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ABSTRACT

The thesis examines the possibility of applying & Markov planning
model to the Sudanese educational system. The limitations of the
available data published by the Sudanese Ministry of Education is

examined and the quality of the data discussed.

Study of the system establishes the presence of a bottleneck between
secondary and higher education due to shortages of places in the
latter. Two adaptations of the simple Markov model are proposed in
which the flow of students into higher education is determined by the
number of vacancies. The first model considers the case when a
capacity constraint exists in the first grade of a particular higher
education institute. In the second model it is the total size of
higher education which 1is assumed to be fixed and expansion or
contraction of the capacity constraints is allowed. For both models,

it is shown that a steady—state exists and can be evaluated.

A serious limitation of the available data is the lack of flow rates
which therefore must be estimated. The estimation methods available
assume & system that is constant over time. As the Sudanese
educational system is expanding an extension of the original
regression method was developed to account for growth. The procedure
was used to obtain estimates of the transition rates of students in
different parts of the Sudan. The fit of the model was good in the
majority of the cases and validating the prediction of the model with

newly published data was successful.

Lastly, a simulation program was developed which generated artificial
data sets from which transition rates were estimated. Sampling
distributions of these estimates were then obtained by repetitive
simulations. Studying these distributions showed the estimation
technique to be effective in terms of ability to estimate the true

transition rates and make reasonable predictions.
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CHAFTER I

INTRODUCTION

1.1 Review of the literature

Modelling social and economic phenomena often requires models which
are stochastic rather than deterministic. This 1is due to the
unpredictability of human behaviour and the uncertain nature of the
social environment. Models that are ﬁased on stochastic processes
are therefore often used to describe systems, gain insight into their
dynamics and predict their future behaviour wunder certain
assumptions. The success of modelling social and economic processes
is somewhat reflected in the diversity of applications; from consumer
behaviour Massy and co—-workers(1970) and Gupta(1986) to geographical
mobility Tziafetas(1980) and states of credit accounts Frydman,
Kallberg and Ka2o0(1985). More examples are given in Bhat(1984) who
also provides examples of applications in the biological sciences.

Bartholomew(1977a) gives an introduction to the analysis of data
arising from stochastic processes while a theoretical account of the

field and a full biblicgraphy is given in Bartholomew(1982).

One of the largest field of application of stochastic models has been
manpower and educational planning. Early examples go back to
Seal(1945) and Vajda(1947). Many of the applications have made use
of the discrete time Markev chain. Time is assumed to be discrete
either because changes in the process occur only at discrete points
of time (as in the case of education), or because a process which

develops continuously is observed only at discrete time points.



Individuals are grouped together in categories or grades (usually

hierarchial), according to characteristics they share in common such
as age, seniority etc. It is assumed that they move independently
between the grades and into and out of the system with fixed
transition probabilities. The central point of interest is the
distribution of numbers in the grades and the prediction of future
stocks and flows under various conditions. An account of the
application of the Markov model to manpower planning is given in
Bartholomew(1971) and in the textbook by Bartholomew and Forbes(1979)
which contains a full bibliography. Examples of the application of
the Markov model are many; it was used by Young and Almond(1961) and
later Leeson(1980) for predicting distributions of staff while
Sales(1971) applied it for a branch of the Civil Service. Gani(1963)
used it for projecting student enrollment in wuniversity. Other
applications in education include Thonstad(1969), Clough and
MacReynolds(1966), Kamat(1968), Armitage,Phillips and Davies(1970)
and Armitage,Smith and Alper(1969). More applications in education
are given by Stone(1965) and (1972), Balinsky and Reisman{1972) and

(1973) and Britney(1975).

The second main class of models of hierarchically graded manpower
systems are renewal models, In systems where the grade sizes are
fixed, renewal theory provides the mathematical foundation. The
application of renewal theory to manpower systems in introduced by
Bartholomew(19631}),(1976) and a full account is given in
Bartholomew(1982) and practical applications in Bartholomew and

Forbes(1979).
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Attempts have been make to generalize Markov meodels in order to
achieve more realistic applications. Moya—Angeller(1976) considers a
system which acts in an intermediate manner between the Markov and
Renewal model because there are capacity constraints which place
limits on the grade sizes. Once these limits are reached the surplus
has to be relocated in other grades. This is an extension of the
bottleneck  models introduced  earlier by Armitage and co~
workers{196%). Young and Vassiliou(l1974) also consider the problem
of capacity constraints by allowing the numbers promoted to depend
not only on the stock from which they come but also on the size of
the destination grade. A system in which transition probabilities
are changing over time cannot adequately be described by a simple
Markov chain model and requires a generalization. Kalamatianou(1984)
and (1988) discusses a model for responding to promotion blockages
where she assumes that 'pressure' is created when there is an
increase in the numbers of eligible employees that are passed over
for promotion. When managers are faced with a high 'pressure' for

promotion they respond by changing the promotion policy.

In addition to the widespread application of Markov models, research
has been undertaken on more theoretical aspects; on the limiting
properties of the model Vassiliou(1981),(1982) and Woodword(1983a),
the variances and covariances of the grade sizes Vassilou and
Gerontidis(1985) and on forecasting grade, age and length of service
distribution Woodward(1983b). De Stavola(1988) gives a number of
tests for departure form time homogeneity in Multistate Markov
processes. On the geometric probabilistic relationship in a Markov

nanpower model see Davies(1983) and Wegner(1985) argues for the use
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of simulation in corporate manpower planning.

Significant new advances have been made in the area of modelling
social processes. DBartholomew(1983) reviews recent developments and
gives a brief summary of the general literature on the subject,
Developments have taken place in the application of continuous time
models Plewis(1981) and Tuma, Hannan and Groenveld(1979). Exanples
of semi-Markov models were discussed by McClean{(1980), Thompson(1981)
and Davies(1985). Hassani(1980) discusses the application of semi-
Markov models in manpower planning and his thesis contains a full
bibliography. A more up-to— data analysis in given in a collectisn
of works edited by Ja&%en(l986). Another interesting development has
been the investigation of non—linear models; Bartholomew(1984) gives
a review of the relevant literature. An example of non~linearity is
provided by Conlisk(1976),{(1978) who first introduced the term
'interactive' Markov chain. One of the basic assumptions of the
Markov chain mode! is that individuals move independently of each
other. However in reality the behaviour of individuals is affected
by the behaviour of others. Conslink proposed to allow for this
interaction between individuals hy allowing the transition
probabilities of the Markov chain to be a function of the state

probability vector.

An area which has attracted a great deal of research is the theory of
control of Markov models. Abdellaoui(1%985) reviews the development
in the subject with regard to stochastic control in manpower planning
and gives a full bibliography. A full treatment is given in

Bartholomew(1982) which is developed from earlier work in Bartholomew
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(1977b), Forbes(1971), Davies(1973) and Vajda(1975). Bartholomew and
Forbes(1979) gives an elementary account of the theory in the context
of practical manpovwer planning. Some examples of recent work
includes Davies(1982), Haigh(1983) on the maintainabiiity of manpower
structures and Abdallaocui(1987) on the probability of maintaining or

attaining a structure in one step.

One of the practical problems in manpower planning applications is
the estimation of the parameters of the Markov model. The techniques
in use vary with the type of data that is available. Collins(1974)
discusses the estimation of Markov transition probabilities when
micro—~unit (flow data) is available. The estimators in this case are
the maximum likelihood estimators; the observed proportions of flows
or in other words the ratio of the total flow to the total stock.
More on the mnethods of maximum likelihood for this type of
application is given by Anderson and Goodman(1957). The general
advances in data collection and in particular the availability of
detailed flow data has made this method the most widespread in

empirical applications of Markov chains.

Sometimes ,however, what is only available is aggregate stock
(macro) data giving the proportions or numbers observed for each
state at each moment of time. Lee, Judge and Zellner(1970) presented
a number of different estimators and compared them by simulations.
Their main approach was based on regression analyses and it led to
many empirical applications to mention a few; in consumer behaviour
Sherif and Thompson{1980), Kelton and Kelton(1982) and voter

transition behaviour McCarthy and Ryan(1977). The work of Lee and
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co~workers(1970) also gave rise to work on the statistical problems

involved;see for example MacRae(1977), Kelton(1981), Van der
Plas(1983), McLeish(1984) and Kelton and Kelton(1984). Kalbfleish
and Lawless(1984) introduced a weighted least-square estimator and
compared it with previous estimators. Lawless and McLeish(1984)
compared the information content of macro data with that of complete
micro data. They were able to show that in some‘instances, aggregate
data can give good estimation of equilibrium distributions and mean
occupancy numbers for states in a chain. More evidence on the
possibility of obtaining good estimates form macro data is given in
asymptotic terms by Thorburn(1982) and with simulation earlier by
Lee,Judge and Zellner(1970), Leeflang(1974) suggested the
combination of micre and macro data in the estimation of transition
probabilities. An example in which both micro and macro data is
available 1is the area of consumer behaviour where micro data is
obtained from panels of households and macro data from retail store
audits. More work on using such combined data is given in

Rosengvist{(1986).

The above review is by no means inclusive but many of the references
given will lead to others. Of note Bartholomew(1982) and (1983)
contains many references on the stochastic modelling of social
processes that have not been mentioned. With regard to the area of
parameter estimation of the Markov model, Rosengvist(1986) provides a
full bibliography. For a more comprehensive but non—-statistical
study on manpower planning in the Sudan see A1i(1986), which leads to

many references specific to the Sudanese application.
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1.2 _Objectives and hypotheses of the research

The following section reviews the objectives and hypothesis of the
thesis, My first aim wag to carry out an application of a Markov
planning model on the educational system in the Sudan with emphasis
on the movement of students between secondary and higher education.
This would be the first time such an application had been made on
Sudanese education and could pave the way for future stochastic
modelling of the system. Education at all levels is limited; only
407 of all those aged 7-18 go to school. Thus education is neither
universal nor compulsory which makes a demographic approach to
planning, based on predicting school-age population, unrealistic,
What can be done is study the stocks and flows of the system,
describe its dynamics and make predictions based on the present

propensities.

A study of the data available ( in the form of annual official
statistics published by the Sudanese Ministry of Education), revealed
serious limitations that posed problems in applying the model. The
major limitation was the unavailability of flow data. While detailed
stock data was available and presented in terms of the total numbers
in each grade by region and by sex, flow figures on the numbers being
promoted, those repeating and any wastage rates were unavailable. It
was therefore necessary to concentrate on the problem of estimating
transition probabilities from a sequence of stock data assuming an

under lying Markov process.

Studying the data on secondary and higher education revealed that
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shortages of places in the latter restricts the entrance of students.
The demand for higher education is greater than its capacity limits
and this excess of demand over supply results in an 'overspill' of
eligible students. Of this 'overspill' a proportion leave the
system and a proportion decide to remsain and increase the number of
applicants in the following year. Such a bottleneck is reflected in
the steadily falling proportion of eligible students who are admitted
each year into higher education. This breaks down the Markovian
assumptions of 'push flows' (where the impetus for change resides in
the conditions in the state in which the flow originates) and there

is a neced to consider adaptations to the simple Markov model.

Taking the above two points the hypotheses being tested can be
sunmarized as follows:
1. Within secondary schools, the movement of students
follows a3 discrete time Markov process. Differences
might exist, however, between the transition rates of
boys and girls and between provinces which makes it
necessary to model each separately.
2. Due to shortages of places in higher education, the
movement of students into higher education is restricted
and the Markov assumptions do not hold. Such a system
with a bottleneck can be modelled in terms of an
intermediate model between the Markov model and the
Renewal model where flows take place only to fill
vacancies.
3. The unavailability of flow data is not an obstacle to

applying a flow model as the transition probabilities can
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be estimated adequately. The estimation methods
available that assume a constant-sized system can be
extended in order to account for expansion as is the case

for the Sudanese system.

Through testing the above hypotheses, the aim is also to generalize
bottleneck models in order to allow expansion or contraction of the
capacity limits, and extend the method of estimating transition

probabilities from stock data for use on expanding systems.

1.3 Structure of the thesis

The thesis is made up of six chapters. Chapter I as an introduction
reviews the relevant literature, states the objectives and hypothesis

of the research and outlines the structure of the thesis.

Chapter Il has two aims : to give a general description of the
Sudanese educational system as well as highlight particular problems
that are examined in more detail in the following chapters. These
are the presence of a bottleneck between secondary and higher
education and the lack of detailed flow data. The chapter also

includes a discussion on the quality of the available data.

In Chapter 111 two bottleneck models are proposed to the model the
movements of students from secondary to higher education. The first
considers the case when a capacity constraint exists in the first
grade of a particular higher educational institute. In the second

model, it is the total size of higher education which is assumed to
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be fixed. The model allows for the expansion or contraction of the
capacity constraints and is thus a more generalized bottleneck model.
For both models it is shown that a steady-state exists and can be
evaluated. Numerical examples using hypothetical data are also

given,

Chapter IV gives an overview of the available methods for estimating
transition probabilities from aggregate stock data. .An extension of
the original regression method for expanding systems is presented.
The procedure is applied to the data and transition probabilities of
students in different parts of the country are estimated. The

predictions of the model are then verified with newly published data.

In Chapter V a simulation program is developed in order to assess the
effectiveness of the estimation procedure pregented in Chapter IV,
The simulation set generates artificial data upon which the model is
fitted and prediction errors are calculated. The chapter then
studies the zampling distributions of the estimates obtained from

repetitive simulations under various conditions.

As a final chapter, Chapter VI presents the conclusions of the

research and offers some suggestions for future research.
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CHAPTER IX

THE SUDANESE EDUCATIONAL SYSTEM

The Sudan is the largest country in Africa covering an area of 2.5
million square kilometres, nearly one-tenth that of the continent.
It shares borders with Egypt and Libya to the north, Chad, Central
African Republic and Zaire to the west, Uganda and Kenya to the south

and Lthiopia and the Red Sea to the East.

The Sudan is thinly populated with a population of about 22.2 million
and has an annual growth rate of about 2.8%. The age structure is
very young with 46% of the population aged under 15 and only 3% aged
65 and over. The country is predominantly rural with 69% of the

population living in rural communities and 11% of them nomads.

The Sudan is one of the world's twenty-five least developed countries
with a per capita GNP of $320. This is reflected in a poor
infrastructure; transport is slow and communications inefficient.
The economy is largely based on agriculture with cotton constituting

95% of all exports.

Formal education began in the Sudan in 1956. Since then the
expansion has been rapid with an aim of reaching universal and
compul sory education by the year 2000, This is however unlikely for
as will be \ShOWn later only 39.7% of those aged 7-18 in 1986/87 went

to school.
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2.1 THE GENERAL STRUCTURE OF THE SUDANESE EDUCATION SYSTEM

2.1.1 Levels of education and types of schools.

General education in the Sudan is divided into 3 levels:

-Primary education (6 years) from agzes 7-13.

~-Intermediate education (3 years) from age 13-16.

-3econdary education (3 years) from age 16-19.

Primary education may be preceded non-formally by pre—-schools
{present in cities and towns) or religious schools {(khalwas) in the
rural areas. Secondary education is divided into academic secondary
of 3 years duration and secondary technical education of 4 years
duration. At the secendary level there is also the option of Teacher

Training Institutes of 4 years duration.

Student movement within each level is determined by passing
examinations set by the school authorities. If a student fails the
examination he is allowed to repeat. ’Movements from one level to the
next, however, are not automatic. As a minimum reguirement, students
must pass standard national examinations set by the Ministry of
Education. If a student passes this examination he obtains a school
certificate depending on the level he has reached. For example a
student who has completed primary school and passed the primafy
national examination obtaing a Primary School Certificate. As places
are limited from one level to the next students are expected to
achieve more than the minimum requirements and the examinations are

highly competitive. If a student fails the national examination he

is not normally allowed to repeat but may transfer to another school.
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There are broadly 4 types of schools:

(i) GOVERNMENT SCHOOLS: These comprise the majority of schools and
the bulk of all students (about 94% of all students and 92% of all
schools). They are financed by the central government as well as
regional and local councils. The administration is in the hands of
the respective regional governments who follow the weducational
policies set by the central Ministry of Education. The curricula at
all levels 1is standard and is set by the central Ministry of
Education which also publishes all school books.

(ii) AIDED SCHOOLS: These schools are mainly found in rural areas and
are partially financed by the government. About 6% of all schools in
the Sudan are aided and they are attended by 4% of the total number
of students,

(i:h PRIVATE EDUCATION: This only consists of about 2% of . all
students and schools.

(v) CATHOLIC AND EGYFTIAN MISSION SCHOOLS: These schools are financed
by privation donations and the Egyptian government respectively with
a nominal contribution from the Sudanese Ministry of Education. They
cover all levels of education including a few secondary technical
schools yet they are less than 1% of the total number of schools and

students.

2.1.2 Student Enrollment by Level and Sex.

Table 2.1.1 below shows the enrollment ratios of students by level
and sex for the year 1986/87 which 1is the latest available published
statistics. Higher education is also included. Although the number

of males is always grater than the number of females at all levels,
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the female enrollment ratic is high compared to other African
countries. The fact that the enrollment ratio remains nearly
constant between primary, intermediate and secondary education might
indicate that the transition rates between these stages are equal for
bath males and females. With regard to higher education ,however,
the ratio drops indicating a difference between the sexes in the

transition rate from secondary school to higher education.

The table also shows the distribution of students among the various
levels. The number of students drops the higher they climb the
educational ladder. Although this 1is a reflection of the population
structure of which more will be shown later, it is also related to

the shortages of places and the bottlenscks between the levels.

Table 2.1.1 Student Enroliment by Level! and Sex

LEVEL MALES FEMALES TOTAL=100%

PRIMARY 1081295 749282 1830577
59.07% 40.93%

INTERMED. 211638 165960 377598
56.05% 43.95%

SECONDARY 94224 71602 165826
56.82% 43.18%

HIGHER 25114 14380 39494
63.59% 36.41%

TOTAL 1412271 1001224 2413495
58.52% 41.48%

Source: Official educational statistics 1986/87 published by the
Ministry of Education.

2.1.3 Enrollment to Population Ratios

Table 2.1.2 compares between student population and school age
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population from the years 1961/62 and 1986/87. The aim is to show
the percentage of the population that goes to school as well as the

expansion that has taken place in the 25 years.

Table 2.1.2 Comparison of enrollment to population ratios between

1961/62 and 1984/85.

1961762 1986/87

PRIMARY ED.(7-13)

No. of students 335089 1830577
Population 7-13 1373000 3559083
%Rate of Enroll 24 .4% 51.4%
INTERMEDIATE(13—-16)

No. of students 56714 377598
Population 13-16 1201000 1325297
%Rate of Enrol. 4,.8% 28.5%
SECONDARY (16-19)

No. of students 18063 195708
Population 16-19 1050000 1172647
%.Rate of Enrol. 1.7% 16.7%
TOTAL (7-19)

No. of students 409866 2403883
Population 7-19 3624000 6057027
%Rate of Enrol. 11.3% 39.69%

Source: Statistics 1986/87 published by the Ministry of Education.

As shown by the table, the percentage rate of enrollment is higher at
the primary level and then drops at the intermediate and secondary
levels. This characteristic has not changed in the 25 year period
although considerable expansion has taken place. The total rate of
enrollment has more than trebled in the period, however still less
than half of those aged 7-19 receive some kind of education. The
rate 1is small and shows that it will be a long time before universal
education can be reached. Oﬁe of the factors involved is the rise in
population. For the total age range congidered (7-19), the
population has increased by 67.1% and so although the number of
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students has increased by 486.5% the effect in terms of rate

of enrollment is not as dramatic.

Table 2.1.3 below shows the population and the ratios of enrollment
te population within the various provinces of the country. The

figures are given separately for each level and for each sex.

Table 2.1.3 Ratios of enrollment to population by province, sex and
level of education.

PROVINCE PRIMARY INTERMEDIATE SECONDARY
BOYS GIRLS BOYS GIRLS BOYS GIRLS
Northern 94.5 88.9 67.8 69.1 42.3 37.7
Khartoum 90.4 81.4 65.3 64.0 42,9 44,6
Central 77.1 64.6 42.3 35.0 24.5 16.4
Eastern 52.3 36.9 26.1 20.9 15.2 9.9
Kordofan 58.0 34.9 26.6 20.2 17.1 9.7
Darfur 53.7 28.1 18.4 9.6 10.8 5.0
Upper Nile 34.1 10.5 9.3 3.4 5.6 1.2
B.-elGhazal 13.4 5.5 5.9 2.1 4.9 1.5
Equateria 50.4 29.6 20.1 8.4 14.0 4.1
All Sudan 59.4 43.1 31.3 25.5 19.4 13.9

Source: Official statistics 1986/87 published by Ministry of

Education.

The table shows that education is not distributed equally among the
difference geographical areas of the country. The differences are
great between the areas; although 88.9% of girls attend primary
schoo!l in the Northern oprovince, only 5.5% attend in the Bahr-el-
Ghazal province. The Northern province and the capital Khartoum have
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the highest enrollment to population ratios at all educational levels
and for both sexes. The most heavily populated (for the relevant age
group) Central province also has a high enrollment ratio. This

reflects a high concentration of schools in the capital Khartoum and
its neighbouring provinces (the Northern and central provinces). The
differences among the levels reflects what was shown in table 1.2
that the enrollment ratios drop further along the educational ladder.
This characteristic applies to both girls and boys although the
enrolliment ratios for girls is as expected from table 1.1 always

smaller.

2.2_STATISTICS FOR SECONDARY AND HIGHER EDUCATION 1979/80-86/87

2.2.1 Secondary Education (zovernment schools)

The following discussion is related to government secondary schools.
As was shown in section 2.1.1, government schools make up the
overwhelming bulk of all students and schools and are therefor the
most important. Table 2.2.]1 below gives the total number of students
in each of the three grades that make up secondary education, The
number of candidates who at the end of grade 3 have sat for the

Secondary School Examination is also given.
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Table 2.2.1_Secondary education by grade for 1979/80-1986/87 and the

number of candidates for the Secondary School Examination.

GRADES
YEAR 1 2 3 TOTAL CANDIDATES
791780 22003 22607 21692 66302 22981
80/81 27484 26479 27598 81561 25839
81/82 32056 28530 28207 88790 25149
82/83 32060 32558 27120 91730 28363
83/84 33318 30817 33316 T 97451 33052
84/85 37240 31e36 31658 100534 30978
85/86 37314 36924 32296 106534 32176
86/87 40841 38105 38056 117002 38605

Source: Official educational statistics 1979/80-1986/87
published by the Ministry of Education.

It can be seen that the total size of the system is expanding
steadily and consequently the nunmber of candidategs 1is also
increasing. The distribution among the grades seems to point at high
repetition rates and low wastage rates. This can be seen by studying
a cohort of students as they move up the educational ladder. For
example the cohoft who were in grade 1 in 79/80 numbered 22003 and in
80/81 when they were in grade 2 their number rose to 26479. Apart
from errors, such an increase can only be attributed to high

repetition, low wastage or a combination of the two.

The table also shows discrepancies between the numbers enroled in
grade 3 and those who sat for the examination at the end of the year,
If the latter number is smaller the difference can be attributed to

dropouts who although have been registered in grade 3 did not sit for
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the examination. It is difficult, however, to account for the
opposite as in 79/80, 82/83 and 86/87. Most likely the discrepancy
is due to data collection errors; with the number of candidates being

more reliable.

2.2.2 Examination Regsults

Table 2.2.2 below gives the number of candidates from Secondary
schools who saﬁ for the Secondary School Examinations and the
percentage of those who passed by type of school. Pass rates are
printed below the number of candidates. External candidates are
those who are not registered in a school and are mainly students
re-taking the examination. The classification Uni?n scheools includes

from 1982/83 private as well as Union schools.

A pass in the Secondary School examination is a minimum requirement
for proceeding into higher education. Once a student has achieved
this minimum requirement he is not allowed to re—enrel in a
government school and nust register as an external student or in

union or aided schools in order to re—take the examination again.

The expansion in secondary education is reflected in the rising
number of candidates sitting for the examinations every year. The
numbers have risen by a total of 77.4% in the period 1980-1987. This
had a considerable effect on increasing the demand for higher

education.
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Table 2.2.2 CANDIDATES WHO SAT FOR THE SECONDARY SCHOOL EXAMINATION
AND PASS RATES BY TYPE OF SCHOOL.

TYPE OF SCHOOL

Year Gov. Aided Union External Private Total
/180 22981 8120 18208 7278 261 56848
71% 34,8% 40.6% 65.7% 40.6% 55.3%
/181 25839 6292 21963 7748 162 62004
71.1% 35.8% 43,6% 70.7% 58.6% 58.0%
/82 25149 7020 24484 9175 165 65993
76.4% 38.1% 42 .4% 68.7% 53.9% 58.6%
183 28363 4945 24731 10943 68982
79.3% 40.6% 52.1% 75.0% 66.1%
184 33052 5038n 21991 13992 74073
77.1% 37.9% 58.1% 76.7% 68.9%
185 30978 4863 27150 15409 78377
77 .6% 34.0% 58.47% 76.8% 68.1%
/186 32176 5404 28776 15498 81854
79.3% 35.5% 55.0% 77.3% 67.5%
/187 38605 6677 36630 18920 100832
70.6% 30.3% 48.5% 70.1% 59.8%

Source: Official educational statistics 79/80-86/87 published by

the Ministry of Education.

It can be seen that the pass rate has been rising steadily from 1980
to 1986 and no doubt contributing to the increased demand for higher
education. However 1987 shows a sudden drop in the pass rate in all
types of school. It would be necessary to have the figures for 1988
and onwards to determine if such a drop is significant and perhaps a

deliberate step by the authorities to curb the rising demand.

The number of external students has more than doubled in the 8 year
period (a rise of 169%). This has been the largest rate of increase
in the period; government schools have increased their candidates by
68%, Union schools by 101%Z and the number of ‘'Aided' school
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candidates has fallen. External students' relative proportion in
terms of the total number of candidates has also risen from 12.8% in
1979/80 to 18.7% in 1986/87. It is also notable that their pass rates

like those of the government schoo! candidates are higher.

As external students are made up mostly of students re—taking the
examination in the hope of obtaining a place in higher education,
their growth is a reflection of the great demand for higher education
and the shortages of places available. They are of central importance
in any bottleneck analysis as they represent the ‘'overspill' of

frustrated applicants to higher education.

2.2.3 Higsher Education

Table 2.2.3 gives the total number of students in each university for
the period 1972/73 to 1984/85. The percentage of females in higher
education is only available at some years and is given below the
total figure. Gezira University and Juba University were only
established in 1977 with a total size corresponding to their intake.
It can be seen that higher education has expanded rapidly over the
period with the total size more than doubling. This has been partly
as a result of the new universities (Gezira and Juba) but mainly due
to the large expansion of some of the already established
institutions. Most notable is Cairo University Khartoum branch (with
about 50% of the total student body), which has increased in size by
161% in the period 1972-1985. The Islamic university (established in
the late 60's) has also increased by 333% while other higher

institutions have increased their numbers by 86,5%.
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Table 2.2.3 Total Number of students in higher education by type of
institution 1972/73-1984/85

INSTITUTIONS

Year Khartoum Gezira Juba Cairo Islamic _ Others Total
173 5811 7708 504 2185 16328
174 6359 11656 609 2313 18762
175 6942 13012 754 1702 22069
176 7235 10200 1016 2134 21324
177 7276 10288 1162 2228 10887
178 7912 10 128 12314 1262 2537 24117
179 8020 215 325 13591 1506 2656 25883
/80 7920 366 409 13808 1585 2928 7016
/81 8111 592 577 14810 1661 2922 28673
182 8424 797 650 18271 1765 3402 33309
183 8059 899 674 20385 1855 3724 35596
26 6% 22.4% 17.8% 39.4% 28.8% 27.2% 33.49%
/84 - - - - - -
185 8313 965 1216 20096 2184 4077 36851
30.7% 28.3% 14.2% 42.8%  29.9% 30.3% 36.6%

Source: Official statistics published by the Ministry of Education.

In sharp <contrast to these overall high rates of expansion,
University of Khartoum has increased by only 43% with very little
expansion taking place in the B80's. It therefore appears that the
university 1is not attempting to adjust in order to meet the

increasing demand of school leavers for a higher education.
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2.3 Evidence of the Presence of a Bottleneck between Secondary and

Higher Education.

Table 2.3.1 gives the intake of students into higher education in the
period 1977/78-1982/83. These figures show the flow of students
between secondary school and higher education. Separate figures for

males and females are not available nor are figures after 83/84.

Table 2.3.1 Numbers admitted into higher education by type of

institution for the period 1977/78-1982/83

INSTITUTIONS
Year Khartoum Gezira Juba Cairo Islamic  Others Total
178 1988 10 128 4051 359 917 7453
179 1748 209 169 3412 335 1004 6877
/180 1695 178 81 2995 359 888 6196
181 1806 205 127 2942 463 1313 6856
182 1827 227 132 3050 411 1149 6796
/183 1739 202 171 5008 343 1633 9096

Source: Official statistics published by the Ministry of Education.

Unlike the clear picture of expansion presented by the figures on the
total size of higher education, the intake of students is shown to
fluctuate from year to year. The number of students admitted into
University of Khartoum has fallen from 1988 to 1695 in 1978-1980 and
the rise in intake in 80/81 and 81/82 did not continue into 82/83.
Cairo University shows similar fluctuation with a falling intake
until 81 and a sharp rise taking place in '83. For the relatively

new universities Cezira, Juba and the Islamic University, the numbers
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are in general rising. The same is true for the other institutions
made up mostly of Technical Institutes. Thus the picture of
expansion conveyed by Table 2.2.3 is misleading in the sense that
higher demand is not being met by an increase in intake. Such an
expansion 1in the size of higher education institutions unmatched by
an expansion in intake can only be explained by high repetition,

lower wastage rates or both in higher education.

The demand for University of Khartoum is the highest mainly because
it is the oldest and the fact that it is not expanding sufficiently
leads to a large 'overspill' of frustrated applicants. Such students
will often proceed to the other institutes of education but part of
the 'overspill' will re—take the examination in the following year as
an external student. Due to this, the following discussion will
distinguish between the flow of students into Khartoum University and

the flow into all higher education institutes.

Using the above flow figures it is possible to estimate the
proportion of students who succeed in making the move from secondary
school into higher education. Table 2.3.2 gives two types of
proportions; the proportion of all candidates and the proportion of
all those who have passed (i.e. met the minimum requirement for
admission) who enter University of Khartoum or any higher institution
including Khartoum University. The proportions are presented in

terms of three decimal places because of their small magnitude.
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Table 2.3.2 Proportions of candidates and those who passed who_ enter

higher education and those who enter University of Khartoum.

Proportion = flow/candidates Proportion = flow/passes

Year Khartoum U. Higher Ed. Khartoum U Higher Ed.
177 0.060 0.226 0.126 0.437
178 0.043 0,170 0.068 0.266
/79 0.036 0.131 0.063 0.229
/80 0.030 0.114 0.054 0.205
/181 0.028 0.103 0.047 0.176
182 0.023 0.128 0.040 0.218

The fact that only s small proportion of students make the transition
to higher education does not by itself indicate the presence of a
bottleneck. The important factor determining the presence of a
bottleneck is whether there is a significant change in the transition
of students over time and if that transition is determined by the
scarcity of places. From Table 2.3.2 it can be seen that the
proportion of students gaining admission into University of Khartoum
or in general into any institution of higher education, is falling
steadily. The proportions of students who after passing their exams
gain entrance are naturally higher than the proportions of candidates

however their pattern is identical.

The fact that the transition proportions between secondary and higher
education are not constant will result in a poor fit of the simple
Markov model. This is because constant transition probabilities over
time is one of the basic assumptions of the Markov model. For a model
to adequately describe the Sudanese system, it must take account of
the presence of a bottleneck. For this purpose, bottleneck models

that could describe the Sudanese system are discussed in Chapter III.
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2.4 Limitations of the Data

In the sections above, examples have bgen given of the type of data
that is officially published each year by the Ministry of Education.
The data is in the form of stock figures that are given by sex, type
of school, geographical areas etc. No flow figures however are
available with the exception of the figures on the intake into higher
education. Even so such figures are not sufficiently detailed as
they give only the numbers accepted into university without
specifying the origin of the students. It is unknown what percentage
of students who enter university are from government schools and

whether they are first-time or second—time repeaters.

The omitted flow figures include repetition rates which must be taken
into account as repetition 1ig allowed at all school levels. QOther
omitted figures include wastage rategs by grade, pass rates,
applications to university by type of college etc. Also unknown is

the destination of school leavers by sex, region, type of school etc.

There are also no available figures relating to age.. The numbers of
students by age who leave the educational system is unknown. The
numbers who enter higher education by age is also unknown. Future
expected numbers based on population projections are also not

available.

The type of data available imposes limitations on the kind of model
that can be used for educational planning purposes. The

unavailability of flow data makes it necessary to use methods for



estinmating repetition and wastage rates before proceeding with any
form of flow modelling. Chapter IV is devoted to the problem of
estimating transition rates from stock dats as this is a major
problem in the present application of modelling the education system

in the Sudan.

2.5 Errors in the data

Data c¢ollection errors restrict the application of statistical
techniques and cast doubts on the results obtained. This section
describes the errors in the data that make it difficult to apply a
model which relies on the changes in the numbers of students over
time. Examples are given of the typical data collection errors in
secondary schools' statistics as it is important to assess the
quality of the data before proceeding with any analysis.

Table 2.5.1 gives the numbers in each grade in the Northern province
by sex and the number of schools for the period /78-/86.

Table 2.5.1 Northern Province

Boys Girls
GRADES GRADES
1 2 3 Sch 1 2 3 Sch
/78 1430 1143 895 7 887 516 390 5
/79 1284 1253 1218 8 974 742 415 7
/80 1315 1306 1414 9 1135 930 752 10
/81 1399 1324 1331 9 1297 1280 1149 11
/82 1401 1392 1270 9 1433 1306 1291 11
/83 1348 1333 1315 9 1404 1403 1446 11
/84 1336 1253 1290 9 1352 1346 1474 11
/85 1336 1253 1290 9 1352 1346 1474 11
/86 1334 1224 1089 9 1479 1352 1354 11

Source: Official statistics published by the Ministry of Education.
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The data for the Northern province illustrates many of the errors
that are found repeatedly elsewhere throughout the different
provinces. The number of schools from which data is collected as can
be seen, differs from year to year. If a new school has been
established (and this is the case sometimes), the effect would only
be felt in grade 1. For example with regard to the girls' data in
/80 the number of schools for which data is collected rises from 7 to
10; the difference is only observed in grade 1 and grades 2 and 3
appear unaffected by these added schools. This confirms that these

are new schools.

A problem exists however when an already established school is added
or perhaps was not added in the previous year. In this case all the
grades are affected. This can be seen by looking at the boys data
for the years [/79-/80 when the number of schools rises from 8 to 9.
It can be seen that all the grades are affected particularly grade 3

which is much larger than grade 2 was in the previous year by an
amount which is unlikely to be attributed to repetition. This must
be because an already established school was added. For the giris
data a rise in the number of schools from 10 to 11 in /80~/81 appears
to affect all the grades and must be due to an already established

school being added.

This type of error reduces the sequence of years that can be used for
modelling purposes. It would be necessary to model for two sets of
time periods, one period which had ignored this particular school! and
a second period which had included this school. Obviously if such an

error occurs frequently, there would not be a sufficient sequence of
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vears for estimation purposes.

Another type of error occurs when in a particular year, statistics
are not collected and the previous year's figures are used to form
the overall national aggregate. In the Northern province, this took
place in /85 and it can be seen that the figures are identical to
those of /84. Thus in modelling the system the figures /85 must be
considered as missing values. This reduces again the sequence of

time periods that can be used.

Table 2.5.2 below gives the number of students in each grade of

secondary school for the capital province of Khartoum.

Table 2.5.2 Khartoum Province

Boys Girls
GRADES GRADES
1 2 3 Sch. 1 2 3 Sch.

178 2250 2083 2326 11 1120 965 915 5
179 2715 2467 2247 11 1122 1151 1609 5
/80 2081 2675 2556 11 1009 1137 1159 5
/81 3076 2992 3499 17 ' 2295 1660 1795 13
182 3234 3292 3544 18 2948 2832 2272 17
/83 2366 3038 2452 12 2010 2289 1940 12
184 3311 2528 3010 15 2834 2474 2488 13
/85 4004 3032 2887 19 3179 2389 2059 19
/186 4294 4281 3249 22 4558 4043 3444 26

Source: Official statistics published by the Ministry of Education.

Khartoum is the capital of Sudan and has 30% of all secondary schools
in the country. In spite of the fact that it is an urban area and

central, the quality of the data collected is very poor. The number
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of schools given varies greatly from year to year., In the case when
the number of schools drops it is difficult to assess whether a drop
in the data is due to natural wastage or the exclusion of a
particular schools. Although the first 3 years appear to be free of
error, between /80-/82 data on additional schools was being collected
as can be seen from the very large discrepancy between the size of
grade 2 in a particular year; a discrepancy which is too large to be
explained by high repetition. Other wurban areas exhibit the same
errors as those shown above for the Khartoum province. The Gezira
province which has 26% of all secondary schools alsoc shows errors due
to different numbers of schools being counted. It is in provinces
with small numbers of students that the data seems to be relatively

free of errors arising from adding or ignoring particular schools.

In very remote areas especially in the south, the data is again very
poor. This is due to the difficulties in communications and the long
distances between such areas. Statistics are not collected annually
and for a particular year, the previous yvear's figures might be used
to form the overall national aggregate. These provinces include
Jonglei, Upper Nile, Lakes, Bahr El GChazal and East and West
Equatoria. In certain areas there are no schools for girls while in
other areas statistics for girls were not collected for certain years
(Bahr E! Ghazal, Upper Nile). In West Equatoria, it appears that
schools for both girls and boys were started only in /79 and the
process can be seen from the beginning. However the data collected
is very poor; for some grades statistics were not collected, at some

years no figures are given etc.
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From the above it can be seen that using total aggregate figures for
the whole country in order to model the system would inevitably
result in a poor fit due to the many errors that are present in the
data. It can only be possible to model certain provinces for certain
time periods and hope that this would make it possible to reach
conclusions about the suitability of a particular mode! in describing
the whole gsystem. Therefore in Chapter 1V, the attempt to obtain
estimates of the transition probabilities of secondary school
students is restricted ¢to those provinces in which data collection

errors are minimum.
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CHAPTER IITXI

FILOW MODEILS FOR BOTTLENECK

SYSTEMS

3.1 Intermediate Models in Manpower Planning

In discrete time Markov models, individuals are classified into
grades according to characteristics they share in common such as age,
length of service etc. Movements between the gradesg and from and to
the outside world are assumed to be independent and time—homogenous.
It is also assumed that all members within a grade share the same
transition probabilities of movement. The expected stock number
denoted by n in a particular grade {(say grade j) is then related by
the difference equation:

nj(T+1}= Eni(T)pij + R(T)rj (the summation 1is over

i=1,2,...8). (3.1)

pij is the transition probability of movement from grade i to
grade j.
R(T) is the total number of new entrants to the system.
rj is the probability that the new recruit enters grade
j. The tetal number of grades in the system is s.

This equation is used for predicting future stock sizes and for

finding the steady state structure of the systen.

The other main class of transition models applied to manpower
planning are models based on Renewal theory. Like the Markov models,
individuals are classified into grades and transition between grades

and from and to the outside world are governed by probability laws.
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The main difference 1is that while 1in the Markovian models the
transition probabilities are fixed, in the Renewal models the grade
sizes are fixed. BHence while promotion and wastage can "push" flows
in the former, promotion and recruitment in the Renewal models can

only take place to fill vacancies and are as such "pull" flows,

Although the Markov <chain models have demonstrated robustness in
practice, at certain stages in many systems the assumptions of the
renewal models are more realistic. In many organisations, the grade
sizes are restricted for financial or even practical reasons and even
if they were allowed to vary that would entail a considerable time
lag and the sizes would be known in advance. The fact that in
practice many systems behaved in an intermediate way between Markov
models and reneval models, led some writers to develop
generalizations of the Markov model which could be termed

Intermediate Models. These models in different ways introduced the

concept of flow constraints.

Young and Vassiliou(l974) developed a model in  which the number
promoted does not only depend on the numbers available for promotion
as in the Markov model but on the stock of the destination grade.
Armitage, Smith and Alper(1969) introduced bottleneck systems for
educational planning as an enlargement of simpler models because
"movements cannct be at all times and all places entirely free and
without restrictions®. They distinguished between desired transition
proportions and actual transition proportions determined by the
provision of places and the selection procedures adopted by admission

authorities. Building on their ideas Moya—-Angeler(1976) considered a
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special case of a bottleneck system with the following assumptions:
1. From a certain time onwards the promotions to some grades
are determined only by the number of vacancies because there
are capacity constraints on the grade sizes.
2. Once the limits of the grade sizes are reached, an
overspill occurs which has to be allocated to other grades. The
overspill is the excess of the demand over the supply.
3. When a grade has a capacity limit, this value nmust be
reached and from then on maintained.
Thus the system behaves as an ordinary Markov model wuntil the
capacity limit 1ig reached in some grade. From then on the size of
the grade would be fixed at its capacity limit and the number of
promotions and will be determined by the vacancies arising in such a
grade. From the total number of people able to be promoted there
will be a number that cannot be promoted. Of this number of
frustrated promotions there will be a proportion that decide to stay
in the system and remain in the grade in which they were. The rest

will leave the systen.

The two models proposed 1in this chapter are extensions on Moya—
dngeller's bottleneck model described above. In the first model the
proportion of frustrated promotions that stay in the system is no
longer fixed but is a random variable. The second model allows for

expansion and contraction of the capacity constraints.

3.2 Sudanese education as an example of a bottleneck system.

Educational systems are typical of systems where shortages exist
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usually in the movement of students f;om secondary school to
university. The number of places in universities can be and often is
restricted due to a number of reasons and the demand for places very
often exceeds the supply. As seen in Chapter II, the Sudanese
educational system presents such an example. Although still far from
achieving wuniversal education, the system has witnessed massive
expansion in the past decades. This was reflected in the increased
numbers applying to wuniversities and other institutes of higher
education. The expansion of higher education has not matched the
number of potential entrants with results that admission
qualifications have been increasingly more stringent. As repetition
of the Secondary Schoo! Certificate (the equivalent of 0 levels but
with which a student may enter university directly) is allowed, the
number of repeaters has also increased with the hope of obtaining the

necesgsary qualifications.

Developing extensions to Moya—-Angeler's model can be approached
through a study of the Sudanese system. In both of the models
presented in the following sections, secondary education (which in
the Sudan covers 3 years) is treated as the first grades in a
hierarchical system which would include university education. Thus
in talking about entrants to university we would not be talking about
recruitment but about "promotion" from the last year of secondary
school. Although such a classification is not intuitive it enables
the discussion of the problem in terms of a promotion bottleneck.
Such a classification, however, carries the inherent assumption that
all students who fulfil the entrance qualifications want to enter

university.
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In Model One a capacity constraint exists in the first grade of the
country's main university, the University of Xhartoum. Demand for
this university is high and it can be assumed to be a first choice
for all students. Because of the capacity constraint not all
qualified students are accepted and they must therefore seek
alternatives. The proportion of these frustrated promotions who
decide to remain in the system is no longer fixed as in the previous
models but is a function of the number of alternatives available to
them. It is assumed that the more alternatives that are available
the less likely students will be to remain at the secondary school
level by retaking the examination. Of central interest would be the
possibility of the alternatives increasing sufficiently in time to
remove the bottleneck. Model Two is a much more realistic and
flexible version of Moya-Angeler's model and considers the presence
of a bottleneck in systems which are expanding, contracting or
remaining constant. In this model a capacity constraint exists on
the total size of the higher educational system rather than a

particular university.

3.3 Bottleneck MODEL ONE

3.3.1 Description of the systenm

The system is composed of 7 grades; the three bottom grades
representing Secondary Education while the 4 upper grades represent
one particular University (call it university K) for which demand is
high, "Recruitment" occurs only at the bottom grade and "promotion"

takes place only to the next higher grade. In general movement
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between grades is automatic (students pass exams and move on to the
following grade) and hence follows a Markov Chain. However, because
of the limited availability of places in University K, movements to
it from secondary school i.e. between grade 3 and 4 is determined by

the availability of places.

3.3.2. Assumptions of the Model

1. Because promotion within the University system 1is a direct
result of passing exams, "promotion control" to achieve a desired
structure, cannot be exercised by the authorities. It is only
through determining the number of entrants that the authorities can
have control over the size of the university system. It is assumed
that the authorities have fixed the size of grade 4 (first year of
university) and thus the number of entrants is determined by the
vacancies .arising in grade 4. The remaining grades including those

of secondary school are allowed to vary.

2. The number of students qualified to enter University K and wish

to do so is always greater than the available vacancies.

3. Grade 3 is assumed to include those registered in schools as
well as external students who are repeating the examination. In other

words, grade 3 also includes 'overspill' students.

4, Following the previous assumption , the size of grade 3 is
affected by the overspill of students who decide to sit for the

examinations again. The proportion of students who decide to remain
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in the system is assumed ¢to vary inversely with the number of
alternatives available for them in other institutes of higher
education. This assumption implies that all students unable to
obtain admission to their first choice and given an alternative will
proceed to that alternative. Furthermore it is assumed that students

would prefer such an altermnative over moving to the outside world.

3.3.31

=
le
T
(s
ct
ir—l
s

Ei(T) denotes the expected number of elements in Grade
i at time T.
P denotes the probability that a member of grade i moves to
grade Jj assuming there is no capacity limit at grade j.
Ri(T) denoctes the number of unew recruits to grade i et time T.
33(T) denotes the proportion of frustrated prometiocns
{qualified students) that decide to remain in
the system at time T.
64(T) deriotes the proportion of students qualified %o

enter University K but cannot be allocated.

3.3.4 Basic Relations

The expected structure of the system at time T‘can be obtained from
the following set of equations:-

0y (T) =p; 0 (T-1) + R{(T) (3.4.1)

Ny (T) = pyyfiy(T-1) + py,n (T~1) (3.4.2)

ny(T) =(pyy + B4(T)8, (T)Inq(T-1)

+ Pyafy(T-1) (3.4.3)
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where §,(T)= No. of students who are qualified but cannot be
allocated/initial size of grade 3.

§,(T) =8(T)/ny(T~1) (3.4.4)

S(T) = py,ng(T-1)-E, (3.4.5)
where E4 is the expected number of losses in grade 4 due to wastage
and to promotion into the next higher grade i.e.

E4=n4(1—p44) (3.4.6)
where n, is the fixed size of grade 4.

B4=(S(T)-D(T1)/S(T? (3.4.7)
where D(T) is the number of available places at other institutions of

higher education and is thus an exogenous variable.

n4(T) = pu4ng t E4 = n, (3.4.8)
no{T) = pyno(T=1) + pgong (T-1) (3.4.31)
EXAMPLE 3.4

For iliustration, a number of simple examples are given. A program
has been written that computes using the above equations, the
successive structures and the steady state of any system. The
program has been applied to an imaginary educational system made up
of secondary education(3 grades ) and a higher educational
institute(University K. made up of 4 grades). Values for the initial
structure of the system and the matrix of transition probabilities
are chosen so as to be typical of an educational system. Assume the
former to be (3000, 2000, 1000, 200, 160, 150, 140). Recruitment
takes place only in the bottom grade and is constant at 2500. The
number of alternative places at other institutes of higher education

is fixed at D(T) = 200. Movement takes place in the system according |
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to the following matrix:

.10

.60
.10 .65

.20 .60
.15 .61
11 .71
.10

The results for successive values of T are given below.

.70
.05

GRADES T=20 T=1 T=2 T=23 =9

1 3000 2800 2780 2778 \2778
2 2000 2000 1880 1856 1852
3 1000 1730 2314 2703 3785
4 200 200 200 200 200
5 160 140 137 137 137
6 150 129 112 109 108
7 140 112 96 83 80
8,¢T) 0.43 0.50 0.53 0.55
84(T) 0.54 6.77 0.84 0.90

it can be seen that as the overspil: from grade 4 rises, the value of
83(T) rises. This causes an expansion in the size of grade 3 which
again gives rise to a large overspiil. The situation continues with
83(T) approaching but never reaching its maximum possible value of 1.

As grade 4 is fixed at its capacity constraint grades 4,5,6,7 can be

regarded as a separate system in which recruitment is fixed.

3.3.5

[¢2]

ot

[

dy-State

|

Because Orades 1 & 2 are not affected by the bottleneck their limit
satisfies:

n* = n*P + Rr {3.5.1)
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This can be solved to give:
n*1= R/(1-pyy)
n*2= p‘2n1/(1~p22)
As shown in the previous section, the expected size of grade 3 is
given by:
Ba(T) =(pqyy + B4(TI8,(TIIN3{T=1) + pyqny(T-1)
This has a steady state of:
n*3= (p33 + 3384)n*3 + p23n*2 (3.5.2)
which can be solved to give:

B3n%, (17Pus ) * Pogn™y

n*4= (3.5.3)

1-83p347P33
When B4(T)=(S(T)-D(T))/S(T)

n*y = [pyy = D = n¥,(1=p,, )1/ug (3.5.4) where wWgaz \ =63 -Fay

As 83(T) is the proportion of frustrated promotions that decide to
remain in the system and take the examination again, it cannot take
negative values.

Hence, if D(TI>S(T) B4(T)=0. {3.5.5)
As can be seen a steady-state size for grade 3 exists only when D(T)
the number of alternative places available at other institutions of
higher education settles in the long run to being constant at D.
With D(T) settling at D, B3(T) will have a steady-state value at 63.
The equilibrium value of grade 4 is its fixed size n . Hence as
mentioned before, the grades 4,5,6, and 7 <can be regarded as a
separate system to which recruitment 1is fixed and they are not
affected by the bottleneck. Their steady state values are then
simply:

1

n*, = (pi—l,i n*. M {1l-p; ;) for i=5,6,7 (3.5.6)
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EXAMPLE 3.5

Using the same data as in example 1.1, the steady-state of the systenm
is reached at T=5 and T=50. It is printed below along with the

theoretical steady-state.

GRADE T=0 T=5 T = 50 THEORETICAL
STEADY-STATE

1 3000 2777.8 2777.7 2777.7

2 ‘ 2000 1851.9 1851.9 1851.8

3 1000 3233.2 4168 .4 4168.4

4 200 200.0 200.0 200.0

5 160 137.0 137.0 137.1

6 150 108.2 108.0 108.1

7 140 79.8 79.7 79.7

B4(T) 0.88 0.91 0.91

bs expected all ‘the grades with the exception of grade 3 reach their
steady—state values fairly rapidly due to the small diagonal! elements
in P. However, due to the overspill caused by the bottleneck, grade
3 continues to expand rapidly at first and then more slowly until it

reaches its steady state at T=50.
3.3.6 Conditions for the bottleneck to exist

83(T) is the proportion of frustrated promotions (qualified students)
that decide to remain in the system and take the examinationz again. 4
Thus 53(T) can assume values between 0 and 1 but would not

practically reach 1 as there will always be a number of frustrated
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promotions that decide to leave the system (in this model go to other

institutions).

For an overspill to take place, S{T) (the number of students who are
qualified but cannot be allocated in University X) must be greater
that the number of alternative places available at other institutes
of higher education. In other words:-—

PquRs(T=1) > D(T) + n,(l-p, ) (3.6.1)
The right hand side represents all possible vacancies in higher
education. For the bottleneck to be resolved and 84(T) to reach 0:

PRy (T-1) € D(T) + n, (1=p,,) (3.6.2)

The following examples consider the possibility of resolving the

bottleneck with regard to different values of D (T).

EXAMPLE 3.6.1

Using the same data as in previous examples but with D(T) increased
to 500, the results show that although 83(1)=O and there 1is no
bottleneck 83(2)>0 and goes on increasing with time. Only the sizes
of grade 3 are printed below because the remaining grades are

unaffected and remain the same as in the previous examples.

GRADE T=20 T=1 T=2 T=25 T = 44
3 1000 1500 1830 2253.4 2668.5
BA(T) 0 0.32 0.55 0.65

51



EXAMPLE 3.6.2

In this example D(T) starts at 200 but increases at a rate of 100
every year.

GRADE T =0 T=1 T=2 T=3 T=4 T=25 T =26

3 1000 1730 2214 2423 2475 2416 2265
D(T) 200 300 400 500 600 700
84(T) 0.54  0.65  0.66 0.61  0.54 D.45
GRADE T=7 T=8 T=9 Ts=10

3 2046 1770 1558 1515

D(T) 800 900 1000 1100

B4(T) 0.33  0.15 0 0

It is only at T = 9 when D (T) reaches 1000 that 8(T) reaches 0 and
the bottleneck is resolved. The examples show that once a bottleneck
has developed it would take considerable expansion to resolve it and

restore the system to a pre—bottleneck state.

3.4 BOTTLENECK MODEL TWO

3.4.1 Description of the System

The system is the same as that of Mode! One. However, the university

system which includes grades 4,5,6,7 can be regarded as the whole

higher education system and not one single university.
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3.4.2 Assumptions of the Model

1. As before the authorities have control only in the number of
entrants to higher education, i.e. those who move from Grade 3 to 4.
However the bottleneck in this case occurs not because there is a
capacity constraint in grade 4 but because the total size of Higher
Education (consisting of grades 4,5,6,7) is fixed. Thus the
individual grade sizes of Higher Education are allowed to vary within
a fixed global total. The number of entrants to University is then a
random variable composed of two parts; those entering to fill any new
vacancies arising from growth in the system and those who replace
leavers,

2. Assuming that there is no growth in University X's system,
the number of those gualified to enter is always greater than those
admitted. However, the ©possibility of the University system
expanding sufficiently to remove the bottleneck can be considered by

the model.

3. Asgumption (4) of MODEL ONE regarding the variability of
63(T) (the proportion of qualified students that decide to remain in
the cystem) is here relaxed and is assumed to be a fixed proportion.
This model is more realistic and flexible than the previous one. It
makes is possible to consider the behaviour of the total system under

expansion or contraction of the university system.
3.4.3 Basic Relations

AfFpy Ry (T-1) + RCT) (4.3.1)
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+ Pyaly (T-1) (4.3.3)
where §,(T) = S(T)/a,(T-1) (4.3.4)
where S(T)=pq,n4(T-1) = E(T) (4.3.5)

where E(T) ig the expected number of entrants to Higher Education and
is given by:

E(T) = M(T) + Eni(T-1)wi.

The summation is from i=4 to i=7, (4.3.6)

where M(T)=N(T)-N(T-1). (4.3.7)

Here N(T) is the total size of the university system i.e. total sizes
of grades 4,5,6, and 7 combined. If there is no growth in the system

M(T)=0. If there is a contraction M(T) will be nezmative.

0, (T) = p;n, (T-1) + E(T) (4.3.8)
ng(T) = pgeg(T-1) + p, s, (T-1) (4.3.9)
ng(T) = pgeig(T-1) + pgeng(T-1) (4.3.10)
N5 (T) = pyyfy(T-1) + pgong (T-1) (4.3.11)

3.4.4 STEADY-STATE

In this model the total size of Higher Education is fixed and thus
grades 4,5,6 and 7 can be seen as a separate system to which the
nunber of entrants is a random variable. This random variable is
composed of two parts; those who replace leavers and those who enter
to fill new vacancies created by an expansion of University K's
system. The steady—state of the whole system differs whether there
is an expansion, contraction or the‘ size of Higher Education is

constant.
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STEADY-STATE WBEN SIZE OF HIGHER EDUCATION 1S CONSTANT

Assuming that there is no
of Higher
grades satisfies:-
A IV R S
R¥5=PsEhis * Pushy
n*6=Peens * Prgh’s

n¥5=pyn*y + peon¥e

Education and M(T)=0, the steady—-state

for i=4,5,6,7

expansion or contraction in the total size

the

structure of

(4.4.1)

(4.4.2)

(4.4.3)

(b b . 4)

with En*i for i=4,5,6,7 constant at a given value of N.

Once the above grade sizes have reached their steady-state it would

be possible to evaluate the steady-state structure of grade 3 as:

Ppan*y = B3 In*;wy

n*3 =

1 = p33 =~ B3Py,

Where gy is

|

i

(4.4.5)

the steady-state structure of grade 2 obtained by:

(4.4.6)

(4.4.7)

The two bottom grades are not affected by the bottleneck.

EXAMPLE 4.4.1

The same data as in the previous

recruitment constant at R{T)}=2500, By =

in the university system.
given below.

T=25.

The steady-states of the system is

exanples 1is here wused with

0.5 and M(T)=0; i.e no growth

The results for successive values of T are

reached at T=5 and

It is printed below along with the theoretical steady—-state.



GRADES T=0 T=1 T=35 T =25

THEQRETICAL

STEADY-STATE

1 3000 2800 2777.7 2777.7
2 2000 2000 1851.9 1851.9
3 1000 1680 2184.6 2196.9
4 200 270 247.5 247.7
5 160 140 162.7 169.8
6 150 129 135.6 133.9
7 112 140 104.2 98.7
E<T) 240 212.1 210.5
NCT ) 650 650 650 650

STEADY-STATE UNDER EXPANSION OR CONTRACTION

In the case of expansion, o« can represent the rate of
will be negative if the system is contracting) and so:

M(T) = o« N(T-1) (4.4.8)

fl

N(T)

il

(1+a N(T-1) (4.4.9)

Introducing the proportions qi(T) = ﬁi(T)fN(T) the equa
(I+adqu(T) = py,qu(T-1) + Eq; (T-1)w, + «

for i=4,5,6,7 (4.4.10)

(1+a)q5(T)

il

Pseds{T-1) + p,sq (T-1) (4.4.11)
and so on for grades 6 and 7.

This has a stationary structure satisfying :~

i

(1+a)q4 P44y t Eqiwi + « (4.4.12)
(Italdqg = pgsds + Purd, (4.4.13)
and so on for grades 6 and 7.

For an expanding or contracting system, the steady size

given bhy:
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p23n2(T—l) - 83(M(T) + Eni (T—l)wi)

53(T*l> =

Its limit varies whether the system is expanding or contracting as

shown below.

In the Case of Expansion:

As T approaches infinity, the total size of the higher education
expands steadily, the number of entrants increases and 84(T)
approaches O. When SA(T)=0 the bottleneck is resolved and the
structure of grade 3 approaches its steady—state which can be
evaluated as:

n"3= p23n"‘2 + P33 = n*3 (4.4.15)

In the Case of Contraction:

As T approaches infinity, M<T) approaches 0. When M(T) =0, the
structure of grade 3 approaches its steady-state which can then be
evaluated as in the case of a constant size for the higher

educational system as shown above,

EXAMPLE 4.4.2

Using the same data as in the previous example but with a=0.005, i.e.
the higher -educational system expanding at a rate of 0.5%, the
results are given below. It can be secn that despite the small size
of @« , grade 3 does approach (very slowly) the steady—state given
above. With larger wvalues of a« , grade 3 reaches its steady-state
more quickly (for example with o«=0.10 the steady—state reached at

T=19). Grades 1 and 2 are not printed as they are unaffected and
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their values are the same as in example 4.4.1.

CRADES T=0 T=1 T==4 T = 99 T=200

3 1000 1678  2168.6 2061.74 1835.36

4 200 273 242.1 408.33 675.75

5 160 139 174.7 278.34 460.57

6 150 129 143.9 218.34 361.33

7 140 112 102.4 160.04 264 .85

N(T) 650 653 663.1 1065.01 1762.49

E(T) 243 204.1 347.39 574.89

8,(T) 0.4 0.5 0.4 0.3

GRADES T = 291 T.=294 THEORETICAL
STEADY-STATE

3 1506.8 1504 .7 1504.6

4 1063.9 1079.9 1079.2

5 725.1 736.0 735.2

6 568.9 577.5 577.4

7 417.0 423.3 422.5

NCT) 27774.9 2816.7

E(T) 905.1 918.8

8,(T) 0.0 0.0

In this example the higher education system is contracting by ~10%
and so a= —0.10. The results are given below and show that grade 3
approaches its steady state much slowly than in the case of an
expansion. It <can also be seen that M(T) need not reach 0 for the
theoretical steady-state of grade 3 defined above to be a good
approximation. Once again the same data is used as in previous
examples and so grades | and 2 are not printed as they are

unaffected.



GRADES =0 T=1 _T=10 T = 20 T=30

3 1000 1712.6  2336.59 2382.9 2398.86

4 200 204.8 75.34 26.2 9.12

5 160 139.6 57.70 20.2 7.04

) 150 128.6 51.04 17.9 6.25

7 140 112.0 42.57 14.8 5.15

NCT) 650 585.0  226.64 79.1 27.55

E(T) 174 .8 62.88 21.8 7.60

8,(T) 0.43 0.57 0.59 0.60

GRADES . T=39% T=40 T=41 STEADY~

STATE

3 2404.1 2404 .4 2404.70 2404 .56
4 3.5 3.1 2.86 3.29
5 2.7 2.5 2.21 2.24
6 2.4 2.2 1.96 1.82
7 1.9 1.8 1.61 1.29
NCT) 10.7 9.6 8.65

E(T) 2.9 2.7 2.38

8,(T) 0.6 0.6 0.60

3.5 Limitations of Mode! One and Model Two.

Model One assumes that 33(T) is a linear function of the number of
alternatives available to students denoted by D(T). The assumption

is simplistic and empirical evidence is needed in order to determine

59



the exact relationship if any between 63(T> and D(T). This needs

detailed statistics which, however, are unavailable.

The alternative of assuming that 63(T) is consgtant, as was done in
Mode! Two, is unlikely ¢to hold in the very long run. It is expected
that with time, the difficulties encountered by students in
overcoming the bottleneck will lower the proportions that are willing
to repeat the examination again. This point is somewhat connected to
an inherent limitation in all flow models which is that they do not
incorporate a 'feed-back' mechanisnm. It 1is possible that 1in a
bottleneck situation a feed-back effect of a reduction in demand
might take place.  However, it is necessary to have detailed data

over a considerable time period for use as empirical evidence.

The models assume that first—time and higher—time repeaters have the
same transition possibilities of promotion and wastage as other
students. This comes about from the first-time order of the Markov
process. It might be possible that such an assumption is invalid,
however detailed empirical data which is unavailable in the present

application is needed to support or disprove this assumption.
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CHAPTER IV
ESTIMATING TRANSITION PROBABILITIES

IN SECONDARY 3SCHOOLS

4,1 Methods of estimating transition probabilities from stock data.

As was shown in Chapter II, the data collected by the Sudanese
Ministry of Education is in the form of a sequence of stock data made
up of the sizes of each grade in the system over a number of time
units. With the unavailability of flow data, the problem is then to
estimate the transition probability of movement assuming that the

stock data has been generated by an underlying Markov process.

An up-to-—date review on the methods of estimating transition
probabilities from stock data is given in Rosenqvist (1986), while a
full account of the theory is given in Lee, Judge and Zellner (1970).
The methods include regression analysis, maximum likelihood and
Bayesian analysis. In this application the regression analysis
technique has been used and a short description is given below:

let q;(t) be the unconditional probability of being in state J at
time t.

Then p(xgmi=§,and %e=j) = p(Xe-1 = 1) pay = q1(t~1)psy

where X is a discrete stochastic process. (4.1.1)

From the addition law of probability:

a;{t) = p(xe=j) = Lp{Xe—-1=1)piy (4.1.2)
g;{t) = Eq:{t-1)piy (4.1.3)
the summation is over i and j=1,2,..... Rt =1, 2,...... ,T.

If the unconditional probabilities q;(t) and qi{(t-1) are replaced by
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the observed proportions (from the stock data) y;{(t) and y:{(t-1) then
there will be in general no set of transition probabilities that will
satisfy this relation with probability one. Thus if errors are
admitted in the equation to account for the difference between the
actual and estimated occurrence of y,; then the sample observations
may be assumed to be generated by the following linear model:

ys{ti= Bys(t-1lpay + u,lt) (4.1.4)
or in more conventional matrix notation:

va = X5 ps + u; (4,1.5)
where ys5 is a TX1l vector of observations reflecting the proportion in
state j at time t, X, is a TZr matrix of the proportion in state i at
time t~-1, py is a r¥l vector of unknown transition parameters to be
estimated an uy is a vector of random disturbances. Applying OLS with

X as the independent variable and y as the dependent variable

violates the non-negativity conditions of the transition
probabilities. Lee, Judge and Zellner{(19%970) suggested a quadratic
programming approach to deal with this problem. The sum of sguares

of the function would be wminimized subject to the constraints that
the rows of the P matrix must sum to one and the individual pij's
must lie in between O and 1. This is the procedure which is referred

te as the QP technique in the following sections.

4.2 Estimating the transition probabilities of students in secondary

schools

4,2.1 Assumptions and Methods.

The following is an attempt to obtain from stock data estimates of
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the transition probabilities which govern the movement of students
within secondary schools. The aim is to determine whether realistic,
acceptable estimates can be obtained from stock data assuming an
underlying Markov model. This is related to the effectiveness of the
estimation method used and to whether the data is generated from an

underlying Markov process.

The analysis 1is restricted for the present purpose to Government
Secondary schools which as can be seen from Chapter 11 comprise the
bulk of all secondary students.
The following assumptions have been nmade:
1. It is assumed that the three grades of secondary
school make up a fixed sized system which (as the data
shows} is expanding over time.
2. According to official sources repetition is very low
in the first grade and thus it is possible to assume that
no repetition exists in grade one. Although perhaps
unrealistic, this assumption greatly simplifieg the
estimation procedure as the size of grade one 1is now
simply determined by the number of entrants into the
system.
3.With regard to grade 3 where many frustrated applicants
might want to repeat because of the oncoming bottleneck
into higher education, repetition is Mofficially" not
permitted and students are expected to transfer to other
types of schools or register as external students. The
stock data of grade 3 Government schools students is

therefore assumed to be free of "overspill" students and

63



to be made up of only those promoted from grade 2 and
those who failed the Secondary School Examination and are
repeating.
Therefore the movement of students in Government Secondary Schools is
assuned to follow a first order Markov process and the sizes of the

grades is given by:

n:{T) = aN(T-1) + Ens (T-1)ws (2.1.1)
n=(T) = plzn'(T_l) + peon={T-1) {(2.1.2)
n=(T) = po=n=(T-1) + ps=ns(T-1) (2.1.3)

where ni(T) is the size of the grade i at time T,

piy is the trangition probability of movement from i to j.

N(T) is the total size of the system at time T,

NM(T)=n:(T) + n=(T) + nz(T) (2.1.4)

« is the rate of expansion of the system.

As can be seen the size of grade 1 is made up of those who are coming
in to fill new vacancies resulting from expansion and those coming in

to fill vacancies resulting from wastage.

The quadratic programming technique discussed at length in section
4.1 assumes in its use of the proportion in each grade, a systenm
which ig constant over time. When the real system is growing (as in
the case of the secondary school system) the quadratic programming
technique inevitably produces a transition matrix which
under—estimates the grade sizes. One way of overcoming this is

through the use of Unrestricted Ordinary Least Squares on the actual

grade sizes rather than the proportions. (For grades 2 and 3 n:(T)
would be regressed on n:{T-1}) and n;-;{(T-1) and an estimated

regression equation passing through the origin would be obtained.
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The draw-backs of such a procedure are obvious; there is no guarantee
that the resulting éstimated matrix fulfils the Markov conditions of
non-negativity and lesg than one estimates as well as the sum of the
rows adding to less than or equal to one. However, as will be shown
below, the procedure produces acceptable estimates in many cases. In
addition to ensuring that the transition rates are not under—
estimated, unrestricted least squares avoids the problem of
heteroscedasticity and comes about from the use of proportionate
data. More important, it makes it possible to test by analyzing the
residuals of the models whether the assumptions of a linear
relationship between the variables is appropriate. This sheds light
on whether the assumption that the data is generated by an underlying
Markov process is valid or not. For this the Unrestricted Least
Squares procedure must be regarded as a preliminary procedure before
using the Adjusted Quadratic Programming technique that will be

presented below.

programming adiusted by an estimate of expansion.

This technique is an attempt to solve the problem of under—estimation
described above. Basically the technique takes account of expansion
by estimating the rate of growth of the system assuming that a true
underlying growth rate exists. The original data is then rescaled

before proceeding with the QP procedure.

The general form of the equations for an expanding stochastic system
of given size is presented in Bartholomew and Forbes (1979) as:

(14 3q2(T) = a + Equ(T-1)ws (2.2.1)
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i

(1tadq=(T) P129:{(T~1) + poeq2(T-1) (2.2.2)

(l1+adgs(T) = paaqa(T-1) + paaga(T-1) (2.2.3)
The rate of expansion of the system is « and qi{T) is the proportion
of students in grade i (q:{(T) = n:(T)»/N(T). The expression for the
total size of the system N(T) (grades 1+2+3) is:

N(T)Y = (14+oN(T-1) (2.2.4)

Equations (2.2.1) to (2.2.3) can be obtained by dividing both sidexy

of the equations in section 4.2.1 by N(T-1),

If N(T) and N(T~1) are replaced by the actual sizes of the system,
there will not be a rate of expansion that would satisfy this
relationship with probability one. Thus if errors are admitted in
equation (2.2.4) to account for the difference between the actual and
estimated value of N(T), the total =size of the system may be
generated by the following stochastic relation:
N(T) = (1+a)N(T-1) + p (2.2.5)
Rewriting eguation (2.2.5) in the form of Y=8X + u ordinary least

squares can be used as a bases for obtaining an estimate of «.

As equation (2.2.1) is determined by the other equations, it is not
necessary to estimate its coefficients directly and it can be
disregarded. The estimate for « obtained by least squares can then
be placed in equations (2.2.2) and (2.2.3). Estimates of the piy
are then obtained by carrying out the QP technique. The original

data is thus rescaled by an estimate of «.

The question arises ,however, as to whether the school system is

really growing at a constant rate of a. Over a long period of years
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it is very unlikely that the system would expand at a constant rate.
In the present application, education expansion in the Sudan has been
higher in the 50's and 60's (formal education was first introduced in
1956) and has been slowing down throughout the 70's and 80's.
Consequently the growth curve over a long period of years is unlikely
to be linear. However, the present purpose in trying to estimate «
is not to forecast the future total size of the system but rather to
obtain better estimates of the p:j;. Furthermore because the time
period used for the estimate 1is short (7 or 8 years) it is not

unrealistic to assume that expansion in constant over this period.

The following sections are examples of the application of the above
techniques on a number of secondary school data sets. Each province
is considered separately and for each sex, transition rates are
estimated. This is done 1in case differences in pattern of movement
exist between the sexes or between the provinces. These particular
data sets were chosen so that the number of time periods used for

modelling are six or more.

4.3 Estimates for the Nile Province Girls

4.3.1 Unrestricted least squares

The two equations from which trangition rates are estimated once
again are:

n=({T)

i

n;(T*l}Plz + nz(T‘1>922

n={T)

i

nQ(T—l)pza + ns(T~1)p$3.

The estimates for the second equation were unacceptable and so the
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following analysis is restricted to the first equation.

As a first step it 1s wuseful to study the correlation between the
variables in the model. The correlation between ni(T-1) and n=(T) is
high (0.9884) and between n=(T-1) and n={(T) is 0.79. This shows
that a strong relationship exists between the dependent and
independent variables in the equations and it is encouraging to go on
with the regression procedure. The effect of repetition is smaller
than the effect of promotion however the correlations are not small

enough to Jjustify removing pe=z from the equations.

In addition to checking the correlations between the dependent and
independent variables it is also important to study the correlation
among the independent variables. Interpretation of a multiple
regression egquation depends implicitly on the assumption that the
explanatory variables are not strongly interrelated. When a linear
relationship exists between the independent variables {(multi-
collinearity), the regression results are ambiguous. In the present
application, it is likely that nit:(T-1)and ni(T-1) are related and

it would not be unreasonable ‘to suspect the presence of multi-

collinearity. The correlation between ni{(T~1) and n=(T-1) is high
(0.7607). Before, however, the presence of multicollinearity is
determined the model specifications nmust be satisfactory. This will

be done by analyzing the residuals of the model.

The estimates for the first equation are p12=0.86 and p=2=0.15. The
standardized residual of the model is given by:

€10 = ©il8 (3.1.1»
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where e = y: — Y: and s is the standard deviation of residuals, the
square root of the following:—
s2 = D(y: — biXii = bexe:)® / (n-2) (3.1.2)

The standardized rxesiduals which have zero mean and unit standard
deviation can be plotted against a number of variables. Such graphs
often expose gross model violations when they are present. In this
and subsequent examples ei. is plotted against the fitted value |,
the independent variables, and the time order in which the
observations occurred. In general when the model is correct, the
standardized residuals tend to fal] between 2 and ~2 and are randomly
distributed about zero. Any distinct pattern of variation is an
indication that the wunderlying mode! is inadequate; there is a need
for extra terms in the model, or the error variance is not constant
as assumed (hetero— sredasticity) and there is a need to carry out a
transformation of the y's. In addition, plotting the residuals

against time exposes autocorrelation if it is present in the data.

Figure 1.1 shows the standardized residuals plotted against the
predicted values whichare given in standardized form. It can be
seen that there are no outliers; all the residuals lie between -2 and
+2. There appears to be no distinct pattern and the residuals are
randomly distributed about zero. This particular plot is a check for
violations of the equality of variance assumptions. If the spread of
residuals increases or decreases with values of the predicted
variable then one would question the assumption of constant variance
of Y for all wvalues of X. The plots against the independent

variables also do not show an distinct pattern (not shown).
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Plotting the residuals against time is shown in figure 1.2. The
points neither cluster together nor show signs of being negatively
correlated (i.e. when a positive value tends to be followed by a
negative one and vice versa)l. The Durbin—Watson statistic for
testing serial correlation is 2.233 a figure which is close to 2 and
hence ig firmer evidence that there is no autocorrelation present in

the errors.

After the analysis of residuals has shown the assumptions of the
model to be correct, it is now possible to turn to the problem of
multicollinearity. Removing n=(T-1) from the equation results in an
estimate of pio = 0.995. The percentage of variation explained by
the model is hardly affected, it drops from R=99.95% to R=99.93% It
is obvious that the omitted variable does not improve the model.
However multicollinearity if pressnt is not severe because although
ni({T-1) can serve as a proxy for n={T-1) the opposite can ncver take
place (it is not possible to assume that no promotion exists). The
above symptoms of multicollinsarity may only mean that the effect of
students moving from grade one to grade two is more than the effect

of repetition on the size of grade two.

Figure 1.3 shows the residuals of the no repetition model plotted
against time. The points are clustered closely together around
origin and the Durbin-Watson statistic is lower at d=1.58. These
symptoms of autocorrelation are clearly the result of the variable
n={(T-1) having been omitted from the equation. Because successive
values of n2{(T-1) are correlated (the correlation between n=(T-1) and

n=(T) is 0.07906 as mentioned before), the errors from the estimated
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model then appear to be correlated.

4£,3.2 QP adjusted by the rate of expansion

This procedure involves 2 steps. The first step 1is finding an
estimate for o the expansion rate of the system assuming that N(T) =
(1+a)N{(T~1). This is a sinmple regression problem of a straight line

passing through the origin (¥=8X) with the estimated value B8=(1l+a).

The resulting equation N(T) = 1,0755N{T-1) i.e. a = 0.0755 is not
unacceptable. Plotting the residuals against the predicted variable
Y shows no distinct pattern (fig. 1.4). The points lie within the
range —2,+2 and are randomly distributed in a horizontal band along
zero. Plotting the residuals against the independent variable also
shows no distinct pattern and there is no evidence of serial

correlation in the plot of residuals against time (fig 1.5).

The above residual analysis 1is encouraging and gives no reason to
reject the proposed model. It is thus possible to use the estimated
value of « and carry out a QP procedure for estimating the transition

probabilities. The estimated transition matrix is given as

0 0.81 0
Paas; = 0.19 0.81
0.28

The estimates for p:z and pe= are close to those obtained through
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unrestricted least squares; although in both cases the latter are
larger. The transition matrix obtained using QP without adjustment

for expansion is:

0 0.72 0
P = 0.21 0.79
0.18

It can be seen that adjusting the data for expansion increases the
values of +the estimates and consequently resolves the problem of
under—estimation. This 1is clearly shown in the column chart of
figure 1.6 which compares the expected values obtained by unadjusted
QP and adjusted QP. The expected values after adjustment are closer
to the true values. In addition to this visual comparison the
chi-square statistic can be used as a measure of agreement between
obgserved and expected values of the model. There 1is little
justification for the use of the c¢hi-square test as a test of
significance and the only aim is to compare the two technigques. The
chi-square statistic dropped from 448.5 to 93.43 when the data was

adjusted for expansion.

The observed and expected values obtained from quadratic programming
adjusted for expansion are given below. The estimates for grades 2
and 3 are obtained by using the estimated values of the pis = in the
egquation ni(T)=ni(T_l)pii‘ + ni~1{T-1)pi=1.:. The actual size of

grade one was used in the estimation of n=(T).
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TIME GRADE 1 GRADE 2 GRADE 3

R AR

T=0077/78

OBSERVED 775 513 459
EXPECTED - - -
T=178/79

OBSERVED 788 758 585
EXPECTED (727) (521)
T =279/80

OBSERVED 729 791 811
EXPECTED (779) (708)
T =13280/81

OBSERVED 720 808 675
EXPECTED (742) (794)
T.=4.81/82

OBSERVED 800 717 934
EXPECTED (727) (784 )
T.=582/83

OBSERVED 1047 800 712
EXPECTED (789) (769)
T =16.83/84

OBSERVED 1084 1044 868
EXPECTED (1001) (816)
T.=784/83

OBSERVED 1280 1071 1075
EXPECTED (1072) (998)
T.=8185/8¢

OBSERVED 1080 1230 1071
EXPECTED {(1245) {1098)

The expected values are close to the observed values and the pattern
followed by the two are similar. Sometimes, however, the observed
values are substantially higher as in the case of grade 3 for T=4
81/82. The observed value of 934 i3 much higher than the expected
value of 784 indicating a higher than estimated repetition rate in

grade 3 for this particular year.



Validating the model! by comparing projections for 86/87 with newly

published data.

Grade 1 Grade 2 Grade 3 Total
PROJECTED 1283 1113 1242 3638
ACTUAL 1248 996 1293 3537

The above table compares the projected grade sizes for 86/87 and the
actual grade sizes for 86/87 which were published after the
estimation procedure had taken place and consegquently were not
included 1in it. The estimates for the total size of the system is
obtained by using the estimated value of « in equation (2.2.4). The
estimates for grades 2 and 3 are obtained by using the estimated
valueg of the pis's. The estimate for grade 1 is then obtained by
subtraction following the assumption that the system is of a given

size.

The discrepancy between the figures is not great and there is no
variation in the overall pattern. It is however, noticeable that the
projected sizes of grades 1 and 2 as well as the total size are
slightly larger than the actual sizes. This is because the expansion
rate between 85/86 and 86/87 was 0.046 which is considerably smaller
‘than our estimate of «=0.0755. However, this considerable difference
in the estimated and true expansion rate is not reflected in the same
magnitude with regard ‘to the grade sizes. This is a co¢redit to the
adjusted QP technique and shows that a large variability in the

expansion rate does not affect greatly the estimates. More about
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this is discuszed in Chapter V. For the present purpose it is
possible to conclude that the technique is successful in projecting

the grade szizes for one time unit ahead.

4.4 Estimates for the Kassala province girls.

As for the case of the Nile province, estimates for grade 3 pes and
pss (i.e. those produced by the second equation) were unacceptadble.
They violated the assumptions of non-negativity ana less than one
conditions. This is in spite of the fact that correlation is high
between 1n=(T) and n=(T). Thus such unacceptable estimates do not
imply that the linear relationship is inadeguate but rather that

perhaps repetition in grade 3 is high.

With regard to the first eguation, onission of the independent
variable n2(T=1) (hence exploring the posgibility of no repetition),
has little effect on the performance of the model. The correlation
matrix gave evidence of this for while the correlation between n=(T)
was n=(T-1) high at 0.81, the correlation between n=(T) and n=(T-1)
was —0.28. The fitted equation was:

nz(T} = 0.8%9n:(T-1}) + 0.077n=2(T-1?

For the variable n=(T-1), the t-value 1is low 0.539 which confirms
that is can be dropped from the equation. Dropping n2(T-1) from the
eguation results in the westimate of Pz rising to 0.96. The

percentage variation explained by the model drops only slightly when
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the variable 1is removed; from 99.8% to 99.8%. The pattern of
residuals for the two eguations is very similar, there is no evidehce
of hetero— scedasticity or of serial correlation among the residuals.
The Durbin—Watson =statistic drops slightly from 3.28 to 3,09 when
n>({T-1) is omitted. For the equation with 2 independent variables
see figure 2.1 for the plot of the residuals against the predicted
values, and figure 2.3 for the equation with 1 independent variable.
The plots against time for the +two models (figures 2.2 and 2.4)
respectively show the residuals increasing with time. This implies
that the variance of the errors is not constant but increases with

time. The results thus of the estimates are not very reliable.

4.4.2 QP adjusted by the rate of expansio

For this data set the correlation between N(T) and N(T-1) is not very
high 0.65. The consequent poor fit of the model can be seen in the
plot of the residuals against the fitted values Y (figure 2.5).
Positive residuals correspond to low ¥'s and negative residuals to
high y's. It appears that a term is omitted from the model. As for
the present purpose we only need an estimate of « obtained from the
equation from N(T3? = {(l+a)N(T-1}), there is no need to continue

further with the analysis.

4.5 Estimates for the North Darfur province girls.

4.5.1 Unrestricted least squares

The correlation matrix of the variables (not shown) has high
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correlations between the dependent and independent variables of the
model. However, correlations are also slightly high between pairs of
independent variables and it would be important to check for multi-
collinearity by removing one variable from the equation. The
estimated equations are as follows:

n={(t)

0.87 ni(T-1) + 0.13 n=(T-1)

na(T? 0.87 na(T-1) + 0.17 n.(T-1)

it

Plotting the residuals against the predicted values, the independent
variables and time do not show a distinct pattern. The residuals are
in general well bghaved and tend to scatter about zero. (Figure 3.1,

3.2).

Removing repetition from the equation gave an unacceptable estimate
for pam but for pis the estimated coefficient rose to 0.999. With
regard to the first equation, the value for Rz hardly changed from
99.95% to 99.92%. Studying the residuals of the model with no
repetition shows, however, that omitting the variable does not have a
positive effect on the model. While there were previously no
outlier, one now exists with a value of -2.21. Two other residuals
have negative valueg of -0.045 and -0.022, the remaining five are all

positive. This gives the scatterplot an unusual pattern.

The plot against time is definitely inferior to that produced by the
model in which repetition is included. This 1is reflected in the
Durbin-Watson test which drops from 1.93 to 1.77. The scatterplots

are shown in figures 3.3, 3.4, and 3.5.
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4.5.2 QP adiusted by the rate of expansion

For this data set the correlation between N(T) and N(T-1) is high at
0.984. Consequently the fitted equation is good as can be seen in
figure 3.6. The plots of residuals show no distinct pattern, there
are no outliers, and no evidence of serial autocorrelation (figure
not shown!}. The estimate for w is 0.087. Adjusting the proportions
in each grade by the estimated value of «, the following P matrix is

obtained using QP:

0 0.989 0
Pad.j = 0.009 0.80
0.234

The estimates are much higher than those produced previcusly by QP
without adjusting for expansion. These were:

0 0.91
P = 0.00 0.74

0.00

The charts in figures 3.7 and 3.8 compare the values in the grades
with the estimates produced by the two methods. It can be clearly
seen that QP adjusted for expansion brings the estimates closer to
the true values. The chi-square statistic measuring the discrepancy
between observed and expected values drops from 135.8 to 11.24 for

the adjusted estimates.

The observed and expected values obtained by QP adjusted for
expansion are given below. The fit 1is particularly good especially

with regard to grade 2 where many of the expected values are the sanme
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as those of

of the errors that

the observed figures.

are common in other

The observed data is free of many

data sets (sece chapter one)

and this might account for the exceptionaqjgcod fit of the model.

TIME
OBSERVED
EXPECTED

T =178179

OBSERVED
EXPECTED
T =279/89
OBSERVED
EXPECTED
T=3280/81
OBSERVED
EXPECTED
T =481/82
OBSERVED
EXPECTED
OBSERVED
EXPECTED
OBSERVED
EXPECTED
T =7 84/85
OBSERVED
EXPECTED
IT.=282835/86

OBSERVED
EXPECTED

GRADE 1

227

o
o
[&7]

249

342

404

322

378

L47

($44
o
L2
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GRADE 2

209

226

(226)

308
(304)

249
(249)

310
(341)

404
(403)

339
(322)

388
(377)

446
(446)

209
(221)

226
(233)

308
(298)

294
(269)

310
(336)

423
(401)

366
(352)

380
(384)



Validating the model by comparing predictions for 86/87 with newly
published data.

GRADE 1 GRADE 2 GRADE 3 TOTAL
Projected 537 498 411 1446
Actual 491 466 415 1372

The projected values are close to the actual figures; the estimate
for Grade 3 is particularly good. The projected values for grades 1
and 2 and the total size are slightly greater than the actual values.
This is because the system expanded by «=0.032 between 85/86 and
86787 which is less than +the estimated value for o=0.087. The
difference ig large, however fortunately this is not reflected in the

same magnitude with regard to the grade sizes.

4.6 Estimates for the South Darfur Province Boys.

For both equations, including a repetition term vresulted in
unacceptable estimates and Therefore equations with one independent
variable were estimated. The unacceptable -estimates could be
expected from the correlation matrix which showed a negative
correlation between nz{Tland n2{T-1) of -0.303 and a low cor-
relation of 0.012 between ns(T) and ns(T-1). Even correlations
between n=(T) and n.(T-1} and between n=(T) and n{T—~1) were not
high namely 0.75 and 0.64 respectively. The resulting estimated

matrix was as follows:

0 0.94 0
P= 0 0.92
0

Although the plots of residuals against the fitted Y and against the
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independent variable do not show any distinct patterns, the plots
against time show the residuals dispersing with time (fig. 4.1). It
appears that the variance is not constant but increases with time. A
transformation is therefore necessary or an introduction of another

independent variable that would take inte account time.

Fitting the equation N(T)=(1+a)N(T-1) resulted in residuals that
tended also to increase with time (seec fig 4.2). The correlation
between N(T) and N(T-1) was in general low 0.11. There is thus
evidence that the proposed mode! N(T)=(1+«)N{(T-1) is inadequate for
this data set and it is not possible to proceed with the estimation

technique.

4.7 Estimates for the South Darfur Province Girls

4.7.1 Unrestricted Least Squares

The correlation between n={T) and n,(T-1) is very high 0.995 and this
might explain why including n=(T-1) 1in the model would result in
unacceptable estimates The resulting equation with repetition
removed is:

n=(T) = 0.9%8 n;(T—l)

Plotting the resgiduals against the fitted value and the independent
variable shows no distinct pattern. There are no outliers and the
residuals show no distinct pattern. However the plot of residuals
against time shows the residuals with the exception of one point

increasing with time (figure 5.1). This implies that a linear effect
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in time should have been included in the model. Alternatively, it

could be due to omitting the repetition term from the model.

The results from the second equation is:

n=(T) = 0,91 na{(T-1) + 0.14 n=(T-1)
Plotting the residuals against the fitted values, the independent
variables and time shows no distinct pattern and no evidence to
suggest that assumptions of the model are violated (see figure 5.2).
The t-statistic for na(T~1) is very low which indicates that removing
it would not affect the model. However removing it from the equation

would result in an unacceptable estimate for pes.

4.7.2 QP adjusted for expansion

Fitting the line W{(T)={1+u)N{T-1) gave an estimate of «=0.08 (sece
figure 5.3). The residuals from the fitted line were well behaved
and it was possible to use 'a' in order to adjust the proportions in

each grade. The resulting P matrix produced by QP was:

0 0.82 [§]
PadJ = 0.09 0.91
0.15

These estimates are higher than those produced by QP without

adjusting for expansion which are:

0 0.90 0
P = 0.09 0.87
0.11

The column charts (figures 5.4 and 5.5) show the improvements in the
estimates in Crade 2 and 3 respectively. The chi-square value showed
a great improvement. It dropped from 42.96 to 4.81 when the data was
adjusted by the estimate of expansion.
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The observed and expected values obtained from quadratic programming

adjusted for expansion are given below.

The expected values are

close to the observed

TIME GRADE 1 GRADE 2 GRADE 3
T =10 78179

OBSERVED 165 153 167
EXPECTED - - -

T =179/80

OBSERVED 157 169 160
EXPECTED (162) (164)
T =2 80/81

OBSERVED 159 143 162
EXPECTED (156) (172)
T =381/82

OBSERVED 228 152 174
EXPECTED (157) (173)
T =4 82/83

OBSERVED 220 220 170
EXPECTED (219) (231)
T =05 83/84

OBSERVED 222 216 233
EXPECTED (218) (225)
T =6 84/85

OBSERVED 299 217 217
EXPECTED (219) (231)
I =17 85/86

OBSERVED 279 298 217
EXPECTED (289) (234)
T =8 85/86

OBSERVED 279 298 217
EXPECTED (289) (234)

having only minor differences between then. This

of the model is good.
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Validating _the model by comparing predictions for B6/87 with newly

published data.

GRADE 1 GRADE 2 GRADE 3 TOTAL
PROJECTED 275 278 304 857
ACTUAL 320 292 324 936

The projected values are close to the actual new figures although
they are slightly lower. The expansion between 85/86 and 86/87 is
0.18 more than double the estimated value for «=0.079 which was
used in the adjusted QP procedure. This is unlike the data for Nile
Prevince and the North Darfur province (sections 4.3 and 4.5) where
the actual expansion has been lower than the estimated expansion. It
is therefore, not possible to generalise +that there is an overall
trend for a drop in the expansion rate, However, what is common is
that +the estimation procedure is capable of allowing for a large
variation in the expansion rate with little effect on the final

estimates of P.

4.8 Conclusions

The analysis of residuals carried out on the data sets showed that
the assumptions of the linear model were not grossly violated. There
were mno outliers as was expected and the standardized residuals
tended te fall within the range —2,+2. Because the data was 1in the
form of observations taken in successive time sequence, serial
correlation among the residuals was expected. However the majority

of residuals showed no signs of correlation. Aithough the sample
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gize was too small to carry out tests of significance for the
Durbin-Watson statistic, the values of the statistic tended to be

close to 2 which implied no correlation among the residuals.

Multicollinearity was another problem affecting the analysis as the
independent variables were inherently correlated due to their nature.
fHlowever the correlations were never very high and although the
percentage variation explained by the two nmodels were similar,
removing repetition affected the residuals of the model. In some
instances autocorrelation would appear among the residuals as a
result of the omitted variable. Including repetition 1is thus
desirable and true multicollinearity where one wvariable could act as

a substitute for the other is unlikely to exist.

Fitting the linear equation N(T) = (1+«)N(T~1) was successful and the
residuals in the majority of the examples bechaved well. There was
sometimes evidence, however, of the variance of the residuals
increasing with time and the analysis for such data sets was

discontinued.

Definitely the adjusted QP procedure 1is an improvement to the QF
technigque and the grade sizes are no longer under—estimated as when
there is no adjustment for expansion. This was shown in the column
graphs and in the improvement in the chi—square value {(used in this
context as a measure of agreement). Validating the model by
comparing projected grade sizes for 86/87 with actual newly published
figureg proved successful. There wag only a slight variation between

the projected and actual figures although estimates of the expansion



rate were very different. It is thus possible to conclude that the
results of the estimation procedure can be used for making reasonably

accurate projections one time unit shead.
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CHAPTER VU

ESTIMATED TRANSITION PROBABILITIES

5.1 The simulation program: Descriptions and Aims.

It has been preposed that the Sudanese secondary school system can be
modelled in terms of an expanding stochastic system with given size,.
Because of the wunavailability of flow data, it was necessary to
estimate the transition probabilities from stock data. The original
QP technigue used by Lee,Judge and Zellner (1970) based on minimizing
the sum of squares between successive stock proportions resulted in
estimates of transition probabilities that always under—estimated the
grade sizes. The suggestion put forward in Chapter [V, was to take
account of the expansion of the system by estimating «, the rate of
growth assuming that a true underlying growth rate existed. The
original data would then be rescaled before proceeding with the QP
technique. This procedure was carried out on 5 provinces for which
data collection errors were minimum and a reasonable sequence of time

periods were available.

In order to assess the effectiveness of the above procedure in ternms
of ability to estimate the true underlying transition matrix and make
predictions, a simulation program was developed. Such a simulation
set generates artificial data upon which the model is fitted and

predictions are made.

Program OSIMUL simulates the behaviour of a 3-grade system with a
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total size expanding at a random rate. The program makes use of the
random number generator RN55 which is a double precision function
that returns a random number between 0 and 1 from the uniform
distribution. For each individual known to be in grade 1 at time
T-1, a random number X is generated; if ¥ < piz the individual moves
to grade 2 at time T, otherwise he leaves the systen. For each
individual in grade 2 at the time T-1, other number numbers are
generated; if X < pz= the individual! remains in grade 2 at time T~1,
if pee £ ¥ £ pze + pss the individual moves to grade 3 at time T-1, a
random number ¥ is generated, if X {ps= the individual remains in
grade 3 at time T otherwise he leaves the system, This procedure is

repeated for each individual! and for every time period.

In order to obtain an expansion rate which lies between a
pre—determined upper and lower bound, the random number was rescaled
as follows: If H is the random number between 0 and 1, then the
rescaled expansion rate A is given by:

A = (H*FAC1) + FAC2 (5.1)
where FAC1 is the difference between the upper and lower bounds of
the expansion rate and FAC2 ig the lower bound. The total sizes of
grades 2 and 3 were then obtained by adding the number of individuals
in a particular grade. As no repetition was assumed in grade 1 and
as the total size of the system at time T was known following our
knowledge of the expansioh rate; the number of individuals in grade
cne were calculated as the difference between the total size and
grades 2 and 3.

na(T) = (1H+AMT-1) = n2T) - n=(T) (5.2

where N{T-1) 1is the total size of the system at time T-1 and
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{1+A)IN(T~1) is the expression for the total size of the system at

time T i.e. N(T).

Using program SIMUL, 3 sets of 100 simulations were carried out. The
results obtained are sampling distributions of the estimates under
different assumptions.

I.SET ONE: 100 Simulations carried out with an expansion rate varving

randomly between 1% and 16% and a 23-time period used to obtain the

For every simulation the transition matrix used was:
0 0.9%0

P= 0.15 0.80

0.15
These probabilities were chosen to be as close as possible to those
obtained from the actual data. Because the estimates from the actual
data varied between provinces and between boys and girls, the above
probability matrix only comes close to +the general pattern of low
wastage in the first two grades and considerable repetition in grades
2 and 3. For every simulation, the initial vector was set at n(0)}=
£100, 90,901. Although these numbers are snaller in magnitude that
those of the original data, the general pattern of a larger grade one
and equal grades 2 and 3 is maintained. The expansion rate « was
allowed to vary randomly between 1% and 16%. The data on Secondéry
Schools showed a wide variation in the expansion rate from year to
year. It is typical of a system to contract at one year and expand
by as much as 17% on the following year. Thus allowing o« to vary
randomly between the above 2 bounds would be close to the pattern of

the actual data. For every simulation attempt a different seed was
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used to generate random numbers consequently resulting in different
data sets which produced different estimates of P and of «.

I1.SET TWO: 100 Simulations carried out with fixed expansion and a 23

year period used to obtain the estinmates.

These simulations were carried out on the same transition matrix P
and the same initial starting vector as the first set. However, in
this set « was no longer estimated but assumed to be known and fixed
at 8% {(roughly the average between 1% and 16%). The aim of this was
to gain a measure of the variability introduced by estimating
{(equation) from data that increased annually at a variable rate.
I11.SET THREE: _10C

imulations carried out with an expansion rate

varying randomly between 1% and 16% and an  ll-year period used to

obtain the estimates.

Due to data collection errors and the difficulty of obtaining
consecutive data on the Sudanese educational system, a period of 7 or
8 vyears (differing between provinces) was used for estinating the
transition probabilities. In this third set of sinulations,
estimates were obtained from only an 11 year period. The aim of this
was to see the effect on the estimates of using a small time period.
As in both sets I and 1I, the same transition matrix P and initial
starting vector were used. The features of this 3rd simulation set

is closer to those of the actual data than the two first sets.

5.2 The Sampling Distribution of the Estimated Transition

Probabilities

In this section the sampling distributions of the estimated

transition probabilities are presented and comparisons are made
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between the three sets of simulations. In the first table shown
below, table 5.2.1 the measures of central location are compared with

each other and with the true values.

TABLE 5.2.1 COMPARISON OF MEANS, MEDIANS AND MODES OF THE TRANSITION

ESTIMATES, RESULTS FROM 100 SIMULATIONS.

TRANSITION PROBABILITIES

Pa= P22 Pzs Pas

TRUE VALUES 0.900 0.150 0.800 0.150
VARIABLE GROWTH

MEAN 0.900 0.149 0.782 0.171

MEDIAN 0.899 0.149 0.794 0.156

MODE 1.000 0.175 0.832 0.108
FIXED GROWTH

MEAN 0.912 0.136 0.798 0.151

MEDIAN 0.915 0.126 0.812 0.139

MODE 1.000 0.082 0.863 0.000
SMALL SAMPLE

MEAN 0.909 0.136 0.778 0.174

MEDIAN 0.914 0.132 0.795 0.163

MODE 1.000 0.167 0.845 0.184

As shown by Table 5.2.1 the means of the estimates from the 100
simulations are very close to the true values. This is true for the
three set of simulations. For p:z and pz=, the estimates obtained by
cimulations with a variable expansion rate are closer to the true
values. For pes and ps= the estimates obtained with fixed expansion
rates are closer to the true value. The results from the small
sample data are not very different than those obtained by the other

procedures especially if they are rounded to two decimal places.
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Thus it is possible to conclude that neither the variability of the
expansion rate nor a small data set have any considerable effect on

the means of the estimates.

The values of the median and the mode give an idea of the shape of
the distributions although more will be known later when comparing
the coefficients of skewness and kurtosis. It is interesting that
for all three sets and for nearly all the variables, the values for
the median are closer to the mean than those of the mode. This is
related to a tendency for the values of the mode to be unrealistic in
some cases; for p:z the mode is 1.00 in the three sets and for pss in
the second set the mode is 0. This might be due to the nature of the
QP technique which tends at times toe over—produce estimates of 1.00
and 0. Consequently such distributions are skewed, negatively skewed
when the mode in 1.00 and positively skewed when the mode is 0.00.
When estimating from actual data, estimates might be obtained close
to the modal value and this would result in an unrealistic estimate

of P.
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TABLE 5.2.2 COMPARISON OF THE VARIANCES AND STANDARD .DEVIATIONS,

RESULTS FROM 100 SIMULATIONS

TRANSITION PROBABILITIES

£12 £22 £23 R33
VARIABLE GROWTH
VARIANCE 0.004 0.004 0.004 0.006
STD. DEV. 0.067 0.06"- 0.0 el”™ 0.0T?-
FIXED GROWTH
VARIANCE 0.004 0.005 0.007 0.009
STD. DEV. 0.067 0.069 0.082 0.094
SMALL SAMPLE
VARIANCE 0.006 0.006 0.008 0.011
STD. DEV. 0.077 0.079 0.089 0.103

In general variability is not high for the majority of the estimates
and for the 3 sets of simulations. Fixing growth does not appear to
improve the variability among the estimates i.e. figures for the
standard deviation are no smaller. For the simulations carried out
on a small sample, the values for the standard deviation for all the

estimates are higher than those for the first two sets.

Table 5.2.3 shown below displays the correlation matrix of the

variables.
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TABLE 5.2.3 COMPARISONS OF THE CORRELATIONS BETWEEN THE TRANSITION
ESTIMATES. RESULTS FROM 100 SIMULATIONS.

CORRELATIONS

Piz Pzz2 P23 Pas

VARIABLE GROWTH

piz 1.00 ~0.988 0.097 ~0.079

paz 1.000 -0.13 0.122

pas 1.000 ~0.989

pss 1.000
FIXED GROWTH

pio 1.00 ~0.999 0.555 ~0.554

pza 1.000 -0.581 0.577

pos 1.000 ~0.996

pas 1.000
SMALL SAMPLE

piz 1.00 ~0.983 0.347 -0.318

pos 1.000 0.372 0.336

pza 1.000 ~0.986

pas 1.000

As expected from the nature of the variables, pi= and pze are highly
negatively correlated; if the probability of moving from grade 1 to
grade 2 is high then the probability of repeating in grade 2 is low
for given size of grade 1 at T-1 and grade 2 at T-1 and at time T.

Similarly, pz= and pszs are also highly negatively correlated. The
fact that this is not so is encouraging in the sense that a ‘'bad’'”’
estimate of p=w= will not have a large effect on the estimate of pes

and consequently pss
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TABLE 5.2.4 COMPARISON OF THE CORFFICIENTS OF SKEWNESS AND KURTOSIS.

RESULTS FROM 100 SIMULATIONS.

TRANSITION PROBABILITIES

pl2 p22 p23 p33

VARIABLE GROWTH

SKEWNESS -0.412 0.372 -1.239% 1.340

KURTOSIS 0.080 -0.014 2.065 2.449
FI1XED GROWTH

SKEWNESS ~0.495 0.580 -0.697 0.635

KURTOSIS -0.557 —-0.328 0.235 0.155
SMALL SAMPLE

SKEWNESS -0.617 0.554 -0.767 0.783

KURTOSIS -0.157 -0.006 0.421 0.311

Table 5.2.4 compares the coefficients of skewness between the 3 sets
of simulations. The <closer the values for skewness are to 0, the
more normal is the observed distribution. Certain features are
common among the 3 sets; the distributions of pi:e and pz= are always
negatively skewed while those of p22 and psz are always positively
skewed. Thus many of the estimates of piz and pe= tended to be
larger than the mean and due to the large negative correlation
between pir=z and pezz and between pas and pss, wany estimates for pze
and pa= tended to be smaller than the mean. Another feature common
to the three sets is that the distributions of pes and ps= are more
highly skewed than for pi2 and po=. This is especially with regard
to the simulations carried aut under variable growth. The
distributions of pes and pzs are less skewed under fixed growth
implying that the loss of growth variability improves the shape of
the distribution, The same is ‘true for simulation set 3 with

coefficients of skewness for pe= and pzsz smaller than for the first
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set. It is likely that the small time periocd used has worked to
lessen the effect of the large variability in growth and produced

distributions closer to the normal shape.

Table 5.2.4 also compares the coefficient of Kurtosis between the 3
sets of sinmulations. The coefficient of kurtosis measures the extent
to which observations cluster around a central point; a value of 0
indicates that the distribution is exactly normal while positive
values indicate a distribution that is more peaked than normal. Once
again the 3 sets of simulations share a common feature, values of
kurtosis for pi= and p== tend to be negative while values for p=s and
p== tend to be positive., Thus the distributions for piz and pzz are
platykurtic; they cluster less than in the normal distribution and
the shape of the distribution is generally flatter. The
distributions for pez= and psz are more peaked, cases within the
distributions cluster than those in the normal distribution and tend
to have nmore observations straggling into the extreme tails. The
distributions of pess and pz=z for the first simulation set (where
growth is variable) are highly peaked in comparison toe the other
simulation sets. For the case when growth is fixed, the value for
the kurtosis coefficient drops and is closer to zero. The same to a

lesser degree is true for the third set.

1t appears that a fixed growth rate improves the shape of the
distributions of paz and pss and a small sample size also has a
positive effect perhaps indirectly by reducing the effect of the
variability in the growth rate. This is however only with regard to

the distributions of pes and psxz, values of kurtosis for p:z and pe=
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are closer to zero in the first simulation set than in the second set

where growth is fixed.

Figures VI1-V4 show the histograms of the distributions of pai=,
pz22,Ppss, and pzs respectively for the case of variable growth.
Figures Fl1-F4 show the histograms of the distributions of the
estimates for the case of fixed growth. Figures S1-54 show the
histograms in the case where a small sample was used to obtain the
estimates. A normal probability curve 1is superimposed on the
histograms. The figures gives a visual representation of the shape

of the distributions.

5.3 The Variances and Covariances of the Predicted Grade Sizes

The general formulae for evaluating the expected values, variances
and covariances of an expanding system with given size is given in
Bartholomew (1982). In the special case when the size of the bottonm
grade is solely determined by the total number of recruits into the
system the formulae becomes:

w(T+1) = p{(Tin"' + p "(T+1) (6.3.1)

where w(T) is a 1x12 vector with the elements:

(E{ns),.....E{nz),covinin,),covinins),...... ,covinsns )]
r'= QX (5.3.2)
0 Y

where Q is a 3x3 matrix whose elements q., are the total probability

of a move (of any kind) out of grade i which results in an addition



to grade j. Thus:
Qiy =Pis +* Wili (5.3.3)
where r; is the probability of a recruit allocated in grade i.

For the present purpose as recruitment occurs only in the bottom

grade r: = 1 and ro = ra = 0. Therefore:
Wi Pz

Q= w=a P2z Pas (5.3.4)
Ws Pz

0 is a 9x3 zero matrix
X is a 3x9 matrix made up of the elements
(851 Qi = Qiy Qun)
8§51 = 1 when j = |, and is zero otherwise.

Y is a 9x9 matrix which is the direct matrix product of Q.

m ' (T+1) is a 1x12 vector 1in which the first 3 elements are the
expected number of entrants to each grade at time T+1.

The remaining 9 elements are the covariances of these numbers listed
in dictionary order. For the present application u '(T+1) contains
only one element, namely:

r {T+1) = A*N(T-13{(1,0,0,0,0,........ 1o (5.3.5)

For each of the 3 sets of simulations, 100 estimated transition
matrices were produced using QP. Using the same initial grade size
of n(0)={100,90,90] expected grade sizes for 29 time periods were
obtained with -=esach of the 100 estimated transition matrices. The
variances and covariances of the predicted grade sizes were also
calculated for the 29 time periods using the formulae above. The

procedure was carried out on the 3 sets of simulations. The tables
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below give the average predicted grade sizes and the average

variances and covariances for selected time periods.

TABLE_ 5.3.1_  AVERAGE PREDICTED GRADE SIZES. _ RESULTS FROM_ 100
SIMULATIONS ROUNDED _TO THE NEAREST INTEGER.
TIME
T=0 T=1 T=10  T=19  T=28
VARIABLE GROWTH
GRADE 1 100 114 227 475 1007
GRADE 2 90 103 217 456 967
GRADE 3 90 86 186 390 827
TOTAL 280 303 630 1321 2801
FIXED GROWTH
GRADE 1 - 100 114 217 433 864
GRADE 2 90 103 208 417 835
GRADE 3 90 85 179 358 717
TOTAL 280 302 605 1208 2416
SMALL SAMPLE
GRADE 1 100 114 223 460 962
GRADE 2 90 103 213 441 921
GRADE 3 90 86 182 377 786
TOTAL 280 303 618 1277 2669

As shown by table 5.3.1, there is hardly any difference bhetween the
predicted sizes at T=1 or at T=10. The difference is more marked,
however, as time goes by with sets 1 and 3 producing larger grade
sizeg than set 2. The difference however is not very large and
appears to affect the 3 grades equally. Noté must be taken however
that for simulation set no.2 the growth rate was fixed at 0.08 which
is less than the average of the range 0.0l and 0.16 used in the other
sets. It is likely that if the average 0.085 rate was used there
would be little difference between the three.
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TABLE 5.3.2a AVERAGES OF THE VARIANCE-COVARIANCE MATRICES FOR T=1 AND
T=10. RESULTS FROM 100 SIMULATIONS

] TIME
T=1 T=10
VARIABLE GROWTH
GRADE 1 25.99 -9.26 -16.73 111.86 ~57.43 ~54.43
GRADE 2 19.69 -10.44 114,19 -~56.76
GRADE 3 27.16 111.19
FIXED GROWTh
GRADE 1 23.43 -8.29 ~15.14 103.22 -53.00 -=50.21
GRADE 2 17.78 -9.49 105.25 -~52.24
CRADE 3 24 .64 102.45
SMALL SAMPL
GRADE 1 25.93 -8.42 ~17.52 107.57 -55.03 *52.54
GRADE 2 17.72 -9.30 108.98 -53.95
GRADE 3 26.81 106.49

TABLE 5.3.2b AVERAGES OF THE VARIANCE-COVARIANCE MATRICES FOR T=19
AND T=28. RESULTS FROM 100 SIMULATIONS

TIME

T=19 T=28
GRADE 1 234.65 -120.64 -114.01 495.73 —-254.57 -241.16
GRADE 2 240.30 -119.6%6 507.34 ~252.78
GRADE 3 233.67 493.94
FIXED GROWTH
GRADE 1 209.50 -107.98 -101.52 419.37 -216.26 -203.11
GRADE 2 105.25 ~-106.66 429,97 -213.72
GRADE 3 208.18 4£16.82
SMALL SAMPLE
GRADE 1 223.76 -114.78 -108.99 466 .80 —239.42 -227.38
GRADE 2 227.57 -112.80 474.92 -235.50
GRADE 3 221.78 4£62.88

The average variances and covariances of the predicted grade sizes
all increase with time. This increase is larger at the beginning of

the prediction periods and tends to settle down with time. While the
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variances and covariances triple between T=1 and T=10, they tend to
double in size between T=19 and T=28. Because the variances and
covariances are computed from the predicted grade sizes they will
always increase even if the system reaches a steady state, however,
the magnitude of the increase will diminish as the system approaches

equilibrium.

Removing the variability of the growth rate does appear to reduce the
prediction errors as can be seen from comparing between simulation
sets one and two. It is interesting that a smaller sample size
introduces less variability in the estimation process than does a

large one.

5.4 Summary of the Results of the Simulations

1. The means calculated from the 100 simulation attempts were very
close to the true wunderlying probability matrix. However the
distributions of the estimates are slightly skewed; negatively skewed
for estimates of piz and pes and positively skewed for the repetition
rate. This must be taken into account when estimating from real
data; it is possible to obtain for example an exaggerated high
estimate for pi= and consequently (due to the large negative
correlation) a very low estimate for poo. The same is valid to an

even much larger extent when estimating pes and pss.

2. Removing the variability of the expansion rate and reducing the
time period had little effect on the sampling distribution of the

estimates. The estimates of the means are not different between the
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3 sets especially if they are rounded to two decimal places. An
improvement however exists in the case of the skewness coefficient
for the distributions of pzx and paas. They are less skewed under
fixed growth and also in the case of set 3 when a smaller period is

used for the estimation.

3. The variances and standard deviations of the estimates are not
very high. Fixing growth does not appear to improve the variability
among the estimates and the variability among the estimates for set 3
(the small time period) is slightly higher than for the first two

sets.

4. As expected the correlations between piz and pz> and between pos
and pss are very highly negative. It is therefore.not possible to
obtain a 'bad' estimate for pi=z and a good one for po=. This must be
borne in mind when estimating from real data. It 1is encouraging,
however, that the correlation between pz= and pes is not very high.
Thus a2 'bad' estimate (exceptionally high or low) of pue will not

have a large effect on the estimate of pes and consequently pss.

5. In terms of predicting grade sizes, the three sets produced on
average, values that were not dissimilar. There is hardly any
difference between the predicted grade sizes at T=1 and T=10. The

difference however 1is more marked as time goes by with set 1

producing slightly larger grade sizes.

6. The average prediction errors are large and increase greatly

with time. There is a slight reduction in the prediction errors when
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the variability in growth is removed (set 2). This is expected
because a parameter (o) is no longer subject to random variation and
hence one source of error has been eliminated. What is unexpected is
a similar reduction when a smaller sample is used for the estimation
(set 3). In order to justify this there is a need to identify the
sources of variation in the nmodel. This requires more simulations
using different sample sizes, different growth variation and perhaps
comparing with systems in which there is no growth. This point is

taken up further in Chapter VI.
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CHAPTER VI

CONCILUSIONS AND SUGCGCESTIONS

FOR FUTURE RESEARCH

6.1 Conclusions

This research has been a first step in the stochastic modelling of
the Sudanese educational system. The educational statistics of the
late 70's onwards present a picture of an expanding system with a
growth rate that is unable to match the growing demand for school
places. This high demand is a consequence of a rise in the
population and an increase in urbanization. The result is that large
numbers of potential students are excluded from the educational
process. In particular, stétistically speaking, it also leads to

bottlenecks between one level of education and the next.

Of interest 1in the present context 1is the bottleneck between
secondary and higher education. The demand for higher education is
greater than its capacity limits and the excess of demand over supply
results in an 'qverspill' of eligible students. Of this 'overspill'
a proportion leave the system and a proportion decide to remain and
increase the number of applicants in the following year. The result
is a steady fall 1in the proportion of eligible students who are

admitted each year into higher education.

In Chapter III two bottleneck models suitable for modelling the
movement of students in secondary and higher education were

developed. In both models the flow of students into higher education
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is not determined by the numbers who are eligible and want to proceed
into higher education but by the number of vacancies. The first
mode!l considers the case when a capacity constraint exists in the
first grade of a particular higher education institute. The second
mode! assumes that it is the total size of higher education which is
fixed. It succeeded in generalizing previous bottleneck models by
allowing for expansion and contraction of the capacity constraints

As such it 1is a step further in the theoretical study of bottleneck
systems. However, validating the models by data fitting was not

possible because of the lack of sufficiently detailed data.

The limitations imposed by unavailable flow rates and the need for
their estimation is dealt with in chabter IV. The original procedure
used for estimatiné transitiﬁn pfobaﬁilifies, (see Lee,. ju&ge and
Zellner (1970) and Rosenqvist(1986)) was based on systems that
remained constant in size. In this application it was adjusted to
allow for expanding systems as was the case in the Sudan. An
estimate of the rate of expansion was obtained assuming linear
growth. The data was then rescaled by the estimate before the
original quadratic programming technique for estimating transition

probabilities from stock data was used.

Estimates were obtained of the transition probabilities of students
in secondary schools. However, because of many errors in the data,
estimates could only be obtained from a limited number of data sets
in particular provinces. In the majority of cases the fit of the
mode! was good and validating the predictions of the model with newly

published data is highly successful. 1t is thus possible to conclude
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that the movements of students in secondary education can be

\

adequately described by a Markov model.

Due to the limited data available, it is not possible to make
generalizations about the wastage, repetition and promotion rates of
secondary students for the whole country. There is also insufficient
evidence of differences in the transition rates between different

provinces and/or between sexes.

In Chapter V an attempt was made through simulations to assess the
effectiveness of the QP technique adjusted for expanding systems,
The results were promising with estimates coming close to the true
values. Prediction errors,however, were large showing that
predictions over a large period are likely to be poor and should be
restricted to only about 5 years ahead. There was slight evidence
that the technique was effective in situations where the expansion
rate varies widely from year to year. However, more work needs to be

done in order to verify the source of variation in the model.

6.2 Suggestions for future research

Future research can take a number of directions. In the theoretical
study of bottleneck systems, the models can be generalized for more
wider applications in manpower systems which are not necessarily
hierarchial. It would be interesting to incorporate a feed—-back
mechanism which models changes in the behaviour of the 'overspill'
promotions as time passes. Also bottleneck systems can be modelled

in continuous rather than discrete time; this would be wvalid in
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applications to manpower rather than educational systems where

changes occur at fixed points in time.

The work carried out in chapters IV and V is only a first step in the
estimation of transition rates from stock data of expanding systems.
More work can be done 1in validating the procedure, identifying the
sources of variation in the model and considering the effectiveness

of the procedure under different assumptions.

For the development of a full model of the Sudanese educational
system that can be used for planning purposes, it would be necessary
to have more data and preferably flow data. Figure A& on page 109 is
a flow chart of the entire educational system with arrows denoting
the possible movement of students. Students can also at any time
move to the outside world (not shown in the figure). Bottlenecks
exist at all the levels with the exception of the external students.
Secondary government school students who are unable to obtain a
higher education place (the 'overspill') and who wish to retake the
Secondary School Certificate must move to other secondary schools or

become external students.

Of interest would be the total numbers in each of the boxes. These
would include repeaters and those who have been promoted to fill
either new vacancies or those arising from wastage. The total number
of external students would include those from secondary schools who
were unable to gain entrance to higher education and who decide to
re-take the examination. It will also include those who in the

previous year were external students but once again did not gain
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entrance to higher eduction and decided to re-take the examination.

Another point of interestlwouid be the amount of wastage from the
system. Total wastage would be made up of:

—The overspill of students from various kinds of secondary
education including external students who were unable to obtain a
place in higher education.

~The overspill of students from intermediate schools who were
unable to obtain a place in any kind of secondary school.

~The overspill of students from primary schools who were unable to
obtain a place in intermediate schools.

-Natural wastage from all of the boxes in the flow chart. This
includes that wastage occurring at the last grade of each box as well

as within the boxes.

In order to fit such a model more data needs to be collected on the
nunbers that apply to higher education, their priorities, as well as
the numbers of repeaters among external students. The present
research has shown that a simple Markov mode! can adequately describe
the movement of students within the boxes. It has also shown that
within the boxes reasonable estimates of transition rates can be
obtained from stock data. What 1is lacking is more data on the flows

between the boxes.
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PROBABILITY OF REMAINING IN GRADE 2
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PROBABILITY OF MOVING FROM GRADE 2 TO 3
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PROBABILITY OF REMAINING IN GRADE 3
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MROSASI LITY OF REMAINING IN GRADE 2
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PROBABILITY OF REMAINING IN GRADE 2
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APPENDIX D

PROGRAM SIMUL

THIS PROGRAM SIMULATES THE RANDOM BEHAVIOUR OF A 3-GRADE
SYSTEM IN WHICH THE TOTAL SIZE (DENOTED BELOW BY 0<T))IS
ALSO EXPANDING AT A RANDOM RATE.

THE RANDOM NUMBER GENERATOR USED IS RN55 WHICH IS A DOUBLE
PRECISION FUNCTION THAT RETURNS A RANDOM NUMBER X FROM THE
UNIFORM DISTRIBUTION (0,1).

THE PROGRAM PRINTS THE NUMBER OF INDIVIDUALS IN EACH GRADE
AT TIME T,THE TOTAL SIZE OF THE SYSTEM AND THE RANDOM RATE
OF EXPANSION. IT ALSO PRINTS THE PROPORTION OF INDIVIDUALS
IN EACH GRADE.

IMPLICIT DOUBLE PRECISION (A-H), (0-2)
INTEGER N
INTEGER IFAIL
DIMENSION X<23),Y(23),RESULT!20 )
DIMENSION 0 (0:50 ), U (50>, SUMN (2:3,0:50>,H<50>,R (9000 )
DIMENSION M<2:3,9000 ),S(2:3,9000 )
DOUBLE PRECISION RN55, FAC1,FAC2
ISEED=INT (SECNDS (0.0))
CALL RNSD (ISEED)
RN55 IS INITIALIZED BY THIS CALL TO THE SUBROUTINE RNSD.
READ *,0(0),SUMN (2,0 >, SUMN (3,0 >
THESE ARE RESPECTIVELY THE INITIAL SIZES OF GRADES 1,2,3.
READ *,P12,P22,P23,P33
THESE ARE THE TRANSITION PROBABILITIES OF MOVEMENTS BETWEEN
THE GRADES. NO REPETITION IS ASSUMED IN GRADE 1.
READ *,FAC1,FAC2
THE SYSTEM IS ASSUMED TO EXPAND RANDOMLY BETWEEN A GIVEN
RANGE SAY ALPHA 1 TO ALPHA 2. FAC1 = ALPHA 2 - ALPHA 1 AND
FAC2 = ALPHA 1.
Wl= 1.0- P12
W2= 1.0~ P22 - P23
W3= 1.0- P33
U(0>= 0(0) + SUMN (2,0) + 3UMN( 3,0)
READ *,T
READ *,NLOOP
IN THE PROCEDURE BELOW S(R,I) TAKES A VALUE OF 1 WHEN AN
INDIVIDUAL KNOWN TO BE IN GRADE R-1 AT TIME T-1 (R=2,3>
MOVES TO GRADE R AT TIME T.
M(R,I ) TAKES A VALUE OF 1 WHEN AN INDIVIDUAL KNOWN TO BE
IN GRADE R AT TIME T-1 REMAINS IN GRADE R AT TIME T.
DO 200 LOOP=1,NLOOP’
WRITE (6,201 )LOOP
FORMAT! 3X, '"THIS IS SIMULATION NUMBER ’,13)
DO 100 J=1,T

SUMN (2, J )=0

SUMN (3, J )=0

DO 50 1=1,0 (J-1)

R(I )=RN55( )
IF (R(I ).LT.P12 ) THEN
S(2,1 >=1
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0110 IFAIL=0

0111 CALL GO2CBF(11,X,Y,RESULT,IFAIL)

0112 WRITE (6 ,33 ) RESULT(6 )

0113 33 FORMAT !3X, 'ESTIMATE OF 1+A USING LEAST SQUARES* 'F7.5)
0114 OPEN (UNIT=25, FILE='LP.DAT’ ,STATUS* 'NEW',
0115 4CARRIAGECONTROL*'LIST' )

0116 WRITE (UNIT=25>FMI=S )

0117 2 FORMAT (’SLPMODELS S'IMUL DAT; ')

0118 WRITE (UN1T=25, FMT=3)

0119 3 FORMAT ('SINDICESS I,J,T;')

0120 WRITE (UN1T=25, FMT=4)

0121 4 FORMAT ! 'SDATA'IDSS Y(1:J:3,1:T:12); ")

0122 WRI1TE (UN1T=25,FMT=6 )

0123 6 FORMAT ! 'SVARIDSS Z(1:J:3,2:T:12) : REALNONNEG, )
0124 WRITE!UNIT=25,FMT*7 )

0125 7 FORMAT!9X, *P<1:1:3,1:J:3> : REALNONNEG;’)
0126 WRITE!UNIT=25,FMT=8)

0127 8 FORMAT ! 'SROWSS FUNC: -SIGMA!J,1,3,

0128 6SIGttA!T,2,12,2*Y(J}T) *Z(J,T>)) SMINS,’'>
0129 WRITE!UNIT=25,FMT=9 )1.0/RESULT!6 )

0130 9 FORMAT!5X,’zD!'1:J:3,2:T:12) : 2!J,T)SEQS
0131 2SIGMA! 1,1, 3,Y(I,T-1)*’,F7.4, "*PU,J)), ")
0132 WRITE!UNIT=25,FMT=12 )

0133 12 FORMAT!5X,’PS!1:1:3) : SIGMA!J,1,3,P(I,J)) SLEQS 1,7)
0134 WRITE!UNIT=25,FMT=23 )

0135 23 FORMAT!5X, 'ND<2:1:3) : P!1,1-1) SEQS 0, )
0136 WRITE!UNIT=25, FMT=14)

0137 14 FORMAT!5X,’EX!3:1:3) : P!1,1-2) SEQS 0, )
0138 WRITE!UNIT=25, FMT=15 )

0139 15 FORMAT!5X,’RP!1:1:1 ) = P!I,I) SEQS 0,")
0140 WRITE!UNIT=25, FMT=16 )

0141 16 FORMAT!5X,’JM!1:I:1) : P!1,1+2 ) SEQS 0;’ )
0142 WRITE!UNIT=25,FMT=17 )

0143 17 FORMAT! 'SEOMS’ )

149



0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0le6l
0162
0163
0164
0165
0166
0167
0168

18

19

21

24

25

27

28

31

32

200

WRITE!UNIT=25, FMT=18)

FORMAT ('SLPOATAS SIMOL DAT;')

WRITE (UNIT=25,FMT=19 HOCJ>/U<J>J«0,8 >
FORMAT ( 3X,’Y!1,T) +\F5.4,' +\F5.4,’ +',F5.4,"
3F5.4,'" +'’,F5.4,’ +\F5.4/ +',F5,4," +\F5.4,"'
WRITE (UNIT-25,FMT=21)<0(J)/U(J),J=9,11)
FORMAT (10K, '+',F5.4,’ +,,F5.4,' +‘,F5.4,V>
WRITE<UNIT=25,FMT=24 ) !SUMN!2, J) /U (J),J=0, 8)
FORMAT ( 3X, 'Y(2,T) +'.F5.4,’ +',F5.4," +,,F5.4,<
6F5.4, * +\F5.4," +,,F5.4," +\F5.4, » +',F5.4,"
WRITE (UNIT=25,FMT=25 ) (SUMN (2,J >/U(J),J=9,11 )
FORMAT ( 10X, '+’ ,F5.4S’ +',F5.4,' +»,F5.4,\,>
WR ITE (UN IT=25,FMT=27 ) (SUMN (3, J)/U(J),>0, 8
FORMAT! 3X, 'Y(3,T> +,,FS.4,* +»,F5.4,' +\F5.4,"
2F5.4," +\F5.4,» +\F5.4,’ +\F5.4," +’'~5.4,"
WR ITE !UNIT=25,FMT=28 XSUMN! 3, J)/U(J),J=9,11)
FORMAT! 10X,'+\F5.4,’ +»,F5.4,' +,,F5.4,,;:t)
WRITE!UNIT=25, FMT&31 )

FORMAT!’SEODS1)

WRITE!UNIT=25, FMT=32)

FORMAT ! *"PICTURE” ,"A” ,”"P",/" )
CLOSE!UNIT=25,STATUS='KEEP")

CONTINUE

STOP

END
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

0016

0017

0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
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66

PROGRAM PREDICT

THIS PROGRAM CALCULATES THE EXPECTED STRUCTURE OF A
3-GRADE SYSTEM WHICH IS EXPANDING. ESTIMATES OF THE
EXPANSION RATE AND THE TRANSITION PROBABILITIES MUST
BE READ INTO THE PROCRAM. THE PROGRAM ALSO GIVES FOR
EACH TIME PERIOD, THE VARIANCES AND COVARIANCES OF THE
PREDICTIONS. COVIJ(T) DENOTES THE COVARIANCE BETWEEN
THE PREDICTED VALUES N(I,T> and N(J,T).

REAL N1, N2, N3

DIMENSION N1(0:28,100),N2{0:28,100), N3 (0:28,100),P12(100)
DIMENSION P22 (100 ),P23( 100 ),P33( 100),A(100),U(0:28,100 )
DIMENSION COV11<0:28,100),COV33(0:28,100 ),C0V12<0:28,100 )
DIMENSION 0015
COV22<0:28,100 ),COV23(0:28,100 ),W1(100),W2<100 ), W3 (100 )
DIMENSION

SN1(28),SN2 (28 ),SN3(28 >,SU(28 ),SCOV33 (28 ),C0V13(0:28,100)
DIMENSION

SCOV11 (28 >, SCOV12 (28 ),SCOV13 (28 ),SCOV22 (28 ),SCOV23 (28 )
READ *, N1(0,1),N2(0,1 ),N3<0,1)

READ *,TS
DO 6 J=1,TS
1(0,J)=N1(0,1>
N2 (0,J)=N2(0,1 )
N3<0, J )=N3(0,1 )
(

00(0,JT)=N1(0,J ) + N2<0,J) + N3(0,J)
CovV11(0,J)=
Cov12 (0, J )=0
COV13C0,J)=0
Ccov22<0, I>=0
Ccov23(0,J )=0
COoV33(0,J)=0
CONTINUE
DO 66 J=1,TS
READ *,P12<J>,P22(J),P23(J),P33(J),A(J)

CONTINUE

DO 88 L=1,28,9
SN1CL) =
SN2 (L )-0
SN3 (L )=0
SU<L )=0

SCOV11(L)=0
SCOV12CL )=0
SCOV13 (L) =0
SCOV22 (L )=0
SCov23 (L) =0
SCOV33 (L>=0
DO 77 J=1,TS

W1l(J>=1.0 - P12(J)
W2(J)=1.0 - P22(J) - P23 (J)
W3(J)=1.0 - P33(J)

DO 50 1=1,2,88
U(I,J)=A(J)*u(l-1,J) + U(I-1,J)
N3(I,J)=P33<J)*N3<I~1,J) + P23<J)*N2<1-1, J)

151



0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074

0075

0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

0102
0103
0104
0105

N2 (I,J)
N1(I,J)

=P22(J
=U(I,J)

) *N2(1-1,J) + P12(J
-N2<I,J)~N3(I,J)

)*N1(1-1,J)

COV1K I,J)=C0V11( I-1, d)*WIl<J)*W1l (J>+COV12(I-1, J)*WL(J >*W2<J >*2.0 +

2COV13< 1-1, J)™

)WL (J ) *W3
T7COV23CI—1,J)*2.

) *W3

)*

0*W3 (J
3Cov33<1l-1,J (J)*W3(J
4 (W2 (J ) ~W2 (J) *W2
Covli2(1I,J)sCv11(1-1,J
5COV12( I-1,J) *W2
2COV13(I-1,J)*W3
6W1<J) *P12 (
COV13(I,J)*COV12(1-1,Jd>*W1l (J
TCOV22 (I-1,3J)*W2 (
2COV23<1-1,J )3 (J
OW2 (J ) *P23(J

) WL (I
(J) *P12(
(J

(J
)*

(J)>*N2 (1-1,J )+
) *P12(J
J) + COV22< 1-1, J >*W2< J) *P22 ( J
) *P12<J)
J)*N1 (I~1,T> - W2(J
) *P23<J )COV13 (1-1,J >*W1 (J >*P33<J ) +
J)*P23(J> + COV23(1-1, J)*W2(J
) *P23(J
)*N2 (1-1,J) - W3(J

COV22 ( I,J >=CO'V11 (1-1, J >*P12< J >*P12(J

9+COV22 (1-1,J)*P22(J ) *P22(J )+ (P12(J
1 (P22 (J)-P22(J) *P22(
Cov23 (1, J)

)

)*2.0 + COV22( 1-1, J)*W2(J
W2(J) +

) + <W1<J)-W1(J>*W1(J)>*N1<1-1,J0) +
(W3 (J )-W3(J >*W3 (J >) *N3(I-1,J)
YJCOV1Z2 ( 1-1, J>*WL1(J )*P22(J ) +

) +

)_

)W2(J) +

+ COV23(I—1,J)*W3(J)*P22(J
) *P22(J ) *N2 (1-1,J >

>*P33(J ) +
) + COV3311-1,J >*W3<J >*P33(J ) -
) *P33(J ) *N3(1-1,J)

) +COV12< 1-1, J ) *P12 (J >*P22 (J
-P12(J ) *P12 (J>)*N1(1-1,J0) +

)*2.0

J))*N2(1-1,J)
=CQV12 (1-1,J >*P12(J

>*P23(J )

+COV13< 1-1, J)*P12( J >*P33(J ) +

2COV22 (1-1,J)*P22(J
3P22 (J ) *P23(J

) *P23 (J
) *N2<1-1,J)

) + COV23(1-1,J)*P22<J >*P33(J ) -

COV33(I,J )=C0V22(I-1.J>*P23(J )*P23(J)
+2.0*COV23 (I—1,J) *P33<J ) *P23(J)
4+ COV33(1-1,J)*P33(J )*P33(J) +
P33<J)-P33<J )*P33(J ) ) *N3 (1*1,J )+
5(P23(J)-P23(J ) *P23(J)) *N2 (I-1,J)
50 CONTINUE
SN1 (L >=SN1(L) + N1(L,J >
SN2 (L)=SN2 (L) + N2(L,J)
SN3 (L )-SN3(L ) + N3(L,J>
SUKL )=SU(L>+ U(L,J)
SCOV11 (L )=SCOV1l (L) + COVIKL, J)
SCOV12 (L )=SCOV12{L) + COV12(L,J)
SCOV 13 (L )®SCOV13 (L) + COV13(L J>
SCOV22 (L )=SCOV22< L) + COV22(L,J
SCOV23 (L )=SCOV23 (L) + cov23(L,J>
SCOV33 (L )=SCOV33 (L) + COV33(L,J)
77 CONTINUE
PRINT *,'T=',L
PRINT *,SCOV11(L)/TS,SCOV12(L)/TS,SCOV13(L)/TS
PRINT V* , SCOV22 (L) /TS, 3COV23 (L) /TS
PRINT *,' sc0v33 L) /TS
88 CONTINUE
WRITE< 6,211 )
211 FORMAT (1HO, T3, 'GRADES’ )
WRITE (6,212)1
212 FORMAT (1H+.T18,'T='12)
WRITE (6,213) 10
213 FORMAT (1H+, T30, 'T="'12)
WRITE (6,214 ) 19
214 FORMAT (1H+,T42,'T="12)
WRITE (6,215) 28
215 FORMAT (1H+, T54,'T='12)
WRITE (6,216 )1,SN1(1)/TS,SN1(10)/TS,SN1(19)/TS,SN1(28)/TS
216 FORMAT (1H0,15,T13,4F12.2)
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0106 WRITE (6,217 >2,SN2 (1) /TS, SN2 (10 >/TS, SN2 (19 >/TS, SN2 (28 ) /TS

0107 217 FORMAT (1H ,T5,T13,4F12.2)

0108 WR1TEC 6,217 )3,SN3<1>/TS, SN3 (10 ) /TSsSN3(19) /TS, SN3(28) /TS
0109 WRITE (6,218 )

0110 218 FORMATCIB ,T5,'D(T)’)

0111 WRITE (6,219 )S0<1) /TS, S0 (10 ) /TS, SU(19) /TS, S0<28) /TS

0112 219 FORMAT (1H+,T13,4F12.2)

0113 STOP

0114 END
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