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ABSTRACT

The thesis examines the possibility of applying a Markov planning 
model to the Sudanese educational system. The limitations of the 
available data published by the Sudanese Ministry of Education is 
examined and the quality of the data discussed.

Study of the system establishes the presence of a bottleneck between 
secondary and higher education due to shortages of places in the 
latter. Two adaptations of the simple Markov model are proposed in 
which the flow of students into higher education is determined by the 
number of vacancies. The first model considers the case when a 
capacity constraint exists in the first grade of a particular higher 
education institute. In the second model it is the total size of 
higher education which is assumed to be fixed and expansion or 
contraction of the capacity constraints is allowed. For both models, 
it is shown that a steady-state exists and can be evaluated.

A serious limitation of the available data is the lack of flow rates 
which therefore must be estimated. The estimation methods available 
assume a system that is constant over time. As the Sudanese 
educational system is expanding an extension of the original 
regression method was developed to account for growth. The procedure 
was used to obtain estimates of the transition rates of students in 
different parts of the Sudan. The fit of the model was good in the 
majority of the cases and validating the prediction of the model with 
newly published data was successful.

Lastly, a simulation program was developed which generated artificial 
data sets from which transition rates were estimated. Sampling 
distributions of these estimates were then obtained by repetitive 
simulations. Studying these distributions showed the estimation 
technique to be effective in terms of ability to estimate the true 
transition rates and make reasonable predictions.
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CHAPTER I 
INTRODUCTION

1•1 Review of the literature

Modelling social and economic phenomena often requires models which 

are stochastic rather than deterministic. This is due to the 

unpredictability of human behaviour and the uncertain nature of the 

social environment. Models that are based on stochastic processes 

are therefore often used to describe systems* gain insight into their 

dynamics and predict their future behaviour under certain 

assumptions. The success of modelling social and economic processes 

is somewhat reflected in the diversity of applications; from consumer 

behaviour Massy and co-workers(1970 ) and Gupta( 1986 ) to geographical 

mobility T2iafetas(1980) and states of credit accounts Frydman, 

Kallberg and Kao(1985). More examples are given in Bhat(1984) who 

also provides examples of applications in the biological sciences. 

Bartholomew(1977a) gives an introduction to the analysis of data 

arising from stochastic processes while a theoretical account of the 

field and a full bibliography is given in Bartholomew( 1982 ),

One of the largest field of application of stochastic models has been 

manpower and educational planning. Early examples go back to 

Seal(1945> and Vajda(1947). Many of the applications have made use 

of the discrete time Markov chain. Time is assumed to be discrete 

either because changes in the process occur only at discrete points 

of time (as in the case of education), or because a process which 

develops continuously is observed only at discrete time points.
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Individuals are grouped together in categories or grades (usually 

hierarchial ), according to characteristics they share in common such 

as age, seniority etc. It is assumed that they move independently 

between the grades and into and out of the system with fixed 

transition probabilities. The central point of interest is the 

distribution of numbers in the grades and the prediction of future 

stocks and flows under various conditions. An account of the 

application of the Markov model to manpower planning is given in 

Bartholomew(1971 ) and in the textbook by Bartholomew and Forbes( 1979 ) 

which contains a full bibliography. Examples of the application of 

the Markov model are many; it was used by Young and Almond(1961) and 

later Leeson(1980) for predicting distributions of staff while 

Sales(1971) applied it for a branch of the Civil Service. Gani(1963) 

used it for projecting student enrollment in university. Other 

applications in education include ThonstadC 1969 ), Clough and 

MacReynolds( 1966 ), Karaat(1968 ), Armitage,Phi 11ips and Davies( 1970 ) 

and Armitage,Smith and Alper(1969). More applications in education 

are given by Stone( 1965 ) and ( 1972 ), Balinsky and Reisman(1972 ) and 

( 1973 ) and Britney(1975 ).

The second main class of models of hierarchically graded manpower 

systems are renewal models. In systems where the grade si2es are 

fixed, renewal theory provides the mathematical foundation. The 

application of renewal theory to manpower systems in introduced by 

Bartholomew( 1963 ),(1976 ) and a full account is given in 

Bartholomew( 1982 ) and practical applications in Bartholomew and 

Forbes( 1979 ).
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Attempts have been make to generalize Markov models in order to 

achieve more realistic applications. Moya-Angeller(1976> considers a 

system which acts in an intermediate manner between the Markov and 

Renewal model because there are capacity constraints which place 

limits on the grade sizes. Once these limits are reached the surplus

has to be relocated in other grades. This is an extension of the

bottleneck models introduced earlier by Armitage and co- 

workerst1969 ). Young and Vassi1iou(1974 ) also consider the problem 

of capacity constraints by allowing the numbers promoted to depend 

not only on the stock from which they come but also on the size of

the destination grade. A system in which transition probabilities

are changing over time cannot adequately be described by a simple 

Markov chain model and requires a generalization. Kalamatianou(1984 ) 

and (1988) discusses a model for responding to promotion blockages 

where she assumes that ’pressure’ is created when there is an

increase in the numbers of eligible employees that are passed over 

for promotion. When managers are faced with a high ’pressure* for 

promotion they respond by changing the promotion policy.

In addition to the widespread application of Markov models, research 

has been undertaken on more theoretical aspects; on the limiting 

properties of the model Vassi1iou(1981 >,(1982 ) and Woodword(1983a), 

the variances and covariances of the grade sizes Vassilou and

Gerontidis( 1985 ) and on forecasting grade, age and length of service 

distribution Woodward(1983b), De Stavola< 1988 ) gives a number of 

tests for departure form time homogeneity in Multi state Markov 

processes. On the geometric probabilistic relationship in a Markov

manpower model see Davies(1983) and Wegner(1985) argues for the use
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of simulation in corporate manpower planning.

Significant new advances have been made in the area of modelling 

social processes, Bartholomew(1983 ) reviews recent developments and 

gives a brief summary of the general literature on the subject. 

Developments have taken place in the application of continuous time 

models Plewis(1981) and Tuma, Hannan and Groenveid( 1979 ). Examples 

of semi-Markov models were discussed by McClean( 1980 ), Thompson(1981 ) 

and £avies( 1985 ). .Hassani<1980> discusses the application of semi- 

Markov models in manpower planning and his thesis contains a full 

bibliography. A more up-to- data analysis in given in a collection 

of works edited by Jarusen(1986 ). Another interesting development has 

been the investigation of non-linear models; Bartholomew(1984) gives 

a review of the relevant literature. An example of non-linearity is 

provided by Conlisk( 1976 >,(1978) who first introduced the term 

'interactive’ Markov chain. One of the basic assumptions of the 

Markov chain model is that individuals move independently of each 

other. However in reality the behaviour of individuals is affected 

by the behaviour of others. Conslink proposed to allow for this 

interaction between individuals by allowing the transition 

probabilities of the Markov chain to be a function of the state 

probability vector.

An area which has attracted a great deal of research is the theory of 

control of Markov models. Abdellaoui(1985> reviews the development 

in the subject with regard to stochastic control in manpower planning 

and gives a full bibliography. A full treatment is given in 

Bartholomew( 1982 ) which is developed from earlier work in Bartholomew
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(1977b), Forbes(1971), Davies(1973) and Vajda(1975). Bartholomew and 

Forbes(1979> gives an elementary account of the theory in the context 

of practical manpower planning. Some examples of recent work 

includes .Davies(1982 ), Haigh<1983 > on the maintainability of manpower 

structures and Abdallaoui(1987) on the probability of maintaining or 

attaining a structure in one step.

One of the practical problems in manpower planning applications is 

the estimation of the parameters of the Markov model. The techniques 

in use vary with the type of data that is available. Col 1ins( 1974 )

discusses the estimation of Markov transition probabilities when 

micro-unit (flow data) is available. The estimators in this case are 

the maximum likelihood estimators; the observed proportions of flows 

or in other words the ratio of the total flow to the total stock. 

More on the methods of maximum likelihood for this type of 

application is given by Anderson and Goodman(1957). The general 

advances in data collection and in particular the availability of 

detailed flow data has made this method the most widespread in 

empirical applications of Markov chains.

Sometimes ,however, what is only available is aggregate stock 

(macro) data giving the proportions or numbers observed for each 

state at each moment of time. Lee, Judge and Zellner( 1970 ) presented 

a number of different estimators and compared them by simulations. 

Their main approach was based on regression analyses and it led to 

many empirical applications to mention a few; in consumer behaviour 

Sherif and Thompson(1980), Kelton and Kelton(1982) and voter 

transition behaviour McCarthy and Ryan(1977). The work of Lee and
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co-workers( 1970 ) also gave rise to work on the statistical problems 

involved; se;e for example MacRae( 1977), Kelton( 1981 ), Van der 

Plas(1983), McLeish(1984) and Kelton and Kelton(1984 ). Kalbfleish 

and Lawless(1984) introduced a weighted least-square estimator and 

compared it with previous estimators. Lawless and McLeishC1984 ) 

compared the information content of macro data with that of complete 

micro data. They were able to show that in some instances, aggregate 

data can give good estimation of equilibrium distributions and mean 

occupancy numbers for states in a chain. More evidence on the 

possibility of obtaining good estimates form macro data is given in 

asymptotic terms by ThorburnC1982) and with simulation earlier by 

Lee, Judge and Ze.llner (1970 ), Leef langC 1974) suggested the

combination of micro and macro data in the estimation of transition 

probabilities. An example in which both micro and macro data is 

available is the area of consumer behaviour where micro data is 

obtained from panels of households and macro data from retail store 

audits. More work on using such combined data is given in 

RosenqvistC1986 ),

The above review is by no means inclusive but many of the references 

given will lead to others. Of note Bartholomew(1982> and (1983) 

contains many references on the stochastic modelling of social 

processes that have not been mentioned. With regard to the area of 

parameter estimation of the Markov model, Rosenqvist(1986) provides a 

full bibliography. For a more comprehensive but non-statistical 

study on manpower planning in the Sudan see A1i(1986 >, which leads to 

many references specific to the Sudanese application.
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1-2 Objectives and hypotheses of the research

The following section reviews the objectives and hypothesis of the 

thesis. My first aim was to carry out an application of a Markov 

planning model on the educational system in the .Sudan with emphasis 

on the movement of students between secondary and higher education. 

This would be the first time such an application had been made on 

Sudanese education and could pave the way for future stochastic 

modelling of the system. Education at all levels is limited; only 

40'7o of all those aged 7-18 go to school. Thus education is neither 

universal nor compulsory which makes a demographic approach to 

planning, based on predicting school-age population, unrealistic. 

What can be done is .study the stocks and flows of the system, 

describe its dynamics and make predictions based on the present 

propensities.

A study of the data available ( in the form of annual official 

statistics published by the Sudanese Ministry of Education), revealed 

serious limitations that posed problems in applying the model. The 

major limitation was the unavailability of flow data. While detailed 

stock data was available and presented in terms of the total numbers 

in each grade by region and by sex, flow figures on the numbers being 

promoted, those repeating and any wastage rates were unavailable. It 

was therefore necessary to concentrate on the problem of estimating 

transition probabilities from a sequence of stock data assuming an 

underlying .Markov process.

Studying the data on secondary and higher education revealed that
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shortages of places in the latter restricts the entrance of students.

The demand for higher education is greater than its capacity limits 

and this excess of demand over supply results in an ’overspill' of 

eligible students. Of this 'overspill' a proportion leave the 

system and a proportion decide to remain and increase the number of 

applicants in the following year. .Such a bottleneck is reflected in 

the steadily falling proportion of eligible students who are admitted 

each year into higher education. This breaks down the Markovian 

assumptions of 'push flows’ (where the impetus for change resides in 

the conditions in the state in which the flow originates) and there 

is a need to consider adaptations to the simple Markov model.

Taking the above two points the hypotheses being tested can be 

summarized as follows:

1. Within secondary schools, the movement of students 

follows a discrete time Markov process. Differences 

might exist, however, between the transition rates of 

boys and girls and between provinces which makes it 

necessary to model each separately.

2. Due to shortages of places in higher education, the 

movement of students into higher education is restricted 

and the Markov assumptions do not hold. Such a system 

with a bottleneck can be modelled in terms of an 

intermediate model between the Markov model and the 

Renewal model where flows take place only to fill 

vacancies.

3. The unavailability of flow data is not an obstacle to 

applying a flow model as the transition probabilities can
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be estimated adequately. The estimation methods

available that assume a constant-si2ed system can be 

extended in order to account for expansion as is the case 

for the Sudanese system.

Through testing the above hypotheses, the aim is also to generalize 

bottleneck models in order to allow expansion or contraction of the 

capacity limits, and extend the method of estimating transition 

probabilities from stock data for use on expanding systems.

1•3 Structure of the thesis

The thesis is made up of six chapters. Chapter I as an introduction 

reviews the relevant literature, states the objectives and hypothesis 

of the research and outlines the structure of the thesis.

Chapter II has two aims : to give a general description of the 

Sudanese educational system as well as highlight particular problems 

that are examined in more detail in the following chapters. These 

are the presence of a bottleneck between secondary and higher 

education and the lack of detailed flow data. The chapter also 

includes a discussion on the quality of the available data.

In Chapter III two bottleneck models are proposed to the model the 

movements of students from secondary to higher education. The first 

considers the case when a capacity constraint exists in the first 

grade of a particular higher educational institute. In the second 

model, it is the total si2e of higher education which is assumed to
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be fixed. The model allows for the expansion or contraction of the 

capacity constraints and is thus a more generalized bottleneck model. 

For both models it is shown that a steady-state exists and can be 

evaluated. Numerical examples using hypothetical data are also 

given.

Chapter IV gives an overview of the available methods for estimating 

transition probabilities from aggregate stock data. .An extension of 

the original regression method for expanding systems is presented. 

The procedure is applied to the data and transition probabilities of 

students in different parts of the country are estimated. The 

predictions of the model are then verified with newly published data.

In Chapter V a simulation program is developed in order to assess the 

effectiveness of the estimation procedure presented in Chapter IV. 

The simulation set generates artificial data upon which the model is 

fitted and prediction errors are calculated. The chapter then 

studies the sampling distributions of the estimates obtained from 

repetitive simulations under various conditions.

As a final chapter, Chapter VI presents the conclusions of the 

research and offers some suggestions for future research.
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CHAPTER II
THE SUDANESE EDUCATIONAL SYSTEM

The Sudan is the largest country in Africa covering an area, of 2.5 

million square kilometres, nearly one-tenth that of the continent. 

It shares borders with Egypt and Libya to the north, Chad, Central 

African Republic and Zaire to the west, Uganda and Kenya to the south

and Ethiopia and the Red Sea to the East.

The Sudan is thinly populated with a population of about 22.2 million

and has an annual growth rate of about 2.87-. The age structure is

very young with 467o of the population aged under 15 and only 37o aged

65 and over. The country is predominantly rural with 697<, of the

population living in rural communities and 117.. of them nomads.

The Sudan is one of the world’s twenty-five least developed countries 

with a per capita G.NP of $320. This is reflected in a poor 

infrastructure; transport is slow and communications inefficient. 

The economy is largely based on agriculture with cotton constituting 

957o of all exports.

Formal education began in the Sudan in 1956. Since then the 

expansion has been rapid with an aim of reaching universal and

compulsory education by the year 2000. This is however unlikely for

as will be shown later only 39.77„ of those aged 7-18 in 1986/87 went 

to school.
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2.1 THE GENERAL STRUCTURE OF THE SUDANESE EDUCATION SYSTEM

2.1.1 Levels of education and types of schools.

General education in the Sudan is divided into 3 levels:

-Primary education (6 years) from ages 7-13.

-Intermediate education (3 years) from ago 13-16.

-Secondary education (3 years) from age 16-19.

Primary education may be preceded non-formally by pre-schools 

(present in cities and towns) or religious schools (khalwas) in the 

rural areas. Secondary education is divided into academic secondary 

of 3 years duration and secondary technical education of 4 years 

duration. At the secondary level there is also the option of Teacher 

Training Institutes of 4 years duration.

Student movement within each level is determined by passing

examinations set by the school authorities. If a student fails the

examination he is allowed to repeat. Movements from one level to the

next, however, are not automatic. As a minimum requirement, students

must pass standard national examinations set by the Ministry of

Education. If a student pasrses this examination he obtains a school

certificate depending on the level he has reached. For example a

student who has completed primary school and passed the primary
/

national examination obtains a Primary School Certificate. As places 

are limited from one level to the next students are expected to 

achieve more than the minimum requirements and the examinations are 

highly competitive. If a student fails the national examination he 

is not normally allowed to repeat but may transfer to another school.
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There are broadly 4 types of schools:

< i ) GOVERNMENT SCHOOLS: These comprise the majority of schools and 

the bulk of all students (about 947» of all students and 927# of all 

schools). They are financed by the central government as well as 

regional and local councils. The administration is in the hands of 

the respective .regional governments who follow the educational 

policies set by the central Ministry of Education. The curricula at 

all levels is standard and is set by the central Ministry of 

Education which also publishes all school books.

(ii) AIDED SCHOOLS: These schools are mainly found in rural areas and 

are partially financed by the government. About 67» of all schools in 

the Sudan are aided and they are attended by 47.. of the total number 

of students,

( i l . i ) PRIVATE EDUCATION: This only consists of about 27» of . al1 

students and schools.

(iv) CATHOLIC AND EGYPTIAN MISSION SCHOOLS: These schools are financed 

by privation donations and the Egyptian government .respectively with 

a nominal contribution from the Sudanese Ministry of Education. They 

cover all levels of education including a few secondary technical 

schools yet they are less than 17o of the total number of schools and 

students.

2.1.2 Student Enrollment by Level and Sex.

Table 2.1.1 below shows the enrollment ratios of students by level 

and sex for the year 1986/87 which is the latest available published 

statistics. Higher education is also included. Although the number 

of males is always grater than the number of females at all levels,

21



the female enrollment ratio is high compared to other African 

countries. The fact that the enrollment ratio remains nearly 

constant between primary, intermediate and secondary education might 

indicate that the transition rates between these stages are equal for 

both males and females. With regard to higher education ,however, 

the ratio drops indicating a difference between the sexes in the 

transition rate from secondary school to higher education.

The table also shows the distribution of students among the various 

levels. The number of students drops the higher they climb the 

educational ladder. Although this is a reflection of the population 

structure of which more will be shown later, it is also related to 

the shortages of places and the bottlenecks between the levels.

Table 2.1.1 Student 

LEVEL

Enrol 1ment 

MALES

bv Level and Sex 

FEMALES TOTAL*100%

PRIMARY 1081295 749282 1830577
59.07% 40.93%

INTERMED. 211638 165960 377598
56.057. 43.95%

SECONDARY 94224 71602 165826
56.827. 43.18% -

HIGHER 25114 14380 39494
63.59% 36.41%

TOTAL 1412271 1001224 2413495
58.52% 41.48%

Source: Official educational statistics 1986/87 published by
Ministry of Education.

2.1.3 Enrollment to Population Ratios

Table 2.1.2 compares between student population and school age
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population from the years 1961/62 and 1986/87. The aim is to show 

the percentage of the population that goes to school as well as the 

expansion that has taken place in the 25 years.,

Table 2.1.2 Comparison of enrollinent to population ratios between 
1961/62 and 1984/85,

PRIMARY ED.<7-13?
No. of students 
Population 7-13 
%Rate of Enroll

INTERMEDIATE(13-16)
No. of students 
Population 13-16 
7„Rate of Enrol.

SECONDARY (16-19)
No. of students 
Population 16-19 
%Rate of Enrol.

TOTAL (7-19)
No. of students 
Population 7-19 
7oRa.te of Enrol.

1961/62

335089 
1373000 
24.470

56714 
1201000 

4.87o

18063
1050000

1.7%

409866 
3624000 
11 .37«

1986/87
1830577
3559083
51.4%

377598 
1325297 
28.5%

195708 
1172647 

16.770

2403883
6057027
39.69%

Source: Statistics 1986/87 published by the Ministry of Education,

As shown by the table, the percentage rate of enrollment is higher at 

the primary level and then drops at the intermediate and secondary 

levels. This characteristic has not changed in the 25 year period 

although considerable expansion has taken place. The total rate of 

enrollment has more than trebled in the period, however still less 

than half of those aged 7-19 receive some kind of education. The 

rate is small and shows that it will be a long time before universal 

education can be reached. One of the factors involved is the rise in 

population. For the total age range considered (7-19), the 

population has increased by 67.17* and so although the number of
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students has increased by 486.57» the effect in terms of rate 

of enrollment is not as dramatic.

Table 2.1.3 below shows the population and the ratios of enrollment 

to population within the various provinces of the country. The 

figures are given separately for each level and for each sex.

Table 2.1.3 Ratios of enrollment to population bv province, sex and 
level of education.

PROVINCE________ PRIMARY____________INTERMEDIATE_________SECONDARY
BOYS GIRLS BOYS GIRLS BOYS GIRLS

Northern 94.5 88.9 67.8 69.1 42.3 37.7

Khartoum 90.4 81.4 65.3 64.0 42.9 44.6

Central 77. 1 64.6 42.3 35.0 24.5 16.4

Eastern 52.3 36.9 26.1 20.9 15.2 9.9

Kordofan 58.0 34.9 26.6 20.2 17.1 9.7

Darfur 53.7 28.1 18.4 9.6 10.8 5.0

Upper Nile 34.1 10.5 9.3 3.4 5.6 1.2

B.-elGhazal 13.4 5.5 5.9 2.1 4.9 1,5

Equatoria 50.4 29.6 20.1 8.4 14.0 4.1

A11 Sudan 59.4 43.1 31.3 25.5 19.4 13,9

Source: Off icial stati sties 1986/87 pub!i shed by Mini stry of

Education.

The table shows that education is not distributed equally among the 

difference geographical areas of the country. The differences are 

great between the areas; although 88.9% of girls attend primary 

school in the Northern province, only 5.57, attend in the Bahr-ei- 

Ghazal province. The Northern province and the capital Khartoum have
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the highest enrollment to population ratios at all educational levels 

and for both sexes. The most heavily populated (for the relevant age 

group) Central province also has a high enrollment ratio. This 

reflects a high concentration of schools in the capital Khartoum and 

its neighbouring provinces (the Northern and central provinces). The 

differences among the levels reflects what was shown in table 1.2 

that the enrollment ratios drop further along the educational ladder. 

This characteristic applies to both girls and boys although the 

enrollment ratios for girls is as expected from table 1.1 always 

smaller.

2.2 STATISTICS FOR SECONDARY AND HIGHER EDUCATION 1979/80-86/S7

2.2.1 Secondary Education (government schools)

The following discussion is related to government secondary schools. 

As was shown in section 2.1.1, government schools make up the 

overwhelming bulk of all students and schools and are therefor the 

most important. Table 2.2.1 below gives the total number of students 

in each of the three grades that make up secondary education. The 

number of candidates who at the end of grade 3 have sat for the 

Secondary School Examination is also given.
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Table 2.2.1 Secondary education by grade for 1979/80-1986/67 and the
number of candidates for the Secondary School Examination.

GRADES
TEAR 1 2 3 TOTAL CANDIDAT1

79/80 22003 22607 21692 66302 22981
80/81 27484 26479 27598 81561 25839
81/82 32056 28530 28207 88790 25149
82/83 32060 32558 27120 91730 28363
83/84 33318 30817 33316 ' 97451 33052
84/85 372-40 31636 31658 100534 30978
85/86 37314 36924 32296 106534 32176
86/87 40841 38105 38056 .117002 38605
Source: Official educational statistics 1979/BO—1986/B7 

published by the Ministry of Education.

It can be seen that the total si2e of the system is expanding 

steadily and consequently the number of candidates is also 

increasing. The distribution among the grades seems to point at high 

repetition rates and low wastage .rates. This can be seen by studying 

a cohort of students as they move up the educational ladder. For 

example the cohort who were in grade 1 in 79/60 numbered 22003 and in 

80/81 when they were in grade 2 their number rose to 26479. Apart 

from errors, such an increase can only be attributed to high 

repetition, low wastage or a combination of the two.

The table also shows discrepancies between the numbers enroled in 

grade 3 and those who sat for the examination at the -end of the year, 

If the latter number is smaller the difference can be attributed to 

dropouts who although have been registered in grade 3 did not sit for
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the examination. It is difficult, however, to account for the 

opposite as in 79/80, 82/83 and 86/87. Most likely the discrepancy 

is due to data collection errors; with the number of candidates being 

more reliable.

2,2,2 Examination Results

Table 2.2.2 below gives the number of candidates from Secondary

schools who sat for the Secondary School Examinations and the

percentage of those who passed by type of school. Pass rates are

printed below the number of candidates. External candidates are

those who are not registered in a school and are mainly students

re-taking the examination. The classification Onion schools includes
/

from 1982/83 private as well as Onion schools.

A pass in the Secondary School examination is a minimum requirement 

for proceeding into higher education. Once a student has achieved 

this minimum requirement he is not allowed to re-enrol in a 

government school and must register as an external student or in 

union or aided schools in order to re-take the examination again.

The expansion in secondary education is reflected in the rising 

number of candidates sitting for the examinations every year. The 

numbers have risen by a total of 77.47o in the period 1980-1987. This 

had a considerable effect on increasing the demand for higher 

education.
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Table 2.2.2 CANDIDATES WHO SAT FOR THE SECONDARY SCHOOL EXAMINATION
AMD PASS BATES .BY TYPE OF SCHOOL.

TYPE OF SCHOOL
Year Gov. Aided Union External Private Total

/8Q 22981 8120 18208 7278 261 56848
717o 24,87, 40.67, 65.7% 40.6% 55.3%

/ 81 25839 6292 21963 7748 162 62004
71.17, 35.87, 43.67, 70.7% 58.6% 58.0%

/ 82 25149 7020 24484 9175 165 65993
76.47, 38.1% 42.4% 68.7% 53,9% 58.6%

/ 83 28363 4945 24731 10943 68982
79.37, 40.67, 52.17, 75.0% 66.1%

/8 4 33052 5038n 21991 13992 74073
77.17, 37.97, 58.1% 76.77, 68.9%

/ 85 30978 4863 27150 15409 78377
77.67, 34.07, 58.4% 76.8% 68.1%

/ 86 32176 5404 28776 15498 81854
79.37, 35.57, 55.0% 77.3% 67.5%

/ 87 38605 6677 36630 18920 100832
70.67, 30.37, 48.5% 70.1% 59.8%

Source: Official educational statistics 79/80-86/87 published by 
the Ministry of Education.

It can be seen that the pass rate has been rising steadily from 1980 

to 1986 and no doubt contributing to the increased demand for higher 

education. However 1987 shows a sudden drop in the pass rate in all 

types of school. It would be necessary to have the figures for 1988 

and onwards to determine if such a drop is significant and perhaps a 

deliberate step by the authorities to curb the rising demand.

The number of external students has more than doubled in the 8 year 

period (a rise of 1697,). This has been the largest rate of increase 

in the period; government schools have increased their candidates by 

687,, Union schools by 101% and the number of ’Aided' school



candidates has fallen. External students’ relative proportion in 

terms of the total number of candidates has also risen from 12.8% in 

1979/80 to 18.77, in 1986/87. It is also notable that their pass rates 

like those of the government school candidates are higher.

As external students are made up mostly of students re-taking the 

examination in the hope of obtaining a place in higher education, 

their growth is a reflection of the great demand for higher education 

and the shortages of places available. They are of central importance 

in any bottleneck analysis as they represent the ’overspill’ of 

frustrated applicants to higher education.

2.2.3 Higher Education

Table 2.2.3 gives the total number of students in each university for 

the period 1972/73 to 1984/85. The percentage of females in higher 

education is only available at some years and is given below the 

total figure. Gezira University and Juba University were only 

established in 1977 with a total size corresponding to their intake. 

It can be seen that higher education has expanded rapidly over the 

period with the total si2e more than doubling. This has been partly

as a result of the new universities (Gezira and Juba) but mainly due

to the large expansion of some of the already established

institutions. Most notable is Cairo University Khartoum branch (with 

about 507. of the total student body), which has increased in si2e by 

1617. in the period 1972-1985, The Islamic university (established in 

the late 60’s) has also increased by 3337. while other higher

institutions have increased their numbers by 86,57..
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Table 2.2.3 Total Number of students in higher education bv type of
institution 1972/73-1984/85

INSTITUTIONS

Year______Khartoum Ge2ira Juba Cairo Islamic Others Total

/ 73 5811 7708 504 2185 16328

/ 74 6359 11656 609 2313 18762

175 6942 13012 754 1702 22069

f 76 7235 10200 .1016 2134 21324

177 7276 10288 1162 2228 10887

/78 7912 10 128 12314 1262 2537 24.117

/ 79 8020 215 325 13591 1506 2656 25883

/80 7920 366 409 .13808 1585 2928 7016

/a i 8111 592 577 14810 1661 2922 28673

/82 8424 797 650 18271 1765 3402 33309

/ 83 8059 
26.67.

899 
22.4%

674 
17.87»

20385
39.4%

1855 
28.8%

3724
27.2%

35596
33.9%

IQ 4 - - - - - —

/85 8313
30.7%

965 
28.3%

1216
14.2%

20096
42.8%

2184
29.9%

4077 
30.3%

36851
36.6%

Source: Official statistics published by the Ministry of Education.

In sharp contrast to these overall high rates of expansion, 

University of Khartoum has increased by only 437. with very little 

expansion taking place in the 80*s. It therefore appears that the 

university is not attempting to adjust in order to meet the 

increasing demand of school leavers for a higher education.

30



2.3 Evidence of the Presence of a Bottleneck between Secondary and

Higher Education,

Tabic 2.3.1 gives the intake of students into higher education in the 

period 1977/78-1982/83. These figures show the flow of students 

between secondary school and higher education. Separate figures for 

males and females are not available nor are figures after 83/84.

Table 2.3.1 Numbers admitted into higher education bv type of

institution for the period 1977/78-1982/83

INSTITUTIONS

Year Khartoum Gezira Juba Cairo Islamic Others_______Total

/78 19 88 10 128 4051 359 917 7453

/ 79 1748 209 169 3412 335 1004 6877

/8Q 1695 178 81 2995 359 888 6196

/81 1806 205 127 2942 463 1313 6856

/ 82 1827 227 132 3050 411 1149 6796

/83 173^ 202 171 5008 343 1633 9096

Source: Official statistics published by the Ministry of Education.

Unlike the clear picture of expansion presented by the figures on the 

total size of higher education, the intake of students is shown to 

fluctuate from year to year. The number of students admitted into 

University of Khartoum has fallen from 1988 to 1695 in 1978-1980 and 

the rise in intake in 80/81 and 81/82 did not continue into 82/83. 

Cairo University shows similar fluctuation with a falling intake 

until 81 and a sharp rise taking place in ’83. For the relatively 

new universities Gezira, Juba and the Islamic University, the numbers
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are in general rising. The same is true for the other institutions 

made up mostly of Technical Institutes. Thus the picture of 

expansion conveyed by Table 2.2.3 is misleading in the sense that 

higher demand is not being met by an increase in intake. Such an 

expansion in the size of higher education institutions unmatched by 

an expansion in intake can only be explained by high repetition, 

lower wastage rates or both in higher education.

The demand for University of Khartoum is the highest mainly because 

it is the oldest and the fact that it is not expanding sufficiently 

leads to a large ’overspill’ of frustrated applicants. Such students 

will often proceed to the other institutes of education but part of 

the ’overspill’ will re-take the examination in the following year as 

an external student. Due to this, the following discussion will 

distinguish between the flow of students into Khartoum University and 

the flow into all higher education institutes.

Using the above flow figures it is possible to estimate the 

proportion of students who succeed in making the move from secondary 

school into higher education. Table 2.3,2 gives two types of 

proportions; the proportion of all candidates and the proportion of 

all those who have passed (i.e. met the minimum requirement for 

admission) who enter University of Khartoum or any higher institution 

including Khartoum University. The proportions are presented in 

terms of three decimal places because of their small magnitude.
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Table 2 . 3 . 2  Proportions of candidates and those who passed who enter
higher education and those who enter University of Khartoum.

Proportion ~ flow/candidates Proportion ~ flow/passes 
Year Khartoum U. Higher Ed, Khartoum U Higher Ed.
f l l  0.060 0.226 0.126 0.437
/78 0.043 0.170 0.068 0,266
/79 0.036 0.131 0.063 0.229
/80 0.030 0.114 0.054 0.205
/SI 0.028 0.103 0.047 0.176
/82 0.023 0.128 0.040 0.218

The fact that only a small proportion of students make the transition 

to higher education does not by itself indicate the presence of a 

bottleneck. The important factor determining the presence of a 

bottleneck is whether there is a significant change in the transition 

of students over time and if that transition is determined by the 

scarcity of places. From Table 2.3.2 it can be seen that the 

proportion of students gaining admission into University of Khartoum 

or in general into any institution of higher education, is falling 

steadily. The proportions of students who after passing their exams 

gain entrance are naturally higher than the proportions of candidates 

however their pattern is identical.

The fact that the transition proportions between secondary and higher 

education are not constant will result in a poor fit of the simple 

Markov model. This is because constant transition probabilities over 

time is one of the basic assumptions of the Markov model. For a model 

to adequately describe the Sudanese system, it must take account of 

the presence of a bottleneck. For this purpose, bottleneck models 

that could describe the Sudanese system are discussed in Chapter III.
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2.4 Limitations of the Data

In the sections above, examples have been given of the type of data 

that is officially published each year by the Ministry of Education. 

The data is in the form of stock figures that are given by sex, type 

of school, geographical areas etc. No flow figures however are 

available with the exception of the figures on the intake into higher 

education. Even so such figures are not sufficiently detailed as 

they give only the numbers accepted into university without 

specifying the origin of the students. It is unknown what percentage 

of students who enter university are from government schools and 

whether they are first-time or second-time repeaters.

The omitted flow figures include repetition rates which must be taken 

into account as repetition is allowed at all school levels. Other 

omitted figures include wastage rates by grade, pass rates, 

applications to university by type of college etc. Also unknown is 

the destination of school leavers by sex, region, type of school etc.

There are also no available figures relating to age.. The numbers of 

students by age who leave the educational system is unknown. The 

numbers who enter higher education by age is also unknown. Future 

expected numbers based on population projections are also not 

available.

The type of data available imposes limitations on the kind of model 

that can be used for educational planning purposes. The 

unavailability of flow data makes it necessary to use methods for
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estimating repetition and wastage rates before proceeding with any 

form of flow modelling. Chapter IV is devoted to the problem of 

estimating transition rates from stock data as this is a major 

problem in the present application of modelling the education system 

in the Sudan.

2.5 Errors in the data

Data collection errors restrict the application of statistical 

techniques and cast doubts on the results obtained. This section 

describes the errors in the data that make it difficult to apply a 

model which relies on the changes in the numbers of students over 

time. Examples are given of the typical data collection errors in 

secondary schools* statistics as it is important to assess the 

quality of the data before proceeding with any analysis.

Table 2.5.1 gives the numbers in each grade in the Northern province

by sex and the number of schools for the period Z78-/86 

Table 2.5.1 Northern Province

Boys Girl s
GRADES GRADES

1 2 3 Sch 1 2 3 Sch
/ 78 1430 11-43 895 7 887 516 390 5
119 1284 1253 1218 8 974 742 415 7
/BO 1315 1306 141-4 9 1135 930 752 10
/ 81 1399 1324 1331 9 1297 1280 1149 11
/82 14-01 1392 1270 9 1433 1306 1291 11
/ 8 3 1348 1333 1315 9 1404 1403 1446 11
/ 84 1336 1253 1290 9 1352 1346 1474 11

/ 85 1336 1253 1290 9 1352 1346 1474 11

/ 86 1334 1224 1089 9 1479 1352 1354 11

Source : Official stati stics published by the Ministry of
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The data, for the Northern province illustrates many of the errors 

that are found repeatedly elsewhere throughout the different

provinces. The number of schools from which data is collected as can 

be seen, differs from year to year. If a new school has been 

established (and this is the case sometimes), the effect would only 

be felt in grade 1. For example with regard to the girls’ data in

/SO the number of schools for which data is collected rises from 7 to

10; the difference is only observed in grade 1 and grades 2 and 3

appear unaffected by these added schools. This confirms that these 

are new schools.

A problem exists however when an already established school is added 

or perhaps was not added in the previous year. In this case all the 

grades are affected. This can be seen by looking at the boys data 

for the years /79-/80 when the number of schools rises from 8 to 9. 

It can be seen that all the grades are affected particularly grade 3 

which is much larger than grade 2 was in the previous year by an 

amount which is unlikely to be attributed to repetition. This must 

be because an already established school was added. For the girls 

data a rise in the number of schools from 10 to 11 in /8Q-/81 appears 

to affect all the grades and must be due to an already established 

school being added.

This type of error reduces the sequence of years that can be used for 

modelling purposes. It would be necessary to model for two sets of 

time periods, one period which had ignored this particular school and 

a second period which had included this school. Obviously if such an 

error occurs frequently, there would not be a sufficient sequence of
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years for estimation purposes.

Another type of error occurs when in a particular year, statistics

are not collected and the previous year's figures are used to form

the overall national aggregate. In the Northern province, this took 

place in /85 and it can be seen that the figures are identical to 

those of /84. Thus in modelling the system the figures /85 must be 

considered as missing values. This reduces again the sequence of 

time periods that can be used.

Table 2.5.2 below gives the number of students in each grade of

secondary school for the capital province of Khartoum,

Table 2.5.2 Khartoum Province

Boys

GRADES

Girls

GRADES
1 2 3 Sch. 1 2 3 Sch.

/ 78 2250 2083 2326 11 1120 965 915 5
/ 79 2715 2467 2247 11 1122 1151 1009 5
/QO 2081 2675 2556 11 1009 1137 1159 5
/ 81 3076 2992 3499 17 2295 1660 1795 13
/ 82 3234 3292 3544 18 2948 2832 2272 17
783 2366 3038 2-452 12 2010 2289 1940 12
/ 84 3311 2528 3010 15 2834 2474 2488 13
/ 85 . -4004 3032 2887 19 3179 2389 2059 19
786 4294 4281 3249 22 4558 4043 3444 26
Source: Official statistics published by the Ministry of Education.

Khartoum is the capital of Sudan and has 307o of all secondary schools 

in the country. In spite of the fact that it is an urban area and 

central, the quality of the data collected is very poor. The number
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of schools given varies greatly from year to year. In the case when 

the number of schools drops it is difficult to assess whether a drop 

in the data is due to natural wastage or the exclusion of a 

particular schools. Although the first 3 years appear to be free of 

error, between /8Q-/82 data on additional schools was being collected 

as can be seen from the very large discrepancy between the s i z e  of 

grade 2 in a particular year; a discrepancy which is too large to be 

explained by high repetition. Other urban areas exhibit the same 

errors as those shown above for the Khartoum province. The Gezira 

province which has 26?<> of all secondary schools also shows errors due 

to different numbers of schools being counted. It is in provinces 

with small numbers of students that the data seems to be relatively 

free of errors arising from adding or ignoring particular schools.

In very remote areas especially in the south, the data is again very 

poor. This is due to the difficulties in communications and the long 

distances between such areas. Statistics are not collected annually 

and for a particular year, the previous year’s figures might be used 

to form the overall national aggregate. These provinces include 

Jonglei, Upper Nile, Lakes, Bahr El Ghazal and East and West 

Equatoria. In certain areas there are no schools for girls while in 

other areas statistics for girls were not collected for certain years 

(Bahr El Ghazal, Upper Nile). In West Equatoria, it appears that 

schools for both girls and boys were started only in /79 and the 

process can be seen from the beginning. However the data collected 

is very poor; for some grades statistics were not collected, at some 

years no figures are given etc.
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From the above it can be seen that using total aggregate figures for 

the whole country in order to model the system would inevitably 

result in a poor fit due to the many errors that are present in the 

data. It can only be possible to model certain provinces for certain 

time periods and hope that this would make it possible to reach 

conclusions about the suitability of a particular model in describing 

the whole system. Therefore in Chapter IV, the attempt to obtain 

estimates of the transition probabilities of secondary school 

students is restricted to those provinces in which data collection 

errors are minimum.
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CHAPTER III 
FLOW MODELS FOR BOTTLENECK

SYSTEMS

3.1 Intermediate Models in Manpower Planning

In discrete time Markov models, individuals are classified into 

grades according to characteristics they share in common such as age, 

length of service etc. Movements between the grades and from and to 

the outside world are assumed to be independent and time-homogenous. 

It is also assumed that all members within a grade share the same 

transition probabilities of movement. The expected stock number 

denoted by n in a particular grade <say grade j) is then related by 

the difference equation:

nj(T+l)= En-(T)p£j + R(T)rj (the summation is over 

1 = 1,2,...s ). (3.1)
p^j is the transition probability of movement from grade i to 

grade j.

R(T) is the total number of new entrants to the system, 

rj is the probability that the new recruit enters grade 

j. The total number of grades in the system is s.

This equation is used for predicting future stock sizes and for 

finding the steady state structure of the system.

The other main class of transition models applied to manpower 

planning are models based on Renewal theory. Like the Markov models, 

individuals are classified into grades and transition between grades 

and from and to the outside world are governed by probability laws.
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The main difference is that while in the Markovian models the

transition probabilities are fixed, in the Renewal models the grade 

sizes are fixed. Hence while promotion and wastage can "push” flows 

in the former, promotion and recruitment in the Renewal models can 

only take place to fill vacancies and are as such ’’pull” flows.

Although the Markov chain models have demonstrated robustness in 

practice, at certain stages in many systems the assumptions of the 

renewal models are more realistic. In many organisations, the grade 

sizes are restricted for financial or even practical reasons and even 

if they were allowed to vary that would entail a considerable time

lag and the sizes would be known in advance. The fact that in

practice many systems behaved in an intermediate way between Markov 

models and renewal models, led some writers to develop

generalizations of the Markov model which could be termed

Intermediate Models. These models in different ways introduced the

concept of flow constraints.

Young and Vassi1iou(1974 ) developed a model in . which the number 

promoted does not only depend on the numbers available for promotion 

as in the Markov model but on the stock of the destination grade. 

Armitage, Smith and A1per< 1969 ) introduced bottleneck systems for 

educational planning as an enlargement of simpler models because 

’’movements cannot be at all times and all places entirely free and 

without restrictions”. They distinguished between desired transition 

proportions and actual transition pro-portions determined by the 

provision of places and the selection procedures adopted by admission 

authorities. Building on their ideas Moya-Angeler(1976) considered a
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special case of a bottleneck system with the following assumptions:

1. From a certain time onwards the promotions to some grades 

are determined only by the number of vacancies because there 

are capacity constraints on the grade sizes,

2. Once the limits of the grade sizes are reached, an

overspill occurs which has to be allocated to other grades. The 

overspill is the excess of the demand over the supply.

3. When a grade has a capacity limit, this value must be

reached and from then on maintained.

Thus the system behaves as an ordinary Markov model until the

capacity limit is reached in some grade. From then on the size of 

the grade would be fixed at its capacity limit and the number of 

promotions and will be determined by the vacancies arising in such a 

grade. From the total number of people able to be promoted there 

will be a number that cannot be promoted. Of this number of

frustrated promotions there will be a proportion that decide to stay 

in the system and remain in the grade in which they were. The rest 

will leave the system.

The two models proposed in this chapter are extensions on Moya- 

Angeller’s bottleneck model described above. In the first model the 

proportion of frustrated promotions that stay in the system is no 

longer fixed but is a random variable. The second model allows for 

expansion and contraction of the capacity constraints.

3.2 Sudanese education as an example of a bottleneck system.

Educational systems are typical of systems where shortages exist
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usually in the movement of students from secondary school to 

university. The number of places in universities can be and often is 

restricted due to a number of reasons and the demand for places very

often exceeds the supply. As seen in Chapter II, the Sudanese

educational system presents such an example. Although still far from 

achieving universal education, the system has witnessed massive 

expansion in the past decades. This was reflected in the increased

numbers applying to universities and other institutes of higher 

education. The expansion of higher education has not matched the 

number of potential entrants with results that admission 

qualifications have been increasingly more stringent. As repetition

of the Secondary School Certificate (the equivalent of 0 levels but

with which a student may enter university directly) is allowed, the 

number of repeaters has also increased with the hope of obtaining the 

necessary qualifications.

Developing extensions to Moya-Angeler1s model can be approached 

through a study of bhe Sudanese system. In both of the models 

presented in the following sections, secondary education (which in 

the Sudan covers 3 years) is treated as the first grades in a 

hierarchical system which would include university education. Thus 

in talking about entrants to university we would not be talking about 

recruitment but about ’’promotion'1 from the last year of secondary 

school. Although such a classification is not intuitive it enables 

the discussion of the problem in terms of a promotion bottleneck. 

Such a classification, however, carries the inherent assumption that 

all students who fulfil the entrance qualifications want to enter 

university.
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In Model One a capacity constraint exists in the first grade of the 

country's main university, the University of Khartoum, Demand for 

this university is high and it can be assumed to be a first choice 

for all students. Because of the capacity constraint not all 

qualified students are accepted and they must therefore seek 

alternatives. The proportion of these frustrated promotions who 

decide to remain in the system is no longer fixed as in the previous 

models but is a function of the number of alternatives available to 

them. It is assumed that the more alternatives that are available 

the less likely students will be to remain at the secondary school 

level by retaking the examination. Of central interest would be the 

possibility of the alternatives increasing sufficiently in time to 

remove the bottleneck. Model Two is a much more realistic and 

flexible version of Moya-Angeler's model and considers the presence 

of a bottleneck in systems which are expanding, contracting or 

remaining constant. In this model a capacity constraint exists on 

the total size of the higher educational system rather than a 

particular university.

3.3 Bottleneck MODEL ONE

3.3.1 Description of the system

The system is composed of 7 grades; the three bottom grades 

representing Secondary Education while the 4 upper grades represent 

one particular University (call it university K) for which demand is 

high. "Recruitment" occurs only at the bottom grade and "promotion" 

takes place only to the next higher grade. In general movement
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between grades is automatic (students pass exams and move on to the 

following grade) and hence follows a .Markov Chain. .However, because 

of the limited availability of places in University K, movements to 

it from secondary school i.e. between grade 3 and -4 is determined by 

the availability of places.

3.3.2. Assumptions of the Model

1. Because promotion within the University system is a direct 

result of passing exams, "promotion control” to achieve a desired 

structure, cannot be exercised by the authorities. It is only 

through determining the number of entrants that the authorities can 

have control over the size of the university system. It is assumed 

that the authorities have fixed the size of grade 4 (first year of 

university) and thus the number of entrants is determined by the 

vacancies arising in grade 4. The remaining grades including those 

of secondary school are allowed to vary.

2. The number of students qualified to enter University K and wish 

to do so is always greater than the available vacancies.

3. Grade 3 is assumed to include those registered in schools as 

well as external students who are repeating the examination. In other 

words, grade 3 also includes 'overspill’ students.

4. Following the previous assumption , the si2e of grade 3 is 

affected by the overspill of students who decide to sit for the 

examinations again. The proportion of students who decide to remain
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in the system is assumed to vary inversely with the number of 

alternatives available for them in other institutes of higher 

education. This assumption implies that all students unable to 

obtain admission to their first choice and given an alternative will 

proceed to that alternative. Furthermore it is assumed that students 

would prefer such an alternative over moving to the outside world.

3.3.3 Notation

n^(T) denotes the expected number of elements in Grade 

i at time T.

p.. denotes the probability that a member of grade i moves to ̂J
grade j assuming there is no capacity limit at grade j.

R.(T) denotes the number of xiew recruits to grade i at time T.

#3(T) denotes the proportion of frustrated promotions

(qualified students) that decide to remain in

the system at time T.

6^(T) denotes the proportion of students qualified to 

enter University K but cannot be allocated.

3.3.4 Basic Relations

The expected structure of the system at time T can be obtained from 

the following set of equations

nj (T ) ssp^rljiT-l) + Rj(T> (3.4.1)

n2<T) “ p22n2(T-l) + p^n^T-l) (3.4.2)

n3(T) =(p33 + £3(T)64 (T))n3(T-l )

+ P23^2^T~^ * (3.4.3 )
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where 6^(T)= No. of students who are qualified but cannot be 

allocated/initial size of grade 3.

64<T> =S(T)/n3(T-l ) (3.4.4 )

S(T) = p34n3(T-l )-E4 (3.4.5)

where E4 is the expected number of losses in grade 4 due to wastage

and to promotion into the next higher grade i.e.

V ’V  I-P44 > (3.4.6)
where n4 is the fixed si2e of grade 4.

£3=(S(T>~D(T))/S(T> (3.4.7)

where D(T) is the number of available places at other institutions of 

higher education and is thus an exogenous variable.

V T) = P-44n4 + EA “ n4 (3.4.8)

n5(T) = P55n5(T-*l > + P/+5n4 (3.4.9)

n8(T > ~ P66n6(T_1 } + p56n5(T~1) (3,4.10)
ny (T ’) “ py7H7 (T-l ) + p^yn^ 0T-1 ) (3. ̂ . },1 '

EXAMPLE 3.4

For illustration, a number of simple examples are given. A program 

has been written that computes using the above equations, the 

successive structures and the steady state of any system. The 

program has been applied to an imaginary educational system made up 

of secondary education(3 grades) and a higher educational 

institute(University K. made up of A grades). Values for the initial 

structure of the system and the matrix of transition probabilities 

are chosen so as to be typical of an educational system. Assume the 

former to be (3000, 2000, 1000, 200, 160, 150, 140). Recruitment 

takes place only in the bottom grade and is constant at 2500. The 

number of alternative places at other institutes of higher education 

is fixed at D(T) = 200. Movement takes place in the system according
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to the following matrix:

.10 .60
.10 .65

.20 .60
.15 .61 = P

.11 .71
.10 .70

.05

The results for successive values of T are given below.

GRADES *-3 li O T * 1 *-a li N> T * 3 T=9

1 3000 2800 2780 2778 2778

2 2000 2000 1880 1856 1852

3 1000 1730 2314 2703 3785

4 200 200 200 200 200

5 160 140 137 137 137

6 150 129 112 109 108

7 140 112 96 83 80

V T > 0.43 0,50 0,53 0..55

83<T) 0.54 0.77 0.84 0.90

it can be seen that as the overspill from graae 4 rises, the value of 

rises. This causes an expansion in the size of grade 3 which

again gives rise to a large overspill. The situation continues with 

approaching but never reaching its maximum possible value of 1. 

As grade 4 is fixed at its capacity constraint grades 4,5,6,7 can be 

regarded as a separate system in which recruitment is fixed.

3.3,5 Steady-State

Because Grades 1 & 2 are not affected by the bottleneck their limit 

satisfies:

n* = n*P + Rr (3.5.1)
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This can be solved to give:

n*r R/u-pn > 
n*2~ P|2nl/<1_p22)

As shown in the previous section, the expected size of grade 3 is

given by:

n3(T> =(p33 + 03<T>64(T) )n3(T-l ) + p23n2(T-l )

This has a steady state of:

n*3~ {P33 + ^3^4 *n*3 + P23n*2 (3,5.2)

which can be solved to give:

W l ' pU ) + p>23n*2 
n*3= _______________ _____  (3.5.3)

1'"53p34_p33 
When 53(T >=(S(T)-D(T) )/S(T)

n*3 = ^23 “ D ~ n*4^ “P44 /w3 (3.5.4) wW*<. u3^z 1—

As #3(T ) is the proportion of frustrated promotions that decide to

remain in the system and take the examination again, it cannot take

negative values.

Hence, if D(T)>S(T) £3(T)=0 . (3.5.5)

As can be seen a steady-state size for grade 3 exists only when D(T) 

the number of alternative places available at other institutions of 

higher education settles in the long run to being constant at D.

With D(T) settling at D, ^(T) will have a steady-state value at #3. 

The equilibrium value of grade 4 is its fixed size n^. Hence as

mentioned before, the grades 4,5,6, and 7 can be regarded as a

separate system to which recruitment is fixed and they are not 

affected by the bottleneck. Their steady state values are then 

simply:

n*i ~ (Pi-i £ n*i-l )/(l~Pi i > ^or i=s5,6,7 (3.5.6)
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EXAMPLE 3.5

Using the same data as in example 1.1, the steady-state of the system 

is reached at T=5 and T=50. It is printed below along with the 

theoretical steady-state.

GRADE T = 0 T = 5 T = 50 THE0RETICA1

STEADY-STATE
1 3000 2777.8 2777.7 2777.7

2 2000 1851.9 1851.9 1851.8

3 1000 3233.2 4168.4 4168.4

4 200 200.0 200.0 200.0

5 160 137.0 137.0 137.1

6 150 1—* 0 CD N> 108.0 108.1

7 140 79.8 79.7 79.7

03<T> 0.88 0.91 0.91

As expected all the grades w'ith the exception of grade 3 reach their 

steady-state values fairly rapidly due to the small diagonal elements 

in P. However, due to the overspill caused by the bottleneck, grade 

3 continues to expand rapidly at first and then more slowly until it 

reaches its steady state at T~50.

3.3.6 Conditions for the bottleneck to exist

/3̂ (T) is the proportion of frustrated promotions (qualified students) 

that decide to remain in the system and take the examinations again. A 

Thus £3^)  can assume values between 0 and 1 but would not 

practically reach 1 as there will always be a number of frustrated
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promotions that decide to leave the system (in this model go to other 

institutions )*

For an overspill to take place, S(T) (the number of students who are 

qualified but cannot be allocated in University K) must be greater 

that the number of alternative places available at other institutes 

of higher education. In other words:-

Pa4n3(T~l> > D(T) + n4 (l-p44) (3.6.1)

The right hand side represents all possible vacancies in higher 

education. For the bott leneck to be resolved and 183(T) to reach 0: 

P34n3(T-l> < D(T) + n4 <l-p44) (3.6.2)

The following examples consider the possibility of resolving the 

bottleneck with regard to different values of D (T).

EXAMPLE 3.6.1

Using the same data as in previous examples but with D(T) increased 

to 500, the results show that although #3(1 )=0 and there is no 

bottleneck #3(2)>0 and goes on increasing with time. Only the sizes 

of grade 3 are printed below because the remaining grades are 

unaffected and remain the same as in the previous examples.

GRADE T - 0 T * 1 T = 2 T = 5 T = 44

3 1000 1500 1830 2253.-4 2668.5

03(T) 0 0.32 0.55 0.65
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EXAMPLE 3.6.2

In this example D(T) starts at 200 but increases at a rate of 100 

every year.

GRADE T = 0 T = 1 T = 2 T = 3 Hi it T = 5 T = i
3 1000 1730 2214 2423 2475 2414 2265

D(T) 200 300 400 500 600 700

£3<T> 0.54 0.65 0.66 0.61 0.54 0.45

GRADE T = 7 T - 8 T = 9 T * 10
3 2046 1770 1558 1515

D(T) 800 900 1000 1100

03<T> 0.33 0.15 0 0

It is only at T = 9 'when D (T ) reaches 1000 that £(T> reache

the bottleneck is resolved. The examples show that once a bottleneck 

has developed it would take considerable expansion to resolve it and 

restore the system to a pre-bottleneck state.

3.4 BOTTLENECK MODEL TWO

3.4.1 Description of the System

The system is the same as that of Model One. However, the university 

system which includes grades 4*,5,6,7 can be regarded as the whole 

higher education system and not one single university.
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3.4.2 Assumptions of the Model

1. As before the authorities have control only in the number of 

entrants to higher education, i.e. those who move from Grade 3 to 4. 

However the bottleneck in this case occurs not because there is a 

capacity constraint in grade 4 but because the total size of Higher 

Education (consisting of grades 4,5,6,7) is fixed. Thus the 

individual grade sizes of Higher Education are allowed to vary within 

a fixed global total. The number of entrants to University is then a 

random variable composed of two parts; those entering to fill any new 

vacancies arising from growth in the system and those who replace 

leavers.

2. Assuming that there is no growth in University K's system, 

the number of those qualified to enter is always greater than those 

admitted. However, the possibility of the University system 

expanding sufficiently to remove the bottleneck can be considered by 

the model.

3. Assumption (4) of MODEL ONE regarding the variability of 

fl^T) (the proportion of qualified students that decide to remain in 

the system) is here relaxed and is assumed to be a fixed proportion. 

This model is more realistic and flexible than the previous one. It 

makes is possible to consider the behaviour of the total system under 

expansion or contraction of the university system.

3.4.3 Basic Relations

11^1<T"1> + R(T> (4.3.1)
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^(T ):=P22£12 ^ -^  + (4.3.2)

n-j(T )s=(p23+^3<S^(T ) )n3<T-l)

+ P23n2^-1 ) (4.3.3)

where <$4 (T> = S(T)/n3(T-l) (4.3.4)

where S(T )=p34n3(T-l ) - E(T> (4.3.5)

where E(T) is the expected number of entrants to Higher Education and 

is given by:

E(T) = M(T) + Eni(T-l )wi.

The summation is from i=4 to i=7. (4.3.6)

where M(T )~N(T )-N('T-l ). (4.3.7)

Here N(T) is the total size of the university system i.e. total sizes 

of grades 4,5,6, and 7 combined. If there is no growth in the system 

M(T)=0- If there is a contraction .M(T) will be negative. 

n4 (T ) = P^n^T-l) + E(T) (4.3.8)

n5 (T) = p55n5(T-l) + P45n4 (T-l ) (4.3.9)

V T) = P66^6(T-1} + P56^(T"1} (4.3.10)
n?(T) = p77H7(T~l ) + p6?K6(T-1 ) (4.3.11 )

3.4.4 STEADY-STATE

In this model the total size of Higher Education is fixed and thus 

grades 4,5,6 and 7 can be seen as a separate .system to which the 

number of entrants is a random variable. This random variable is 

composed of two parts; those who replace leavers and those who enter 

to fill new vacancies created by an expansion of University K ’s 

system. The steady-state of the whole system differs whether there 

is an expansion, contraction or the size of Higher Education is 

constant.
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STEADY-STATE WHEN SIZE OF HIGHER EDUCATION IS CONSTANT

Assuming that there is no expansion or contraction in the total size 

of Higher Education and M(T)-0, the steady-state structure of the

grades satisfies:-

n*4=p^n *4 + En*-w. for i-4,5,6,7 <4.4.1)

n*5=p55n*5 + p45n*4 (4.4.2)
n*6~p66n*6 + p56n*5 (4.4.3)

n*7=p77n*7 + p67n*6 <4.4.4)
with £n*. for i-4,5,6,7 constant at a given value of N.

Once the above grade sizes have reached their steady-state it would

be possible to evaluate the steady-state structure of grade 3 as:

p23n*2 ~ 6 2 En*iwi 
n*3 = ___________________  (4.4.5)

1 ~ P33 ~ 03p34
Where xi2 is the steady-state structure of grade 2 obtained by: 

n*2 - P12nj/<1-P2c>) and (4.4.6)

n * l = R/(l-pu ) (4.4.7)

The two bottom grades are not affected by the bottleneck.

EXAMPLE 4.4.1

The same data, as in the previous examples is here used with 

recruitment constant at R(T)=2500, 8 ^  = 0.5 and.M(T)=0; i.e no growth 

in the university system. The results for successive values of T are 

given below. The steady-states of the system is reached at T=5 and 

T=25. It is printed below along with the theoretical steady-state.
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GRADES T ■ 5 T g 25 THEORETICAL

STEADY-STATE

1 3000 2800 2777.7 2777.7 2777.7

2 2000 2000 1851.9 1851.9 1851.9

3 1000 1680 2184.6 2196.9 2196,9

4 200 270 247.5 247.7 247.7

5 160 140 162.7 169.8 169.8

6 150 129 135.6 133.9 133.8

7 112 140 104.2 98.7 98.7

E(T) 240 212.1 210.5 211

N(T) 650 650 650 650 650

STEADY-STATE UNDER EXPANSION PR CONTRACTION

In the case of -expansion, a can represent the rate of expansion (it

will be negative if the system is contracting) and so:

M(T ) = a N(T-1 ) (4.4.8 )

N(T ) = (l+a)N(T-l ) (4.4.9 )

Introducing the proportions q^T) = n.(T)/N(T) the equations become:- 

(l+«)q^(T) = P44^4^T-1 ) + Eq • (T-l)w. + «

for i~4,5,6,7 (4.4.10)

(l+a)q5(T) = P55q5<T-l) + P45q4(T-l) (4.4.11)

and so on for grades 6 and 7.

This has a stationary structure satisfying :~

(l+a)q4 = P44q4 ■+ Eqiwi + a (4.4.12)

(l+«)q5 = P55q5 + p45q4 (4.4.13)

and so on for grades 6 and 7.

For an expanding or contracting system, the steady si2e of grade 3 is 

given by:
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P23n2(T-l) - 03(M(T> + Eni (T-l)w.}

n3(T-.l )

1 - p33 - ^3p34 <4.4.14)

Its limit varies whether the system is expanding or contracting as 

shown below.

In the Case of Expansion:

As T approaches infinity, the total si2e of the higher education 

expands steadily, the number of entrants increases and ^(T) 

approaches 0. When 8^<T )=0 the bottleneck is resolved and the 

structure of grade 3 approaches its steady-state which can be 

evaluated as:

n*3= ^23n*2 + ^33 ~ n*3 (4.4.15)

In the Case of Contraction:

As T approaches infinity, M(T) approaches 0. When M(T) =0, the 

structure of grade 3 approaches its steady-state which can then be 

evaluated as in the case of a constant size for the higher 

educational system as shown above.

EXAMPLE 4 .-4. 2

Using the same data as in the previous example but with <*=0.005, i.e. 

the higher educational system expanding at a rate of 0.57>, the 

results are given below. It can be seen that despite the small size 

of a , grade 3 does approach (very slowly) the steady-state given 

above. With larger values of a , grade 3 reaches its steady-state 

more quickly (for example with a=0.10 the steady-state reached at 

T=19). Grades 1 and 2 are not printed as they are unaffected and

57



their values are the same as in example 4.4-. 1.

GRADES o11H

i T = 1 it1 T = 99 T=20Q
3 1000 1678 2168.6 2061.74 1835.36
•4 200 273 242.1 408.33 675.75
5 160 139 174.7 278.34 460.57
6 150 129 143.9 218.34 361.33
7 140 112 102.4 160.04 264.85

N(T) 650 653 663.1 1065.01 1762.49
E(T) 243 204. 1 347.39 574.89
6 , (T) 0.4 0.5 0.4 0.3

GRADES T a 291 T = 294 THEORETICAL___
STEADY-:STATE

3 1506.8 1504.7 1504.6
4 1063.9 1079.9 1079.2
5 725.1 736.0 735.2
6 568.9 577.5 577.4
7 417.0 423.3 422.5
N(T> 27774.9 2816.7
E(T) 905.1 918.8
S4(T> 0.0 0.0

EXAMPLE 4.4.3

In this example the higher education system is contracting by -10% 

and so a= -0.10. The results are given below and show that grade 3 

approaches its steady state much slowly than in the case of an 

expansion. It can also be seen that M(T) need not reach 0 for the 

theoretical steady-state of grade 3 defined above to be a good 

approximation. Once again the same data is used as in previous 

examples and so grades 1 and 2 are not printed as they are 

unaffected.
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GRADES T=G T = 1 T « 10 T = 20 T=30

3 .1000 1712.6 2336.59 2382.9 2398.86

4 200 204.8 75.34 26.2 9.12

5 160 139.6 57.70 20.2 7.04

6 150 128.6 51.04 17.9 6.25

7 140 112.0 42.57 14.8 5.15

N(T) 650 585.0 226.64 79.1 27.55

E(T > 174.8 62.88 21.8 7.60

64(T> 0.43 0.57 0.59 0.60

GRADES T=39 T=40 T=41 STEADY-

STATE

3 2404.1 2404.4 2404.70 2404.56

4 3.5 3.1 2.86 3.29

5 2.7 2.5 2.21 2.24

6 2.4 2.2 1.96 1.82

7 1.9 1.8 1.61 1.29

N<T) 10.7 9.6 8.65

E(T) 2.9 2.7 2.38

64 (T) 0.6 0.6 0.60

3.5 Limitations of Model One andi Model Two.

Model One assumes that *3<T) is a linear function of the number

alternatives available to students denoted by D(T). The assumption 

is simplistic and empirical evidence is needed in order to determine
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the exact relationship if any between ^(T) and D(T). This needs 

detailed statistics which, however, are unavailable.

The alternative of assuming that is constant, as was done in

Model Two, is unlikely to hold in the very long run. It is expected 

that with time, the difficulties encountered by students in 

overcoming the bottleneck will .lower the proportions that are willing 

to repeat the examination again. This point is somewhat connected to 

an inherent limitation in all flow models which is that they do not 

incorporate a 'feed-back* mechanism. It is possible that in a 

bottleneck situation a feed-back effect of a reduction in demand 

might take place. However, it is necessary to have detailed data 

over a considerable time period for use as empirical evidence.

The models assume that first-time and higher-time repeaters have the 

same transition possibilities of promotion and wastage as other 

students. This comes .about from the first-time order of the Markov 

process. It might be possible that such an assumption is invalid, 

however detailed empirical data which is unavailable in the present 

application is needed to support or disprove this assumption.
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CHAPTER IU

E S T I M A T I N O  T R A N S I T I O N  P R O B A B I L I T I E S  

I N  S E C O N D A R Y  S C H O O L S

4-•1 Methods of estimating transition probabilities from stock data.

As was shown in Chapter II, the data collected by the Sudanese 

Ministry of Education is in the form of a sequence of stock data made 

up of the si2es of each grade in the system over a number of time 

units. With the unavailability of flow data, the problem is then to 

estimate the transition probability of movement assuming that the 

stock data has been generated by an underlying Markov process.

An up-to-date review on the methods of estimating transition 

probabilities from stock data is given in Rosenqvist (1986), while a 

full account of the theory is given in Lee, Judge and Zeliner (1970). 

The methods include regression analysis, maximum likelihood and 

Bayesian analysis. In this application the regression analysis 

technique has been used and a short description is given below:

Let q,j(t > be the unconditional probability of being in state j at 

time t.

Then p(Xt,-i-i, and x^-j ) = p(x*.~i = i) Pij = q.t (t~l )pi j

where x*. is a discrete stochastic process. (4.1.1)

From the addition lav of probability:

qj(t ) = p(xt.=j ) = Ep(xt.-iJ=i )pij (4.1.2)

qj(t ) = Eq i(t~1 )pi j (4.1.3)

the summation is over i and j=l,2, ,R t = 1, 2,..... ,T.

If the unconditional probabilities qj(t) and qi(t-l) are replaced by
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the observed proportions (from the stock data) yj(t) and yi(t-l) then 

there will be in general no set of transition probabilities that will 

satisfy this relation with probability one. Thus if errors are 

admitted in the equation to account for the difference between the 

actual and estimated occurrence of yj then the sample observations 

may be assumed to be generated by the following linear model: 

yj<t>= Eyi(t-l)pij + uj(t) (4 .1.4.)

or in more conventional matrix notation:

yj = Xj pj + Uj (4,1.5)

where yj is a TX1 vector of observations reflecting the proportion in 

state j at time t, Xj is a TXr matrix of the proportion in state i at 
time t-l, pj is a rXl vector of unknown transition parameters to be 

estimated an Uj is a vector of random disturbances. Applying OLS with 

X as the independent variable and y as the dependent variable 

violates the non-negativity conditions of the transition 

probabilities. Lee, Judge and Ze.liner(1970) suggested a quadratic 

programming approach to deal with this problem. The sum of squares 

of the function would be minimized subject to the constraints that 

the rows of the P matrix must sum to one and the individual pij1s 

must lie in between 0 and 1. This is the procedure which is referred 

to as the QP technique in the following sections.

4.2 Estimating the transition probabilities of students in secondary 

schools

4.2.1 Assumptions and Methods.

The following is an attempt to obtain from stock data estimates of



the transition probabilities which govern the movement of students 

within secondary schools* The aim is to determine vhether realistic, 

acceptable estimates can be obtained from stock data assuming an 

underlying Markov model* This is related to the effectiveness of the 

estimation method used and to whether the data is generated from an 

underlying Markov process*

The analysis is restricted for the present purpose to Government 

Secondary schools which as can be seen from Chapter II comprise the 

bulk of all secondary students.

The following assumptions have been made:

1. It is assumed that the three grades of secondary 

school make up a fixed sized system which (as the data 

shows) is expanding over time.

2. According to official sources repetition is very low 

in the first grade and thus it is possible to assume that 

no repetition exists in grade one* .Although perhaps 

unrealistic, this assumption greatly simplifies the 

estimation procedure as the si2e of grade one is now 

simply determined by the number of entrants into the 

system.

3.With regard to grade 3 where many frustrated applicants 

might want to repeat because of the oncoming bottleneck 

into higher education, repetition is "officially" not 

permitted and students are expected to transfer to other 

types of schools or register as external students. The 

stock data of grade 3 Government schools students is 

therefore assumed to be free of ’’overspill" students and
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to be made up of only those promoted from grade 2 and

those who failed the Secondary School Examination and are 

repeating.

Therefore the movement of students in Government Secondary Schools is 

assumed to follow a first order Markov process and the sizes of the 

grades is given by:

ni(T) = «N(T-1) + Eni (T-l >w. <2.1.1)

na(T) « piznji(T-l> + pa&nad-l ) (2.1.2)

ns(T) - pa:sns(T-l ) + psansd-l ) (2.1.3)

where ni(T) is the si2e of the grade i at time T.

Pij is the transition probability of movement from i to j.

N(T) is the total size of the system at time T,

N(T)=m(T) + na(T) + n=»(T> (2.1.4)

a is the rate of expansion of the system.

As can be seen the size of grade 1 is made up of those who are coming 

in to fill new vacancies resulting from expansion and those coming in 

to fill vacancies resulting from wastage.

The quadratic programming technique discussed at length in section

4.1 assumes in its use of the proportion in each grade, a system 

which is constant over time. When the real system is growing (as in 

the case of the secondary school system) the quadratic programming 

technique inevitably produces a transition matjrix which 

underestimates the grade sizes. One way of overcoming this is

through the use of Unrestricted Ordinary Least Squares on the actual

grade sizes rather than the proportions. (For grades 2 and 3 n.i<T) 

would be regressed on ni(T-l) and ni-a(T-l) and an estimated 

regression equation passing through the origin would be obtained.
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The draw-ba.cks of such a procedure are obvious; there is no guarantee 

that the resulting estimated matrix fulfils the Markov conditions of 

non-negativity and less than one estimates as well as the sum of the 

rows adding to less than or equal to one. However, as will be shown 

below, the procedure produces acceptable estimates in many cases. In 

addition to ensuring that the transition rates are not under­

estimated, unrestricted least squares avoids the problem of 

heteroscedasticity and comes about from the use of proportionate 

data. More important, it makes it possible to test by analyzing the 

residuals of the models whether the assumptions of a linear 

relationship between the variables is appropriate. This sheds light 

on whether the assumption that the data is generated by an underlying 

Markov process is valid or not. For this the Unrestricted Least 

Squares procedure must be regarded as a preliminary procedure before 

using the Adjusted Quadratic Programming technique that will be 

presented below.

4.2.2 Quadratic programming adjusted by an estimate of expansion.

This technique is an attempt to solve the problem of under—estimation 

described above. Basically the technique takes account of expansion 

by estimating the rate of growth of the system assuming that a true 

underlying growth rate exists. The original data is then rescaled 

before proceeding with the QP procedure.

The general form of the equations for an expanding stochastic system 

of given si2e is presented in Bartholomew and Forbes (1979) as:

(1+a )qx(T ) = a + Eq*(T-l >w* (2.2.1)

65



(l+oc)q2(T) = Pi2qi(T-l) + p®aqa(T-l) (2.2.2)

(1+a )qs(T) ~ pssqs(T—l ) + pssqsCT—l) (2.2.3)

The rate of expansion of the system is a and qi(T) is the proportion 

of students in grade i (q*(T) = ni(T)/N(T>. The expression for the 

total size of the system N(T) (grades 1+2+3) is:

N(T ) * <l+a)N<T-l ) (2.2.4)

Equations (2.2.1) to (2.2.3) can be obtained by dividing both sides 

of the equations in section 4.2.1 by N(T-1 ).

If N(T) and ISKT-l ) are replaced by the actual sizes of the system, 

there will not be a rate of expansion that would satisfy this 

relationship with probability one. Thus if errors are admitted in 

equation (2.2.4) to account for the difference between the actual and 

estimated value of N(T), the total size of the system may be 

generated by the following stochastic relation:

N(T) = (1+a )N(T—1 ) + n (2.2.5)

Rewriting equation (2.2.5) in the form of Y=/3X + p ordinary least 

squares can be used as a bases for obtaining an estimate of a.

As equation (2.2.1) is determined by the other equations, it is not 

necessary to estimate its coefficients directly and it can be 

disregarded. The estimate for a obtained by least squares can then 

be placed in equations (2.2.2) and (2.2.3). Estimates of the p*j 

are then obtained by carrying out the QP technique. The original 

data is thus rescaled by an estimate of a.

The question arises ,however, as to whether the school system is 

really growing at a constant rate of a. Over a long period of years
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it is very unlikely that the system would expand at a constant rate. 

In the present application, education expansion in the Sudan has been 

higher in the 50*s and 60’s (formal education was first introduced in 

1936) and has been slowing down throughout the 70’s and 80*s. 

Consequently the growth curve over a long period of years is unlikely 

to be linear. However, the present purpose in trying to estimate <x 

is not to forecast the future total size of the system but rather to 

obtain better estimates of the pu. Furthermore because the time 

period used for the estimate is short <7 or 8 years) it is not 

unrealistic to assume that expansion in constant over this period.

The following sections are examples of the application of the above 

techniques on a number of secondary school data sets. Each province 

is considered separately and for each sex, transition rates are 

estimated. This is done in case differences in pattern of movement 

exist between the sexes or between the provinces. These particular 

data sets were chosen so that the number of time periods used for 

modelling are six or more.

4.3 Estimates for the Nile Province Girls

4.3.1 Unrestricted least squares

The two equations from which transition rates are estimated once 

again are:

na(T) — ni (T-1 )pi2 + na(T~l )p2 2 . 

ns(T) — nz(T-l )p23 + n.3(T—l )p33.

The estimates for the second equation were unacceptable and so the
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following analysis is restricted to the first equation.

As a first step it is useful to study the correlation between the 

variables in the model. The correlation between ni(T-l) and na(T) is 

high <0.9884) and between na(T-l ) and na(T) is 0.79. This shows 

that a strong relationship exists between the dependent and 

independent variables in the equations and it is encouraging to go on 

with the regression procedure. The effect of repetition is smaller 

than the effect of promotion however the correlations are not small 

enough to justify removing p22 from the equations.

In addition to checking the correlations between the dependent and 

independent variables it is also important to study the correlation 

among the independent variables. Interpretation of a multiple 

regression equation depends implicitly on the assumption that the 

explanatory variables are not strongly interrelated. When a linear 

relationship exists between the independent variables (multi- 

col 1 inearity ), the regression results are ambiguous. In the present 

application, it is likely that ni+i(T~l )and rud-l) are related and 

it would not be unreasonable to suspect the presence of multi- 

col 1 inear ity . The correlation between n.i(T-l) and ns>(T-l ) is high 

(0.7607 ). Before, however, the presence of multicol1 inearity is 

determined the model specifications must be satisfactory. This will 

be done by analyzing the residuals of the model.

The estimates for the first equation are pis=0.86 and paa=0.15. The 

standardized residual of the model is given by:

e i „ -  e i / s ( 3 . 1 . 1 )
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where ©i = yr - Yi and s is the standard deviation of residuals, the 

square root of the following

s2 ~ E(y* - bixii ~ bax2i )2 / (n-2) (3,1.2)

The standardized residuals which have zero mean and unit standard 

deviation can be plotted against a number of variables. Such graphs 

often expose gross model violations when they are present. In this 

and subsequent examples eio is plotted against the fitted value , 

the independent variables, and the time order in which the 

observations occurred. In general when the model is correct, the 

standardized residuals tend to fall between 2 and -2 and are randomly 

distributed about zero. Any distinct pattern of variation is an 

indication that the underlying model is inadequate; there is a need 

for extra terms in the model, or the error variance is not constant 

as assumed (hetero- scedasticity) and there is a need to carry out a 

transformation of the y’s. In addition, plotting the residuals 

against time exposes autocorrelation if it is present in the data.

Figure 1.1 shows the standardized residuals plotted against the 

predicted values which are. given in standardized form. It can be 

seen that there are no outliers; all the residuals lie between -2 and 

+2. There appears to be no distinct pattern and the residuals are 

randomly distributed about zero. This particular plot is a check for 

violations of the equality of variance assumptions. If the spread of 

residuals increases or decreases with values of the predicted 

variable then one would question the assumption of constant variance 

of .Y for all values of X. The plots against the independent 

variables also do not show an distinct pattern (not shown).
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Plotting the residuals against time is shown in figure 1.2. The 

points neither cluster together nor show signs of being negatively 

correlated (i.e. when a positive value tends to be followed by a 

negative one and vice versa). The Durbin-Watson .statistic for 

testing serial correlation is 2.233 a figure which is close to 2 and 

hence is firmer evidence that there is no autocorrelation present in 

the errors.

After the analysis of residuals has shown the assumptions of the 

model to be correct, it is now possible to turn to the problem of 

mu.lti co 1.1 inear ity. Removing n^T-l ) from the equation results in an 

estimate of P12 = 0.995. The percentage of variation explained by 

the model is hardly affected, it drops from R=99.957. to R=99.937o It 

is obvious that the omitted variable does not improve the model. 

However multicol l inearity if present is not severe because al though 

ni(T*-T ) can serve as a proxy for n2(T-l ) the opposite can never take 

place (it is not possible to assume that no promotion exists). The 

above symptoms of multicollinearity may only mean that the effect of 

students moving from grade one to grade two is more than the effect 

of repetition on the size of grade two.

Figure 1.3 shows the residuals of the no repetition model plotted 

against time. The points are clustered c.losely together around 

origin and the Durbin-Watson statistic is lower at d=l.58. These 

symptoms of autocorrelation are clearly the result of the variable 

n2(T-l ) having been omitted from the equation. Because successive 

values of n^T-l ) are correlated (the correlation between n»(T—1 ) and 

nsi(T) is 0.07906 as mentioned before), the errors from the estimated
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model then appear to be correlated.

4.3.2 QP_ adjusted by the rate of -expansi on

This procedure involves 2 steps. The first step is finding an

estimate for a the expansion rate of the system assuming that N(T) = 

(1+a )N(T-1 ). This is a simple regression problem of a straight line 

passing through the origin (Y-iSX) with the estimated value #“(l+a).

The resulting equation N(T) - 1.0755N(T-1) i.e. a = 0.0755 is not 

unacceptable. Plotting the residuals against the predicted variable 

Y shows no distinct pattern (fig. 1.4). The points lie within the 

range -2,+2 and are randomly distributed in a horizontal band along 

zero. Plotting the residuals against the independent variable also 

shows no distinct pattern and there is no evidence of serial 

correlation in the plot of residuals against time (fig 1.5).

The above residual analysis is encouraging and gives no reason to 

reject the proposed model. It is thus possibly to use the estimated 

value of a and carry out a QP procedure for estimating the transition 

probabilities. The estimated transition matrix is given as 

0 0.81 0

= 0.19 0.81

0.28

The estimates for pia and pea are close to those obtained through
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unrestricted least squares; although in both cases the latter are 

larger. The transition matrix obtained using QP without adjustment 

f or expans ion is:

0 0.72 0

P * 0.21 0.79

0.18

It can be seen that adjusting the data for expansion increases the 

values of the estimates and consequently resolves the problem of 

under-estimation. This is clearly shown in the column chart of 

figure 1.6 which compares the expected values obtained by unadjusted 

QP and adjusted QP. The expected values after adjustment are closer 

to the true values. In addition to this visual comparison the 

chi-square statistic can be used as a measure of agreement between 

observed and expected values of the model. There is little 

justification for the use of the chi-square test as a test of 

significance and the only aim is to compare the two techniques. The 

chi-square statistic dropped from 448.5 to 93.43 when the data was 

adjusted for expansion.

The observed and expected values obtained from quadratic programming 

adjusted for expansion are given below. The estimates for grades 2 

and 3 are obtained by using the estimated values of the Paj<® in the 

equation ni(T )=ni(T-l )pii •+ nri < T—1 )pi-i, i. The actual s.i2e of 

grade one was used in the estimation of na(T).
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TIME.
T - Q 77/78
OBSERVED
EXPECTED
T « 1 78/79
OBSERVED
EXPECTED
T - 2 79/80
OBSERVED
EXPECTED
T = 3 80/81
OBSERVED
EXPECTED
T = 4 81/82
OBSERVED
EXPECTED
T = 5 82/83
OBSERVED
EXPECTED
T = 6 83/84
OBSERVED
EXPECTED
T = 7 84/85
OBSERVED
EXPECTED
T - 8 85/86
OBSERVED
EXPECTED

GRADE 1

775

GRADE 2 GRADE 3

788

729

720

800

1047

1084

1280

1080

513

758
(727)

791 
(779 )

808 
(74-2 )

717 
(727 )

800 
<789 )

1044 
(1001 )

1071
(1072)

1230 
(1245 )

459

585 
(521 )

811 
(708 )

675 
(794 )

934
(784)

712 
(769 )

868 
(816 )

1075
(998)

1071 
(1098 )

The expected values are close to the observed values and the pattern 

followed by the two are .similar. Sometimes, however, the observed 

values are substantially higher as in the case of grade 3 for T=4 

81/82. The observed value of 934- is much higher than the expected 

value of 784 indicating a higher than estimated repetition rate in 

grade 3 for this particular year.
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Va.]_idat.ing_ t he model bv comparing projections for 86/87 with newly

published data.

Grade 1 Grade 2 Grade 3 Total
PROJECTED 1283 1113 1242 3638

ACTUAL 1248 996 1293 3537

The above table compares the projected grade sizes for 86/87 and the 

actual grade si2es for 86/87 which were published after the 

estimation procedure had taken place and consequently were not 

included in it. The estimates for the total size of the system is 

obtained by using the estimated value of a in equation (2.2.4-). The 

estimates for grades 2 and 3 are obtained by using the estimated 

values of the Pij’s. The estimate for grade 1 is then obtained by 

subtraction following the assumption that the system is of a given 

si 20 .

The discrepancy between the figures is not great and there is no 

variation in the overall pattern. It is however, noticeable that the

projected sizes of grades 1 and 2 as well as the total si2e are

slightly larger than the actual sizes. This is because the expansion 

rate between 85/86 and 86/87 was 0.046 which is considerably smaller 

than our estimate of <*=0,0755, However, this considerable difference 

in the estimated and true expansion rate is not reflected in the same 

magnitude with regard to the grade sizes. This is a credit to the

adjusted QP technique and shows that a large variability in the

expansion rate does not affect greatly the estimates. More about
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this is discussed in Chapter V. For the present purpose it is 

possible to conclude that the technique is successful in projecting 

the grade sizes for one time unit ahead.

4.4 Estimates for the Kassala province girls.

4.4.1 Unrestricted Least Soua.res

As for the case of the .Nile province, estimates for grade 3 p23 and 

P33 (i.e. those produced by the second equation) were unacceptable. 

They violated the assumptions of non-negativity and less than one 

conditions. This is in spite of the fact that correlation is high 

between n2(T) and ns(T). Thus such unacceptable estimates do not 

imply that the linear relationship is inadequate but rather that 

perhaps repetition in grade 3 is high.

With regard to the first equation, omission of the independent 

variable n2(T-l ) (hence exploring the possibility of no repetition), 

has little effect on the performance of the model. The correlation 

matrix gave evidence of this for while the correlation between n2(T) 

was ns>(T-l ) high at 0.81, the correlation between n2(T) and na»(T-l ) 

was -0.28. The fitted equation was:

ns(T> = 0.89ni(T-l> + 0.077n2(T~l)

For the variable n2(T-l ), the t-value is low 0.539 which confirms 

that is can be dropped from the equation. Dropping n2(T~l ) from the 

equation results in the estimate of pia> rising to 0.96. The 

percentage variation explained by the model drops only slightly when
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the variable is removed; from 99.8% to 99.8%. The pattern of

residuals for the two equations is very similar, there is no evidence

of hetero- scedasticity or of serial correlation among the residuals. 

The Durbin-Watson statistic drops slightly from 3.28 to 3,09 when 

n$>(T-T) is omitted. For the equation with 2 independent variables 

see figure 2.1 for the plot of the residuals against the predicted 

values, and figure 2.3 for the equation with 1 independent variable. 

The plots against time for the two models (figures 2.2 and 2.4) 

respectively show the residuals increasing with time. This implies 

that the variance of the errors is not constant but increases with 

time. The results thus of the estimates are not very reliable.

4.4.2 OP ad justed by the rate of.expansion

For this data set the correlation between N(T) and N(T-1 ) is not very

high 0.65. The consequent poor fit of the model can be seen in the 

plot of the residuals against the fitted values Y (figure 2.5). 

Positive residuals correspond to low Y's and negative residuals to 

high y’s. It appears that a term is omitted from the model. As for 

the present purpose we only need an estimate of a obtained from the 

equation from N(T) - (l+a )N(T-1 ), there is no need to continue

further with the analysis.

4.5 Estimates for the North Darfur province girls.

4.5.1 Unrestricted least squares

The correlation matrix of the variables (not shown) has high
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correlations between the dependent and independent variables of the 

model. However, correlations are also slightly high between pairs of 

independent variables and it would be important to check for multi- 

col linearity by removing one variable from the equation. The 

estimated equations are as follows:

n=>(t) = 0.87 n i (T-1 ) + 0.13 n2(T-l ) 

na(T> = 0.87 ns(T-l) + 0.17 m(T-l>

Plotting the residuals against the predicted values, the independent 

variables and time do not show a distinct pattern. The residuals are 

in general well behaved and tend to scatter about zero. (Figure 3.1,

3.2 ).

Removing repetition from the equation gave an unacceptable estimate 

for p23 but for pi». the estimated coefficient rose to 0.999. With 

regard to the first equation, the value for Ra hardly changed from 

99.957, to 99.927,. Studying the residuals of the model with no 

repetition shows, however, that omitting the variable does not have a 

positive effect on the model. While there were previously no 

outlier, one now exists with a value of -2.21. Two other residuals 

have negative values of -0.045 and -0.022, the remaining five are all 

positive. This gives the scatterplot an unusual pattern.

The plot against time is definitely inferior to that produced by the 

model in which repetition is included. This is reflected in the 

Durbin-Watson test which drops from 1.93 to 1.77, The scatterplots 

are shown in figures 3.3, 3.4, and 3.5.
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4̂ 5_. 2 OP adjusted bv the rate of expansion

For this data set the correlation between N(T) and SKT-l ) is high at 

0.984. Consequently the fitted equation is good as can be seen in 

figure 3.6. The plots of residuals show no distinct pattern, there 

are no outliers, and no evidence of serial autocorrelation (figure 

not shown). The estimate for « is 0,087. Adjusting the proportions 

in each grade by the estimated value of a, the following P matrix is 

obtained using QP:

0 0.989 0

P„c,j = 0.009 0.80

0.234

The estimates are much higher than those produced previously by QP 

without adjusting for expansion. These were:

0 0.91

P = 0.00 0.74

0.00

The charts .in figures 3.7 and 3.8 compare the values in the grades 

with the estimates produced by the two methods. It can be clearly 

seen that QP adjusted for expansion brings the estimates closer to 

the true values. The chi-square statistic measuring the discrepancy 

between observed and expected values drops from 135.8 to 11.24 for 

the adjusted estimates.

The observed and expected values obtained by QP adjusted for 

expansion are given below. The fit is particularly good especially 

with regard to grade 2 where many of the expected values are the same

78



as those of the observed figures. The observed data is free of many 

of the errors that are common in other data sets (see chapter one) 

and this might account for the exceptional^ good fit of the model.

TIME GRADE 1 GRADE 2 GRADE 3
T~Q 77/78
OBSERVED 227 209 227
EXPECTED -
T = 1 78/79
OBSERVED 305 226 209
EXPECTED (226) (221)
T = 2 79/80
OBSERVED _ 249 308 226
EXPECTED (304) (233)
T = 3 80/81
OBSERVED 34-2 249 308
EXPECTED (249) (298)
T = 4 81/82
OBSERVED 404 310 294
EXPECTED (341) (269)
T = 5 82/83
OBSERVED 322 404 310
EXPECTED (-403 ) (336 )
T = 6 83/84
OBSERVED 378 339 423
EXPECTED (322) (401)
T = 7 84/85
OBSERVED 447 388 366
EXPECTED (377) <352)
T « 8 85/86
OBSERVED 503 446 380
EXPECTED (4-46 ) (384)

79



Val i_dat_i.nthe model by comparing predictions for 86/87 with newly
published data.

GRADE 1 GRADE 2 GRADE 3 TOTAL
Projected 537 498 411 1446
Actual 491 466 415 1372

The projected values are close to the actual figures; the estimate 

for Grade 3 is particularly good. The projected values for grades 1 

and 2 and the total sijze are slightly greater than the actual values. 

This is because the system expanded by a-0.032 between 85/86 and 

86/87 which is less than the estimated value for 0,087. The 

difference is large, however fortunately this is not reflected in the 

same magnitude with regard to the grade sizes.

4.6 Estimates for the South Darfur Province Boys.

For both equations, including a repetition term resulted in 

unacceptable estimates and Therefore equations with one independent 

variable were estimated. The unacceptable -estimates could be 

expected from the correlation matrix which showed a negative 

correlation between na(T)and ns><T-l ) of -0.303 and a low cor­

relation of 0.012 between n3(T) and n3(T-l ). Even correlations 

between na<T) and ni(T-l) and between n3(T> and na(T~*l ) were not 

high namely 0.75 and 0.64 respectively.. The resulting estimated 

matrix was as follows:

0 0.94 0

P= 0 0.92

0

Although the plots of residuals against the fitted Y and against the
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independent variable do not show any distinct patterns, the plots 

against time show the residuals dispersing with time (fig. 4.1). It 

appears that the variance is not constant but increases with time. A 

transformation is therefore necessary or an introduction of another 

independent variable that would take into account time.

Fitting the equation N(T )*=(1+« >N(T-1 ) resulted in residuals that 

tended also to increase with time (see fig 4.2). The correlation 

between N(T) and NCT-l ) was in general low 0.11. There is thus 

evidence that the proposed model N(T )-(l+« )N(T—1 ) is inadequate for 

this data set and it is not possible to proceed with the estimation 

technique.

4.7 Estimates for the South Darfur Province Girls 

4..7.1 Unrestricted Least Squares

The correlation between ns.(T) and n.i('T-l) is very high 0.995 and this 

might explain why including n&(T-l ) in the model would result in 

unacceptable estimates The resulting equation with repetition 

removed is:

n2(T) = 0.98 ni(T-1 )

Plotting the residuals against the fitted value and the independent 

variable shows no distinct pattern. There are no outliers and the 

residuals show no distinct pattern. However the plot of residuals 

against time shows the residuals with the exception of one point 

increasing with time (figure 5.1). This implies that a linear effect
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in time should have been included in the model. Alternatively, it 

could be due to omitting the repetition term from the model.

The results from the second equation is: 

n.3(T ) = 0.91 n*(T-l) + 0.14 n3(T-l )

Plotting the residuals against the fitted values, the independent 

variables and time shows no distinct pattern and no evidence to 

suggest that assumptions of the model are violated (see figure 5.2). 

The t-statistic for naCT-l ) is very low which indicates that removing 

it would not affect the model. However removing it from the equation 

would result in an unacceptable estimate for pas.

4_. Z* 2 QP adjusted for expans ion

Fitting the line N(T)-(1+a )N(T-1 ) gave an estimate of a=0.08 ( see

figure 5.3). The residuals from the fitted line were well behaved

and it was possible to use ’a' in order to adjust the proportions in

each grade. The resulting P matrix produced by QP was:

0 0.82 0

P«aj * 0.09 0.91
0.15

These estimates are higher than those produced by QP without

adjusting for expansion which are;

0 0.90 0
P * 0.09 0.87

0.11

The column charts (figures 5.4 and 5.5) show the improvements in the 

estimates in Grade 2 and 3 respectively. The chi-square value showed 

a great improvement. It dropped from 42.96 to 4.81 when the data was 

adjusted by the estimate of expansion.
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The observed and expected values obtained from quadratic programming 

adjusted for expansion are given below.

TIME GRADE 1 GRADE 2 GRADE 3
T ~ 0 78/79
OBSERVED 165 153 167
EXPECTED -
T = 1 79/80
OBSERVED 157 169 160
EXPECTED (162) (164)
T = 2 80/81
OBSERVED 159 143 162
EXPECTED <156) (172)
T ~ 3 81/82
OBSERVED 228 152 174
EXPECTED (157) (173)
T = 4 82/83
OBSERVED 220 220 170
EXPECTED (219) (231)
T = 5 83/84
OBSERVED 222 216 233
EXPECTED (218) (225)
T - 6 84/85
OBSERVED 299 217 217
EXPECTED (219) (231)
T = 7 85/86
OBSERVED 279 298 217
EXPECTED (289) (234)
T = 8 85/86
OBSERVED 279 298 217
EXPECTED (289) (234)

The expected values are close to the observed ones with many cases 

having only minor differences between then. This shows that the fit 

of the model is good.
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Validating . the model by comparing prediction.s for 66/87 with newly

pub 1 i shed data..

GRADE.J GRADER GRADE 3 TOTAL 

PROJECTED 275 278 304- 857

ACTUAL 320 292 J 24 936

The projected values are close to the actual new figures although 

they are slightly lower. The expansion between 85/86 and 86/87 is 

0.18 more than double the estimated value for a=0,079 which was 

used in the adjusted QP procedure. This is unlike the data for Nile 

Province and the North Darfur province (sections 4.3 and 4,5 ) where 

the actual expansion has been lower than the estimated expansion. It 

is therefore, not possible to generalise that there is an overall 

trend for a drop in the expansion rate. However, what is common is 

that the estimation procedure is capable of allowing for a large 

variation in the expansion rate with little effect on the final 

estimates of P.

4 .8 Conclusions

The analysis of residuals carried out on the data sets showed that 

the assumptions of the linear model were not grossly violated. There 

were no outliers as was expected and the standardized residuals 

tended to fall within the range -2,+2. Because the data was in the 

form of observations taken in successive time sequence, serial 

correlation among the residuals was expected. However the majority 

of residuals showed no signs of correlation. Although the sample
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size was too small to carry out tests of significance for the 

Durbin-Watson statistic, the values of the statistic tended to be 

close to 2 which implied no correlation among the residuals.

Multicol 1 inearity vas another problem affecting the analysis as the 

independent variables were inherently correlated due to their nature. 

However the correlations were never very high and although the 

percentage variation explained by the two models were similar, 

removing repetition affected the residuals of the model. In some 

instances autocorrelation would appear among the residuals as a 

result of the omitted variable. Including repetition is thus 

desirable and true multico11 inearity where one variable could act as 

a substitute for the other is unlikely to exist.

Fitting the linear equation N(T) - (l+a>N(T~l> was successful and the 

residuals in the majority of the examples behaved well. There was

sometimes evidence, however, of the variance of the residuals

increasing with time and the analysis for such data sets was

di scont inued.

Definitely the adjusted QP procedure is an improvement to the QP 

technique and the grade sizes are no longer under-estimated as when 

there is no adjustment for expansion. This was shown in the column 

graphs and in the improvement in the chi—square value (used in this 

context as a measure of agreement). Validating the model by

comparing projected grade sizes for 86/87 with actual newly published 

figures proved successful. There was only a slight variation between 

the projected and actual figures although estimates of the expansion



rate were very different. It is thus possible to conclude that the 

results of the estimation procedure can be used for making reasonably 

accurate projections one time unit ahead.
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CHAPTER U

SAMPLING P I STR I BUT I QMS OF* THE
ESTIMATED TRANSITION PROBABILITIES

5. 1 The simulation program: Descriptions and Aims.

It has been proposed that the .Sudanese secondary school system can be 

modelled in terms of an expanding stochastic system with given size. 

Because of the unavailability of flow data, it was necessary to 

estimate the transition probabilities from stock data. The original 

QP technique used by Lee,Judge and Zellner (1970) based on minimizing 

the sum of squares between successive stock proportions resulted in 

estimates of transition probabilities that always under-estimated the 

grade sizes. The suggestion put forward in Chapter IV, was to take 

account of the expansion of the system by estimating a, the rate of 

growth assuming that a true underlying growth rate existed. The 

original data would then be .rescaled before proceeding with the QP 

technique. This procedure was carried out on 5 provinces for which 

data collection errors were minimum and a .reasonable sequence of time 

periods were available.

In order to assess the effectiveness of the above procedure in terms 

of ability to estimate the true underlying transition matrix and make 

predictions, a simulation program was developed. Such a simulation 

set generates artificial data upon which the model is fitted and 

predictions are made.

Program SIMUL simulates the behaviour of a 3-grade system with a
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total size expanding at a random rate. The program makes use of the 

random number generator RN55 which is a double precision function 

that returns a random number between 0 and 1 from the uniform 

distribution. For each individual known to be in grade 1 at time 

T~l, a random number X is generated; if 'X < pia the individual moves 

to grade 2 at time T, otherwise he leaves the system. For each

individual in grade 2 at the time T-l, other number numbers are 

generated; if X < Pgg the individual remains in grade 2 at time T-l, 

if P22 £ X < psc + P33 the individual moves to grade 3 at time T-l, a

random number X is generated, if X <ps3 the individual remains in

grade 3 at time T otherwise he leaves the system. This procedure is 

repeated for each individual and for every time period.

In order to obtain an expansion rate which lies between a

pre-determined upper and lower bound, the random number was rescaled 

as follows: If H is the random number between 0 and 1, then the

rescaled expansion rate A is given by:

A = CH*FAC1 ) + FAC2 (5.1)

where FAC1 is the difference between the upper and lower bounds of 

the expansion rate and FAC2 is the lower bound. The total sizes of 

grades 2 and 3 were then obtained by adding the number of individuals

in a particular grade. As no repetition was assumed in grade 1 and

as the total size of the system at time T was known following our

knowledge of the expansion rate; the number of individuals in grade 

one were calculated as the difference between the total size and 

grades 2 and 3.

n 1 (T ) = (1+A)N<T-1> - ns(T) - n3(T) (5.2)

where N(T-1 > is the total size of the system at time T-l and
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(1+A)N(T-1) is the expression for the total size of the system at 

timeT i.e. N( T ).

Using program SIMUL, 3 sets of 100 simulations were carried out. The 

results obtained are sampling distributions of the estimates under 

different assumptions.

I.SET ONE: 100 Simulations carried out with an expansion rate varying 

randomly between .17° and 16%, and a 23-time period used to obtain the 

est imates.

For every simulation the transition matrix used was:

0 0.90

P= 0.15 0.80

0.15

These probabilities were chosen to be as close as possible to those 

obtained from the actual data. Because the estimates from the actual 

data varied between provinces and between boys and girls, the above 

probability matrix only comes close to the general pattern of low 

wastage in the first two grades and considerable repetition in grades 

2 and 3. For every simulation,, the initial vector was set at n(0>= 

Cl00, 90,901. Although these numbers are smaller in magnitude that 

those of the original data, the general pattern of a larger grade one 

and equal grades 2 and 3 is maintained. The expansion rate a was 

allowed to vary randomly between 17„ and 16%. The data on Secondary 

Schools showed a wide variation in the expansion rate from year to 

year. It is typical of a system to contract at one year and expand 

by as much as 17% on the following year. Thus allowing a to vary 

randomly between the above 2 bounds would be close to the pattern of 

the actual data. For every simulation attempt a different seed was
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used to generate random numbers consequently resulting in different 

data sets which produced different estimates of P and of a.

II.SET TWO: 100 Simulations carried out with fixed expansion and a 23 

year period used to obtain the estimates.

These simulations were carried out on the same transition matrix P 

and the same initial starting vector as the first set. .However, in 

this set a was no longer estimated but assumed to be known and fixed 

at 87n (roughly the average between 1% and 16%). The aim of this was 

to gain a measure of the variability introduced by estimating 

(equation) from data that increased annually at a variable rate.

III.SET THREE: 100 Simulations__carried out_with an expansion rate

varying,randomly between 1 and 16% and an 11-year period used to

obtain the estimates

Due to data collection errors and the difficulty of obtaining 

consecutive data on the Sudanese educational system, a period of 7 or 

8 years (differing between provinces) was used for estimating the 

transition probabilities. In this third set of simulations,

estimates were obtained from only an 11 year period. The aim of this 

was to see the effect on the estimates of using a small time period. 

As in both sets I and II, the same transition matrix P and initial 

starting vector were used. The features of this 3rd simulation set 

is closer to those of the actual data than the two first sets.

5.2 The Sampling Distribution of the Estimated Transition 

Probabi1ities

In this section the sampling distributions of the estimated 

transition probabilities are presented and comparisons are made
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between the three sets of simulations. In the first table shown 

below, table 5.2.1 the measures of central location are compared with 

each other and with the true values.

TABLE 5.2.1 COMPARISON OF MEANS. MEDIANS -AND MODES OF THE TRANSITION 

ESTIMATES. RESULTS FROM 100 SIMULATIONS.

TRANSITION PROBABILITIES
P 1 2 _____________ £ 2 2 ___________ £ 2 : 3 _______________ £ [ 3 3

SMALL SAMPLE

TRUE VALUES 0.900 0.150 0.800 0.150
VARIABLE GROWTH

MEAN 0.900 0.149 0.782 0.171
MEDIAN 0.899 0.149 0.794 0. 156
MODE 1.000 0.175 0.832 0.108

FIXED GROWTH
MEAN 0.912 0.136 0.798 0.151
MEDIAN 0.915 0.126 0.812 0.139
MODE 1.000 0.082 0.863 0.000

MEAN 0.909 0.136 0.778 0. 174
MEDIAN 0.914 0.132 0.795 0. 163
MODE 1.000 0.167 0.845 0. 184

As shown by Table 5.2.1 the means of the estimates from the 100 

simulations are very close to the true values. This is true for the 

three set of simulations. For and pa2, the estimates obtained by

simulations with a variable expansion rate are closer to the true 

values. For p2s and p3s the estimates obtained with fixed expansion 

rates are closer to the true value. The results from the small 

sample data are not very different than those obtained by the other 

procedures especially if they are rounded to two decimal places.
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Thus it is possible to conclude that neither the variability of the 

expansion rate nor a small data set have any considerable effect on 

the means of the estimates.

The values of the median and the mode give an idea of the shape of 

the distributions although more will be known later when comparing 

the coefficients of skewness and kurtosis. It is interesting that 

for all three sets and for nearly all the variables, the values for 

the median are closer to the mean than those of the mode. This is 

related to a tendency for the values of the mode to be unrealistic in 

some cases; for pia the mode is 1.00 in the three sets and for p.33 in 

the second set the mode is 0. This might be due to the nature of the 

QP technique which tends at times to over-produce estimates of 1.00 

and 0. Consequently such distributions are skewed, negatively skewed 

when the mode in 1.00 and positively skewed when the mode is 0 .00. 

When estimating from actual data, estimates might be obtained close 

to the modal value and this would result in an unrealistic estimate 

of P.
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TABLE 5.2.2 COMPARISON OF THE VARIANCES AND STANDARD .DEVIATIONS,
RESULTS FROM 100 SIMULATIONS

TRANSITION PROBABILITIES

£12 £22 £23 R33

VARIABLE GROWTH

VARIANCE 0.004 0.004 0.004 0.006

STD. DEV. 0.067 0.06^- 0.0 el" 0.0T?-

FIXED GROWTH

VARIANCE 0.004 0.005 0.007 0.009

STD. DEV. 0.067 0.069 0.082 0.094

SMALL SAMPLE

VARIANCE 0.006 0.006 0.008 0.011

STD. DEV. 0.077 0.079 0.089 0.103

In general variability is not high for the majority of the estimates 

and for the 3 sets of simulations. Fixing growth does not appear to 

improve the variability among the estimates i.e. figures for the 

standard deviation are no smaller. For the simulations carried out 

on a small sample, the values for the standard deviation for all the 

estimates are higher than those for the first two sets.

Table 5.2.3 shown below displays the correlation matrix of the 

variables.
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TABLE, 5,2.3 COMPARISONS OF THE CORRELATIONS BETWE.EN THE TRANSITION
ESTIMATES, RESULTS FROM 100 SIMULATIONS.

VARIABLE GROWTH
P 1 2.

P 2 2

P 2 3

P33
FIXED GROWTH

Pl2
P22
P23
P33

SMALL SAMPLE
P l 2

P22
P 2 3

P 3 3

CORRELATIONS
Pi 2________ P22___

1.00 -0.988
1.000

1.00 -0.999
1.000

1.00 -0.983
1.000

P23 ._______ £33

0.097 -0.079
-0.13 0.122
1.000 -0.989

1.000

0.555 -0.554
-0.581 0.577
1.000 -0.996

1.000

0.347 -0.318
0.372 0.336
1.000 -0.986

1 .000

As expected from the nature of the variables, p12 and P22 are highly 

negatively correlated; if the probability of moving from grade 1 to 

grade 2 is high then the probability of repeating in grade 2 is low 

for given size of grade 1 at T-l and grade 2 at T-l and at time T. 

Similarly, p23 and P33 are also highly negatively correlated. The 

fact that this is not so is encouraging in the sense that a ’bad*' 

estimate of P22 will not have a large effect on the estimate of p23 

and consequently psa
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TABLE 5.2,4 COMPARISON OF THE COEFFICIENTS OF SKEWNESS AMD KURTOSIS. 

RESULTS FROM 100 SIMULATIONS.

TRANSITION PROBABILITIES 
p!2 p22 p23 p33

VARIABLE GROWTH
SKEWNESS -0.412 0.372 -1.239 1.340
KURTOSIS 0.080 -0.014 2.065 2.449

FIXED GROWTH
SKEWNESS -0.495 0.580 -0.697 0.635
KURTOSIS -0.557 -0.328 0.235 0.155

SMALL SAMPLE
SKEWNESS -0.617 0.554 -0.767 0.783
KURTOSIS -0.157 -0.006 0.421 0.311

Table 5.2.4 compares the coefficients of skewness between the 3 sets

of simulations. The closer the values for skewness are to 0S the

more normal is the observed distribution. Certain features are

common among the 3 sets; the distributions of p.12 and p̂ -a are always 

negatively skewed while those of p2s> and p.33 are always positively 

skewed. Thus many of the estimates of pis and pas tended to be 

larger than the mean and due to the large negative correlation 

between p12 and p22 and between p.2s and p33, many estimates for pss 

and pas tended to be smaller than the mean. Another feature common 

to the three sets is that the distributions of ps>3 and paa are more 

highly skewed than for P12 and ps>2. This is especially with regard 

to the simulations carried out under variable growth. The

distributions of psa and paa are less skewed under fixed growth 

implying that the loss of growth variability improves the shape of 

the distribution. The same is true for simulation set 3 with 

coefficients of skewness for p2a and paa smaller than for the first
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set. It is likely that the small time period used has worked to 

lessen the effect of the large variability in growth and produced 

distributions closer to the normal shape.

Table 5.2.4 also compares the coefficient of Kurtosis between the 3 

sets of simulations. The coefficient of kurtosis measures the extent 

to which observations cluster around a central point; a value of 0 

indicates that the distribution is exactly normal while positive 

values indicate a distribution that is more peaked than normal. Once 

again the 3 sets of simulations share a common feature, values of 

kurtosis for pia and P22 tend to be negative while values for P2.3 and 

Paa tend to be positive. Thus the distributions for pis- and p z z are 

piatykurtic; they cluster less than in the normal distribution and 

the shape of the distribution is generally flatter. The

distributions for pas and pss are more peaked, cases within the 

distributions cluster than those in the normal distribution and tend 

to have more observations straggling into the extreme tails. The 

distributions of p23 and p33 for the first simulation set (where 

growth is variable) are highly peaked in comparison to the other 

simulation sets. For the case when growth is fixed, the value for 

the kurtosis coefficient drops and is closer to zero. The same to a 

lesser degree is true for the third set.

It appears that a fixed growth rate improves the shape of the 

distributions of pas and pss and a small sample size also has a 

positive effect perhaps indirectly by reducing the effect of the 

variability in the growth rate. This is however only with regard to 

the distributions of pas and pss, values of kurtosis for pia and pa*?.
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are closer to zero in the first simulation set than in the second set 

where growth is fixed.

Figures V1-V4 show the histograms of the distributions of P12,

Pas?.,P33, and paa respectively for the case of variable growth.

Figures F1-F4 show the histograms of the distributions of the

estimates for the case of fixed growth. Figures S1-S4 show the

histograms in the case where a small sample was used to obtain the

estimates. A normal probability curve is superimposed on the

histograms. The figures gives a visual representation of the shape

of the distributions.

5.3 The Variances and Covariances of the Predicted Grade Sizes

The general formulae for evaluating the expected values, variances

and covariances of an expanding system with given size is given in 

Bartholomew (19S2). In the special case when the size of the bottom 

grade is solely determined by the total number of recruits into the

system the formulae becomes:

p(T+l) = |a(T >** + p * (T+l ) (5.3.1)

where p(T) is a 1x12 vector with the elements:

CE(ni ),. .. . ,E<ns ),cov(nin.l ),cov(nin3 ),......}cov(n3n3 )3

tc’= Q (5.3.2)

0 Y

where Q is a 3x3 matrix whose elements qAJ are the total probability 

of a move (of any kind) out of grade i which results in an addition
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to grade j. Thus:

j =pi j W i F i  (S. 3. 3)

where T i is the probability of a recruit allocated in grade i.

For the present purpose as recruitment occurs only in the bottom 

grade ri = 1 and r& - ra = 0. Therefore:

W i  paa

Q = Wa paa p23 (5.3.4)

Ws P:33

0 is a 9x3 zero matrix

X is a 3x9 matrix made up of the elements

( <S j l j CJ j. j CJ a l )

8,j i = 1 when j = 1, and is zero otherwise.

Y is a 9x9 matrix which is the direct matrix product of Q.

p ' (T+l) is a 1x12 vector in which the first 3 elements are the

expected number of entrants to each grade at time T+l.

The remaining 9 elements are the covariances of these numbers listed 

in dictionary order. For the present application p '(T+l) contains 

only one element, namely:

p '(T+l) = A*N(T-1><1,0,0,0,0,.......,). (5.3.5)

For each of the 3 sets of simulations, 100 estimated transition 

matrices were produced using QP. Using the same initial grade size 

of n(0 )~C100,90,903 expected grade sizes for 29 time periods were 

obtained with each of the 100 estimated transition matrices. The 

variances and covariances of the predicted grade sizes were also 

calculated for the 29 time periods using the formulae above. The 

procedure was carried out on the 3 sets of simulations. The tables
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below give the average predicted grade si2es and the average 

variances and covariances for selected time periods.

TABLE 5.3.1 AVERAGE PREDICTED GRADE SIZES. RESULTS FROM 100
SIMULATIONS ROUNDED TO THE NEAREST INTEGER.

TIME
_______________  TrO_____ T=I T=10 T=19 T=28
VARIABLE GROWTH

GRADE 1 100 114 227 475 1007
GRADE 2 90 103 217 -456 967
GRADE 3 90 86 186 390 827
TOTAL 280 303 630 1321 2801

FIXED GROWTH
GRADE 1 - 100 114 217 433 864
GRADE 2 90 103 208 417 835
GRADE 3 90 85 179 358 717
TOTAL 280 302 605 1208 2416

SMALL SAMPLE
GRADE 1 100 114 223 460 962
GRADE 2 90 103 213 441 921
GRADE 3 90 86 182 377 786
TOTAL 280 303 618 1277 2669

As shown by table 5.3.1, there is hardly any difference between the 

predicted si2es at T=1 or at T-10. The difference is more marked, 

however, as time goes by with sets 1 and 3 producing larger grade 

sizes than set 2. The difference however is not very large and 

appears to affect the 3 grades equally. Note must be taken however 

that for simulation set no.2 the growth rate was fixed at 0.08 which 

is less than the average of the range 0.01 and 0.16 used in the other 

sets. It is likely that if the average 0,085 rate was used there 

would be little difference between the three.
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TABLE 5.3.2a AVERAGES OF THE VARIANCE-COVARIANCE MATRICES FOR T=
T=10. RESULTS FROM 100 SIMULATIONS

TIME
T=1 T=10

VARIABLE GROWTH
GRADE 1 25.99 -9.26 -16.73 111.86 -57.43 -54.43
GRADE 2 19.69 -10.44 114.19 -56.76
GRADE 3 27.16 111.19
FIXED GROWTh
GRADE 1 23.43 -8.29 -15.14 103.22 -53.00 -50.21
GRADE 2 17.78 -9.49 105.25 -52.24
GRADE 3 24.64 102.45
SMALL SAMPLE
GRADE 1 25.93 -8.42 -17.52 107.57 -55.03 -52.54
GRADE 2 17.72 -9.30 108.98 -53.95
GRADE 3 26.81 106.49

TABLE 5.3.2b. AVERAGES OF THE VARIANCE-COVARIANCE MATRICES FOR
AND T==28. RESULTS FROM 100 SIMULATIONS

TIME
T=19 T-28

GRADE 1 234.65 -120.64 -114.01 495.73 -254.57 -241.16
GRADE 2 240.30 -119.66 507.34 -252.78
GRADE 3 233.67 493.94
FIXED GROWTH
GRADE 1 209. 50 -107.98 -101.52 419.37 -216.26 -203.11
GRADE 2 105.25 -106.66 ■429,97 -213.72
GRADE 3 208.18 416.82
SMALL SAMPLE
GRADE 1 223. 76 -114.78 -108.99 466.80 -239.42 -227.38
GRADE 2 227.57 -112.80 474.92 -235.50
GRADE 3 221.78 462.88

The average variances and covariances of the predicted grade sizes 

all increase with time. This increase is larger at the beginning of 

the prediction periods and tends to settle down with time. While the
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variances and covariances triple between T=1 and T=10, they tend to 

double in size between T=19 and T=28. Because the variances and 

covariances are computed from the predicted grade sizes they will 

always increase even if the system reaches a steady state, however, 

the magnitude of the increase will diminish as the system approaches 

equ i 1 x br i urn.

Removing the variability of the growth rate does appear to reduce the 

prediction errors as can be seen from comparing between simulation 

sets one and two. It is interesting that a smaller sample size 

introduces less variability in the estimation process than does a 

large one.

5.4 Summary of the Results of the Simulations

1. The means calculated from the 100 simulation attempts were very 

close to the true underlying probability matrix. However the 

distributions of the estimates are slightly skewed; negatively skewed 

for estimates of pis and pas and positively skewed for the repetition 

rate. This must be taken into account when estimating from real 

data; it is possible to obtain for example an exaggerated high 

estimate for pi2 and consequently (due to the large negative 

correlation) a very low estimate for paa. The same is valid to an 

even much larger extent when estimating ps>3 and p33.

2. Removing the variability of the expansion rate and reducing the 

time period had little effect on the sampling distribution of the 

estimates. The estimates of the means are not different between the
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3 sets especially if they are rounded to two decimal places. An 

improvement however exists in the case of the skewness coefficient 

for the distributions of para and paa. They are less skewed under 

fixed growth and also in the case of set 3 when a smaller period is 

used for the estimation.

3. The variances and standard deviations of the estimates are not 

very high. Fixing growth does not appear to improve the variability 

among the estimates and the variability among the estimates for set 3 

(the small time period) is slightly higher than for the first two 

set s.

4. As expected the correlations between pia and p2.2 and between P23 

and P33 are very highly negative. It is therefore not possible to 

obtain a ’bad* estimate for piz and a good one for paa. This must be 

borne in mind when estimating from real data. It is encouraging, 

however, that the correlation between P22 and p23 is not very high. 

Thus a ’bad' estimate (exceptionally high or low) of paa will not 

have a large effect on the estimate of pas and consequently p33.

5. In terms of predicting grade sizes, the three sets produced on 

average, values that were not dissimilar. There is hardly any 

difference between the predicted grade sizes at T=1 and T=10. The 

difference however is more marked as time goes by with set 1 

producing slightly larger grade sizes.

6. The average prediction errors are large and increase greatly 

with time. There is a slight reduction in the prediction errors when
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the variability in growth is removed (set 2). This is expected 

because a parameter (a) is no longer subject to random variation and 

hence one source of error has been eliminated. What is unexpected is 

a similar reduction when a smaller sample is used for the estimation 

(set 3). In order to justify this there is a need to identify the 

sources of variation in the model. This requires more simulations 

using different sample sizes, different growth variation and perhaps 

comparing with systems in which there is no growth. This point is 

taken up further in Chapter VI.
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CHAPTER UI

CONCLUSIQMS AMD SUGGESTIONS 
FOR FUTURE RE3EARCH

6.1 Conclusions

This research has been a first step in the stochastic modelling of 

the Sudanese educational system. The educational statistics of the 

late 70's onwards present a picture of an expanding system with a 

growth rate that is unable to match the growing demand for school 

places. This high demand is a consequence of a rise in the 

population and an increase in. urbanization. The result is that large 

numbers of potential students are excluded from the educational 

process. In particular, statistically speaking, it also leads to 

bottlenecks between one level of education and the next.

Of interest in the present context is the bottleneck between 

secondary and higher education. The demand for higher education is 

greater than its capacity limits and the excess of demand over supply 

results in an ’overspill’ of eligible students. Of this ’overspill’ 

a proportion leave the system and a proportion decide to remain and 

increase the number of applicants in the following year. The result 

is a steady fa.ll in the proportion of eligible students who are 

admitted each year into higher education.

In Chapter III two bottleneck models suitable for modelling the 

movement of students in secondary and higher education were 

developed. In both models the flow of students into higher education
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is not determined by the numbers who are eligible and want to proceed 

into higher education but by the number of vacancies. The first 

model considers the case when a capacity constraint exists in the 

first grade of a particular higher education .institute. The second 

model assumes that it is the total size of higher education which is 

fixed. It succeeded in generalizing previous bottleneck models by 

allowing for expansion and contraction of the capacity constraints . 

As such it is a step further in the theoretical study of bottleneck 

systems. However, validating the models by data fitting was not 

possible because of the lack of sufficiently detailed data.

The limitations imposed by unavailable flow rates and the need for 

t-he.ir estimation is dealt with in chapter IV. The original procedure 

used for estimating transition probabilities, (see Lee, Judge and 

Zel.lner (1970) and Rosenqvist( 1986 )) was based on systems that 

remained constant in size. In this application it was adjusted to 

allow for expanding systems as was the case in the Sudan. An 

estimate of the rate of expansion was obtained assuming linear 

growth. The data was then rescaled by the estimate before the 

original quadratic programming technique for estimating transition 

probabilities from stock data was used.

Estimates were obtained of the transition probabilities of students 

in secondary schools. However, because of many errors in the data, 

estimates could only be obtained from a limited number of data sets 

in particular provinces. In the majority of cases the f.it of the 

model was good and validating the predictions of the model with newly 

published data is highly successful. It is thus possible to conclude
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that the movements of students in secondary education can be 

adequately described by a Markov model.

Due to the limited data available, it is not possible to make

generalizations about the wastage, repetition and promotion rates of 

secondary students for the whole country. There is also insufficient 

evidence of differences in the transition rates between different 

provinces and/or between sexes.

In Chapter V an attempt was made through simulations to assess the 

effectiveness of the QP technique adjusted for expanding systems. 

The results were promising with estimates coming close to the true 

values. Prediction errors,however, were large showing that

predictions over a large period are likely to be poor and should be 

restricted to only about 5 years ahead. There was slight evidence 

that the technique was effective in situations where the expansion 

rate varies widely from year to year. However, more work needs to be

done in order to verify the source of variation in the model.

6•2 Suggestions for future research

Future research can take a number of directions. In the theoretical 

study of bottleneck systems, the models can be generalized for more 

wider applications in manpower systems which are not necessarily 

hierarchial. It would be interesting to incorporate a feed-back 

mechanism which models changes in the behaviour of the * overspill' 

promotions as time passes. Also bottleneck systems can be modelled 

in continuous rather than discrete time; this would be valid in
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applications to manpower rather than educational systems where 

changes occur at fixed points in time*

The work carried out in chapters IV and V is only a first .step in the 

estimation of transition rates from stock data of expanding systems. 

More work can be done in validating the procedure, identifying the 

sources of variation in the model and considering the effectiveness 

of the procedure under different assumptions.

For the development of a full model of the Sudanese educational 

system that can be used for planning purposes, it would be necessary 

to have more data and preferably flow data. Figure A on page 109 is 

a flow chart of the entire educational system with arrows denoting 

the possible movement of students. Students can also at any time 

move to the outside world (not shown in the figure). Bottlenecks 

exist at all the levels with the exception of the external students. 

Secondary government school students who are unable to obtain a 

higher education place (the 'overspill') and who wish to retake the 

Secondary School Certificate must move to other secondary schools or 

become external students.

Of interest would be the total numbers in each of the boxes. These 

would include repeaters and those who have been promoted to fill 

either new vacancies or those arising from wastage. The total number 

of external students would include those from secondary schools who 

were unable to gain entrance to higher education and who decide to 

re-take the examination. It will also include those who in the 

previous year were external students but once again did not gain
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entrance to higher eduction and decided to re-take the examination.

Another point of interest would be the amount of wastage from the 

system. Total wastage would be made up of:

-The overspill of students from various kinds of secondary 

education including external students who were unable to obtain a 

place in higher education.

-The overspill of students from intermediate schools who were 

unable to obtain a place in any kind of secondary school.

-The overspill of students from primary schools who were unable to 

obtain a place in intermediate schools.

-Natural wastage from all of the boxes in the flow chart. This 

includes that wastage occurring at the last grade of each box as well 

as within the boxes.

In order to fit such a model more data needs to be collected on the 

numbers that apply to higher education, their priorities, as well as 

the numbers of repeaters among external students. The present 

research has shown that a simple Markov model can adequately describe 

the movement of students within the boxes. It has also shown that 

within the boxes reasonable estimates of transition rates can be 

obtained from stock data. What is lacking is more data on the flows 

between the boxes.
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7 SPSS/PC+

PROBABILITY OF REMAINING IN GRADE 2
int Midpoint
0 -.0075 .
0 .0000 .
0 .0075 .
0 .0150 .
0 .0225 .
0 .0300 .
1 .0375 **** •
2 .0450 ***** j ****
4 .0525 ******•*************
3 .0600 ********•******
2 .0675 *********;
3 .0750 ***********;***
3 .0825 *************;*
2 .0900 **********
5 .0975 *************************
5 .1050 ******************•******
3 .1125 ***************
2 .1200 **********
3 .1275 ***************
4 .1350 ********************
6 .1425 ***********************;******
3 .1500 ***************
6 .1575 ***********************;******
6 .1650 **********************;*******
8 .1725 **********************;*****************
2 .1800 **********

l 3 .1875 ***************
2 .1950 **********
7 .2025 ****************;******************
3 .2100 **************;
3 .2175 ************;**
0 .2250 .
2 .2325 *********;
1 .2400 *****
1 .2475 *****
0 .2550 .
1 .2625 ***. *
1 .2700 *** • *
0 .2775 .
0 .2850 .
1 .2925 * ; ***
0 .3000 .
o .3075 .
1 .3150 . ****
1 .3225 *****

! 0 .3300
0 .3375
0 .3450
0 .3525

I o .3600
0 .3675

.1___ +  I____+  I
2 4 6
Histogram Frequency

149
175
014
241
,322

Std Err 
Std Dev 
S E Kurt 
Range 
Sum

.006

.062

.478

.285
14.897

Median
Variance
Skewness
Minimum

149
004
372
,037

6/12/90

l/r2-

.1
10

!ases 100 Missing Cases 0



SPSS/PC+

PROBABILITY OF MOVING FROM GRADE 2 TO 3
nt Midpoint
0 .5275 1
0 .5350 1
1 .5425 |*****
0 .5500 1
1 .5575 |*****
0 .5650 1
0 .5725 1
0 .5800 1
0 .5875 1
0 .5950 1
0 .6025 1.
0 .6100 1.
1 .6175 |;****
0 .6250 1.
0 .6325 1 .
1 .6400 |*:***
2 .6475 |**.*******
0 .6550 I *.
0 .6625 1
1 .6700 |****.
0 .6775 1
2 .6850 |*******•**
3 .6925 |********.******
0 .7000 1
1 .7075 j *****
2 .7150 |**********
0 .7225 1
4 .7300 |********************
2 .7375 |**********
1 .7450 |*****
3 .7525 |***************
7 .7600 |*********************.*************
6 .7675 |*********************.********
2 .7750 |**********
4 .7825 j ********************
6 .7900 |******************************
7 .7975 |*********************.*************
3 .8050 |***************
5 .8125 |*******************.*****
5 .8200 |*************************
6 .8275 |******************************
8 .8350 |***************.************************
4 .8425 |**************.*****
4 .8500 |********************
1 .8575 |*****
2 .8650 |*********•
3 .8725 |********.******
1 .8800 |*****
1 .8875 |***** #
0 .8950 1
0 .9025 1

,1____+  I___ +  I
2 4 6
Histogram Frequency

1

.782 Std Err .007 Median .794

.832 Std Dev .066 Variance .004
Is 2.065 S E Kurt .478 Skewness -1.239
iw .241 Range .344 Minimum .541
n .885 Sum 78.196

;ases 100 Missing Cases

6/12/90

Hj V3



.3 SPSS/PC+ 6/12/90

PROBABILITY OF REMAINING IN GRADE 3
int Midpoint
0 .01 1 . „
0 .02 1 u

0 .03 1
0 .04 1
2 .05 |*******.**
0 .06 1
2 .07 |********** #
3 .08 |************.**
7 .09 |**************.********************
3 .10 |***************
8 .11 |****************************************
6 .12 |********************.*********
4 . 13 |********************
7 .14 |***********************.***********
5 .15 |*************************
9 . 16 |*************************.*******************
4 .17 |********************
3 .18 |***************
6 .19 |************************.*****
8 .20 |****************************************
4 .21 |********************
3 .22 |***************
1 .23 |*****
3 .24 |***************
0 .25 1
0 .26 1
1 .27 )*****
3 .28 |***************
1 .29 |*****
0 .30 1
1 .31 |****.
0 .32 1
1 .33 |**:**
2 .34 |*.********
0 .35 1 .
0 .36 1 .
1 .37 | .****
0 .38 1.
0 .39 1
0 .40 1
0 .41 1
0 .42 I
0 .43 1
1 .44 | *****
0 .45 1
1 .46 |*****
0 .47 I
0 .48 1
0 .49 1
0 .50 1
0 .51 1

I----+  I ----+  I___ +  I____+  I___ +  I
0 2 4 6 8 10

Histogram Frequency

\»1



6/ i i

j j  O T  

1

0
o

:08A8 ILI TV 
to i o o  i n t

? A m  
7 5 A 
7 59 
7 6  ̂
"56 9 
7 7 A 
7 7 9 
? 8 A 
7 89
7 9 A 
799
8 OA 
809 
8 1 A 
8 1 9 
8 2 A 
829 
83 A 
839 
8 A A 
3 A 9
8 5 A 
359
36 A 
S‘ 0 o
3 7 A
37 9 
33A 
339 
3 9 A 
3 99
9 0 A 
9 0 9 
9 1 a 
9 1 9 
9 2 A 
9 2 9 
93 A 
93 9 
9 A A 
9 A 9 
95 A 
9 5 9 
9 6 A 
969 
9 7 A 
3 79 
9 8 A 
939 
9 9 A 
•3 9 9

* * h£ FI

* * * *

■ * * 
• *

i ****** *
j

! * * .
' * * • * * * %
! * % ; * %
: * *
!

* * * % • * *

; * % * * ;
. * * % % *
: ***** • **** 
******* 
* * * * *

■ * * * * * *
' * * * * *  
f * * * * *
* * * * *
* *
* * * * * *

• * * * * * *
• *  *
: * *
| * * * * *
I * * * * * *
| * * * * *  
i *  *
,*****;
> * * * * * •
I * * * * *  •
■ ***.*

* * * * *

* * * * * *  
* * * *

* *
* ** * * *

* *
* * * • *
* * * • *
* *
* * * * * * *
* * • * * * * * * * * * * * * * * * * * * * * * * * * * * *  

I.. I. ..I
A 8 12
Hi stoc?rs<n p r a o u a o c v

. I
20

,912 
. 0 0 0 
. 55? 
. 2A 1 
. 0 0 0

: td Err 
; t d 0 e v
; E '< u r - 
! 3 n O 3 
. I JIT! 9 1

0 0 7
0 8 7 
(, 7 9 
25 i
1 5 0

\ag

1 3  0
Van" anc> 
S •< a w n e s ■
to i i’1 "i rr> u m

915 
00A 
A 9 5 
7 A 9

/ 9 0



3/11/90

U n r
■ROSASI L IT Y 
M1 COO"' p t

0 1 7 5 
0 i 0 0 
0025 
0 0 5 0 
0 125 
0 20 0 
0275 
0 3 5 0 
04 2 5 
0 5 0 0 
0575 
0 6 5 0 
0725 
0800 
0875
0 9 5 0 
1025
1 100 
1175 
1 250 
13 25
i L. 0 0 
1475 
155 0
1 6 25
17 00 
’775
18 5 0 
■> 9 2 5
2 0 0 0 
207 5 
2 150 
'y o
2 3 0 0
23 7 5
24 50
25 25 
2 6 0 0 
2 6 7 5
27 50
28 2 5 
2900
2 9 7 5
3 05 0 
3 125 
3 200 
3 27 5 
3 3 50 
34 25 
3 500 
3 57 5

OF REMAINING IN GRADE 2
h(j P°L

\ * * * * *
******;* * *
• ********•***********
*********•***************
********** • ****
**********
*************•*
■ *************** ; **************
| **************** • *********************** 
***************
{ ***************
***************

j * * * * * * * * * * * * * * *
, ********************* * *** 
********************
********************
********************

j

***************
: ****************** • *
i * * * * * * * * * * * * * * * * *  • * * * * * * * * * * * * * * * * *  
* * * * * * * * * * * * * * *
* * * * *

i * * * * * * * * * *
.* *** *

■ * * * * * * * * *  • * * * * * * * * * *
********;******
; ****** • * * *

*** . ******

* ; *************
• * * * *

* * * *



PROBABILITY Qp MOVING ~ROM GRADE. 2 ”0 3
n r Mid o oint
1 .55 7 5 * * * * *
■» .5650 t * * * * *
•) .57 25 i
1 .5800 1 ; * * * *
0 .587 5 ! ,
0 . 5950 ,
o .6025 I
0 .6100 i
0 .6175 i
0 ,6250 .
0 .6325 .
1 . 6400 j * * • * *
0 .647 5 I
1 .6550 ]***•*
n .6625 i
2 .6 7 00 **********
1 .67 75 * * * * *
2 , 6850 * * * * * * ■ * * *

.6925 , ******** * *

.7000 *****
4 ,7 0 7 5 • ********* ; **********
3 .7150 ■ ***************
o .7 225 .
7 .7 3 00 • **********
3 . 7 3 7 5 *************•*
3 .7 450 ************** •
0 .7 525 ,
3 , 7 6 0 0 ***************
1 .7 67 5 •*****
4 .7 7 50 ***************** • * *

. 7 825 ,***************
4 ,7900 i ***************** • **
oL .7 2 7 5 |**********
r\ , 8050 i ********* *
0 .8125 :*****************•************
5 .8200 I ***************** • *******
3 .8275 1***************
5 . 8350 **************** < ********
3 .8425 | *************** 4
2 . 8500 1**********
3 . 357 5 • ************* ; *
8 .8650 ************•*****************
0 .3725
t .3800 i * * * * *
•j. .387 5 ********* • **********

. 8 9 5 0 ******** • ******
U . 9 0 2 5 ******* *t ************

.9100 ■ ****** • ***

. 9 1 7 5 ***** ; ****
1 .9250 * * * * •

.9325 '****;

F ^ _ F l

1 0
Hi" s r oc r  a m r  a o u ?ncv

n s 
;ew 
im

7 9 8 
863 
2 3 5 
24 1 
93 5

Std £ r r' 
S t d  D e  v 
S £ K (j r x 
R a n 7 e 
'3 u m

0 0 8 
0 8 2 
4 78 
3 7 2 
804

Median 
Va>M anc- 
S kewnes: 
m i n i m u m

8 1 2 
0 0 7 
697 
5 6 6

: a s e s 100 m i 5 3 i n o C a s 6 s 0
\ ^ 6



P R O B A B I L I T Y
nt Mi dd oinx
o - , 04
o - .03
o - . 0 2
0 - . 0 1
4 . 0 0
0 . 0 1
9 . 0 2
5 .03
3 . 04
9 . 05
9 . 06
3 .07
5 .08
5 . 0 9
s , 1 0

, 1 1
5 i 9
4 . 1 3
$ . 14
u . 1 5
2 . 1 6
3 . 1 ?
5 . i 8
4 . 1 9
9 . 2 0
< . 2 1
9 . 2 2
3 . 2 3
i . 24
4 .25
3 .26

.27
2 .28
i . 2 9
0 .30

. 3 1

. 3 2 

. 3 3
n
a

. 3 4 

. 3 5
ij . 3 8
n .3?

. 3 8 

.39
0 . 4 0
i . 4 1
0 . 4 2
i .43
o .44
o . 4 5

. 4 6

.15 1 

. 0 0 0

.155
ew . 24 1
m .426

SPSS/PC+

R E M AININ G IN G P AO E

6/ 1 ■

h * .
~ i h

F L

(*****;**************
I
' %%%%%%% \ %% 
!********.*******#********
********** ; * * * *
* * * * * * * * * *  ,
!**********

* * * * * * * * * * * * * * \
• *************** \ ********* 
;****************: ******** 
< ********* ******** \ ******* 
****************** \ *
I •. * * * * *
■ * * * * * * * * * * * * * *  * * * * * *  ,
* ********* * * * * * * * * * *
! * * * * ******** ******** 
i * * * * * * * * * *

* * * * ****** * * * * * 
*************** 
* * * * * * * * * * * * * * * * * *  • * 
l * * * * * * * * * *
. * * * * *
; *************** . 
i * * * * * * * * * * * * * *  j
* * * * *
*********** ; ******** 
* * * * * * * * * *  ; * * * *

I * * * * * * * *  • * * * * * *
* * * * * * *  ; * *
* * * * *
1
j *  * .  *  *  \
* * * • *
'**•**

****** * * *

* * * *

* * * * *

*****

2 a. 6
Hi st0 9 ram f r o c: u e n c v

Std Err . 0 0 9 Medi an
Std Dev .0 9 4  Variance
L t K u r x .478 S k e w n es s
Ran1o e . 4 2 6  i n i m  u m
S u m 1 s . 0 6 4

. I
1 0

1 3 9 
009
63 5 
000

100 m i 5si no Cases

/90



SPSS/PC+ 8/i1/90

PROBABILITY OF MOVING FRO** GRADE i TO 2
Midooi nt

.6525 i

. 6600 i

.6675 1

.6750 !

.6825 ! **

.6900 i

.6975 J

.7050 i

.7125 i **

.7200 j

.7275 i
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,50 * \ jfĈCXCSfC#**#
.60 i
, 51 **#.*
, 62 i
155 i x x x x * . ,
.64 •
,55 i**###
. 66 .
.6 ? i
.53 i *#****##**
,59 i **##**#**#***• ***#*.*#**#*
,70 : **********
,71 i ***.#**#*#*
,72 >*****
,75 'MX *  xx. MX xx*.
, 74 , ******************* . *****
,75 ■ ********************,
,75 **********
,77 *********************; ***
,70 ********************
,79 ********************** ********
,30 : ********************* • ******************
5 1 * * * * * * * * * * * * * * * * * * * *  • ****
, 02 ******************* • *****
,00 . ***************
, 04 ***************** . *****************
,05 ******* ******** ,
,00 ; * * * * * * * * * *
, 07 ; ************. **********************
,33 .**********
.09 :*********•
,on • * * * * * * * * • *
.91 i
,92 ***************
.93 
.94 i 
.95 ' .
,95 <**•**
.9? * ,
.98 ! .
.99 ! .

1.00 i.

/~gu,re S3

I.... + ....I.... + ....I.... + ....I.... + ....I.... + ....I
0 2 4 5 8 10

H i stoaram f r - e a ue nov

.778 'Std err .009 Meoian .795

.845 Std Dev .039 Variance .008

.42i S E Kurt .478 Skewness -.787

. 241 C'ancie , - 16 Mi ni mum . 545

.963 Sum 7 7.848

100 Missina Cases



1 9 SPSS/PC+

PROBABILITY OP REMAINING IN GRADS. 3
jnt dpoint

0 - ,03 .
n - ,02 1 ,
0 -.01 i
2 - .00 **.**. • * * * * *
2 . 01 **** • *****
0 . 02
i .03 *****

.04 *****
9 .05 ; ********. ******
5 ,06 I ********* « *****
9 .0 ? i **********
9 ,03 i ************ ; **
5 . 09 : *************; ***********
A . 10 i ************** • *****
5 . 11 I *************** ; *********
5 , 12 ****************: ********
5 . 1? *****************.*******
3 . ik I ***************
1 . i5 *****
7 . 16 ! ******************;****************
4 . 17 1 ******************* ;
9 . 18 ******************.**************************
2 , 19 **********
4 . 20 • ******************. *
1 .91 *****
2 . 22 **********
3 . 23 1 ***************
3 .24 *************** _
i .25 : *****
9 . 26 **********
1 . 2 1 *****

.28 *****

. 29 i*********.*****

. 3 0 ********•*
o , 3 i
n ,32 f
0 . 3 3 ,
1 . 34 *****
1 .35 ! ***;*
o .36 1
1 ,37 !**•**
1 . 33 *****
1 0 Q 1 * * * * *
1 .40 •*«***
1 .41 : • ****
1 .42 ! ; ****
0 .43 ,
o .44 i ,
9 .45 i;*********
n .46
o ,4 7

*, / * ■> / q n

, I I .... +■.... I I i
2 4 8 10
Hi stoorafp **■ ̂ ecuencv

lU/T



Cofflf*ut‘-€'3T Pr ovr aiuiue



0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

n 
o 

o

APPENDIX D

PROGRAM SIMUL
C

C THIS PROGRAM SIMULATES THE RANDOM BEHAVIOUR OF A 3-GRADE
C SYSTEM IN WHICH THE TOTAL SIZE (DENOTED BELOW BY 0<T))IS
C ALSO EXPANDING AT A RANDOM RATE.

THE RANDOM NUMBER GENERATOR USED IS RN55 WHICH IS A DOUBLE 
PRECISION FUNCTION THAT RETURNS A RANDOM NUMBER X FROM THE 
UNIFORM DISTRIBUTION (0,1).

C THE PROGRAM PRINTS THE NUMBER OF INDIVIDUALS IN EACH GRADE
C AT TIME T,THE TOTAL SIZE OF THE SYSTEM AND THE RANDOM RATE
C OF EXPANSION. IT ALSO PRINTS THE PROPORTION OF INDIVIDUALS
C IN EACH GRADE.
C

IMPLICIT DOUBLE PRECISION (A-H),(0-Z)
INTEGER N 
INTEGER IFAIL
DIMENSION X<23 ),Y(23 ),RESULT!20 )
DIMENSION 0(0:50 ) ,U(50>,SUMN(2:3,0:50>,H<50>,R(9000 ) 
DIMENSION M<2:3,9000 ),S(2:3,9000 )
DOUBLE PRECISION RN55,FAC1,FAC2 
ISEED=INT(SECNDS(0.0))
CALL RNSD(ISEED)

C RN55 IS INITIALIZED BY THIS CALL TO THE SUBROUTINE RNSD.
READ *,0(0),SUMN(2,0 >,SUMN(3,0 >

C THESE ARE RESPECTIVELY THE INITIAL SIZES OF GRADES 1,2,3.
READ *,P12,P22,P23,P33 

C THESE ARE THE TRANSITION PROBABILITIES OF MOVEMENTS BETWEEN
C THE GRADES. NO REPETITION IS ASSUMED IN GRADE 1.

READ *,FAC1,FAC2 
C THE SYSTEM IS ASSUMED TO EXPAND RANDOMLY BETWEEN A GIVEN
C RANGE SAY ALPHA 1 TO ALPHA 2. FAC1 = ALPHA 2 - ALPHA 1 AND
C FAC2 = ALPHA 1.

Wl= 1.0 - P12
W2= 1.0 ~ P22 - P23
W3= 1.0 - P33
U(0>= 0(0) + SUMN (2,0) + 3UMN( 3,0)
READ *,T 
READ *,NLOOP

C IN THE PROCEDURE BELOW S(R,I) TAKES A VALUE OF 1 WHEN AN
C INDIVIDUAL KNOWN TO BE IN GRADE R-l AT TIME T-l (R=2,3>
C MOVES TO GRADE R AT TIME T.
C M(R,I ) TAKES A VALUE OF 1 WHEN AN INDIVIDUAL KNOWN TO BE
C IN GRADE R AT TIME T-l REMAINS IN GRADE R AT TIME T.

DO 200 L00P=1, NLOOP’
WRITE(6,201 )LOOP 

201 FORMAT!3X,'THIS IS SIMULATION NUMBER ’,13)
DO 100 J=1,T

SUMN(2,J )=0 
SUMN(3,J )=0 
DO 50 1 = 1,0 (J-l )

R(I )=RN55( )
IF (R(I ).LT.P12 ) THEN 
S( 2,1 >=1
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0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143

IF AIL=0
CALL G02CBF(11,X,Y,RESULT,IFAIL)
WRITE(6 ,33 )RESULT( 6 )

33 FORMAT!3X,’ESTIMATE OF 1+A USING LEAST SQUARES* ’F7.5) 
OPEN(UNIT=25,FILE=’LP.DAT’,STATUS*'NEW’,
4CARRIAGECONTROL*’LIST’ )
WR1TE(UNIT=25>FMT=S2 )

2 FORMAT( ’SLPMODELS S'IMUL DAT; ’ )
WRITE(UN1T=25,FMT=3)

3 FORMAT(’SINDICESS I,J,T;’ )
WRITE(UN1T=25,FMT=4)

4 FORMAT!’SDATA'IDSS Y( 1: J:3,1 :T: 12 ); ’ )
WR1TE(UN1T=25,FMT=6 )

6 FORMAT!’SVARIDSS Z(1:J:3,2:T:12) : REALNONNEG,’ )
WRITE!UNIT=:25, FMT*7 )

7 FORMAT!9X,*P<1:I:3,1:J:3> : REALNONNEG;’)
WRITE!UNIT=25,FMT=8)

8 FORMAT!’SROWSS FUNC: -SIGMA!J,1,3, 
6SIGttA!T,2,12,2*Y(J}T)*Z(J,T>)) SMINS,’ >
WRITE!UNIT=25,FMT=9 )1.0/RESULT! 6 )

9 FORMAT!5X,’ZD!1:J:3,2:T:12 ) : Z!J,T)SEQS 
2SIGMA! 1,1, 3,Y( I ,T-1 )*’,F7.4, ’*PU,J)), ’ )
WRITE!UNIT=25,FMT=12 )

12 FORMAT!5X,’PS!1:1:3) : SIGMA!J,1,3,P(I,J )) SLEQS 1,’) 
WRITE!UNIT=25,FMT=23 )

23 FORMAT!5X,'ND<2:1:3) : P!1,1-1 ) SEQS 0,’ )
WRITE!UNIT=25,FMT=14)

14 FORMAT!5X,’EX!3:1:3) : P!1,1-2 ) SEQS 0,’ )
WRITE!UNIT=25,FMT=15 )

15 FORMAT!5X,’RP!1:1:1 ) = P!I,I ) SEQS 0,’ )
WRITE!UNIT=25,FMT=16 )

16 FORMAT!5X,’JM!1:I:1) : P!1,1+2 ) SEQS 0;’ )
WRITE!UNIT=25,FMT=17 )

17 FORMAT! ’SEOMS’ )
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0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168

18

19

21

24

25

27

28

31

32 

200

WRITE!UNIT=25,FMT=18)
FORMAT(’SLPOATAS SIMOL DAT;’ ) 
WRITE(UNIT=25,FMT=19 HOCJ>/U<J>,J«0,8 >
FORMAT( 3X,’Y!1,T) + \F5.4,' + \F5.4,’ +',F5.4,' 
3F5.4,' +’,F5.4,’ + \F5.4/ +’,F5,4,’ + \F5.4,’ 
WRITE(UNIT-25,FMT=21)<0(J)/U(J),J=9,11)
FORMAT(1OK,’+',F5.4,’ + ,,F5.4,' + ‘,F5.4,V> 
WRITE<UNIT=25,FMT=24 )!SUMN!2, J)/U(J),J=0,8) 
FORMAT( 3X, ’Y(2,T ) + ’.F5.4,’ +',F5.4,’ + ,,F5.4,< 
6F5.4, * +\F5.4,’ + ,,F5.4,’ + \F5.4, » + ’,F5.4,' 
WRITE(UNIT=25,FMT=25 ) (SUMN(2,J >/U(J ),J=9,11 ) 
FORMAT( 10X, ’ + ’ ,F5.4S ’ +',F5.4,' + »,F5.4,\,>
WR I TE (UN I T=25, FMT=27 ) (SUMN ( 3, J ) / U (J ), > 0 , 8 
FORMAT! 3X, 'Y(3,T> + ,,FS.4,* +»,F5.4,' + \F5.4,' 
2F5.4,’ + \F5.4,» + \F5.4,’ + \F5.4,’ + ’^5.4,' 
WR I TE ! UN I T=25, FMT=28 XSUMN! 3, J )/U( J ), J=9 ,11 ) 
FORMAT! 10X,' + \F5.4,’ +»,F5.4,' +,,F5.4,,;t) 
WRITE!UNIT=25,FMTJ=31 )
FORMAT!’SEODS1)
WRITE!UNIT=25,FMT=32)
FORMAT!*"PICTURE”,"A”,”P”,/' )
CLOSE!UNIT=25,STATUS=’KEEP' )
CONTINUE 
STOP 
END

+ *,
+ ' ,F5.4 )

+ \
+ ’ ,F5.4 >

+ \F5.4 )
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0015
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0044
0045
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0048
0049
0050
0051
0052

PROGRAM PREDICT
C
C THIS PROGRAM CALCULATES THE EXPECTED STRUCTURE OF A
C 3-GRADE SYSTEM WHICH IS EXPANDING. ESTIMATES OF THE
C EXPANSION RATE AND THE TRANSITION PROBABILITIES MUST
C BE READ INTO THE PROCRAM. THE PROGRAM ALSO GIVES FOR
C EACH TIME PERIOD, THE VARIANCES AND COVARIANCES OF THE
C PREDICTIONS. COVIJ(T) DENOTES THE COVARIANCE BETWEEN
C THE PREDICTED VALUES N(I,T> and N(J,T).
C

REAL Nl, N2, N3
DIMENSION N1(0:28,100 ),N2{0:28,100 ), N3 (0:28,100 ),P12(100 ) 
DIMENSION P22(100 ),P23( 100 ),P33( 100),A(100 ),U(0:28,100 ) 
DIMENSION COV11<0:28,100 ),COV33(0:28,100 ),C0V12<0:28,100 ) 
DIMENSION 0015
COV22<0:28,100 ),COV23(0:28,100 ),W1(100),W2<100 ),W3(100 ) 
DIMENSION
SN1(28),SN2(28 ),SN3(28 >,SU(28 ),SCOV33(28 ),C0V13(0:28,100 ) 
DIMENSION
SCOV11(28 >,SCOV12(28 ),SCOV13(28 ),SCOV22(28 ),SCOV23(28 )
READ *, N1(0,1),N2(0,1 ),N3<0,1 )
READ *,TS 
DO 6 J=1,TS

Nl(0,J )=N1(0,1>
N2(0,J )=N2(0,1 )
N3<0, J )=N3(0,1 )
□ (0,J )=N1(0,J ) + N2< 0,J ) + N3(0,J )
COV11(0,J)=0 
COV12(0,J )=0 
COV13C0,J )=0 
COV22<0,J>=0 
COV23(0,J )=0 
COV33(0,J )=0 

6 CONTINUE
DO 66 J=1,TS

READ *,P12< J >,P22(J ) ,P23(J ),P33(J),A(J)
66 CONTINUE

DO 88 L=1,28,9 
SN1CL)=0 
SN2(L )-0 
SN3(L )=0 
SU< L )=0 
SCOV11(L )=Q 
SCOV12CL )=0 
SCOV13(L)=0 
SCOV22(L )=0 
SCOV23(L)=0 
SCOV33(L>=0 
DO 77 J=1,TS

W1(J>=1.0 - P12(J )
W2(J)=1.0 - P22(J ) - P23(J)
W3(J )=1.0 - P33(J )
DO 50 1=1,2,88
U(I,J )=A(J )*U(1-1,J ) + U(I-1,J)
N3( I, J )=P33< J )*N3<I~1,J ) + P23< J )*N2< 1-1, J )
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0080
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0097
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0100
0101
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N2(I,J )=P22(J )*N2(1-1,J ) + P12(J )*N1(1-1,J )
N1(I,J )=U(I,J )-N2<I,J )~N3(I, J )

COV1K I, J )=C0V11( I -1, - J )*W1< J)*W1( J >+COV12(I-l, J )*W1( J >*W2< J >*2.0 + 
2COV13< 1-1, J )*W1 (J )*W3(J )*2.0 + C0V22( 1-1, J )*W2( J )*W2( J ) + 
7COV23CI — 1,J )*2.0*W3(J )*W2(J ) +
3COV33<1-1,J )*W3( J )*W3(J ) + <W1<J)-Wl(J>*W1(J )>*N1<1-1,J ) + 
4(W2(J )~W2(J)*W2(J)>*N2(1-1,J )+(W3(J )-W3(J >*W3(J > )*N3(I-1,J ) 

COV12( I, J )s=COVl 1 (1-1,J )*W1(J )*P12(J )COV12( 1-1, J >*W1( J )*P22( J ) + 
5C0V12( I-1,J)*W2(J)*P12(J) + COV22< 1-1, J >*W2< J)*P22( J ) + 
2COV13(I-l,J)*W3(J)*P12<J) + COV23(I—1,J )*W3(J )*P22(J ) - 
6W1<J)*P12(J)*N1(I~1,J> - W2(J )*P22(J )*N2(1-1,J >

COV13(I,J )*COV12(1-1,J>*W1(J )*P23<J )COV13(1-1,J >*W1(J >*P33<J ) + 
7COV22(I-l,J)*W2(J)*P23(J> + C0V23(1-1, J )*W2(J >*P33(J ) + 
2COV23<1-1,J )*W3( J )*P23(J ) + COV3311-1,J >*W3<J >*P33(J ) - 
9W2(J )*P23(J )*N2(1-1,J ) - W3(J )*P33(J )*N3(1-1,J )

COV22( I, J >=C0'V11 (1-1, J >*P12< J >*P12( J )+COV12< 1-1, J )*P12(J >*P22(J )*2.0 
9+COV22(1-1,J )*P22(J )*P22(J )+(P12(J )-P12(J )*P12(J> )*N1(1-1,J ) +

1(P22(J )-P22(J)*P22(J))*N2(1-1,J )
COV23(1, J )=CQV12(1-1,J >*P12(J >*P23(J )
+COV13< 1-1, J)*P12( J >*P33( J ) +
2COV22(1-1,J )*P22(J )*P23(J ) + COV23(1-1,J )*P22<J >*P33(J ) - 
3P22(J )*P23(J )*N2<1-1,J )
C0V33(I,J )=C0V22(I-l.J>*P23(J )*P23(J )
+2.0*COV23(I—1,J)*P33<J )*P23(J )
4+ COV33(1-1,J )*P33(J )*P33(J ) +
P33< J )-P33<J )*P33( J ) )*N3(1*1,J )+
5(P23( J )-P23(J )*P23(J))*N2(I-1,J)

50 CONTINUE
SN1(L >=SN1(L ) + N1(L,J >
SN2(L)=SN2(L) + N2(L,J)
SN3(L )-SN3(L ) + N3(L,J>
SU< L )=SU(L > + U(L,J )
SCOV11 (L )=SC0V 11 (L ) + COVIKL, J )
SCOV12(L )=SCOV12{L ) + COV12(L,J)
SCOV 13(L )®SCOV 13(L ) + COV13(L,J>
SCOV22(L )=SCOV22< L ) + COV22(L,J)
SCOV23(L )=SC0V23(L ) + COV23(L,J>
SCOV33(L )=SCOV33(L) + COV33(L,J)

77 CONTINUE
PRINT *,'T=',L
PRINT *,SC0V11(L )/TS,SC0V12(L )/TS,SCOV13(L )/TS 
PRINT V* ’,SCOV22(L)/TS,3COV23(L)/TS
PRINT *,' ,SC0V33(L)/TS

88 CONTINUE
WRITE< 6,211 )

211 FORMAT (1HO,T3,’GRADES’ )
WRITE (6,212)1

212 FORMAT (1H+.T18,’T=’12 )
WRITE (6,213) 10

213 FORMAT (1H+,T30,’T=’12)
WRITE(6,214 ) 19

214 FORMAT (1H+,T42,’T=’12 )
WRITE (6,215) 28

215 FORMAT (1H+, T54,’T=’12)
WRITE(6,216 ) 1,SN1(1)/TS,SNl(10)/TS,SN1(19)/TS,SNl(28)/TS

216 FORMAT(1H0,15,T13,4F12.2)
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0106 WRITE(6,217 >2,SN2(1 )/TS,SN2(10 >/TS,SN2(19 >/TS,SN2(28 )/TS
0107 217 FORMAT(1H ,T5,T13,4F12.2)
0108 WR1TEC 6,217 )3,SN3<1>/TS,SN3(10 )/TSsSN3(19)/TS,SN3(28)/TS
0109 WRITE(6,218 )
0110 218 FORMATCIB ,T5,'D(T)’)
0111 WRITE(6,219 )S0<1 )/TS,SO(10 )/TS,SU(19 )/TS,S0<28)/TS
0112 219 FORMAT(1H+,T13,4F12.2 )
0113 STOP
0114 END
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