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ABSTRACT

Discrete event simulation modelling has been established as an

important tool for management planning. This process has been aided 

by the a v a i la b i l i ty  of o ff - th e -s h e lf  simulation systems for

microcomputers. Trad itionally  these have had text-based interfaces  

and very limited graphics. As the a v a i la b i l i ty  of powerful colour 

microcomputers have increased, graphical front-ends have been added. 

As clients have got used to consistent graphical interfaces (e.g. 

Apple Macintosh or Microsoft Windows), they have desired the same 

level of integration in th e ir  simulation support environments.

Research in other fie lds  has been u tilised  in improving simulation 

environments. These fie lds  include re la tional databases, expert 

systems, formal languages and graphical environments. This thesis 

examines the use of a r t i f ic ia l  intelligence in the discrete event 

simulation f ie ld  with the aim of examining some potential areas in 

which i t  might be possible to improve simulation environments.

Existing simulation research in the a r t i f i c ia l  in te lligence (AI)

f ie ld  is extended by investigating the graphical AI knowledge-base 

called semantic networks. This thesis demonstrates semantic 

modelling, a discrete event simulation modelling approach based on 

semantic networks, which attempts to give a consistent graphical 

interface throughout the l i f e  cycle of a simulation study. The 

semantic modelling approach also incorporates expert system and 

natural language research. A prototype system of th is  approach is 

described.
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CHAPTER 1

INTRODUCTION

Section 1.1 : INTRODUCTION

Discrete Event Simulation has been widely used for decades to 

analyse systems which could not themselves be experimented on in the 

real world, for e ither technical, social or financial reasons. I t  

has proven i t s e l f  in many real l i f e  situations as a very useful tool 

for the management and control of complex environments. This 

process has been considerably aided by the a v a i la b i l i ty  of 

inexpensive microcomputers. Recently, the a v a i la b i l i ty  of colour 

graphical environments (for example the Apple Macintosh computer or 

the Windows environment) have provided an impetus to increase the 

user friendliness of the text-based simulation systems. This thesis 

investigates whether semantic networks, an a r t i f i c i a l  in telligence  

knowledge-base, can be u tilised  in improving simulation 

environments.

The next two sections define both general simulation and discrete  

event simulation. The trad itional simulation development cycle is 

described in section 1.4, which also highlights the lack of 

integration between the d iffe ren t stages of a simulation cycle. 

Section 1.5 introduces a r t i f ic ia l  in telligence and explains this  

thesis 's  interest in its  tools and techniques. The thesis objective  

is explained in the final section.

1



Section 1.2 : SIMULATION MODELLING

One defin it ion  of simulation modelling is :

"Simulation involves experimentation on a model of some system. 

The model is used as a vehicle for experimentation, often in a 

' t r i a l  and error' way to demonstrate the l ik e ly  effects of 

various po lic ies. Thus those which produce the best results  

would be implemented in the real system." Pidd (1988)

Computer simulation, where a simulation is performed with the aid 

of a computer, can be a very time consuming and complex task, 

despite the special purpose simulation languages, program generators 

and commercial packages available. This is mainly due to the time 

i t  takes to describe a problem to a computer simulation system, to 

test the system, to experiment with the system and f in a l ly  to draw 

a conclusion from these experimentation. I t  is thus possible to 

regard computer simulation as a las t resort, to be used i f  no other 

alternative  is successful.

Section 1.3 : DISCRETE EVENT SIMULATION

Discrete event simulation is defined [Pidd, 1988] as a simulation 

that uses the "next event" time mechanism. This is a simulation 

where the time jumps from the present time to the time of the next 

event ( ie  the s tart or end of an a c t iv i ty ) .  Only at th is new time 

w ill  the state of the system be examined and updated. This can only
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be achieved i f  i t  is possible to 'p red ic t ' the e a r l ie s t  time of the 

next change of state. This can be achieved i f  the time i t  takes to 

actually change state can be sampled at the 's ta r t  of the change of 

s ta te ' ,  and, once sampled, can not be changed. For example, the 

time i t  takes to drink a glass of beer can be sampled from a normal 

distribution whenever a customer begins to drink from the glass.

This approach is suitable where the variables (people, machines, 

goods) move from one d is tinc t state to another d is t in c t state (fo r  

example from one queue to another queue). This has the advantage of 

examining the system more frequently in times of high a c t iv ity  and 

less frequently in periods of low a c t iv ity ,  considerably speeding up 

the simulation. Discrete event simulation also has the advantage of 

indicating c learly  periods of high a c t iv ity  (time would move forward 

slowly) and vice-versa. However extra information must be stored 

for discrete event simulation ( ie  the timing tre e ) ,  as opposed to a 

t im e-slic ing approach where time jumps by a pre-determined fixed  

in te rv a l .
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Section 1.4 : TRADITIONAL SIMULATION DEVELOPMENT CYCLE

The trad itiona l process of simulation can be summarized, at the cost

of over-sim plification, to the four stages :

{ Real } ( i )  ( i i )  ( i i i )  ( iv )
{ World } — CONCEPTUAL— >PR0GRAM------ >OUTPUT--->RECOMMENDATION
{Problem} MODEL

Stages ( i )  Problem formulation

( i i )  Program generation

( i i i )  Simul at ion running (and rerunning)

( iv )  Output analysis

Stage ( i )  is the problem formulation stage. I t  is a very d i f f i c u l t  

area to tackle in real l i f e ,  and the techniques are not easily  

taught due to the multiple disciplines necessary (p o l i t ic s ,  

economics, social sciences, computing, operational research, 

a r t i f i c ia l  in te lligence). I t  is in th is environment that early  

investigation into Natural Language Understanding and Processing 

(NLUP) had been undertaken, including SPIF [Doukidis, 1985] at the 

London School of Economics. However SPIF was conducted on the 

premise that the computer controlled the conversation with the 

c l ie n t ,  who could only input his knowledge in d irect response to a 

computer question. This was interfaced to the next stage of the

development cycle.

The conceptual model is the output from the problem formulation
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stage. I t  would be desirable i f  the conceptual model is unambiguous 

(as contrasted with standard spoken languages) in order to be able 

to be used as a d irect input into an automatic program generator, as 

w il l  be highlighted in stage ( i i )  below. I t  would also be desirable 

to be able to d irec tly  inspect and amend the conceptual model, since 

th is would provide an immediate feed-back to the user, thus 

increasing the poss ib ility  of spotting and correcting errors at th is  

stage. I t  would be advantageous i f  the c lien t could be involved at 

th is  stage to increase the simulation's accuracy and increase the 

c l ie n t 's  confidence in the model. Therefore f l e x ib i l i t y ,  s im plic ity  

and transparency are desired characteristics for a conceptual model. 

However they could be contradictory (increased f l e x ib i l i t y  may lead 

to increased complexity and reduced transparency).

There are a wide variety of methods for representing the conceptual 

model of a problem [Ceric and Paul, 1989]. One of the most widely 

used conceptual models is an A ctiv ity  Cycle Diagram (ACD), 

popularized by Clementson (1982), H il l  (1971), Mathewson (1974), 

Pidd (1988), Syzmankiewicz et al (1988) and Tocher (1963). Its  

popularity is reflected in its  use by a number of successful 

commercial simulation software packages, including HOCUS 

[Syzmankiewicz, 1984], CAPS program generator [Clementson, 1982], 

VS7 [Chapman and Dayer-Smith, 1990] as well as the research work of 

Au and Paul (1990).
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Stage ( i i )  is the program generation stage. This is where the 

conceptual model is transformed (preferably automatically, for speed 

and accuracy) into a form that can be executed by a computer (fo r  

example from an ACD to pascal code). In some environments, 

including HOCUS [Syzmankiewicz, 1984] and VS7 [Chapman and Dayer- 

Smith, 1990], there is no requirement for a program generation 

stage, since a data-driven simulation could be run d ire c t ly  from the 

conceptual model. However, most simulations are too complex to be 

handled 100% by e ither d irec tly  running from the conceptual model or 

by using an automatic program generator. So a strategy that has 

been successfully used is the generation of a large portion of the 

code (around 70% [Crookes, 1987]) by an automatic program generator, 

and then le t  the simulation practit ioner manually program the 

remainder. Powerful environments would enable the user to run a 

simple data-driven simulation, before generation of the code, to 

help the validation and verif ica tion  of the model at an early stage, 

and then to automatically generate the bulk of the code. The 

programs generated need not be restricted to any specific modelling 

approach, including those lis ted  by Pidd (1988) (process interaction  

approach, event-based approach, three phase approach etc) 

[Mathewson, 1974]. The concepts of program generation are similar  

to those used in the Programming by Questionnaire System of RAND 

[Oldfather et a l , 1966]. There are now many In teractive  Simulation 

Program Generators (ISPGs), notably CAPS [Clementson, 1982], DRAFT 

[Mathewson, 1977] and VS7 [Chapman and Dayer-Smith, 1990]. The
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f i r s t  and most famous [Paul and Chew, 1987] ISPG is CAPS 

[Clementson, 1982] which produces ECSL code from an ACD input. 

DRAFT can produce models coded in FORTRAN [Mathewson, 1977] 

[Mathewson, 1982] or in SIMULA [Mathewson and Beasley, 1976]. The 

use of program generators, with some manual programming by the 

simulation practit ioner, can produce a very wide class of models, 

but forces the c lien t to require "repeated recourse to the 

specia list as changes of model structure are required" [Crookes, 

1987] since the c lien t would generally not have enough computer 

knowledge to a lte r  the simulation program himself. Crookes proposes 

an a lternative  approach of requiring the simulation practit ioner to 

put in a big programming e ffo rt  at the s ta rt  in order to build a 

generic model, specific to a class of model which the c l ien t is 

interested in, and to build a special-purpose ed ito r(s ) which the 

c lie n t  can use by himself, without program input, to modify the 

deta ils  of the generic model. However, since the generic model must 

be able to handle a ll particular instances of the chosen class of 

model (which even the c lien t may not have thought of) i t  requires 

increased programming s k il ls  from the simulation practit ioner and 

would take a longer time i n i t i a l l y  for the simulation practit ioner  

to build his f i r s t  working simulation than with a program generator 

approach. Naturally, i f  the simulation practit ioner had already 

b u ilt  the editor and generic model for another c l ie n t ,  the 

simulation practitioner can just give the new c lie n t  a copy of the 

editor and generic model and le t  him use i t  immediately, thus saving
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time and e f fo r t .

The simulation program needs to be v e r if ie d . Verif ica tion  is the 

process of checking that the computer program corresponds to the 

conceptual model. S im ilarly, the conceptual model needs to be 

validated (the process of checking that the conceptual model 

corresponds to the real l i f e  process). These can be done by using 

existing data about the system and checking that the computer model 

behaves the same way as the real world system. I f  the system does 

not ex is t, this would require a thorough walk through of the code 

and sens it iv ity  analysis to ensure that the model behaves as the 

c lie n t  would antic ipate. Without validation and v e r if ica tio n  the 

simulation program would give wrong results , and lead to wrong 

conclusions.

Stage ( i i i )  is the simulation running (and rerunning) stage of the 

program. I t  needs, for effic iency, a good software subsystem. 

There are many such systems (Witness, Simscript I I . 5 [Caci, 1976], 

Modsim I I  etc) which increasingly use visual displays. Research in 

visual in teractive modelling (VIM), which use a graphical display to 

both display the model and allow the user to in teractive  modify i t  

(thus increasing the very important feedback to the user), include 

[Au and Paul, 1990] [Chapman and Dayer-Smith, 1990] [Hurrion, 1986] 

[Withers and Hurrion, 1982].

8



Stage ( iv )  is the output analysis stage. I t  is a re la t iv e ly  

immature f ie ld ,  as i t  re lies  on common sense, judgement and inside 

knowledge of the real world system. This process, for general 

simulation, is well beyond the current capab ilit ies  of a r t i f i c ia l  

in telligence (A I) .  Limited attempts have been made to provide an 

automatic linkage of the data from a simulation run to a s ta t is t ic a l  

analysis package, such as Minitab or SPSS. One of these research 

attempts was done by Taylor and Hurrion (1988).

These stages are ite ra t iv e .  For example, i t  is usual to move from

any of the stages ( i i )  - ( iv )  back to stage ( i ) ,  the problem

formulation stage, a fte r  discovering an anomaly in the computer 

model. I t  is therefore desirable not to lose any of the information 

/  customisation added in the la te r  stages. However this requirement 

for  quick ite ra tion  is where the present simulation systems have 

d i f f ic u l t ie s .  For example, the SPIF problem formulator creates a 

conceptual model. This conceptual model is not complete and would 

require some extra manually added data. Rerunning SPIF would result

in the loss of the added data. This same problem affects the

program generators, since once the simulation code is generated and 

then customised, rerunning the program generator would overwrite the 

customised code. Thus, the very d is tin c t interfaces between the 

stages produce an implied single-direction chain of events, as 

opposed to the i te ra t iv e  concepts of simulation.

9



These d iffe ren t solutions, despite lim ited integration, 

unfortunately do not present a consistent interface to the 

simulation practit ioner. As noted by Balci and Nance (1987), 

"Automated support of a simulation study throughout i ts  entire  l i f e  

cycle is undeniably needed to confront the problems iden tif ied  by 

Balci (1986)". As an example of the problems encountered, the 

graphical interface tends to be added a fte r  the model has already 

been developed. This, as noted by Paul (1988), is curious since the 

graphical output represents the computer model which represents the 

logical model which represents the real world problem, therefore why 

is the real world problem not expressed in graphical form f irs t?  

Hurrion (1986) has noted the importance of the a b i l i t y ,  during 

visual interactive modelling (VIM) with the user, to be able to 

respecify the model, rather than just l im it  the interaction to 

parameter changes [Withers and Hurrion, 1982] [O'Keefe, 1984]. Even 

though the extension of the visual interaction to the problem 

formulation stage has already been attempted by In teractive  

Simulation Program Generators (see above), these tend to have a 

d iffe re n t interface to the run-time VIM. I f  they do have a 

d iffe re n t interface, this would at the very least increase the 

learning time for users (since they would need to learn two 

interfaces, as opposed to one interface) and could po ten tia lly  

confuse the user.
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There have been a number of attempts to integrate these stages into 

a single simulation support environment, for example SMDE [Balci and 

Nance, 1987] (based around a relational database), KBS [Baskaran and 

Reddy, 1984] (based around a schema representation language [Reddy 

and Fox, 1982]), ROSS [McArthur et a l , 1986] (based around an 

English-like, interactive object-oriented language implemented in 

Lisp), JADE [Unger et a l , 1986] and ANDES [B ir tw is t le  et a l , 1984]. 

These w il l  be investigated in section 2.3 "Integrated Simulation 

Support Environments".

Section 1.5 : ARTIFICIAL INTELLIGENCE

A r t i f ic ia l  intelligence (AI) is a broad term used to describe the 

research area for making machines, including computers, more human­

l ik e .  This might result in both a better understanding of the 

nature o f  the human mind, and in making computers easier to use.

There are a number of separate research areas in AI, including 

Natural Language Processing, Expert Systems and Robotics. A large 

number of tools and techniques have been developed, for example 

object orientated computer languages, natural language interfaces  

and expert system techniques. A strong undercurrent in A I, also 

found in so-called 4th generation re lational databases, is the 

desire for the e x p lic it  representation of data. The data for a 

situation/problem would thus be separated from the actual computer

11



code to create knowledge-bases. These knowledge-bases could be 

either textual (e.g. a l i s t  of objects), or graphical (displayable 

and modifiable as an image on a computer screen, such as the 

semantic network knowledge-base).

Chapter 2 w ill  highlight the long-standing use of AI in simulation. 

I t  is worth noting at this stage that simulation practitioners have 

been using some of these techniques long before the AI f ie ld  had 

investigated and labelled them as AI techniques. Recent simulation 

systems have used AI to aid th e ir  simulation environment. These 

systems w ill  be examined in the next chapter. Nearly a l l  these 

systems are at the research level [Paul, 1991]. Although Paul 

contends that there is no real application of a ' t ru e '  a r t i f i c ia l  

in telligence system combined with simulation, I hope that this is a 

re flection  on the short comings of the existing systems (or th e ir  

marketing) rather than a more fundamental problem.

12



Section 1.6 : THESIS OUTLINE AND OBJECTIVES

This research project examines the use of a r t i f i c ia l  in telligence in 

the discrete event simulation f ie ld  with the aim of examining some 

potential areas in which i t  might be possible to improve simulation 

environments. This thesis describes the results of this research.

Some of the current research in the use of a r t i f i c i a l  in telligence  

in simulation is described in the next chapter. The chapter 

describes the importance of the search for a suitable integrated 

simulation support environment. A number of AI and re lational 

database techniques have previously been applied in this area, with 

varied practical success due to the environments' in tr in s ic  

complexity. The c r i t ic a l  area which is examined is the knowledge 

representation ( ie  the knowledge-base), since th is w il l  ultim ately  

decide the power, f l e x ib i l i t y  and user-friendliness of the resultant 

systems. As there already exists a graphical AI knowledge-base 

called semantic networks, i t  was a natural candidate to be 

investigated to see whether i t  can be u t i l is e d  in improving 

simulation environments. This led to the development during this  

research of semantic modelling, a discrete event simulation 

modelling approach based on semantic networks. Semantic modelling 

is described in chapter 3. A prototype implementation of this  

approach is described in chapters 4 and 5. Chapter 6 presents an 

analysis of semantic modelling. Chapter 7 presents the summary and 

conclusion.
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CHAPTER 2

AI LITERATURE IN SIMULATION 

Section 2.1 : INTRODUCTION

This chapter highlights the long-standing uses of a r t i f i c ia l  

in telligence (AI) in simulation. Even though this has resulted in 

benefits to both f ie ld s , this thesis concentrates on the benefits 

to simulation. Section 2.2 indicates that there are many elements 

in trad it io na l simulation which are now regarded as a r t i f i c ia l  

in te lligence. Section 2.3 highlights the present international 

research in integrated simulation support environments. These 

environments are b u ilt  around a knowledge-base which can be derived 

e ither from trad itiona l simulation techniques (fo r  example a c t iv ity  

cycle diagrams), fourth generation techniques (databases) or from 

the a r t i f i c ia l  intelligence f ie ld  (for example object-orientated  

1 anguages).

This chapter w ill  aim to provide the research foundation for this  

thesis by examining what a simulation environment should do and 

which aspects of both a r t i f ic ia l  intelligence and non-AI tools and 

techniques are probably appropriate to achieve these aims.
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Section 2.2 : HISTORICAL LINK BETWEEN SIMULATION AND AI 

Simulation and a r t i f i c ia l  intelligence (AI) are closely related in 

four ways [Doukidis, 1987] : methodological s im ila r i t ie s ,  expert

systems in simulation, AI concept usage in simulation, and the Gains 

for AI when applying the ideas from simulation (th is  las t s im ila r ity  

is not considered fu rth er).  These common areas are also examined by 

Paul (1989a, 1989b).

The next three sub-sections highlight each of these main 

s im ila r it ie s .  The methodological s im ila r it ie s  are described in 

Section 2.2.1 "Production Rules in Simulation". Section 2.2.2  

describes expert systems usage in simulation. Section 2.2 .3  

describes the usage of AI concepts (sp ec if ic a lly  Natural Language 

Understanding and Processing and the object-orientated approach) in 

simulation.

Section 2.2.1 : PRODUCTION RULES IN SIMULATION

I t  is important to realise that production rules are not synonymous 

with expert systems, but they are one way of developing expert 

systems that represent knowledge e x p l ic i t ly  [Browston et a l , 1985] 

or non-explic itly  [Doukidis, 1987]. Production rules were used in 

several f ie lds  well before being taken up by expert systems; in 

symbolic logic by Post (1943) and in lingu is tics  by Chomsky (1957).
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Production rules are the classic IF-THEN rules in the form :

IF {condition}

THEN (action)

They have naturally  been used in computing programs to hold the 

branching conditions of programs, as championed by Tocher (1963) and 

Newell and Simon (1972), while in simulation programs they are used 

to hold the conditions required to s tart  a c t iv i t ie s ,  as well as to 

decide on the route of entit ies  [Vaucher, 1985] [O'Keefe, 1986a]. 

In this form they are called 'ACTIVE' rules, because data and the 

program are intercombined. Doukidis (1987) goes one step further,  

and says that simulation models are production-system models. An 

example of an active production rule might be :

VAR
DOG, POSTMAN : ENTITY (*  DECLARATION * )

PROCEDURE CACTIVITY 
BEGIN

IF ( (QSIZE(DOG) >= 1) AND ( QSIZE(POSTMAN) >= 1) THEN 
BEGIN

(START BARK)
(SCHEDULE END OF BARK IN x MINUTES)

END; (*  BARK occurs before BITE)
END;

QSIZE() is a function indicating the number of an e n tity  waiting in 

a queue. As can be seen by the above example, we have e x p l ic i t ly  

defined the Dog and the Postman as e n tit ies  at the s ta rt  of the 

program. These must be declared by the simulation practit ioner  

before th e ir  use, with a c t iv it ie s  being defined im p lic it ly  in the 

C_EVENT procedure of the simulation.
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However i t  is apparent that to describe even a small simulation 

requires a large number of production rules. This could take a long 

time to enter. To solve this problem many in teractive simulation 

program generators have been produced, e ither stand alone, such as 

DRAFT [Mathewson, 1977], or as part of a powerful simulation 

environment such as VS7 [Chapman and Dayer-Smith, 1990]. Thus the 

sole use of production rules, when describing a simulation, does not 

lend i t s e l f  to the novice user, or even the experienced user, since 

the lack of transparency of the code can and does result in logical 

errors in coding which are very d i f f i c u l t  to pinpoint ( ie  both 

validation errors in interpreting the c l ie n t 's  description of the 

s ituation, and verif ica tion  errors in in terpreting the conceptual 

model). Program generators can help to both reduce the time i t  

takes to describe a simulation, as well as reduce the chances of 

input errors, but only up to a point. And in any case, the eventual 

clients  needs to be convinced of the accuracy of the model. These 

problems have been tackled by adding graphical interfaces onto the 

simulation, but unfortunately usually as an after-thought [Paul and 

Chew, 1987], with considerable extra e f fo r t  by the practit ioner.

I t  is worth noting that with the pressures from commercial expert 

systems, whose knowledge-base can be changed quickly and easily ,  

active rules are being overshadowed in AI c irc les  by textual (or 

'PASSIVE' rules) [Flitman and Hurrion, 1987]. The advantage of 

passive production rules are that fundamental deta ils  in a
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simulation can be changed during a simulation without needing to 

recompile the simulation program.

Section 2 .2 .2  : EXPERT SYSTEMS IN SIMULATION

Expert systems can be used to aid the user in developing his 

simulation model, whether being integrated into a simulation too l, 

such as the ruled-based program generator of Khoshnevis and Chen 

(1986), or stand-alone to help a simulation practit ioner in both 

validation and v e r if ic a tio n .

An example of a stand-alone expert system is SIPDES [Doukidis and 

Paul, 1991], which is short for a "Simulation Program Debugger using 

Expert Systems". This aids in the debugging of a fau lty  simulation 

program written for the eLSE environment [Crookes et a l , 1986]. The 

problems covered are both run-time errors and logical errors. The 

theory is that this w ill  reduce the burden on the few experts who 

knew the eLSE environment. Syntactic errors are not covered, since 

they are trapped by the compiler. However since the eLSE 

environment was continually being enhanced, SIPDES could not be 

upgraded fast enough, therefore its  use has been discontinued. 

There was also a big problem in knowledge acquisition to build up a 

database of the problems, since users tended to forget the 

problems/solutions they encountered a fte r  the event.
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Section 2 .2 .3  : AI CONCEPTS IN SIMULATION

There are a number of AI concepts which have been used in 

simulation. Most notably, knowledge-based simulations and Natural 

Language Understanding and Processing. The next two subsections 

highlight these concepts. I t  is worth repeating that nearly a l l  of 

these interests are at the research level [Paul, 1991].

KNOWLEDGE-BASED SIMULATIONS

A knowledge-based simulation can be defined [O'Keefe and Roach, 

1987] as the use of a knowledge-based framework, with the system 

being simulated represented within a typical knowledge structure  

( fo r  example a number of ru les). The inference mechanism commonly 

used with the knowledge structure is extended by the addition of a 

time-flow mechanism. This c learly  d iffe rs  from trad it io n  simulation 

programs where some or even a ll the deta ils  of the model is 

contained in the simulation program, which is compiled before 

running. In a knowledge-based simulation, the knowledge structure  

i t s e l f  can be analysed, manipulated and altered e ither manually, or 

automatically by an inference engine. The concept that knowledge 

based simulations is essential for integrated simulation support 

environments w ill  be examined in section 2.3 below.

Section 2.2.1 highlighted production rules as one type of e x p l ic i t  

knowledge-base used by both expert system and simulation 

practitioners . A second type of knowledge-base used is object-
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orientated languages, including SIMULA [B irtw is t le  et a l , 1979], 

the f i r s t  object-orientated language which was i n i t i a l l y  designed 

as a discrete event simulation language, ROSS [McArthur et a l ,

1986], based around an English-like, object-oriented language 

implemented in Lisp, SIMKIT [Harmon and King, 1985] and T-Prolog 

[Futo and Szeredi, 1982], where a simulation system is constructed 

using Prolog clauses. There are also experimental systems using 

object-orientated languages, including HIRES [Fishwick, 1985], 

SIMYON [Ruiz-Mier et a l , 1985], BLOBS [Middleton, 1986] and PROSS 

[O'Keefe and Roach, 1987].

A th ird  type of e x p lic it  knowledge-base which is derived from the 

Al/expert system area is semantic networks, a graphical AI knowledge 

representation technique. Semantic networks were o r ig in a lly  

designed as a way to represent the meaning of English words [Rich, 

1983], but section 2.3 .6  and chapter 3 w il l  propose that semantic 

networks be used both as a simulation knowledge-base and as a core 

for an integrated simulation support environment.

NATURAL LANGUAGE UNDERSTANDING AND PROCESSING (NLUP)

Natural Language Understanding and Processing (NLUP) is the 

technique of understanding the spoken or written sentence. The 

f i r s t  generation systems began in the 50s with the appearance of 

translation systems. These concentrated on syntax (grammar) but 

ignored semantics (meaning), which severely lim ited th e ir  use. The
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second generation systems in the 60s operated on 'toy ' domains and 

were impressive in keeping up conversations. The th ird  generation 

systems in the 70s were designed to be used in r e a l - l i f e  

applications, but were limited in terms of syntax and semantics 

(domain). The two most advanced th ird  generation systems [Doukidis,

1987] which were applied to the problem formulation stage of a 

simulation are SPIF [Doukidis, 1985] and NLPQ [Heidorn, 1972]. NLUP 

can also be used in querying the results of a simulation. One such 

system was designed by the Carnegie Group (1986).

NLPQ accepts a wide variety of sentences, but on a very lim ited  

domain. SPIF can only be used in defining the logic of the model 

[Doukidis, 1987], where i t  controls the conversation, as opposed to 

accepting a sentence in any area of the simulation. This has the 

advantage of forcing the analyst and user to be very concise and 

methodical. However there were a number of problems which made the 

system impractical. One of these problems is that the user tends to 

get very bored with describing each entity  and a c t iv ity  in the model 

in turn to the analyst, who then relates the feed back of the system 

to the user (a problem partly  due to the limited syntactic structure  

of the sentences). Another lim ita tion  derives from its  interface  

with AUTOSIM [Paul and Chew, 1987] in teractive program generator, 

since once SPIF is used and its  conceptual model output is added to 

in la te r  stages of the simulation, rerunning SPIF would resu lt in 

the loss of this added data.

21



In most of these systems, the underlying methodology is the same two 

stage translation, a syntactic analysis stage, to check the word 

sequences and to build a syntactic tree or equivalent, followed by 

a semantic analysis stage to build the fina l knowledge-base. For 

example :

A fter Barking, the Dog then bites the postman.

The syntactic analysis stage tr ies  to find a syntactic pattern which 

matches the sentence, with the possible aid of a dictionary, such 

as :

AFTER [a c t iv i ty ] ,  the [e n tity ] THEN [a c t iv i ty ]  the [en t ity ]

However, there could be more than one possible match, even a fte r  the 

interface has eliminated the matches which are not consistent with 

the existing knowledge-base. Here the system could e ither choose 

the most l ik e ly  pattern or ask the user which pattern is the correct 

one. Since there is also the p o ss ib ility  that the existing  

knowledge-base is incorrect, and an automatically eliminated 

syntactic structure was actually correct, the a b i l i t y  of the user 

to examine the 'eliminated' structures would be useful.

The semantic analysis stage depends on the type of knowledge-base 

used, as well as the scope of the domain of the system. As a result  

of semantic analysis, new knowledge gained from the sentence can be
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added to the knowledge-base.

An NLUP can be e ither hard-coded or data-driven. In a hard-coded 

NLUP, the syntactic and semantic structures are embedded in a 

compiled program which can not be changed without laboriously 

changing and recompiling the program. A data-driven NLUP accepts 

the de fin it ion  of the syntactic and semantic structures as a 

separate input and applies them to the sentence being examined.

The hard-coded approach was used in this research pro ject's  f i r s t  

attempt at NLUP and a prototype program called SEF (Semantic 

Formulator) was developed. In the la tes t prototype, SASIM, a data- 

driven NLUP was developed. The data-driven approach adds 

f l e x ib i l i t y  to the system because the syntactic d e f in it io n , held in 

a text f i l e ,  can be examined and altered by a simple word-processor, 

without recompiling the system.

Section 2.3 : INTEGRATED SIMULATION SUPPORT ENVIRONMENTS 

Simulation research has recently began to emphasis the development 

of integrated simulation support environments [Rozenblit et a l , 

1990] [Henriksen, 1983] [Hu et a l , 1989] [Hu, 1989].

This section highlights current research in this area.
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Section 2.3.1 : The goal

Section 1.4 mentioned that the goal of an integrated simulation 

support environment is to integrate the four stages of a simulation. 

Thus the integrated environment would provide automated support 

starting at the in i t ia l  problem formulation stage righ t through to 

output analysis, with the a b i l i ty  to i te ra te  back to an e a r l ie r  

stage.

In order to build an integrated simulation support environment, i t  

is essential to pursue the goal of e x p lic i t  knowledge representation 

( ie  knowledge-based simulation). This is because during any stage 

of development of a simulation model i f  some description of the 

problem is changed (e.g. arriva l d istr ibution  of customers or 

addition of an e n t i ty ) ,  a ll other processes of the simulation 

environment must have automatic access to the new information. This 

s h if t  from program to the model view is highlighted by Nance (1983).

The e x p lic i t  knowledge-base however need not be lim ited to AI 

concepts (fo r example object-orientated languages), but can be 

achieved using a 4th generation approach (re la tiona l databases), or 

other techniques, such as using a c t iv ity  cycle diagrams. Exp lic it  

knowledge representation has the very important advantage that 

reasoning can be performed d irec tly  on the knowledge-base. These 

w ill  be described in the next sub-sections.
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The d i f f ic u l t ie s  in achieving this aim are highlighted by Balci and 

Nance (1987):

"The complete set of requirements for developing [a simulation 

model development environment (SMDE)] poses a s ign ificant  

challenge to SMDE designers and implementers. Nevertheless, we 

are confident that the challenge can be met by way of an 

evolutionary development of SMDE prototypes".

Despite the extent of the challenge of building an integrated 

simulation support environment, these d i f f ic u l t ie s  are increasingly 

becoming surmountable, especially with the technical/cost 

improvements in general purpose computers with integrated m ulti- 

media capability .

Section 2 .3 .2  : A ctiv ity  cycle diagram approach 

As mentioned in section 1.4, a c t iv ity  cycle diagrams (ACDs) are one 

of the four key diagrammatic methods for representing the conceptual 

model of a problem. The other three diagrammatic methods are 

Augmented Petri Nets, Event Graphs and GPSS block diagrams. ACDs 

and Event Graphs have the least number of concepts. ACDs are also 

claimed to be the easiest diagrammatic method to explain to c lients  

[Paul and Ceric, 1990]. Thus the ACD's graphical nature and its  

transparency enable both the simulation practit ioner and the c lien t  

to understand each other and the system being modelled.

25



The ACD has been notably used by CAPS [Clementson, 1982] and HOCUS 

[Syzmankiewicz, 1984] among others. In the la t t e r  case, i t  is 

possible to run a data-driven simulation straight from the ACD, 

without going through a program generation stage.

However a disadvantage of ACDs is that complex conditions for

cooperation between objects in an a c t iv ity  are d i f f i c u l t  to 

represent graphically [Pidd, 1988] [Syzmankiewicz et a l , 1988]. 

This disadvantage is offset by the a v a i la b i l i ty  of automatic program 

generators which take the ACD as input and allow the complex

conditions to be programmed into the generated code. A sign of the

usefulness of the ACD [Paul and Ceric, 1990] is that nearly a ll

known automatic program generators based on a diagrammatic 

conceptual modelling method use ACDs.

However, the generation of code is fundamentally problematic in that 

i t  implies a single directional progress, while simulation is 

in tr in s ic a l ly  i te ra t iv e .  This can be il lu s tra te d  by the following 

scenario :

A conceptual model has been b u il t  and a program generator has 

then been used to generate the code. The code has subsequently 

been altered, manually, to customise the application (say around 

30% new code [Crookes, 1987]). At th is stage, a correction or 

enhancement to the conceptual model has been requested. The 

choices are e ither to a lte r  the conceptual model and regenerate
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the code (thus losing the manual customisation), or to manually 

change the code (a long and laborious task).

This i l lu s tra te s  some of the problems which are bound to be 

encountered by not s t r ic t ly  separating the part of the knowledge­

base contained in the conceptual model (say 70%) and rest of the 

knowledge-base contained in the customisation rules (production 

ru les ). The customisation rules become irrevocably intermeshed in 

a computer program. This reinforces the argument that integrated 

simulation environments should aim for e x p lic i t  knowledge 

representation, where i f  the conceptual model and customised rules 

were kept 'separate', the conceptual model could be altered at a 

very la te  stage, without the need to re-enter the customisation 

rules. This approach would thus eliminate the requirement of a 

program generator stage (although the program generation of small 

parts of the conceptual model may s t i l l  be advantageous to provide 

a base on which the customised code can be added).

Section 2 .3 .3  : Database approach

The approach of using a database as a central knowledge-base for an 

integrated simulation support environment has been used by Reese and 

Sheppard (1983), El Sheikh (1987) and Balci and Nance (1987). The 

structured textual nature of a database, however, can present 

d i f f ic u l t ie s  in representing complex conditions for cooperation
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between objects. I t  also presents d i f f ic u l t ie s  in the visualisation  

of the problem, as well as performance d i f f ic u l t ie s  due to the large 

processor overhead of trad itional re la tional databases.

Reese and Shepard (1983) developed the Simulation Software 

Development Environment (SSDE). This is b u ilt  around a series of 

databases and a language. El Sheikh (1987) produced INGRESSIM which 

ran on a VAX minicomputer. An automatic program generator was added 

to INGRESSIM by Mashour (1989). Balci and Nance (1987) developed a 

research prototype called Simulation Model Development Environment 

(SMDE), based on the conical methodology [Nance, 1981], which ran on 

a colour SUN 3/160 graphical windowed workstation. Notably both 

INGRESSIM and SMDE used the Ingress re la tional database package as 

th e ir  central knowledge-base. In both cases they re lied  on a 

program generator to generate the executable code, in order to allow 

for the complex interactions between objects. This, as explained in 

section 2.3 .2  above, implies a single directional progress. Ideally  

an integrated simulation support environment should be able to read 

the information from the re lational database, together with any 

customisation rules (again stored as data) and then run the 

simulation d irec t ly  without generating any code.
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Section 2 .3 .4  : Object-orientated language approach 

As has been mentioned in section 2 .2 .3 , object-orientated languages 

have been widely used to develop simulation systems. Due to th e ir  

e x p lic i t  knowledge representation, i t  is natural that they are used 

as the central knowledge-base for a simulation support environment. 

Some of these environments are :

The Rand Object-oriented Simulation System (ROSS) [McArthur et a l , 

1986], is probably the f i r s t  and most developed AI based simulation 

tool [O'Keefe and Roach, 1987]. I t  is based around an English-like, 

object-oriented language implemented in Lisp. The objects can 

receive and send messages which can be intercepted by the simulation 

p ractit ion er. The simulation can be interrupted and examined at any 

time. ROSS has been used to develop a graphical m il i ta ry  simulation 

system called TWIRL [Klahr et a l , 1986].

Knowledge-based Design and Simulation Environment (KBDSE) [Rozenblit 

et a l , 1990] is an integrated simulation support environment

implemented in Lisp. There are two basic components for the system, 

a front end for the model construction process and an object- 

oriented simulator supporting the evaluation of h ierarch ica l, m ulti- 

component models. Model specification is performed using the 

discrete event system specification (DEVS) formalism [Kim and 

Zeig ler, 1987], However, as investigated by Domingo (1991), formal 

methods are not very easy to use in the simulation environment,
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notably due to th e ir  large textual nature, even to describe a simple 

simulation.

Other systems include SIMYON [Ruiz-Mier et a l , 1985], which is an 

object-orientated language prototype and MAGEST [Oren and Aytac, 

1985], which is a knowledge-based modelling and simulation system.

Section 2 .3 .5  : Expert Systems (production rules) approach

I t  has been shown by Flitman and Hurrion (1987) that an expert 

system can hold the controlling logic (production rules) for a 

discrete event simulation model. This is an important step forward, 

since the conceptual model of the problem could be contained in a 

form (e .g . ACD) which is independent of the controlling rules. A 

p o ss ib il i ty , which is not highlighted by Flitman and Flurrion, is 

that of localised control, where the ACD could control most of the 

model running, without requiring e x p lic i t  production rules, with the 

expert system containing the part of the tota l logic which is 

required to be manually customised. This can be achieved by using 

production rules which are attached to individual objects (mainly 

a c t iv i t ie s )  which regulate the ir  starting conditions, th e ir  effects  

and the fin ishing instructions. This AI technique is called  

Procedural Attachment [Rich, 1983].
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E a rlie r , a simulation production-system (using a PROLOG simulation 

engine) was also developed at the University of Warwick, but th e ir  

strategy of separating the controlling logic from the simulation 

system, while sharing some data, conforms to the structure suggested 

by O'Keefe (1986b). Thus the user benefits both from the features 

of existing simulation environments and from the additional benefits  

of using an expert system to aid in achieving the desired "needs, 

goals and objectives" [Shannon, 1985].

Other simulation production-systems have been developed by Robertson 

(1986) and Goodman et al (1987). These are along the same lines as 

the Prolog based simulation system developed at the University of 

Warwick.

Section 2 .3 .6  : Semantic network approach

Semantic networks are a graphical AI knowledge representation 

technique where information is represented as a network of nodes (or 

objects) with relationships between them expressed by labelled and 

directed arcs (or Links). A detailed description of semantic 

networks is contained in the next chapter. A good description of 

semantic networks can also be found in Rich (1983) and Shirai and 

Tsujii (1984).
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Semantic networks were f i r s t  proposed by Q uillian (1968) and Raphael 

(1968) for representing the meaning of English words in Natural 

Language Understanding and Processing (NLUP) systems. The only 

record of an attempt to use a semantic network approach to

simulation is Knowledge-based Simulation System (KBS) [Baskaran and 

Reddy, 1984], renamed Simulation C raft. KBS enables in teractive  

model creation and a lte ra tion , simulation monitoring and control and 

graphical display. I t  is based around a schema representation 

language [Reddy and Fox, 1982]. This is a knowledge-representation 

language based upon frames and written in Lisp. Frame 

representation structure is a technique which uses pre-designed 

semantic networks as a knowledge-base for a specific problem-solving 

task. The approach then applies a s lo t -a n d - f i l le r  algorithm to

super-impose the pre-designed semantic network knowledge-bases 

(represented in multiple frames) onto the real world system to find  

the frame that f i t s  best, thus 'understanding the system'. 

Typically a single frame describes a class of objects, e.g. DESK or

ROOM. Multiple frames are linked together into a frame system to

represent complex environments. 'Frame theory' was invented by 

Minsky (1975) at MIT and discussed in Kuipers (1975). However frame 

theory d if fe rs  from the semantic network approach because i t  is 

specific to the class of model which the frames are b u ilt  fo r , and 

therefore not as f le x ib le  as a general semantic network where the 

semantic network can expand with new structures.
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However KBS's app licab il ity  to discrete event simulation is limited  

because i t  was f i r s t l y  implemented as a textual database (as opposed 

to graphical), and secondly i t  provides a conceptual view of a

simulation (s im ilar to system dynamics) and not a discrete event

system [O'Keefe and Roach, 1987]. KBS, instead, places considerable 

emphasis on introspection (where a simulation model learns about 

i t s e l f )  and other methods of automatic analysis, without running a 

time-based simulation.

Section 2.4 : CONCLUSION

From the above analysis, i t  is possible to speculate what an ideal 

simulation environment should do and which aspects of both

a r t i f i c i a l  intelligence and non-AI tools and techniques are probably 

appropriate to achieve these aims.

The main aim of our ideal simulation environment is to create an 

integrated simulation support environment which would provide

automated support starting at the in i t ia l  problem formulation stage 

r igh t through to output analysis, with the a b i l i ty  to ite ra te  back 

to an e a r l ie r  stage. This environment should be b u ilt  around an 

central e x p lic i t  knowledge-base which should be able to be viewed 

and modified using a consistent graphical in terface. The knowledge­

base should be able to hold complex interactions between objects 

using procedural attachment of production rules ( id ea lly  passive
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rather than active production ru les). Using the consistent 

graphical interface, i t  should be possible to create, view and/or 

enhance the underlying knowledge-base using d if fe re n t representation 

techniques, including natural language, production rules and 

a c t iv ity  cycle diagrams. Since a simulation should be b u ilt  around 

a single central knowledge-base, once the knowledge-base is updated 

using one representation technique, a ll  views of the knowledge-base 

using other supported representation techniques should be updated 

automatically. Some representation techniques, for example natural 

language, may however be most useful as an input mechanism, rather  

than an output mechanism. I f  desired by the user, i t  should be 

possible to re s tr ic t  a view to sub-parts of the knowledge-base, thus 

possibly avoiding the display of information not immediately 

relevant to the task the user wishes to perform at that time. I t  

should be possible to automatically check the knowledge-base for  

internal anomalies and inconsistencies (to aide validation and 

v erif ic a tio n  of the simulation model). There should also be an 

inference engine which should be able to trace the links between 

objects in the knowledge-base (e.g. spot d irect and indirect  

interactions between e n t i t ie s ) .  The inference engine should be able 

to take into account the production rules held in the knowledge-base 

using procedural attachment. I t  should be possible to perform an 

actual simulation run, even i f  only part of the knowledge-base is 

entered, thus providing some feed-back at an early stage. During 

the simulation run, i t  should be possible to view the en tit ies
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moving around the system using any of the supported representation 

techniques (e.g. a c t iv ity  cycle diagram view). This would thus make 

i t  possible to have a consistent view of the simulation while both 

creating and running the simulation model. I t  should be possible 

during a simulation run to view the histograms of any of the queuing 

times and queue length, and i f  desired, to change the knowledge-base 

during a simulation run. I t  should be possible to specify custom 

histograms and also to automatically analyse captured data from the 

simulation run.

Ruiz-Mier et al (1985) speculate on the future use of a network 

simulation language in an AI programming environment. This is the 

area which this research project tackles. Since an ACD can be 

regarded as a network of nodes (or objects) with relationships  

between them expressed by labelled and directed arcs (or Links) [a 

d efin it io n  of semantic networks], the semantic network knowledge­

base seems a natural area for further investigation. The fact that 

semantic networks were f i r s t  used in natural language processing is 

an added advantage, since this is one of the areas of research in 

the problem formulation stage of a simulation. These ideas led to 

the development during this research of semantic modelling, a 

discrete event simulation modelling approach based on semantic 

networks. Semantic modelling is described next in chapter 3.
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CHAPTER 3

SEMANTIC MODELLING : DESIGN ISSUES 

Section 3.1 : INTRODUCTION

The previous chapter indicated that the semantic network knowledge­

base requires further investigation. This chapter explores th is  

knowledge-base to see i f  i t  can be adapted to the simulation 

environment. Section 3.10 demonstrates semantic modelling, a 

discrete event simulation modelling approach based on semantic 

networks, which attempts to achieve the aims, highlighted in the 

previous chapter, of what an ideal simulation environment should do.

Chapter 4 describes a prototype implementation of semantic 

model 1ing.

Section 3.2 : UNDERLYING STRUCTURE OF SEMANTIC NETWORKS

Semantic networks are a graphical AI knowledge representation 

technique. Information is represented as a network of nodes (or 

objects) with relationships between them expressed by labelled and 

directed arcs (or Links). The trad itiona l application of semantic 

networks in the AI community is for Natural Language Understanding 

and Processing (NLUP).
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An example of a very small semantic network is

is d
DOG--------------------------- > ENTITY

A  A  A

I I I
object l in k  object

(" is  a" is a relationship and i t  can be involved in many links)

Using this structured representation, networks can be b u i l t  up 

expressing relationships between objects, together with th e ir  

properties. The networks can be applied to many f ie ld s ,  each 

requiring specific customisation, but this project concentrates on 

the discrete event simulation f ie ld .  However semantic networks 

provide no automatic internal structure, since an individual node 

can contain any type of data (possible a single word, or a 

paragraph, or a whole encyclopedia, or a visual image). In addition  

each relationship, regardless of what i t  is called by the person who 

entered i t ,  can mean d iffe ren t things to d if fe re n t users, and may 

not be understood at a ll by a computer program trying to understand 

the semantic network knowledge-base. Thus I have had to impose a 

structure on the semantic network to convey meaning applicable to a 

discrete event simulation. These w ill  be highlighted in the next 

subsections.
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Section 3 .2 .1  : Synonyms

Synonyms occur when d iffe ren t words mean the same thing, for example 

"Nine" and "9", "Drinking" and "Drink", "Leave" and "Exit", "For" 

and "Duration", "Served" and "Service", "Customers" and "Customer". 

This would c learly  cause problems, for example when trying to decide 

whether an object being described by a c l ie n t  is a new object or a 

further description of an existing object. I propose that a ll  

plurals should be automatically converted to the singular (e .g. 

"Customers" converted to "Customer") and a ll  numbers to be stored as 

the arithmetic number (e.g. "Nine" converted to "9") and a ll  verbs 

converted to the 'base' verb (e.g. "Served" converted to "Service"). 

I t  should be noted that where d if fe ren t 'base' verbs are possible, 

e.g. "Service" or "Serve" or even "wait on", the actual base verb 

stored in the semantic network is not important, as long as i t  is 

used consistently throughout the semantic network ( i . e .  there should 

not be two nodes where one is called "Service" and the other 

"Serve", where they both refer to the same a c t iv i ty ) .  This 

conversion of synonyms would need to be done automatically. Since 

there may be d iffe ren t programmes accessing and updating the 

knowledge-base, they should use the same synonym conversion 

algorithm to avoid inconsistencies.
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Section 3 .2 .2  : Core objects, instances and the "IS A" relationship

I have defined three core objects, these are "ACTIVITY", "ENTITY"

and "DECISION". An object on the semantic network can then be

linked to one of these core objects using the "IS A" relationship,  

e.g. "POSTMAN" IS A "ENTITY"

or "BITE" IS A "ACTIVITY"

or "IF IT IS RAINING" IS A "DECISION"

An object can only have one "IS A" relationship, ie an object can 

not be both an a c t iv ity  and an en tity . I f  an object does not have 

an "IS A" relationship, i t  is s t i l l  held on the semantic network, 

but assumed to be of an undefined type. Once these relationships  

are defined, a query such as " l is t  a ll known a c t iv it ie s "  can be done 

by finding a ll objects which have a "IS A" "ACTIVITY" l in k . The 

decision core object is described further in section 3 .2 .3 .

A further important concept is that of an instance of an e n tity .  

This is an extra defined object for every a c t iv ity  which an en tity  

gets involved in. For example, i f  a customer might drink and he 

might rest, there would in addition to the "CUSTOMER" IS A "ENTITY" 

l in k ,  be two extra instances "CUSTOMER (DRINK)" and 

"CUSTOMER (REST)". These two objects are instances of "CUSTOMER". 

These 'e x tra ' instances are required in order to be able to express 

individual facts about en tit ies  involved in a c t iv i t ie s ,  such that as 

more than one entity  is needed in an a c t iv ity  or to express the 

cycle of an en tity . The instances would be linked to the master
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e n tity  with the "IS A" relationship as follows 

"CUSTOMER (DRINK)" IS A "CUSTOMER" 

and "CUSTOMER (REST)" IS A "CUSTOMER".

The actual name of the instances, for example using "SLEEPER" 

instead of "CUSTOMER (REST)" is not important, but by default, I use 

the en tity  name with the a c t iv ity  name in brackets.

Section 3 .2 .3  : The "PRECEDES" relationship

The "PRECEDES" relationship defines the cycle of an e n tity . For 

example, i f  a customer drinks and then he rests, the "PRECEDES" 

relationship would indicate this by the following l in k  :

"CUSTOMER (DRINK)" PRECEDES "CUSTOMER (REST)"

In an en tity  cycle, the "PRECEDES" relationship would create the 

cycle. For example :

precedes
CUSTOMER (DRINK) ------------------ > CUSTOMER (R

CUSTOM

■ST) 

precedes
precedes

nrecedes v
IR (ARRIVE) <----------------  CUSTOMER (EXIT)

To conform to the standards of an a c t iv ity  cycle diagram, a ll  cycles 

of e n tit ies  must be closed. Therefore the "CUSTOMER (EXIT)" 

PRECEDES "CUSTOMER (ARRIVE)" was added to close the Customer's
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cycle. I t  is worth noting that, as opposed to an a c t iv ity  cycle 

diagram, there are no e x p lic i t  queues, but in my semantic network 

approach each instance has an im p lic it  queue associated with i t .

For a decision ( ie  for a condition), the "PRECEDES" relationship

would indicate the flow of the instance, e.g. ' IF  THE POSTMAN RUNS,

THE DOG WILL CHASE7 would be expressed as :

precedes precedes
DOG (BARK) -----------------> i f  postman runs -----------------> DOG (CHASE)

is a
v

DECISION

Section 3 .2 .4  : The "DURATION" relationship

The duration relationship defines the length of time an a c t iv ity  

takes. For example,

"REST" DURATION "3"

"DRINK" DURATION "10"

"ARRIVE" DURATION "NEGEXP(10,5)"

For the simulation being modelled, the time unit (seconds, minutes, 

hours e tc .)  would be consistent for a ll links which use the duration 

relationship. There is no constraint on the d istr ibution  used, such 

as negative exponential, normal or poisson, as long as the 

simulation running process can understand i t .
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Section 3 .2 .5  : The "NUMBER" and "INIT NUMBER" relationship  

A discrete event simulation requires that the number of each e n tity  

there is in the system is defined (with the po ss ib il i ty  that some

e n tit ie s  are in d e fin ite ly  large). This information would be

contained using the "NUMBER" relationship which would be referred to 

from the master en tity . For example, i f  there are ten glasses in 

the system, this would be expressed as :

"GLASS" NUMBER "10"

Additionally , at the s tart of a simulation the individual e n tit ies  

may be distributed throughout the system, as determined by the user. 

This information would be contained using the "INIT NUMBER" 

relationship which would be referred to from the instances of the 

e n t ity .  For example, i f ,  at the start of simulation, seven of the 

above ten glasses are ready to use in the service a c t iv ity  and the 

other three are waiting to be washed, this would be expressed as :

"GLASS (SERVICE)" INIT NUMBER "7"

"GLASS (WASH)" INIT NUMBER "3"

As part of the validation check, the tota l of the "INIT NUMBER" 

relationships for an entity  should be equal to the tota l as defined 

by the "NUMBER" relationship. Certain en tit ies  which operate as 

central f a c i l i t i e s ,  for example barmaids who e ither wash and serve 

depending on demand, would only require a "NUMBER" relationship.
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Section 3 .2 .6  : Examples

'THE DOG BARKS' would be expressed as :

is 3
DOG  ............- - ->  ENTITY

is a
needs

DOG (BARK) < BARK

is a

ACTIVITY

'THE DOG BITES THE POSTMAN' would be expressed as :

1 S 3i 1 s j

DOG------------------ > ENTITY <----------------POSTMAN
A  A

is a 

DOG
needs

BITE) <------------------  B
needs 

T E --------------- >

is a

is a

>OSTMAN (BITE)

ACTIVITY

'AFTER BARKING, THE DOG THEN BITES THE POSTMAN' would be expressed 

as :

is a is a i s a
DOG (BARK) ---------------> DOG  > ENTITY <-------- POSTMAN

A  A A

\ is a
\  precedes needs needs

■> DOG (BITE) <•

is a

 BITE

needs is a
is a v

BARK---------------------------------------------- > ACTIVITY

> POSTMAN (BITE)

This new semantic network is created by the 'merging' of the two
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simpler semantic networks shown e a r l ie r ,  with the addition of the 

following lin k  between the instances DOG (BARK) and DOG (BITE) :

precedes
DOG (BARK) -------------------- > DOG (BITE)

Section 3.3 : GRAPHICAL INTERFACE

As can be seen from the previous section, a semantic network for  

even a re la t iv e ly  simple simulation can not be easily  represented in 

two dimensions, whether on paper or on a two dimensional computer 

screen, since the links would overlap too often, impairing 

understanding of the network. There are two complementary 

approaches to getting round this problem, where the actual network 

is stored in terna lly  as a single knowledge-base but is represented 

on the screen as multiple smaller knowledge-bases.

The f i r s t  approach is to use vertical decomposition whereby there is 

a global picture whose elements could be examined in d e ta i l .  At 

th is more detailed (lower) leve l, there are also elements which can 

themselves be examined in further d e ta i l ,  and so-on. This could be 

visualised as breaking down a single large semantic network 

knowledge-base into smaller semantic networks (fo r  example a 

hospital can be s p li t  between in-patients and out-patients).

The second approach re lies  on the d is tin c tive  classes of the 

relationships found in a semantic network. I f  only selected
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relationships (and th e ir  associated objects) are displayed, i t  may 

be easier to ascertain information re la ting  to those specific  

relationships (at a cost of not seeing the other re lationships). 

For example, i f  the "IS A" relationship is hidden from the semantic 

network translation of the statement 'AFTER BARKING, THE DOG THEN 

BITES THE POSTMAN' (shown in section 3 .2 .6 ) ,  the sentence would be 

expressed graphically as:

needs needs
DOG (BITE) <---------------- B IT E ----------------- > POSTMAN (BITE)

A

precedes
needs

DOG (BARK) <------------------  BARK

This is much more compact and readable ( ie  more transparent) than 

the semantic network shown in the previous section. (Note that we 

do not need to display the objects "Entity", "A ctiv ity" , "POSTMAN", 

"DOG" since they are not linked to any other objects on this graph). 

One way of visualising the s p li t t in g  up of the semantic networks 

into d is tinc tive  classes of relationships is to think of each class 

as a d if fe ren t "level" of one large network, with the a b i l i t y  of 

moving between d iffe ren t levels, by means of a " l i f t " .  A l in k ,  

relationship or object can be on more than one le v e l.  Where an 

object exists on more than one leve l, the l i f t  mechanism can then be 

used to move the user from one level containing a specific object 

d ire c t ly  to a ll other levels containing that object, while skipping 

levels not containing i t .  This could be helpful when examining a ll  

knowledge held about an object.
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Having 's p l i t '  up the large semantic network into smaller units, 

which because of th e ir  smaller size should be more manageable than 

the original single network, i t  is desirable to use the power of 

modern computer graphics to display the objects as "icons" on a 

screen with the links being displayed as arrows. The name of the 

links ( ie  the relationship name) can be displayed along the arrow 

(s im ilar to the semantic networks described e a r l ie r ) .  Links can be 

added (or deleted) by simply pointing to the two objects (fo r  

example using a mouse) and typing in the relationship name (or 

highlighting the relationship name from a menu of a ll known 

re lationships). The a b i l i ty  to move quickly around the semantic 

network is essential, together with the a b i l i ty  to modify any object 

or relationship name by simply highlighting the name on the screen 

( fo r  example using a mouse) and editing i t .  The a b i l i ty  to ZOOM OUT 

or ZOOM IN, in order to see a fu l le r  or more detailed view of a 

leve l,  is also desirable.

The graphical level also needs to contain the main menus of the 

system since the user should always s tart  from the graphical 

interface when selecting any of the other f a c i l i t i e s  of the system. 

This is in keeping with the idea that the semantic network can be 

used as the central knowledge-base in an integrated simulation 

support environment.
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Section 3.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING 

The previous section highlighted that, by s p li t t in g  the semantic 

network, i t  may be possible to make the network more transparent to 

the user. However this brings up the problem of m ainta inab ility .  

How do you add new links when the objects may be on d if fe re n t  

levels? A further problem, as seen above, is that a simple piece 

of knowledge may require multiple links in order to be expressed in 

a semantic network. What is required are concepts which take simple 

inputs (in whatever form) and automatically translate them into the 

semantic network. There is po tentia lly  a large number of such 

concepts, but I w i ll  examine two concepts to try  and overcome these 

problems. F irs t ly  an input f a c i l i t y  for a c t iv it ie s  and/or en tity  

cycles ( fo r  example working from an A ctiv ity  Cycle Diagram) which is 

highlighted in section 3.5. Secondly a Natural Language Interface  

which can take a 'standard' english sentence and translate i t  into 

the semantic network format.

In order to translate an English sentence, there are a number of 

hurdles to overcome. They can be expressed as follows :

(a) Superfluous words in a sentence (fo r  example "A", 

"Also", "At").

(b) D ifferent words meaning the same thing, for example 

"Nine" and "9" or "Drinking" and "Drink" or "Leave" 

and "Exit" or "For" and "Duration" or "Served" and 

"Service".
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(c) The phrases in a language have to be expressed to a 

computer.

(d) Sentences can have d if fe re n t meanings depending on 

the context and the environment.

Problems (a ),  (b) and (c) can be regarded as syntactic, while 

problem (d) can be regarded as semantic.

Most Natural Language Understanding and Processing (NLUP) systems 

take a two stage approach : F irs t ly ,  syntactic analysis to build a 

number of syntactic structures (trees) representing the sentence. 

Secondly, semantic analysis which takes each possible syntactic 

structure and tr ie s  to eliminate the ones which are not consistent 

with the knowledge-base.

Section 3 .4 .1  : Syntactic Analysis during NLUP 

The f i r s t  stage of syntactic analysis is to s p l i t  the sentence into 

separate words and to translate them to some 'core' set of words, 

using a dictionary. The core set of words is dependent on the 

domain. For example :

Hundred -> 100

A1 so -> <ignore>

A -> <ignore>

For -> Duration
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Drinking -> Drink

Barmaids -> Barmaid

There w i l l  tend to be rules for some of these, for example 

translating plural into singular (fo r  example "*MEN" to "*MAN" or 

"*S" to "*") or past tense verbs to present tense (fo r  example "*ED" 

to "*" or H*ING" to However to every rule there are

exceptions (fo r  example "*ERVING" to "*ERVICE" or "AS" to "AS"), and 

so the system should be able to be told the rules together with the 

exceptions in order to minimise the size of the dictionary.

The second stage of syntactic analysis is to build a ll  possible 

syntactic structures which the sentence conforms to. This raises 

two problems, the f i r s t  being the expression of the syntactic  

structures (phrases) in the language, the second being how these 

syntactic structures are mapped onto a semantic network. This 

second stage of syntactic analysis should be performed as follows: 

A sentence would be defined as a number of possible structures, for  

example

KEY A indicates start of a keyword

* indicates beginning of syntactic structure (phrase)

; indicates ending of syntactic structure (phrase)

~ indicates optional word or structure 

/  indicates alternate structure 

> semantic translation of phrase

" " indicates a group of words to be treated as a label
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Syntactic Structure 

♦SENTENCE :

ATHERE AIS ENTITY_P ,,A."

>

/
ATHERE AIS ACTIVITY_P "A." 

>

Notes

Definition of "Sentence" 

One possible structure  

(always end with a ' . ' )  

or

Another structure

» End of structures

where ENTITY_P and ACTIVITY_P are substructures defined as : 

*ENTITY_P : Definition of "ENTITY_P"

~obj_nUmber obj_name "obj_number" optional

> obj_name ANUMBER obj_number, e .g . barmaid number 10

obj_name "AIS A" AENTITY e.g. barmaid is a entity

/  or

~obj number obj name ~AWHICH ~AIS ~AAN AENTITY Another structure

> obj_name ANUMBER obj_number, 

obj_name "AIS A" AENTITY

>

♦ACTIVITYP : 

obj_activ ity

> obj_acti v ity  "AIS A" ACTIVITY

/
obj_activ ity  ~AWHICH ~AIS ~AAN ACTIVITY

> obj_activ ity  "AIS A" ACTIVITY

e.g . BARMAID NUMBER 10 

e.g. BARMAID IS A ENTITY 

End def. of ENTITY_P 

Definition of ACTIVITY_P 

One possible structure  

e.g . WASH IS A ACTIVITY 

or

Another structure  

e.g . WASH ISA ACTIVITY 

End def. of ACTIVITY P
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The sentence "There is one drink." would thus only have one 

syntactic structure based upon the above structures. The mapping of 

th is  onto the semantic network would be :

"DRINK" NUMBER "1" 

and "DRINK" IS A "ENTITY"

However, the sentence "There is a drink." would have two syntactic 

structures. The mapping onto the semantic network being :

(a) DRINK IS A ENTITY (ie  based on f i r s t  sentence structure) 

or (b) DRINK IS A ACTIVITY (ie  based on second sentence structure).

Semantic analysis, described in the next section, is required to 

c la r i fy  which is the correct translation.

Section 3 .4 .2  : Semantic Analysis during NLUP

Syntactic analysis results in a number of possible syntactic

structures. I t  is the role of semantic analysis to reduce these to 

a single syntactic structure, which is then used to update the

knowledge-base.

This can be achieved by following four steps. F i rs t ly ,  the 

elimination of a ll  structures which are not consistent with the

existing knowledge-base. For example i f  i t  is known that "DRINK IS
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A ACTIVITY", any structure which stated that "DRINK IS A ENTITY" can 

be eliminated. Secondly, the elimination of a l l  structures which 

are not in terna lly  consistent ( i . e .  as previous step, but comparing 

the separate phrases in the sentence). Thirdly, using probability  

theory where appropriate to rank the p o s s ib il i t ie s  (th is  step was 

not implemented in the prototype implementation because i t  would 

require the syntactical structure de fin it io n  to indicate the 

frequency of use of each syntactic structure in a typical sentence). 

The fourth and f inal step, where there is s t i l l  uncertainty, would 

be to ask the user which of the translations is correct. These four 

steps should result in a single syntactic structure, which is then 

used to update the knowledge-base.

The above steps assume that the existing knowledge-base is correct. 

A possible enhancement to the semantic analysis stage would be to 

provide a mechanism to override the existing knowledge-base with new 

'contradictory' information, and delete the parts of the existing  

knowledge-base which are not consistent with the new information.
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Section 3.5 : ACTIVITY AND ENTITY CYCLE INPUT

As highlighted in section 3.4, the a c t iv ity  and e n tity  cycle input 

concept takes a graphical input of a c t iv it ie s  and/or en tity  cycles 

(useful, for example, when the problem has been already described 

using as A ctiv ity  Cycle Diagram) and automatically translates i t  

into e ither a new semantic network, or adds i t  to an existing  

semantic network.

Two approaches need to be handled, e ither tracing each entity  around 

i ts  cycle or choosing an a c t iv ity  and identify ing the e n tit ies  

involved in i t .  This would enable the easy introduction of new 

e n t it ie s ,  instances, a c t iv it ie s  and links .

The entry of a c t iv it ie s  or en tit ies  would be aided by using a 

combination of a mouse to select the objects from a screen and using 

a keyboard to enter the name of new objects which are not presently 

represented on the network. However mouse support was not 

implemented in the prototype implementation because of the lack of 

a mouse support capability  in the programming environment used.

Section 3.6 : PROCEDURAL ATTACHMENT OF PRODUCTION RULES

As noted in section 2 .3 .2 , complex conditions for cooperation 

between objects in an a c t iv ity  are d i f f i c u l t  to represent 

graphically. Active production rules, as highlighted in section
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2 .2 .1 , have been used in simulation to hold the conditions for  

cooperation between objects. I t  is therefore a requirement to 

u t i l is e  production rules on a semantic network but without 

detracting from the semantic network being the central knowledge­

base. As section 2.3 .5  highlighted, the procedural attachment 

technique enables production rules to be attached to individual 

objects (mainly a c t iv it ie s )  which regulate th e ir  starting  

conditions, th e ir  effects and the fin ishing instructions.

Production rules can be implemented as e ither passive ( i . e .  to ta l ly  

data-driven) or active ( i . e .  contained in program code which is 

compiled). Passive production rules would be enterable from a 

keyboard by f i r s t  moving to the object to which the rules are to be 

attached, and then typing them in. I t  would then be possible to 

examine any of these production rules by selecting any object on the 

semantic network. Its  production rules, i f  any, would then be 

displayed in a window on the screen and they can then be changed by 

editing them. In addition, since they are passive, they can then be 

used by the inference engine described in section 3 .8 . I t  is 

therefore c learly  desirable to use passive production rules, as 

opposed to active production rules, although they are much harder to 

implement. The prototype implementation uses active production 

rules because i t  aims to i l lu s tra te  the concept of procedural 

attachment, and the required extra e f fo r t  to implement passive 

production rules would not further the aims of th is  thesis.
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Two possible problems arise from the procedural attachment approach. 

F irs t ly  i t  is not a graphical knowledge-base and therefore may be 

harder to integrate into the graphical interface showing semantic 

networks, especially since concepts which manipulate and analyse 

the semantic network knowledge-base would not automatically be able 

to do the same with production rules. Secondly, in some problems, 

for example the port problem, described by El Sheikh et al (1987), 

the a c t iv ity  cycle diagram conceptual model (and therefore the 

semantic network implementation) is very simple, but these are 

problems because of th e ir  very complex rules and conditions (e.g. 

rules for loading and unloading). These, in a semantic network 

implementation, would be implemented using procedural attachment, 

which in these complex examples would relegate the importance of the 

actual semantic network since the procedural attachment would 

control most, i f  not a l l ,  the simulation run.

Section 3.7 : VALIDATION AND VERIFICATION

Validation is the process of checking that the conceptual model 

corresponds to the real l i f e  process. Since, in the semantic 

modelling approach, the conceptual model (knowledge-base) is held 

either d ire c tly  using a semantic network or in d irec tly  using 

procedural attachment, i t  is desirable to validate i t .  Since the 

knowledge-base is also the computer model, the v e r if ic a tio n  that the
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computer model corresponds to the conceptual model is s im plified, 

since in trad itiona l simulation systems most errors from going from 

the conceptual model, contained on paper, to the computer model are 

caused by incorrect manual input of the conceptual model into the 

program generator.

The validation process would detect a number of anomalies (not 

necessarily errors), including :

(a) Entities which do not complete a cycle.

(b) Entities which are superfluous (do not take part in any

a c t iv i t i e s ) .

(c) Semantic networks which are not cohesive. This would occur

i f  i t  is possible to separate the network into a number of

independent sub-networks. This would imply that the domain 

is two separate simulation domains and not one.

(d) Lack of information on e n tit ies  (fo r  example number of

e n t it ie s ,  starting locations in a simulation e tc ).

I f  appropriate, this stage can actually enhance the knowledge-base 

with additional links (for example in order to complete a cycle).

Section 3 .8  : INFERENCE ENGINE

Having constructed, validated and verif ied  a knowledge-base, there 

are a number of approaches to in fer extra knowledge about the

domain. Two of the possible approaches are e ither a quantitative
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approach, ie running a trad itional simulation (described in section 

3 .9 ) ,  or a qualita tive  approach using an inference engine. This 

section w il l  highlight such an inference engine for the qualita tive  

approach which is derived from using expert system techniques.

The graphical nature of semantic networks lends i t s e l f  to logical 

inferencing, where the links between two objects can be 

q u a lita t iv e ly  ascertained by finding the 'chain of relationships' 

between two objects in the network, using searching algorithms, then 

attempting to draw some conclusions based on the knowledge of the 

types of objects and relationships along the chain. This la t te r  

stage depends on some 'in  b u i l t '  knowledge of what some

relationships and objects mean, such as the relationship 'PRECEDES' 

is a one-way relationship, while 'NEEDS' is a two-way relationship. 

I t  is important to stress that this qu alita tive  information is used 

to complement the quantitative information resulting from an 

experimental simulation run using the same semantic network.

The three main search algorithms are the same as the shortest path 

algorithms used to find the shortest path through a network of 

nodes, without v is it in g  the same node twice. These are :
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1) DEPTH FIRST

Form a NODESSTACK consisting of only one NODE, being the starting  

NODE.

REPEAT

I f  the NODESSTACK is empty, announce destination can not be 

reached, and STOP.

Else I f  the f i r s t  NODE in the NODESSTACK reaches the destination  

SIGHT, announce destination reached, with the route and distance, 

and STOP.

Else remove the f i r s t  NODE from the NODESSTACK and add a ll the 

NODES, which are children of the discarded NODE, i f  any, to the 

front of the NODESSTACK. I f  progress required, display discarded 

NODE.

2) BREADTH FIRST

Form a NODESSTACK consisting of only one NODE, being the starting  

NODE.

REPEAT

I f  the NODESSTACK is empty, announce destination can not be 

reached, and STOP.

Else I f  the f i r s t  NODE in the NODESSTACK reaches the destination  

SIGHT, announce destination reached, with the route and distance, 

and STOP.

Else remove the f i r s t  NODE from the NODESSTACK and add a ll  the 

NODES, which are children of the discarded NODE, i f  any, to the
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back of the NODESSTACK. I f  progress required, display discarded 

NODE.

3) BRANCH AND BOUND

Form a NODESSTACK consisting of only one NODE, being the starting  

NODE.

REPEAT

I f  the NODESSTACK is empty, announce destination can not be 

reached, and STOP.

Else I f  the f i r s t  NODE in the NODESSTACK reaches the destination  

SIGHT, announce destination reached, with the route(s) and 

distance, and STOP.

Else remove the f i r s t  NODE from the NODESSTACK and add a ll  the 

NODES, which are children of the discarded NODE, i f  any, to the 

NODESSTACK, position being consistent with maintaining a 

NODESSTACK with the least distant nodes at the front, (while i f  

one of the NODES reaches the destination, this is added as fa r  

down the NODESSTACK as possible, while s t i l l  maintaining a sorted 

1 is t .

Branch and Bound is the slowest, due to the requirements to maintain 

a sorted stack but i t  is the only algorithm that guarantees 

optim ality . Depth f i r s t  can sometimes find a quick route between 

objects, but i t  can be diverted into 'dead ends'. Breadth F irs t  

systematically searches a ll routes, always h itt in g  on the route with

59



least number of links , without regard to any weights (or distances) 

on the route.

In semantic networks, most distances are the same, except when logic  

dictates that a relationship is one way, or that the relationship is 

ir re levan t, whence the effective  weighting of that l in k , in the 

direction being investigated, is set to in f in i ty .  Since links can 

be weighted, and the requirement is always to propose the nearest 

causal relationship f i r s t ,  Branch and Bound is the best algorithm 

to use in the inference engine. This is the approach used in the 

prototype implementation, with a ll links being the same weight (bar 

one way 1 in ks ).
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Section 3.9 : SIMULATION RUNNING

Since semantic networks are a graphical knowledge-base, i t  lends 

i t s e l f  ideally  to a graphical interface during a simulation run. 

During a simulation, objects move from one a c t iv ity  to a waiting 

queue before starting another a c t iv ity .  This motion can be 

indicated with an 'icon' moving from one instance of an object to 

another instance, for example CUSTOMER (DRINK) to CUSTOMER (REST). 

I t  would also be desirable for some a c t iv it ie s  to be indicated as a 

conveyor belt with icons moving along the b e lt . The number of 

e n tit ie s  waiting in a queue for an a c t iv ity  can be indicated by a 

number displayed above the instance object. The number of en tit ies  

actually  involved in an ac tiv ity  can be indicated by a number 

displayed below the instance object. Histograms of waiting times, 

queue length and time series can be viewed by selecting any object 

from the semantic network, even DURING a simulation run. Results 

can be viewed on the screen or output to a f i l e .  With this  

information, i t  may be possible to spot bottlenecks as well as to 

use the results as a basis for further study.

In theory, the semantic network knowledge-base can be altered even 

during a simulation run, though this may present some implementation 

problems.
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Section 3.10 : SEMANTIC MODELLING ARCHITECTURE

The previous sections described semantic networks, together with 

various concepts which t ry  to make the network manageable and 

maintainable. This section describes how these concepts can be 

assembled together to create a discrete event simulation modelling 

approach, called semantic modelling, which uses semantic networks as 

the central knowledge-base to an integrated simulation support 

environment which attempts to give a consistent graphical interface 

throughout the l i f e  cycle of a simulation study. The semantic 

modelling approach is best described by the following diagram :
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As can be seen from the above structure, the semantic network is 

used as the central knowledge-base, with the graphical interface  

acting as the user interface between the various concepts and the 

central knowledge-base.

The semantic modelling approach is an extension of the approach used 

by the Simulation Model Development Environment (SMDE) prototype 

developed by Balci and Nance (1987), which is based on the conical 

methodology [Nance, 1981]. A key difference between semantic 

modelling and SMDE is that SMDE uses the INGRES re lational database 

as the central knowledge-base, instead of semantic networks. SMDE 

s im ilarly  has a number of tools build around the knowledge-base, 

including a Model Generator, Model Analyser (using AI techniques) to 

validate the model and Model V e r if ie r  which analyses the executable 

program.

Section 3.11 : CONCLUSION

This chapter has described both semantic networks and semantic 

modelling, a discrete event simulation modelling approach based on 

semantic networks, which attempts to give a consistent graphical 

interface throughout the l i f e  cycle of a simulation study. The f ive  

main AI techniques used in semantic modelling are the semantic 

network graphical knowledge-base, data-driven natural language 

understanding and processing, procedural attachment, expert systems
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and shortest path algorithms. Since the approach is an open 

architecture, more techniques, possibly from other research areas, 

could be added in future to improve the simulation environment.

Chapter 2 speculated what an ideal simulation environment should do. 

The main aim was to create an integrated simulation support 

environment which would provide automated support starting at the 

in i t i a l  problem formulation stage right through to output analysis, 

with the a b i l i ty  to ite ra te  back to an e a r l ie r  stage. Semantic 

modelling attempts to do this by using semantic networks as the 

central e x p lic i t  knowledge-base which could be viewed and modified 

using a consistent graphical interface. Complex interactions  

between objects could be held using procedural attachment of 

production rules. Using the consistent graphical in terface, i t  is 

possible to create, view and/or enhance the underlying knowledge­

base using d iffe ren t representation techniques, including natural 

language, production rules and a c t iv ity  cycle diagrams. Another of 

the highlighted aims was that once the knowledge-base is updated 

using one representation technique, a ll views of the knowledge-base 

using other supported representation techniques should be updated 

automatically. In semantic modelling, this is achieved by using 

semantic networks as the central knowledge-base, for example 

knowledge entered as natural language could be viewed and enhanced 

using the a c t iv ity  cycle diagram representation. The aim to 

re s tr ic t  the view of users to sub-parts of the knowledge-base, was

64



achieved by using the concept of levels. The aim of checking the 

knowledge-base for internal anomalies and inconsistencies was 

achieved by the Validation and Verif ica tion  process. The 

requirement of an inference engine is also included in semantic 

modelling, but since the production rules implemented in the 

prototype were active, the inference engine could not take them into 

account. The requirement to perform an actual simulation run, with 

the a b i l i ty  to view the en tit ies  moving around the system, together 

with th e ir  histograms, using the same views as seen when creating 

the knowledge-base, was also included in semantic modelling.

However one of the aims has not been supported. There is no support 

for the automatic analysis of captured data from the simulation run.

I t  is possible to note some potential problems with the semantic 

modelling approach. F irs t ly ,  there may be a problem with the size 

of the network. As shown in section 3.2, even a simple simulation 

can generate many semantic network links. These would need to be 

displayed ' in te l l ig e n t ly ' .  This means enabling the user to view 

just the links he is investigating, and not to overload the screen 

with intercrossing links. This size problem leads to a number of 

related problems, which are described below.

Secondly, there may be a problem with the physical screen size. 

Following from the size of the network, i t  is obvious that a large
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high resolution screen (and supporting software platform) would be 

very advantageous. The IBM-PC family i n i t i a l l y  had the Colour 

Graphics Adapter (CGA). This was superseded f i r s t  by the Enhanced 

Graphics Adapter (EGA) then by the Video Graphics Array (VGA). The 

VGA i t s e l f  has been superseded by a number of very high resolution 

displays, including Extended Graphics Array (XGA), and other non­

standard adapters (over 1024x768 pixels - 256 colours). This again 

indicates that technical improvements are bound to make semantic 

networks more implementable (but not necessarily more understandable 

by the user).

Thirdly, there may be a problem with the internal complexity of the 

implementing software. This is an unavoidable problem since the aim 

of the approach is to create an integrated simulation support

software. However the choice of a standard high level language and 

a standard hardware architecture w ill  ease the problem of building 

and supporting the system, especially as d if fe ren t programmers w ill  

be responsible for support and development over time.

Fourthly, there may be a problem with the ease of use of the

software. The complexity of the software (and i ts  radical approach) 

could present a conceptual challenge to the user. This can be best

overcome by adopting standard interfaces (e.g IBM's SAA interface,  

Windows/Macintosh mouse interface or a Lotus 1-2-3 l ik e  menu

in te r fa c e ) .
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Despite these potential problems, semantic modelling may make a 

contribution to the discrete event simulation community. The next 

chapter describes a prototype implementation of semantic modelling. 

Chapter 5 shows how procedural attachment is implemented in this  

prototype. Chapter 6 c r i t ic a l ly  analyses both the semantic 

modelling approach and the prototype.
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CHAPTER 4

SASIM PROTOTYPE : IMPLEMENTATION ISSUES 

Section 4.1 : INTRODUCTION

The previous chapter has presented the semantic modelling approach. 

This chapter presents the workings of a prototype implementation 

called SASIM. This detailed description helps to advance the 

readers understanding of the practical implications of implementing 

the approach.

The implementation of procedural attachment in the prototype is 

described in chapter 5. Working t r ia ls  of the prototype, together 

with a c r i t ic a l  analysis of semantic modelling concept, are 

contained in chapter 6.
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Section 4.2 : GRAPHICAL INTERFACE

SASIM runs on IBM PC's and compatibles and is designed around the 

fam ilia r  spreadsheet concept that is used in Lotus 1-2-3 and Excel. 

This interface was chosen to reduce the potential learning curve of 

the user of the system, since many users have used and understand 

the concept of spreadsheets.

The requirement is to display and manipulate complex semantic 

models. These, as seen in the previous chapter, can resemble a 

road/ra il network linking d iffe ren t nodes. I f  a ll  links were shown 

at once then i t  would be very d i f f i c u l t  to see and understand the 

model. Therefore, just l ike  there are overview maps for main 

motorways, another for main railway links , and detailed maps for  

towns or counties, semantic networks can be s p l i t  into m ulti-levels  

for ease of understanding. SASIM has a f ive  level model as 

described below. There is no particu lar reason for there being only 

f ive  levels , more levels can be added as appropriate. The f ive  

levels in the prototype represent a convenient division of the 

hierarchy into d iffe ren t logical or visual levels .

Each relationship is automatically allocated to one (and only one) 

leve l, and only objects which have a relationship at the current 

level are displayed on the screen. In a general semantic modelling 

implementation, a relationship could be on more than one leve l,  but 

this would present additional implementation d i f f ic u l t ie s .  The user
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can subsequently also make an object appear on another leve l,  but 

only the relationships of the current level w il l  be displayed. This 

considerably reduces the number of links and objects displayed at 

any one time, and by lo g ica lly  bunching the links which are s im ilar, 

i t  considerably increases understandability. The f ive  levels used 

on SASIM are i l lu s tra te d  using the example sentence :

AFTER BARKING, THE DOG THEN BITES THE POSTMAN

0) BASE LEVEL (a l l  relationships not fa l l in g  under the other levels)

needs needs
DOG (BITE) <---------------  B IT E ----------------- >P0STMAN (BITE)

needs
DOG (BARK) <------------------  BARK

This is the level where each a c t iv ity  and the e n tit ies  involved in 
that a c t iv ity  are shown.

1) ENTITY CYCLE LEVEL (Relationship PRECEDES)

precedes
DOG (BARK) ------------------ > DOG (BITE)

This level shows the cycle of an e n tity ,  including conditional 
branching (decisions).

2) ' IS  A' LEVEL (Relationship 'IS  A')

i S 3 i S 3
ENTITY <-------  POSTMAN <---------  POSTMAN (BITE)

A

is a 

DOG
A A

is a /  \ i s  a
/  \

DOG (BARK) DOG (BITE)
This shows a ll  decisions, act iv i t i es ,  e n tit ies  (and th e ir  
instances).
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3) NUMBERS LEVEL (Relationship NUMBER and DURATION)

This level would contain knowledge of how many dogs and postmen 

where in the simulation system :

number
for example DOG------------------ > 10

This level would also contain the knowledge i f  2 dogs where 

necessary to bite the postman (since he can cope with one dog 

without being bitten) :
number 

DOG (BITE) --------------- > 2

4) USER LEVEL

This level contains objects, without any re lational arrows. This 

enables f le x ib i l i t y  in the graphical presentation. Objects must 

be located on this level using the graphical in terface. This is 

essentia lly  a notepad where selected objects can be placed for  

monitoring and/or manipulation.

Each object is automatically allocated a cell on at least one.level, 

with relationships between objects shown by labelled and directed  

arrows. The interface enables the user to move the objects around 

to provide better transparency of the problem. In addition, when 

object names are edited on one leve l, a l l  other occurrences of this  

object on other levels are automatically changed.

The f i r s t  screen on starting the prototype is a blank spreadsheet. 

At this point, the user could choose between four ways to create a

71



semantic network knowledge-base (spreadsheet). Their f i r s t  option 

is to re tr ieve a saved knowledge-base (spreadsheet f i l e )  using the 

m ulti- level menu system described in section 4.3 (accessed by 

pressing the ' / '  key). A second option is for the user to enter the 

a c t iv ity  cycle of an en tity , as described in section 4.5 (accessed 

by pressing the [F6] key). A th ird  option is to enter an English 

sentence for translation, as described in section 4.4 (accessed by 

pressing the [F8] key). A fourth option is to type in each object 

name in d iffe ren t cells  on the spreadsheet and then use the [F9] key 

to point at two d iffe ren t objects and create a relationship (arrow) 

between them. These options are naturally not exclusive, therefore  

a retrieved knowledge-base can be updated with both English 

sentences and then a c t iv ity  cycle input.

Once a semantic network is p a r t ia l ly  b u i l t ,  i t  is important to be 

able to move about the network quickly in order to examine or change 

the semantic network. There is a single cursor which the user can 

move about the spreadsheet cells  using the arrow keys (including  

[PAGEUP] and [PAGEDOWN]). Whatever the object the cursor is 

standing over is called the 'current ob ject'.  Pressing the [F2] key 

edits the name of the current object (e.g. to correct misspellings). 

In order to display a ll relationships for the current object, 

pressing the [ F I0] key displays them (these relationships could be 

on any of the leve ls ).  To see the other relationships graphically, 

pressing [PAGEUP] or [PAGEDOWN] keys changes the level to the next
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level in which this object occurs. I t  is also important to be able 

to see an overview of the current leve l, and be able to 'zoom in ' 

for an increased magnification of an area. This can be done by 

pressing the [CONTROL Z] key. The present implementation of zoom is 

lim ited to only one increased magnification of a problem (due to the 

poor graphical support available with the Turbo pascal language used 

to write  the prototype)). I t  would be ideal i f  the resolution could 

be gradually increased or decreased by the user.

To aid experimentation (when adding or deleting objects or 

re lationships), a ll new relationships added are displayed in a 

d iffe re n t colour ( ie  they are Non-permanent) until they are made 

permanent (by committing them) or are removed ( ie  Rolled Back). 

This is analogous to the Commit /  Rollback option of commercial 

databases. Thus i f  a wrong sentence was typed in, i ts  effects can 

be immediately and instantly unwound by using the ' /  Worksheet Roll 

back' command in section 4 .3 .1 . While pressing the [F3] key commits 

the changes done (identical to the ' /  Worksheet Commit' command in 

section 4 .3 .1 ) .  Pressing the [DEL] key makes a permanent l in k ,  

selected with the [SPACE] key, non-permanent, and thus enabling i ts  

deletion using ' r o l l  back'.

As on an ordinary spreadsheet, a ll objects and relationships are 

held in memory until the user saves the work into a f i l e  on disk by 

using the ' /  F ile  Save' command in section 4 .3 .2 .
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The user may wish to hide the borders and column/row numbers, for  

example to make the interface v isually  cleaner. This can be done by 

pressing the [CONTROL B] key.

Section 4.3 : MULTI LEVEL MENU SYSTEM

As mentioned in the previous section, the m ulti-leve l menu system,

which is sim ilar to the Lotus 1-2-3 menu interface, is accessed from

the graphical interface by pressing the ' / '  key. The m ulti-leve l 

menu system is based on the concept that, at any one time, there are 

a number of options (including Sub-menus) which can be chosen by 

either moving the cursor over them and pressing [RETURN] or pressing 

the f i r s t  le t te r  of option t i t l e .  When moving the cursor, a help 

l ine  is shown at the line  below the cursor to b r ie f ly  explain the 

purpose of the highlighted option.

The top level menu structure is as follows :

/  = Call Menu

Worksheet F ile  List Move Delete Hide In fer Validate Simulate Quit
&

Simulate

The above sub-menus and are described in the next sections. Some of 

these options prompt for a range. The technique for highlighting  

a range are f i r s t l y  to move the cursor to a corner of the range.
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Then to press the fu ll-s to p  to 'anchor' the cursor. To 'unanchor' 

the cursor press the [ESC] key. Thirdly to move the cursor to the 

opposite corner and press the [RETURN] key. I f  the fu ll-s to p  key is 

pressed, the cursor is moved to the next corner in a clockwise 

direction.

Section 4 .3 .1  : Worksheet Sub-menu

This sub-menu is concerned with general worksheet settings. The 

following options can be chosen :

Reset : Clears a ll data in memory, thus prepares the worksheet

for another session.

In : Zooms into the current cell of the worksheet. This has the 

e ffec t of reducing the number of cells  displayed at one time from 

11 x 10 to 4 x 4. The column width would thus be set to 19.

Out : Zooms out. This returns the screen to display 11 x 10

c e lls . The column width would thus be set to 7.

Commit : This makes a ll permanent.

Roll Back : This removes a ll non-permanent relationships. I f  an 

object only had non-permanent relationships, then that object 

would be deleted.

Width : This sets the column width of the c e lls .  In does not 

change the number of cells  displayed v e r t ic a l ly .
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S e c t io n  4 . 3 . 2  : F i l e  Sub-menu

This sub-menu is concerned with loading and saving f i le s  from disk. 

The following options can be chosen :

Retrieve : This clears a ll data in memory and retrieves a 

spreadsheet from the disk. A l i s t  of a l l  spreadsheet f i le s  are 

displayed, and can be chosen by moving the cursor to the relevant 

spreadsheet and pressing return, a lte rn a tive ly  the name of the 

f i l e  (including and change in the directory or drive) can be 

typed in.

Save : Save the worksheet in memory as a spreadsheet f i l e  on 

disk. The user w ill  be prompted for the f i l e  name. The user can 

accept the suggestion by pressing [re tu rn ], or type in the f i l e  

name himself. .

Combine : This combines the data in two spreadsheets. [Not yet 

implemented]

Translate : This takes english sentences from a f i l e  on disk, and 

translates i t  into the semantic network representation.

Extract : This extracts a range from the worksheet in memory and 

saves i t  as a separate spreadsheet f i l e  on disk. [Not yet 

implemented]
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S e c t io n  4 . 3 . 3  : L i s t  Sub-menu

This sub-menu is concerned with l is t in g  objects and relationships in 

the present knowledge-base (spreadsheet). The following options can 

be chosen :

Objects : Lists objects in the worksheet, sorted alphabetically .

Relations : Lists relationships in worksheet, sorted

alphabetically.

Links : Lists a ll links in the worksheet, not sorted.

Links_Relationships : This prompts for a relationship name, and 

i t  l is ts  a ll links involving this relationship.

Spool On : This starts spooling the non-graphical screen output 

to a disk f i l e .  I f  the f i l e  already exists then a ll  of i ts  

contents are erased.

Spool Stop : This stops spooling.
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S e c t io n  4 . 3 . 4  : Move Sub-menu

This options allows the movement of objects from one place to 

another (on the same le v e l) .  I t  prompts for a range to move, then 

i t  prompts for the top l e f t  hand corner of the range to move to. 

There is no danger of objects being 'over-w ritten ' since i f  a cell 

in the TO-RANGE is occupied, the corresponding cell in the FROM- 

RANGE is l e f t  in i ts  old location.

Section 4 .3 .5  : Delete Sub-menu

This option deletes objects (and th e ir  links on a ll  leve ls ) .  I t  

prompts for a range.

Section 4 .3 .6  : Hide Sub-menu

This removes objects from a level where that object does not have 

any links . I f  the object does not have any links at a l l ,  then the 

object is deleted. This option prompts for a range.

Section 4 .3 .7  : In fer  Sub-menu

This is an option where SASIM tr ies  to investigate the links between 

two objects (whether en tit ies  or a c t iv i t ie s ) .  This might be useful 

i f ,  a fte r  a simulation run, the results of a change in the number of 

one en tity  counter-in tu itive ly  affected another object. There are 

clearly  many possible links, some of which are relevant, some of 

which may in certain conditions be relevant and some links which are 

blatantly  wrong (an analogy of the complexity involved would be the
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problem of finding every possible way to travel from A to B, with 

ample public and private transport, when money is no l im ita tio n  and 

style and speed is ir re le van t).  The process w il l  hopefully 'H IT' on 

a successful l in k  ( ie  a l in k  which turns out to be the causal l in k ,  

analogous to the c r i t ic a l  path in CPA analysis). The shortest links  

are highlighted f i r s t  (based on the number of l in k s ) .

The option f i r s t  prompts for a causal object (chosen simply by using 

cursor keys), then i t  prompts for a second object which the user 

would l ik e  to have some insight into i ts  impact i f  the f i r s t  object 

was changed. The use would then be stepped through the f i r s t  l in k  

chain found (stepping through by pressing the [SPACE] key). At the 

end of every l ink  chain, the user has the option to abort this  

investigation, or to continue and locate another l in k  chain.

The inference engine is based on the Branch and Bound algorithm. 

The inference engine is prevented from choosing objects 'ENTITY' or 

'ACTIVITY', or relationships 'NUMBER' or 'DURATION' as part of the 

chain of relations since these are meaningless in this type of 

analysis, and i t  is also prevented from transversing the cycle of an 

e n tity  the wrong way round.

This type of semantic analysis in only possible because the 

knowledge-base is limited to a simulated system. SASIM already knows 

the meaning of some relationships ('AFTER' or 'PRIORITY') as well as
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some objects ('ENTITY' or 'ACTIVITY'). This is an essential 

constraint in this environment, but SASIM would need to be modified 

i f  i t  were to be used in another environment, such as medical 

diagnosis.

Section 4 .3 .8  : Validate Option

A fter the knowledge-base has been input, the software must provide 

a f a c i l i t y  for validation (a fte r  a l l ,  there is a very high 

probability  of the user missing out one or more re lationships). 

This option tr ie s  to l i s t  cycle of every e n tity  i t  has discovered, 

as well as l is t in g  the en tit ies  involved in every a c t iv i t ie s .  I t  

also checks that the cycles do not break into two or more separate 

components (in the PUB problem, described in section 6 .2 , i t  

correctly notes that 'DOG' cycle is non-existent, as well as that i t  

is not connected to other cycles).

The system w ill  ask for any missing information necessary to run a 

simulation, including the starting points of e n t it ie s ,  the stop 

time, the run in period and the pause in terv a l.  These w i l l  be 

stored on the NUMBER level of the semantic network. The next 

section w il l  describe the menu option which starts the actual 

simulation run.

80



S e c t io n  4 . 3 . 9  : S im u la t i o n  Run O p t io n

This option starts a simulation run. The system w il l  automatically 

ask for any missing information necessary to run a simulation (e.g.  

i f  the validate option in section 4 .3 .8  has not been run by the 

user). A description of the simulation run process is contained in 

section 4 .6 . I f  the user has the 'SPOOL TO FILE' option enabled, he 

w il l  be asked whether he would l ike  to store a fu l l  audit t r a i l  of 

the simulation run, or just a s ta t is t ic a l summary.

Section 4.3 .10 : Quit Sub-menu

This option allows the user to ex it SASIM. WARNING I f  the 

worksheet has not been saved, i t  w ill  be lo st. SASIM prompts the 

user to confirm that he would l ike  to continue and ex it  out of the 

software package.

Section 4.4 : NATURAL LANGUAGE UNDERSTANDING AND PROCESSING (NLUP)

The setting up of the semantic network manually, by entering each 

object in separate spreadsheet cells  and then setting each 

relationship in turn (using the [F9] key), is very time consuming 

and error prone. There is therefore a need to enter an English 

sentence which could be translated into many semantic network 

objects and relationships. The interface which was developed in 

SASIM takes a free text english and converts i t  automatically into 

the semantic network format. This can c learly  break the in i t ia l
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barrier  between the c lien t and the simulation practit ioner  

[Doukidis, 1985] in that the practit ioner converts the c l ie n t 's  

dialog for the system in such a way that the user's understanding is 

retained. An example of a valid sentence is :

Customers a fte r  drinking, then rest for three minutes.

(a l l  sentences finishing with a fu l l-s to p )

This uses the syntax :

ENTITY AFTER ACTIVITY THEN ACTIVITY (ACTIVITY_DESC).

The syntactic formats allowed are summarised in Appendix 1. This 

syntax can be expanded by simply changing a data f i l e .  Appendix 3.1 

contains a fu l l  NLUP worked example for the PUB problem.

In SASIM, these sentences can be e ither typed in, one a fte r  another, 

using function key [F8], or a lte rnative ly  by f i r s t  creating a f i l e  

using any text ed itor, such as Turbo Pascal or Wordstar (using non­

document mode) or Wordstar 2000 (using format "unformatted"). The 

only constraints on the f i l e  are that the lines are not longer than 

100 words, and the maximum length of a word is 49 le t te rs .  As a 

convention, the f i l e  should have an extension of '.ENG'. To read 

th is f i l e ,  the option from the menu system is from the 'FILE' Sub­

menu, Option 'TRANSLATE'.
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The problem of d iffe ren t words meaning the same thing (fo r example 

Service and Serving), as well as singular and plural representations 

of words, has been solved by using a 'd ic t io n a ry '.  This provides a 

'mask' approach which changes a ll nouns to the singular, as well as 

a ll  verbs to a common tense (for example Serving to Service). 

Appendix 3 l is ts  these masks, which are checked in turn, starting  

from the f i r s t  one on the l i s t ,  and as soon as one mask is found to 

f i t ,  the conversion is stopped. All inputs are also converted to 

upper case. The problem of synonyms has also been handled by a 

second dictionary look up.

A very useful feature is the automatic handling of arriva l (or 

regular occurring) mechanisms. I t  looks for the keyword 'EVERY', 

and i t  then builds in an arrival (regulating) mechanism.

SASIM attempts to tackle the translation from the written sentence, 

but not the spoken word, although i f  a speech subsystem was used i t  

could be easily integrated into SASIM.

Section 4.5 : ACTIVITY AND ENTITY CYCLE INPUT INTERFACE 

In addition to the NLUP interface, SASIM provides a graphical 

interface to quickly input e ither ACDs, whether p a r t ia l ly  or fu l ly  

completed, or simply a l i s t  of a c t iv it ie s  and/or e n t it ie s .  These 

would be automatically translated into the semantic network
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knowledge-base, and would thus enable the integration of both NLUP 

and graphical cycle input to be used in the formulation stage of a 

simulation.

The input process is started by pressing the [F6] key. SASIM would 

then prompt for an entity  and/or an a c t iv i ty ,  which can be chosen by 

just typing in its  name, or i f  the object is already defined, using 

the arrow keys to locate the object on the semantic network and 

pressing <enter>. I f  SASIM does not already know this object is an 

en tity  or an a c t iv ity  i t  would prompt the user to indicate which one 

i t  is .

The interface is based around the concept of two state counters, one 

indicating the current instance of an e n t ity ,  the other indicating  

the current a c t iv ity .  These two counters are indicated at the 

bottom of the screen.

I f  the user chooses an a c t iv ity  then the current instance is assumed 

to move from the present instance to the new a c t iv i ty .  I f  the user 

chooses an entity  (or any of its  instances), then the e n tity  is 

assumed to be involved in current a c t iv ity .  In both cases, SASIM 

no tif ies  the user of a ll links added to the semantic network. To 

e x it ,  press the [ESC] key at any stage.
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The following is and example of using the A ctiv ity  and Entity Cycle

Input in terface. Starting with an empty semantic network knowledge­

base, the following is a typical user session :

user Input SASIM reply

[F6] key
CUSTOMER [enter] 
(choosing) ENTITY

(any key)
ARRIVE (enter)  
(choosing) ACTIVITY

(any key)

(any key)

(any key)
SERVED
(choosing) ACTIVITY 

(any key)

(any key)

(any key)

(any key)
BARMAID
(choosing) ENTITY

(any key) 

(any key) 

[ESC]

Please input A ctiv ity  and/or Entity  
'ACTIVITY or ENTITY' menu 
'CUSTOMER IS A ENTITY' added,

press any key to continue 
Please input A ctiv ity  and/or Entity  
'ACTIVITY or ENTITY' menu 
'ARRIVE IS A ACTIVITY' added,

press any key to continue 
'CUSTOMER (ARRIVE) IS A CUSTOMER' added 

press any key to continue 
'ARRIVE NEEDS CUSTOMER (ARRIVE)' added 

press any key to continue 
Please input A ctiv ity  and/or Entity  
ACTIVITY or ENTITY' menu 
'SERVICE IS A ACTIVITY' added,

press any key to continue 
'CUSTOMER (SERVICE) IS A CUSTOMER' added 

press any key to continue 
'SERVICE NEEDS CUSTOMER (SERVICE)' added 

press any key to continue 
'CUSTOMER (ARRIVE) PRECEDES CUSTOMER 

(SERVICE)' added 
press any key to continue 

Please input A ctiv ity  and/or Entity  
'ACTIVITY or ENTITY' menu 
'BARMAID IS A ENTITY' added,

press any key to continue 
'BARMAID (SERVICE) IS A BARMAID' added 

press any key to continue 
'SERVICE NEEDS BARMAID (SERVICE)' added 

press any key to continue 
Please input A ctiv ity  and/or Entity

returns to normal view.
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S e c t io n  4 . 6  : SIMULATION RUNNING PROCESS

The basic concept behind the simulation running process is that the 

user s t i l l  sees the original semantic network while seeing each 

e n tity  involved in an a c t iv ity  (or moving between a c t iv i t ie s ) .  For 

example CUSTOMER (DRINK), has two counters: the counter above 

displays the number of occurrences waiting to s ta rt  that a c t iv ity ,  

and the counter below displays the number of occurrences actually  

involved in that a c t iv ity .  By pressing the [CONTROL H] key, the 

user can view the histograms of an e n t ity ,  including the queuing 

time and queuing length of that en tity , as described in section 2.4. 

When an occurrence of an entity  moves from one a c t iv ity  to another, 

the user actually sees the icons moving simultaneously on the 

screen. In addition, the text area at the top of the screen 

indicate the name of present object, the status of the simulation 

( ie  paused, running or stopped), the time in the simulation and the 

simulation delay. The user can change this delay factor by pressing 

the '< ' or '> ' key. Pressing the [SPACE] key pauses or recontinues 

the simulation, which would be useful i f  the user wished to examine 

the state of the system during the simulation run. Pressing the 

[ESC] key stops the simulation run.
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S e c t io n  4 .7  : CONCLUSION

This chapter has presented SASIM, a prototype implementation of the 

semantic modelling approach. The prototype uses the fam ilia r  Lotus 

1-2-3 menus and spreadsheet concept to reduce the conceptual jump 

required for many user. The prototype implements a ll  the semantic 

modelling concepts, including natural language processing and 

simulation running. As discussed in section 3 .7 , complex problems 

require additional conditions for cooperation between objects. The 

implementation of this procedural attachment concept in the 

prototype is described in the next chapter.
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CHAPTER 5

PROCEDURAL ATTACHMENT 

Section 5.1 : INTRODUCTION

Section 3.6 highlighted the advantages of procedural attachment as 

a means to represent complex cooperation between objects. This 

chapter presents the implementation of procedural attachment in the 

SASIM prototype.

SASIM implements procedural attachment of active production rules 

(written in Turbo Pascal) into the simulation process, thus taking 

charge of selected sections of semantic network (localized contro l).  

There is the a b i l i ty  to set up and monitor a ttr ibu tes , and to set up 

peculiar restric tions and interactions which can not be easily  

represented in a semantic network. The decision to use active  

production rules, as opposed to passive production rules, was taken 

because of the complexities of writing the in terpreter required for  

passive production rules (whereas active production rules are 

compiled by the Turbo Pascal compiler). Unfortunately, the 

inference engine is not able to analyse active production rules. 

Despite th e ir  less f lex ib le  nature, active production rules 

i l lu s t r a te  the use of procedural attachment to supplement the 

semantic network knowledge-base.
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I t  is important to realise that the user supplied code, whether 

input d irec tly  by the user or aided by the in b u il t  'PROGRAM 

GENERATION' option, does not create a completely d if fe re n t  

environment as is customary in other environments. What i t  does is 

to create a customised SASIM environment which interacts d ire c t ly  

with the la tes t semantic network knowledge-base and modifies the 

movement and cooperation between en tit ies  in selected areas of the 

semantic network during simulation running. In other words, 

procedural attachment enables selected a c t iv it ie s  to 'opt out' of 

the in -b u i l t  simulation running executive and thus be controlled and 

managed by the user supplied code, with reference s t i l l  to the 

graphical semantic network knowledge-base. This s t i l l  enables 

modification of the semantic network AFTER the user code is created 

or modified.

This chapter f i r s t  details  the structure of the procedural 

attachment program f i l e  (named USERCODE.PAS). All user supplied 

code is contained in this f i l e .  Section 5.5 deta ils  the main 

callable  procedures defined by SASIM. These would be mixed with 

standard Turbo Pascal code in order to define the required 

relationships. The user supplied code f i l e ,  USERCODE.PAS, needs to 

be compiled by Turbo Pascal which automatically integrates the code 

into the simulation environment, creating a customised internal 

knowledge-base (contained in the main executable f i l e  SASIM.EXE). 

Appendix 3.6 i l lu s tra te s  the use of procedural attachment in the 

pub problem as described in section 6.2.
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S e c t io n  5 .2  : STANDARD TERMINOLOGY

The idea that an en t ity ,  such as a CUSTOMER, has multiple instances, 

for example CUSTOMER (SERVICE) or CUSTOMER (DRINK) has already been 

described. Since each instance is a d if fe re n t state which the 

e n tity  can be in, relationships between the instances can be defined 

on the semantic network, for example "CUSTOMER (SERVICE)" proceeds 

"CUSTOMER (DRINK)". However when en tit ies  in terac t, i t  is important 

to both keep track of d iffe ren t occurrences of a single instance, 

and occurrences of an entity  when i t  moves from one instance to the 

next.

For example, to monitor the time that a specific customer takes from 

entering the pub to leaving i t ,  the customer is allocated a unique 

occurrence code which he carries with him and which defines other 

data specific to him (for example arrival time, number of drinks so 

fa r  e t c . ) .

Entit ies , instances, a c t iv it ie s  or descriptions are objects since 

they are located at discrete cells  on the semantic network. The 

actual location of the objects on the semantic network is irre levant  

to the user code.
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S e c t io n  5 .3  : STRUCTURE OF PASCAL USER CODE

All user code is in a f i l e  called 'USERCODE.PAS'. This f i l e  has 

separate high-level sections (or procedures), each assigned a 

d iffe re n t ro le . Since these procedures are called by SASIM during 

a simulation, they can d irec t ly  affect the course of a simulation. 

These high-level procedures can contain any Turbo Pascal procedures 

or specialised SASIM callable procedures (highlighted in section

5 .4 ) .  I f  the high-level procedures do not contain customised code, 

or only contain code for selected objects, the unmentioned objects 

contained in the knowledge-base are not affected, thus achieving the 

goal of 'attaching' code to objects.

The f i r s t  high-level section is the occurrence d efin it io n  section. 

For example, the pub problem requires the creation an integer data 

item for each customer to log the number of drinks required. The 

pub problem contained the following occurrence d efin it io n  section :

{$1 USERCODE.INI)
ATT = RECORD

INTERNALJJSE : OCC;
N0_DRINKS : INTEGER;

END;
{$1 USERCODE.IN2)

The second high-level section is the global variable d e fin it io n  

section. For example, to create a histogram requires the d e fin it io n  

of a pointer to a predefined histogram record (called HHISTOGRAM). 

I t  is also desirable to be able to define variables to point to
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selected objects on the semantic network (OOBJECT is a predefined 

pointer to an object). The pub problem contained the following 

global variable de fin it ion  section :

VAR
DOORARRIVE, D00R_ARRIVE_ARR,
CUSTOMERARR, ARRIVE, CUSTOMER_REST, CUSTOMER_SERVICE, 
CUSTOMER_EXIT, GLASSES, CUSTOMERS, BARMAIDS,

GLASS_WASH : OOBJECT;
DRINK_HIST,SERVE_TS, BARMAID_TS : HHISTOGRAM;

The th ird  high-level section is the set hooks procedure. This 

procedure is called once at the beginning of each simulation run to 

enable 'hooks' to be inserted into the semantic network for a ll  

objects which are to be managed by this pascal code. These hooks 

are latched on with the LOCATEOBJECT function. Once latched on, an 

a c t iv ity  can be set for manual (customised code) control by setting  

the CONTROL f ie ld  in the object to USER (e.g. ARRIVED CONTROL : = 

USER). This section would also be used to define customised 

histograms (using the INITIALISE_HIST procedure defined in section

5.4) - noting that a ll instances already have, by defau lt, a queuing 

time and length histogram defined. This section is also ideal to 

contain the ICON_MATRIX procedure (defined in section 5.4) which 

defines the graphical shape of objects using a simple 2x2 character
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m a t r i x .  The pub p rob lem  c o n ta in e d  th e  f o l l o w i n g  s e t  hooks

p r o c e d u re :

PROCEDURE SET_H00KS;
BEGIN

D00R_ARRIVE := L0CATE_0BJECT('D00R_ARRIVE');
D00R_ARRIVE_ARR := L0CATE_0BJECT(/ D00R_ARRIVE (ARRIVE)'); 
CUSTOMERARR := L0CATE_0BJECT('CUSTOMER (ARRIVE)'); 
CUSTOMER_REST := L0CATE_0BJECT('CUSTOMER (REST)'); 
CUSTOMER_SERVICE := L0CATE_0BJECT('CUSTOMER (SERVICE)'); 
CUSTOMEREXIT := L0CATE_0BJECT('CUSTOMER (E X IT ) ');
CUSTOMERS := LOCATE_OBJECT('CUSTOMER');
GLASSES := LOCATE_OBJECT('GLASS');
GLASS_WASH := LOCATE_OBJECT('GLASS (WASH)');
BARMAIDS := LOCATE_OBJECT(' BARMAID');
ARRIVE := LOCATE_OBJECT('ARRIVE');
IF NOT ERR THEN

ARRIVED CONTROL := USER;
ICON_MATRIX(0,0,238,221,154,WHITE,BLACK,GLASSES); ( * * |  238,221

U 154*)
IC0N_MATRIX(0,0,12 ,11 ,1 ,YELLOW,BLACK,CUSTOMERS); (*  Face * )  
DEFINE_C0NVEY0R(-1,0 ,1 ,0 , 2, GREEN, GLASS_WASH); ( *  X,Y, XSTEP,

YSTEP, LENGTH, COLOUR, INSTANCE * )  
INITIALISE_HIST(DRINK_HIST,CUSTOMER_ARR,'NUMBER OF DRINKS'); 
INITIALISE_TSERIES(SERVE_TS,CUSTOMER_SERVICE,

'CUSTSERV',3 ,0 ,15 );
INITIALISE_TSERIES(BARMAID_TS,BARMAIDS,'BARMAID',3 ,0 ,15 );

The fourth high-level section is the graphic object procedure. This 

procedure would be used to define complex graphical shapes (using 

Turbo Pascal graphics). This procedure is called for every object 

on the network just before i t ' s  name is output on the screen. This 

object can then, i f  desired, be drawn graphically rather than just  

named on the screen. The procedure (function) returns a number, 

being the length, in character positions, of the name (to accurately 

locate the s tart and end of the relationship arrows). I f  the number
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returned is negative, this would indicate that the object has been 

drawn graphically, and therefore does not require i ts  name to be 

output. The pub problem contained the following graphic object 

procedure:

FUNCTION GRAPHIC_OBJECT(OBJ : OOBJECT; XG1,YG1 : INTEGER;
DRAW : BOOLEAN) : INTEGER;

VAR
T1,T2 : INTEGER;
PENTAGON : ARRAY [1 . .4 ]  OF POINTTYPE;

BEGIN
IF OBJA.NAME = 'CUSTOMER (DRINK)' THEN 
BEGIN (*  shape of a man *)

IF DRAW THEN 
BEGIN

SETCOLOR(WHITE);
YG1 := YG1-YD0TS_PER_CHAR;
XGI := XG1+XD0TS_PER_CHAR;
CIRCL E(XG1 ,YG1, R0UND(YD0TS_PER_CHAR*0.2));
YG1 := YG1+R0UND(YD0TS_PER_CHAR*0.2);
LINE(XGI, YG1, XGI, YGl+YDOTS_PER_CHAR);
YG1 := YGl+YDOTS_PER_CHAR; 
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5 ) ,XG1,YG1); 
LINE(XG1+ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5),XG1,YG1); 
YG1 := YG1-ROUND(0.66*YDOTS_PER_CHAR); 
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1, XG1+R0UND(XDOTS_PER_CHAR*0. 5 ) ,YG1);
END;
GRAPHIC_OBJECT := -3;

END
ELSE
IF OBJA.NAME = 'CUSTOMER (SERVICE)' THEN 
BEGIN (*  money sign to indicate payment when served * )  

IF DRAW THEN 
BEGIN

SETCOLOR(WHITE);
RECTANGLE(XG1-13,YG1-4,XG1+21,YG1+12); 
SETUSERCHARSIZE(5,5,5,5);
SETTEXTSTYLE(SMALLFONT,HORIZDIR,USERCHARSIZE); 
SETCOLOR(GREEN);
OUTTEXTXY(XG1 -10 ,YG1 , ' MONEY' ) ;

END;
GRAPHIC_OBJECT := -5;

END
ELSE
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IF (OBJA.NAME = 'GLASS (SERVICE)') OR
(OBJA.NAME = 'GLASS (DRINK)') THEN 

BEGIN (*  beer glass shape * )
IF DRAW THEN 
BEGIN

SETCOLOR(BROWN);
s e t f i11 s t y le ( s o l id f i l l , BROWN);
PENTAGON[ 1 ] .X := XG1+2;
PENTAGON^]. Y := YG1+ROUND(YDOTS_PER_CHAR*0.5); 
PENTAGON[ 2 ] .X := XGl+2*XDOTS_PER_CHAR-2; 
PENTAGON[2].Y := YG1+R0UND(YD0TS_PER_CHAR*0.5); 
PENTAGON[ 3 ] .X := XGl+2*XDOTS_PER_CHAR;
PENTAGON[3].Y := YGl-YDOTS_PER_CHAR;
PENTAGON[ 4 ] .X := XGI;
PENTAGON^].Y := YGl-YDOTS_PER_CHAR; 
DRAWPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE), PENTAGON);
FILLPOLY(SIZEOF( PENTAGON) DIV

SIZEOF(POINTTYPE),PENTAGON);
PIESLICE(XG1, YG1-YDOTS_PER_CHAR,90,270,2);
PIESLICE(XG1+2*XD0TS_PER_CHAR,

YG1-YD0TS_PER_CHAR,0,90,2); 
PIESLICE(XG1+2*XD0TS_PER_CHAR,

YG1-YD0TS_PER_CHAR,270,360,2); 
SETCOLOR(WHITE);
s e t f i11style(INTERLEAVEFILL,WHITE);
BAR(XG1, YG1-ROUND(1 .2*YD0TS_PER_CHAR),

XG1+2*XD0TS_PER_CHAR,YG1- YDOTS_PER_CHAR);
END;
GRAPHIC_OBJECT := -2;

END
ELSE

IF OBJA.FORGROUND_COLOUR = -1 THEN (*  default section * )  
GRAPHIC_OBJECT := LENGTH(OBJA.NAME)

ELSE
GRAPHIC_OBJECT := 2;

95



The f i f t h  high-level section is the B event procedure. This 

procedure is used to define where an occurrence, OCCUR, moves on to 

a fte r  completion of the a c t iv ity  associated with instance 

CURRENTOBJECT ( i . e .  during the B phase in a three phase 

simulation). I f  the movement of an occurrence is not e x p l ic i t ly  

defined, i t  is automatically moved on according to the semantic 

network knowledge-base. The pub problem contained the following 

B event procedure :

PROCEDURE B_EVENT(CURRENT_OBJECT : OOBJECT; OCCUR : OOCC); 
BEGIN

IF CURRENT_OBJECT = CUSTOMER_REST THEN 
BEGIN

DEC(ATTRIBUTE(OCCUR)A.N0_DRINKS);
IF ATTRIBUTE(OCCUR)A.NO_DRINKS > 0 THEN 

ADD_TO_B_QUEUE(CUSTOMER_SERVICE, OCCUR)
ELSE

ADD_TO_B_QUEUE(CUSTOMER_EXIT, OCCUR);
END

END;

The sixth high-level section is the C event procedure. This 

procedure is used to define when a c t iv it ie s  begin ( i . e .  during the 

C phase in a three phase simulation). This procedure is only called  

for a c t iv it ie s  which are set for manual (customised code) control in 

the set hooks procedure above. The pub problem contained the
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f o l l o w i n g  C e v e n t  p ro c e d u re

PROCEDURE C_EVENT(CURRENT_ACTIVITY : OOBJECT);
VAR

SAMPLE_TIME : INTEGER;
OCCUR : OOCC;

BEGIN
IF CURRENT_ACTIVITY = ARRIVE THEN

WHILE (QSIZE(DOORARRIVE) > 0) AND (QSIZE(CUSTOMER_ARR) > 0) 
DO
BEGIN

SAMPLE_TIME := SAMPLE_ACT_TIME(ARRIVE);
OCCUR := BEHEAD(CUSTOMER_ARR);
ATTRIBUTE(OCCUR)A.NO_DRINKS := RAND0M(3)+2; 
UPDATE_HIST(DRINK_HIST,ATTRIBUTE(OCCUR)A.NO_DRINKS,1); 
ADD_TO_TREE(SAMPLE_TIME,OCCUR,CUSTOMER_ARR); 
ADD_TO_TREE(SAMPLE_TIME,BEHEAD(DOOR_ARRIVE), 

DOOR_ARRIVE_ARR);
END;

END;

The seventh high-level section is the report procedure. This 

procedure is called at the end of each simulation run (or sub-run), 

and is thus the place to dictate which histograms to display. The 

pub problem contained the following report procedure :

PROCEDURE REPORTS;
BEGIN

DISPLAY_HISTOGRAM(DRINK_HIST);
PRINT_HIST(CUSTOMER_SERVICE);

END;

The eighth high-level section is the main section. This procedure 

is called only once on loading the SASIM prototype. I t  could be 

used to in i t ia l is e  some global in i t ia l is a t io n .  However i ts  use is 

not required in the pub problem. The pub problem thus contained the
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following default main section

BEGIN
{BLANK MAIN}

END.

Section 5.4 : CALLABLE PROCEDURES

The section details  the main procedures defined by SASIM which can 

be called by the user supplied code. These would be mixed with 

standard Turbo Pascal code in order to define the required 

relationships. The defined procedures can be s p l i t  into groups 

according to which of the eight sections they are most l ik e ly  to be 

used in. To understand the parameters required, the following type 

defin itions are used :

HHISTOGRAM is a pointer to a histogram.

LSTRING is defined as a standard string.

OOCC is a pointer to an occurrence record.

OOBJECT is a pointer to an object record. This can be any 

object on a semantic network, including an instance or an 

a c t iv ity .
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The th ird  high-level section, the set hooks procedure, may require 

the following procedures :

FUNCTION LOCATE_OBJECT( ObjName : LSTRING ) : OOBJECT;

Returns the pointer to an object (whether an a c t iv i ty ,  e n tity ,  

instance or description) whose name is "Obj_Name". This function 

thus provides the hooks in the semantic network through which a ll  

the defined functions are dependent upon. This procedure would 

be placed in the SETHOOKS section, since i t  only needs to be 

called once.

PROCEDURE ICON_MATRIX( TopLeft, TopRight, BottomLeft, BottomRight,
Character, ForgroundColor, BackgroundColor : 
INTEGER; Obj : OOBJECT );

Defines the object "Obj" on the screen using a simple 2x2

character matrix. The ASCII of each character in the matrix is

passed in the function c a l l .  In addition an ASCII character for

each occurrence to indicate an occurrence moving from one

instance to another is also passed as parameter "Character". The

background and forground colours of the object can be specified.

An ASCII of '0 ' indicates a default value. This procedure would

be placed in the SET_H00KS section, since i t  only needs to be

called once.
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PROCEDURE INITIALISEHIST( Hist : HHISTOGRAM; Obj : OOBJECT;

Histname : LSTRING );

This creates a customised histogram "Hist" whose name is 

"HIST_NAME", and attaches i t  to object "Obj". I t  is the user 

code's responsibility  to update a customised histogram. This 

procedure would be placed in the SET_H00KS section, since i t  only 

needs to be called once.

The f i f t h  high-level section, the B event procedure, may require the

following procedures :

PROCEDURE ADD_TO_F_QUEUE( Obj : OOBJECT; Occur : OOCC);

PROCEDURE ADD_TO_B_QUEUE( Obj : OOBJECT; Occur : OOCC);

Adds an occurrence "Occur" e ither to the front or the back of 

the associated with instance (or f a c i l i t y )  "Obj". This would be 

used in the end phase of the three-phase simulation ( i . e .  B- 

phase) to move an occurrence forward to another queue.

FUNCTION RETURN_NUMBER( Occur : OOCC ) : INTEGER;

Returns a unique number for occurrence "Occur". This is a unique 

sequential number for a ll occurrences of an e n t ity .  This would 

be required i f  i t  is desired to trace individual occurrences 

through the system. This may also be useful in the C event 

procedure.
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FUNCTION RETURN_UNIQUE_NUMBER( Occur : OOCC ) : INTEGER;

Returns a unique number for occurrence "Occur". This is a unique 

sequential number for a l l  occurrences regardless of the actual 

e n tity .  This would be required i f  i t  is desired to trace 

individual occurrences through the system, possibly when 

occurrences 'transform' from one en tity  to another. This may 

also be useful in the C event procedure.

PROCEDURE UPDATE_HIST( Hist : HHISTOGRAM; Obs,Occ : INTEGER );

This updates histogram "Hist" with an observation, "Obs", which 

occurred "Occ" times. This is required to build up the 

s ta t is t ic a l  data in the histogram (fo r  example the number of 

drinks). This may also be useful in the C event procedure.

The sixth high-level section, the C event procedure, may require the 

following procedures :

FUNCTION QSIZE( Obj : OOBJECT ) : INTEGER;

Returns the size of the queue associated with instance (or 

f a c i l i t y )  "Obj". This function would be used to find out i f  

there are any occurrences of an entity  waiting to be involved in 

an a c t iv ity .
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FUNCTION CYCLE( Obj : OOBJECT ) : OOCC;

Causes the front occurrence of the queue associated with object 

"Obj" to be sent to the back, and returns the occurrence now at 

the front of the queue. This function would be used to scan a ll  

occurrences in a queue (for example to find out who should be 

served f i r s t ) .

FUNCTION SAMPLE_ACT_TIME( C u rre n ta c t iv ity  : OOBJECT ) : INTEGER; 

Samples a time of ac t iv ity  " C u rre n ta c t iv ity " , based upon the 

information in the semantic network. This would be used in the 

C_EVENT section when i t  is desired to scan a ll  occurrences in a 

queue (fo r  example to find out who should be served f i r s t ) .

FUNCTION RND( SrSTREAM ) :REAL;
FUNCTION NORMAL( M:REAL; SDrREAL; S:STREAM ) : INTEGER;
FUNCTION NEGEXP( MrREAL; SrSTREAM ) : INTEGER;
FUNCTION WEIBULL( A,B:REAL; S:INTEGER ) : INTEGER;
FUNCTION POISSON( MrREAL; S:INTEGER ) : INTEGER;
FUNCTION ERLANG( E l: INTEGER; MrREAL; S:STREAM ) : INTEGER;

These are standard sampling functions. This would be placed in

the C_EVENT section to sample durations, a ttributes etc.

FUNCTION BEHEAD( Obj : OOBJECT ): OOCC;

Returns the occurrence at the front of the queue associated with 

instance (or f a c i l i t y )  "Obj". This function is generally called  

as a prelude to calling the ADD_TO_TREE procedure - see next.
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PROCEDURE ADD_TO_TREE( Duration : INTEGER; Occur : OOCC;

Instance : OOBJECT );

Starts an occurrence "Occur" into the a c t iv ity  associated with 

instance "Instance". The duration of the a c t iv ity  is "Duration". 

This would be used in the s tart phase of the three-phase 

simulation ( i . e .  C-phase) to indicate the s tart  (and thus end) of 

an a c t iv ity .

The seventh high-level section, the report procedure, may require 

the following procedures :

PROCEDURE DISPLAY_HISTOGRAM( Hist:HHISTOGRAM );

This displays on the screen histogram "Hist". This should only 

be used in the REPORTS section. I f  spool is switched on, i t  w il l  

prin t to a f i l e  as wel1.

PROCEDURE PRINT_HIST( Obj : OOBJECT );

Prints a ll histograms of object "Obj". This should only be used 

in the REPORTS section. I f  spool is switched on, i t  w i l l  prin t  

to a f i l e  as wel1.
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S e c t io n  5 .5  : COMPILING USER CODE

To compile the code, simply use the TURBO 4 compiler, loading up the 

f i l e  SASIM.PAS and pressing [F9] to compile the code. This is now 

a customised version of SASIM.EXE (the original version should be 

kept safe), and can be run as normal.

Section 5.6 : AUTO GENERATING USER CODE

To speed up the customization process (using procedural attachment), 

SASIM can create a sample USERCODE which contains the HOOKS onto the 

Semantic network for the objects which the user wishes to modify.

As indicated above in section 4.5, the user is prompted as to 

whether to generate the user code a fter each simulation run. I f  the 

user chooses to generate the user code, the user is prompted to 

indicate a ll  objects he is interested in, by using the cursor keys 

and pressing {enter} for each object in turn, and then press {esc}.

I t  is again important to restate that program generation does not 

mean, as in trad itiona l systems, creating code describing the whole 

problem. What program generation does is to speed up the creation 

of the hooks onto selected areas of the semantic network ( i . e .  

calling  the L0CATE_0BJECT() function) and setting up the 'C' event 

code for selected a c t iv it ie s .
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S e c t io n  5 .7  : CONCLUSION

This chapter has presented the implementation of procedural 

attachment in SASIM. The decision to use active production rules, 

as opposed to passive production rules, was taken for pragmatic 

purposes. Despite th e ir  less f le x ib le  nature, active production 

rules i l lu s t ra te  the use of procedural attachment to supplement the 

semantic network knowledge-base and thus modify the running of a 

simulation.

An i l lu s tra t io n  of the use of procedural attachment in the pub 

example is contained in appendix 3.6. The next chapter c r i t ic a l ly  

analyses both the semantic modelling approach and the prototype.
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CHAPTER 6

ANALYSIS OF SEMANTIC MODELLING 

Section 6.1 : INTRODUCTION

The previous chapters have presented both the semantic modelling 

approach and the SASIM prototype implementation of th is approach. 

This chapter presents two case studies where SASIM was used to 

implement a simulation. The f i r s t  case study is the implementation 

of the simple pub example. The second is a more complicated problem 

on the e ffec t of warship and replenishment ship a t t r i t io n  on war 

arsenal requirements. These case studies w il l  provide v ita l  

feedback on the p ra c tic a l ity  of implementing the semantic modelling 

approach and provide the foundation for future improvements and 

research. Section 6.4 w ill  present an analysis of the semantic 

modelling approach.
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S e c t io n  6 .2  : THE PUB EXAMPLE

The pub example is a common f i r s t  simulation written by newcomers 

learning about simulation. For this reason, i t  was chosen as the 

f i r s t  test of SASIM. The detailed description of the pub example 

and the output from the SASIM prototype is contained in appendix 3. 

The standard simulation does not contain the e n tity  Dog, however I 

have added i t  to this case study in order to i l lu s t r a te  the validate  

option's a b i l i ty  to spot en tit ies  which are not connected to other 

e n t it ie s .

Since the example is commonly described in english, i t  was natural 

to use the natural language interface as the main technique for  

inputting the description. This simple problem was useful since 

i n i t i a l l y  the syntactic structures and dictionary were very basic. 

I t  highlighted the requirement to cope with d if fe ren t words meaning 

the same thing (for example SERVED refers to SERVICE e tc ) .  These 

experimental improvements are expected in a prototype system, and 

sim ilar enhancements w ill  be required when coping with other 

domains. There were also a few phrases in the in i t i a l  description  

of the pub which needed to be re-phrased before inputting in to the 

natural language interface. This was due to e ither th e ir  ambiguity 

or superfluousness. The a lternative of adding the syntactic 

structure to the natural language interface was done in most cases.
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Each sentence was translated in turn by the natural language 

in terface, in each case l is t in g  the sentence as well as the 

trans la tion . These are l is ted  in appendix 3. There were 13 

sentences in the original english description. These were 

translated to 107 semantic network links (appendix 3 .2 ) .  Having 

translated the sentences, the semantic network looked untidy on the 

screen. Some time was therefore necessary to move the objects to 

provide a neater view. The tid ied  up semantic network can be seen 

in appendix 3.7.

I t  was clear from the entity  cycle level that the customer cycle was 

not complete. There was no lin k  between CUSTOMER (EXIT) and 

CUSTOMER (ARRIVE). This l in k  is not defined by the english but is 

ju st a convention used in simulation, in order to close a l l . e n t i t y  

cycle loops. The lin k  "GLASS (SERVICE) PRECEDES GLASS (DRINK)" was 

also missing. Even though i t  is possible to spot and add these two 

links manually, the validate section automatically located these 

missing links and added them, assuming a ll  that was missing was a 

single l in k  to close the loop (as can be seen from the screen output 

of the validate option in Appendix 3 .5 .2 ) .  Since i t  is possible 

that the validate option could be run before the whole system is 

described, the system should have prompted the user as to whether to 

add the 'missing' links or not. Various missing data was also 

prompted fo r , including the number of glasses and the duration of 

a c t iv ity  Exit. The validate section also highlighted a number of

108



anomalies, notably that the condition "IF THEY DRUNK LESS THAN THREE 

TIMES" can not be d irec tly  interpreted because the prototype does 

not provide automatic support of a ttr ibu tes , since a fu l l  

in terpretation requires the procedural attachment modifications 

shown in appendix 3.6. So as to provide a partia l in terpretation  

during a simulation run, the probability  of any customer satisfying  

th is  condition is requested. The probability  is set at 66.6% ( ie  

that a customer has a 66.6% chance of ordering another drink a fte r  

fin ishing one glass, and a 33.3% probability  of e x it in g ) .  The 

validate section also highlighted that there was no cycle for en tity  

DOG and i t  was not linked to the rest of the network. The validate  

section l is ted  the cycles of a ll the e n t it ie s ,  as well as l is t in g  

a ll  e n t it ie s  involved in each a c t iv ity .

Procedural attachment was also used to define graphical icons for  

the objects (for example glasses), as well as adding a conveyor belt 

for the glass washing a c t iv ity .  This is most notable in the top 

graphical level (shown in appendix 3 .7 ) .  The fu l l  l is t in g  of the 

procedural attachment code is in appendix 3 .6 .

The simulation was run on the enhanced semantic network, with 

procedural attachment code. Various time series, histogram of queue 

length and queuing times are shown in appendix 3 .7 . The simulation 

subsystem in SASIM provided the a b i l i ty  to examine the behaviour of 

the system both during the running of the simulation and at preset
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intervals defined before the start of the simulation. A detailed  

printout of a ll  a c t iv ity  s tart and end timings is possible for  

validation and verif ica tio n  purposes.

Section 6.3 : WAR ARSENAL PROBLEM

The problem "The Effect of Warship and Replenishment Ship A t tr i t io n  

on War Arsenal Requirements" is described by Holder and G ittins  

(1989). This is a real world problem which was solved using the 

eLSE simulation subsystem [Crookes et a l , 1986]. There was a 

m ili ta ry  requirement to access whether the stores held by warships 

and replenishment ships is presently set at an appropriate level 

once the po ss ib ility  of destruction of the ships by enemy action has 

been taken into account. The basic set up is that ships are in one 

of three layers, the outer, inner or core layers. They could be 

attacked by e ither a irc ra fts  or submarines, where they must engage 

outer ships f i r s t ,  then i f  they survive they may engage inner ships 

and la s t ly  core ships. These layers create a re p e tit iv e  type of 

a c t iv ity  cycle.

Even though, because of the m ili ta ry  se n s it iv ity  of th is kind of 

simulation, i t  was not possible to obtain detailed data on the 

problem, this case study was chosen because of the complexity of the 

cycles and its  repe tit ive  nature which would require a large 

semantic network, thus stretching the SASIM prototype. I t  was not
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the intention to actually run a simulation, but to create a 

knowledge-base containing the main a c t iv ity  cycles.

The main means to enter the problem was the "Activ ity  and Entity  

Cycle Input". This was chosen since an a c t iv ity  cycle diagram for  

the problem was given. The natural language interface was most 

useful for arriva l mechanism entry. By simply saying "x arrives  

every y minutes", SASIM creates a door mechanism (where an e n tity  

arrives, based on a s ta t is t ic a l d is tr ib u tio n , from an in d e f in ite ly  

large pool of e n t i t ie s ) .  The considerable size of the network 

presented a few memory and location problems. For example there are 

25 a c t iv i t ie s ,  each having a link  with the object "ACTIVITY". I t  is 

not easy to show a ll these links on a small PC screen, while s t i l l  

maintaining le g ib i l i t y .  The fu l l  semantic network can be seen in 

appendix 4.

Building the large semantic network was very beneficial in 

understanding the war arsenal problem (especially when examining the 

en tity  cycle level of the semantic network). However, th is  

understanding, gained by both the simulation prac tit ioner and the 

c lie n t ,  could also be a side effect of any kind of modelling 

exercise.

Building the large semantic network highlighted some lim itations  of 

SASIM's graphical interface, which w il l  be analysed in the next
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section. By the nature of the problem, procedural attachment is 

required to provide a fu l ly  working model of the system, but due to 

the m il i ta ry  sen s it iv ity  of the problem, not enough deta ils  of the 

problem were available.

Section 6.4 : ANALYSIS OF SEMANTIC MODELLING

One of the in i t ia l  reasons for choosing semantic networks as the 

central knowledge-base is its  graphical nature. I t  should thus be 

th eore tica lly  easier to spot errors and misunderstandings than in 

textual databases. An example of one such error is when the 

semantic network breaks down into more than one part due to a 

missing l in k .  This beneficial e ffect was indeed noticed in the 

prototype, but not without noting that the screen displays (and 

graphical software) used is not as powerful as idea lly  required. 

This short coming is most noticed in the lack of c la r i ty  on the

screen of some of the object names. This was because the small

fonts needed a higher resolution monitor than the IBM PS/2's VGA 

screen. A larger screen would be advantageous since i t  would enable 

the display of more of the semantic network at any one time. With 

a higher resolution display, the option of seeing each e n tity  in a 

queue and not just the grand total of the numbers in a queue may be 

achievable. Icons should also be able to change shape depending on

which a c t iv ity  or queue they are involved in. Defining objects

using an icon editor would also simplify the in terface. The above
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can best be achieved by moving to a fa r  more powerful graphical sub­

system, for example Windows or Macintosh. This graphical sub-system 

should accept a mouse, thus relationships could be drawn by just  

pointing and c licking.

The natural language in terface's syntactic structures and dictionary  

could also be made fa r more thorough. The present structures have 

been b u il t  up on a case by case basis. A fa r  more thorough 

investigation of syntactic structures would be very benefic ia l. I t  

would also be desirable for the system to learn new structures

automatically (learning by example).

I t  was also noted that implementing procedural attachment of passive 

production rules, using the Turbo Pascal compiler, considerably

steepened the learning curve for complex simulations. Additionally , 

these production rules were not used in the inference engine. Both 

these problems could possibly be overcome by making the production 

rules passive ( i . e .  tex tu a l) .

There is also a class of changes which would make the simulation 

running more powerful. Seed numbers could be methodically tackled, 

rather than allocated randomly in the validate section. S ta t is t ic a l  

analysis could also be improved, together with more advanced 

s ta t is t ic a l  sampling. The poss ib ility  of relationships being

'weighted', whereby a high weight would indicate a distant
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re lationship, should be analysed to see whether i t  could aid logical 

inferencing.

Section 6.5 : CONCLUSION

This chapter has presented an analysis of the practical implications 

when using semantic modelling in its  present implementation, which 

w il l  be very important in developing the next prototype. Section 

3.11 described how semantic modelling t r ie s  to achieve most of the 

requirements of an ideal simulation support environment proposed in 

section 2.4. Therefore the main question is whether semantic 

modelling is implementable.

I t  is clear that the SASIM prototype is not ready for commercial 

use. For .th is , i t  would require a number of the improvements 

highlighted in section 6.4 to be implemented, especially higher 

defin it io n  screens and the implementation of passive production 

rules. However, even though SASIM has many rough edges and can be 

made easier to use, quicker to run, and can be updated to support 

fa r  bigger simulations, i ts  most important contribution is that i t  

has shown the potential of semantic modelling through its  

implemention.
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CHAPTER 7

SUMMARY AND CONCLUSION

Section 7.1 : SUMMARY

The objective of this thesis was to examine the use of a r t i f i c ia l  

in telligence in the discrete event simulation f ie ld  with the aim of 

examining some potential areas in which i t  might be possible to 

improve simulation environments. To this end, Chapter 1 described 

the general discrete event simulation environment, including the 

stages in the trad itiona l simulation process. Chapter 2 presented 

some of the current research in the use of a r t i f i c i a l  in telligence  

in simulation and speculated what an ideal simulation environment 

should do. Chapter 3 demonstrated semantic modelling, a discrete  

event simulation modelling approach based on semantic networks, 

which attempts to give a consistent graphical interface throughout 

the l i f e  cycle of a simulation study, and described how semantic 

modelling t r ie s  to achieve most of the requirements of an ideal 

simulation support environment. Chapter 4 and 5 described the 

prototype implementation of the semantic modelling approach. 

Chapter 6 c r i t ic a l ly  analysed both the semantic modelling approach 

and the prototype.
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S e c t io n  7 .2  : CONCLUSION

Existing simulation research in the a r t i f i c i a l  in te lligence (AI) 

f ie ld  is extended by investigating the graphical AI knowledge-base 

called semantic networks. This thesis has demonstrated semantic 

modelling, a discrete event simulation modelling approach based on 

semantic networks, which attempts to give a consistent graphical 

interface throughout the l i f e  cycle of a simulation study. The 

semantic modelling approach is an extension of the approach used by 

the Simulation Model Development Environment (SMDE) prototype, 

developed by Balci and Nance (1987), which used a re lational 

database as the central knowledge-base, as opposed to semantic 

networks.

The f ive  main AI techniques used in semantic modelling are the 

semantic network graphical knowledge-base, data-driven natural 

language understanding and processing, procedural attachment, expert 

systems and shortest path algorithms. Since semantic modelling is 

an open architecture, more techniques, possibly from other research 

areas, could be added in future to improve the simulation 

environment.

This thesis has also presented a working prototype which implements 

semantic modelling. This has shown the potential of semantic 

modelling through its  implemention. The prototype may provide a 

stepping stone to a better prototype. These derived systems could
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u t i l is e  more modern programming techniques and environments, 

including object oriented programming and windowed environments (as 

opposed to the present implementation that used Turbo Pascal under 

DOS).

Section 7.3 : FUTURE RESEARCH

There is considerable potential for further research in th is  area, 

as indicated in the analysis of the working prototype (section 6 .4 ) .  

This includes the investigation of the best type of graphical 

interface for semantic networks. Additionally , the investigation of 

the p ra c t ic a l ity  of using passive production rules, as opposed to 

active production rules, could increase the user-friendliness of the 

interface and improve the inference engine. Additionally , i t  may be 

beneficial to investigate whether the inference engine can be 

enhanced by the analysis of the results of simulation runs. The 

investigation of both the syntactic structures and the dictionary of 

the natural language interface may produce a consistent way to 

define them, rather than ad hoc techniques presently adopted. The 

investigation of whether i t  is possible to use the syntactic 

structures of the natural language interface to 'work backwards' 

from a semantic network to produce sentences could lead to a 

translation capability  (between any languages which have a pre­

defined syntactic structure). There are also l ik e ly  to be other 

additional concepts which would increase the user-friendliness of
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semantic networks, such as a lternative  input techniques or 

alternative  types of knowledge-base attachment techniques (in  

addition to procedural attachment).

These areas are an indication of the many cross-disciplines and 

domains which the semantic modelling approach u t i l is e s .  This 

reinforces the view that this research has added to the level of 

understanding of the app licab il ity  of a r t i f i c ia l  in telligence to 

simulation environments. Hopefully, some of the ideas put forward 

in this thesis w ill  also benefit the wider computer science f ie ld .
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APPENDIX 1

NATURAL LANGUAGE SYNTAX DEFINITION

This appendix contains the data d e fin it io n  of the natural language 
interface in the SASIM prototype. I t  is contained in the f i l e
NLUP.SYN and can be easily modified by most word-processors.

N.B. A indicates keywords 
indicates optional 

> is the semantic translation
/  means "or"
*  ; indicate beginning and ending of syntactic structures
" " indicate words to be treated as a single label

♦SEPARATOR :
" \ "  -SEPARATOR /  AA /  AAND -SEPARATOR /  AALS0;

♦ENTITYP :
~ATHE ~AA ~obj_number ^ENTITY ~AWHICH ~AIS ~ACALLED obj_name

> obj_name ANUMBER obj_number, 
obj_name "AIS A" A ENT ITY /

~ATHE - AA ~obj_number obj_name ~AWHICH AIS ~AAN AENTITY
> obj_name ANUMBER obj_number, 

obj_name "AIS A" ^ENTITY /

~ATHE ~AA ~obj_number obj_name
> obj_name ANUMBER obj_number, 

obj_name "AIS A" AENTITY /

~ATHE AHE

= obj_name HE=LAST_ENT;

♦ENTITYFORACT :
- ATHE ~AA ~obj_number A ENT ITY ~AWHICH ~AIS ~ACALLED obj_name

> obj_name "AIS A" AENTITY /

~ATHE ~AA ~obj_number objname ~AWHICH AIS ~AAN AENTITY
> obj_name "AIS A" AENTITY /

~ATHE - AA ~obj_number obj_name
> obj_name "AIS A" AENTITY /

~ATHE AHE

= obj_name — obj_number HE=LAST_ENT;
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♦TIMEEXPRESSION :
AHOUR /  AMINUTE /  ADAY /  AYEAR /  AMONTH /  AWEEK;

*ACTIVITY_BODY :
~AAN ACTIVITY ~ACALLED obj_activ ity  ~AAGAIN

> ob j_activ ity  "AIS A" ACTIVITY /

ob j_activ ity  ~AAGAIN ~AWHICH ~AIS ~AAN ACTIVITY
> o b ja c t iv i t y  "AIS A" ACTIVITY /

ob j_activ ity  ~AAGAIN
> obj_activ ity  "AIS A" ACTIVITY /

ATHIS ACTIVITY

= ob j_activ ity  THIS=LAST_ACT;

♦STRING :
obj_word -STRING

= obj_word STRING;

*MU LTI ENTITY ACT :
ENTITY_FOR_ACT /

ENTITY_FOR_ACT SEPARATOR ~MULTI_ENTITY_ACT 

= ENTITY_FOR_ACT MULTI ENTITY ACT;

♦ONEINSTANCEACT :
ENTITY_FOR_ACT /

ENTITY_FOR_ACT AAS AA rel_name 

= ENTITY_FOR_ACT ~rel_name;

♦INSTANCEACT :
ONE_INSTANCE_ACT /

ONE_INSTANCE_ACT SEPARATOR INSTANCE_ACT 

= ONE_INSTANCE_ACT INSTANCE_ACT;

121



♦MULTIENTITY :
ENTITYP /

ENTITY_P SEPARATOR ~MULTI_ENTITY 

= ENTITY P MULTI ENTITY;

♦ONEINSTANCE :
ENTITY_P /

ENTITY_P AAS AA rel_name 

= ENTITY P ~rel name;

♦INSTANCE :
ONEJNSTANCE /

ONE_INSTANCE SEPARATOR INSTANCE 

= ONE INSTANCE INSTANCE;

♦ACTIVITYTIME :
AEVERY obj_number TIMEEXPRESSION /

ATAKES obj_number TIMEEXPRESSION 

= obj_number -EVERY;

♦ACTIVITY DFSC *
a c t iv iTybody  ~ACTIVITY_TIME

> ACTIVITY_BODY DURATION ACTIVITY_TIME /

ACTIVITY_BODY ACTIVITY_TIME -SEPARATOR AUSES INSTANCE_ACT
> ACTIVITY_BODY DURATION ACTIVITY_TIME,

INSTANCE(ACTIVITY_BODY,INSTANCE_ACT) DUMMY DUMMY /

ACTIVITY_BODY -SEPARATOR ~AUSES INSTANCE_ACT -SEPARATOR 
-ACTIVITYTIME

> ACTIVITY_BODY ADURATION ACTIVITYTIME,
INSTANCE(ACTIVITY_BODY,INSTANCE_ACT) DUMMY DUMMY

= ACTIVITY_BODY;
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♦ACTIVITYP :
ACTIVITY_DESC /

ACTIVITYDESC SEPARATOR ACTIVITYP 

= ACTIVITY DESC ACTIVITY_P;

♦SENTENCE :
ACTIVITYP ~AHAS PRIORITY ~AOVER ~AON ACTIVITY_P_2 "A."

> ACTIVITY P PRIORITY ACTIVITY_P_2 /

ATHERE AIS ACTIVITY_P "A." /

ATHERE AIS MULTIENTITY "A. '7  

ACTIVITY P ,,A." /

obj_word rel_name obj_word2 "A."
> objword rel_name obj_word2 /

ENTITY_P ~AIS ACTIVITY_P ,,A."
> ACTIVITYP ANEEDS INSTANCE(ACTIVITY_P,ENTITY_P) /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P "A."
> INSTANCE(LAST_ACT,ENTITY_P) APRECEDES

INSTANCE(ACTIVITY_P,ENTITY_P) /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P AIF STRING "A."
> INSTANCE(LAST_ACT,ENTITYP) APRECEDES "IF &STRING",

"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P,ENTITY_P),
"IF &STRING" ,,AIS A" ADECISION /

ENTITY_P ~AIS ATHEN ~APRECEDES ~ATO ACTIVITY_P AIF STRING AELSE 
~AHE ACTIVITY_P_2 "A."

> INSTANCE(LAST_ACT,ENTITYP) PRECEDES
INSTANCE(ACTIVITYP2, ENTITY_P),

INSTANCE(LAST_ACT,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P,ENTITY_P),
"IF &STRING" "AIS A" ADECISION /

ENTITY_P AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR ~AIS ~AHE 
~ACAN ~ATHEN - APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANC E(ACT IVITY_P_2, ENTITY_P) /
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ENTITYP AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR - AIS ~AHE 
~ACAN ~ATHEN ~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF 
STRING "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITYP2, ENTITY_P), 
"IF &STRING" ,,AIS A" ADECISION /

ENTITY_P AAFTER ~AHE ~AIS ~ABEEN ACTIVITY_P -SEPARATOR - AIS ~AHE 
~ACAN ~ATHEN ~APROCEED - ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF 
STRING AELSE ~AHE ACTIVITY_P_3 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES
INSTANCE(A C TIV ITY P 3, ENTITY_P),

INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P), 
"IF &STRING" "AIS A" ADECISION /

AAFTER ENTITYP ACTIVITY_P -SEPARATOR ~AHE - ACAN ~ATHEN 
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> I N S T A N C E ( A C T I V I T Y _ P , E N T I T Y _ P )  APRECEDES
INSTANCE(ACTIVITY_P_2,ENTITY_P) /

AAFTER ENTITY_P ACTIVITYP -SEPARATOR ~AHE ~ACAN ~ATHEN 
ACTIVITYP2

AIF STRING "A."
> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",

"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P), 
"IF &STRING" MAIS A" DECISION /

AAFTER ENTITY_P ACTIVITYP -SEPARATOR ~AHE ~ACAN ~ATHEN 
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 AIF STRING AELSE 

~AHE ACTIVITYP3 "A."
> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES 

INSTANCE(ACTIVITY_P_3,ENTITY_P),
INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P), 
"IF &STRING" ,,AIS A" ADECISION /

AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN ~ATHEN 
~APRECEDES ~ATO ~ABE ~AUSED ~AIN ACTIVITY_P_2 "A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES 
INSTANCE(ACTIVITY_P_2,ENTITY_P) /

AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN ~ATHEN 
ACTIVITY_P_2 AIF STRING ,,A."

> INSTANCE(ACTIVITY_P, ENTITY_P) PRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2, ENTITY_P), 
"IF &STRING" ,,AIS A" ADECISION /
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AAFTER ACTIVITY_P -SEPARATOR ENTITY_P ~AHE ~ACAN - ATHEN 
~APRECEDES ~ATO - ABE ~AUSED - AIN ACTIVITY_P_2 AIF STRING AELSE 
- AHE ACTIVITY_P_3 ,,A."

> INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES 
INSTANCE(ACTIVITYP3, ENTITYP) ,

INSTANCE(ACTIVITY_P,ENTITY_P) APRECEDES "IF &STRING",
"IF &STRING" APRECEDES INSTANCE(ACTIVITY_P_2,ENTITY_P), 
"IF &STRING" "AIS A" ADECISION.
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APPENDIX 2

NATURAL LANGUAGE CONVERSION MASKS

NOTE : F irs t word on every line  contains the mask which is compared 
to the word being tested. A means any number of characters. I f  
a match is found, the entered word is replaced by the second word on 
the l in e  ( i f  no second word is present then the original word would 
be ignored). The l i s t  is held in f i l e  CONVERT.DAT.

A
AGAIN
ALSO
AN
AND
ONE 1
ARE
AT
AVAILABLE
BE
BEING
BEGINS
BETWEEN
BOTH
CALLED
CAN
CURRENTLY
EIGHT 8
FOUR 4
FIVE 5
FOR DURATION
FURTHER
HAPPENS
HAS
HAVE
HUNDRED 100
IN
INSIDE
INTO
IS
IT THEY
LAST
OCCURS
OF
ON USES
OVER
PRECEDES PRECEDES
*MEN MAN
MINUTE 
MINUTES
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MUST
NEEDED
NINE 9
NOW
OTHER
SEVEN 7
SIX 6
TEN 10
THE
THERE
THEREARE
THIRTY 30
THOUSAND 1000
THREE 3
TIMES TIMES
TO
TWENTY 20
TWO 2
USED
WILL
WHICH
WHO
*ERVING ERVICE
*IVAL IVE
*NING NE
*PPIN GP
*TTIN GT
*VING VE
USING USES
*ING
*IES Y
*SS SS
*SSES SS
USES USES
*ES E
*IS IS
*CEED CEED
*EED EED
*ERVED ERVICE
*IED Y
*CED CE
*LLED LL
*LED LE
*PPED P
*VED VE
*NED NE
*ED
AS AS
*S
*UNK INK
*LY LE
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The following words are synonyms and are translated by SASIM:

BY
FOR
LATTER
LEAVE
NEED
OBJECT
PEOPLE
PROCEED
TAKE
THEM
WITH
WHEN

USES
DURATION
THEY
EXIT
USES
ENTITY
ENTITY
THEN
DURATION
THEY
USES
AFTER
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APPENDIX 3

TEST OF SASIM ON THE PUB

APPENDIX 3.1 : NLUP TRANSLATION

To i l lu s t ra te  th is , I w il l  try  to formulate a simple PUB example as 
an english representation acceptable to SASIM, then as represented 
in a semantic network (which was produced by SASIM):

INPUT ENGLISH REPRESENTATION :

There is an a c t iv ity  called service.
This a c t iv ity  uses one barmaid as a server.
This a c t iv ity  also needs 1 customer, a glass as a cup and 
takes 5 minutes.
Customers arrive every negexp(10,5) minutes.
They are then served.
Customers a fte r  being served, then drink for 10 minutes, 
with a glass.
The la t te r  are then washed by the barmaids.
Service has p r io r i ty  over washing.
Customers a fte r  drinking proceed to rest for  
three minutes.
They are then served again i f  they have drunk less than three times, 
else they e x it .
Glasses a fte r  washing can then be used in serving.
There are 10 glasses and ten barmaids and one dog.
Washing takes 15 minutes.

SEMANTIC NETWORK TRANSLATION :

The English sentence was :

There is an a c t iv ity  called service.

TRANSLATION IS

SERVICE IS A ACTIVITY
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The E n g l i s h  s e n te n c e  was :

This a c t iv ity  uses one barmaid as a server.

TRANSLATION IS

BARMAID (SERVICE) NUMBER 1 
SERVICE SERVER BARMAID (SERVICE) 
BARMAID (SERVICE) IS A BARMAID 
BARMAID IS A ENTITY

The English sentence was :

This a c t iv ity  also needs 1 customer, a glass as a cup and 
takes 5 minutes.

TRANSLATION IS

SERVICE DURATION 5 
SERVICE CUP GLASS (SERVICE)
GLASS (SERVICE) IS A GLASS 
GLASS IS A ENTITY 
CUSTOMER (SERVICE) NUMBER 1 
SERVICE NEEDS CUSTOMER (SERVICE) 
CUSTOMER (SERVICE) IS A CUSTOMER 
CUSTOMER IS A ENTITY

The English sentence was :

Customers arrive every negexp(10,5) minutes.

TRANSLATION IS

CUSTOMERDOOR (ARRIVE) NUMBER 1 
ARRIVE NEEDS CUSTOMER_DOOR (ARRIVE) 
CUSTOMER_DOOR (ARRIVE) IS A CUSTOMER_DOOR 
CUSTOMER_DOOR IS A ENTITY 
ARRIVE DURATION NEGEXP(10,5)
ARRIVE NEEDS CUSTOMER (ARRIVE)
CUSTOMER (ARRIVE) IS A CUSTOMER 
ARRIVE IS A ACTIVITY
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The English sentence was :

They are then served.

TRANSLATION IS

CUSTOMER (ARRIVE) PRECEDES CUSTOMER (SERVICE)

The English sentence was :

Customers a fte r  being served, then drink for 10 minutes, 
with a glass.

TRANSLATION IS

DRINK NEEDS GLASS (DRINK)
GLASS (DRINK) IS A GLASS 
DRINK DURATION 10
CUSTOMER (SERVICE) PRECEDES CUSTOMER (DRINK) 
DRINK NEEDS CUSTOMER (DRINK)
CUSTOMER (DRINK) IS A CUSTOMER 
DRINK IS A ACTIVITY

The English sentence was :

The la t t e r  are then washed by the barmaids.

TRANSLATION IS

WASH NEEDS BARMAID (WASH)
BARMAID (WASH) IS A BARMAID 
GLASS (DRINK) PRECEDES GLASS (WASH) 
WASH NEEDS GLASS (WASH)
GLASS (WASH) IS A GLASS 
WASH IS A ACTIVITY

The English sentence was :

Service has p r io r i ty  over washing.

TRANSLATION IS

SERVICE PRIORITY WASH
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The E n g l i s h  se n te n c e  was

Customers a fte r  drinking proceed to rest for  
three minutes.

TRANSLATION IS

REST DURATION 3
CUSTOMER (DRINK) PRECEDES CUSTOMER (REST) 
REST NEEDS CUSTOMER (REST)
CUSTOMER (REST) IS A CUSTOMER 
REST IS A ACTIVITY

The English sentence was :

They are then served again i f  they have drunk less than three times, 
else they e x it .

TRANSLATION IS

CUSTOMER (REST) PRECEDES CUSTOMER (EXIT)
EXIT NEEDS CUSTOMER (EXIT)
CUSTOMER (EXIT) IS A CUSTOMER 
EXIT IS A ACTIVITY
IF THEY DRUNK LESS THAN 3 TIMES IS A DECISION
IF THEY DRUNK LESS THAN 3 TIMES PRECEDES CUSTOMER (SERVICE)
CUSTOMER (REST) PRECEDES IF THEY DRUNK LESS THAN 3 TIMES

The English sentence was :

Glasses a fte r  washing can then be used in serving.

TRANSLATION IS

GLASS (WASH) PRECEDES GLASS (SERVICE)
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The E n g l i s h  se n te n c e  was :

There are 10 glasses and ten barmaids and one dog.

TRANSLATION IS

DOG IS A ENTITY 
DOG NUMBER 1 
BARMAID NUMBER 10 
GLASS NUMBER 10

The English sentence was :

Washing takes 15 minutes.

TRANSLATION IS

WASH DURATION 15
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APPENDIX 3 . 2  : L IST  OF LINKS

T h is  s e c t i o n  p r e s e n ts  a l i s t  o f  a l l  l i n k s  c re a te d  by t h e  a u to m a t ic
NLUP t r a n s l a t i o n  o f  th e  pub p ro b le m ,  shown in  a p p e n d ix  3 . 1 .

WASH DURATION 15 
DOG IS A ENTITY 
DOG NUMBER 1 
BARMAID NUMBER 10 
GLASS NUMBER 10
GLASS (WASH) PRECEDES GLASS (SERVICE)
CUSTOMER (REST) PRECEDES CUSTOMER (EXIT)
EXIT NEEDS CUSTOMER (EXIT)
CUSTOMER (EXIT) IS A CUSTOMER 
EXIT IS A ACTIVITY
IF THEY DRUNK LESS THAN 3 TIMES IS A DECISION 
IF THEY DRUNK LESS THAN 3 TIMES PRECEDES CUSTOMER (DRINK) 
CUSTOMER (REST) PRECEDES IF THEY DRUNK LESS THAN 3 TIMES 
REST DURATION 3
CUSTOMER (DRINK) PRECEDES CUSTOMER (REST)
REST NEEDS CUSTOMER (REST)
CUSTOMER (REST) IS A CUSTOMER 
REST IS A ACTIVITY 
SERVICE PRIORITY WASH 
WASH NEEDS BARMAID (WASH)
BARMAID (WASH) IS A BARMAID 
GLASS (DRINK) PRECEDES GLASS (WASH)
WASH NEEDS GLASS (WASH)
GLASS (WASH) IS A GLASS 
WASH IS A ACTIVITY 
DRINK NEEDS GLASS (DRINK)
GLASS (DRINK) IS A GLASS 
DRINK DURATION 10
CUSTOMER (SERVICE) PRECEDES CUSTOMER (DRINK)
DRINK NEEDS CUSTOMER (DRINK)
CUSTOMER (DRINK) IS A CUSTOMER 
DRINK IS A ACTIVITY
CUSTOMER (ARRIVE) PRECEDES CUSTOMER (SERVICE)
CUSTOMER_DOOR (ARRIVE) NUMBER 1 
ARRIVE NEEDS CUSTOMER_DOOR (ARRIVE)
CUSTOMER_DOOR (ARRIVE) IS A CUSTOMER_DOOR 
CUSTOMER_DOOR IS A ENTITY 
ARRIVE DURATION NEGEXP(10,5)
ARRIVE NEEDS CUSTOMER (ARRIVE)
CUSTOMER (ARRIVE) IS A CUSTOMER 
ARRIVE IS A ACTIVITY 
SERVICE DURATION 5 
SERVICE CUP GLASS (SERVICE)
GLASS (SERVICE) IS A GLASS 
GLASS IS A ENTITY
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CUSTOMER (SERVICE) NUMBER 1 
SERVICE NEEDS CUSTOMER (SERVICE) 
CUSTOMER (SERVICE) IS A CUSTOMER 
CUSTOMER IS A ENTITY 
BARMAID (SERVICE) NUMBER 1 
SERVICE SERVER BARMAID (SERVICE) 
BARMAID (SERVICE) IS A BARMAID 
BARMAID IS A ENTITY 
SERVICE IS A ACTIVITY
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APPENDIX 3 .3  : L IST  OF OBJECTS

T h is  s e c t i o n  p r e s e n ts  a l i s t  o f  a l l  o b je c t s  c re a te d  by t h e  a u to m a t ic
NLUP t r a n s l a t i o n  o f  th e  pub p ro b le m ,  shown i n  a p p e n d ix  3 . 1 .

1
10
3
5
ACTIVITY
ARRIVE
BARMAID
BARMAID (SERVICE)
BARMAID (WASH)
CUSTOMER
CUSTOMER (ARRIVE)
CUSTOMER (DRINK)
CUSTOMER (EXIT)
CUSTOMER (REST)
CUSTOMER (SERVICE)
CUSTOMER_DOOR 
CUSTOMER_DOOR (ARRIVE)
DECISION
DOG
DRINK
ENTITY
EXIT
GLASS
GLASS (DRINK)
GLASS (SERVICE)
GLASS (WASH)
IF THEY DRUNK LESS THAN 3 TIMES 
NEGEXP(10,5)
REST
SERVICE
WASH
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APPENDIX 3 .4  : L IST  OF RELATIONS

T h is  s e c t i o n  p re s e n ts  a l i s t  o f  a l l  r e l a t i o n s h i p s  c r e a te d  by th e
a u to m a t ic  NLUP t r a n s l a t i o n  o f  th e  pub p ro b le m , shown in  a p p e n d ix
3 . 1 .

NAME LEVEL

CUP 0
DURATION 0
IS A 2
NEEDS 0
NUMBER 3
PRECEDES 1
PRIORITY 0
SERVER 0
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APPENDIX 3 .5  : OUTPUT FROM VALIDATE OPTION

This section presents the result of the validate option run on the 
knowledge-base created by the automatic NLUP translation of the pub 
problem, shown in appendix 3 .1 .

3 .5 .1  : PROBABILITY SECTION

ENTER PROBABILITY OF IF THEY DRUNK LESS THAN 3 TIMES (%) : 66

3 .5 .2  : ENTITY CYCLE SUMMARY

ACTIVITIES OF ***FACILITY * * *  BARMAID

SERVICE
HAS PRIORITY OVER ==> 

WASH

ACTIVITIES OF CUSTOMER

* * * * * * * * *

CUSTOMER (EXIT) PRECEDES CUSTOMER (ARRIVE)

THE ABOVE LINK HAS BEEN ADDED 

* * * * * * * * *

ARRIVE
FOLLOWED BY ==>

SERVICE
FOLLOWED 00 -< II II V

DRINK
FOLLOWED AIIII>-CO

REST
FOLLOWED 00 -< II II V

EXIT

ENTER NUMBER OF CUSTOMER IN THE SYSTEM : 30

THERE ARE 30 CUSTOMER TO ALLOCATE 
ENTER NUMBER AT CUSTOMER (ARRIVE) : 30
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ACTIVITIES OF ***FACILITY * * *  CUSTOMER_DOOR

ARRIVE

ENTER NUMBER OF CUSTOMER_DOOR IN THE SYSTEM : 1

ACTIVITIES OF DOG

* * * * * * * * *

COULD NOT COMPLETE CYCLE FOR DOG 
PRESS <ESC> TO CONTINUE

* * * * * * * * *

* * * *  none * * * *

ACTIVITIES OF GLASS

* * * * * * * * *

GLASS (SERVICE) PRECEDES GLASS (DRINK)

THE ABOVE LINK HAS BEEN ADDED 

* * * * * * * * *

DRINK 
FOLLOWED BY ==>WASH
FOLLOWED BY ==>

SERVICE

THERE ARE 10 GLASS TO ALLOCATE 
ENTER NUMBER AT GLASS (DRINK) :

THERE ARE 10 GLASS TO ALLOCATE 
ENTER NUMBER AT GLASS (WASH) :

THERE ARE 10 GLASS TO ALLOCATE 
ENTER NUMBER AT GLASS (SERVICE) : 10
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3.5 .3  : ACTIVITY SUMMARY

ENTITIES INVOLVED IN ARRIVE

CUSTOMER DOOR 
CUSTOMER

ENTITIES INVOLVED IN DRINK

GLASS
CUSTOMER

ENTITIES INVOLVED IN EXIT

* * * * * * * * *
ENTER DURATION OF EXIT 
* * * * * * * * *

0

CUSTOMER

ENTITIES INVOLVED IN REST

CUSTOMER

ENTITIES INVOLVED IN SERVICE

GLASS
CUSTOMER
BARMAID

ENTITIES INVOLVED IN WASH

GLASS
BARMAID

* * * * * * * * *
DOG IS NOT CONNECTED TO GLASS

PRESS <ESC> TO CONTINUE 
* * * * * * * * *
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APPENDIX 3 . 6  : PASCAL MODIFICATION TO THE PUB EXAMPLE

An example of the modification required in the pub example to allow 
customers between 2-4 drinks follows :

{$1 USERCODE.INI}
ATT = RECORD

INTERNALJJSE : OCC;
NO_DRINKS : INTEGER;

END;
{$1 USERCODE.IN2}
VAR

DOORARRIVE, D00R_ARRIVE_ARR,
CUSTOMER_ARR, ARRIVE, CUST0MER_REST, CUSTOMER_SERVICE, 
CUSTOMER_EXIT, GLASSES, CUSTOMERS, BARMAIDS,

GLASS_WASH : OOBJECT;
DRINK_HIST,SERVE_TS, BARMAID_TS : HHISTOGRAM;

PROCEDURE SETHOOKS;
BEGIN

DOOR_ARRIVE := LOCATE_OBJECT( 'DOOR_ARRIVE');
DOOR_ARRIVE_ARR := LOCATE_OBJECT( 'DOOR_ARRIVE (ARRIVE)'); 
CUSTOMER_ARR := LOCATE_OBJECT('CUSTOMER (ARRIVE)'); 
CUSTOMER_REST := LOCATE_OBJECT('CUSTOMER (REST)'); 
CUSTOMER_SERVICE := LOCATE_OBJECT('CUSTOMER (SERVICE)'); 
CUSTOMEREXIT := LOCATE_OBJECT('CUSTOMER (E X IT ) ');
CUSTOMERS := LOCATE_OBJECT('CUSTOMER');
GLASSES := LOCATE_OBJECT('GLASS');
GLASS_WASH := LOCATE_OBJECT('GLASS (WASH)');
BARMAIDS := LOCATE_OBJECT(' BARMAID');
ARRIVE := LOCATE_OBJECT('ARRIVE');
IF NOT ERR THEN

ARRIVED CONTROL := USER;
ICON_MATRIX(0,0,238,221,154,WHITE,BLACK,GLASSES); ( * e|  238,221

U 154*)
ICON_MATRIX(0,0 ,1 2 ,1 1 ,1 ,YELLOW,BLACK,CUSTOMERS); ( *  Face *)  
DEFINE_C0NVEY0R(-1 ,0 ,1 ,0 ,  2, GREEN, GLASS_WASH); ( *  X,Y, XSTEP,

YSTEP, LENGTH, COLOUR, INSTANCE * )  
INITIALISE_HIST(DRINK_HIST,CUSTOMER_ARR,'NUMBER OF DRINKS'); 
INITIALISE_TSERIES(SERVE_TS,CUSTOMER_SERVICE,

'CUSTSERV',3 ,0 ,15 );
INITIALISE_TSERIES(BARMAID_TS,BARMAIDS,'BARMAID',3 ,0 ,15 );
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FUNCTION GRAPHIC_OBJECT(OBJ : OOBJECT; XG1,YG1 : INTEGER;
DRAW : BOOLEAN) : INTEGER;

VAR
T1,T2 : INTEGER;
PENTAGON : ARRAY [1 . .4 ]  OF POINTTYPE;

BEGIN
IF OBJA.NAME = 'CUSTOMER (DRINK)' THEN 
BEGIN (*  shape of a man *)

IF DRAW THEN 
BEGIN

SETCOLOR(WHITE);
YG1 := YGl-YDOTS_PER_CHAR;
XG1 := XGl+XDOTS_PER_CHAR;
CIRCLE(XG1, YG1,R0UND(YD0TS_PER_CHAR*0.2));
YG1 := YG1+R0UND(YD0TS_PER_CHAR*0.2); 
LINE(XG1,YG1,XG1, YGl+YDOTS_PER_CHAR);
YG1 := YGl+YDOTS_PER_CHAR;
LIN E(XG1-ROUND(XDOTS_PER_CHAR*0.5 ) ,

YG1+ROUND(YDOTS_PER_CHAR*0. 5 ) ,XG1,YG1); 
LINE(XG1+ROUND(XDOTS_PER_CHAR*0.5),

YG1+R0UND(YD0TS_PER_CHAR*0.5),XG1, YG1); 
YG1 := YG1-ROUND(0.66*YDOTS_PER_CHAR); 
LINE(XG1-ROUND(XDOTS_PER_CHAR*0.5),

YG1, XG1+ROUND(XDOTS_PER_CHAR*0. 5 ) , YG1);
END;
GRAPHIC_OBJECT := -3;

END
ELSE
IF OBJA.NAME = 'CUSTOMER (SERVICE)' THEN 
BEGIN (*  money sign to indicate payment when served * )  

IF DRAW THEN 
BEGIN

SETCOLOR(WHITE);
RECTANGLE(XG1-13,YGl-4,XG1+21,YG1+12); 
SETUSERCHARSIZE(5,5,5,5);
SETTEXTSTYLE(SMALLFONT,HORIZDIR,USERCHARSIZE); 
SETCOLOR(GREEN);
OUTTEXTXY(XG1 -1 0 ,YG1 , ' MONEY' ) ;

END;
GRAPHIC_OBJECT := -5;

END
ELSE
IF (OBJA.NAME = 'GLASS (SERVICE)') OR

(OBJA.NAME = 'GLASS (DRINK)') THEN 
BEGIN (*  beer glass shape *)

IF DRAW THEN 
BEGIN

SETCOLOR(BROWN);
s e t f i l 1s t y le ( s o l id f i l l , BROWN);
PENTAGON[ 1 ] . X := XG1+2;
PENTAGON[ I ] . Y := YG1+ROUND(YDOTS_PER_CHAR*0.5);
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PENTAGON[ 2 ] .X := XGl+2*XDOTS_PER_CHAR-2; 
PENTAGON^]. Y := YG1+R0UND(YD0TS_PER_CHAR*0.5); 
PENTAGON[ 3 ] .X := XGl+2*XDOTS_PER_CHAR;
PENTAGON[ 3 ] . Y := YGl-YDOTS_PER_CHAR;
PENTAG0N[4].X := XG1;
PENTAGON[4]. Y := YGl-YDOTS_PER_CHAR;
DRAWPOLY(SIZEOF( PENTAGON) DIV

SIZEOF(POINTTYPE) , PENTAGON);
FILLPOLY(SIZEOF(PENTAGON) DIV

SIZEOF(POINTTYPE), PENTAGON); 
PIESLICE(XG1,YG1-YDOTS_PER_CHAR,90,270,2); 
PIESLICE(XGl+2*XDOTS_PER_CHAR,

YG1-YD0TS_PER_CHAR,0,90,2);
PIESLICE(XGl+2*XDOTS_PER_CHAR,

YGl-YDOTS_PER_CHAR,270,360,2); 
SETCOLOR(WHITE);
s e t f i11style(INTERLEAVEFILL,WHITE);
BAR(XG1, YG1 - ROUND(1 .2*YD0TS_PER_CHAR),

XG1+2*XD0TS_PER_CHAR,YG1-YD0TS_PER_CHAR);
END;
GRAPHIC_OBJECT := -2;

END
ELSE

IF OBJA. FORGROUND_COLOUR = -1 THEN (*  default section * )  
GRAPHIC_OBJECT := LENGTH(OBJA.NAME)

ELSE
GRAPHIC_OBJECT := 2;

END;

PROCEDURE B_EVENT(CURRENT_OBJECT : OOBJECT; OCCUR : OOCC);
BEGIN

IF CURRENT_OBJECT = CUSTOMER_REST THEN 
BEGIN

DEC(ATTRI BUTE(OCCUR)A.NO_DRINKS);
IF ATTRIBUTE(OCCUR)\NO_DRINKS > 0 THEN 

ADD_TO_B_QUEUE(CUSTOMER_SERVICE, OCCUR)
ELSE

ADD_T0_B_QUEUE(CUSTOMER_EXIT, OCCUR);
END

END;

PROCEDURE C_EVENT(CURRENT_ACTIVITY : OOBJECT);
VAR

SAMPLE_TIME : INTEGER;
OCCUR : OOCC;

BEGIN
IF CURRENT_ACTIVITY = ARRIVE THEN 

WHILE (QSIZE(DOOR_ARRIVE) > 0) AND 
(QSIZE(CUSTOMER_ARR) > 0) DO

BEGIN
SANPLE_TIME := SAMPLE_ACT_TIME(ARRIVE);
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OCCUR := BEHEAD(CUSTOMER_ARR);
ATTRI BUTE(OCCUR)A.NO_DRINKS := RANDOM(3)+2; 
UPDATE_HIST(DRINK_HIST,ATTRIBUTE(OCCUR)A.NO_DRINKS,1); 
ADD_TO_TREE(SAMPLE_TIME,OCCUR,CUSTOMER_ARR); 
ADD_TO_TREE(SAMPLE_TIME,BEHEAD(DOOR_ARRIVE), 

DOOR_ARRIVE_ARR);
END;

END;

PROCEDURE REPORTS;
BEGIN

DIS PLAY_HISTOGRAM(DRINK_HIST);
PRINT_HIST(CUSTOMER_SERVICE);

END;

BEGIN
{BLANK MAIN}

END.
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APPENDIX 3 .7  : SCREEN PRINTOUTS DURING SIMULATION

On starting a simulation run, the system w il l  prompt for the 
following (assuming they have not been supplied before) :

Question User
Answer

STOP SIMULATION AT 1000

START RECORDING AT 200

PAUSE INTERVAL (AFTER STARTING RECORDING) 200

DO YOU WHICH ONLY A SUMMARY TO BE PRINTED ? Y

There follows screen printouts of a ll f ive  levels of the pub 
produced during a simulation run, together with s ta t is t ic a l  
output.
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Ui :
TIME IS 940 STATUS : RUNNING SIMULATION DELA¥ IS 64
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Ui :
TIME IS 553 STATUS : RUNNING SIMULATION DELAV IS 128

[F  THEY’ DBUNK LESS THAN 3  
TCMES

CUSTOMER (SERUICE) CUSTOMER (ARRIUE)CUSTOMER (REST)^JCUSTONER (DRINK) 
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Ul : 
TIME IS 967 STATUS : RUNNING SIMULATION DELA¥ IS 128
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U1 : REST
TIME IS 977 STATUS : RUNNING SIMULATION DELAV IS 128 
NUMBER OF TIMES STARTED 26

BARMAID

REST
D U R A T I O N

->3

UASH
D U R A T I O N

->15

SERUICE
D U R A T I  O N

->5

DRINK
D U R A T I O N

^ 1 0

ARRIUE-------- >NEGEXP (10 f 5)
D U R A T I O N

(UASH) =======> BARMAID

BARMAID----------
10 N U M B E R

->10

GLASS-----------
10 N U M B E R

->10

GLASS (SERUICE)-------- >10
0 [NIT NUMBER

CUS TOMER----------
15 N U M B E R

->15

CUSTOMER (ARRIUE)-------
1 [NIT NUMBER
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U1 : DRINK
TINE IS 982 STATUS : RUNNING SIMULATION DELA¥ IS 128 
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APPENDIX 4

WAR ARSENAL PROBLEM

The problem "The Effect of Warship and Replenishment Ship 
A tt r i t io n  on War Arsenal Requirements" has been described in 
section 6.3 . There follows screen printouts of the semantic 
network implementation of the problem. However a Pascal 
modification of the knowledge-base would be required to produce a 
r e a l is t ic  simulation run.
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APPENDIX 5 

TECHNICAL DATA AND INSTALLATION GUIDE

DATA FILES

*.ENG : Files containing the 'english' text
*.REL : Relationship Data Files

SOURCE UNITS

CYCLEINP.PAS 
GLOBAL.PAS 
GLOBAL2.PAS 
GRAPHRTN.PAS 
MENUS.PAS 
NLUP.PAS 
SASIM.PAS 
SIMULATE.PAS 
USERCODE.PAS

VALIDATE.PAS

OTHER FILES

USERCODE.INI 
USERCODE.IN2 
EGAVGA.BGI

LITT.CHR 
CONVERT.DAT

RUNNING

The f i l e s  containing the executable code needs to be copied 
onto the same directory, whether on a floppy drive, or in a 
subdirectory on a hard disk. To start  SASIM, simply make the 
default disk (and drive) the same as that which contain these 
f i l e s ,  and type the following command :

SASIM [dr ive:\data directory] followed by [ENTER].

So i f  "SASIM C:\DATA" is typed in, the data would be read from 
and written to the directory "C:\DATA"

A second parameter could be a screen mode number (as defined in 
TURBO 4 manual). This is not normally necessary as SASIM 
automatically detects the type of screen.

Contains the code for cycle input.  
Contains general subroutines.
Contains general subroutines.
Contains the main graphical routines.  
Contains the menus.
Contains the NLUP code.
Skeleton f i l e  to l ink  the other modules. 
Contains the main simulation code 
Contains user code to modify the order 
of the simulation.
The validate section.

: Small include f i l e  
: Screen driver for an EGA and VGA 

compatible screen 
: Fonts f i l e
: Contains conversion masks for SEF
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APPENDIX 6 

KNOWLEDGE REPRESENTATION IN MEMORY

In order to achieve a theoretically  sound memory representation, I 
re l ied on Network Database Theory to model the relationships. The 
main analogy is that each of the three main linked l i s t s  in memory 
correspond to a database table.

The network data model is as follows :

NODE (OBJECT) NAMES RELATIONSHIP NAMES
\  /

\  2:N /
\S0URCE /

\  & /  1:N
\DESTINATION /
\  /  

v v
LINKS

Each of the tables have the following f ie lds  :

1) Node (Object) Names :

FIELD NAMES TYPE

NAME Character (LENGTH 20)

INDEX Pointer to a l i s t  of relationships. The l i s t  is of
all  relationships which this object is involved in.

2) Relationship Names :

FIELD NAMES TYPE

NAME Character (LENGTH 20)

INDEX Pointer to a l i s t  of all  links which this
relationship is involved in.
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3) Links

FIELD NAMES TYPE

SOURCE Pointer to the source object of this l ink .

DESTINATION Pointer to the destination object of this l ink .

RELATIONSHIP Pointer to the relationship of this l ink

N.B.

1) All the records in a table are linked together with a 'forward'  
pointer. I f  the records were stored in a memory array, these 
pointers are unnecessary, since the record number implies the next 
record, but this would seriously l im i t  the f l e x i b i l i t y  of using 
records and pointers.

2) All the l i s ts  are implemented as pointer chains, terminated by 
a 'NIL' pointer, as opposed to a circular l i s t  which is 
asymmetrical when the l i s t  is empty.

3) The Objects table is also sorted alphabetically on the name to 
aid both the speed of a ' f ind '  enquiry, as well as to make the 
order of any query output more sensible.

4) The reason for this theoretical background is that i f  a 
relationship or object was renamed, only one f ie ld  has to be 
changed (but the object l i s t  needs to be resorted to maintain the 
alphabetic l i s t i n g ) .  This is a direct result of the elimination 
of redundancy in the data.

5) Relational Database advocates would have replaced a l l  pointers 
by 'name' f ie lds ,  implying the need for indexes to access a record 
given a name. This would considerably slow down access speeds, as 
well increasing the programming and memory overheads.
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APPENDIX 7

ACD

AI

ASPES

AUTOS IM

BRANCH
AND

BOUND

BREADTH
FIRST

CAPS

CASM

CSL

DEPTH
FIRST

DEVS

ECSL

eLSE

GASP IV

GLOSSARY OF ABBREVIATIONS /  NAMES

A ct iv i ty  Cycle Diagram. A very widely used modelling method 
for  representing the logic of a simulation problem. 
Popularized by H i l ls  (1971).

A r t i f i c ia l  intell igence.

A Skeletal Pascal Expert System. Developed at the LSE 
[Doukidis and Paul, 1987].

An Integrated Simulation Program Generator developed at LSE 
[Paul and Chew, 1987] [Chew et a l , 1985].

A search algorithm which guarantees optimality.

A search algorithm which tr ies  to explore nearest l inks f i r s t .

An early Interact ive Simulation Program Generator for ECSL. 
Uses an ACD as the main input. Written by Clementson (1982).

The Computer Aided Simulation Model. A team set up in 1982 at 
the London School of Economics to investigate computer aided 
simulation modelling [Balmer and Paul, 1986].

Control and Simulation Language. Developed by Buxton and 
Laski (1962) at IBM UK and Esso.

A search algorithm which t r ies  to explore long l inks f i r s t .

Discrete event system specification formalism. A 
hierarchical,  modular formalism [Kim and Zeig ler,  1987].

Extended Control and simulation Language. An extension of 
CSL. Written by Clementson (1982). Uses an a c t iv i ty  scan.

Extended Lancaster Simulation Environment. Simulation 
routines or ig ina l ly  created at Lancaster University and 
subsequently modified at the LSE [Crookes et a l , 1986]. After  
1987 upgrade, i t  is now called LIBSIM.

Simulation language combining discrete change, continuous 
change and mixed models. [Pritsker, 1974].
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HOCUS

ISPG

KBS

LANGEN

LIBSIM

LSE

NLUP

ROSS

SASIM

SEMANTIC
NETWORKS

SIMKIT

SIMSCRIPT

SIMULA

SIPDES

SMDE

SPIF

Simulation package. Uses an ACD as an input [Syzmankiewicz, 
1984].

Interactive Simulation Program Generator.

The Knowledge-based Simulation System. [Baskaran and Reddy, 
1984] [Reddy et a l , 1986]. renamed Simulation Craft.

Renamed to AUTOSIM during 1986.

Latest version of eLSE.

London School of Economics.

Natural Language Understanding and Processing.

Rand Object-oriented Simulation System. An english-1ike,  
interact ive object-orientated language implemented in LISP. 
[McArthur et a l , 1986].

Semantic Analyser in Simulation Methodology. Program 
implementing semantic modelling methodology [Barakat and Paul, 
1988].

A graphical Al knowledge-base. I t  is described in Rich 
(1983),

An object-orientated simulation language. Produced by 
In te l l icorp .  Requires KEE (the Knowledge Engineering 
Environment) running on a dedicated Hi-resolution graphics 
Lisp machine [Harmon and King, 1985].

A very popular commercial simulation language [Caci, 1976].

The f i r s t  object orientated language which was i n i t i a l l y  
designed as a discrete event simulation language [B ir twist le  
et a l ,  1979].

A Simulation Program Debugger using an Expert System.
[Doukidis and Paul, 1991]. Developed using the ASPES shell 
[Doukidis and Paul, 1987].

Simulation Model Development Prototype. Developed as a 
research prototype by Balci and Nance (1987).

Simulation Problem In te l l igent  Formulator. Program develop by 
Dr George Doukidis, which attempts natural language processing 
for a simulation. [Doukidis, 1985].
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TESS The extended simulation system [Stanbridge et a l , 1985].

T-PROLOG

TURBO

VAX

VS6

WFF

An object-oriented, Prolog based simulation language. A 
combined discrete/continuous version is avai lable, called TC- 
Prolog. Developed by Futo and his associates at the Inst i tu te  
for Coordination of Computer Techniques in Hungary. [Futo and 
Szeredi, 1982].

A very good Pascal compiler for an IBM PC.

DEC mini computer.

An advanced simulation program environment developed at LSE 
[Knox, 1988].

Well-Formed Formulas, used in predicate logic knowledge-bases.
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