θ

0
c

) (
Se
′
n

(
Qn, θ

0
c

))−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc) ·

·Ren (Qn, θc)S
e
n (Qn, θc)

(
Sen
(
Qn, θ

0
c

))−1
Zen
(
Qn, θ

0
c

)
β0

}
=

σ2

n
tr
{(

Re
′
n

(
Qn, θ

0
c

))−1 (
Se
′
n

(
Qn, θ

0
c

))−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc) ·

· Ren (Qn, θc)S
e
n (Qn, θc)

(
Sen
(
Qn, θ

0
c

))−1 (
Ren
(
Qn, θ

0
c

))−1
}

+
(λ0 − λ)2

n
β′0Z

e′
n

(
Qn, θ

0
c

)
Ge
′
n

(
Qn, θ

0
c

)
Re
′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)G

e
n

(
Qn, θ

0
c

)
Zen
(
Qn, θ

0
c

)
β0.

By Jensen’s Inequality, F ∗∗n (θ) ≤ F ∗∗n (θ0). Identification in the original model follows from

1

n
Fn (θc)−

1

n
Fn
(
θ0
c

)
=

1

n

[
F ∗∗n (θc)− F ∗∗n

(
θ0
c

)]
+

1

2

[
lnσ∗∗2 (θc)− ln σ̃2 (θc) + ln σ̃2

(
θ0
c

)
− lnσ∗∗2

(
θ0
c

)]
.

It is immediate that σ∗∗2
(
θ0
c

)
= σ2

0 . Lemmas 5 and 6 imply that σ̃2
(
θ0
c

)
= σ2

0 . Notice also

σ̃2 (θc) =
1

n
· E
{
ε′n

(
R0′
n

)−1 (
S0′
n

)−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1 (
R0
n

)−1
εn

}
+

1

n
E
{
β′0Z

0′
n

(
S0′
n

)−1
Se
′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n (Qn, θc)R

e
n (Qn, θc)S

e
n (Qn, θc)

(
S0
n

)−1
Z0
nβ0

}
.

Finally, Lemma 3 and Assumption 6 imply lnσ∗∗2 (θc)− ln σ̃2 (θc) < 0. This completes the proof.

1.D.5 Theorem 2.

Proof. Jacobian and Hessian matrices are given in Appendix 1.C. The asymptotic distribution can be obtained from a Taylor

expansion around the point
∂ lnLe( θ̂|yn,xn,Qn)

∂θ
= 0. For a point θ̃ between θ̂ and θ0,

√
n
(
θ̂ − θ0

)
=

− 1

n

∂ lnLe( θ̃
∣∣∣ yn, xn, Qn)

∂θ∂θ′

−1

1
√
n

∂ lnLe ( θ0| yn, xn, Qn)

∂θ
.

(Showing 1
n

∂2 lnLe( θ̃|yn,xn,Qn)
∂θ∂θ′

p−→ 1
n

∂2 lnLe( θ0|yn,xn,Qn)
∂θ∂θ′ ). Convergence is shown explicitly for three terms: ∂

2 lnLe(θ̃)
∂λ∂β′1

,
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∂2 lnLe(θ̃)
∂λ∂σ2 and ∂2 lnLe(θ̃)

∂λ2 ; other terms can be shown with little or no modifications. For

1

n

{
∂2 lnLe(θ̃)
∂λ∂β′1

−
∂2 lnLe(θ0)

∂λ∂β′1

}
=

1

nσ2
0

y′nW
e′
n (Qn, θ0)Re

′
n (Qn, θ0)xn −

1

nσ̃2
y′nW

e′
n

(
Qn, θ̃

)
Re
′
n

(
Qn, θ̃

)
xn

=
1

n

[
1

σ2
0

−
1

σ̃2

]
y′nW

e′
n (Qn, θ0)Re

′
n (Qn, θ0)xn

+
1

nσ̃2
y′n

[
W e′
n (Qn, θ0)Re

′
n (Qn, θ0)−W e′

n (Qn, θ̃)R
e′
n (Qn, θ̃)

]
xn.

The argument follows by noticing W e
n (Qn, θ0) and Ren (Qn, θ0) are row and column-sum bounded, so 1

n
y′nW

e′
n (Qn, θ0)

Re
′
n (Qn, θ0)xn = Op (1), while by continuity of the inverse,

[
1
σ2
0
− 1
σ̃2

]
= op (1). The second term converges in probability as

1
nσ̃2 y

′
n[W e′

n (Qn, θ0)Re
′
n (Qn, θ0) − W e′

n (Qn, θ̃)Re
′
(Qn, θ̃)]xn = 1

nσ̃2 β
′
0Z

0′
n

(
S0′
n

)−1 [
W e′
n (Qn, θ0)Re

′
n (Qn, θ0)

−W e′
n (Qn, θ̃)Re

′
n (Qn, θ̃)

]
xn+op (1). Given that Z0

n =
[
xn;W 0

nxn
]
, xn is non stochastic,W 0

n is row and column-sum bounded,

and
[
W e′
n (Qn, θ0)Re

′
n (Qn, θ0)−W e′

n (Qn, θ̃)Re
′
n (Qn, θ̃)

]
= op (1), it has been shown that 1

n

{
∂2 lnLe(θ̃)
∂λ∂β′1

− ∂
2 lnLe(θ0)
∂λ∂β′1

}
= op (1). The next term is

1

n

{
∂2 lnLe(θ̃)
∂λ∂σ2

−
∂2 lnLe (θ0)

∂λ∂σ2

}
=

1

nσ4
0

y′nW
e′
n (Qn, θ0)Re

′
n (Qn, θ0) εen (Qn, θ0)−

1

nσ̃4
y′nW

e′
n (Qn, θ̃)R

e′
n (Qn, θ̃)ε

e
n(Qn, θ̃)

=
1

n

[
1

σ4
0

−
1

σ̃4

]
y′nW

e′
n (Qn, θ0)Re

′
n (Qn, θ0) εen (Qn, θ0)

+
1

nσ̃4
y′n

[
W e′
n (Qn, θ0)Re

′
n (Qn, θ0) εen (Qn, θ0)−W e′

n (Qn, θ̃)R
e′
n (Qn, θ̃)ε

e
n(Qn, θ̃)

]
=

1

n

[
1

σ4
0

−
1

σ̃4

]
y′nW

e′
n (Qn, θ0)Re

′
n (Qn, θ0) εen (Qn, θ0)

+
1

nσ̃4
y′n

[
W e′
n (Qn, θ0)Re

′
n (Qn, θ0)−W e′

n (Qn, θ̃)R
e′
n (Qn, θ̃)

]
εen (Qn, θ0) + op (1)

as εen(Qn, θ̃) = Ren(Qn, θ̃)(Sen(Qn, θ̃)yn−xnβ̃1−W e
n(Qn, θ̃)xnβ̃2)−Ren (Qn, θ0) (Sen (Qn, θ0) yn − xnβ10 −W e

n (Qn, θ0)xnβ20)

+εen (Qn, θ0) = Ren(Qn, θ̃)([Sen(Qn, θ̃) − Sen (Qn, θ0)]yn − xn[β̃1 − β10] − W e
n(Qn, θ̃)xnβ̃2 + W e

n (Qn, θ0)xnβ20)+

Ren(Qn, θ̃)[Sen(Qn, θ̃)−Sen (Qn, θ0)]yn−Ren(Qn, θ̃)xn[β̃1−β10]−Ren(Qn, θ̃)W e
n(Qn, θ̃) xn[β20− β̃2]+Ren(Qn, θ̃)[W e

n (Qn, θ0)−

W e
n(Qn, θ̃)]xnβ20 +[Ren(Qn, θ̃) − Ren (Qn, θ0)]Sen (Qn, θ0) yn −[Ren(Qn, θ̃) − Ren (Qn, θ0)]xnβ10 − [Ren(Qn, θ̃) − Ren (Qn, θ0)]

W e
n (Qn, θ0)xnβ20 +εen (Qn, θ0), [Sen(Qn, θ̃)−Sen (Qn, θ0)], [W e

n (Qn, θ0)−W e
n(Qn, θ̃)] and [Ren(Qn, θ̃)−Ren (Qn, θ0)] = op (1),

and Ren(Qn, θ̃) is row and column-sum bounded, then 1
n

{
∂2 lnLe(θ̃)
∂λ∂σ2 − ∂2 lnLe(θ0)

∂λ∂σ2

}
= op (1).

By Mean Value Theorem, defining Gj (λ, θg) = (Sej (Qj , θ))
−1W e

j (Qj , θ), tr
{
G2
n

(
λ̄, θ̄g

)}
= tr

{
G2
n

(
λ0, θ0

g

)}
+

2tr
{
G3
n

(
λ̄, θ̄g

)} (
λ̄− λ0

)
+ 2tr

{
∇θgW e

n

(
λ̄, θ̄g

)
Sen
(
λ̄, θ̄g

)−1
Gn
(
λ̄, θ̄g

)} (
θ̄g − θ0

)
+ 2λtr

{
W e
n

(
λ̄, θ̄g

)
∇θgW e

n

(
λ̄, θ̄g

)
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Gn
(
λ̄, θ̄g

)} (
θ̄g − θ0

)
then

1

n

{
∂2 lnLe(θ̃)

∂λ2
−
∂2 lnLe (θ0)

∂λ2

}
= 2tr

{
G3
n

(
λ̄, θ̄g

)} (
λ̄− λ0

)
+ 2tr

{
∇θgW

e
n

(
λ̄, θ̄g

)
Sen
(
λ̄, θ̄g

)−1
Gn
(
λ̄, θ̄g

)} (
θ̄g − θ0

)
+2λtr

{
W e
n

(
λ̄, θ̄g

)
∇θgW

e
n

(
λ̄, θ̄g

)
Gn
(
λ̄, θ̄g

)} (
θ̄g − θ0

)
+

[
1

σ2
0

−
1

σ̃2

] v∑
j=1

y′jW
e′
j (Qj , θ0)Re

′
j (Qj , θ0)Rej (Qj , θ0)W e

j (Qj , θ0) yj

−
1

σ̃2

v∑
j=1

y′j

[
W e′
j (Qj , θ̃)R

e′
j (Qj , θ̃)R

e
j (Qj , θ̃)−W e′

j (Qj , θ0)Re
′
j (Qj , θ0)Rej (Qj , θ0)

]
W e
j (Qj , θ̃)yj .

By similar arguments, as above, 1
n

{
∂2 lnLe(θ̃)

∂λ2 − ∂2 lnLe(θ0)

∂λ2

}
= op (1).

(Showing 1
n
∂2 lnLe( θ0|yn,xn,Qn)

∂θ∂θ′
p−→ E

(
1
n
∂2 lnLe( θ0|yn,xn,Qn)

∂θ∂θ′

)
). Terms that generically fit into the format ωx (θ) =

1
n
ϕ′∆ (θ)ϕ, where ϕ is non-stochastic vector of dimension n and ∆ is a stochastic matrix of conformable dimension can be

shown to V {ωx (θ)} p−→ 0. For example, −σ
2

n
∂2 lnLe(θ0)
∂λ∂β′1

= 1
n
x′nR

e
n (Qn, θ0)W e

n (Qn, θ0) y = 1
n
x′nR

e
n (Qn, θ0)

W e
n (Qn, θ0)

[(
S0
n

)−1
Z0
nβ0 +

(
S0
n

)−1 (
R0
n

)−1
εn
]

= 1
n
x′nR

e
n (Qn, θ0) W e

n (Qn, θ0)
(
S0
n

)−1
xnβ10 + 1

n
x′nR

e (Qn, θ0)

W e
n (Qn, θ0)

(
S0
n

)−1
W 0
nxnβ20 + op (1). Defining x(l)

n as the l-th column of xn,

ωxl (θ) ≡
1

σ2n
x

(l)′
n Ren (Qn, θ0)W e

n (Qn, θ0)
(
S0
n

)−1
x

(l)
n =

1

σ2n

n∑
i=1

n∑
j=1

x
(l)
n,ix

(l)
n,j

(
Ren
(
Qn, θ

0
)
W e
n (Qn, θ0)

(
S0
n

)−1
)
ij
.

If elements of ∆ (θ) are approximately independent (taking, for example,
(
S0
n

)−1
= In + λW 0

n as the first-order Series

Expansion), then

V (ωxl) =

[
1

σ2n

]2 n∑
i=1

n∑
j=1

(
x

(l)
n,ix

(l)
n,j

)2
V
{(

Ren
(
Qn, θ

0
)
W e
n (Qn, θ0)

(
S0
n

)−1
)
ij

}

Noticing V
(
W 0
n

)
is a matrix of constants, Ren

(
Qn, θ0

)
W e
n (Qn, θ0) is column and row-sum bounded, then V {·} goes to zero

and so does V (γl). An equivalent argument goes through if terms in the middle contains matrix of derivatives. Terms that

generically fit into ωε (θ) = 1
n
ε′n∆ (θ) εn, for example, −σ

2

n
∂2 lnLe(θ)

∂λ∂σ2 = 1
σ2n

y′nW
e′
n (Qn, θ)Re

′
n (Qn, θ)

εen (Qn, θ) = 1
σ2n

ε′n(S0′
n )−1W e′

n (Qn, θ)Re
′
n (Qn, θ)Ren (Qn, θ) ((Sen (Qn, θ))

−1 yn −Zen (Qn, θ)β) = 1
σ2n

ε′n(S0′
n )−1

W e′
n (Qn, θ)Re

′
n (Qn, θ)Ren (Qn, θ) ((Sen (Qn, θ))

−1 yn) + op (1) = 1
σ2n

ε′n(S0′
n )−1W e′

n (Qn, θ)Re
′
n (Qn, θ)Ren (Qn, θ)

(Sen (Qn, θ))
−1 (S0

n

)−1
εn + op (1) by Lemma 1, and straightforward adaptation of Lemma 3, converges to

E
{
−
σ2

n

∂2 lnLe (θ)

∂λ∂σ2

}
=

1

n
tr
{
E
(

(S0′
n )−1W e′

n (Qn, θ)R
e′
n (Qn, θ)R

e
n (Qn, θ) (Sen (Qn, θ))

−1 (S0
n

)−1
)}

.

(Asymptotic distribution). Given existence of higher order moments of εn, the Central Limit Theorem in Kelejian and
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Prucha (2001) can be applied to show that 1√
n

∂ lnLe(θ0)
∂θ

d−→ N (0,Ωθ). Given non-singularity of the Hessian matrix as

guaranteed by global identification condition in Theorem 1, it follows that

√
n
(
θ̂ − θ0

)
d−→ N

(
0,Σ−1

θ ΩθΣ−1
θ

)
.

1.D.6 Proposition 1.

Proof. (i). Starting from the definition of the social multiplier,

ϕ
(
xn;W e

n

(
Qn, θ

+
c

)
, β10, β+

)
=

∞∑
j=1

λj−1
+

(
W e
n

(
Qn, θ

+
c

))j
xn (λ+β10 + β2+) =

∞∑
j=1

λ0λ
−1
+ λj−1

0

(
W e
n

(
Qn, θ

0
c

))j
xn (λ+β10 + β2+) =

∞∑
j=1

λj−1
0

(
W e
n

(
Qn, θ

0
c

))j
xn
(
λ0β10 + λ0λ

−1
+ β2+

)
=

∞∑
j=1

λj−1
0

(
W e
n

(
Qn, θ

0
c

))j
xn (λ0β10 + β20) = ϕ

(
xn;W e

(
Qn, θ

0
c

)
, λ0, β10, β20

)
(1.30)

where the penultimate equality follows by W e
n(Qn, θ

+
c )xnβ2+ − W e

n

(
Qn, θ0

c

)
xnβ20 = λ0λ

−1
+ W e

n

(
Qn, θ0

c

)
xnβ2+

−W e
n

(
Qn, θ0

c

)
xnβ20 = W e

n

(
Qn, θ0

c

)
xn (λ0λ

−1
+ β2+ − β20) = 0. (ii). Define Φ∗ ( θ| yn, xn, Qn) = {θ̃ ∈ Θ : Qn(θ̃) = Qn (θ)}.

Sets Φ
(
θ0
∣∣ yn, xn) = Φ∗

(
θ0
∣∣ yn, xn), as I now show. Inclusion Φ

(
θ0
∣∣ yn, xn) ⊆ Φ∗

(
θ0
∣∣ yn, xn) is immediate from the

first part. The reverse Φ∗
(
θ0
∣∣ yn, xn) ⊆ Φ

(
θ0
∣∣ yn, xn) follows from a contradiction: suppose there is a θ∗ such that

θ∗ ∈ Φ ( θ∗| yn, xn) and θ∗ /∈ Φ∗ ( θ∗| yn, xn). By construction and Jensen’s inequality, Qn (θ∗) < Qn
(
θ0
)
. Observation of the

reduced-form implies εen (Qn, θ∗c ) = εe
(
Qn, θ0

)
, ln |Sen (Qn, θ∗)| = ln

∣∣Sen (Qn, θ0
)∣∣ and ln |Ren (Qn, θ∗)| = ln

∣∣Ren (Q, θ0
)∣∣, and

so Qn (θ∗) = Qn
(
θ0
)
, a contradiction. Therefore, given that Φ

(
θ0
∣∣ yn, xn) = Φ∗

(
θ0
∣∣ yn, xn), for any θc ∈ Φ∗

(
θ0
∣∣ yn, xn),

and, by definition, Φ∗
(
θ0
∣∣ yn, xn) = Θ0, the result is proven.

1.D.7 Theorem 3.

Proof. For parts (1) and (2), see Theorem 3.2 and Lemma 3.1 of Chernozhukov et al. (2007). By construction, and uniform

convergence of Theorem 1 conditions C.1 with an = n, degeneracy property C.3 and condition C.4 therein are satisfied.

Condition C.2 is guaranteed by uniform convergence and boundness of the objective function on a compact set Θ. Parts (3)

and (4) are immediate corollaries.
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1.D.8 Example 3.

The full model is yj = λ0W 0
j yj +xjβ10 +W 0

j xjβ20 + εj with reduced form yj = (S0
j )−1xjβ10 + (S0

j )−1W 0
j xjβ20 + (S0

j )−1εj .

Then

yj − Eyj = ((S0
j )−1 − E(S0

j )−1)xjβ10 + ((S0
j )−1W 0

j − E{(S0
j )−1W 0

j })xjβ20 + (S0
j )−1εj

and Vyj = E((yj − Eyj)(yj − Eyj)′) is

Vyj = E
{

((S0
j )−1 − E(S0

j )−1xjβ10β
′
10x
′
j((S

0
j )−1 − E(S0′

j )−1)
}

+2E
{

((S0
j )−1 − E{(S0

j )−1})xjβ10β
′
20x
′
j((S

0
j )−1W 0

j − E{(S0
j )−1W 0

j })
′
}

+E
{

((S0
j )−1W 0

j − E{(S0
j )−1W 0

j })xjβ20β
′
20x
′
j((S

0
j )−1W 0

j − E{(S0
j )−1W 0

j })
′
}

+ E
{

(S0
j )−1εjε

′
j(S

0′
j )−1

}
.

Denote these terms sequentially as Aj , Bj , Cj and Dj . Aj = sjx
11
j s
′
j , where sj = ((S0

j )−1 − E{(S0
j )−1}) and x11

j =

xjβ10β′10x
′
j . Then

Aj =


∑
i,k E {s1is1k}x11

ik · · ·
∑
i,k E {s1isnk}x11

ik

...
. . .

...∑
i,k E {snis1k}x11

ik · · ·
∑
i,k E {snisnk}x11

ik



where sik denotes the (i, k)th element of sj , and similarly for x11
j . Matrix sj can be approximated s = I+λ0W 0

j +λ2
0(W 0

j )2 +

· · · − (I + λ0EW 0
j + λ2

0E(W 0
j )2 + · · ·) ≈ λ0(W 0

j −W e
j (θ0

j )). Hence sik is dependent of si′k′ if, and only if, i = i′ and k = k′.

Take wik as the (i, k)th element of W 0
j . This simplifies term Aj to

Aj = λ2


∑
i V {w1i}x11

ii · · · 0

...
. . .

...

0 · · ·
∑
i V {wni}x11

ii



which then implies Aj = diag
(
λ2V {Wj} diag(x11

j )
)
. Proceeding in a similar fashion, Bj = sjx

12
j s
∗′
j with x12

j = xjβ10β′20x
′
j

and s∗j = W 0
j + λ0(W 0

j )2 + λ2
0(W 0

j )3 + · · · − (W e
j (θ0) + λ0E(W 0

j )2 + λ2
0E(W 0

j )3 + · · ·) ≈W 0
j −W e

j (θ0)

Bj = 2


∑
i,k E

{
s1is

∗
1k

}
x12
ik · · ·

∑
i,k E

{
s1is

∗
nk

}
x12
ik

...
. . .

...∑
i,k E

{
snis

∗
1k

}
x12
ik · · ·

∑
i,k E

{
snis

∗
nk

}
x12
ik

 = 2λ


∑
i V {w1i}x12

ii · · · 0

...
. . .

...

0 · · ·
∑
i V {wni}x12

ii
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and then Bj = diag
(

2λV {Wj}diag(x12
j )
)
. The second equality uses independence between Bernoulli trials. For Cj ,

Cj =


∑
i E
{
s∗21i

}
x22
ii · · · 0

...
. . .

...

0 · · ·
∑
i E
{
s∗2ni
}
x22
ii

 =


∑
i V {w1i}x22

ii · · · 0

...
. . .

...

0 · · ·
∑
i V {wni}x22

ii


= diag

(
V {Wj}diag

(
x22
j

))

Lastly,

Dj =


∑
i,j E {s1is1j}E {eij} · · ·

∑
i,j E {s1isnj}E {eij}

...
. . .

...∑
i,j E {snis1j}E {eij} · · ·

∑
i,j E {snisnj}E {eij}

 =


∑
i E
{
s21i
}
σ2 · · ·

∑
i E {s1isni}σ2

...
. . .

...∑
i E {snis1i}σ2 · · ·

∑
i E
{
s2ni
}
σ2



= σ2


∑
i E
{
s21i
}
· · · 0

...
. . .

...

0 · · ·
∑
i E
{
s2ni
}

 = λ2σ2


∑
i V {w1i} · · · 0

...
. . .

...

0 · · ·
∑
i V {wni}

+ σ2Inj

= λ2σ2diag
(
V {Wj} ιnj

)
+ σ2Inj .

The entire expression reads Vyj = diag
(
V {Wj} (λ2diag(x11

j ) + 2λdiag(x12
j ) + λ2σ2ιnj )

)
+ σ2Inj . Using Theorem 6 of

Rothenberg (1971, p. 585), suffices that the jacobian of matrix of restrictions has rank equal to the unknown parameters. The

identified set can be translated, in this case, as δλ = δ0λ0 and β2λ−1 = β20λ
−1
0 , where the combination of the parameters in

the right hand side is identified from data; parameters β10 and σ2
0 are point-identified. The jacobian then reads

J (θ) =



0 1 0 0 0

0 0 0 0 1

δ 0 0 λ 0

−β2λ−2 0 λ−1 0 0

JK1 (θ) JK2 (θ) JK3 (θ) JK4 (θ) JK5 (θ)
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where

JK1 (θ) = 2n−1
j δ1 (1− δ1)λ

(
ι′nj

diag(x11
j ) + njσ

2
)

JK2i (θ) = n−1
j δ1(1− δ1)

(
λ2ι′nj

∂diag(x11
j )

∂β1i
+ 2λι′nj

∂diag(x12
j )

∂β1i

)

JK3i (θ) = n−1
j δ1(1− δ1)

(
2λι′nj

∂diag(x12
j )

∂β2i
+ ι′nj

∂diag(x22
j )

∂β2i

)
JK4 (θ) = n−1

j (1− 2δ1)
(
λ2ι′nj

diag(x11
j ) + 2λι′nj

diag(x12
j ) + ι′nj

diag(x22
j ) + njλ

2σ2
)

JK5 (θ) = δ1 (1− δ1)− njλ2 + 1.

Identification is guarateed with rank (J (θ)) = K, where K is the number of parameters in the structural model. Given σ2
0

is identified, the last equation gives a solution for δ1 and λ. Linear independence is guaranteed if the only column vector c

that satisfies J (θ) c = 0 is c = 0. For the case of one exogenous covariate, this immediately implies c2 = c5 = 0. We then

have c1δ + c4λ = 0, −c1βλ−2 + c3λ−1 = 0 and c1JK1 (θ) + c3JK3 (θ) + c4JK4 (θ) = 0. Substituting out c1 and c3 in the

third equation, one obtains the condition that c4
[
−λδ−1JK1 (θ)− λδ−1βJK3 (θ) + JK4 (θ)

]
= 0. If λ 6= 0, it is equivalent to

−λδ−1JK1 (θ) − λδ−1βJK3 (θ) + JK4 (θ) 6= 0 at θ0. This condition is empirically testable for all θ ∈ Θ0, which is sufficient

as θ0 ∈ Θ0.

1.D.9 Theorem 4.

Proof. (Consistency). Because Θ̂ converges to Θ0 in the Hausdorff metric, Θ̂ ⊆ Θε0 for Θε0 = {θ ∈ Θ : d (θ,Θ0) ≤ ε} with

ε = o (1) and ε ≥ 0. It follows that

θ̂ = arg min
θ∈Θ0

 v∑
j=1

S−1
S∑
s=1

qs,j (y, θ)

′ Ω
 v∑
j=1

S−1
S∑
s=1

qs,j (y, θ)

+ op (1)

When S and v are going to infinity,

v−2

 v∑
j=1

S−1
S∑
s=1

qs,j (y, θ)

′ Ω
 v∑
j=1

S−1
S∑
s=1

qs,j (y, θ)

 a.s.−→
(
E0
yEW,eqs,j (y, θ)

)′
Ω
(
E0
yEW,eqs,j (y, θ)

)

where EW,e is the conditional expectation taken with respect to the distribution of W and e, given y and x and E0
y is

the expectation with respect to the true distribution of y, given x. Given that
(
E0
yEW,eqs,j (y, θ)

)′
Ω
(
E0
yEW,eqs,j (y, θ)

)
=(

E0
yqj (y, θ)

)′
Ω
(
E0
yqj (y, θ)

)
and E0

yqj (y, θ0) = 0 only at θ0, consistency follows.

(Asymptotic normality). In the cases where S → ∞ fast enough, results follow from standard asymptotic theory and

Gouriéroux and Monfort (1997, Ch. 2).
√
n(θ̂ − θ0)

d−→ N (0,Σ∗), where Σn = (G′nΩnGn)−1G′nΩnOnΩnGn (G′nΩnGn)−1,

Gn = E∇θqj(yn, θ0), On = Eqj(yn, θ0)qj(yn, θ0)′ and Σ = limn→∞ Σn. Optimal weight matrix is Ω∗n = O−1
n and, in this
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case, Σ∗n = (G′n(Ω∗n)−1Gn)−1 and Σ∗ = limn→∞ Σ∗n. When it can be shown that the local maximum is unique, the estimator

can also be seen as the solution to

θ̂? = argmin
θ∈Θ

 v∑
j=1

S−1
S∑
s=1

q?s,j (y, θ)

′ Ω?
 v∑
j=1

S−1
S∑
s=1

q?s,j (y, θ)



where q?s,j (y, θ) = [∇θ lnLe (θ) qs,j (y, θ)]′ and Ω? is a weight matrix of conformable dimensions with possibly arbitrary

large weights for the first-order conditions, so that the restriction θ ∈ Θ̂ is implemented. In the case where S → ∞

fast enough, given identification,
√
n(θ̂ − θ0)

d−→ N (0,Σ?∗), where Σ?n = (G?
′
n Ω?nG

?
n)−1G?

′
n Ω?nO

?
nΩ?nG

?
n(G?

′
n Ω?nG

?
n)−1,

G? = E∇θq?j (yj , θ0), O? = Eq?j (y, θ0)q?j (y, θ0)′ and q?j (y, θ0) = limS→∞ S−1
∑S
s=1 q

?
s,j(y, θ0) and Σ? = limn→∞ Σ?n. Using

optimal matrix Ω?∗n = (O?n)−1 , Σ?∗n = (G?
′
n (Ω?∗n )−1 G?n)−1, limn→∞ Σ?∗n .

1.E Algorithms.

1.E.1 Bootstrap for cn (α) and cfn (α)

In the case of i.i.d. data, Bugni (2010) proposes a bootstrap algorithm correction consistent for cn (α) and adaptable to cfn (α).

In the current case, spatial dependence or social interactions in groups prevents immediate application of methods described

therein. Instead, I propose bootstrapping at the group-level j, while maintaining within-group observations i = 1, . . . , nj . In

this way, dependence of observed data is preserved. Apart from the straightforward modification proposed here, proofs can

be found in the aforementioned paper.

Algorithm 1. (Bugni (2010) bootstrap). In order to produce confidence regions with coverage probability 1− α, α ∈ (0, 1),

for Θ0, denoted Θ̂Bα for a bootstrapped sample of arbitrary size B, follow the steps:

Step 1. Estimate the identified set Θ̂ = {θ ∈ Θ : Ln ( θ| yn, xn, Qn) = 0}.

Step 2. Define the bootstrapped sample b = 1, . . . , B, sampling v groups with replacement from the data and denote

bootstrapped sample {ybn, xbn, Qbn}. Compute

ĉbn = sup
θ∈Θ̂

√
n
(
Ln( θ| ybn, xbn, Qbn)− Ln ( θ| yn, xn, Qn)

)
.

Step 3. Let ĉBn (α) be the α quantile of the empirical distribution of {ĉ1n, . . . , ĉBn }. The (1− α) confidence set for the

identified set is

Θ̂Bα =
{
θ ∈ Θ :

√
nL ( θ| yn, xn, Qn) ≤ ĉBn (1− α)

}

Next, I produce an adaptation of the algorithm to be able to generate confidence regions for the image of the identified

set under known function f , hence completing the statistical toolkit necessary for implementation of remarks 2 and 3.

Algorithm 2. (Adaptation of Bugni (2010) bootstrap for projection under f). The modified algorithm to produce confidence

regions with probability 1−α, α ∈ (0, 1), for the projection of Θ0 under known function f , Υf0 , denoted Υ̂Bα , for a bootstrapped

sample of arbitrary size B is:
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Step 1. Estimate the projection of the identified set Υ̂ =
{
υ ∈ Υ : infθ∈f−1(υ) Ln ( θ| yn, xn, Qn) = 0

}
.

Step 2. Define the bootstrapped sample b = 1, . . . , B, sampling v groups with replacement from the data and denote

bootstrapped sample {ybn, xbn, Qbn}. Compute

ĉf,bn = sup
υ∈Υ̂

inf
θ∈f−1(υ)

√
n
(
Ln( θ| ybn, xbn, Qbn)− Ln ( θ| yn, xn, Qn)

)
.

Step 3. Let ĉf,Bn (α) be the α quantile of the empirical distribution of {ĉf,1n , . . . , ĉf,Bn }. The (1− α) confidence set for

the projected identified set Υ0 is

Υ̂f,Bα =

{
υ ∈ Υ : inf

θ∈f−1(υ)

√
nL ( θ| yn, xn, Qn) ≤ ĉf,Bn (1− α)

}
.

1.E.2 Main algorithms

Algorithm 3. If λ0 is known and there are at least three distinct group sizes nj , follow the steps:

Step 1. Maximize the concentrated pseudo-likelihood

lnLcn ( θc| yn, xn, Qn) = −
n

2
(ln (2π) + 1)−

n

2
ln σ̂2 (Qn, θc) + |Sen (Qn, θc)|+ |Re (Qn, θc)|

with respect to θg, where

σ̂2(Qn, θc) =
1

n
y′nS

e′
n (Qn, θc)R

e′
n (Qn, θc)P

e
n(Qn, θc)R

e
n(Qn, θc)S

e
n(Qn, θc)yn

and P en(Qn, θc) = In − Ren(Qn, θc)Zen(Qn, θc)(Ze
′
n (Qn, θc)Re

′
n (Qn, θc)Ren(Qn, θc)Zen(Qn, θc))

−1Ze
′
n (Qn, θc)Re

′
n (Qn, θc). Ob-

tain the full solution θ̂ = (θ̂′c, β̂(θ̂c)
′, σ̂2(θ̂c))

′, where θ̂c ≡ argmaxθ∈Θc lnLcn ( θc| yn, xn, Qn) and

β̂(θ̂c) = (Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n(Qn, θc)Z

e
n(Qn, θc))

−1Ze
′
n (Qn, θc)R

e′
n (Qn, θc)R

e
n(Qn, θc)S

e
n(Qn, θc)yn.

Calculate and store the expected network Ŵ e
n = W e

n(Qn, θ̂).

Step 2. (C.I. of structural parameters). Calculate the asymptotic variance given by Theorem 1. The full expressions of

the Jacobian and Hessian are given in Appendix 1.C or can be numerically approximated.

Step 3. (Network spillovers). Network spillovers are calculated as

ϕ(xn, θ̂) = (I − λ0Ŵ
e
n)−1(xnβ̂1 + Ŵnxj β̂2)− xnβ̂1.

Confidence intervals follow from a simple Delta Method,
√
n∗(ϕ(xn, θ̂)−ϕ(xn, θ0))

d−→ N(0,∇ϕ(xn, θ0)Σ−1(λ0)Ω(λ0)Σ−1(λ0)∇ϕ(xn, θ0)).

Step 4. (Network data validity). When network data are available, a Delta Method also is employed to provide confidence

intervals for the null hypothesis H0 : δ1 − δ0 = 0.

Algorithm 4. The following algorithm generalizes for the case in which λ0 is unknown. If there are at least three distinct

group sizes nj , follow the steps:

Step 1. Select a candidate λ0.
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Step 2. Maximize the concentrated pseudo-likelihood

lnLcn ( θc| yn, xn, Qn) = −
n

2
(ln (2π) + 1)−

n

2
ln σ̂2 (Qn, θc) + |Sen (Qn, θc)|+ |Re (Qn, θc)|

with respect to θg and obtain the set of solution θ̂ = (θ̂′c, β̂(θ̂c)
′, σ̂2(θ̂c))

′ such that θ̂c ≡ argmaxθ∈Θc lnLcn ( θc| yn, xn, Qn).

Denote this set Θ̂. Full expressions for the concentrated parameters β̂(θ̂c) and σ̂2(θ̂c) are given in Step 1 of Algorithm 3.

Step 3. Check if probability of peers forming link is in the [0, 1] range. Otherwise, go back to Step 1 and adjust λ0

accordingly.

Step 4. (C.I. of structural parameters). Obtain confidence regions for θg following the bootstrap Algorithm 1.

Step 5. (Network spillovers). Take any point θ̂∗ in the identified Θ̂. Network spillovers are calculated as

ϕ(xn, θ̂) = (I − λ0Ŵ
e
n)−1(xnβ̂1 + Ŵnxj β̂2)− xnβ̂1.

Confidence intervals are calculated following Algorithm 2.

Step 6. (Network data validity). When network data are available, Algorithm 2 is reemployed to provide confidence

intervals for the null hypothesis H0 : δ1 − δ0 = 0.

Step 7. (Identifying λ). Solve the GMM problem

θ̂ = argmin
θ∈Θ̂

 v∑
j=1

S−1
S∑
s=1

qs,j(yj , xj , θ)

′ Ω
 v∑
j=1

S−1
S∑
s=1

qs,j(yj , xj , θ)



where qs,j(yj , xj , θ) = [VB,j(yj , xj , θ)−VB,j(ŷj , xj , θ);VW,j(yj , xj , θ)−VW,j(ŷj , xj , θ)]′ with ŷj,s = (Ssj )−1(xjβ1 +W s
j xjβ2 +

esj) and Ss = (Inj − λW s
j )−1. W s

j is sampled from the distribution of the network-generating model and esj is sampled from

a normal distribution with variance σ2. Confidence intervals are given in Theorem 4.
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1.F Additional figures and tables.

1.F.1 Estimator and simulations.

Table 1.F.1: Likelihood as a function of β1.

N = 250 N = 500
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Note: Rescaled additive inverse of likelihood as a function of β1, with all other parameters at the true value.

True β10 = 1. Solid line represents likelihood computed with expected network We = We (Q, θ0), and dashed

with real network W0. True networks are realizations from the stochastic generating process.

Table 1.F.2: Likelihood as a function of δ1.

N = 250 N = 500
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0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64
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0
)

Student Version of MATLAB

Note: Rescaled additive inverse of likelihood as a function of δ1, with all other parameters at the true value. True

δ10 = 0.75. Solid line represents likelihood computed with expected network We = We (Q, θ0) and underlying

networks are realization from the stochastic generating process. Dashed line W0 = We(θ0) is the likelihood where

true network is equal to expected network.
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1.F.2 Application.

Table 1.F.9: Occupational Choice with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Self hours. Wage hours. Self emp. only.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 473.219∗∗∗ 473.581∗∗∗ −113.002∗∗∗ −113.146∗∗∗ 0.113∗∗∗ 0.114∗∗∗

after 2 years (β̂11). (12.99) (13.89) (8.33) (8.33) (0.01) (0.01)

Program effect 464.069∗∗∗ 463.441∗∗∗ −142.755∗∗∗ −143.009∗∗∗ 0.120∗∗∗ 0.121∗∗∗

after 4 years (β̂12). (13.07) (5.10) (8.53) (8.25) (0.01) (0.01)

Spillover on T −20.438∗∗∗ −23.097∗∗∗ 24.394∗∗∗ 26.933∗∗∗ −0.029∗∗∗ −0.034∗∗∗

after 2 years (ϕ̂T,2). (7.01) (6.95) (8.50) (9.21) (0.01) (0.01)
Spillover on T 17.396∗∗∗ 14.734∗∗ 19.805∗∗ 22.105∗∗ −0.023∗∗∗ −0.027∗∗

after 4 years (ϕ̂T,4). (6.41) (7.04) (8.37) (10.30) (0.00) (0.01)
Spillover on NT −9.771∗∗∗ −11.346∗∗∗ 12.692∗∗∗ 14.259∗∗∗ −0.015∗∗∗ −0.018∗∗∗

after 2 years (ϕ̂NT,2). (3.35) (3.42) (4.41) (4.87) (0.00) (0.00)
Spillover on NT 8.317∗∗ 7.237∗∗∗ 10.304∗∗ 11.703 −0.012∗∗∗ −0.014∗∗∗

after 4 years (ϕ̂NT,4). (3.28) (1.88) (5.21) (13.28) (0.01) (0.00)

Fu
nc
ti
on

of
λ̂
.

Link to T −40.247∗∗∗ −27.635∗∗∗ 12.794∗∗∗ 13.663∗∗∗ −0.045∗∗∗ −0.051∗∗∗

after 2 years (β̂21). (1.99) (1.42) (2.48) (2.72) (0.01) (0.01)

Link to T −30.758∗∗∗ −20.648∗∗∗ 12.938∗∗∗ 13.721∗∗∗ −0.040∗∗∗ −0.045∗∗∗

after 4 years (β̂22). (1.53) (1.77) (1.57) (2.73) (0.01) (0.01)

Link probability 0.776∗∗∗ 0.759∗∗∗ 0.985∗∗∗ 0.726∗∗∗ 0.336∗∗∗ 0.196∗∗∗

if Qij = 1 (δ̂1). (0.05) (0.05) (0.08) (0.05) (0.03) (0.02)

Link probability 0.317∗∗∗ 0.464∗∗∗ 0.364∗∗∗ 0.362∗∗∗ 0.115∗∗∗ 0.116∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.01) (0.01) (0.01) (0.00) (0.00)

λ̂ 0.075 0.05 0.05 0.05 0.15 0.15
p-value HNV . < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 646.7
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 1.3.
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Table 1.F.10: Earnings and Seasonality with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Earnings. Share Seas. Share Reg.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 0.562∗∗∗ 0.556∗∗∗ −0.029∗∗∗ −0.029∗∗∗ 0.181∗∗∗ 0.182∗∗∗

after 2 years (β̂11). (0.207) (0.148) (0.01) (0.01) (0.01) (0.01)
Program effect 2.726∗∗∗ 2.806∗∗∗ −0.075∗∗∗ −0.075∗∗∗ 0.166∗∗∗ 0.166∗∗∗

after 4 years (β̂12). (0.196) (0.108) (0.01) (0.01) (0.01) (0.01)
Spillover on T −0.258∗∗ −0.187∗ −0.063∗∗∗ −0.062∗∗∗ 0.037∗∗∗ 0.030∗∗∗

after 2 years (ϕ̂T,2). (0.116) (0.113) (0.02) (0.02) (0.01) (0.01)
Spillover on T −0.098 −0.188∗ −0.016∗ −0.016 0.044∗∗∗ 0.035∗∗∗

after 4 years (ϕ̂T,4). (0.117) (0.112) (0.01) (0.02) (0.02) (0.01)
Spillover on NT −0.133∗∗ −0.102∗ −0.026∗∗∗ −0.026∗∗∗ 0.017∗∗∗ 0.014∗∗∗

after 2 years (ϕ̂NT,2). (0.060) (0.062) (0.01) (0.01) (0.01) (0.01)
Spillover on NT −0.051 −0.103 −0.002 −0.007 0.020∗∗ 0.017∗∗

after 4 years (ϕ̂NT,4). (0.057) (0.78) (0.01) (0.01) (0.01) (0.00)

Fu
nc
ti
on

of
λ̂
.

Link to T −0.236 −0.245 −0.023∗∗∗ −0.017∗∗∗ −0.051∗∗∗ −0.053∗∗∗

after 2 years (β̂21). (0.456) (0.478) (0.02) (0.00) (0.01) (0.01)
Link to T −0.740 −0.375 −0.019∗∗∗ −0.014∗∗∗ −0.037∗∗∗ −0.039∗∗∗

after 4 years (β̂22). (0.541) (0.596) (0.01) (0.00) (0.01) (0.01)
Link probability 0.155∗∗∗ 0.064∗∗∗ 0.234∗∗∗ 0.236∗∗∗ 0.100∗∗∗ 0.077∗∗∗

if Qij = 1 (δ̂1). (0.01) (0.00) (0.02) (0.01) (0.01) (0.00)
Link probability 0.030∗∗∗ 0.030∗∗∗ 0.152∗∗∗ 0.203∗∗∗ 0.054∗∗∗ 0.051∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

λ̂ 0.50 0.50 0.20 0.15 0.50 0.50
p-value HNV . < 0.001 < 0.001 < 0.001 0.022 < 0.001 < 0.001

Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 1.3.
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Table 1.F.11: Livestock with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Cows. Poultry. Livestock Value.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 1.132∗∗∗ 1.132∗∗∗ 2.116∗∗∗ 2.117∗∗∗ 10.412∗∗∗ 10.420∗∗∗

after 2 years (β̂11). (0.03) (0.03) (0.50) (0.50) (365.41) (0.45)
Program effect 1.103∗∗∗ 1.101∗∗∗ 1.296∗∗∗ 1.330∗∗∗ 11.175∗∗∗ 11.173∗∗∗

after 4 years (β̂12). (0.03) (0.03) (0.50) (0.50) (459.21) (0.44)
Spillover on T −0.032∗∗∗ −0.033∗∗∗ 0.039 0.107 −0.184∗∗∗ −0.230∗∗∗

after 2 years (ϕ̂T,2). (0.01) (0.01) (0.11) (0.18) (0.07) (0.06)
Spillover on T −0.055∗∗∗ −0.055∗∗∗ 0.029 −0.095 −0.407∗∗∗ −0.456∗∗∗

after 4 years (ϕ̂T,4). (0.02) (0.02) (0.12) (0.21) (0.11) (0.06)
Spillover on NT −0.018∗∗∗ −0.020∗∗∗ 0.014 0.064 −0.106∗∗∗ −0.137∗∗∗

after 2 years (ϕ̂NT,2). (0.01) (0.01) (0.06) (0.11) (0.04) (0.04)
Spillover on NT −0.031∗∗∗ −0.032∗∗∗ 0.011 −0.056 −0.234∗∗∗ −0.272∗∗∗

after 4 years (ϕ̂NT,4). (0.01) (0.01) (0.10) (0.08) (0.08) (0.03)

F
un

ct
io
n
of
λ̂
.

Link to T −0.965∗∗∗ −0.996∗∗∗ 9.169 1.495 −9.251∗∗∗ −10.634∗∗∗

after 2 years (β̂21). (0.15) (0.15) (19.65) (4.22) (2.64) (1.22)
Link to T −1.227∗∗∗ −1.256∗∗∗ 6.975 −2.914 −14.504∗∗∗ −16.332∗∗∗

after 4 years (β̂22). (0.16) (0.16) (21.05) (4.21) (2.30) (2.07)
Link probability 0.039∗∗∗ 0.019∗∗∗ 0.020∗∗ 0.008 0.029∗∗∗ 0.010∗∗

if Qij = 1 (δ̂1). (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Link probability 0.014∗∗∗ 0.014∗∗∗ 0.011 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

λ̂ 0.50 0.50 0.50 0.50 0.50 0.50
p-value HNV . 0.003 0.300 0.045 1.000 0.024 0.764

Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 1.3.
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Table 1.F.12: Expenditures with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Nonfood PCE. Food PCE. Food Security.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect −208.803 −208.049 421.741∗∗∗ 424.602∗∗∗ 0.169∗∗∗ 0.169∗∗∗

after 2 years (β̂11). (160.98) (160.05) (133.67) (133.61) (0.01) (0.01)
Program effect 280.309∗ 279.158 444.980∗∗∗ 447.736∗∗∗ 0.075∗∗∗ 0.076∗∗∗

after 4 years (β̂12). (145.11) (178.65) (133.66) (133.61) (0.01) (0.01)
Spillover on T −29.966 −32.452 401.713∗∗∗ 387.106∗∗∗ 0.028∗∗∗ 0.083∗∗∗

after 2 years (ϕ̂T,2). (70.13) (69.80) (56.88) (56.47) (0.01) (0.03)
Spillover on T −161.955∗∗ −161.161∗∗ 253.726∗∗∗ 242.561∗∗∗ 0.080∗∗ 0.163∗∗∗

after 4 years (ϕ̂T,4). (71.28) (69.72) (59.58) (55.82) (0.03) (0.05)
Spillover on NT −17.507 −19.103 215.298∗∗∗ 208.075∗∗∗ 0.012∗∗∗ 0.033∗∗∗

after 2 years (ϕ̂NT,2). (40.98) (41.09) (30.18) (30.97) (0.00) (0.01)
Spillover on NT −94.620∗∗∗ −94.869∗∗ 135.984∗∗∗ 130.380∗∗∗ 0.033∗∗∗ 0.065∗∗∗

after 4 years (ϕ̂NT,4). (26.64) (39.08) (51.07) (29.85) (0.00) (0.02)

Fu
nc
ti
on

of
λ̂
.

Link to T −311.329 −349.080 343.343∗∗∗ 438.309∗∗∗ 0.102∗∗∗ 0.123∗∗∗

after 2 years (β̂21). (966.77) (968.78) (62.93) (83.73) (0.01) (0.01)
Link to T −2386.991∗∗ −2389.737∗∗ 190.068∗∗∗ 238.308∗∗∗ 0.088∗∗∗ 0.113∗∗∗

after 4 years (β̂22). (959.21) (962.22) (62.48) (83.19) (0.01) (0.01)
Link probability 0.020∗∗ 0.014∗∗ 0.158∗∗∗ 0.132∗∗∗ 0.184∗∗∗ 0.092∗∗∗

if Qij = 1 (δ̂1). (0.01) (0.01) (0.03) (0.01) (0.00) (0.00)
Link probability 0.013∗∗∗ 0.013∗∗∗ 0.118∗∗∗ 0.087∗∗∗ 0.059∗∗∗ 0.065∗∗∗

if Qij = 0 (δ̂0). (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

λ̂ 0.50 0.50 0.15 0.20 0.50 0.50
p-value HNV . 0.389 0.835 0.002 0.159 < 0.001 < 0.001

Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409

Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 1.3.
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Table 1.F.13: Occupational Choice, Bernoulli model.

(1) (2) (3)

Outcome Self hours. Wage
hours.

Self emp.
only.

Method Network. Network. Network.

N
ot

fu
nc
ti
on

of
λ̂
.

Program effect 474.153∗∗∗ −112.859∗∗∗ 0.114∗∗∗

after 2 years (β̂11). (14.55) (8.34) (0.01)

Program effect 464.304∗∗∗ −143.481∗∗∗ 0.121∗∗∗

after 4 years (β̂12). (9.50) (8.47) (0.01)

Spillover on T −26.577∗∗∗ 25.865∗∗∗ −0.033∗∗∗

after 2 years (ϕ̂T,2). (7.92) (6.55) (0.01)
Spillover on T 13.148 22.082∗∗∗ −0.027∗∗∗

after 4 years (ϕ̂T,4). (9.59) (7.06) (0.01)
Spillover on NT −12.862∗∗ 13.714∗∗∗ −0.018∗∗∗

after 2 years (ϕ̂NT,2). (6.56) (3.77) (0.00)
Spillover on NT 6.363 11.708∗∗∗ −0.015∗∗∗

after 4 years (ϕ̂NT,4). (4.58) (1.97) (0.00)

Fu
nc
ti
on

of
λ̂
. Link to T −27.891∗∗∗ 13.355∗∗∗ −0.050∗∗∗

after 2 years (β̂21). (1.38) (2.50) (0.01)

Link to T −12.862∗∗∗ 13.758∗∗∗ −0.045∗∗∗

after 4 years (β̂22). (1.63) (1.59) (0.01)

Link probability 0.492∗∗∗ 0.380∗∗∗ 0.120∗∗∗

(δ̂1). (0.03) (0.03) (0.00)

λ̂ 0.05 0.05 0.15
Avg treated outcome. 421.8 646.7 646.7

Individuals (n). 23029 23029 23029
Villages (v). 1409 1409 1409

Survey waves (T ). 3 3 3

Notes as in Table 1.3.



Chapter 2

Regularization for Spatial Panel Time

Series using the Adaptive Lasso

Abstract. This paper proposes a model for estimating the underlying cross-

sectional dependence structure of a large panel of time series. We propose to esti-

mate this by penalizing the elements in the spatial weight matrices using the adaptive

LASSO proposed by Zou (2006). Non-asymptotic oracle inequalities and the asymp-

totic sign consistency of the estimators are proved when the cross-sectional dimension

(N) can be larger than the time dimension (T ). A block coordinate descent algorithm

is introduced, with simulations and a real data analysis carried out.1

Keywords: Spatial econometrics; adaptive Lasso; sign consistency; non-asymptotic oracle inequal-

ities; spatial weight matrices.

JEL classification: C31, C33.
1Paper coauthored with Clifford Lam, London School of Economics, Department of Statistics.
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2.1 Introduction

The study of spatial panel data is of increasing importance in econometrics and many other

disciplines. As obtaining large panel of time series data becomes easier, more researchers look

into these data as they provide valuable information on spatial-temporal dependence structure.

Various models are proposed to study the cross-sectional dependence of variables, including fixed or

random effects spatial lag (or spatial autoregressive) and spatial error models (see Elhorst, 2003).

Spatial autoregressive models (SAR) can be seen as another formulation of a spatial error model

(e.g. LeSage and Pace, 2009).

One important feature of these models is the need for the specification of the spatial weight

matrix, which is the key in quantifying the spatial lag structure in the panel time series data.

Method of specification ranges from using prior expert knowledge (e.g. Lesage and Polasek, 2008),

to imposing special structures. For example, the contiguity structure has contagious regions having

corresponding elements in the spatial weight matrix set to one and zero otherwise (e.g. LeSage

and Pace, 2009). The more general “distance metric” has elements corresponding to further away

regions smaller than those that are closer together. Exact “distance” specification, however, is not

universal. Bavaud (1998) suggested various specifications, including a distance decay model, and

their implications and interpretations with theoretical supports. Anselin (2002) has also addressed

the issue of spatial weight matrix specification and interpretation.

In this paper, we study a more general form of spatial autoregressive model as detailed in

section 2.2. In the terminology of Anselin (2002), we include both global and local spillover effects,

through the terms W∗
1yt and W∗

2Xtβ
∗ respectively in model (2.2). Few researchers attempted

to estimate the spatial weight matrices, including a well known paper by Pinkse et al. (2002).

They estimate a nonparametric smooth function ĝ(·) assuming normality of data, and the (i, j)-th

element of the matrix W∗
1 is estimated as ĝ(dij), where dij is a distance measure specified by the

user. Beenstock and Felsenstein (2012) suggested using a moment estimator for the spatial weight

matrix. Bhattacharjee and Jensen-Butler (2013) proposes to estimate the spatial weight matrix by

first estimating the error covariance matrix. However, estimating a large error covariance matrix

can be inaccurate as the dimension N of the panel is large and can be close to the sample size T -

one of the major characteristics of a large time series panel. Recently, Ahrens and Bhattacharjee

(2014) proposes to estimate the spatial weight matrix in a spatial autoregressive model with

exogenous instruments by using a two-step LASSO estimation but deal with a restricted version

of our model.

In our paper, we focus on estimating the spatial weight matrices themselves, which are assumed

to be sparse: having a lot of zero entries. There is no need to specify a distance measure for our

method as long as the true spatial weight matrices are sparse. We provided non-asymptotic bounds

on various estimated quantities on a set with probability approaching 1 asymptotically (see Lemma
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2 for example). We demonstrate that sparsity is a common endeavor with a structural equation

model in Example 1 in section 2.3.1.

The aims in estimating the spatial weight matrices are twofold. First, it is not always clear

what exactly the spatial dependence structure is for the panel data. Even with expert knowledge

of what the spatial matrices should look like, estimating them from data may reveal dependence

structures that our assumptions can miss out. Presenting the estimated spatial weight matrix as

a network connecting the components of the panel time series provides a visual tool for deeper

understanding of cross-sectional dependence structure. Second, as presented previously, there

are no universal rules in specifying a spatial weight matrix. We quote a part of the criticism

summarized in Arbia and Fingleton (2008), “... arbitrary nature of weight matrix... are not the

results obtained conditional on somewhat arbitrary decisions taken about its structure?” Although

debate is still on about the sensitivity of results towards the specification of spatial weight matrices,

this paper provides a partial solution to the criticism and potential sensitivity towards “arbitrary”

specification of these matrices if they themselves can be estimated from data as well. In fact in

Lemma 2, we have specified how the error upper bound for the estimation of β∗ in model (2.2)

is related to the error of the estimated/assumed spatial weight matrices. This result sheds some

lights on the potential seriousness of wrongly specifying the spatial weight matrices.

The rest of the paper is organized as follows. In section 2.2, we introduce the spatial autore-

gressive model considered, with examples. Section 2.3 presents the model in a compact form and

introduces the minimization problems for obtaining the estimators of the sparse spatial weight

matrices. These estimators are analyzed in section 2.4 using a relatively new concept of time

dependence in time series data, with non-asymptotic oracle inequalities and rates of convergence

spelt out, as well as asymptotic sign consistency presented. Section 2.5 discusses the computa-

tional issue of our estimators, and present a block coordinate descent algorithm as a solution.

Section 2.6 presents our extensive simulation results and real data analysis. The paper concludes

with section 2.7, outlining our main contributions and some future research directions. Finally all

technical proofs of the theorems in section 2.4 are presented in section 2.A.

2.2 The Model

A commonly used model for describing spatial interaction in a panel of time series is the spatial

lag model,

yt = ρWyt + Xtβ + εt, t = 1, . . . , T. (2.1)

See equation (19.5) of Anselin et al. (2006) for instance, which is a stacked version of the above.

Here, yt is an N × 1 vector of response variables, and Xt is an N × K matrix of exogenous

covariates. The spatial weight matrix W has elements that express the strength of interaction
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between location i (row) and j (column). Therefore, W can be interpreted as the presence and

strength of a link between nodes (the observations) in a network representation that matches the

spatial weights structure (Anselin et al., 2006). In this paper, such a structure is assumed to

be constant across time points t = 1, . . . , T , hence W remains constant for t = 1, . . . , T . The

parameter ρ is called the spatial autoregressive coefficient.

However, to utilize model (2.1), the spatial weight matrix W has to be specified. As briefly

stated in the Introduction, estimation accuracy of model parameters can crucially depend on the

correct specification of W. Moreover, Plümper and Neumayer (2010) points out that a common

practice of row-standardization in the specification of W in model (2.1) is in fact problematic,

since it alters not only the metric or unit of the spatial lag, but also the relative weight given to

the observations.

With all these considerations, we consider a more general form of the spatial lag model,

yt = W∗
1yt + W∗

2Xtβ
∗ + εt, t = 1, . . . , T, (2.2)

where yt is an N × 1 vector of dependent time series variables, W∗
j for j = 1, 2 are the N × N

spatial weight matrices to be estimated, Xt is an N ×K matrix of centered exogenous variables

at time t, β∗ is a vector of K regression parameters for the exogenous variables, and finally {εt} is
an innovation process with mean 0 and variance Σε, and is independent of {Xt}. Both {Xt} and
{εt} are assumed second order stationary. The matrix Σε is assumed to have uniformly bounded

entries as N,T →∞. Detailed assumptions A1- A8 can be found in section 2.4.

The spatial weight matrix W∗
1 has 0 on the main diagonal, and we assume that there exists

a constant η < 1 such that ‖W∗
1‖∞ < η < 1, i.e. max1≤i≤N

∑N
j=1|w∗1,ij |< η < 1 uniformly as

N,T →∞, where w∗1,ij is the (i, j)-th element of W∗
1. This regularity condition ensures yt has a

reduced form

yt = Π∗1W
∗
2Xtβ

∗ + Π∗1εt, Π∗1 = (IN −W∗
1)−1, (2.3)

with innovations in Π∗1εt having finite variances, where IN is the identity matrix of size N . See also

Corrado and Fingleton (2011) or Kapoor et al. (2007) for a similar row sum regularity condition

for the spatial weight matrices in a slightly different spatial model specification. Hence each

component ytj is a weighted linear combination of the other components in yt. If w∗1,ij 6= 0, it

means that yti depends on ytj explicitly. An analysis of the links among financial markets is given

in section 2.6 to illustrate the use of such a model.

The spatial weight matrix W∗
2 has 1 on the main diagonal, with the same row sum condition

as W∗
1 excluding the diagonal entries. Hence while each component ytj has the same regression

coefficients β∗ for their respective exogenous variables xT
t,j (the j-th row of Xt), model (2.2)

gives flexibility through W∗
2 by allowing each ytj to depend on a linear combination of exogenous

variables for other components as well. This is also related to the local spatial spillover effects.
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For more details please refer to Anselin (2002). See section 2.3.1 for an illustrative example with

covariates.

Remark 1. The spatial error model with spatial autoregressive-moving average (ARMA) error

can be defined by (see also Yao and Brockwell, 2006){
yt = Xtβ + ut,

ut = ρWut + (IN + λW′)vt,
implying yt = ρWyt + Xtβ − ρWXtβ + εt,

where εt = (IN +λW′)vt. Model (2.2) entails this spatial ARMA error model, by setting β∗ = β,

W∗
1 = ρW, W∗

2 = IN − ρW, and Σε = (IN + λW′)var(vt)(IN + λ(W′)T). From assumption A4

in section 2.4.1, as long as the spatial autocovariance between xt,jk and xt,j′k for j 6= j′ decays fast

enough as |j − j′| gets larger, the correlation matrix for εt can have a general structure, including

that of a spatial moving-average structure as above.

2.3 Sparse Estimation of the Spatial Weight Matrices

The spatial weight matrices W∗
1 and W∗

2 are assumed to be sparse. We give an example with

covariates to illustrate that sparseness of spatial weight matrices is a common endeavor.

2.3.1 Example 1

Irwin and Geoghegan (2001) considered an example of modeling jointly the population and prop-

erty tax rate in different counties, assuming that households migration pattern is determined by

local tax rate. They gave an example of a very much simplified structural equation model for

jointly modeling the two:

POPit = w1TAXit + β1EMPit + β2PUBSit + ε1it,

TAXit = w2POPit + γ1PUBSit + γ2INCit + ε2it,

where POP = total population, TAX = property tax rate, EMP = employment level, PUBS =

measure of the quantity and quality of public services, and INC = per capita income of households.

The index i represents measurements at county i, while the index t represents period t. If we write

yt = (POP1t, . . . ,POPNt,TAX1t, . . . ,TAXNt)T where N=number of counties, the model can be
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written as yt = W∗
1yt + W∗

2Xtβ
∗ + εt, where

Xt =



EMP1t PUBS1t INC1t 0 0 0
...

...
...

...
...

...

EMPNt PUBSNt INCNt 0 0 0

0 0 0 EMP1t PUBS1t INC1t

...
...

...
...

...
...

0 0 0 EMPNt PUBSNt INCNt


, β∗ =



β1

β2

0

0

γ1

γ2


,

W∗
1 =

(
0 w1IN

w2IN 0

)
, W∗

2 = I2N , εt = (ε11t, . . . , ε1Nt, ε21t, . . . , ε2Nt)
T.

Thus both matrices W∗
1 and W∗

2 are very sparse in this model. Rather than fixing the spatial

weight matrices, their sparse estimation gives flexibility on the network structure between the

TAX and POP variables.

For a low dimensional model like this example, a reduced form model can be calculated like

that in (2.3) and we can consistently estimate the parameters from the reduced form model.

We can then try to recover the parameters w1, w2, β1, β2, γ1 and γ2 from the reduced form model

parameters. This is also done in Irwin and Geoghegan (2001) for this particular example. However,

for higher dimensional model where the spatial weight matrices are our target, the problem can

become intractable, and we in general need the decay assumption A2 in section 2.4.1 for asymptotic

sign consistency for all the estimated entries in the spatial weight matrix. See example 2 in section

2.4.2 as well.

Penalization has become a well-known tool for estimating a sparse vector/matrix over the past

two decades. In this paper, we employ the adaptive LASSO developed in Zou (2006) for penalizing

the elements in the matrices W1 and W2, resulting in the minimization problem (with ‖ · ‖ being
the usual L2-norm)

min
W1,W2,β

T∑
t=1

‖yt −W1yt −W2Xtβ‖2 + γT
∑
i,j

(v1,ij |w1,ij |+v2,ij |w2,ij |),

subj. to
∑
j 6=i
|w1,ij |,

∑
j 6=i
|w2,ij |< 1,

where γT is a tuning parameter with rate given in Theorem 2 in section 2.4.3, and vr,ij = 1/|w̃r,ij |k

for r = 1, 2 and some integer k ≥ 1, with w̃r,ij being the solutions of the above minimization

problem with all vr,ij set to 1. The w̃r,ij ’s thus represent the LASSO solutions (e.g. Zhao and

Yu, 2006) with constraints. The vr,ij becomes the weight of penalization. The larger the magnitude

of w̃r,ij , the smaller vr,ij becomes, and vice versa. This is a sensible weighting scheme since a larger
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w̃r,ij means w∗r,ij is less likely to be zero, and hence should be penalized less to reduce estimation

bias, and vice versa.

The above penalization problem is cumbersome to write and makes presentation and proofs of

theorems difficult. Hence we rewrite model (2.2) as a more familiar regression type model:

y = Zξ∗1 + Xβ∗ξ
∗
2 + ε

= Mβ∗ξ
∗ + ε,

(2.4)

where y = vec{(y1, . . . ,yT )T}, Z = IN ⊗ (y1, . . . ,yT )T, Xβ∗ = IN ⊗ {(IT ⊗ β∗T)(X1, . . . ,XT )T},
ξ∗j = vec(W∗T

j ) for j = 1, 2, and ε = vec{(ε1, . . . , εT )T}. Here ⊗ represents the Kronecker

product, and the vec operator stacks the columns of a matrix into a single vector, starting from

the first column. Defining Mβ∗ = (Z,Xβ∗) as the “design matrix” and ξ∗ = (ξ∗T1 , ξ∗T2 )T as the

true “regression parameter”, model (2.4) looks like a typical linear model, except that the design

matrix Mβ∗ is dependent on y as well.

With model (2.4), we can find the LASSO solutions by solving

(ξ̃, β̃) = argmin
ξ,β

1

2T
‖y −Mβξ‖2 + γT ‖ξ‖1,

subj. to
∑
j 6=i
|w1,ij |,

∑
j 6=i
|w2,ij |< 1,

(2.5)

where ‖ ·‖1 represents the L1-norm, and the definitions of Mβ and ξ are parallel to those in model

(2.4). The adaptive LASSO solutions are then

(ξ̂, β̂) = argmin
ξ,β

1

2T
‖y −Mβξ‖2 + γTvT|ξ|,

subj. to
∑
j 6=i
|w1,ij |,

∑
j 6=i
|w2,ij |< 1,

(2.6)

where |ξ|= (|ξ1|, . . . , |ξ2N2 |)T and v = (|ξ̃1|−k, . . . , |ξ̃2N2 |−k)T. A general block coordinate descent

algorithm is introduced in section 2.5 to carry out the minimization.

2.4 Properties of LASSO and adaptive LASSO Estimators

An ideal estimator for a spatial weight matrix is one that recovers the correct locations of zeros

and non-zeros in a sparse matrix, along with their correct magnitudes. Corollary 4 and Theorem

5 tell us that under certain conditions, such estimators for W∗
1 and W∗

2 are possible with high

probability (as stated in Theorem 1), with explicit rates of convergence given.

In this paper we assume that the processes for the covariates {xt} = {vec(Xt)} and for the
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noise {εt} are defined by

xt = f(Ft), εt = g(Gt), (2.7)

where f(Ft) = (f1(Ft), . . . , fNK(Ft))T and g(Gt) = (g1(Gt), . . . , gN (Gt))T are both vectors of

measurable functions defined on the real line. The shift processes Ft = (. . . , ex,t−1, ex,t) and

Gt = (. . . , eε,t−1, eε,t) are defined by independent and identically distributed (i.i.d.) processes

{ex,t} and {eε,t}, and they are independent of each other. Hence {xt} and {εt} are assumed

independent. The representation (2.7) is used in Wu (2011) and provides a very general framework

for stationary ergodic processes. See Wu (2011) for some examples as well.

For measuring dependence, instead of using traditional measures, like mixing conditions for

time series, we use the functional dependence measure introduced in Wu (2005). This measure

lays the framework for applying a Nagaev-type inequality for obtaining the results of our theorems

to be presented later. For the time series {xt} and {εt} in (2.7), define for a > 0,

θxt,a,j = ‖xtj − x′tj‖a = (E|xtj − x′tj |a)1/a,

θεt,a,` = ‖εt` − ε′t`‖a = (E|εt` − ε′t`|a)1/a,
(2.8)

where j = 1, . . . , NK, ` = 1, . . . , N , and x′tj = fj(F ′t), F ′t = (. . . , ex,−1, e
′
x,0, ex,1, . . . , ex,t), with

e′x,0 independent of all other ex,j ’s. Hence x′tj is a coupled version of xtj with ex,0 replaced by

an i.i.d. copy e′x,0. Finally, we have similar definitions for ε′t`. Such a definition of “physical” or

functional dependence of time series on past “inputs” is used in various papers, for example in

Shao (2010) and Zhou (2010).

There are no direct relationships between the usual mixing conditions and this “physical”

functional dependence measure. But this measure is easier to handle mathematically and leads

to simpler and stronger proofs in our paper, through the Nagaev-type inequality in Lemma 1.

Moreover, many well-known processes are not strong mixing, yet can be handled by using the

dependence measure (2.8), like the Bernoulli shift process in Andrews (1984).

2.4.1 Main assumptions and notations

With these definitions in place, we state the main assumptions in the paper. Note that ‖A‖∞ =

maxi
∑

j≥1|Aij | for a matrix A.

A1. The entries in the matrices W∗
1 and W∗

2 are constants as N,T →∞, on top of the row sum

conditions introduced after model (2.2) in section 2.2.

A2. There exists a constant σ2
0 such that var(εtj) = σ2

ε,j ≤ δTσ2
0 for all j = 1, . . . , N , with δT → 0

as T →∞.
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A3. Both {Xt} and {εt} are mean 0 second-order stationary, and εt is independent of Xs for

each s ≤ t.

A4. Let Xt,k be the k-th column of Xt, k = 1, . . . ,K. Define ζt = εt/δ
1/2
T . Write Xt,k = Σ

1/2
xk X∗t,k

and ζt = Σ
1/2
ζ ζ∗t , where Σxk and Σζ are covariance matrices for Xt,k and ζt respectively.

We assume the elements in Σxk,Σζ are all less than σ2
max <∞ uniformly as N,T →∞.

Also, either ‖Σ1/2
xk ‖∞ ≤ Sx < ∞ uniformly as N,T → ∞, with {X∗t,jk}1≤j≤N being

a martingale difference with respect to the filtration generated by (X∗t,1k, . . . , X
∗
t,jk); or,

‖Σ1/2
ζ ‖∞ ≤ Sζ <∞ uniformly as N,T →∞, with {ζ∗t,j}1≤j≤N being a martingale difference

with respect to the filtration generated by (ζ∗t,1, . . . , ζ
∗
t,j).

A5. The tail condition P (|Z|> v) ≤ D1 exp(−D2v
q) is satisfied for Xt,jk, X

∗
t,jk, ζt,j and ζ∗t,j by

the same positive constants D1, D2 and q.

A6. Define Θx
m,a =

∑∞
t=m max1≤j≤NK θ

x
t,a,j and Θζ

m,a =
∑∞

t=m max1≤j≤N θ
ζ
t,a,j , where θ

ζ
t,a,j = θεt,a,j/δ

1/2
T .

Then we assume Θx
m,2w,Θ

ζ
m,2w ≤ Cm−α for some w > 2, with α > 0 and C > 0 being con-

stants that can depend on w. These dependence measure assumptions also hold for ζ∗t and

X∗t,k for each k ≤ K in assumption A4.

A7. Let λmin(M) be the minimum eigenvalue of a square matrixM . Then λmin(E(xtx
T
t )) > u > 0

uniformly for some constant u as N,T →∞.

Assumption A1 can be relaxed, so that the weights in W∗
i can be decaying at a certain rate, at

the expense of lengthier proofs. Assumption A2 is needed as demonstrated numerically in section

2.6. For moderate value of T , if the spatial weight matrices are sparse enough, then a slow decay

rate is sufficient, which in practice means that the noise level is required to be not too large.

Intuitively, low noise limits the correlation between spatial lags of yt and the disturbance term,

hence limiting a potential source of inconsistency that arises due to the simultaneous nature of the

model. See also example 2 in section 2.4.2 for a simple illustration, and a remark therein about

estimating the reduced form model (2.3) instead.

Assumption A3 requires only that εt to be independent of Xt, allowing the covariates to

be potentially the past values of yt. If Xt = (yt−1, . . . ,yt−d, zt) where zt contains exogenous

covariates, the term W∗
2Xtβ

∗ =
∑d

j=1 β
∗
jW

∗
2yt−j + W∗

2ztβ
∗
2, where β∗ = (β∗1 , . . . , β

∗
d ,β

∗T
2 )T .

Hence there is a vector autoregressive part with coefficient matrices βjW∗
2. The reduced form

model for yt is then

yt =
(
IN −Π∗1

d∑
j=1

β∗jW
∗
2B
)−1

Π∗1(W∗
2ztβ

∗
2 + εt), (2.9)
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where Π∗1 is defined in (2.3), and B is the backward shift operator. For the inverse operator above

to be defined (i.e. the system is stationary), we need

det
(
IN −Π∗1

d∑
j=1

β∗jW
∗
2z
j
)
6= 0 for |z|≤ 1,

which impose constraints on β∗ as well. Allowing past values as covariates extends the applicability

of the model, since example 2 in section 2.4.2 demonstrates that covariates have to be included

for sign consistent estimation.

The uniform boundedness assumption in A4 for elements of Σxk and Σζ is a direct consequence

of the tail assumption in A5. We assume this for notational convenience only. The other half of

assumption A4 says that either the cross-correlations between more “distant” components for the

k-th covariate Xt,k are getting smaller quick enough, or this happens for the components in the

noise εt. The settings in (2.7) and (2.8) allows us to assume either {X∗t,jk}j or {ζ∗t,j}j is a martingale

difference, which is weaker than assuming that as an independent sequence.

Assumption A5 is a relaxation to normality, allowing sub-gaussian or sub-exponential tails for

the concerned random variables. Together with A6, they allow for an application of the Nagaev-

type inequality in Lemma 1 for our results. There are many examples of time series where A6 is

satisfied. See Chen et al. (2013) for examples in stationary Markov Chains and stationary linear

processes. Hence in particular we are allowing the noise series to have weak serial correlation.

Finally, assumption A7 is needed for the convergence of β̃ or β̂ to β∗. This is a mild condition

and is satisfied in particular if all Σxk have their smallest eigenvalues uniformly bounded away from

0, and the cross covariance between the cov(Xt,k1 ,Xt,k2) is not too strong for all 1 ≤ k1 6= k2 ≤ K.

2.4.2 Example 2

We demonstrate that the decay assumption A2 is needed in general for estimating the spatial

weight matrices. In fact this condition is closely related to the conditions of the proximity theorem

in Wold (1953), where the variance of the disturbance is small for negligible bias.

Consider N = 3, and the model yt = Wyt + Xtβ + εt, where Xt is a vector of covariates with

mean 0, and denote σ2
ε,j = var(εt,j), σ2

X,j = var(Xt,j). Suppose we know w13 = w23 = w31 = w32 =

0 and β = 1, so that essentially the model becomes(
yt1

yt2

)
=

(
0 w12

w21 0

)(
yt1

yt2

)
+

(
Xt1

Xt2

)
+

(
εt1

εt2

)
, yt3 = Xt3 + εt3.

With w12, w21 < 1, a simple inversion results in

yt1 =
w12(εt2 +Xt2) + εt1 +Xt1

1− w12w21
, yt2 =

w21(εt1 +Xt1) + εt2 +Xt2

1− w12w21
.
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The least square estimator for w12 is

ŵ12 =
T∑
t=1

yt2(yt1 −Xt1)/
T∑
t=1

y2
t2 = w12 +

T∑
t=1

yt2εt1/
T∑
t=1

y2
t2.

Assume proper convergence of all relevant quantities, and that cov(Xt1, Xt2) = cov(εt1, εt2) = 0,

the bias can be calculated to be converging in probability to

ŵ12 − w12
P−→

w21σ
2
ε,1

1− w12w21
/
w2

21(σ2
ε,1 + σ2

X,1) + σ2
ε,2 + σ2

X,2

(1− w12w21)2
=

w21σ
2
ε,1(1− w12w21)

w2
21(σ2

ε,1 + σ2
X,1) + σ2

ε,2 + σ2
X,2

,

which is not going to 0 unless either w21 or σ2
ε,1 goes to 0 as T →∞, since assumption A7 ensures

that σ2
X,j > u > 0 uniformly.

By symmetry of the formulae for the asymptotic biases of ŵ12 and ŵ21, we can easily see that

if σ2
ε,1 and σ2

ε,2 are not decaying, these biases can have larger magnitudes then the corresponding

weight w12 or w21, so that the corresponding estimator cannot be sign consistent even if w12 or

w21 are going to 0 as T →∞. This demonstrates the necessity of decaying variances for the noise.

If σ2
X,1 = σ2

X,2 = 0 (assumption A7 fails), and σ2
ε,1 = σ2

ε,2, we see that the asymptotic bias

becomes independent of σ2
ε,j , and ŵ12 and ŵ21 cannot be both sign consistent. Hence it is important

that covariates are included in our model. Luckily, assumption A3 allows for past values of yt to

be our covariates Xt, although other exogenous covariates are still needed. See (2.9) in section

2.4.1 for more details.

One final remark is that, for this simple toy example, we may consistently estimate the pa-

rameters of the reduced form model like that in (2.3), and recover w12 and w21 from the estimated

reduced form model without assumption A2. But, as explained in example 1, when N is large and

a general spatial weight matrix is our target, the problem can become intractable and consistent

estimation is then not achievable unless assumption A2 is satisfied. See also section 2.7 where

an instrumental variable approach is mentioned and is still under research to overcome major

technical difficulties when used together with LASSO.

We introduce more notations and definitions before presenting our results. Define

J = {j : ξ∗j 6= 0, and does not correspond to w∗2,ss, s = 1, . . . , N}. (2.10)

Hence J is the index set for all truly non-zero weights in W∗
1 and W∗

2 excluding the diagonal

entries of W∗
2, which are known to be 1. Define n = |J |, s1 =

∑
j∈J ξ

∗
1,j , s =

∑
j∈J ξ

∗
j and

s2 = s − s1. Denote vS a vector v restricted to those components with index j ∈ S. Let

λT = cT−1/2 log1/2(T ∨N) where c is a large enough constant (see Theorem 1 for the exact value



CHAPTER 2. REGULARIZATION FOR SPATIAL MODEL USING ADA-LASSO 96

of c), and define the sets

A1 = { max
1≤j,`≤N

max
1≤k≤K

| 1
T

T∑
t=1

ζt,jXt,`k| < λT },

A2 = { max
1≤k≤K

| 1
T

N∑
j=1

T∑
t=1

ζt,jXt,jk| < λTN
1/2+1/2w},

A3 = { max
1≤i,j≤N

| 1
T

T∑
t=1

[ζt,iζt,j − E(ζt,iζt,j)]| < λT },

A4 = { max
1≤i,j≤N

max
1≤`,m≤K

| 1
T

T∑
t=1

Xt,i`Xt,jm − E(Xt,i`Xt,jm)| < λT },

M =

{
max

1≤t≤T
max

1≤j≤N
max

1≤k≤K
|Xt,jk|<

(
3 log(T ∨N)

D2

)1/q
}
,

(2.11)

where w is as defined in assumption A6.

2.4.3 Main results

We first present a Nagaev-type inequality for a general time series {xt} under similar settings in

(2.7) and (2.8), which is a combination of Theorems 2(ii) and 2(iii) of Liu et al. (2013).

Lemma 1. For a zero mean time series process xt = f(Ft) as defined in (2.7) with dependence

measure θxt,a,j as defined in (2.8), assume Θx
m,w ≤ Cm−α for some w > 2 and constants C,α > 0.

Then there exists constants C1, C2 and C3 independent of v, T and the index j such that

P
(∣∣∣ 1

T

T∑
t=1

xt,j

∣∣∣ > v
)
≤ C1T

w( 1
2
−α̃)

(Tv)w
+ C2 exp (− C3T

β̃v2),

where α̃ = α ∧ (1/2− 1/w), and β̃ = (3 + 2α̃w)/(1 + w).

Furthermore, assume another zero mean time series process {zt} (can be the same process

{xt}) with both Θx
m,2w,Θ

z
m,2w ≤ Cm−α, as in assumption A6. Then provided there is a constant

µ such that maxj ‖xtj‖2w,maxj ‖ztj‖2w ≤ µ < ∞, the above Nagaev-type inequality holds for the

product process {xtjzt` − E(xtjzt`)}.

Remark 2. Note if α > 1/2 − 1/w, then w(1/2 − α̃) = β̃ = 1, simplifying the form of the

inequality. Hereafter we assume α > 1/2− 1/w where w is in assumption A6, and is large enough

as specified in Remark 3. We assume this purely for the simplification of all results. For instance,

if α < 1/2− 1/w, then we can define λT = cT−β̃/2 log1/2(T ∨N) and (more complicated) rates of

convergence in different theorems can be derived.
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Proof of Lemma 1. The first part is a direct consequence of Theorems 2(ii) and 2(iii) of Liu

et al. (2013). The second part follows from E(xtjzt`) = E(x′tjz
′
t`), and using the generalized Hölder

inequality,

θxzt,w,j` = ‖xtjzt` − x′tjz′t`‖w ≤ ‖xtjzt` − xtjz
′
t`‖w + ‖xtjz′t` − x′tjz′t`‖w

≤ max(‖xtj‖2w, ‖z
′
t`‖2w)(θxt,2w,j + θzt,2w,`)

≤ µ(θxt,2w,j + θzt,2w,`),

so that

Θxz
m,w ≤

∞∑
t=m

max
j,`

µ(θxt,2w,j + θzt,2w,`) ≤ µ(Cm−α + Cm−α) = 2µCm−α.

The result follows by applying the first part of Lemma 1. �

With Lemma 1, we can use the union sum inequality to find an explicit probability lower bound

for the event A1 ∩ . . . ∩ A4. The proof of the theorem is relegated to the Appendix.

Theorem 1. Let assumptions A3 - A6 be satisfied. Suppose α > 1/2− 1/w, and suppose for the

applications of the Nagaev-type inequality in Lemma 1 for the processes in A1 to A4, the constants

C1, C2 and C3 are the same. Then with c ≥
√

3/C3 where c is the constant defined in λT , we have

P (A1 ∩ . . . ∩ A4 ∩M) ≥ 1− 4C1K
2

(
C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
− 4C2K

2N2 +D1NTK

T 3 ∨N3
.

It approaches 1 if we assume further that N = o(Tw/4−1/2 logw/4(T )).

Remark 3. With tail assumptions A5, we can easily show that ‖ζtj‖2w, ‖xtj‖2w < ∞ for

any w > 0 (see the proof of Theorem 1 in the Appendix), and there are many examples with

Θx
m,2w,Θ

ζ
m,2w ≤ Cm−α where only the constant C is dependent on w (see for example the station-

ary linear process example 2.2 in Chen et al. (2013). Therefore we can set w to be large enough

so that N = o(Tw/4−1/2 logw/4(T )) from the beginning, ensuring P (A1 ∩ . . . ∩ A4 ∩M)→ 1.

Lemma 2. Let assumptions A1 to A7 be satisfied. Denote W̃1 and W̃2 any estimators for W∗
1 and

W∗
2 respectively (not necessarily the LASSO estimators). Define a generic notation A⊗ = IN ⊗A

for a matrix A, and denote yv = (yT
1 , . . . ,y

T
T )T, X = (XT

1 , . . . ,X
T
T )T.

Then on A1∩. . .∩A4, the least square estimator β̃ = (XTW̃⊗T

2 W̃⊗
2 X)−1XTW̃⊗T

2 (ITN−W̃⊗
1 )yv

is well-defined, and

‖β̃ − β∗‖1 ≤
a1(s2 +N

1
2

+ 1
2w )λT δ

1/2
T

N
+
a2

N
‖ξ̃ − ξ∗‖1,
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where the constants a1 and a2 are defined in Theorem 3.

The proof is relegated to the Appendix. If we treat W̃1 and W̃2 as some assumed spatial

weight matrices, for example distance matrices with a particular distance metric, this lemma

together with Theorem 1 tells us that with high probability, the error upper bound for estimating

β∗ is related to the error for estimating the spatial weight matrices through ‖ξ̃− ξ∗‖1. As long as

‖ξ̃ − ξ∗‖1 is much less than N , estimation error is related to how sparse the matrix W∗
2 (i.e., s2)

is. Otherwise, the error can be large. We provide some simulation results for the estimation of β∗

in section 2.6.

We now present an oracle inequality for the error bounds of the LASSO and adaptive LASSO

estimators ξ̃ and ξ̂ respectively. The proof is presented in the Appendix.

Theorem 2. Let assumptions A1-A7 be satisfied. Suppose α > 1/2−1/w, and suppose λT = o(δ
1/2
T ),

λTN
1/w = O(δ

1/2
T ) and s2 = O(N1/2δ

1/4
T /λ

1/2
T ). Then there is a tuning parameter γT with γT � δT

such that on A1 ∩ . . . ∩ A4, the LASSO estimator ξ̃ satisfies

‖ξ̃ − ξ∗‖1 ≤ 4‖ξ̃J − ξ∗J‖1, so that ‖ξ̃Jc − ξ∗Jc‖1 ≤ 3‖ξ̃J − ξ∗J‖1.

For ξ̂, denote ξS,min/max = min/maxj∈S ξj and J̃ the LASSO estimator for J in (2.10). Then

‖ξ̂ − ξ∗‖1 ≤
4|ξ̃

J̃ ,max
|k

|ξ̃J,min|k
‖ξ̂J − ξ∗J‖1, so that ‖ξ̂Jc − ξ∗Jc‖1 ≤

(4|ξ̃
J̃ ,max

|k

|ξ̃J,min|k
− 1
)
‖ξ̂J − ξ∗J‖1.

For the exact value of the constant B where γT = BδT , see the proof of the theorem which is

relegated to the Appendix. The rate λT = o(δ
1/2
T ) implies that the rate of decay for the standard

deviation of the noise is slower than λT .

The results in Theorem 2 are consistent with the properties of the LASSO estimators under

the usual linear regression settings (see (3.2) of Bickel et al., 2009). With these oracle inequalities,

we need to introduce a restricted eigenvalue condition which is similar to condition (3.1) of Bickel

et al. (2009). We however define this condition on a population covariance matrix instead, since

our raw design matrix Mβ∗ in (2.4) is always random:

A8. Restricted eigenvalue condition: Let Σ̂∗ = T−1MT
β∗Mβ∗ , and Σ = E(Σ̂∗). Define

κ(r) = min

{
‖Σ1/2α‖
‖αR‖

,
‖Σ1/2α‖
‖αRc‖

: |R|≤ r,α ∈ R2N2\{0}, ‖αRc‖1 ≤ c0‖αR‖1

}
,

where c0 = 8
|ξ∗J,min|k

− 1. Then we assume κ(n) > 0 uniformly as N,T →∞.

This condition is automatically satisfied if Σ has the smallest eigenvalue bounded uniformly away

from 0. Similar population restricted eigenvalue condition is also introduced in Zhou et al. (2009)
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for the analysis of LASSO and adaptive LASSO estimators when the design matrix is formed by

i.i.d. rows which are multivariate normally distributed.

Theorem 3. Let assumption A8 and the assumptions in Theorem 2 be satisfied. Suppose also

λTn, γTn
1/2 = o(1), (N1/2w+s2N

−1/2)λTγ
−1/2
T log1/q(T∨N) = o(n1/2), n = o(N log−2/q(T ∨N)),

where γT is the same as in Theorem 2. Then on A1 ∩ . . . ∩ A4 ∩M, for large enough N,T ,

‖ξ̃J − ξ∗J‖ ≤
5γTn

1/2

κ2(n)
, ‖ξ̂J − ξ∗J‖ ≤

5γTn
1/2

κ2(n)|ξ∗J,min|k
.

Furthermore, for N,T large enough and suitable constants a1 and a2, on A1 ∩ . . . ∩ A4 ∩M,

‖β̃ − β∗‖1 ≤ a1

(s2

N
+N

1
2w
− 1

2

)
λT δ

1/2
T +

20a2γTn

Nκ2(n)
,

‖β̂ − β∗‖1 ≤ a1

(s2

N
+N

1
2w
− 1

2

)
λT δ

1/2
T +

25a2|ξ∗J,max|kγTn
Nκ2(n)|ξ∗J,min|2k

.

The proof is relegated to the Appendix. Theorems 2 and 3 together implies the following.

Corollary 4. Under the assumptions of Theorems 2 and 3, for large enough N,T ,

‖ξ̃ − ξ∗‖1 ≤
20γTn

κ2(n)
, ‖ξ̂ − ξ∗‖1 ≤

25|ξ∗J,max|kγTn
κ2(n)|ξ∗J,min|2k

.

Corollary 4 says that, in addition to the assumptions in Theorem 3, if γTn = o(1) also, then

all the LASSO and adaptive LASSO estimators from (2.5) and (2.6) converge to their respective

true quantities in L1 norm on the set A1 ∩ . . . ∩ A4 ∩M, which has probability approaching 1

with explicit probability lower bound shown in Theorem 1. The need for large enough N,T are

merely for the simplification of the different error bounds, and can be removed at the expense of

more complicated expressions. The proof is omitted.

We conclude this section with the sign consistency theorem for the spatial weight matrices.

In the following and hereafter we denote MAB a matrix M with rows restricted to the set A and

columns to the set B. The proof of the Theorem can be found in the Appendix.

Theorem 5. Let the assumptions in Theorem 2 and 3 be satisfied. Assume further that λmin(ΣJJ)

is uniformly bounded away from 0, and n = o(γ
− 2k
k+1

T ). Then on A1 ∩ · · ·A4 ∩M and for large

enough N,T ,

sign(ξ̂) = sign(ξ∗).

This theorem says that with a suitable rate of decay for the noise variances and the true spatial

weight matrices sparse enough, we can correctly estimate the sign (i.e. 0, positive or negative) of

every element in the spatial weight matrices W∗
1 and W∗

2 on A1 ∩ · · ·A4 ∩M. Hence asymptotic
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sign consistency is achieved by Theorem 1. This is very important in recovering the correct sparse

pattern for understanding the underlying cross-sectional dependence structure of the panel data.

The rate n = o(γ
− 2k
k+1

T ) suggests that the number of non-zero elements allowed in the spa-

tial weight matrices W∗
1 and W∗

2 without violating sign consistency depends on the rate of

decay for the variance of the noise. For instance if γT � λT log1/2(T ∨ N) and k = 1, then

n = o(T 1/2 log−1(T ∨N)).

2.5 Practical Implementation

In this section, we provide details of the block coordinate descent (BCD) algorithm for carrying out

the minimizations for (2.5) and (2.6). We need the BCD algorithm since the objective functions

in these problems are not convex in (ξ,β), although given β, they are convex in ξ and vice versa.

The BCD algorithm is closely related to the Iterative Coordinate Descent of Fan and Lv (2011),

and is also discussed in Friedman et al. (2010) and Dicker et al. (2010). While it is difficult to

establish global convergence of the BCD algorithm without convexity, it is easy to see that for

(2.5) and (2.6), each iteration delivers an improvement of the objective functions since given one

parameter, the objective functions are convex in the other. From our experience, starting from an

appropriate initial value, a minimum will be achieved with good performance in practice. Indeed

in the simulation experiments in section 2.6 (not shown), it is found that the algorithm is robust

to a variety of initial values chosen.

We choose blocks to take advantage of intra-block convexity. The parameter β forms one

block, and for j = 1, . . . , N , ηT
j = (ηT

1j ,η
T
2j) = the j-th row of (W1,W2) form N other blocks.

Given the values of β and η−j = (ηT
1 , . . . ,η

T
j−1,η

T
j+1, . . . ,η

T
N )T, ηj is solved by the Least Angle

Regression algorithm (LARS) of Bradley Efron and Tibshirani (2004). Given ξ, β is solved by the

ordinary least square (OLS) estimator.

The Block Coordinate Descent Algorithm

0. Start with an initial value ξ = ξ(0). This can be obtained by using β(0) = (XTX)−1XTyv

(for notations see Lemma 2), and solves (2.5) given β(0) using LARS. This gives ξ(0).

1. At step r, set β(r) = (XTW⊗
2 (r− 1)TW⊗

2 (r− 1)X)−1XTW⊗
2 (r− 1)T(ITN −W⊗

1 (r− 1))yv,

where W⊗
j (r) = IN ⊗Wj(r), with W1(r),W2(r) the spatial weight matrices recovered from

ξ(r).

2. Using LARS, solve sequentially for j = 1, . . . , N ,

η
(r)
j = argmin

ηj
‖y −Mβ(r)η‖2 + λ‖ηj‖1, subj. to ‖η1j‖1 < 1, ‖η2j‖1 < 2,
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where η = (η̌T
1 , η̌

T
2 )T with η̌i = (η

(r−1)T

i1 , . . . ,η
(r−1)T

i,j−1 ,ηT
ij ,η

(r−1)T

i,j+1 , . . . ,η
(r−1)T

iN )T. Then

ξ(r) = (η
(r)T

11 , . . . ,η
(r)T

1N ,η
(r)T

21 , . . . ,η
(r)T

2N )T.

3. Iterate steps 1-2 until ‖ξ(r) − ξ(r−1)‖1 is smaller than some pre-set number. The LASSO

solution is then (β̃, ξ̃) = (β(r), ξ(r)).

4. Take ξ(0) = ξ̃. Repeat steps 1-3 for the adaptive LASSO solutions, where in step 2 the

penalty function is modified to λvT
j |ηj |, with the components in vj having the form 1/|ξ̃j |k.

We propose a BIC criterion to select the tuning parameter γT :

BIC(γT ) =

N∑
i=1

log
(
T−1‖ỹi − (M

β̃
ξ̃γT )i‖2

)
+ |SγT |

log(T )

T
log(log(2N − 2)), (2.12)

where y = (ỹT
1 , . . . , ỹ

T
N )T with ỹi = (yi1, . . . , yiT )T. The vector ξ̃γT is the LASSO solution to (2.5)

with tuning parameter being γT . Also, (M
β̃
ξ̃γT )i is the vector with length T which is the portion of

the vector M
β̃
ξ̃γT (see equation (2.4)) corresponding to ỹi. Finally, the set SγT = {j : (ξ̃γT )j 6= 0},

so that |SγT | counts the number of non-zeros estimated in ξ̃γT . This BIC criterion is in fact the

sum of individual BIC criteria for the estimator of the ith row of the two spatial weight matrices

W∗
1 and W∗

2, with response variable ỹi. We denote γBIC the tuning parameter that minimizes the

BIC criterion in (2.12). This γBIC will then be used in (2.5) to find the LASSO solution ξ̃. We

use the same tuning parameter for the adaptive LASSO estimator in (2.6).

2.6 Numerical Examples

We give detailed simulation results in section 2.6.1 for our LASSO and adaptive LASSO estima-

tors. A set of stock markets data is analyzed in section 2.6.2 to visualize the connection among

international financial markets.

2.6.1 Simulation Results

We generate data from model (2.2) and investigate the practical performance of the LASSO and

adaptive LASSO estimators.

First, we generate independent Gaussian data from the model as a baseline for studying the

performance of the estimators. To this end, we generate the spatial weight matrices W∗
1 and W∗

2

by randomly setting elements in a row of the matrices (except diagonal elements) to be either 0.3

or 0, with an overall sparsity level (i.e. n, the number of non-zero elements) set at a pre-specified

level. If the sum of a row excluding any diagonal elements is larger than 1, then we normalize
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it by 1.1 times the L1 norm of the row. We set β∗ = (1, 0.5)T. The covariate matrix Xt has

independent rows xT
t,j generated by xt,j ∼ N(0, (σx,ij)) where σx,11 = σx,22 = 2 and σx,12 = 0.5

for each time t. Finally the noise εt is a spatially uncorrelated Gaussian white noise with mean 0

and variance σ2
ε = log(T∨N)√

T
/ log(50)√

50
, so that σ2

ε = 1 for the case N = 25, T = 50.

We simulate 2 different pairs of W∗
1 and W∗

2, and generate data 50 times according to the

scheme above for each pair. Hence in total 100 set of data is generated and analyzed for each

particular (N,T ) combination. We used N = 25, 50, 75 and T = 50, 100, 200 to explore the effects

of dimension on the performance of our estimators when it can be larger than T . In all cases,

penalization parameter was chosen via BIC criteria.

Table 2.B.1 shows the results of this baseline simulation. From T = 50 to 100 the sensitivity

(see the table for definition) improved hugely, while specificity remains at a similar level. It is

intuitive since the non-zero elements are relatively small, and hence when T is too small they

cannot be picked up easily. Bias are mostly negative, meaning that we usually underestimate

the non-zero values of the spatial weight matrices. Also it is clear that the performance of the

adaptive LASSO is much better than LASSO in general. It is of interest to note that while the

L1 error norm can be large, the L2 error norm is usually much smaller. These are consistent with

the results in Theorem 3, where the L2 error norm goes to 0 as long as γTn1/2 = o(1), but for the

L1 error norm to go to 0 we need γTn = o(1) in general.

Table 2.B.3 consider two more cases. One is when the covariates include a lagged variable

yt−1 on top of Xt. We set β∗ = (1, 0.5, 0.15)T which ensures the model for yt is stationary. While

when N = 25 results are similar to the baseline simulations, for N = 50 and 75 the performance is

getting worse in general. This indicates that while in theory it is fine to include lagged variables,

we may need a larger T or a limited N for good performance in practice.

Another case is when the noise exhibits spatial correlations. To this end, we randomly pick

the off-diagonal elements in the noise covariance matrix to be 0.3, while keeping it sparse with

around 95% elements still 0. The performance is similar to the baseline simulations in general.

This is consistent with our theories. In particular this scenario fits assumption A4 (see section

2.4.1): when there are weak or no spatial correlations in the covariates, then the spatial correlation

structure in the noise can be general.

Finally, Tables 2.B.4 and 2.B.5 show some results when some assumptions are violated. The

first case is setting the variance of the noise equal to σ2
ε = 1, instead of letting it decay as in the

baseline simulations. Clearly the performance is worse in general even when T = 200. The results

are consistent with Example 2 in section 2.4.2. The performance when there are no covariates is

also shown. The poor performance all round under the absence of covariates is again consistent

with Example 2 in section 2.4.2. Lastly, we simulate the noise using the t3 distribution rather than

normal distribution, violating the tail assumption A5 in section 2.4.1. While the performance is
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worse in general, it is still better than when there are no covariates or no variance decay. Hence

the method is more robust to fat tails.

2.6.2 Analysis of stock markets data

It is well-known that worldwide stock markets’ performance are dependent on other markets. To

study their dependence structure in more detail, we use model (2.2) to analyze markets’ returns

over 2013. We estimate the spatial weight matrix W∗
1 using the adaptive LASSO estimator. The

response variable yt is taken as the panel of stock market returns for the 26 biggest world markets.

We use daily data available for the whole of 2013 (T = 263). See Table 2.C.1 for details of the

markets and their respective indices.

For the covariates we use the S&P Global 1200 Index and the Dow Jones World Stock Index.

By definition, firms that belong to the world index are constituents of the indices of some markets.

Hence the exogeneity of the covariates cannot be sustained. Nevertheless, the global variables are

included with the purpose of eliminating a global-wide variance that could prevent the identifica-

tion of W∗
1. Due to the lack of variance in the cross-sectional dimension, W∗

2 is unidentified and

is simply set as the identity matrix. The model is estimated by the adaptive LASSO, with the

tuning parameter λ chosen by BIC, as described in section 2.5.

This setting is also interesting as there is partial knowledge of the intraday linkages: a stock

market that ended operations cannot be affected by markets which are yet to open in the same day.

Thus the applied example also allow us to explore the robustness of the estimator with respect

to not violating this natural impediment. Given the wide geographic dispersion of stock markets,

this is set to happen for a relevant number of markets in the data.

To capture this intuition, we define a "common opening hours" index

Common Opening Hoursi,j = max

{
Close Timei −max

{
Open Timei,Open Timej

}
Close Timei −Open Timei

, 0

}

which corresponds to the time of market i exposed within a day to market j. The numerator is

simply the number of hours of market i subject to the influence from the j-th one, even if the

latter has already closed before market i opens. The fraction is therefore the ratio of hours of

market i subject to the influence of market j. It is naturally bounded below by zero.

In Figure 2.C.1, the elements of Ŵ1 are plotted against the common opening hours. From this

figure, it is clear that for markets with smaller overlap of opening hours, the estimated elements

are zero in Ŵ1. In particular, there is no violation of the afore-mentioned restriction and markets

are only affecting each other if they are commonly open for at least roughly half of their opening

times.
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2.7 Conclusion

In this paper, we developed an adaptive LASSO regularization for the spatial weight matrices in

a spatial lag model when the dimension of the panel N can be larger than the sample size T .

An important feature for our LASSO/adaptive LASSO regularized estimation is that unlike many

others, our method does not need the specification of the spatial weight matrices or a distance

metric for them as in Pinkse et al. (2002). All parameters in the model are estimated together with

the spatial weight matrices, with explicit rates of convergence of various errors stated and proved.

In particular, an error upper bound is derived for the regression parameter β∗ in our spatial lag

model under an arbitrary specification/estimation of the spatial weight matrices, showing that as

long as these matrices are specified/estimated with an L1 error much less than the panel size N ,

the estimation for β∗ will be accurate.

The asymptotic sign consistency of the estimated spatial weight matrices is proved as well,

showing that we can recover the cross-sectional dependence structure in the spatial weight matrices

asymptotically. Another contribution is the development of a practical block coordinate descent

algorithm for our method, which is used for the simulation results and a real data analysis.

We argued that covariates are important for our results. Yet there are applications without

obvious covariates. Also, the variance of the noise in the panel may not be small enough to satisfy

the variance decay assumption in practice. Indeed if enough instruments are available for each

covariate, the instrumental variable approach can potentially remove the need for variance decay.

There are still major technical hurdles to overcome in this direction. A further study will be

to regularize on the reduced form model directly and we impose sparsity on the spatial weight

matrices by simple thresholding. This way not even instrumental variables are needed. These are

the potential future problems to be tackled.



Appendix

2.A Proofs

Proof of Theorem 1. We first show that, with the tail condition in A5 for a process {zt}, we
have for any w > 0, maxj ‖ztj‖2w ≤ µ2w < ∞. Hence we can fix a w large enough such that

N = o(Tw/4−1/2 logw/4(T )); see Remark 3 after Theorem 1. Indeed by the Fubini’s Theorem,

E|ztj |2w = E

∫ |ztj |2w
0

ds =

∫ ∞
0

P (|ztj |> s1/2w) ds ≤
∫ ∞

0
D1 exp(−D2s

q/2w) ds

=
4wD1

q

∫ ∞
0

x4w/q−1e−D2x2
dx =

2wD1

qD
2w/q
2

Γ(2w/q) [define as µ2w
2w] <∞, (2.13)

so that maxj ‖ztj‖2w ≤ µ2w <∞ for any w > 0. Together with assumption A6, Lemma 1 can then

be applied for the processes {ζt,jXt,`k}, {ζt,iζt,j − E(ζt,iζt,j)} and {Xt,i`Xt,jm − E(Xt,i`Xt,jm)}.
Since α > 1/2− 1/w, we have w(1/2− α̃) = β̃ = 1 in Lemma 1. The union sum inequality implies

P (Ac1) ≤
∑

1≤j,`≤N
1≤k≤K

P
(∣∣∣T−1

T∑
t=1

ζt,jXt,`k

∣∣∣ ≥ λT) ≤ N2K
( C1T

(TλT )w
+ C2 exp(−C3Tλ

2
T )
)

≤ C1K

(
C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
+
C2KN

2

T 3 ∨N3
. (2.14)

Similarly, we have

P (Ac3) ≤ C1

(
C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
+

C2N
2

T 3 ∨N3
,

P (Ac4) ≤ C1K
2

(
C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
+
C2K

2N2

T 3 ∨N3
.

(2.15)

The tail assumption A5 and the union sum inequality imply that

P (Mc) ≤ NTK ·D1 exp(−3 log(T ∨N)) =
D1NTK

T 3 ∨N3
. (2.16)

105
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Finally, if we can show that

max
1≤k≤K

‖N−
1
2
− 1

2w ζT
t Xt,k‖2w <∞, (2.17)

Θm,2w =
∞∑
t=m

max
1≤k≤K

‖N−
1
2
− 1

2w (ζT
t Xt,k − ζ

′T
t X′t,k)‖2w ≤ am

−α, (2.18)

for some a > 0 and all m ≥ 1, then we can apply Lemma 1 for A2 to obtain

P (Ac2) ≤
K∑
k=1

P

(∣∣∣∣∣T−1
T∑
t=1

N−
1
2
− 1

2w ζT
t Xt,k

∣∣∣∣∣ ≥ λT
)

≤ C1

(
C3

3

)w/2 K

Tw/2−1 logw/2(T ∨N)
+

C2K

T 3 ∨N3
. (2.19)

Combining (2.14), (2.15), (2.16) and (2.19), we can then use

P (A1 ∩ . . . ∩ A4 ∩M) ≥ 1−
4∑
j=1

P (Aj)− P (M)

to yield the conclusion of the Theorem. It remains to show (2.17) and (2.18).

We use assumption A4 and we assume first that ‖Σ1/2
xk ‖∞ ≤ Sx < ∞, and {X∗t,jk}1≤j≤N is a

martingale difference with respect to the filtration generated by (X∗t,1k, . . . , X
∗
t,jk). Assuming the

other part of A4 for the noise results in very similar proof and we omit it. Write
∑N

j=1 ζt,jXt,jk =

ζT
t Xt,k = ζT

t Σ
1/2
xk X∗t,k =

∑N
j=1(ζT

t Σ
1/2
xk )jX

∗
t,jk, where Xt,k,X∗t,k are the k-th columns of Xt and X∗t

respectively. Then by the independence assumption A3,

E((ζT
t Σ

1/2
xk )jX

∗
t,jk|(ζT

t Σ
1/2
xk )s, X

∗
t,sk, s ≤ j − 1) = E((ζT

t Σ
1/2
xk )j |(ζT

t Σ
1/2
xk )s, s ≤ j − 1)

· E(X∗t,jk|X∗t,sk, s ≤ j − 1) = 0,

since {X∗t,jk}1≤j≤N is a martingale difference. Hence {(ζT
t Σ

1/2
xk )jX

∗
t,jk}1≤j≤N is a martingale dif-
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ference. By Lemma 2.1 of Li (2003), assumptions A3, A4 and (2.13), we then have

E|N−
1
2
− 1

2w ζT
t Xt,k|2w = E

∣∣∣N− 1
2
− 1

2w

N∑
j=1

(ζT
t Σ

1/2
xk )jX

∗
t,jk

∣∣∣2w
≤ N−2(36w)2w(1 + (2w − 1)−1)w

N∑
j=1

E|(ζT
t Σ

1/2
xk )jX

∗
t,jk|2w

= N−2(36w)2w(1 + (2w − 1)−1)w
N∑
j=1

E|(ζT
t Σ

1/2
xk )j |2wE|X∗t,jk|2w

≤ N−2(36wµ2w)2w(1 + (2w − 1)−1)w
N∑
j=1

E| max
1≤j≤N

|ζt,j ||2w‖Σ1/2
xk ‖

2w
∞

≤ N−2(36wµ2wSx)2w(1 + (2w − 1)−1)w
N∑
j=1

N max
1≤j≤N

E|ζt,j |2w

≤ (36wµ2
2wSx)2w(1 + (2w − 1)−1)w <∞,

so that max1≤k≤K ‖N−
1
2
− 1

2w ζT
t Xt,k‖2w <∞, which is (2.17).

To prove (2.18), observe that

Θm,2w ≤
∞∑
t=m

max
1≤k≤K

N−
1
2
− 1

2w

[
‖ζT
t Σ

1/2
xk (X∗t,k −X

′∗
t,k)‖2w + ‖(ζT

t Σ
1/2
xk − ζ

′T
t Σ

1/2
xk )X

′∗
t,k‖2w

]
,

≤
∞∑
t=m

max
1≤k≤K

N−
1
2
− 1

2w

‖ N∑
j=1

(ζT
t Σ

1/2
xk )j(X

∗
t,jk −X

′∗
t,jk)‖2w + ‖

N∑
j=1

(ζT
t Σ

1/2
xk − ζ

′T
t Σ

1/2
xk )jX

′∗
t,jk‖2w

 .
With similar arguments as before, {(ζT

t Σ
1/2
xk )j(X

∗
t,jk − X

′∗
t,jk)}j and {(ζT

t Σ
1/2
xk − ζ

′T
t Σ

1/2
xk )jX

′∗
t,jk}j

can be shown to be martingale differences with respect to the filtration

Fj = σ(X∗t,sk, X
′∗
t,sk, (ζ

T
t Σ

1/2
xk )s, (ζ

′T
t Σ

1/2
xk )s, s ≤ j).

Hence we can use Lemma 2.1 of Li (2003), assumptions A3, A4, A6 and (2.13) to show that

‖N−
1
2
− 1

2w

N∑
j=1

(ζT
t Σ

1/2
xk )j(X

∗
t,jk −X

′∗
t,jk)‖2w ≤ 36w(1 + (2w − 1)−1)1/2

·

N−2
N∑
j=1

E| max
1≤j≤N

|ζt,j ||2w‖Σ1/2
xk ‖

2w
∞ (θx

∗
t,2w,jk)

2w

1/2w

≤ 36wµwSx(1 + (2w − 1)−1)1/2 max
1≤j≤N

θx
∗
t,2w,jk.
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Similarly,

‖N−
1
2
− 1

2w

N∑
j=1

(ζT
t Σ

1/2
xk − ζ

′T
t Σ

1/2
xk )jX

′∗
t,jk‖2w ≤ 36wµwSx(1 + (2w − 1)−1)1/2 max

1≤j≤N
θζt,2w,j .

Hence combining and using assumption A6, we have

Θm,2w ≤ 36wµwSx(1 + (2w − 1)−1)1/2(Θx∗
m,2w + Θζ

m,2w) ≤ 72CwµwSx(1 + (2w − 1)−1)1/2m−α,

which is (2.18). The proof is now completed. �

Proof of Lemma 2. Denote U = IN ⊗ T−1
∑T

t=1 xtx
T
t , and

V =


IK ⊗ w̃21

...

IK ⊗ w̃2N

 , where w̃T
2j is the j-th row of W̃2.

Then XTW̃⊗T

2 W̃⊗
2 X = VTUV, and we decompose β̃ − β∗ =

∑5
j=1 Ii, where

I1 = −(VTE(U)V)−1VT (U− E(U))V(β̃ − β∗),

I2 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
2 − W̃⊗

2 )Xβ∗,

I3 = (VTE(U)V)−1T−1XTW̃⊗T

2 εv,

I4 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
1 − W̃⊗

1 )(ITN −W∗⊗
1 )−1W∗⊗

2 Xβ∗,

I5 = (VTE(U)V)−1T−1XTW̃⊗T

2 (W∗⊗
1 − W̃⊗

1 )(ITN −W∗⊗
1 )−1εv,

where εv is defined similar to yv. Note by assumptions A1 and A7,

‖(VTE(U)V)−1‖∞ ≤
K1/2

λmin(VTE(U)V)
≤ K1/2

λmin(E(U))λmin(VTV)
≤ K1/2

uN
. (2.20)

Then on A4, using (2.20),

‖I1‖1 ≤ K‖(V
TE(U)V)−1‖∞‖V

T‖∞‖U− E(U)‖max‖V(β̃ − β∗)‖∞

≤ K3/2

uN
· 2N · λT · ‖β̃ − β∗‖1 =

2K3/2λT
u

‖β̃ − β∗‖1.
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Similarly on A4, using (2.20) and assumptions A1, A4,

‖I2‖1 ≤
K1/2

uN
· ‖T−1XTW̃⊗T

2 (W∗⊗
2 − W̃⊗

2 )X‖∞‖β
∗‖1

=
K1/2‖β∗‖1

uN
max

1≤i≤K

K∑
j=1

∣∣∣ N∑
`,s=1

(w∗2,s` − w̃2,s`)

N∑
k=1

(
w̃2,skT

−1
T∑
t=1

Xt,kiXt,`j

)∣∣∣
≤
K1/2‖β∗‖1

uN
· 2K(σ2

max + λT )‖ξ̃2 − ξ∗2‖1 =
2K3/2(σ2

max + λT )‖β∗‖1
uN

‖ξ̃2 − ξ∗2‖1.

Similarly on A1 and A2, using (2.20) and assumptions A1, A4,

‖I3‖1 ≤
K1/2δ

1/2
T

uN
· ‖T−1XTW̃⊗T

2 ζv‖1 =
K1/2δ

1/2
T

uN

K∑
k=1

∣∣∣ N∑
s,`=1

w̃2,s`T
−1

T∑
t=1

Xt,skζt,`

∣∣∣
=
K3/2δ

1/2
T

uN
max

1≤k≤K

∣∣∣ N∑
s,`=1

(w̃2,s` − w∗2,s`)T−1
T∑
t=1

Xt,skζt,` +

N∑
s,`=1

w∗2,s`T
−1

T∑
t=1

Xt,skζt,`

∣∣∣
≤
K3/2δ

1/2
T

uN
(λT ‖ξ̃2 − ξ∗2‖1 + λTN

1
2

+ 1
2w + λT s2).

Finally, note that the row sum condition in assumption A1 implies

‖(IN −W∗
1)−1‖∞ ≤

∑
k≥0

‖W∗
1‖
k
∞ ≤

∑
k≥0

ηk = (1− η)−1. (2.21)

Hence using this, (2.20) and assumptions A1,A4, on A1 and A4, we have (tedious algebra omitted)

‖I4‖1 ≤
4K3/2‖β∗‖1(σ2

max + λT )

(1− η)uN
‖ξ̃1 − ξ∗1‖1,

‖I5‖1 ≤
2K3/2λT δ

1/2
T

(1− η)uN
‖ξ̃1 − ξ∗1‖1.

Using the expressions for ‖I1‖1to ‖I5‖1, rearranging and simplifying, we thus have

‖β̃ − β∗‖1 ≤
K3/2

u− 2K3/2λT

{
(s2 +N

1
2

+ 1
2w )λT δ

1/2
T

N
+

4‖β∗‖1(σ2
max + λT ) + 2λT δ

1/2
T

(1− η)N
‖ξ̃ − ξ∗‖1

}

≤
a1(s2 +N

1
2

+ 1
2w )λT δ

1/2
T

N
+
a2

N
‖ξ̃ − ξ∗‖1,

which is the inequality for ‖β̃ − β∗‖1 if we set constants

a1 ≥
K3/2

u− 2K3/2λT
, a2 ≥

4K3/2‖β∗‖1(λT + σ2
max) + 2λT δ

1/2
T K3/2

(1− η)(u− 2K3/2λT )
. �
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Proof of Theorem 2. For the LASSO estimator ξ̃, (2.5) implies

1

2T
‖y −M

β̃
ξ̃‖2 + γT ‖ξ̃‖1 ≤

1

2T
‖y −Mβ∗ξ

∗‖2 + γT ‖ξ∗‖1,

which, using model (2.4), can be rearranged to

1

2T
‖Mβ∗ξ

∗ −M
β̃
ξ̃‖2 ≤ 1

T
εTX

β̃−β∗vec(IN ) +
1

T
εTX

β̃−β∗(ξ̃2 − vec(IN ))

+
1

T
εTMβ∗(ξ̃ − ξ∗) + γT (‖ξ∗‖1 − ‖ξ̃‖1). (2.22)

On A2, using εtj = δ
1/2
T ζtj ,

∣∣∣ 1

T
εTX

β̃−β∗vec(IN )
∣∣∣ =

∣∣∣ 1

T

T∑
t=1

N∑
j=1

εtj

K∑
k=1

Xt,jk(β̃k − β∗k)
∣∣∣ ≤ λT δ1/2

T N
1
2

+ 1
2w ‖β̃ − β∗‖1.

On A1, recalling s2 = ‖ξ∗2 − vec(IN )‖1,

∣∣∣ 1

T
εTX

β̃−β∗(ξ̃2 − vec(IN ))
∣∣∣ ≤ max

1≤j 6=`≤N

∣∣∣ 1

T

T∑
t=1

εtj

K∑
k=1

Xt,`k(β̃k − β∗k)
∣∣∣ · ‖ξ̃2 − vec(IN )‖1

≤ λT δ1/2
T ‖β̃ − β∗‖1(s2 + ‖ξ̃2 − ξ∗2‖1).

Finally,

∣∣∣ 1

T
εTMβ∗(ξ̃ − ξ∗)

∣∣∣ ≤ max
1≤j 6=`≤N
1≤k≤K

{∣∣∣ 1

T

T∑
t=1

εtjyt`

∣∣∣, ∣∣∣ 1

T

T∑
t=1

εtjXt,`k

∣∣∣ · ‖β∗‖1
}
‖ξ̃ − ξ∗‖1.

Writing the `-th row of Π1 as πT
1,`, using (2.21), we have on A1 and A3,

∣∣∣ 1

T

T∑
t=1

εtjyt`

∣∣∣ ≤ ∣∣∣ 1

T

T∑
t=1

εtjπ
∗T
1,`W

∗
2Xtβ

∗
∣∣∣+
∣∣∣ 1

T

T∑
t=1

εtjπ
∗T
1,`εt

∣∣∣
≤

2δ
1/2
T ‖β∗‖1
1− η

max
1≤`≤N

1≤k≤K

∣∣∣ 1

T

T∑
t=1

ζtjXt,`k

∣∣∣+
δT

1− η
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

[ζtjζti − E(ζtjζti)]
∣∣∣+

δTσ
2
0

1− η

≤
2λT δ

1/2
T ‖β∗‖1 + λT δT + δTσ

2
0

1− η
,

where we used assumption A2 that |E(ζtiζtj)|≤ σ2
0. Combining these bounds, on A1 and A3,∣∣∣ 1

T
εTMβ∗(ξ̃ − ξ∗)

∣∣∣ ≤ (λT δ
1/2
T aT + cηδT )‖ξ̃ − ξ∗‖1,

where cη =
σ2

0

(1− η)
, aT = ‖β∗‖1 +

2‖β∗‖1 + δ
1/2
T

1− η
.
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Hence utilizing all these bounds, (2.22) becomes

1

2T
‖M

β̃
ξ̃ −Mβ∗ξ

∗‖2 ≤ λT δ1/2
T (N

1
2

+ 1
2w + s2 + ‖ξ̃2 − ξ∗2‖1)‖β̃ − β∗‖1

+ (λT δ
1/2
T aT + cηδT )‖ξ̃ − ξ∗‖1 + γT (‖ξ∗‖1 − ‖ξ̃‖1).

Using the result of Lemma 2 on the LASSO estimator β̃, and assuming ‖ξ̃ − ξ∗‖1 > λT δ
1/2
T , we

have (tedious algebra omitted)

1

2T
‖M

β̃
ξ̃ −Mβ∗ξ

∗‖2 ≤ a1λT δ
1/2
T

(
N

1
2w + s2N

− 1
2 + λT δ

1/2
T

)2
‖ξ̃ − ξ∗‖1

+ a2λT δ
1/2
T

(
2 +N

1
2w
− 1

2 + s2N
−1
)
‖ξ̃ − ξ∗‖1

+ (λTaT + cηδT )‖ξ̃ − ξ∗‖1 + γT (‖ξ∗‖1 − ‖ξ̃‖1).

Using the rates condition specified in the theorem, the dominant term is cηδT ‖ξ̃ − ξ∗‖1, so that

there is a constant D ≥ 3a1 + 4a2 + cη + aT such that

1

2T
‖M

β̃
ξ̃ −Mβ∗ξ

∗‖2 ≤ DδT ‖ξ̃ − ξ∗‖1 + γT (‖ξ∗‖1 − ‖ξ̃‖1).

Setting γT = 2DδT , we then have

DδT ‖ξ̃ − ξ∗‖1 ≤
1

2T
‖M

β̃
ξ̃ −Mβ∗ξ

∗‖2 +DδT ‖ξ̃ − ξ∗‖1

≤ 2DδT (‖ξ̃ − ξ∗‖1 + ‖ξ∗‖1 − ‖ξ̃‖1)

= 2DδT (‖ξ̃J − ξ∗J‖1 + ‖ξ∗J‖1 − ‖ξ̃J‖1)

≤ 4DδT ‖ξ̃J − ξ∗J‖1.

Hence ‖ξ̃ − ξ∗‖1 ≤ 4‖ξ̃J − ξ∗J‖1, which implies

‖ξ̃Jc − ξ∗Jc‖1 ≤ 3‖ξ̃J − ξ∗J‖1.

Following exactly the same lines of proof, for the adaptive LASSO estimator ξ̂ we have

1

2T
‖M

β̂
ξ̂ −Mβ∗ξ

∗‖2 ≤ DδT ‖ξ̂ − ξ∗‖1 + γTvT(|ξ∗|−|ξ̂|).

Again set γT = 2DδT , then using 2vj − 1 ≥ vj since vj > 1,

1

2T
‖M

β̂
ξ̂ −Mβ∗ξ

∗‖2 + 2DδTvT|ξ̂ − ξ∗|−DδT ‖ξ̂ − ξ∗‖1 ≤ 2DδTvT(|ξ̂ − ξ∗|+|ξ∗|−|ξ̂|), so

DδTvT|ξ̂ − ξ∗| ≤ 4DδTvT
J |ξ̂J − ξ∗J |.

It is easy to see that the left hand side is great than DδT
|ξ̃
J̃,max

|k
‖ξ̂ − ξ∗‖1, while the right hand side
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is less than 4DδT
|ξ̃J,min|k

‖ξ̂J − ξ∗J‖1, where ξ̃J̃ ,max
= max

j∈J̃ ξ̃j and ξ̃J,min = minj∈J ξ̃j . The remaining

two inequalities for ξ̂ follow immediately. �

Proof of Theorem 3. For α such that ‖αJc‖1 ≤ c0‖αJ‖1 with n = |J |, define ε = ‖Σ̂∗ −Σ‖max,

|αTΣ̂∗α−αTΣα| ≤ ε‖α‖21 ≤ ε(1 + c0)2‖αJ‖21 ≤ εn(1 + c0)2‖αJ‖2,

so that by assumption A8,

κ(n)‖αJ‖ ≤ ‖Σ1/2α‖ ≤ T−1/2‖Mβ∗α‖+ ε1/2n1/2(1 + c0)‖αJ‖. (2.23)

Put α = ξ̃− ξ∗, so that Theorem 2 implies that ‖αJc‖1 ≤ c0‖αJ‖1 as c0 > 3. Suppose ε = O(λT )

(to be proved later), and using

1

2T
‖M

β̃
ξ̃ −Mβ∗ξ

∗‖2 ≤ 4DδT ‖ξ̃J − ξ∗J‖1

which is an intermediate result from the proof of Theorem 2, we can apply (2.23) to have, on

A1 ∩ · · · ∩ A4 ∩M,

κ(n)‖ξ̃J − ξ∗J‖ ≤ T−1/2‖Mβ∗(ξ̃ − ξ∗)‖+ ε1/2n1/2(1 + c0)‖ξ̃J − ξ∗J‖

≤ T−1/2‖M
β̃
ξ̃ −Mβ∗ξ

∗‖+ T−1/2‖X
β̃−β∗ ξ̃2‖+ ε1/2n1/2(1 + c0)‖ξ̃J − ξ∗J‖

≤ 2
√

2D1/2δ
1/2
T ‖ξ̃J − ξ∗J‖

1/2
1 + T−1/2

∥∥∥2‖β̃∗ − β∗‖1 max
1≤t≤T

1≤i≤N, 1≤k≤K

|Xt,ik|1TN
∥∥∥

+ ε1/2n1/2(1 + c0)‖ξ̃J − ξ∗J‖

≤ 2
√

2D1/2δ
1/2
T n1/4‖ξ̃J − ξ∗J‖

1/2 + h1,N,T + h2,N,T ‖ξ̃ − ξ∗‖1 + h3,N,T ‖ξ̃J − ξ∗J‖

≤ 2γ
1/2
T n1/4‖ξ̃J − ξ∗J‖

1/2 + ((1 + c0)n1/2h2,N,T + h3,N,T )‖ξ̃J − ξ∗J‖+ h1,N,T ,

where 1TN is a vector of ones of size TN , and we used the result in Lemma 2 such that

h1,N,T = 2a1(3/D2 log(T ∨N))1/qN−1/2λT δ
1/2
T (s2 +N

1
2

+ 1
2w ),

h2,N,T = 2a2(3/D2 log(T ∨N))1/qN−1/2, h3,N,T = ε1/2n1/2(1 + c0).

With ε = O(λT ) assumed, the explicit rates assumed in Theorem 3 ensure that h1,N,T , n
1/2h2,N,T

and h3,N,T are all going to 0, with h1,N,T = o(γTn
1/2). Hence solving the above quadratic inequality
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for ‖ξ̃J − ξ∗J‖
1/2,

‖ξ̃J − ξ∗J‖
1/2 ≤

γ
1/2
T n1/4 +

[
γTn

1/2 + κ(n)h1,N,T

]1/2
κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T

, so that

‖ξ̃J − ξ∗J‖ ≤
4γTn

1/2 + 4κ(n)h1,N,T

(κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T )2
≤ 5γTn

1/2

κ2(n)

for large enough N,T , which is the inequality for ξ̃.

To prove the inequality for ξ̂, first note that for large enough N,T ,

|ξ̃J,min| ≥ |ξ∗J,min|−|ξ̃J,min − ξ∗J,min|≥ |ξ∗J,min|−‖ξ̃J − ξ∗J‖

≥ |ξ∗J,min|−(1− 2−k)|ξ∗J,min|= 2−k|ξ∗J,min|,

so that |ξ̃J,min|k≥ |ξ∗J,min|k/2. Hence using the result in Theorem 2 for ξ̂,

‖ξ̂ − ξ∗‖1 ≤
4|ξ̃

J̃ max
|k

|ξ∗J,min|k/2
‖ξ̂J − ξ∗J‖1 ≤

8

|ξ∗J,min|k
‖ξ̂J − ξ∗J‖1 = (1 + c0)‖ξ̂J − ξ∗J‖1,

so that ‖ξ̂Jc − ξ∗Jc‖1 ≤ c0‖ξ̂J − ξ∗J‖1. Then using an intermediate result

1

2T
‖M

β̂
ξ̂ −Mβ∗ξ

∗‖2 ≤ 4DδTvT
J |ξ̂J − ξ∗J |≤

4DδT

|ξ̃J,min|k
‖ξ̂J − ξ∗J‖1,

which is from the proof of Theorem 2, putting α = ξ̂−ξ∗ in (2.23), we have on A1∩· · ·∩A4∩M,

κ(n)‖ξ̂J − ξ∗J‖ ≤
2γ

1/2
T n1/4

|ξ̃J,min|k/2
‖ξ̂J − ξ∗J‖

1/2 + ((1 + c0)n1/2h2,N,T + h3,N,T )‖ξ̂J − ξ∗J‖+ h1,N,T .

Solving for ‖ξ̂J − ξ∗J‖
1/2 as before and squaring, we obtain

‖ξ̂J − ξJ‖ ≤
4γTn

1/2|ξ̃J,min|−k+4κ(n)h1,N,T

(κ(n)− (1 + c0)n1/2h2,N,T − h3,N,T )2
≤ 5γTn

1/2

κ2(n)|ξ∗J,min|k

for large enough N,T , which is the inequality for ξ̂. The bounds for β̃ and β̂ are obtained by

using the results in Lemma 2 and Theorem 2, and substituting the error upper bounds we just

proved. It remains to show that ε = O(λT ).
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We can easily see that, for xT
t,j the j-th row of Xt,

ε = ‖Σ̂∗ −Σ‖max = max
1≤i,j≤N

{∣∣∣T−1
T∑
t=1

ytiytj − E(ytiytj)
∣∣∣, ∣∣∣β∗T(T−1

T∑
t=1

ytixt,j − E(ytixt,j)
)∣∣∣,

∣∣∣β∗T(T−1
T∑
t=1

xt,ix
T
t,j − E(xt,ix

T
t,j)
)
β∗
∣∣∣}.

The largest upper bound is given by max1≤i,j≤N |T−1
∑T

t=1 ytiytj − E(ytiytj)| (details omitted),

where using yti = π∗T1,iW
∗
2Xtβ

∗ + π∗T1,iεt (see (2.3), with π∗T1,i the i-th row of Π∗1),

∣∣∣T−1
T∑
t=1

ytiytj − E(ytiytj)
∣∣∣ ≤ ‖T−1

T∑
t=1

Xtβ
∗β∗TXT

t − E(Xtβ
∗β∗TXT

t )‖max · ‖W
∗T
2 π∗1,i‖

2
1

+ 2‖T−1
T∑
t=1

Xtβ
∗εT
t − E(Xtβ

∗εT
t )‖max · ‖W

∗T
2 π∗1,i‖1‖π1,i‖1

+ ‖T−1
T∑
t=1

εtε
T
t − E(εtε

T
t )‖max · ‖π1,i‖21

≤
4λT ‖β∗‖21
(1− η)2

+
4λT ‖β∗‖1
(1− η)2

+
λT

(1− η)2
=
λT (2‖β∗‖1 + 1)2

(1− η)2
,

since it is on A1 ∩ · · ·A4 ∩M. Hence ε = O(λT ). This completes the proof of the theorem. �

Proof of Theorem 5. First, similar to (2.23), we can use assumption A8 for ‖αJc‖1 ≤ c0‖αJ‖1 to

arrive at κ(n)‖αJc‖ ≤ T−1/2‖Mβ∗α‖+ ε1/2n1/2(1 + c0)‖αJ‖. Putting α = ξ̃ − ξ∗ and follow the

same lines as in the proof of Theorem 3, we can use ‖ξ̃J − ξ∗J‖ = O(γTn
1/2) on A1 ∩ · · · ∩A4 ∩M

(by the result of Theorem 3) to show that, for j ∈ Jc,

ξ̃j ≤ ‖ξ̃Jc‖ = ‖ξ̃Jc − ξ∗Jc‖ = O(γTn
1/2). (2.24)

Define the set D = {j : ξ∗j does not corr. to diagonal elements of W∗
1,W

∗
2}. The KKT condition

implies that ξ̂ is a solution to (2.6) if and only if there exists a subgradient

g = ∂(vT|ξ̂|) =

g ∈ R2N2
:


gi = 0, i ∈ Dc;

gi = visign(ξ̂i), ξ̂i 6= 0;

|gi|≤ vi, otherwise.


such that, differentiating the expression to be minimized in (2.6) with respect to ξD,

T−1M̂T
DM̂Dξ̂D − T−1M̂Ty + γTgD + T−1M̂T

DX
β̂
vec(IN ) = 0,

where we denote M̂ = M
β̂
and M∗ = Mβ∗ , and we use AS to denote the matrix A with columns
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restricted to the index set S. Substituting y = M∗
Dξ
∗
D + Xβ∗vec(IN ) + ε,

Σ̂DDξ̂D − T−1M̂T
DM∗

Dξ
∗
D + T−1M̂T

DX
β̂−β∗vec(IN )− T−1M̂T

Dε = −γTgD,

where Σ̂ = T−1M̂TM̂. For sign consistency of ξ̂, we have ξ̂Jc∩D = 0 and sign(ξ̂J) = sign(ξ∗J).

Then it is easy to see that ξ̂ is a sign consistent solution if and only if sign(ξ̂J) = sign(ξ∗J) and

Σ̂JJ ξ̂J − T−1M̂T
JM∗

Jξ
∗
J + T−1M̂T

JX
β̂−β∗vec(IN )− T−1M̂T

Jε = −γTgJ ;

|Σ̂J ′J ξ̂J − T−1M̂T
J ′M

∗
Jξ
∗
J + T−1M̂T

J ′Xβ̂−β∗vec(IN )− T−1M̂T
J ′ε| ≤ γTvJ ′ ,

where J ′ = Jc ∩ D. Recall from assumption A8 that Σ̂∗ = T−1M∗TM∗ and Σ = E(Σ̂∗).

Rearranging, these yield

sign(ξ̂J) = sign{ξ∗J + I1 + I2 + I3 + I4 + I5} = sign(ξ∗J); (2.25)

|D1 +D2 +D3 +D4 +D5| ≤ γTvJ ′ (2.26)

as the necessary and sufficient conditions for ξ̂ to be a sign consistent solution to (2.6), where

I1 = −Σ−1
JJ [T−1(M̂J −M∗

J)T(M̂J ξ̂J −M∗
Jξ
∗
J)], I2 = −Σ−1

JJ [T−1M∗T
J (M̂J −M∗

J)ξ̂J ],

I3 = −Σ−1
JJ (Σ̂∗JJ −ΣJJ)(ξ̂J − ξ∗J), I4 = −Σ−1

JJ [T−1M̂T
JX

β̂−β∗vec(IN )],

I5 = Σ−1
JJ [T−1M̂T

Jε− γTgJ ], D1 = T−1(M̂J ′ −M∗
J ′)

T(M̂J −M∗
J)ξ̂J ,

D2 = T−1(M̂J ′ −M∗
J ′)

TM∗
J(ξ̂J − ξ∗J), D3 = T−1M∗T

J ′ (M̂J −M∗
J)ξ̂J ,

D4 = Σ̂∗J ′J(ξ̂J − ξ∗J), D5 = T−1M̂T
J ′(Xβ̂−β∗vec(IN )− ε).

We first prove that ‖Σ−1
JJ‖∞ ≤ C on A ∩ · · · ∩ A4 ∩M for some constant C. To this end,

denote X∗ = Xβ∗ , and consider the partition ΣJJ = (Aij)1≤i,j≤2. Then

A11 = E(T−1ZT
JZJ), A12 = AT

21 = E(T−1ZT
JX∗J), A22 = E(T−1X∗TJ X∗J).

Assumption A1 implies that there are finite number of non-zeros in each row of W∗
1 and W∗

2. Let

nr be the maximum number of non-zeros in a row of W∗
1 or W∗

2. Then nr is a constant, and each

block diagonal Aij defined above has at most nr non-zeros in each row. Using the inverse formula
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of partitioned matrix, we thus have

‖Σ−1
JJ‖∞ ≤ ‖(A11 −A12A

−1
22 A21)−1‖∞ + ‖A−1

11 A12(A22 −A21A
−1
11 A12)−1‖∞

≤ n1/2
r λmax{(A11 −A12A

−1
22 A21)−1}

+ n1/2
r λmax(A−1

11 ) · ‖A12‖∞ · n
1/2
r λmax{(A22 −A21A

−1
11 A12)−1}

≤ n1/2
r λmax(Σ−1

JJ ) + n3/2
r λ2

max(Σ−1
JJ )‖A12‖max

≤ n
1/2
r

u
+
n

3/2
r

u2
(σ2

max + λT )(2‖β∗‖1 + 1)2(1− η)−2 ≤ C,

where we use the last part of the proof of Theorem 3 and assumption A4 (details omitted) to

arrive at, on A1 ∩ · · · ∩ A4 ∩M,

‖A12‖max ≤ (σ2
max + λT )(2‖β∗‖1 + 1)2(1− η)−2,

and the assumption of uniform boundedness, say λmin(ΣJJ) > u > 0 uniformly.

For proving (2.25), it suffices to show that ‖Ij‖∞ = o(1) since by assumption A1, ξ∗j is a

constant for j ∈ J . Consider

‖I1‖∞ ≤ ‖Σ
−1
JJ‖∞ · (‖T

−1XT

β̂−β∗,JX
β̂−β∗,J‖∞ · ‖ξ̂2,J‖max + ‖T−1XT

β̂−β∗,JM∗
J‖∞ · ‖ξ̂J − ξ∗J‖max)

≤ C‖β̂ − β∗‖1(σ2
max + λT )

{
nr‖β̂ − β∗‖1(1 + ‖ξ̂2,J − ξ∗2,J‖) +

4nr‖β∗‖1
1− η

‖ξ̂J − ξ∗J‖
}

= O

(
s2λTγ

1/2
T + γTn

N
·

(
s2λTγ

1/2
T + γTn

N
+ γTn

1/2

))
= O

(
γ2
Tn

2

N2
+
γ2
Tn

3/2

N

)
= o(1),

where we used the rates assumed in Theorem 2, the last part of the proof of Theorem 3 for the

rates of ‖T−1XT

β̂−β∗,J
X

β̂−β∗,J‖∞ and ‖T−1XT

β̂−β∗,J
M∗

J‖∞ (details omitted, but we also used the

fact that these two matrices are of block diagonal structure with at most 2nr non-zero entries in

each row), and the results of Theorem 3 for the rates of ‖β̂ − β∗‖1 and ‖ξ̂J − ξ∗J‖. We also used

n ≤ 2nrN , so that γTn/N ≤ 2nrγT = o(1). Similarly, on A1 ∩ · · ·A4 ∩M,

‖I2‖∞ ≤ C‖T
−1M∗T

J X
β̂−β∗,J‖∞‖ξ̂2,J‖max = O

(
2nrs2λTγ

1/2
T + 2nrγTn

N

)
= O

(γTn
N

)
= o(1);

‖I3‖∞ ≤ C‖Σ̂
∗
JJ −ΣJJ‖∞‖ξ̂J − ξ∗J‖max = O(2nrλTγTn

1/2) = o(λTγ
1
k+1

T ) = o(1);

‖I4‖∞ ≤ C

∥∥∥∥∥
(

T−1
∑T

t=1 yt(β̂ − β∗)TXT
t

T−1
∑T

t=1 Xtβ̂(β̂ − β∗)TXT
t

)∥∥∥∥∥
max

= O

(
s2λTγ

1/2
T + γTn

N

)
= O

(γTn
N

)
= o(1);

‖I5‖∞ ≤ C

(
‖T−1M̂Tε‖max +

γT

|ξ̃J,min|k

)
= O(γ

1/2
T (λT + γ

1/2
T ) + γT ) = O(γT ) = o(1),

Hence we have proved (2.25) on A1 ∩ · · ·A4 ∩M when N,T are large enough.
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For proving (2.26) on A1 ∩ · · · ∩ A4 ∩M when N,T are large enough, it suffices to show by

(2.24) that

‖Dj‖∞ ≤ γT /max
j∈Jc
|ξ̃j |k= o

(
γT /(γTn

1/2)k
)
.

To show this, consider on A1 ∩ · · · ∩ A4 ∩M,

‖D1‖∞ ≤ ‖T
−1XT

β̂−β∗,J ′Xβ̂−β∗,J‖∞‖ξ̂2,J‖max ≤ (σ2
max + λT )nr‖β̂ − β∗‖21(1 + ‖ξ̂J − ξ∗J‖)

= O

(
γ2
Tn

2

N2

)
;

‖D2‖∞ ≤ ‖T
−1XT

β̂−β∗,J ′M
∗
J‖∞‖ξ̂J − ξ∗J‖max = O

(γTn
N
· γTn1/2

)
= O

(
γ2
Tn

3/2

N

)
;

‖D3‖∞ ≤ ‖T
−1M∗T

J ′Xβ̂−β∗,J‖∞‖ξ̂J‖max = O
(γTn
N

)
;

‖D4‖∞ ≤ (‖Σ̂J ′J −ΣJ ′J‖∞ + ‖ΣJ ′J‖∞)‖ξ̂J − ξ∗J‖max = O(γTn
1/2);

‖D5‖∞ ≤ O
(γTn
N

+ γT

)
.

The largest order is ‖D4‖∞ = O(γTn
1/2), which is of smaller order than γT /(γTn

1/2)k by the

assumption n = o(γ
− 2k
k+1

T ). This proves (2.26), and completes the proof of the theorem. �



CHAPTER 2. REGULARIZATION FOR SPATIAL MODEL USING ADA-LASSO 118

2.B Simulations
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Table 2.B.1: Baseline Simulations. All values are averages over 100 simulations. Penalization is
chosen via BIC criteria. Specificity is the percentage of zeros estimated as zeros. Sensitivity is
the percentage of non-zeros estimated as non-zeros. LASSO L1 is the L1 error norm ‖ξ̃− ξ∗‖1 for
the LASSO estimator, and AdaLASSO represents the adaptive LASSO. Bias is the sum of error
for the estimated non-zero values without taking absolute values. Standard errors in parenthesis.
True sparsity level of the both W∗

1 and W∗
2 is κ = 0.95.

T = 50 T = 100 T = 200
W∗

1 W∗
2 W∗

1 W∗
2 W∗

1 W∗
2

Specificity 97.02%
(0.011)

98.22%
(0.008)

96.74%
(0.010)

98.20%
(0.008)

96.64%
(0.011)

98.36%
(0.008)

Sensitivity 78.09%
(0.083)

55.38%
(0.103)

95.70%
(0.042)

86.76%
(0.065)

99.35%
(0.014)

96.19%
(0.032)

Bias −0.0660
(0.024)

−0.1105
(0.031)

−0.0391
(0.015)

−0.0738
(0.017)

−0.0220
(0.009)

−0.0394
(0.011)

LASSO L1 18.8344
(2.178)

18.2203
(2.407)

18.0305
(1.780)

18.8540
(2.066)

15.9489
(1.702)

16.8550
(1.810)

N = 25 LASSO L2 5.5494
(1.011)

7.2172
(1.046)

3.4079
(0.650)

4.1905
(0.759)

2.2531
(0.481)

2.3123
(0.401)

AdaLASSO L1 2.1840
(0.368)

2.5987
(0.452)

1.7145
(0.276)

2.0779
(0.357)

1.3482
(0.221)

1.5522
(0.243)

AdaLASSO L2 1.0609
(0.241)

1.7634
(0.315)

0.4505
(0.140)

0.7627
(0.203)

0.2067
(0.075)

0.2858
(0.096)

Sparsity 0.9349
(0.014)

0.9349
(0.014)

0.9233
(0.012)

0.9233
(0.012)

0.9202
(0.013)

0.9202
(0.013)

‖β̂ − β∗‖1 0.0857
(0.0327)

0.0173
(0.0121)

0.0073
(0.0056)

Specificity 95.70%
(0.007)

98.38%
(0.005)

96.20%
(0.007)

98.35%
(0.005)

96.60%
(0.006)

98.47%
(0.005)

Sensitivity 74.35%
(0.045)

42.23%
(0.050)

92.54%
(0.029)

81.18%
(0.043)

98.32%
(0.013)

96.15%
(0.018)

Bias −0.0448
(0.011)

−0.0972
(0.016)

−0.0336
(0.006)

−0.0799
(0.011)

−0.0215
(0.004)

−0.0412
(0.006)

LASSO L1 66.7238
(3.839)

61.6638
(4.002)

64.5299
(4.564)

66.7991
(5.325)

59.4202
(4.480)

63.2523
(4.785)

N = 50 LASSO L2 25.2673
(2.012)

31.8719
(2.073)

15.3925
(1.655)

18.7294
(1.509)

9.0062
(1.159)

9.4297
(1.044)

AdaLASSO L1 7.8904
(0.652)

10.1448
(0.803)

5.8510
(0.637)

7.4972
(0.809)

4.6307
(0.496)

5.5847
(0.585)

AdaLASSO L2 4.5845
(0.478)

8.2501
(0.604)

1.9969
(0.313)

3.7515
(0.479)

0.8043
(0.178)

1.1878
(0.254)

Sparsity 0.9240
(0.007)

0.9240
(0.007)

0.9182
(0.007)

0.9182
(0.007)

0.9201
(0.007)

0.9201
(0.007)

‖β̂ − β∗‖1 0.0257
(0.0233)

0.0283
(0.0167)

0.0309
(0.0098)

Specificity 95.30%
(0.005)

98.90%
(0.003)

96.35%
(0.004)

98.88%
(0.003)

97.16%
(0.003)

98.98%
(0.003)

Sensitivity 59.54%
(0.034)

26.88%
(0.033)

85.53%
(0.026)

76.25%
(0.033)

95.42%
(0.013)

96.04%
(0.014)

Bias −0.0224
(0.009)

−0.0973
(0.015)

−0.0277
(0.005)

−0.0911
(0.007)

−0.0196
(0.003)

−0.0483
(0.005)

LASSO L1 131.4265
(4.475)

111.8097
(5.187)

120.7178
(6.361)

120.3575
(7.167)

113.0090
(6.296)

120.1324
(7.211)

N = 75 LASSO L2 65.0015
(3.615)

75.7601
(2.881)

35.5961
(2.409)

46.1954
(2.351)

19.7648
(1.537)

21.3982
(1.777)

AdaLASSO L1 15.7064
(0.752)

21.8860
(1.054)

10.1854
(0.777)

13.9803
(1.011)

7.8193
(0.627)

9.9623
(0.832)

AdaLASSO L2 11.7311
(0.867)

20.8000
(0.836)

4.5032
(0.440)

9.9502
(0.795)

1.7424
(0.241)

2.8229
(0.454)

Sparsity 0.9262
(0.005)

0.9262
(0.005)

0.9239
(0.004)

0.9239
(0.004)

0.9262
(0.004)

0.9262
(0.004)

‖β̂ − β∗‖1 0.0274
(0.0200)

0.0343
(0.0170)

0.0348
(0.0101)
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Table 2.B.2: Baseline Simulations. All values are averages over 100 simulations. Penalization is
chosen via BIC criteria. Specificity is the percentage of zeros estimated as zeros. Sensitivity is
the percentage of non-zeros estimated as non-zeros. LASSO L1 is the L1 error norm ‖ξ̃− ξ∗‖1 for
the LASSO estimator, and AdaLASSO represents the adaptive LASSO. Bias is the sum of error
for the estimated non-zero values without taking absolute values. Standard errors in parenthesis.
True sparsity level of the both W∗

1 and W∗
2 is κ = 0.99.

T = 50 T = 100 T = 200
W∗

1 W∗
2 W∗

1 W∗
2 W∗

1 W∗
2

Specificity 99.72%
(0.003)

99.86%
(0.002)

99.54%
(0.003)

99.72%
(0.003)

99.47%
(0.003)

99.79%
(0.002)

Sensitivity 63.14%
(0.231)

40.52%
(0.214)

94.28%
(0.094)

84.98%
(0.146)

99.56%
(0.032)

97.43%
(0.065)

Bias −0.1189
(0.052)

−0.1305
(0.064)

−0.0678
(0.030)

−0.0881
(0.033)

−0.0328
(0.017)

−0.0424
(0.022)

LASSO L1 10.7485
(1.581)

8.9524
(1.681)

10.9814
(1.475)

10.5877
(1.653)

9.3435
(1.230)

9.5100
(1.252)

N = 25 LASSO L2 1.2140
(0.381)

1.5384
(0.409)

0.7173
(0.245)

0.9196
(0.297)

0.3881
(0.168)

0.4341
(0.186)

AdaLASSO L1 0.9456
(0.192)

0.9303
(0.209)

0.7516
(0.153)

0.8293
(0.197)

0.5439
(0.112)

0.6016
(0.122)

AdaLASSO L2 0.2712
(0.107)

0.4082
(0.124)

0.1017
(0.055)

0.1731
(0.086)

0.0334
(0.028)

0.0484
(0.042)

Sparsity 0.9912
(0.004)

0.9912
(0.004)

0.9865
(0.004)

0.9865
(0.004)

0.9856
(0.005)

0.9856
(0.005)

‖β̂ − β∗‖1 0.0232
(0.0114)

0.0100
(0.0076)

0.0084
(0.0061)

Specificity 99.75%
(0.002)

99.88%
(0.001)

99.57%
(0.002)

99.76%
(0.001)

99.54%
(0.002)

99.82%
(0.001)

Sensitivity 61.80%
(0.127)

34.74%
(0.125)

93.04%
(0.056)

84.03%
(0.067)

99.14%
(0.021)

96.79%
(0.035)

Bias −0.1128
(0.030)

−0.1375
(0.036)

−0.0695
(0.016)

−0.0936
(0.017)

−0.0338
(0.008)

−0.0441
(0.010)

LASSO L1 33.6100
(4.133)

24.9089
(3.769)

39.8098
(3.169)

36.4643
(3.391)

34.8279
(2.949)

35.1975
(3.435)

N = 50 LASSO L2 4.9503
(0.884)

6.4540
(0.983)

2.9538
(0.551)

3.8265
(0.690)

1.6247
(0.299)

1.6463
(0.359)

AdaLASSO L1 2.9374
(0.453)

2.7847
(0.460)

2.6580
(0.301)

2.8045
(0.350)

1.9250
(0.244)

2.1301
(0.305)

AdaLASSO L2 1.1193
(0.253)

1.7546
(0.316)

0.4390
(0.134)

0.7485
(0.183)

0.1423
(0.058)

0.1972
(0.090)

Sparsity 0.9915
(0.002)

0.9915
(0.002)

0.9868
(0.002)

0.9868
(0.002)

0.9854
(0.002)

0.9854
(0.002)

‖β̂ − β∗‖1 0.0248
(0.0164)

0.0132
(0.0097)

0.0087
(0.0062)

Specificity 99.79%
(0.001)

99.91%
(0.001)

99.54%
(0.001)

99.74%
(0.001)

99.56%
(0.001)

99.84%
(0.001)

Sensitivity 52.25%
(0.140)

24.37%
(0.098)

93.66%
(0.034)

83.38%
(0.056)

99.17%
(0.012)

97.46%
(0.023)

Bias −0.1228
(0.023)

−0.1466
(0.030)

−0.0669
(0.009)

−0.0935
(0.013)

−0.0326
(0.005)

−0.0450
(0.008)

LASSO L1 59.9314
(9.852)

39.7276
(7.405)

80.7885
(4.056)

71.3078
(4.727)

74.6762
(4.159)

74.8206
(5.213)

N = 75 LASSO L2 12.1496
(1.295)

15.1889
(1.247)

6.7000
(0.852)

8.3786
(1.078)

3.5099
(0.480)

3.5854
(0.601)

AdaLASSO L1 5.4167
(0.949)

5.1533
(0.755)

5.3577
(0.391)

5.5670
(0.474)

3.9939
(0.347)

4.4054
(0.441)

AdaLASSO L2 2.8895
(0.505)

4.2755
(0.446)

0.9576
(0.186)

1.6567
(0.295)

0.2951
(0.092)

0.4148
(0.146)

Sparsity 0.9927
(0.003)

0.9927
(0.003)

0.9861
(0.002)

0.9861
(0.002)

0.9854
(0.001)

0.9854
(0.001)

‖β̂ − β∗‖1 0.0466
(0.0186)

0.0183
(0.0133)

0.0100
(0.0067)
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Table 2.B.3: Comparisons to the baseline simulations when the covariates include yt−1 (under the
columns “Time Dependence”) and when the noise exhibits spatial correlations (under the columns
“Spatial Dependence”). Refer to Table 2.B.1 for the explanations of different items.

Time Dependence Spatial Dependence
T = 100 T = 200 T = 100 T = 200

W∗
1 W∗

2 W∗
1 W∗

2 W∗
1 W∗

2 W∗
1 W∗

2

Specificity 96.35%
(0.013)

98.04%
(0.007)

96.46%
(0.010)

98.34%
(0.008)

96.73%
(0.009)

98.23%
(0.007)

96.54%
(0.011)

98.12%
(0.009)

Sensitivity 94.04%
(0.046)

84.39%
(0.067)

99.44%
(0.013)

93.86%
(0.070)

94.71%
(0.047)

88.03%
(0.059)

99.22%
(0.018)

96.00%
(0.033)

Bias −0.0361
(0.014)

−0.0686
(0.018)

−0.0195
(0.011)

−0.0477
(0.015)

−0.0464
(0.013)

−0.0761
(0.019)

−0.0235
(0.011)

−0.0395
(0.012)

LASSO L1 18.4701
(2.025)

19.6248
(1.896)

16.0530
(1.783)

16.9714
(1.900)

18.1214
(1.609)

18.7202
(1.666)

16.3036
(1.686)

17.4943
(1.950)

N = 25 LASSO L2 3.7210
(0.737)

4.5611
(0.795)

2.4119
(0.612)

2.7056
(0.749)

3.5858
(0.577)

4.1266
(0.729)

2.3510
(0.509)

2.4653
(0.500)

AdaLASSO L1 1.7919
(0.325)

2.1952
(0.361)

1.3490
(0.211)

1.5641
(0.264)

1.7328
(0.261)

2.0427
(0.294)

1.4041
(0.233)

1.6380
(0.288)

AdaLASSO L2 0.5181
(0.152)

0.8554
(0.213)

0.2486
(0.126)

0.3794
(0.218)

0.4805
(0.124)

0.7400
(0.188)

0.2291
(0.084)

0.3144
(0.107)

Sparsity 0.9216
(0.012)

0.9216
(0.012)

0.9199
(0.011)

0.9199
(0.011)

0.9225
(0.010)

0.9225
(0.010)

0.9194
(0.011)

0.9194
(0.011)

‖β̂ − β∗‖1 0.0184
(0.0094)

0.0101
(0.0060)

0.0230
(0.0127)

0.0070
(0.0058)

Specificity 95.39%
(0.010)

97.96%
(0.006)

95.96%
(0.007)

98.37%
(0.005)

96.15%
(0.007)

98.37%
(0.006)

96.64%
(0.005)

98.51%
(0.005)

Sensitivity 91.07%
(0.029)

67.93%
(0.125)

98.33%
(0.012)

86.47%
(0.065)

93.58%
(0.024)

81.74%
(0.030)

98.65%
(0.012)

95.69%
(0.018)

Bias −0.0380
(0.008)

−0.0964
(0.021)

−0.0244
(0.005)

−0.0725
(0.017)

−0.0339
(0.006)

−0.0774
(0.009)

−0.0206
(0.004)

−0.0421
(0.006)

LASSO L1 73.0988
(7.870)

83.6656
(11.432)

67.8401
(4.699)

80.4248
(6.820)

64.8915
(4.553)

66.4893
(5.642)

59.2335
(4.163)

62.9595
(4.951)

N = 50 LASSO L2 18.1152
(3.076)

23.2770
(4.087)

11.3419
(2.160)

14.5371
(2.991)

15.4289
(1.492)

18.3139
(1.185)

9.1422
(0.970)

9.4313
(0.972)

AdaLASSO L1 7.2820
(1.261)

10.6510
(2.312)

5.6221
(0.620)

8.3195
(1.241)

5.8783
(0.641)

7.3947
(0.870)

4.6112
(0.471)

5.6047
(0.618)

AdaLASSO L2 2.4515
(0.550)

5.1805
(1.352)

1.1335
(0.313)

2.5783
(0.865)

1.9934
(0.281)

3.6315
(0.351)

0.8176
(0.137)

1.2385
(0.225)

Sparsity 0.9111
(0.011)

0.9111
(0.011)

0.9140
(0.008)

0.9140
(0.008)

0.9171
(0.007)

0.9171
(0.007)

0.9189
(0.007)

0.9189
(0.007)

‖β̂ − β∗‖1 0.0351
(0.0211)

0.0274
(0.0126)

0.0306
(0.0180)

0.0349
(0.0096)

Specificity 92.43%
(0.006)

94.97%
(0.018)

87.74%
(0.009)

90.68%
(0.024)

96.44%
(0.005)

98.90%
(0.003)

97.20%
(0.003)

98.99%
(0.003)

Sensitivity 70.69%
(0.026)

17.31%
(0.032)

88.79%
(0.023)

25.72%
(0.039)

84.79%
(0.025)

75.73%
(0.034)

95.25%
(0.014)

96.17%
(0.010)

Bias −0.0335
(0.007)

−0.1890
(0.019)

−0.0299
(0.005)

−0.2028
(0.019)

−0.0260
(0.004)

−0.0920
(0.010)

−0.0196
(0.002)

−0.0489
(0.005)

LASSO L1 209.5463
(5.333)

258.5049
(5.432)

268.4002
(5.614)

308.2939
(6.467)

119.7554
(6.982)

118.3699
(8.395)

112.5645
(6.037)

118.9015
(7.546)

N = 75 LASSO L2 66.6747
(5.213)

102.1036
(11.582)

71.6813
(6.040)

114.2675
(15.065)

35.6206
(2.686)

45.6831
(2.580)

19.8162
(1.450)

21.4568
(1.229)

AdaLASSO L1 27.8593
(1.200)

43.5799
(1.526)

32.3066
(1.089)

46.4623
(1.705)

10.0237
(0.807)

13.7319
(1.111)

7.7980
(0.553)

9.8648
(0.861)

AdaLASSO L2 10.4046
(1.195)

26.3588
(2.434)

9.0844
(1.069)

26.7842
(3.080)

4.5115
(0.475)

9.8667
(0.797)

1.7587
(0.204)

2.8241
(0.292)

Sparsity 0.8942
(0.006)

0.8942
(0.006)

0.8409
(0.008)

0.8409
(0.008)

0.9248
(0.005)

0.9248
(0.005)

0.9266
(0.003)

0.9266
(0.003)

‖β̂ − β∗‖1 0.1006
(0.0300)

0.1054
(0.0250)

0.0343
(0.0207)

0.0340
(0.0097)
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Table 2.B.4: Comparisons to the baseline simulations when assumptions are violated. Refer to
Table 2.B.1 for the explanations of different items.

No Variance Decay Fat Tails
T = 100 T = 200 T = 100 T = 200

W∗
1 W∗

2 W∗
1 W∗

2 W∗
1 W∗

2 W∗
1 W∗

2

Specificity 96.24%
(0.013)

97.87%
(0.010)

95.62%
(0.012)

97.42%
(0.010)

93.44%
(0.021)

95.73%
(0.016)

91.81%
(0.016)

94.55%
(0.014)

Sensitivity 95.06%
(0.044)

84.64%
(0.065)

99.11%
(0.016)

95.98%
(0.028)

88.76%
(0.066)

58.61%
(0.099)

98.10%
(0.026)

84.91%
(0.081)

Bias −0.0422
(0.015)

−0.0765
(0.020)

−0.0255
(0.011)

−0.0459
(0.010)

−0.0486
(0.021)

−0.1109
(0.052)

−0.0382
(0.015)

−0.0871
(0.019)

LASSO L1 19.6605
(2.195)

20.6833
(2.493)

18.4888
(1.549)

20.2737
(1.717)

27.5608
(3.601)

30.5705
(4.472)

25.5832
(1.923)

30.7968
(2.678)

N = 25 LASSO L2 3.9067
(0.699)

4.5202
(0.688)

2.8648
(0.483)

3.0230
(0.419)

7.5948
(2.215)

9.4319
(2.066)

6.6359
(1.153)

6.9125
(1.234)

AdaLASSO L1 1.9409
(0.358)

2.4089
(0.442)

1.6541
(0.198)

2.0208
(0.243)

4.3815
(2.534)

6.0911
(2.763)

3.1113
(0.566)

4.5200
(0.798)

AdaLASSO L2 0.5298
(0.145)

0.8437
(0.195)

0.2911
(0.082)

0.3834
(0.096)

1.9702
(2.338)

2.8222
(2.147)

1.0896
(0.403)

1.4446
(0.468)

Sparsity 0.9176
(0.013)

0.9176
(0.013)

0.9139
(0.012)

0.9139
(0.012)

0.8948
(0.021)

0.8948
(0.021)

0.8707
(0.018)

0.8707
(0.018)

‖β̂ − β∗‖1 0.0181
(0.0115)

0.0103
(0.0076)

0.0411
(0.0297)

0.0237
(0.0170)

Specificity 95.70%
(0.006)

98.15%
(0.005)

95.69%
(0.007)

97.92%
(0.005)

93.57%
(0.009)

96.93%
(0.008)

92.59%
(0.008)

95.99%
(0.007)

Sensitivity 92.41%
(0.022)

77.73%
(0.044)

98.22%
(0.013)

93.97%
(0.025)

80.41%
(0.037)

50.10%
(0.062)

94.01%
(0.026)

82.04%
(0.042)

Bias −0.0367
(0.006)

−0.0844
(0.010)

−0.0270
(0.005)

−0.0520
(0.007)

−0.0464
(0.009)

−0.0999
(0.018)

−0.0432
(0.007)

−0.0849
(0.013)

LASSO L1 70.0053
(4.594)

71.3662
(4.805)

69.1858
(3.930)

74.9824
(5.178)

97.5160
(6.324)

101.2189
(8.907)

94.7012
(5.161)

110.6415
(7.469)

N = 50 LASSO L2 17.0935
(1.748)

20.1647
(1.592)

11.4220
(1.382)

12.6971
(1.173)

28.6774
(3.548)

35.0926
(4.227)

23.0987
(2.806)

27.3068
(3.296)

AdaLASSO L1 6.6601
(0.633)

8.4296
(0.782)

5.7215
(0.465)

7.3379
(0.723)

12.8711
(2.350)

18.6539
(3.868)

10.6893
(1.644)

15.9282
(2.578)

AdaLASSO L2 2.2809
(0.327)

4.1629
(0.457)

1.0718
(0.213)

1.7761
(0.298)

5.3795
(1.724)

9.6082
(2.528)

3.6077
(1.219)

6.0230
(1.814)

Sparsity 0.9129
(0.008)

0.9129
(0.008)

0.9126
(0.007)

0.9126
(0.007)

0.8984
(0.009)

0.8984
(0.009)

0.8850
(0.008)

0.8850
(0.008)

‖β̂ − β∗‖1 0.0303
(0.0173)

0.0352
(0.0133)

0.0482
(0.0305)

0.0538
(0.0191)

Specificity 95.99%
(0.005)

98.77%
(0.004)

96.49%
(0.004)

98.73%
(0.003)

94.16%
(0.006)

98.04%
(0.004)

94.03%
(0.006)

97.33%
(0.006)

Sensitivity 83.29%
(0.027)

70.74%
(0.033)

94.63%
(0.017)

93.24%
(0.019)

71.87%
(0.030)

38.61%
(0.035)

88.41%
(0.023)

73.94%
(0.039)

Bias −0.0286
(0.005)

−0.0970
(0.008)

−0.0249
(0.003)

−0.0652
(0.006)

−0.0326
(0.005)

−0.1019
(0.013)

−0.0386
(0.004)

−0.1006
(0.010)

LASSO L1 129.4730
(6.808)

127.1148
(9.643)

129.9715
(6.918)

139.4748
(8.089)

182.9601
(8.852)

172.0112
(11.093)

184.9879
(9.496)

209.7532
(14.129)

N = 75 LASSO L2 39.2023
(2.474)

50.7696
(2.523)

24.5651
(1.722)

28.8266
(2.391)

60.0113
(4.521)

78.0560
(5.120)

45.6243
(4.509)

60.0513
(5.580)

AdaLASSO L1 11.3512
(0.869)

15.6470
(1.436)

9.7166
(0.724)

12.9432
(0.999)

21.7642
(2.443)

31.2314
(3.847)

18.8524
(2.802)

29.5169
(4.897)

AdaLASSO L2 5.1309
(0.462)

11.4221
(0.747)

2.3472
(0.241)

4.4590
(0.650)

10.2597
(1.910)

21.5966
(3.088)

6.5760
(1.906)

13.8220
(2.990)

Sparsity 0.9212
(0.004)

0.9212
(0.004)

0.9211
(0.005)

0.9211
(0.005)

0.9093
(0.006)

0.9093
(0.006)

0.9008
(0.006)

0.9008
(0.006)

‖β̂ − β∗‖1 0.0367
(0.0160)

0.0402
(0.0108)

0.0655
(0.0241)

0.0644
(0.0138)
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Table 2.B.5: Simulations without covariates. Comparisons to the baseline simulations when as-
sumptions are violated. Refer to Table 2.B.1 for the explanations of different items.

T = 100 T = 200
W∗

1 W∗
2 W∗

1 W∗
2

Specificity 96.00%
(0.021)

−
(−)

93.27%
(0.017)

−
(−)

Sensitivity 59.22%
(0.198)

−
(−)

90.63%
(0.075)

−
(−)

Bias −0.1089
(0.040)

−
(−)

−0.0928
(0.024)

−
(−)

LASSO L1 7.6912
(0.751)

−
(−)

7.5505
(0.661)

−
(−)

N = 25 LASSO L2 7.6912
(0.751)

−
(−)

7.5505
(0.661)

−
(−)

AdaLASSO L1 1.5748
(0.228)

−
(−)

1.2060
(0.136)

−
(−)

AdaLASSO L2 1.5748
(0.228)

−
(−)

1.2060
(0.136)

−
(−)

Sparsity 0.9324
(0.029)

−
(−)

0.8907
(0.018)

−
(−)

‖β̂ − β∗‖1 −
(−)

−
(−)

Specificity 95.76%
(0.007)

−
(−)

94.40%
(0.008)

−
(−)

Sensitivity 63.47%
(0.070)

−
(−)

86.84%
(0.039)

−
(−)

Bias −0.0825
(0.015)

−
(−)

−0.0804
(0.015)

−
(−)

LASSO L1 27.1855
(1.406)

−
(−)

26.3433
(1.840)

−
(−)

N = 50 LASSO L2 27.1855
(1.406)

−
(−)

26.3433
(1.840)

−
(−)

AdaLASSO L1 4.8163
(0.366)

−
(−)

3.9884
(0.346)

−
(−)

AdaLASSO L2 4.8163
(0.366)

−
(−)

3.9884
(0.346)

−
(−)

Sparsity 0.9279
(0.009)

−
(−)

0.9032
(0.008)

−
(−)

‖β̂ − β∗‖1 −
(−)

−
(−)

Specificity 95.46%
(0.007)

−
(−)

94.58%
(0.006)

−
(−)

Sensitivity 57.03%
(0.063)

−
(−)

76.97%
(0.043)

−
(−)

Bias −0.0685
(0.012)

−
(−)

−0.0684
(0.012)

−
(−)

LASSO L1 55.0692
(3.474)

−
(−)

51.4000
(2.648)

−
(−)

N = 75 LASSO L2 55.0692
(3.474)

−
(−)

51.4000
(2.648)

−
(−)

AdaLASSO L1 8.5933
(0.714)

−
(−)

6.9086
(0.544)

−
(−)

AdaLASSO L2 8.5933
(0.714)

−
(−)

6.9086
(0.544)

−
(−)

Sparsity 0.9283
(0.009)

−
(−)

0.9099
(0.006)

−
(−)

‖β̂ − β∗‖1 −
(−)

−
(−)
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2.C Application

Table 2.C.1: Markets and their respective indices used. Data source: Global Financial Data.

Country Code Index Country Code Index
Argentina ARG Merval Australia AUL Dow Jones Australian
Austria AUT Viena ATX-5 Brazil BRZ Dow Jones Brazil Stock
Canada CAN S&P/CDNX Composite Chile CHL Santiago SSE Inter-10
China CHN Shanghai SE Composite Egypt EGP SE 100
France FRA Paris CAC-40 Germany GER CDAX Total Return
Hong Kong HHK Hang Seng Composite India IDI NSE-50
Indonesia IDO Jakarta SE Liquid 45 Italy ITA Milan SE MIB-30
Japan JPN Nikkei 500 Mexico MEX SE Index (INMX)
New Zealand NZZ NZSX-15 Russia RUS Russia MICEX Composite
Spain SPA Madrid SE IBEX-35 Singapore SIN Singapore FTSE All-shares
South Africa STA FTSE/JSE Top 40 South Korea SKK Korea SE Stock Price

Tradable Stocks
Switzerland SWZ Swiss Market Thailand THA Thailand SET General
United Kingdom UKK S&P United Kingdom United States USA S&P 500

Figure 2.C.1: Elements of Ŵ1 plotted against Common Opening Hours.
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Chapter 3

Detection and Estimation of Block

Structure in Spatial Weight Matrix

Abstract. In many economic applications, it is often of interest to categorize,

classify or label individuals by groups based on similarity of observed behavior. We

propose a method that captures group affiliation or, equivalently, estimates the block

structure of a neighboring matrix embedded in a Spatial Econometric model. The main

results of the LASSO estimator shows that off-diagonal block elements are estimated as

zeros with high probability, property defined as “zero-block consistency”. Furthermore,

we present and prove zero-block consistency for the estimated spatial weight matrix

even under a thin margin of interaction between groups. The tool developed in this

paper can be used as a verification of block structure by applied researchers, or as an

exploration tool for estimating unknown block structures. We analyzed the US Senate

voting data and correctly identified blocks based on party affiliations. Simulations also

show that the method performs well.1

Keywords: Spatial weight matrix; LASSO penalization; zero-block consistency; spatial lag/error

model; Nagaev-type inequality.

JEL classification: C31, C33.
1Paper coauthored with Clifford Lam, London School of Economics, Department of Statistics.
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3.1 Introduction

Classification problems are a common endeavor in Economics and Econometrics research. This is

the problem of identifying and assigning individuals to groups based on their observed behavior or

common characteristics. This problem can come in many formats. Examples include estimating

groups of countries such that their income levels are mutually dependent, industrial inter-linkages

and many issues regarding strategic interaction among economic agents. In the nonparametric

case, see the classical examples in Ferraty and Vieu (2006). Identification of groups can be used

to improve prediction, or can itself be the main purpose of a study.

A spatial weight matrix W can be used to indicate the existence of groups which are represented

as diagonal blocks, producing a block diagonal matrix W. Elements wij that fall outside blocks are

therefore zero, indicating that there is no connection between individuals i and j. The classification

into groups can describe, for example, de facto political parties operating at a Congress, abstracting

from self-denominated labels. Political history is full of examples where parties operate jointly,

pressing for a single agenda, thus behaving like a single political entity. Another example is

defector policymakers, who effectively operate in a more similar way to political parties other

than the one he or she pledged alliance. In both cases, it is useful to have an empirical tool that

classifies individuals into groups, independently of labeled political affiliation.

The purpose of this paper is to show the properties of a LASSO-based estimator that uncovers

the block structure of an unknown spatial weight matrix when only the outcomes (the response

variables) are observed. Estimating the block structure of a spatial weight matrix is also a useful

addition to the Spatial Econometrics literature, which usually assumes a known spatial weight

matrix using expert knowledge, or more often just rough proxies like the inverse of “distances” or

its arbitrary powers.

As shown in Arbia and Fingleton (2008) and Pinkse and Slade (2010), estimation accuracy of

other parameters in a spatial lag/error model depends crucially on the correct specification of the

spatial weight matrix. With these concerns in mind, there are other attempts in the literature to

estimate the spatial weight matrix together with other important parameters in a spatial lag/error

model. Pinkse et al. (2002) suggested to estimate a nonparametric smooth function for the elements

of the spatial weight matrix. Beenstock and Felsenstein (2012) suggested using a moment estimator

for the spatial weight matrix. Bhattacharjee and Jensen-Butler (2013) proposes to estimate the

spatial weight matrix by first estimating the error covariance matrix. These methods can suffer

from the need to input an appropriate distance metric, which is still determined by the user, or to

estimate a large error covariance matrix, which can be inaccurate as the dimension of the panel is

large and can be close to the sample size - one of the major characteristics of a large time series

panel. There are other ad hoc approaches as well, many of which unfortunately lack theoretical

analysis of the properties of the resulting estimators.
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Recently, Lam and Souza (2013) suggested to estimate jointly the spatial weight matrix and

other parameters in a spatial lag/error model through the use of adaptive LASSO penalization,

which was first developed in Zou (2006) for variable selection problems in standard regression.

They provided theoretical analysis of the properties of the resulting estimators, including the

spatial weight matrix and other important parameters in the model, and the size of the panel is

allowed to be close to or even larger than the sample size. However, in their paper, the authors

assumed the existence of exogenous covariates, which are not necessarily observed in a setting

when the interest lies purely on classifying individuals into groups.

In this paper, our objective is to estimate the block structure of the spatial weight matrix in

a spatial lag/error model in the absence of exogenous covariates (see model (3.3) and section 3.2

for details in how we arrive at such a model for estimation). We then propose a LASSO estimator

that captures with high probability all the zeros that fall outside blocks of interactions, property

defined as “zero-block consistency”. We can also estimate the diagonal blocks to be non-zero with

probability 1. In section 3.4, we show zero-block consistency of the LASSO estimator of a spatial

weight matrix even when there is a slight overlap between the groups. In other words, there is a

small number of “hybrid” individuals.

Motivated by a set of US Senate voting data, in this paper we use the method to explore if

the Republicans and the Democrats form two major blocks based on their voting records. We

find that along the year of 2013, the method correctly identifies two groups, with Independent

Senators behaving mostly as Democrats. The margin of interaction – defined as the Senators with

cross-partisan links – is as small as seven Senators, a clear indication of strong polarization in the

political chamber. Interestingly, for retrospective years, the degree of interaction was substantially

higher, spiking at the last years of the Bush administration.

An interesting computational aspect of a spatial weight matrix with blocks of zeros in the

off-diagonal is that we can store it in the computer as a banded matrix which reduces the amount

of memory used. This provides another motivation for the development of our estimators in this

paper to detect block structure in the spatial weight matrix.

The rest of the paper is organized as follows. In section 3.2, we introduce the spatial lag/error

model with blocks in the spatial weight matrix, and proposed a LASSO minimization problem for

finding the estimator of the spatial weight matrix. Section 3.3 presents the concept of zero-block

consistency, with probability lower bound of such consistency for the LASSO estimator explicitly

given, thus showing that block detection is achieved with high probability. Section 3.4 relaxes all

the previous settings and results to overlapping blocks. Section 3.5 presents our simulation results

as well as the complete analysis of the US Senate voting data. Conclusion is in section 3.6, and

all technical proofs are in section 3.A.
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3.2 The Model and the LASSO Estimator

One of the most commonly-used model for describing spatial interaction in a panel is the spatial

lag model,

yt = ρWyt + Xtβ + εt, t = 1, . . . , T. (3.1)

See for example equation (19.5) of Anselin et al. (2006), which is a stacked version of the above.

Here, yt is an N × 1 vector of response variables, and Xt is an N × K matrix of exogenous

covariates. The so-called spatial weight matrix W has elements that express the strength of

interaction between location i (row) and j (column). Therefore, the spatial weight matrix W

can be interpreted as the presence and strength of a link between nodes (the observations) in a

network representation that matches the spatial weights structure (Anselin et al., 2006). Such a

structure is assumed to be constant across time points t = 1, . . . , T . The parameter ρ is called

the spatial autoregressive coefficient. The spatial lag model (3.1) is typically considered as the

specification of the equilibrium outcome of a spatial or social interaction process, in which the value

of the dependent variable for one agent is jointly determined with that of the neighboring agents

(Elhorst, 2010). As an example, in the empirical literature on strategic interaction among local

governments (Brueckner, 2003), the spatial lag model is theoretically consistent with the situation

where taxation and expenditures on public services interact with that in nearby jurisdictions.

To utilize model (3.1), the spatial weight matrix W has to be specified. Yet, recent researches

suggest that the estimation accuracy of the model depends crucially on the correct specification of

W. See Arbia and Fingleton (2008) and Pinkse and Slade (2010) for some empirical experiments

on this. Moreover, Lemma 2 of Lam and Souza (2013) also shows that if the estimation of W

is not good enough, estimation accuracy of β can potentially suffer. Furthermore, Plümper and

Neumayer (2010) points out that a common practice of row-standardization in the specification of

W in model (3.1) is in fact problematic, since it alters not only the metric or unit of the spatial

lag, but also the relative weight given to the observations.

Observing the drawbacks of model (3.1), Lam and Souza (2013) proposes to estimate the

spatial weight matrix together with other parameters in the model, using

yt = W1yt + W2Xtβ + εt, t = 1, . . . , T. (3.2)

The term ρW in model (3.1) is replaced by the spatial weight matrix W1, to be estimated from

the data. The addition of matrix W2 is a generalization to model (3.1). Model (3.2) allows the

spatial weight matrix to be estimated from the data, which overcomes the various drawbacks that

are mentioned in the paragraph above when using a spatial lag model. They showed, among

various results, that the elements of the spatial weight matrix can be sign-consistently estimated

using the adaptive LASSO, i.e. the non-zeros in W1 and W2 are estimated with the correct signs,
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and the zeros in them are estimated as zeros, with probability going to 1.

In this paper, we are motivated to estimate the block structure of a spatial weight matrix. As

our primary interest resides is detecting or classifying groups of individuals based on their outcome

variables, it is not always the case that exogenous covariates exist or are relevant to a particular

empirical question. For example, for the US senators’ data, the main objective is to classify them

into different de facto parties, irrespective of other potential variables that could explain observed

behavior. As a consequence, the results in Lam and Souza (2013) cannot be directly applied.

This motivates us to study the following model:

yt = W∗yt + εt, t = 1, . . . , T, (3.3)

where yt is an N × 1 vector of observations at time t, εt is a zero mean noise vector of the same

size, and W∗ is the spatial weight matrix of size N , with 0 on its main diagonal. This model is

in fact model (1.6) in LeSage and Pace (2008), with the term ρC there replaced by the spatial

weight matrix W∗, to be estimated from data.

We assume that ‖W∗‖∞ ≤ η < 1, where ‖A‖∞ = maxi
∑

j |Aij | is the L∞ norm of a matrix

A. This ensures that (IN −W∗)−1 exists, so that yt = (IN −W∗)−1εt is stationary. Model (3.3)

allows us to study the dependence of one dependent variable on the neighboring ones. In the

context of the US senate voting data analysis to be carried out in section 3.5.3, we are studying

the dependence structure of one senator’s voting pattern on the other senators, which is captured

by the spatial weight matrix W∗. Note that there were other attempts to estimate connectedness

in the US Congress in the literature. See, for example, Fowler (2006).

Since we are interested in studying the block structure of W∗, without loss of generality, we

assume the components of yt are sorted so that the spatial weight matrix W∗ is block diagonal,

with

W∗ =


W∗

1

. . .

W∗
G

 , εt =


ε

(1)
t
...

ε
(G)
t

 , (3.4)

where G is the number of blocks in W∗. The blocks will potentially represent the dependence

structure of voting patterns of senators from within the Republican, the Democrats, and other

parties in the US senate voting data. An important assumption for {εt} is that cov(ε
(i)
t , ε

(j)
t ) = 0

for i 6= j. Otherwise, the block structure in W∗ is not identifiable. Detailed assumptions can

be found in section 3.3.1. Relaxation to overlapping blocks is treated in section 3.4. Such a

relaxation is necessary since we expect that even under polarization of political parties, there are

few individual senators from different parties sharing similar political views, thus voting similarly

on certain issues. Then the corresponding elements in the spatial weight matrix are non-zero,
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connecting the blocks representing different parties. Hence the blocks in the spatial weight matrix

will be slightly overlapping in the end.

As presented in earlier paragraphs, for recovering the block structure of the spatial weight

matrix in (3.4), if there were exogenous covariates, the adaptive LASSO estimator proposed in

Lam and Souza (2013) is more than sufficient, since it has been shown that the adaptive LASSO

estimator is asymptotically sign-consistent for the elements in the spatial weight matrix. In this

paper, we complement their results by showing that, even in the absence of exogenous covariates,

it is still possible to accurately estimate the block structure of the spatial weight matrix. Further-

more, the disturbance decay assumption in Lam and Souza (2013) is neither needed nor feasible,

or else yt would have decaying variance as well. The disturbance decay assumption entails that

the maximum variance of the disturbances in εt are decaying as the sample size goes to infinity.

In view of the block structure of W∗ in (3.4), the matrix Π∗ = (IN −W∗)−1 also has the same

block structure, say

Π∗ =


Π∗1

. . .

Π∗G

 ,

with Π∗j having the same size as W∗
j in (3.4). Hence y

(j)
t = Π∗jε

(j)
t , and is uncorrelated with

ε
(i)
t for 1 ≤ i 6= j ≤ G by the assumption that cov(ε

(i)
t , ε

(j)
t ) = 0 for i 6= j. Without a block

structure in W∗, a response variable yti and a disturbance variable εtj cannot be uncorrelated in

general. This is the reason why the disturbance decay assumption is not needed in our setting,

but is needed in general in Lam and Souza (2013).

Before proposing our estimator, we write (3.3) as a linear regression model,

y = Zξ∗ + ε, (3.5)

where y = vec{(y1, . . . ,yT )T}, ε = vec{(ε1, . . . , εT )T}, ξ∗ = vec(W∗T) and Z = IN⊗(y1, . . . ,yT )T.

Here, the operator vec denotes the column by column vectorization of a matrix, while ⊗ denotes

the Kronecker product between two matrices. The design matrix Z contains the endogenous vari-

ables yt, and hence least square estimation will be biased. Furthermore, when N is close to T ,

e.g. N = T/2, it has a serious negative effect on the accuracy of the least square estimators since

the inverse (ZTZ)−1 will be ill-conditioned.

Since we assume there is a block structure in W∗, we know that ξ∗ is a sparse vector, that

is, ξ∗ should have a lot of zeros corresponding to the zero blocks in W∗. This motivates us to

propose the LASSO penalization on the elements of ξ = vec(WT) to obtain

ξ̃ = min
ξ

1

2T
‖y − Zξ‖2 + γT ‖ξ‖1, subj. to

N∑
j=1

wij < 1, (3.6)
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where ‖v‖1 =
∑

i|vi| represents the L1-norm of the vector v and ‖v‖ = (
∑

i v
2
i )

1/2 represents the

L2 norm, and we denote the elements of W as wij . Since ξ is a vector containing all the elements

of the spatial weight matrix W, the above penalization problem can be viewed as a least square

estimation for the elements of W (represented as the vector ξ) with constraint on the magnitude

of ‖ξ‖1 (the absolute sum of all the elements of W). That is, ξ̃ is the solution to the following

problem:

min
ξ

1

2T
‖y − Zξ‖2, subj. to ‖ξ‖1 ≤ cT and

N∑
j=1

wij < 1,

where cT is determined by the tuning parameter γT . The row sum constraint in (3.6) and the

above ensure the stationarity of the estimated model. The rate for the tuning parameter γT will

be discussed after Theorem 8 in section 3.3.3.

Theorem 8 in section 3.3 shows that the solution ξ̃ for the LASSO penalization problem in (3.6)

is zero-block consistent - that is, the zero off-diagonal blocks in W∗ in (3.4) for model (3.3), with

corresponding zero patterns in ξ∗ = vec(W∗T), are estimated as zeros in ξ̃ with probability going

to 1. The theorem also says that the diagonal blocks are estimated to be non-zero with probability

equal to 1. In the context of the US senate voting data, if the Republican party and the Democrat

party are forming two blocks in the spatial weight matrix W∗ because of the political polarity in

their voting patterns, the spatial weight matrix W̃ recovered from the LASSO estimator ξ̃ in (3.6)

will be able to show such blocks with high probability.

3.3 Zero-Block Consistency of the LASSO Estimator

Before presenting the main results of this paper, we introduce the notation to be used for the rest

of the paper, and the main technical assumptions. The definition of zero-block consistency will

also be given in the subsection below.

3.3.1 Main assumptions and notations

(i) The spatial weight matrix W∗ is block diagonal as in (3.4), with at least one W∗
i 6= 0, and

‖W∗‖∞ ≤ η < 1 uniformly as T,N →∞, where η is a constant. We also assume, uniformly

as T,N →∞,

‖W∗‖1 ≤ ηc,

where ‖A‖1 = maxj
∑

i|Aij | is the L1 norm of a matrix A, and ηc is a constant.

(ii) The vector εt can be partitioned as in (3.4), with the length of ε(j)
t the same as the size of

W∗
j . Furthermore, E(εt) = 0 and cov(ε

(i)
t , ε

(j)
t ) = 0 for i 6= j. Also, var(εtj) ≤ σ2

ε < ∞
uniformly as T,N →∞, where σ2

ε is a positive constant.
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(iii) Define dT = N
T . Then we assume dT → d ∈ [0, 1) as T,N →∞.

(iv) The series {εt} is causal, with

εt =
∑
i≥0

Φiηt−i, Φ0 = IN ,

where ηt = (ηt1, . . . , ηtN )T, and the ηti’s are independent and identically distributed random

variables with mean 0 and variance σ2, having finite fourth moments. Furthermore, we

assume that uniformly as N,T →∞,

∑
i≥1

‖Φi‖ ≤
σ(1−

√
d)− e− c

σ(1 +
√
d) + e

,

for some constants e, c > 0.

(v) The tail condition P (|Z|> v) ≤ D1 exp(−D2v
q) is satisfied for ηti and εti for all integer t

and i = 1, . . . , N , for the same positive constants D1, D2 and q.

(vi) There are constants w > 2 and α > 1
2 −

1
w such that for all positive integer m,

∑
i≥m
‖Φi‖∞ ≤ Cm

−α( max
i,j
|Jij |)−

1
2w ,

where C > 0 is a constant (can depend on w), and Jij =The index set for the non-zero

elements of the j-th row of Φi.

Assumption (i) requires the absolute row sum of W∗ to be uniformly less than 1, which is a

regularity condition to ensure that the model is stationary. This row sum condition is in fact less

restrictive than the commonly used row-standardization, which forces the absolute sum of each

row to be equal to 1 in model (3.1). For stationarity, we need |ρ|< 1 in the model, so that in effect

each row is forced to sum to ρ in the matrix ρW. See equation (3.3) in Fischer and Wang (2011)

and the descriptions therein to learn more details in row-standardization. On the other hand, the

row sum condition in assumption (i) merely needs the absolute sum of each row of W∗ to be less

than 1, and each of them can be unequal.

We give a hypothetical trade example to illustrate that the row sum condition is reasonable in

practice. It is well known that the income of a country can depend on others, for example through

trade linkages. Suppose the partners of country A experience a positive income shock. In the

situation described above, it is then expected that country A, as demand for its export rises, will

experience some positive spillover from partners’ income shock. The row sum condition implies

that the overall effect perceived from A’s point of view will not be larger than the average shock

accrued by its partners, weighted by the elements of W corresponding to row that represents
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country A. In other words, it is supposed that the income shock in the trade partners is not

amplified through linkages, which is reasonable to assume to the extent that A’s economy is not

overly dependent on the export sector.

Assumption (ii) is an important identifiability condition for the block structure of W∗. As-

sumptions (iii) and (iv) facilitate the bounding of the minimum eigenvalue of a sample covariance

matrix of the observations using random matrix theories. They also make bounding various terms

in the proof much easier. Assumption (v) is a relaxation to normality. When q = 2, the random

variables are sub-gaussian, while they are sub-exponential when q = 1. When 0 < q < 1, the

random variables are heavy-tailed. Hence assumption (v) is a significant relaxation to normality.

Together with assumption (v), assumption (vi) allows us to apply the Nagaev-type inequality in

Theorem 6 to determine the tail probability of the mean of the product process {εtiεtj−E(εtiεtj)}.
It can actually be relaxed to allow for 0 < α < 1/2− 1/w at the expense of more complicated rate

in the Nagaev-type inequality in Theorem 6. See Remark 1 after Theorem 6 for more details on

this.

There are more notations and definitions before we move to our main results. Define the set

H = {j : ξ∗j = 0 and corresponds to the zero blocks in W∗}. (3.7)

In other words, the set H excludes those zeros within the diagonal blocks W∗
i for i = 1, . . . , G.

Define n =maximum size of Wi, i = 1, . . . , G. For the rest of the paper, we use the notation vS to

denote a vector v restricted to those components with index j ∈ S. Hence, for instance, we have

ξ∗H = 0 by definition. Let λT = cT−1/2 log1/2(T ∨N), where c is a constant (see Corollary 7 for

the plausible values of c). Finally, define the set

Aε = { max
1≤i,j≤N

| 1
T

T∑
t=1

[εtiεtj − E(εtiεtj)]| < λT }. (3.8)

For W∗ being block diagonal as in (3.4) and an estimator Ŵ, we define the estimator ξ̂ = vec(ŴT)

to be zero-block consistent for estimating W∗ if

P (ξ̂H = 0)→ 1, T,N →∞. (3.9)

In this paper when we say that T,N →∞ together, we mean they approach infinity jointly rather

than N being a function of T or vice versa.

3.3.2 Why LASSO alone is sufficient

Before presenting our main results, readers who are familiar with LASSO for the classical linear

model y = Xβ∗ + ε may wonder : how can LASSO be zero-block consistent in our setting, when
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for a classical linear model, it is generally selection inconsistent unless the necessary condition

given by Theorem 1 of Zou (2006), |C21C
−1
11 s|≤ 1, is satisfied?

To answer this question, we first clarify the differences between selection consistency in Zou

(2006) and zero-block consistency in our paper. The selection consistency in Zou (2006) concerns

with the correct identification of zeros and non-zeros in the true regression parameter β∗ of a

linear regression model y = Xβ∗ + ε. However, zero-block consistency concerns only on the

correct identification of zeros which are elements of the zero blocks in the block diagonal spatial

weight matrix W∗ in (3.4). For the elements in the diagonal blocks W∗
i , i = 1, . . . , G in (3.4), we

are not concerned with correct identification of zeros and non-zeros. With this in mind, at the

very most we can only draw parallels between the two.

One important parallel is that the necessary and sufficient condition for zero-block consistency

in our setting, depicted in equation (3.5) in section 3.A (see the proof of Theorem 8 therein to

see how we arrive at such necessary and sufficient condition), resembles the necessary condition

|C21C
−1
11 s|≤ 1 in Theorem 1 of Zou (2006). Using the notation in equation (3.5) in our paper,

the matrix 1
T ZT

HZD depicts the covariance matrix between the columns of the design matrix Z of

model (3.5) corresponding to the set H defined in (3.7), and the columns of Z corresponding to

the set D defined at the beginning of the proof of Theorem 8. This matrix is parallel to the matrix

C21 of Zou (2006). Similarly, the matrix 1
T ZT

DZD is parallel to the matrix C11. For the necessary

and sufficient condition (3.5) to be satisfied, a necessary condition can be derived from (3.5) to be

| 1
T

ZT
HZD(

1

T
ZT
DZD)

−1
gD| ≤ 1,

which completely resembles the condition |C21C
−1
11 s|≤ 1 in Theorem 1 of Zou (2006), except that

gD is a vector containing 1,−1 and some values with magnitude smaller than 1, whereas s in Zou

(2006) contains only 1 or −1.

Under model (3.5), we can use equations (3.8) and (3.12) in section 3.A to show that on the

set Aε defined in (3.8),

| 1
T

ZT
HZD(

1

T
ZT
DZD)

−1
gD| ≤ ‖

1

T
ZT
HZD‖∞ · ‖(

1

T
ZT
DZD)

−1‖∞ · ‖gD‖∞ = O(λTn
3/2) = o(1),

so that the necessary condition above is satisfied on the set Aε when T,N are large enough, which

has P (Aε)→ 1 by Corollary 7. Both equations (3.8) and (3.12) are proved on the basis of the form

of the model (3.3) and various assumptions in section 3.3.1, including the row sum and column

sum assumption (i) for the spatial weight matrix W∗ and the causal assumption for the process

{εt} in assumption (iv).

In brief, the special form of our model (3.3) so that yt = Π∗εt, and the assumptions for the

spatial weight matrix and the disturbance process, are all reasons for the LASSO estimator in

(3.6) to be zero-block consistent.
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3.3.3 Main results

We first present a theorem and its corollary concerning the probability lower bound of the set

defined in (3.8), which is the lower bound for the tail probability of the mean of the product

process {εtiεtj − E(εtiεtj)}. We show in Theorem 8, the main result of this paper, that this is

also the probability lower bound for the LASSO solution ξ̃ in (3.6) being zero-block consistent.

Implications and explanations of our main result will be discussed after presenting the theorem.

Theorem 6. With the causal representation for εt in assumption (iv), together with assumptions

(v) and (vi), there exists constants C1, C2 and C3 independent of T, v and the indices i, j, such

that

P (| 1
T

T∑
t=1

[εtiεtj − E(εtiεtj)] > v|) ≤ C1T

(Tv)w
+ C2 exp (− C3Tv

2).

The proof of Theorem 6 is relegated to section 3.A. This theorem utilizes Lemma 1 of Lam

and Souza (2013), where a functional dependence measure for a general time series is presented

and discussed. With the causal representation of εt and assumptions (v) and (vi), the conditions

in Lemma 1 of Lam and Souza (2013) are satisfied, and hence the Nagaev-type inequality there

can be invoked.

Remark 1. If 0 < α < 1/2− 1/w, then the inequality in Theorem 6 becomes

P (| 1
T

T∑
t=1

[εtiεtj − E(εtiεtj)] > v|) ≤ C1T
w(1/2−α)

(Tv)w
+ C2 exp (− C3T

βv2),

where β = (3 + 2αw)/(1 +w). Consequently, we need to redefine λT = cT−β/2 log1/2(T ∨N) and

any rates of convergence in the paper needed to be modified. For the sake of clarity we do not

present those results in the paper, but just assume α > 1/2− 1/w, as in assumption (vi).

The following corollary is an immediate consequence of Theorem 6.

Corollary 7. With the same constants C1,C2 and C3, and the same conditions as in Theorem 6,

we set the constant c in λT such that c ≥
√

3/C3. Then we have

P (Aε) ≥ 1− C1(
C3

3
)
w/2 N2

Tw/2−1 logw/2(T ∨N)
− C2N

2

T 3 ∨N3
.

It approaches 1 as T,N →∞ if we assume further that N = o(Tw/4−1/2 logw/4(T )).
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Proof of Corollary 7. By the union sum inequality, putting v = λT in the result of Theorem 6,

P (Acε) ≤
∑

1≤i,j≤N
P (| 1

T

T∑
t=1

[εtiεtj − E(εtiεtj)]| ≥ λT )

≤ N2(
C1T

(TλT )w
+ C2 exp(−C3Tλ

2
T ))

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+ C2N

2 exp(−c2C3 log(T ∨N))

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+

C2N
2

(T ∨N)c2C3

≤ C1(
C3

3
)
w/2 N2

Tw/2−1 logw/2(T ∨N)
+

C2N
2

T 3 ∨N3
,

for c ≥
√

3/C3. The result follows. �

Remark 2. Assumption (vi) is satisfied, for instance, if α ≥ 1/2, |Iij | is finite uniformly for

all i, j, and ∑
i≥m
‖Φi‖∞ ≤ Cm

−α.

If assumption (v) is also satisfied, we can actually set w to be any constant larger than 2, so that

the condition N = o(Tw/4−1/2 logw/4(T )) is satisfied for a large enough constant w. In light of

Remark 1, we can allow for α < 1/2 as well, with more complicated rate for the lower bound of

P (Aε).

It turns out that the probability lower bound in Corollary 7 is the same as the probability

lower bound for the LASSO estimator ξ̃ in (3.6) to be zero-block consistent.

Theorem 8. Under assumptions (i) to (vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large

enough T,N , the LASSO solution ξ̃ in (3.6) is such that

P (ξ̃H = 0) ≥ P (Aε),

which approaches 1 as T,N →∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough

T,N , P (ξ̃Hc 6= 0) = 1.

The proof of Theorem 8 is relegated to section 3.A. In words, this theorems says that a zero-

block consistent estimator W̃ for the spatial weight matrix exists and is given by the LASSO

estimator ξ̃ using the relation ξ̃ = vec(W̃T), with probability going to 1. The estimator is also a

useful one in detecting block structure of the spatial weight matrix, in the sense that the diagonal

blocks are estimated to be non-zero at the same time with probability 1, as long as the tuning

parameter γT goes to 0. In the context of the US senate voting data analysis in section 3.5.3, it

means that with the number of senators (the dimension N) and the number of voting instances
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(the number of time points T ) large enough, if the voting patterns indeed align with political

parties so that the underlying spatial weight matrix is block diagonal as in (3.4) with each block

representing a political party, then the probability that the LASSO estimator for the spatial weight

matrix has the same block diagonal structure is large. Also, the tuning parameter γT → 0 means

that in practice it has to be small, so that the penalization towards the elements of the spatial

weight matrix, through the term ‖ξ‖1 in (3.6), cannot be too large. If this is too large, then the

whole spatial weight matrix can be estimated as 0, which is definitely zero-block consistent, albeit

completely useless for our purpose.

With γT → 0, the condition for the maximum block size n = o({γT /λT }2/3) implies that we

need n = o(T 1/3 log−1/3(T ∨N)). In practice, the method performs well even if the maximum

block size is relatively large compared to T ; see section 3.5 for simulation results. In theory, γT
should be chosen to be small in order to align with γT → 0. Yet if γT is too small, it will not

allow for a block with reasonable size. And of course, γT cannot be set too large also, or the

whole weight matrix is shrunk to zero. See section 3.5 for the introduction of a BIC criterion for

choosing γT .

3.4 Relaxation for Overlapping Blocks

The spatial weight matrix in (3.4) and the theories presented in section 3.3 do not include the case

where some of the blocks are overlapping. Yet in many practical cases, some or all of the blocks

are slightly overlapping despite the non-overlapping majority. As described in the introduction

and section 3.2, this can happen when there are small number of “hybrid” individuals who are

interacting with more than one group.

Formally, suppose there are G ≥ 2 non-overlapping sets I1, . . . , IG ⊂ {1, . . . , N} such that

w∗ij = 0 for i ∈ Ia and j ∈ Ib with a 6= b. Then I1, . . . , IG form G groups for the majority of the

components of yt, with G(G− 1) corresponding zero blocks in the spatial weight matrix W∗ if we

order the components so that those in a set Ij are grouped together. Note that if the groups are

overlapping, then necessarily
⋃G
i=1 Ii ⊂ {1, . . . , N}. We introduce extra conditions in this section

so that the zero-block consistency in Theorem 8 is valid for the estimator of these zero blocks.

To facilitate understanding of the notation above, we introduce a hypothetical example. For

our US senator voting data, suppose there are three major blocks, representing the Republicans,

the Democrats and the Independent Senators respectively. However, over a certain period of time,

there is one Republican who not only cooperates with some other fellow Republicans, but also

with another Democrat and another Independent Senator. Then over this period of time, the

voting pattern of this Republican can depend not only on some other fellow Republicans, but

also on the Democrat and the Independent Senator with whom he or she is cooperating. Using

the notation introduced above, then G = 3, but these three senators who are cooperating across
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parties will not be registered into the sets I1, I2 or I3, since the corresponding elements in the

spatial weight matrix W∗ will be non-zero as their voting patterns can depend on each other.

Then I1 ∪ I2 ∪ I3 ⊂ {1, . . . , N}.

Define the set

H ′ = {j : ξ∗j = 0 and corr. to one of the G(G− 1) zero blocks in W ∗}. (3.10)

This set corresponds to H in (3.7) when the blocks are non-overlapping. Consider two additional

assumptions below:

(i)’ The spatial weight matrix W∗ is such that, for i ∈ Iq, q = 1, . . . , G, we have uniformly as

T,N →∞, ∑
j 6∈Iq

|π∗ij |≤ cπλT ,

where cπ is a constant, and π∗ij denotes the (i, j)-th element of Π∗ = (IN −W∗)−1.

(Rii) Define the set I ′ = {1, . . . , N}/
⋃G
i=1 Ii. The vector εt can always be partitioned as

εt = (εT
I1 , . . . , ε

T
IG
, εT
I′)

T.

Then we assume cov(εIi , εIj ) = 0 for i 6= j, and cov(εti, εtj) ≤ cελT for i ∈ Iq, q = 1, . . . , G

and j ∈ I ′, uniformly as T,N → ∞, where cε > 0 is a constant. Also, var(εti) ≤ σ2
ε < ∞

uniformly as T,N →∞, where σ2
ε is a positive constant.

Assumption (i)’ is an additional assumption on top of (i) in section 3.3.1. It says that the matrix

(IN −W∗)−1 should also have approximately the same block structure as W∗, where the elements

corresponding to the zero blocks in W∗ should be close to 0, with order specified. This assumption

is likely to be true when the blocks are only slightly overlapping, which is what we are concerned

with. Assumption (Rii) is to replace (ii) in section 3.3.1. It says that the noise series for those

components not in any blocks should have only weak correlation with those noise series in blocks.

Between blocks, the correlation should still be 0 for identifiability of block structure.

We are now ready to present a version of Theorem 8 for overlapping blocks.

Theorem 9. Suppose there are overlapping blocks in W∗. Under assumptions (i), (i)’, (Rii) and

(iii) - (vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large enough T,N , the LASSO solution

ξ̃ in (3.6) is such that

P (ξ̃H′ = 0) ≥ P (Aε),

which approaches 1 as T,N →∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough

T,N , P (ξ̃H′c 6= 0) = 1.
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This theorem is in parallel with Theorem 8. Zero-block consistency continues to hold even

when there are overlapping blocks in the spatial weight matrix.

3.5 Practical Implementation

We use the Least Angle Regression algorithm (LARS) of Bradley Efron and Tibshirani (2004)

to implement the minimization in (3.6). A unique solution is guaranteed since the minimization

problem in (3.6) is convex. The LARS is very fast since the order of complexity of the algorithm

is the same as that for ordinary least squares.

For choosing a suitable γT , following Wang et al. (2009), we propose a BIC criterion as below:

BIC(γT ) =
N∑
i=1

log
(
T−1‖ỹi − (Zξ̃γT )i‖2

)
+ |SγT |

log(T )

T
log(log(N − 1)), (3.11)

where y = (ỹT
1 , . . . , ỹ

T
N )T with ỹi = (yi1, . . . , yiT )T. The vector ξ̃γT is the LASSO solution to (3.6)

with tuning parameter being γT . Also, (Zξ̃γT )i is the vector with length T which is the portion

of the vector Zξ̃γT (see (3.5)) corresponding to ỹi. Finally, the set SγT = {j : (ξ̃γT )j 6= 0}, so that

|SγT | counts the number of non-zeros estimated in ξ̃γT . This BIC criterion is in fact the sum of

individual BIC criteria for the estimator of the ith row of the spatial weight matrix, with response

variable ỹi. We denote γBIC the tuning parameter that minimizes the BIC criterion in (3.11).

This γBIC will then be used in (3.6) to find the LASSO solution ξ̃.

3.5.1 Simulation results

In this paper, we focus on block detection, and there are no theoretical supports for accurate

estimation of the elements of W∗ in the non-zero diagonal blocks. We measure the performance of

block detection using the across-block specificity, defined as the proportion of true zeros in the non-

diagonal zero blocks estimated as zeros. For the sake of completeness and independent interest,

we include other measures as well to gauge the overall performance of estimating W∗. One is

the within-block sensitivity, defined as the proportion of true non-zeros estimated as non-zeros,

and the within-block specificity, defined as the proportion of true zeros in the diagonal blocks

estimated as zeros. We also use the L1 error bound ‖ξ̃ − ξ∗‖1/(N(N − 1)) and the L2 error

bound ‖ξ̃ − ξ∗‖/
√
N(N − 1) for comparing the overall estimation performance across different

T,N combinations.

We generate the data using the model yt = W∗yt + εt for a given triplet (T,N, κ), where κ

is the sparsity parameter controlling the overall sparsity of W∗. We generate W∗ by randomly

selecting between 2 and 4 diagonal blocks as in (3.4), with uniform probability on their start and
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end points. Models with blocks of fewer than 5 individuals or with within-block sparsity larger

than 90% are rejected. The latter condition restricts blocks from being excessively large.

Within all blocks, we choose [(1 − κ)N(N − 1)] elements to be non-zeros with value 0.3. It

means that a larger κ represents a sparser W∗. Note that a relatively sparse W∗ may have dense

blocks as the sparsity level is defined for the overall matrix W∗. To ensure stationarity, each

element w∗ij of W∗ is divided by 1.1×max
(

1,
∑N

j=1w
∗
ij

)
. In Table 3.3, shown in the Appendix,

we relax this condition to move close to the non-stationary case. The covariance matrix for {εt}
is defined in the same way, with the same sparsity κ. Hence the within-block pattern of spatial

correlation is very general. In each iteration of the simulation, we generate both W∗ and the

data in order to ensure that the simulation is carried over a wide range of true models. Thus, the

results are not influenced by a particular choice of W∗.

Table 3.1 shows the simulation results with tuning parameter γT chosen by minimizing the BIC

criteria (3.11) for different values of N and T . The number of replications is 200. It is clear that

on average the estimator is zero-block consistent, since the across-block specificity is always close

to 99% in all cases, and in general gets better as N increases. While within-block accuracy is not

guaranteed, the within-block specificity and sensitivity are quite good, even when T is not large.

The overall sparsity level is close to κ in most cases. One notable feature is that with N fixed,

as T gets larger, the overall sparsity level decreases. This is because as T gets larger, the tuning

parameter γT selected by the BIC criterion gets smaller, as is evident from Table 3.1. It means

that as T gets larger, BIC does not allow as much penalization to the model. This is because

there are many non-zero within-block elements in the main diagonal blocks which can only be

detected when T is large enough and γT small enough. As T gets larger, it is more beneficial to

have a smaller γT so that the non-zero parameters are estimated as non-zeros within the diagonal

blocks. With a smaller γT , the within-block sensitivity certainly increases while the within-block

specificity certainly decreases, and hence the overall sparsity decreases. These are exactly what

one can observe from Table 3.1. The choice of tuning parameter when there are many explanatory

variables that are highly endogenous like in our case is definitely a future direction for research.

Table 3.2 introduces slightly overlapping blocks. For any two blocks, their overlapping size is

chosen randomly to be max(q1, q2), where q1 is 5% of the minimum size of the blocks and q2 is a

random integer between 1 and 4. This setting contains the case where T = 200 and N = 75 with 2

main blocks that are slightly overlapping, which is similar to the situation in the real data analysis

in section 3.5.3, where there are T = 251 voting instances and N = 98 senators, and two main

blocks that are slightly overlapping. Again, the tuning parameter γT is chosen such that the BIC

criterion in (3.11) is minimized. The results are shown in Table 3.2. The simulation results show

similar pattern as in Table 3.1: across-block specificity, although shows a slight deterioration, is

still around 97% to 99% in most cases. The tuning parameter γT selected by the BIC criterion is

again decreasing with T , and hence the within-block specificity and the overall sparsity decreases
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Table 3.1: Simulations with non-overlapping blocks.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 80.64%
(3.310)

81.66%
(2.814)

80.20%
(2.460)

96.99%
(3.992)

90.36%
(4.645)

84.31%
(2.684)

Within-Block Sensitivity 70.56%
(5.832)

79.44%
(5.566)

89.17%
(4.578)

18.33%
(18.829)

52.22%
(20.268)

87.78%
(7.566)

N = 25 Across-Block Specificity 97.01%
(2.035)

97.60%
(1.857)

97.67%
(1.819)

99.42%
(1.139)

98.70%
(1.738)

98.13%
(0.718)

L1 0.0237
(0.002)

0.0205
(0.001)

0.0215
(0.003)

0.0136
(0.001)

0.0132
(0.001)

0.0124
(0.000)

L2 0.1206
(0.014)

0.0826
(0.006)

0.0769
(0.011)

0.0842
(0.006)

0.0667
(0.005)

0.0511
(0.005)

Sparsity 85.94%
(2.183)

83.94%
(2.297)

80.26%
(3.151)

97.75%
(2.815)

93.85%
(3.184)

90.06%
(1.447)

γBIC 0.3500
(0.051)

0.2401
(0.053)

0.1588
(0.023)

0.4979
(0.158)

0.2687
(0.062)

0.1529
(0.014)

Within-Block Specificity 77.35%
(1.007)

74.57%
(1.781)

78.75%
(1.250)

89.15%
(2.534)

89.38%
(1.389)

80.27%
(1.239)

Within-Block Sensitivity 55.71%
(2.846)

66.02%
(2.374)

75.00%
(2.796)

45.80%
(7.885)

61.86%
(5.029)

87.47%
(3.129)

N = 50 Across-Block Specificity 98.56%
(0.501)

98.94%
(0.347)

98.78%
(0.361)

99.47%
(0.282)

99.42%
(0.325)

98.68%
(0.408)

L1 0.0188
(0.000)

0.0151
(0.000)

0.0139
(0.000)

0.0113
(0.000)

0.0106
(0.000)

0.0112
(0.000)

L2 0.1508
(0.007)

0.1031
(0.004)

0.0782
(0.002)

0.1124
(0.005)

0.0937
(0.004)

0.0875
(0.004)

Sparsity 87.46%
(0.620)

87.40%
(0.619)

84.48%
(0.694)

95.03%
(1.090)

93.37%
(0.724)

90.35%
(0.651)

γBIC 0.4807
(0.037)

0.3670
(0.050)

0.1913
(0.016)

0.5048
(0.078)

0.3131
(0.025)

0.1884
(0.014)

Within-Block Specificity 82.20%
(1.281)

81.20%
(0.573)

77.47%
(0.690)

89.33%
(1.192)

87.13%
(0.627)

82.46%
(0.869)

Within-Block Sensitivity 40.96%
(2.620)

57.24%
(2.863)

68.51%
(1.274)

40.65%
(4.172)

56.74%
(3.329)

81.80%
(2.437)

N = 75 Across-Block Specificity 99.36%
(0.324)

99.45%
(0.316)

99.67%
(0.179)

99.51%
(0.168)

99.63%
(0.248)

99.09%
(0.349)

L1 0.0145
(0.000)

0.0129
(0.000)

0.0116
(0.000)

0.0102
(0.000)

0.0087
(0.000)

0.0091
(0.000)

L2 0.1467
(0.007)

0.1123
(0.005)

0.0867
(0.003)

0.1352
(0.005)

0.0974
(0.004)

0.0919
(0.004)

Sparsity 90.75%
(0.606)

88.35%
(0.352)

86.36%
(0.305)

94.71%
(0.552)

93.59%
(0.399)

90.96%
(0.431)

γBIC 0.5591
(0.070)

0.4145
(0.033)

0.2978
(0.027)

0.5690
(0.072)

0.3479
(0.033)

0.2091
(0.016)

Notes: Standard errors in parenthesis.

as T increases, but the within-block sensitivity increases, like those in Table 3.1.

3.5.2 Simulation results for nonstationary models

In order to see how the stationarity of model (3.3) is important to the practical performance of

our method, we show simulation results with adjusted normalization of elements in W∗ in order

to move closer to nonstationarity, with results shown in Table 3.3. We also added results for a



CHAPTER 3. ESTIMATION OF BLOCK STRUCTURE FOR SPATIAL MODEL 142

Table 3.2: Simulations with overlapping blocks.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 87.78%
(3.983)

74.42%
(2.618)

77.56%
(2.054)

96.99%
(3.448)

89.40%
(4.460)

88.46%
(1.742)

Within-Block Sensitivity 50.17%
(7.457)

77.04%
(4.362)

93.29%
(3.142)

18.18%
(17.008)

57.14%
(19.323)

93.12%
(7.471)

N = 25 Across-Block Specificity 97.24%
(1.476)

94.92%
(1.908)

91.32%
(2.425)

99.42%
(0.848)

98.56%
(1.505)

94.86%
(1.686)

L1 0.0211
(0.001)

0.0253
(0.001)

0.0218
(0.001)

0.0136
(0.000)

0.0131
(0.001)

0.0132
(0.001)

L2 0.1032
(0.006)

0.1071
(0.006)

0.0810
(0.006)

0.0846
(0.006)

0.0676
(0.007)

0.0528
(0.004)

Sparsity 90.47%
(2.422)

81.21%
(1.594)

79.29%
(1.897)

98.03%
(2.229)

93.40%
(3.010)

88.97%
(1.611)

λBIC 0.3603
(0.057)

0.2116
(0.030)

0.1411
(0.014)

0.5289
(0.153)

0.2496
(0.047)

0.1588
(0.018)

Within-Block Specificity 87.79%
(0.892)

82.91%
(1.494)

77.02%
(0.901)

90.51%
(2.265)

90.18%
(2.380)

87.98%
(0.661)

Within-Block Sensitivity 44.26%
(4.556)

61.22%
(2.819)

77.42%
(1.544)

47.17%
(3.450)

53.66%
(7.396)

88.45%
(2.298)

N = 50 Across-Block Specificity 97.61%
(0.565)

98.51%
(0.818)

97.20%
(0.677)

98.88%
(0.421)

99.07%
(0.318)

98.42%
(0.517)

L1 0.0199
(0.001)

0.0169
(0.001)

0.0166
(0.000)

0.0110
(0.000)

0.0113
(0.000)

0.0110
(0.000)

L2 0.1502
(0.008)

0.1064
(0.004)

0.1006
(0.004)

0.1072
(0.004)

0.1023
(0.003)

0.0834
(0.002)

Sparsity 87.36%
(0.986)

84.70%
(1.071)

82.19%
(0.522)

94.97%
(0.796)

93.64%
(1.163)

90.13%
(0.323)

λBIC 0.4532
(0.072)

0.2909
(0.044)

0.1854
(0.018)

0.4842
(0.054)

0.3131
(0.044)

0.1825
(0.000)

Within-Block Specificity 80.78%
(1.131)

78.59%
(0.924)

70.62%
(1.067)

92.48%
(1.440)

84.60%
(0.859)

84.67%
(0.897)

Within-Block Sensitivity 41.47%
(1.968)

52.42%
(2.573)

71.52%
(1.759)

33.05%
(5.628)

62.47%
(3.444)

78.24%
(2.481)

N = 75 Across-Block Specificity 98.62%
(0.478)

98.70%
(0.255)

98.45%
(0.291)

99.61%
(0.198)

98.83%
(0.395)

99.03%
(0.361)

L1 0.0141
(0.000)

0.0127
(0.000)

0.0112
(0.000)

0.0105
(0.000)

0.0095
(0.000)

0.0097
(0.000)

L2 0.1369
(0.005)

0.1140
(0.004)

0.0859
(0.003)

0.1433
(0.005)

0.1118
(0.004)

0.0986
(0.003)

Sparsity 90.65%
(0.581)

89.31%
(0.501)

87.01%
(0.463)

95.71%
(0.837)

92.98%
(0.506)

90.60%
(0.390)

λBIC 0.4904
(0.063)

0.3828
(0.025)

0.2564
(0.024)

0.5821
(0.059)

0.3511
(0.038)

0.2150
(0.010)

Notes: as in Table 3.1.
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nonstationary model in Table 3.4. They are substantially worse than those in Subsection 3.5.1,

which are associated with stationary models.

In more details, for the first case, we adjust the normalization of elements w∗ij of W∗, which

are now divided by 1.05×max
(

0.5,
∑N

j=1w
∗
ij

)
(compared to 1.1×max

(
1,
∑N

j=1w
∗
ij

)
in baseline

simulations). In this way, we ensure that row sum of W∗ is higher than 0.90 in over 60% of the

cases for N = 25, 70% for N = 50 and 95% for N = 75. In every case, by design the row-sum

is smaller than 1. Apart from this, the simulation setup remains unchanged. As can be seen, in

comparison to Table 3.1, the performance is slightly worse. However, across-block specificity is

higher than 95% in all cases. Within-block specificity and sensitivity remains satisfactory and in

line with baseline simulations.

Next, we implement a nonstationary case by normalizing the elements wij by

0.75×max
(

0.01,
∑N

j=1w
∗
ij

)
. Deterioration in performance can be clearly seen through the wors-

ening of all measures. In particular, the L1 criterion deteriorated by about 40-50 times and L2

one around 90-100 times of the values in Table 3.3.

3.5.3 Analysis of US Senate bill voting

How polarized is the United States Congress? Do congressmen vote exclusively along partisan

lines or are there moments when partisanship gives way to consensus? To shed light on these

questions, we use model 3.3 to analyze the voting records for the bills enacted and proposed by

the United States Senate from 1993 to 2012, period from the first presidency of Bill Clinton to the

first four years under Barack Obama. Polarized voting pattern should give at least two blocks in

the spatial weight matrix, one corresponding to the Republicans, and another to the Democrats.

We use data compiled by GovTrack.us, a web site that freely keeps track of voting record

in both houses. Vote is recorded as 1 for "yes", -1 for "no" and 0 for absent for all bills that

were proposed in the period under study. To evaluate the evolution of polarization, we estimate

the model within windows of each calendar year, representing the first half or second half of a

particular meetings of the biannual legislative branch2. The composition of the Senate and the

number of voting instances can be found in Table 3.5.

Estimation is conducted in absolute disregard of party affiliation, and the tuning parameter γT
is chosen such that minimizes BIC criterion in (3.11). The outcome for year 2012, which involves

2Congresses begin and end at the third day of January in odd-numbered years. Bills voted in the first two days
of January of odd years, if any, are discarded.
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Table 3.3: Simulations close to nonstationarity.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 75.51%
(2.815)

64.58%
(2.996)

73.34%
(2.280)

78.66%
(2.792)

79.71%
(1.760)

83.91%
(2.026)

Within-Block Sensitivity 75.42%
(5.327)

81.25%
(4.058)

81.67%
(4.364)

84.17%
(6.107)

88.75%
(2.480)

91.25%
(3.959)

N = 25 Across-Block Specificity 96.36%
(1.492)

97.40%
(1.374)

99.57%
(0.418)

96.96%
(0.873)

98.16%
(0.741)

98.82%
(1.204)

L1 0.0269
(0.001)

0.0289
(0.001)

0.0249
(0.001)

0.0237
(0.002)

0.0211
(0.001)

0.0188
(0.001)

L2 0.1546
(0.011)

0.1574
(0.011)

0.1319
(0.005)

0.1594
(0.012)

0.1357
(0.006)

0.1151
(0.005)

Sparsity 84.04%
(1.720)

82.31%
(1.401)

84.54%
(0.999)

87.17%
(1.300)

88.83%
(0.947)

89.65%
(1.390)

λBIC 0.3827
(0.056)

0.3004
(0.060)

0.4308
(0.054)

0.2949
(0.031)

0.2718
(0.020)

0.2179
(0.038)

Within-Block Specificity 73.72%
(1.785)

77.22%
(1.424)

71.80%
(0.995)

86.18%
(1.613)

71.69%
(1.672)

83.09%
(0.996)

Within-Block Sensitivity 66.63%
(1.742)

69.03%
(2.404)

84.13%
(0.937)

67.68%
(3.782)

81.20%
(2.797)

88.82%
(4.117)

N = 50 Across-Block Specificity 98.12%
(0.474)

98.35%
(0.635)

99.17%
(0.118)

97.95%
(0.459)

98.64%
(0.376)

99.35%
(0.398)

L1 0.0197
(0.001)

0.0180
(0.001)

0.0161
(0.000)

0.0155
(0.001)

0.0153
(0.000)

0.0133
(0.000)

L2 0.1743
(0.008)

0.1396
(0.005)

0.1144
(0.003)

0.1806
(0.007)

0.1725
(0.006)

0.1299
(0.004)

Sparsity 86.28%
(0.380)

84.65%
(0.753)

84.46%
(0.271)

90.75%
(0.750)

90.40%
(0.508)

89.94%
(0.626)

λBIC 0.6407
(0.079)

0.3717
(0.057)

0.3288
(0.023)

0.4343
(0.044)

0.3860
(0.045)

0.2579
(0.052)

Within-Block Specificity 84.50%
(0.569)

78.48%
(1.075)

70.77%
(1.520)

85.32%
(0.972)

77.39%
(0.978)

85.06%
(0.452)

Within-Block Sensitivity 39.01%
(1.115)

57.57%
(1.559)

73.85%
(1.417)

58.27%
(2.507)

74.91%
(1.356)

83.54%
(2.005)

N = 75 Across-Block Specificity 99.06%
(0.337)

99.15%
(0.263)

99.43%
(0.284)

99.16%
(0.417)

98.69%
(0.328)

99.12%
(0.322)

L1 0.0164
(0.000)

0.0132
(0.000)

0.0112
(0.000)

0.0135
(0.000)

0.0108
(0.000)

0.0105
(0.000)

L2 0.1745
(0.004)

0.1230
(0.002)

0.0967
(0.003)

0.1967
(0.008)

0.1402
(0.005)

0.1274
(0.005)

Sparsity 88.64%
(0.288)

87.61%
(0.443)

87.19%
(0.475)

91.34%
(0.641)

91.36%
(0.332)

90.24%
(0.335)

λBIC 0.5804
(0.084)

0.4050
(0.079)

0.3199
(0.058)

0.5706
(0.094)

0.3717
(0.040)

0.2357
(0.019)

Notes: as in Table 3.1.

T = 251 voting instances and N = 98 senators, is displayed in Figure 3.1. The estimated non-zero

pairwise links are displayed as a solid line in grey, length of which does not carry any information

on its intensity or direction and are purely determined by ease of visualization. The nodes are

colored according to party affiliations: Democrats are represented by blue, Republicans by red,

and Independents by white.

It is immediately clear from Figure 3.1 that the Senate behaves as two almost exclusive blocks

or groups, defined exclusively along partisan lines, where the Independents behave most similarly

to the Democrats. It seems that the two blocks slightly overlap each other, and the results in

Theorem 9 can be applied. One Republican forms a block him/herself. Bear in mind that we

are using a cross-validated tuning parameter, and hence we are being conservative already in

concluding a block structure in the spatial weight matrix.
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Table 3.4: Simulations for the nonstationary case.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 85.32%
(0.424)

94.26%
(0.479)

88.49%
(0.424)

86.88%
(3.377)

91.02%
(1.752)

91.57%
(0.632)

Within-Block Sensitivity 1.04%
(1.240)

4.17%
(1.543)

6.67%
(0.000)

12.92%
(3.753)

19.58%
(1.179)

6.67%
(0.000)

N = 25 Across-Block Specificity 91.85%
(0.427)

91.96%
(0.108)

91.97%
(0.085)

91.76%
(3.551)

92.50%
(0.403)

92.93%
(0.127)

L1 0.8141
(0.001)

0.7508
(0.041)

0.7207
(0.000)

0.4677
(0.029)

0.4994
(0.016)

0.5441
(0.001)

L2 193.1319
(0.125)

197.9038
(11.178)

163.4174
(0.004)

119.2568
(8.197)

182.1524
(14.187)

186.6742
(0.017)

Sparsity 96.71%
(0.305)

97.40%
(0.235)

96.90%
(0.124)

92.29%
(3.229)

96.25%
(0.321)

96.73%
(0.251)

λBIC 0.6665
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.3414
(0.248)

0.6238
(0.018)

0.5727
(0.000)

Within-Block Specificity 91.25%
(2.287)

97.35%
(0.485)

91.20%
(0.509)

94.42%
(0.300)

86.49%
(0.465)

99.25%
(0.072)

Within-Block Sensitivity 4.54%
(1.724)

1.38%
(0.304)

9.59%
(0.654)

3.96%
(0.287)

15.35%
(0.678)

2.44%
(0.000)

N = 50 Across-Block Specificity 92.97%
(0.059)

92.99%
(0.022)

92.93%
(0.051)

92.78%
(0.103)

92.01%
(0.212)

92.57%
(0.000)

L1 0.4106
(0.000)

0.4016
(0.000)

0.4021
(0.001)

0.3697
(0.002)

0.4951
(0.011)

0.3512
(0.000)

L2 96.3161
(7.643)

109.9296
(0.031)

139.6243
(1.246)

180.1242
(1.095)

743.8054
(63.704)

190.3584
(0.000)

Sparsity 98.71%
(0.213)

99.20%
(0.129)

96.93%
(0.092)

98.09%
(0.078)

95.31%
(0.212)

99.66%
(0.021)

λBIC 0.6665
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.6665
(0.000)

0.6286
(0.020)

0.5727
(0.000)

Within-Block Specificity 93.02%
(0.610)

95.53%
(0.209)

94.70%
(0.084)

94.75%
(0.241)

95.15%
(0.175)

91.49%
(0.179)

Within-Block Sensitivity 4.68%
(0.319)

5.23%
(0.409)

3.76%
(0.311)

0.40%
(0.127)

3.15%
(0.167)

4.68%
(0.471)

N = 75 Across-Block Specificity 92.67%
(0.012)

92.80%
(0.052)

92.11%
(0.067)

92.83%
(0.097)

91.97%
(0.038)

92.89%
(0.180)

L1 0.2733
(0.000)

0.2775
(0.001)

0.2414
(0.000)

0.2628
(0.000)

0.2612
(0.000)

0.7549
(0.087)

L2 65.1182
(0.050)

478.4065
(14.791)

51.7448
(0.018)

148.1981
(0.235)

146.0697
(0.147)

14041.1627
(4394.414)

Sparsity 98.82%
(0.065)

97.96%
(0.082)

96.35%
(0.059)

98.45%
(0.080)

98.46%
(0.069)

96.90%
(0.131)

λBIC 0.6345
(0.000)

0.6143
(0.000)

0.5727
(0.000)

0.6394
(0.014)

0.6143
(0.000)

0.5949
(0.018)

Notes: as in Table 3.1.

It is of interest to visualize the number of political collaborations and its evolution throughout

the years. To achieve this, we build two measures of cross-partisanship association for a given

year. The first is based on the ratio of links with ends on Senators from different parties to the

overall number of links. We name this as "Cross-Party Connections". As seen in Figure 3.2, it

is under 3% for all years under study. The second measure is the number of Senators who are

the starting points of directed links towards colleagues from different parties, who are generically

named "brokers". Both measures represent the number of Senators and links that appear in the

frontier and, therefore, could represent collaborative cross-partisan political connections. Both

measures show very limited collaboration if compared to the overall legislative activity. It is

concluded, therefore, that political affiliations are strong determinants of group identity. It also

appears that frontier between the groups and scope for collaborative legislative work is very limited

throughout the recent Senates history.
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Figure 3.1: Visualization of the estimated spatial weight matrix for voting, 2012.
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Figure 3.2: Cross-party collaboration.
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Table 3.5: Senate Composition.

Year Congress Rep Dem Ind Votes
1993 103rd 46 55 0 395
1994 329
1995 104th 53 46 1 613
1996 306
1997 105th 54 45 1 298
1998 314
1999 106th 55 45 1 374
2000 298
2001 107th 49 50 1 380
2002 253
2003 108th 51 48 1 459
2004 216
2005 109th 54 45 1 366
2006 279
2007 110th 49 50 2 442
2008 215
2009 111th 41 61 2 397
2010 299
2011 112th 47 51 2 235
2012 251
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3.6 Conclusion

We developed the LASSO penalization for detecting block structure in a spatial weight matrix,

when the size of the panel can be close to the sample size. One distinct feature of our model is

the absence of covariates, which is motivated by the US senate voting data example analyzed in

this paper. Also, there is no need for the decay of variance of the noise series, like Lam and Souza

(2013) does. One contribution of the paper is the derivation of the probability lower bound for

the LASSO estimator to be zero-block consistent - a concept that an estimator correctly estimates

the non-diagonal zero blocks as zero. We also proved that the diagonal blocks of the estimator

are not all zero with probability 1, so that block structure becomes apparent in the estimator. We

use the LARS algorithm for practical computation, which is well-established for solving LASSO

minimization efficiently, with computational order the same as ordinary least squares iterations.

The estimated spatial weight matrix is visualized by a graph with directional edges between

components. The absence of edges between two groups of components indicates two blocks. We

also allow for the fact that blocks sometimes can overlap slightly, and develop the corresponding

theories to show that zero-block consistency still holds in the case of slightly overlapping blocks.

The US senate voting data example demonstrates clearly such a case.

Our proofs utilize results from random matrix theories for bounding extreme eigenvalues of a

sample covariance matrix, as well as a Nagaev-type inequality for finding the tail probability of a

general time series process. These results can be useful for the theoretical development of other

time series researches.



Appendix

3.A Proofs

Proof of Theorem 6. For a random variable z, define the norm ‖z‖a = [E|z|a]1/a. We need to show

that there are some constants µ,C > 0, w > 2 and α > 1/2− 1/w such that

max
1≤j≤N

‖εtj‖2w ≤ µ, (3.1)

∞∑
t=m

max
1≤j≤N

‖εtj − ε′tj‖2w ≤ Cm
−α, (3.2)

where ε′t has exactly the same causal definition as εt as in assumption (iv) with the same values of

Φi’s and ηj ’s, except for η0, which is replaced by an independent and identically distributed copy

η′0. With (3.1) and (3.2), we can use Lemma 1 of Lam and Souza (2013) for the product process

{εtiεtj − E(εtiεtj)} to complete the proof.

To prove (3.1), by the Fubini’s Theorem and assumption (v),

E|εtj |2w = E

∫ |εtj |2w
0

ds =

∫ ∞
0

P (|εtj |> s1/2w) ds ≤
∫ ∞

0
D1 exp(−D2s

q/2w) ds

=
4wD1

q

∫ ∞
0

x4w/q−1e−D2x2
dx =

2wD1

qD
2w/q
2

Γ(2w/q) = µ2w <∞, (3.3)

so that max1≤j≤N ‖εtj‖2w ≤ µ <∞ for any w > 0. This proves (3.1).

To prove (3.2), denote φT
ij the j-th row of Φi. Then using the causal definition in assumption

(iv),

|εtj − ε′tj |= |φT
tj(η0 − η′0)|≤ ‖φtj‖1 max

i∈Jtj
|η0i − η′oi|,

where Jtj is the index set of non-zeros in φtj as defined in assumption (vi). Hence by assumption

149
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(v) on η0i and the calculations in (3.3),

‖εtj − ε′tj‖2w ≤ ‖φtj‖1[E{max
i∈Jtj
|η0i − η′0i|2w}]

1
2w

≤ ‖φtj‖1|Jtj |
1

2wmax
i∈Jtj

‖η0i − η′0i‖2w

≤ ‖φtj‖1|Jtj |
1

2w (max
i∈Jtj

‖η0i‖2w + max
i∈Jtj

‖η′0i‖2w)

≤ 2µ‖φtj‖1|Jtj |
1

2w ,

so that by assumption (vi), using the same w > 2 in the assumption,

∞∑
t=m

max
1≤j≤N

‖εtj − ε′tj‖2w ≤ 2µ
∞∑
t=m

max
1≤j≤N

‖φtj‖1 max
1≤j≤N

|Jtj |
1

2w

≤ 2µmax
t,j
|Jtj |

1
2w

∞∑
t=m

‖Φt‖∞

≤ 2µmax
t,j
|Jtj |

1
2wCm−α( max

t,j
|Jtj |)−

1
2w

= 2µCm−α,

which is (3.2) since µ,C are constants. This completes the proof of the theorem. �

Proof of Theorem 8. Define the set

D = {j : j 6∈ H, ξ∗j does not correspond to the diagonal of W∗},

and define J = D ∪H. Hence J contains indices for ξi not corresponding to the diagonal of W∗.

The KKT condition implies that ξ̃ is a solution to (3.6) if and only if there exists a subgradient

g = ∂|ξ̃|=

g ∈ R2N2
:


gi = 0, i ∈ Jc;
gi = sign(ξ̃i), ξ̃i 6= 0;

|gi|≤ 1, otherwise.


such that, differentiating the expression to be minimized in (3.6) with respect to ξJ ,

1

T
ZT
JZJ ξ̃J −

1

T
ZT
Jy = −γTgJ ,

where the notation AS represents the matrix A restricted to the columns with index j ∈ S. Using
y = ZJξ

∗
J + ε, the equation above can be written as

1

T
ZT
JZJ(ξ̃J − ξ∗J)− 1

T
ZT
Jε = −γTgJ .
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For ξ̃ to be zero-block consistent, we need ξ̃H = 0, implying ZJ(ξ̃J − ξ∗J) = ZD(ξ̃D − ξ∗D). Hence,

the KKT condition implies that ξ̃ is a zero-block consistent solution if and only if

1

T
ZT
HZD(ξ̃D − ξ∗D)− 1

T
ZT
Hε = −γTgH ,

1

T
ZT
DZD(ξ̃D − ξ∗D)− 1

T
ZT
Dε = −γTgD, (3.4)

which can be simplified to

| 1
T

ZT
HZD(

1

T
ZT
DZD)

−1
(

1

T
ZT
Dε− γTgD)− 1

T
ZT
Hε| ≤ γT , (3.5)

since gH has elements less than or equal to 1.

We now show that, on the set Aε as defined in (3.8), (3.5) is true for large enough T,N , thus

completing the proof of zero-block consistency of ξ̃. To this end, there are four terms we need to

bound. Define I1, . . . , IG ⊂ {1, . . . , N} to be the index sets for the G groups of components as in

(3.4). Then, consider on the set Aε,

‖ 1

T
ZT
Hε‖max = max

i∈Iq ,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiεtj

∣∣∣∣∣ = max
i∈Iq ,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗is

( 1

T

T∑
t=1

εtsεtj

)∣∣∣∣∣∣
≤ λT max

1≤i≤N

N∑
s=1

|π∗is|≤
λT

1− η
, (3.6)

where we used the reduced form yt = Π∗εt = (IN−W∗)−1εt of model (3.3) and yti =
∑

j∈Iq π
∗
ijεtj

for i ∈ Iq for some q, with π∗ij being the (i, j)-th element of Π∗ = (IN −W∗)−1. The last line

follows from assumption (ii) that cov(εti, εtj) = 0 if i and j correspond to different groups, so that

on Aε, |T−1
∑T

t=1 εtsεtj |≤ λT . We also used assumption (i) to arrive at

max
1≤i≤N

N∑
s=1

|π∗is|= ‖Π∗‖∞ ≤ ‖IN‖∞ +
∑
k≥1

‖W∗‖k∞ ≤ 1 +
∑
k≥1

ηk =
1

1− η
.

A potentially larger term is, by similar calculations on Aε,

‖ 1

T
ZT
Dε‖max = max

i∈Iq ,j∈Iq′

∣∣∣∣∣∣
∑
s∈Iq

π∗is

( 1

T

T∑
t=1

εtsεtj

)∣∣∣∣∣∣ ≤ σ2
ε + λT
1− η

, (3.7)
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where we used assumption (ii) that var(εtj) ≤ σ2
ε . We also have, on Aε,

‖ 1

T
ZT
HZD‖∞ ≤ n max

i∈Iq ,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiytj

∣∣∣∣∣ = n max
i∈lq ,j∈lq′

∣∣∣∣∣∣
∑

s∈Iq ,`∈Iq′

π∗isπ
∗
j`(

1

T

T∑
t=1

εtsεt`)

∣∣∣∣∣∣ ≤ λTn

(1− η)2
.

(3.8)

Finally, let σmax(A) = λ
1/2
max(ATA) denotes the maximum singular value of the matrix A, and

σmin(A) the smallest one. Then

‖( 1

T
ZT
DZD)

−1‖∞ ≤ n
1/2λ−1

min(
1

T
ZT
DZD) ≤ n1/2λ−1

min(
1

T
ZTZ) = n1/2λ−1

min(
1

T

T∑
t=1

yty
T
t )

= n1/2λ−1
min

(
Π∗(

1

T

T∑
t=1

εtε
T
t )Π∗T

)
≤ n1/2σ−2

min(Π∗)λ−1
min(

1

T

T∑
t=1

εtε
T
t ). (3.9)

To bound (3.9), we have

σ−2
min(Π∗) = σ2

max(IN −W∗) ≤ (1 + σmax(W∗))2 ≤ (1 + ‖W∗‖1/21 ‖W
∗‖1/2∞ )2 ≤ (1 + η1/2η1/2

c )2,

(3.10)

where we used assumption (i) for bounding ‖W∗‖1 and ‖W∗‖∞.

Also, the conditions assumed in assumption (iv) for the ηti’s ensure that Theorem 5.11 on the

extreme eigenvalues of a sample covariance matrix in Bai and Silverstein (2010) can be applied.

Hence, for each integer i ≥ 0, we have

lim
T→∞

λmin(
1

T

T∑
t=1

ηt−iη
T
t−i) = σ2(1−

√
d)2, lim

T→∞
λmax(

1

T

T∑
t=1

ηt−iη
T
t−i) = σ2(1 +

√
d)2

almost surely, where d is specified in assumption (iii). For each i, let Ui be the almost sure set

such that the above limits hold. Then on the almost sure set U =
⋂
i≥0 Ui, the above limits hold

for all integers i ≥ 0. Hence on U , for large enough T,N , we have

λ
1/2
min(

1

T

T∑
t=1

ηtη
T
t ) ≥ σ(1−

√
d)− e, λ1/2

max(
1

T

T∑
t=1

ηtη
T
t ) ≤ σ(1 +

√
d) + e,
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where the constant e is as in assumption (iv). Therefore, on U , for large enough T,N , we have

λmin(
1

T

T∑
t=1

εtε
T
t ) = σ2

min(T−1/2
∑
i≥0

Φi(η1−i, . . . ,ηT−i))

≥

σmin(T−1/2(η1, . . . ,ηT ))−
∑
i≥1

σmax(ΦiT
−1/2(η1−i, . . . ,ηT−i))


2

≥

λ1/2
min(

1

T

T∑
t=1

ηtη
T
t )−

∑
i≥1

‖Φi‖λ1/2
max(

1

T

T∑
t=1

ηt−iη
T
t−i)


2

≥

σ(1−
√
d)− e− (σ(1 +

√
d) + e)

∑
i≥1

‖Φi‖


2

≥ c2, (3.11)

where c > 0 is a constant as in assumption (iv). Combining (3.10) and (3.11), on U and for large

enough T,N , (3.9) becomes

‖( 1

T
ZT
DZD)

−1‖∞ ≤
n1/2(1 + η1/2η

1/2
c )2

c2
. (3.12)

Hence combining the bounds (3.6), (3.7), (3.8) and (3.12), on Aε ∩ U , for large enough T,N , we

have

| 1
T

ZT
HZD(

1

T
ZT
DZD)

−1
(

1

T
ZT
Dε− γTgD)− 1

T
ZT
Hε|

≤ ‖ 1

T
ZT
HZD‖∞‖(

1

T
ZT
DZD)

−1‖∞‖
1

T
ZT
Dε− γTgD‖max + ‖ 1

T
ZT
Hε‖max

≤ λTn
3/2(1 + η1/2η

1/2
c )2

(1− η)2c2

(
σ2
ε + λT
1− η

+ γT

)
+

λT
1− η

= O(λTn
3/2) = o(γT ),

by the assumption n = o({γT /λT }2/3). Hence on Aε ∩ U , (3.5) is satisfied for large enough

T,N , so that ξ̃ is zero-block consistent, i.e. ξ̃H = 0. It is clear then for large enough T,N ,

Aε ∩ U ⊆ {ξ̃H = 0}, and hence

P (ξ̃H = 0) ≥ P (Aε ∩ U) = P (Aε),

since U is an almost sure set. The part where P (Aε) → 1 if N = o(Tw/4−1/2 logw/4(T )) is given

by the results of Corollary 7. This completes the proof of the first half of Theorem 8.

For the second half, suppose ξ̃D = 0. Then using (3.4), we have

gD =
1

γT
(

1

T
ZT
Dε +

1

T
ZT
DZDξ

∗
D) =

1

γT
(

1

T
ZT
Dy).
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One of the element of gD is, for some j, with T,N large enough and on U ,

1

γT
(

1

T

T∑
t=1

y2
tj) =

1

γT
(

1

T

T∑
t=1

π∗Tj εtε
T
t π
∗
j ) ≥

‖π∗j ‖
2

γT
λmin(

1

T

T∑
t=1

εtε
T
t ) ≥ c2

γT
,

where πT
j is the j-th row of Π∗, with ‖π∗j ‖ > 1, and we used (3.11). Since γT → 0, we have just

proved that this particular element goes to infinity as T,N → ∞, which is a contradiction since

all elements in gD are less than or equal to 1 in magnitude. Hence we must have ξ̃D 6= 0 for large

enough T,N . This completes the proof of the theorem. �

Proof of Theorem 9. Define the set

D′ = {j : j 6∈ H ′, ξj does not correspond to the diagonal of W∗}.

Then the proof of this theorem is almost exactly the same as that for Theorem 8 by replacing D

with D′ and H with H ′. The only differences are the bounds in (3.6) and (3.8). Consider, on Aε,

‖ 1

T
ZT
H′ε‖max = max

i∈Iq ,j 6∈Iq

∣∣∣∣∣ 1

T

T∑
t=1

ytiεtj

∣∣∣∣∣ = max
i∈Iq ,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗is(
1

T

T∑
t=1

εtsεtj) +
∑
s 6∈Iq

π∗is(
1

T

T∑
t=1

εtsεtj)

∣∣∣∣∣∣
≤ max

s∈Iq ,j 6∈Iq
| 1
T

T∑
t=1

εtsεtj |‖Π∗‖∞ + max
s 6∈Iq ,j 6∈Iq

| 1
T

T∑
t=1

εtsεtj |max
i∈Iq

∑
s 6∈Iq

|π∗is|

≤ λT + cελT
1− η

+ (σ2
ε + λT )cπλT = O(λT ), (3.13)

where we used assumption (Rii) that cov(εts, εtj) ≤ cελT when s ∈ Iq for some q and j 6∈ I` for
any `, and assumption (i)’ that

∑
j 6∈Iq |π

∗
ij |≤ cπλT for i ∈ Iq. Also, on Aε,

‖ 1

T
ZT
H′ZD′‖∞ ≤ n max

i∈Iq ,j 6∈Iq

∣∣∣∣∣∣
∑
s∈Iq

π∗js(
1

T

T∑
t=1

ytiεts) +
∑
s 6∈Iq

π∗js(
1

T

T∑
t=1

ytiεts)

∣∣∣∣∣∣
≤ n

(
σ2
ε + λT
1− η

)
cπλT + nλT

(
1 + cε
1− η

+ cπ(σ2
ε + λT )

)
1

1− η
= O(λTn), (3.14)

where we used (3.13) in the last line. The rates in (3.13) and (3.14) are the same as (3.6) and

(3.8) respectively, and hence the results in Theorem 8 follows. �
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