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Our present quantum mechanical formalism is a peculiar mixture 
describing in part laws of Nature, in part incomplete human 
information about Nature -  all scrambled up together by Bohr into 
an omelette that nobody has seen how to unscramble. Yet we 
think the unscrambling is a prerequisite for any further advance 
in basic physical theory...

E.T. Jaynes

- Erwin with his psi can do 
Calculations quite a few.
But one thing has not been seen 
Just what psi really mean.

Felix Bloch

There exists a body of exact mathematical laws, but these 
cannot be interpreted as expressing simple relationships 
between objects existing in space and time.

Werner Heisenberg

...if quantum theory were not successful pragmatically, we would 
have no interest in its interpretation. It is precisely because of 
the enormous success of the QM mathematical formalism that it 
becomes crucially important to learn what that mathematics 
means. To find a rational physical interpretation of the QM 
formalism ought to be considered the top priority research 
problem of theoretical physics; until this is accomplished, all 
other theoretical results can only be provisional and temporary.

E.T. Jaynes



ABSTRACT

It is argued (Part A) that quantum mechanics can be derived as 
a principle-based dynamical framework, the basic equation of 
which is an alternative form of the Hamilton-Jacobi equation. 
Schrodinger’s equation obtains as a result of linearising that 
equation, and so-called wave functions can be given no 
straightforward physical interpretation. It is suggested, partly in 
relation to a theorem by Gromov, that a finite action quantum 
would make it practically inevitable, for purposes of prediction, 
to resort to a probabilistic formulation. The structure of the 
space of square-integrable solutions of the Schrodinger 
equation happens to lend itself to the introduction of the 
appropriate kind of predictive scheme. Investigating the nature 
and scope of such a scheme is the subject of Part B. It is shown 
that basic features of the formalism of quantum theory, like 
composition rules for ‘amplitudes’ or the ‘Born’ probability rule, 
can be derived independently of any physical assumptions. A 
generalisation of the basic formalism using tensor product 
composition appears to be required if all correlations are to be 
extracted from locally accessed data. A detailed discussion of 
quantum teleportation leads to the conclusion that a ‘one-shot’ 
account leads to a distorted picture of what is actually achieved. 
An analogy with classical cryptography is made and the 
statistical significance of the ‘transfer’, which does not require 
introducing any novel form of ‘quantum information’, is 
emphasised. Results obtained over the last decade using the 
extended formalism of positive operator-valued measures are 
reviewed and discussed. These lend further support to the idea 
that the set of basic ‘quantum’ rules functions as a general kind 
of probabilistic scheme for prediction, the structural features of 
which are not constrained in any direct way by the underlying 
physics. On the other hand, the very existence of such a 
predictive framework hinges on selecting a particular class of 
solutions of the Schrodinger equation, which selection has been 
incorrectly interpreted as reflecting a physical necessity.
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Introduction

Three quarters of a century have now gone by since Bohr’s Como lecture 
(1927). All the same, there is as yet no consensus regarding how the most 
basic features of the quantum-mechanical formalism should properly be 
understood. Half seriously, one could say that quantum physics has been a 
tremendously successful answer to a question that we have yet to ask and 
formulate clearly. Up to the present day, the dominant trend has consisted in 
defending one’s favourite interpretation against other major competitors or in 
the face of a number of ‘no go’ theorems. The feeling is also widespread that 
the most counterintuitive aspects of quantum theory point to an inherent 
weirdness of the physical world, involving uncontrollable influences at a 
distance, a blurring of the distinction between being and non-being or some 
inscrutable variety of holism. Indeed, the popularity of baffling interpretations 
like Many Worlds and its variants testifies to the fact that (too) many physicists 
or philosophers readily surrender to the idea of a sweeping ‘non-classicality’ of 
quantum mechanics. By contrast, comparatively rare attempts to ground the 
theory on a small set of well motivated, and perhaps more mundane 
principles having clear physical significance, tend to be considered futile or 
regressive (‘hidden variables’).
Whilst ‘no go’ proofs can be technically impressive, they all boil down to the 
acknowledgment of two well-known and related basic features of the 
quantum-mechanical formalism: a metric vector space structure and a non- 
commutative algebra of linear operators. These underlie both the ‘non- 
classicality’ and the efficiency of the algorithm whereby expectation values 
and probabilities are routinely calculated in the laboratory. The rise of 
Quantum Information Technology (QIT) has recently prompted a revival of 
interest in the logico-algebraic structure of quantum theory, which had once 
been the rather exclusive concern of a small band of quantum logicians and 
philosophers. New ‘hard’ results, admittedly of unequal conceptual 
importance, have been obtained over the last ten years. Technical 
breakthroughs like Shor’s algorithm for factoring large numbers into primes or 
technological prospects like that of manufacturing a quantum computing 
network in the not-too-distant future have bred optimism. Almost inevitably, 
this has led some to hope that a change of focus toward information- 
theoretical concepts and methods might hold a (the?) key to a final, if belated 
understanding of the aim and structure of quantum theory. In all fairness, 
nothing in what has been achieved in QIT so far, or what can be reasonably
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foreseen, really leads one to suspect that any such revelation (revolution?) is 
under way. On the other hand, the rejuvenation of old concerns, the fresh 
outlook of new participants in the debate and -  last but not least -  the 
sharpening and more extensive use of some relatively new tools like positive 
operator-valued measures might all contribute in a beneficial way to our 
understanding of quantum theory. Thus, Chapter 9 of this thesis is devoted to 
some recent and outstanding contributions by theorists who all participate to 
some degree in the QIT enterprise. The upshot is a re-evaluation of the nature 
and purpose of the basic formalism of quantum theory: this is seen to function 
as a linear probabilistic scheme for prediction, the mathematical structure of 
which is essentially independent of any assumption regarding the nature or 
behaviour of physical objects.
It is one of the aims of this dissertation to convince the reader that the whole 
of quantum physics can justifiably be established as following from the 
satisfaction of a fundamental structural principle, in a similar sense as the 
refoundation of mechanics prompted by the Special Theory of Relativity (STR) 
can be shown to follow from assuming the universal validity of a single1 
relativity principle. Another is to show how such a well-motivated principle view 
of ‘quantum’ dynamics (Part A) can be maintained consistently with the idea 
that the basic formalism of quantum theory, as it is currently used and debated 
upon, essentially functions as a linear predictive scheme (Part B). Indeed, a 
driving conviction behind this work is that no progress will be made in our 
understanding of quantum mechanics unless what pertains to the theory as an 
alternative to classical mechanics is clearly distinguished and properly 
separated from those features of the formalism that make all the difference 
between ‘quantum’ evaluations of probabilities and ordinary (‘classical’) ones. 
Claiming that such a distinction is both meaningful and necessary stands in 
contrast to widespread views whereby, for example, the squared modulus rule 
for the calculation of probabilities would directly reflect the physical nature and 
radically non-classical features of putative ‘quantum states’.
Part A opens (Chapter 1) with a historical outline. The intention is here to help 
set the contents of the next two chapters in proper perspective. Although the 
likely relevance of action-related aspects of dynamics to the development of a 
quantum mechanics was recognised very early, it has in our view 
subsequently been unduly neglected as a central subject matter in the debate 
about the theory. Section 2.1 reviews the attitude of some of the leading 
pioneers of atomic physics in regard to another key issue: that of whether 
‘wave functions’ or Hilbert space vectors in quantum theory should be 
interpreted as representatives of states of physical systems (the 
representation of physical quantities within a Hilbert space framework is

1 See Section 3.1.
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addressed in Section 2.2). Following the lesson of STR (Section 3.1), it is 
argued that quantum mechanics might, on account of its status as a 
fundamental framework for theoretical physics, best be formulated as a 
principle theory. After considering what is to be required of a principle view of 
quantum mechanics (Section 3.2), a recent (2000) and compelling derivation 
of ‘quantum’ dynamics from a single principle is presented in some detail 
(Section 3.3). Such a principle-based refoundation of quantum mechanics 
sheds light on the fundamental nature and scope of the standard quantum- 
mechanical framework, based on the Schrodinger equation or on the 
Heisenberg picture. It is a remarkable fact that, although the suggested 
refoundation of quantum mechanics involves no randomness or lack of 
determinism, square integrable solutions of the Schrodinger equation have, 
nonetheless, just the requisite properties for setting up a novel kind of 
probabilistic framework for prevision. Part B is devoted to investigating 
prerequisites of such a scheme, its basic structural features and predictive 
capacity. In Chapter 4, a statement of the standard ‘rules’ of quantum theory is 
followed by a brief discussion of the difficulties raised by the common urge to 
reify or to objectify ‘state vectors’ or density operators. Derivations of 
elementary features of the formalism -  the composition rules for amplitudes 
and the modulus-squared probability rule -  are examined in Chapter 5. These 
lead us to the suggestion that quantum theory should be conceived as 
supplying a general-purpose linear scheme for prevision -  outlined in Section
6.1 -  whose characteristic structure essentially reflects consistency 
constraints. Section 6.2 addresses the question of Hilbert space angle as an 
appropriate measure of statistical overlap within such a scheme, and Chapter 
6 ends with a discussion of the controversial ‘reduction’ rule.
Tensor product composition allows the predictive framework sketched out in 
the previous chapter to be applied to ‘fragmented’ preparations (Chapter 7). 
Comparison of locally gathered data may then reveal correlations that cannot 
be accounted for in terms of simple-minded common cause explanations or 
preordained ‘instruction sets’. Whether this fact warrants considering ‘spooky’ 
influences at a distance or other forms of ‘communication’ between causally 
disconnected (sub)systems is addressed in the form of a case study (Chapter 
8). Quantum teleportation seems to exemplify in a striking manner some of the 
most baffling implications of quantum theory: potentially measurable attributes 
of a system, embodied in its ‘state’, appear to be transferable to a distant 
system although sender and receiver lack the information that would appear 
to be needed for any such transfer to be achieved. The discussion of Chapter 
8 emphasises the fundamentally statistical significance of the ‘transfer1. 
In contrast, a literal ‘one-shot’ reading of the transformations involved gives 
rise to incorrect expectations and claims that are empirically vacuous. Besides 
being quite insufficiently motivated, the idea of a backwards-in-time
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propagated ‘quantum information’ transfer between two or more subsystems is 
also shown to be very implausible. A parallel is made with classical 
cryptography, and it is seen that quantum teleportation, dense coding or 
entanglement swapping lose much of their mystery provided conditions and 
procedures for extracting and comparing the relevant data are properly 
accounted for.
Further support to a view of standard quantum theory as a linear predictive 
scheme can be adduced (Chapter 9) using the resources of positive operator
valued measures (POVM). For example, the rule for updating a density 
operator assignment in the light of information obtained through measurement 
can be given a form that is more similar to classical Bayesian update than 
the reduction rule affords. Section 9.3 reviews and discusses a new derivation 
of the basic structure of quantum theory (in a generalised POVM version) from 
a set of just five axioms. It is very significant that the statistical algorithm of 
quantum theory should be found to differ from a linear representation of the 
classical probability calculus by only one axiom, and that none of the five 
axioms depends on assumptions regarding the nature or properties of 
physical systems.
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1

The Emergence of quantum mechanics 
A historical outline*

Toward the end of the nineteenth century, basic tenets of classical (Newton- 
Maxwell) physics were unexpectedly challenged. Whilst the puzzle of the 
invariance of the velocity of light in vacuo found a rather early resolution 
(1905), more than twenty-five years would pass before the emergence of a 
comprehensive framework in which the remaining issues would (seem to) be 
settled. The rise of quantum mechanics could have benefited from a far more 
auspicious start1 than a complicated state of affairs at the crossroads of 
electro- and thermodynamics. It was the urgency of resolving what was rightly 
perceived as an acute difficulty -  the black-body problem -  that prompted the 
first step toward the emergence of quantum theory.
Kirchhoff (1859) had showed that the radiation inside an isothermal enclosure 
(cavity) would behave like an absorber of all incident radiation, or ‘black body’ 
radiator, at the same temperature. Only in 1895 could such an enclosure be 
constructed (Lummer and Wien) and the empirical study of the spectrum of 
black-body radiation commence, by which time Wien’s ‘displacement law’ 
(1894) had been formulated: the emissive power E*. per unit interval of 
wavelength is inversely proportional to the fifth power of the wavelength X and 
proportional to a single funotion (p(>.,T) of the wavelength and temperature.

The maximum value of E*. occurs at a wavelength that is inversely proportional 
to the absolute temperature of the black body. To account theoretically for the 
empirically observed distribution of Ex curves would then be tantamount to 
working out the expression of (p(A,,T), which was to be independent of the 
particular properties of any material substance involved. As more and more 
desperate attempts were made to match the form of data curves, reasonable 
optimism quickly gave way to a crisis situation. The Rayleigh-Jeans law2, 
derived in 1900 through the application to cavity radiation of the equipartition 
theorem, agreed with the data in the low frequency regime where Wien’s

* This chapter is greatly indebted to Jammer 1974,1989 and to Mehra and Rechenberg 1987.
1 The issue of quantisation could conceivably have arisen in the context of the classical kinetic 
theory (see Mott 1964).
2 According to the Rayleigh-Jeans law, the energy density u(v) is proportional to the

o_v2kT
temperature and to the square of the frequency v ; more precisely, u( v )  =  •
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foundered. On the other hand, not only did the Rayleigh-Jeans law not overlap 
with Wien’s where the latter matched the observations, but it also implied that 
the energy density should shoot up without limit as frequencies become 
arbitrarily large, in clear contradiction with both observations and sensible 
expectations. The predicted divergence (‘ultraviolet catrastrophe1’) was a 
telling symptom that something was fundamentally amiss in the classical 
approach to the problem.
Max Planck entered the scene in 1897. What he sought to achieve was to 
show that, regardless of their initial conditions, an assembly of linear harmonic 
oscillators of frequency v would be collectively ‘driven’ to an energy 
distribution that corresponds to the observed spectrum of black-body radiation. 
His approach paralleled, albeit in an electromagnetic rather than molecular 
setting, Boltzmann’s earlier attempt to show that a spontaneous evolution to 
equilibrium is irreversible (H theorem). Eschewing any reference to the 
equipartition theorem, which would have sent him along the same track as 
Rayleigh and Jeans, Planck introduced an ‘entropy’ function S of the average 
energy U of a harmonic oscillator at temperature T, satisfying the equation

. (1.Daj2 u v '
where C is a constant. Associated with his former derivation of the equilibrium 
conditions, this equation led to Wien’s law. However, the reported failure of 
that law in the low-frequency and high temperature regimes soon led Planck 
to revise his initial approach. Since the proportionality to temperature of the 
energy density was implied both by the empirical data and the Rayleigh-Jeans 
law, which followed from the equation

— = —  ( 1.2)
aJ2 U2' K }

Planck ventured an interpolation between (1.1) and (1.2), namely

<fS a
a j2 UU+b)'

(1.3)

where a and b are constants. This form was precisely cooked up to guarantee 
that his former equation (1.1) and that (1.2) leading to the Rayleigh-Jeans law 
would both be recovered in the regions where they were found to be 
empirically adequate. The ensuing radiation law was found to be in very good 
agreement with the available data.
Planck’s achievement was the outcome of a “lucky interpolation”, as he 
recognised it himself. Looking for a microscopic grounding to the new law, 
he followed once again Boltzmann’s footsteps, defining the entropy Sn of

1 The expression was coined by Ehrenfest in 1911.
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a system of N oscillators of given frequency as the logarithm of the number W 
of complexions i.e. distributions of those oscillators that were compatible with 
the energy of the system. If that number W was to be determined using a 
combinatorial procedure, then the total energy E of the system had to be 
regarded as decomposable into a finite number of discrete Energie-elemente. 
Planck made the ad hoc hypothesis that an integral number P of discrete and 
equal energy elements or quanta e were to be distributed among the N 
resonators of frequency v, i.e. that E = Pe. Given that assumption, W is just 
the number of ways P energy elements e can be distributed among the N 
resonators. It takes but a fairly simple calculation to find an expression for SN

5
such that the entropy S = — of a single resonator satisfies Planck’s

N
E 3S 1interpolation formula1 (1.3) (with U = —). Given the condition —  = —,
N au T

the average energy of the resonators of frequency v is

U =  i  . (1.4)
exp(— ) -1 

kT
This formula, obtained in 1900, agrees with Planck’s former expression of U 
only if s = hv, where h is a constant that is independent of v. At that point, 
Planck refrained from discussing the possible meaning of that constant, 
although he suspected that his ‘quantum hypothesis’ might have momentous 
(indeed, potentially devastating) consequences for theoretical physics. At any 
rate, his strategy in deriving the law had been inconsistent, for it had called 
upon both electromagnetism, in which the energy of an oscillator varies 
continuously, and a statistical treatment of that same energy, which supposes 
its discretisation...
Attempts to salvage the equipartition theorem and avoid a partitioning of 
energy into quanta continued well after 1900. All of them were unsuccessful, 
however, and Planck’s radiation law remained without any serious competitor. 
Einstein, for one, did not regard the inconsistencies in Planck’s derivation so 
much as flaws as hints that there was more to the microstructure of material 
bodies and to radiation than classical physics could account for. In one of the 
papers of the wondrous 1905 trilogy2, Einstein challenged the very

1 W hat is summarised here is, needless to say, the published end product of Planck’s 
endeavour, which may not be faithful to the way he actually tackled the problem. Rosenfeld 
(1936) argues that Planck did actually work out an ad hoc expression for SN that led to his 
earlier interpolation formula. Noticing that the argument of the logarithm was similar to the kind 
of combinatorial formula used in the calculation of the total number of possible complexions 
might only then have suggested to him a discretisation of the contributions of the resonators to 
the total energy.
2 Significantly, Einstein called the content of that, rather than the celebrated ‘relativity’ paper, 
"sehr revolutionar”.
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foundations of our understanding of the nature of light and more generally, of 
electromagnetic radiation. His investigation focused on monochromatic 
radiation of a given frequency v within an enclosure of fixed volume and in the 
range of frequency and temperature in which Wien’s law was known to be 
valid. Requiring conservation of energy and that the entropy be maximal when 
cavity radiation is at equilibrium, Einstein showed that the change in entropy 
as the radiation, originally confined within a volume V0, comes to occupy a 
volume V is

(k is Boltzmann’s constant and Ev/V = u(v)dv). The probability of finding n 
particles at any given time within a fraction V of the total volume V0 is

hence the identification Ev = nkpv. Comparison with Planck’s law suggests

the spatial distribution of radiant energy is fundamentally discontinuous: 
monochromatic radiation behaves, at least in the small density domain where 
Wien’s law holds, as if it were composed of a finite number of independent 
energy quanta, the magnitude of which is proportional to the frequency v of 
the radiation.
Einstein’s introduction of an elementary quantum of energy had the virtue 
of avoiding Planck’s inconsistencies. On the other hand, if it was understood 
as promoting the idea of a granular nature of light, that conclusion then ran 
counter to conceptions that were by then well established. The wealth of 
evidence in favour of an undulatory nature of light did not imply that 
electromagnetic radiation should be devoid of any granular aspect. However, 
there were no grounds before Einstein for suspecting the existence, nor 
indeed even the possibility, of discontinuities in the distribution of radiant 
energy, never mind raise such discontinuities to the status of real corpuscles. 
Such corpuscles were not implied by the black-body law. In fact, Peter Debye 
(1910) would soon show that Planck’s radiation law could be derived without 
making any reference to individual resonators. Given the assumption that 
energy itself is quantised according to the relation E = hv, Planck’s law was

(1.5)

(assuming mutual independence) simply equal to

change in Boltzmann entropy is

. Therefore, the

(1.6)

setting the hitherto unspecified constant B equal to - .  Einstein concludes that
k
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shown to follow as the result of optimising the number of distributions of 
energy quanta among the vibrations.
In any case, Einstein’s successful explanation of the photoelectric effect was a 
strong argument in favour of the acceptance of light quanta (Lichtquanten). 
Ironically, an accidental manifestation of that effect had been reported, 
unwittingly, by Heinrich Hertz in the course of experiments (1887) that were 
hailed as the ultimate (!) confirmation of the validity of the continuist 
electromagnetic theory of light. From 1888, systematic studies of the 
‘anomalous’ production of photoelectric current showed that the more 
electropositive the metal, the greater its responsiveness to light. A series of 
experiments conducted by Lenard between 1899 and 1902 showed that, for a 
given metal, the emission occurs only above a frequency threshold v 0 and 
regardless of the intensity of the incident light. Moreover, the energy of the 
photoelectrons increases in proportion to the frequency v  of the incident 
radiation (v>vo ). Whereas none of those facts can be reconciled with 
Maxwell’s theory, all of them find a straightforward explanation in terms of light 
quanta: the maximum kinetic energy of an extracted electron is equal to the 
difference between the quantity hv  supplied through its interaction with an 
individual ‘quantum of light’ and the amount of work needed for extracting an 
electron from the metal. Millikan’s experiments (1916), which conclusively 
showed that the kinetic energy of the photoelectrons was, as predicted by 
Einstein, proportional to the frequency v  of the light absorbed by the metal, 
with a proportionality constant equal to Planck’s, did much to change the 
status of the quantum idea from that of a rather baffling way of restoring 
empirical adequacy to that of a notion with a clearly accessible experimental 
correlate. The very idea of an interaction of electrons with individual quanta 
was suggestive of light being ‘truly corpuscular’, although the existence of the 
light corpuscles had long gone unnoticed. Later on, Arthur Compton’s 
experiments1 (1922) largely dispelled earlier doubts about Einstein’s quanta. 
Since these conclusively appeared to be able to transfer momentum, they 
seemed to qualify as genuine ‘particles’, albeit particles of a very special kind2. 
Significantly, however, Bohr3 acknowledged the ‘existence’ of light quanta4 
only in 1924.

1 Compton interpreted his results by assuming that each X-ray radiation quantum of energy 
acted as a unit on a single electron, as if that quantum were concentrated in a single particle.
2 If the velocity at which those quanta propagate is equal to the maximum admissible velocity 
imposed by the special theory of relativity, those particles are required to have zero rest mass.
3 Bohr's reluctance to think of the notion of light quanta as anything but a heuristic device 
stemmed from his conviction that all interference phenomena could be interpreted only in 
terms of a wave-based picture of light -  and after all didn’t Planck’s relation, connecting 
energy to frequency, appear to make an explicit reference to undulatory aspects?
4 Einstein’s quanta were only called photons after 1926 (the word was coined by G. N. Lewis).
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If ‘quantised’ energy transfers were not confined to electromagnetism, 
then the quantum idea might well be relevant to reported ‘anomalies’ in the 
data gathered in a wider range of domains. On account of the shortcomings of 
the classical equipartition theorem, the molecular theory was certainly a 
candidate for revision. Einstein realised (1907) that the experimentally 
observed decrease of the specific heat of solids with temperature was indeed 
a case in point. Assuming that all the atoms in a solid oscillate with the same 
frequency v, and neglecting interactions, Einstein used Planck’s distribution to 
calculate the specific heat per mole. The resulting formula accounted for the 
‘anomalous’ decrease while being, for high enough temperatures, in 
agreement with classical calculations based on the equipartition theorem (law 
of Dulong-Petit). This new instance of the effectiveness of the quantum idea 
made it clear that, whatever the consequences, its theoretical necessity had to 
be reckoned with. As Arnold Sommerfeld noted during the first Solvay 
Congress (1911), it would by then have been futile to keep thinking of the 
quantum as though it related to peculiarities of electromagnetic radiation. 
Physicists had, until 1905, incorrectly ascribed difficulties associated with the 
velocity of light to specific aspects of the electromagnetic field and its 
propagation. History would not repeat itself. Rather, one had to face the 
prospect of a complete refoundation of dynamics, with unforeseeable 
consequences in our understanding of molecular behaviour, radiation and 
atomic structure. That neglecting the constant h in Planck’s radiation formula 
allowed the retrieval of that of Rayleigh-Jeans, or that the Dulong-Petit law 
followed from Einstein’s at high temperatures, suggested that a prospective 
‘quantum theory’ might call for basic amendments to the laws of classical 
(electro)dynamics. The very dimensions of h (‘action’) gave a faint hint at such 
future developments.
Another breakthrough was to concern no less than the stability of the atom. 
J.J.Thomson’s model (1903), which had been dealt a fatal blow by scattering 
experiments with a particles, had been superseded by Rutherford’s ‘planetary’ 
model (1911). Despite some attractive features, the new model was obviously 
unacceptable as it stood. One of its main drawbacks was that nothing in the 
laws of electrodynamics could possibly lead to the selection of definite periods 
and orbital distances. Thus, the orbits described by electrons around the 
nucleus were not constrained to have fixed radii, and the range of allowed 
periods was a priori continuous. But a far more serious problem was that the 
laws of mechanics and Maxwell’s theory implied that electrons should 
irresistibly spiral down towards the nucleus and the atom collapse in a tiny 
fraction of a second (the rate at which the energy should be dissipated would 
be proportional to the square of the acceleration of the electron). The verdict 
was final: no classically conceived planetary atom could be stable.
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Besides, patterns of spectral lines, characteristic of the elements involved, had 
been observed for a long time in the light emitted or absorbed by a variety of 
substances. By the end of the nineteenth century, arithmetical relationships 
between the positions i.e. wavelengths of lines had been worked out both by 
professionals and amateurs (notably by J.J. Balmer, a Swiss schoolteacher). 
Those regularities remained enigmatic, but there was little doubt they should 
relate to properties of material bodies on microscopic scales, and that their 
decryption could provide clues to atomic structure. At any rate, the very 
discreteness of those spectra flew in the face of classical physics, which would 
have had any spectrum consist of a fundamental vibration and higher 
harmonics1. Whatever could account for the spectroscopic data would 
therefore have to break away in some fundamental manner from classical 
treatments of matter and radiation.
Niels Bohr, who was freshly acquainted with Rutherford’s model, was also 
aware of the role played by Planck’s constant in constraining the magnitude of 
energy transfers. The quantum of action appeared to him as the best potential 
candidate for constraining energetic and orbital possibilities within each 
individual atom. His move was to hypothesise the existence, for each stable 
orbit, of a fixed definite ratio between the kinetic energy of an electron in orbit 
and its period of rotation. Supplementing with that hypothesis a planetary 
model of the mono-electronic hydrogen atom was tantamount to restricting 
permissible orbits to a discrete set. Stability was guaranteed by forbidding any 
radiation of energy as long as the electron remained in any one of the 
permitted (stationary) orbits. A transition between two energy levels 
corresponding to two distinct stationary orbits would be signalled by the 
emission of a single quantum of monochromatic radiation, according to the 
simple formula Em -  En = hv, where m labels a higher-energy orbit further from 
the nucleus than the lower’ n-th (v  is, of course, the frequency of the emitted 
radiation). Why the orbits so selected were permitted while others were 
excluded was left unanswered, and no attempt was made to explain why or 
how a transition occurred and why it had to be accompanied by the emission 
of ‘quantised’ radiation.
Bohr’s model of the hydrogen atom was a most unlikely hydrid, motion along 
orbits being governed by the classical laws of mechanics whilst the selection 
of permitted orbits and transitions between two such orbits would be regulated 
by principles that were entirely alien to classical electrodynamics. The gap 
could clearly not be bridged in the ideal case of circular orbits, for Bohr’s 
hypothesis amounted to the assumption that the angular momentum of the 
electron round the nucleus would no longer be free to take any value in a

1 Rutherford's model implied the production of continuous radiation by collapsing atoms.
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hcontinuous range, but had (?) to be an integral multiple of the ratio — . Bohr’s
2 t z

model was not explicitly based on the postulate of a quantised angular 
momentum. However, despite his reluctance to conjure up mechanical 
pictures, Bohr conceded that a ‘symbolic’ use of classical language could be 
useful in discussing the end product of what would otherwise be blind 
calculations. Provided that they were fully aware of the limitations of such 
concepts and terminology, physicists should feel free to refer to the
amendments made to the planetary model in terms e.g. of a limit set to the 
possible range of values of the angular momentum of a bound electron.
On the basis of his oddly quantised planetary model, Bohr then gave three 
independent derivations of Balmer’s empirical formula and predicted correct 
patterns of lines1 for the ‘Paschen series’ (1908) and those to be observed 
later by Lyman (1914), Brackett (1922) and Pfund (1924). Further support was 
lent to his account of atomic transitions by the results of the experiment of 
Franck and Hertz (1914). Everyone, including Bohr, was well aware that his 
model was a crude step toward a more comprehensive and satisfactory 
account of the structure and stability of atoms. Further and lasting progress 
would come only through resolving or transcending the clash between the 
indubitable power of the quantum idea and the time-honoured laws of 
classical physics.
Designating the single angular coordinate (azimuthal angle) by cp, Bohr’s
implicit quantisation of the angular momentum can be expressed as the
requirement that the angular component of momentum p<p be such that 
j p <pd<p = nqth (integration being performed over a period). As it turns out,

Planck’s quantisation of the harmonic oscillator can be expressed in a similar

q+ 2way as 2fpdq = nh, with the momentum p satisfying e = -̂ — + — k q 2
q 2m 2

and q = ± J —  (the integral is then equal to —, where v = —  J — ).
V k v 2 k  v m

This suggested independently to Ishiwara, Sommerfeld and Wilson that
discontinuous exchanges of energy might occur only between stationary
configurations satisfying the quantum conditions j p kdqk =nkh, where k ranges

over all the degrees of freedom of the periodic system. Sommerfeld, in 
particular, applied those conditions to the treatment of the hydrogen atom. 
Realising that augmenting to two or three the number of degrees of freedom

1 Bohr’s predictions appeared to conflict with the observation by Pickering (1896), in the 
spectrum of the star £ Puppis, of hydrogen lines that could not be accounted for by Balmer’s 
formula. A brief controversy followed, which was settled when it was found (1914-1916) that 
the lines in question did not pertain to hydrogen but to helium (to which Bohr’s model and 
Balmer’s formula do not apply).
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involved in the characterisation of the quantised ‘planetary’ motion did not give 
rise to an increase in the number of energy levels, he attempted a relativistic 
generalisation of Keplerian motion. As a result, there appeared a second- 
order ‘correction’ term, reflecting the imposition of the requirement of Lorentz 
invariance1 (the term happened to be proportional to the square of a numerical 

2 n e 2constant a = ------- ). Sommerfeld’s extension of Bohr’s original model was in
he

good agreement with the observation of some of the finer structure of atomic 
spectra (as measured, e.g. by Paschen circa 1916), hence the name fine 
stmcture constant usually given to a.
Paul Ehrenfest (1906) was probably the first to realise why Wien’s 
displacement law2 survives the Planck-Einstein ‘quantum’ treatment of black- 
body radiation: it is essentially because it is (tacitly) assumed that the radiation 
enclosure undergoes infinitely slow compression. The motion of a system 
acted upon by external forces is said to be ‘adiabatic’ if those forces do not 
directly affect the coordinates of the system when relevant parameters vary 
slowly. In the case of the harmonic oscillator, looking for invariants boils down 
to finding some function of the parameters and constants of the motion that 
should be invariant under the transformation. That function should, in 
particular, remain equal to the initial value of the energy-to-frequency ratio of 
the oscillator, i.e. to nh in accordance with Planck’s quantum hypothesis. 
Ehrenfest showed (1916) that Sommerfeld’s phase integral conditions, as 
applied to the hydrogen atom, were just an expression of adiabatic 
invariance3. Why circularity (Bohr) or ellipticity (Sommerfeld) of the orbits 
makes no difference to the spectrum also found an explanation: the elliptic 
and the circular case are related by an adiabatic transformation over the same 
time period. Given the square law form of the Coulomb potential, the total 
energy must be the same in both cases (virial theorem).

1 A special relativistic treatment involving the essentially ’prerelativistic’ Coulomb form of 
the potential is as highly suspicious as Planck’s incongruous blend of continuum physics 
and combinatorial methods. Darwin’s later (1920) treatment restored consistency by 
substituting a retarded potential for the Coulomb term.
2 The ratio of each proper vibration of frequency v to that frequency is a unique function of v 
and temperature.

3 The ratio equal to nh according to Planck, is an adiabatic invariant, and so is the ratio
v

— . In the simple case of Bohr’s circular orbits, Bohr’s condition mcor2 =  — , where mcor2 is 
T 2 n

the angular momentum (m: mass of the electron, go = 2t c v : angular velocity, r: distance from 

nucleus) can be written 2K_= h in terms of the mean kinetic energy |< _ l m(D2r 2 i and
v 2

2K  is precisely the adiabatic invariant that is equal to Sommerfeld’s phase integral.
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In contrast to Kepler’s planetary problem, the quantum conditions, hence the 
quantised orbits, are sensitive to the choice of coordinates. How could a given 
choice be justified, and was there one that was most adequate? The question 
was answered by the astrophysicist Karl Schwarzschild, who was well versed 
in the technicalities of celestial mechanics (another important contribution to 
the same problem was made by Paul Epstein, who had been a student of 
Sommerfeld). Roughly, the idea was to take advantage of a ‘global method’ 
developed in the previous century for computing the frequencies of periodic 
motions, whilst bypassing the need to completely solve the equations of 
motion. The method, introduced by Delauney in his Theorie du mouvement de 
la lune (1860-1864) and used extensively by Poincare, was little known 
outside the circle of expert astronomers (unsurprisingly, since the question of 
the exact nature of the motion was left aside). This computational approach 
involves the use of so-called action and angle variables, whose defining 
relationships bear a striking formal resemblance to key quantities in the Bohr- 
Sommerfeld account of atomic structure. Schwarzschild realised that exporting 
those techniques from their original domain could prove very useful to the 
development of atomic physics. The success of Sommerfeld’s calculations 
owed much to the possibility of separating variables in the Hamilton-Jacobi 
equation. Practitioners of celestial mechanics had known for at least three 
decades that systems with a finite number N of degrees of freedom, for which 
the Hamilton-Jacobi equation could be integrated using separated variables, 
are multiply periodic, in the sense that the generalised coordinates can be 
expressed as a N-fold infinite Fourier series. This, naturally, did not imply that 
the motion itself had to be periodic (it is clearly so only if frequencies in the 
expansion are commensurable). Action-angle variables can be substituted for
every (qk.Pk) pair, letting Jk = jp kdqk (integration being performed over a 

complete rotation or libration1 of the coordinate qk) for the ‘action’ and 

wk _ 3W ^  ‘angie’ variable, where W is the generating function for the
ajk

(q,p) (w,J) transformation2. The similarity between Jk and Sommerfeld’s
phase integral is evident. Epstein argued that Sommerfeld’s generalised 
quantum conditions had to be formulated using coordinates that would allow 
the Hamilton-Jacobi equation to be separated, i.e. in terms of action and angle 
variables. What conditions should then be satisfied by dynamical systems with 
time-independent Hamiltonians for action and angle variables appropriate for 
the formulation of the quantum conditions to be introduced? An answer, found

1 Oscillation between fixed limits (the initial position lies between two zeroes of the kinetic 
energy).
2 W  is Hamilton’s characteristic function if the system is conservative (see Goldstein 1980, 
p.460).
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by Burgers (1916-1917), was that the action variables should be adiabatic 
invariants. If anything, those technical developments suggested that progress 
toward the elaboration of a ‘quantum-mechanical’ framework might require 
probing the mathematical depths of analytical mechanics.
Another important heuristic guide was provided by the so-called 
‘correspondence principle’ -  if, indeed, there is any single such principle1. 
Classical expressions were expected to hold when a dimensional analysis 
showed the order of magnitude of typical ‘actions’ to far exceed the value in 
the same units of Planck’s constant (h « 6.62.10‘34 Joule-second). Practically, 
h is treated as an adjustable parameter (which it is of course not) and 
classical expressions are ‘recovered’ as h->0. Besides, asymptotic agreement 
between the frequency spectrum and the classical description of the motion is 
expected in those regions further away from the nucleus where the difference 
in energy between any two stationary orbits becomes negligible, i.e. when the 
‘principal quantum number* n, which labels energy levels, goes to infinity2. 
Following Bohr, who had long given up any hope or intention of relating 
discrete radiation transfers to the harmonic components involved in a classical 
description of orbital motion, many came to regard asymptotic correspondence 
as the only available handle on the problem of deriving correct intensities and 
polarisations of spectral lines.
In a 1916 paper, Einstein made another significant contribution to the 
treatment of ‘quantised’ electromagnetic radiation. For the very first time, 
Einstein assigns a priori probabilities to transitions, whether induced or not, 
from a higher energy level (Em) to a lower one (En), and those (induced) from 
a lower to a higher level. Starting from the assumption that the canonical 
distribution is preserved under conditions of equilibrium, Einstein derives 
Bohr’s relation Em -  En = hv and finds how the probability pmn of non-induced 
emission relates to that of induced emission for the same two levels:

Pmn = Pmnduced) • The cubic dependence on frequency is characteristic of 
c

Planck’s radiation law. There is little doubt that Einstein regarded those 
probabilities as reflections of our limited knowledge of structural 
rearrangements that really take place in the atom. His later overt hostility to 
‘quantum probabilism’ also dispels any suspicion that he could have ever 
conceived of individual transitions as intrinsically undetermined. Bohr, on the 
other hand, was already convinced of the impossibility of furthering our 
understanding of atomic structure beyond a kind of theoretical guesswork, 
where classical physics was to be used as a merely heuristic but

1 See next footnote.
2 The question of consistency between the two ‘limits’ h->0 and n-»oo, and the associated 
forms of correspondence, is not triv ial; see Liboff 1984.
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indispensable guide. Given his personal outlook, Bohr readily interpreted as 
‘spontaneous1’, in the strong sense of acausal, those transitions Einstein 
merely assumed were ‘not induced’ by external influences. In view of the 
considerable ideological influence of Bohr on the development and final 
acceptance of quantum mechanics, what is implied in his statement of a basic 
and irreducible indeterminacy at the heart of quantum physics cannot be 
underestimated. From there indeed, it was but a relatively short step to think of 
the subject matter of quantum theory in terms of ‘virtual’ processes or 
’potential’ occurrences, brushing aside the possibility that the interactions and 
behaviour of microphysical objects remain amenable to a fully mechanical 
treatment -  if no longer along classical lines. In a letter to Hoffding (1922), 
Bohr confided his assessment of the situation:

...we encounter difficulties which lie so deep that we do not have any idea of 
. the way of their solution; it is my personal opinion that these difficulties are of 

such a nature that they hardly allow us to hope that we shall be able, inside the 
world of the atoms, to carry through a description in space and time of the kind 
that corresponds to our ordinary images.

Progress toward a comprehensive and adequate quantum theory, which could 
encompass both radiation and atomic structure, was still wanting by 1924. 
Tension between discrete and continuous aspects raised the question of 
‘gaps’ that might exist in energy and momentum transfers and might threaten 
their exact conservation. Early in 1924, John C. Slater expressed his view 
that, if a connection was to be made between undulatory features and light 
quanta, then in order to break with classical ideas of causation and circumvent 
difficulties with conservation laws, that connection would have to be statistical. 
Bohr, who was apparently keen to renounce any causal description of atomic 
transitions, was responsive to Slater’s suggestions. Slater, Bohr and Hendrik 
Kramers developed their programme in a paper published in the same year. 
Their basic idea was to associate with every stationary atomic configuration a 
‘virtual’ radiation field. What made that field virtual was its being composed of 
as many monochromatic (spherical) waves as there were possible transitions 
to lower energy levels in the atom. In other words, rather than be defined in 
terms of whatever is thought to be the case, that field would be defined in 
terms of what could be the case. Since there were as many virtual oscillators 
as spectral lines and there was no obvious correlation between orbital motion 
(or whatever was left of it) and the virtual oscillators, which were as numerous 
as spectral lines, transitions in distant atoms could not be causally connected: 
the absorption of a quantum by one atom Ai could be induced by the virtual 
radiation field associated with another atom A2 without implying that A2 
should undergo any ‘downward’ transition (with emission of one quantum).

1 The word, though not Einstein’s, has stuck, as sampling textbooks will readily confirm.
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With Kramers and Slater, Bohr had ventured further along the track opened by 
his personal interpretation of Einstein’s probabilities. In accordance with the 
contention that no mechanical picture of transitions could be given, the 
scheme would only yield a probability for a given transition to occur during a 
specified time interval. That probability appeared to be nothing but the 
expression of a ghostly conspiracy of possibilities. The acausal features of the 
theory met the disapproval of those who, like Einstein, were not ready to give 
up strict causality, and the scepticism of most. Pauli dismissed the enterprise 
as both artificial and misguided. Its experimental disproof by Bothe and Geiger 
in 1925 was certainly welcome with some relief.
Kramers went on developing a theory of dispersion (1924) where the faded 
echo of the virtual oscillators could still faintly be heard. His mathematically 
detailed study of dispersive behaviour led him to a tabulation of transition 
frequencies that we can now regard as the earliest step towards a matrix 
formulation of quantum mechanics. At about the same time Max Born, in a 
paper titled ‘Ober QuantenmechaniK (1924), showed that, as a result of orbital 
quantisation and since the classical fundamental frequency is equal to the 
derivative of the Hamiltonian with respect to the action variable, classical 
formulas could be translated, as it were, into their quantum analogues by 
means of a simple rule, amounting to the replacement of a differential by an 
appropriate finite difference.

A newcomer in the quantum arena, Werner Heisenberg had been a keen 
listener when Bohr was lecturing at Gottingen on the latest developments in 
atomic physics. Bohr’s insistence on ‘fitting’ the needed concepts to the 
available experimental evidence deeply resonated with Heisenberg’s 
inclinations. Another influence on his outlook was Einstein’s discussion of a 
proper usage of ‘clocks and rods’, as a result of which age-old tenets had 
been overthrown. Heisenberg found in Einstein’s groundbreaking analyses an 
incentive to concentrate his own efforts only on quantities that were 
experimentally accessible. His radical answer to the current muddle was to 
reject any attempt at picturing atoms and their transformations, and to focus 
instead on quantities of direct relevance to the calculation of transitions 
between specified initial and final atomic configurations. Asking, and trying to 
answer, idle questions about ‘interphenomena’ could, in his view, only delay 
progress toward the elaboration of a valid framework for atomic physics.
Any attempts to base a viable account of atomic phenomenology on 
a ‘microscopic kinematics’, in which the electrons would be characterised at 
any time by well-defined values of position and momentum, had so far been 
unsuccessful. Heisenberg contended that optical quantities like frequency 
or dipole amplitude, which could be directly related to the observational data, 
should be taken as a springboard for deriving a consistent and effective
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theoretical scheme. If anything was to remain, if only in a ‘symbolic’ manner, 
of the planetary model, optical frequencies of spectral lines might have been 
expected to coincide with definite aspects of the periodicity of orbital motion. 
Harmonic (Fourier) analysis of that motion into orbital frequencies did not, 
however, match the spectroscopic data. Heisenberg hypothesised that 
‘quantum’ transition frequencies vmn should somehow ‘correspond’ to classical 
Fourier frequencies v(m,n), as these occur in the Fourier expansion 

5m(*) = X x(m'n)e2dv(m’n)t a time-dependent classical magnitude £m(t). More
n

boldly still, he assumed that a similar correspondence should also hold 
between each Fourier amplitude x(m,n) and some quantum-theoretic quantity 
x m,n, which was as yet purely hypothetical. Even if some physical meaning 
could be ascribed to each x m,n separately, it was then far from clear whether 
one could make any sense at all of the ‘quantum-theoretical’ analogue
£ x nvie2,l,VnM,t of the Fourier series of £m(t). Heisenberg’s answer was to

n

assume that, even if no straightforward correspondence could be thought of, 
the ‘collective’ (Gesamtheif) of individual terms xmne2lt,Vnt forming the above 
sum could at least be chosen as a valid quantum-theoretical ‘representative’ 
of the classical quantity £m(t). If it meant anything, this peculiar 
correspondence should satisfy consistency constraints. Thus, if a given 
collective was to be a valid representative of some quantity , the square £* 
of that quantity should itself admit a representative Gesamtheit whose 
frequencies and ‘amplitudes’ properly meshed with those in the ‘^-collective’. 
This, Heisenberg concluded as a result of some algebraic manipulations, 
would be guaranteed provided that the x^J, coefficients in the ‘5*-Gesamtheit’

satisfied the composition rule x ^ , ,  = J ]x mm_kxm_km_n. The representative of
k

a product of two classical quantities and should satisfy a 
generalisation of this rule. However, the resulting coefficients would then in 
general differ from those associated with the product -  in other words, 
the composition rule was not commutative.
The dynamical part of Heisenberg’s framework had yet to be worked out. If 
their classical analogues are solutions of Newton’s equation of motion, subject 
to Sommerfeld’s quantisation condition, Heisenberg’s xm,n would have to 
satisfy appropriate relations. After deriving them1, Heisenberg used those 
relations to get the expressions for the energy levels of ‘quantum’ harmonic

1 Those relations comply with Born’s 'translation rule’ which, it will be recalled, substitutes a 
finite difference for a differential. Whilst working under Born’s supervision, Heisenberg had 
been acquainted to that particular rule and had made use of it in his contribution to the 
dispersion theory initiated by Kramers.
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and anharmonic oscillators. Unlike calculations performed with the older 
methods, these expressions implied the existence of a ‘residual’, so-called 
zero-point energy. The prediction was in full agreement with experimental 
results (these had been actually obtained a few months before the submission 
of Heisenberg’s paper, at which time he was not aware of them).
Heisenberg’s approach and procedures were bold and controversial. 
Nevertheless, their importance was recognised almost immediately by Bohr. 
What is perhaps more surprising is Bohr’s praising them as a “precise 
formulation of the tendencies embodied in the correspondence principle”, 
despite Heisenberg’s mistrust of classical representations and his postulation 
of abstract ‘sets’ or collectives of time-dependent -  and complex -  numbers. 
Born, who qualified like none other for assessing the technical merits of 
Heisenberg’s paper, soon realised that Heisenberg’s odd composition rule for 
amplitudes was nothing but the simple rule of matrix multiplication. That this 
could have escaped the attention of Heisenberg himself is understandable, for 
matrices were not yet part of the usual toolbox of the physicist (Heisenberg 
knew nothing about them). It so happened, however, that Born was familiar 
enough with matrices to have used them in his own work on the lattice 
structure of crystals (1921). He also realised that further progress would call 
for expertise in handling those unfamiliar tools. A chance meeting on a train 
made Born lay hand on the right man at the right time: Pascual Jordan not 
only had a solid experience in matrix calculus1; he was also eager to assist 
him in his research programme. Born and Jordan almost immediately teamed 
up and, just two months after Heisenberg’s work had been published, 
produced a rigorous account of what they referred to as Quantenmechanik. 
Heisenberg’s collectives had been duly replaced with matrices q and p, 
thought of as ‘representatives’ of position (spatial coordinate) and momentum 
(classically conjugate to that coordinate) respectively.
A matrix analogue of the classical Lagrangian being tentatively written

L = pq - H, where q is the matrix whose entries are the time derivatives 
of the entries of q and H is a matrix ‘Hamiltonian’ function of p and q, 
extremising the trace of L (a ‘quantum-mechanical’ adaptation of the usual 
procedure of extremising the Lagrangian action in classical mechanics) leads 
to a ‘matrix form’ of Hamilton’s canonical equations:

5H dH M
" - i f  ■ (17>

1 Jordan had assisted Courant in the preparation of the monumental Methoden der 
mathematischen Physik, which were based on Hilbert’s lectures. Algebraic concepts and 
methods, expounded in the first volume (1924), would soon prove essential to the 
mathematical foundations of quantum mechanics.
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Following Heisenberg, but in full awareness of the matrix nature of his 
‘collectives’, Born and Jordan prove that those matrices must satisfy the 
simple ‘canonical’ commutation relation1

pq-qp  = ^ r -  (1.8)
2711

By the end of 1925, the ‘Dreimannerarbeif of Heisenberg, Born and Jordan 
led to the first comprehensive framework -  known for a while as matrix 
mechanics -  that could rightly be called a quantum theory. Bohr’s frequency 
condition and all other experimentally vindicated features of earlier treatments 
of atomic structure or radiation could be derived from the new scheme. 
The methodology, however, stood in total contrast with that of classical 
problem-solving, for it required finding two time-independent (Hermitian) 
matrices that satisfy the commutation relation, and such that the Hamiltonian 
matrix for the system is diagonal. In formal analogy to Hamiltonian mechanics, 
canonical transformations could be defined with the purpose of facilitating the 
resolution of the ‘equations of motion’ -  if the . new ‘quantum-mechanical’ 
equations could at all be regarded as ‘describing’ any motion... The powerful 
‘Hilbert-Courant’ algebraic methods found successful application in the 
calculation of matrix elements (e.g. diagonalisation) -  to the extent, at least, 
that those methods were actually applicable to infinite, unbounded matrices 
(which was by then not established).
There again, much of the mathematics used in the new framework had found 
their first application in celestial mechanics2. Even if the approach initiated by 
Heisenberg was based upon the rejection of any representation of electrons in 
orbital motion, some of the mathematical techniques which had been 
developed to deal with genuine planetary orbits were none the less taken 
advantage of. Besides, if mutual stimulation between mathematics and 
physics had not waited for the quantum, it also seemed to have entered a new 
era, and it was clear enough that matrices were just the tip of an iceberg. 
Drastic departures from classical concepts and procedures had been made in 
the course of working out the new formalism, e.g. through the early imposition 
of Sommerfeld’s action quantisation or the later substitution of a difference for 
a differential. Whether it was appropriate to conceive of the new framework as 
a new kind of mechanics could therefore be questioned. Besides, the physical 
necessity of Planck’s constant remained an enigma.

1 Heisenberg had actually left momentum out of his Gesamtheit representation. If he had not 
omitted it, it is likely he would have been the first to get to the canonical commutation relation 
(1.8), although without recognising its matrix form.
2 Perturbation methods were initially developed to meet the needs of the astronomers, e.g. for 
resolving complex planetary motions into stable orbits. The prediction of the existence of 
Neptune, by Leverrier and by Adams, is a famous instance of their successful use.
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In spite of its success, the new framework had inherent limitations: it had been 
constructed specifically for tackling problems in atomic physics where 
periodicity was essential -  even if any kind of orbital imagery was definitely 
out. Ironically enough, the sophisticated machinery of matrix mechanics was ill 
suited for dealing with the simplest kind of aperiodic motion encountered in 
classical mechanics: uniform rectilinear motion. Bom took advantage of an 
invitation to the MIT to discuss those matters with Norbert Wiener, whom he 
had met at Gottingen the previous year. Wiener’s proficiency in Fourier 
analysis was an asset the physicist and mathematician made full use of, 
developing the first account of quantum theory in terms of linear operators. 
The Born-Jordan commutation relation (1.8) and quantum analogues of the 
classical canonical equations were reformulated as relations between 
operators with Hermitian matrix representatives. After introducing an energy

h ddifferential operator H =-------- , Born and Wiener applied their operator-based
27ii dt

formalism to such basic periodical problems as the harmonic oscillator, 
but also to aperiodic situations like that of rectilinear uniform motion. 
An operatorial formulation was more manageable than the more cumbersome 
matrix-based scheme, and certainly more promising as a first step towards 
understanding the hows and whys of the effectiveness of the new theory. 
Oddly enough, Bom and Wiener failed to notice that the canonical 
commutation relation was precisely of such a form as to suggest writing p, just

h dlike H, as a differential operator: p = ---------. Had they made that one step,
2n\ dq

they could have easily worked out, from very different premises, the kind of 
differential equation that Schrodinger would come up with just a few weeks 
later.
Unaware of those developments, Paul Adrien Maurice Dirac, then in 
Cambridge, took a personal look at Heisenberg’s multiplication rule (which he 
also failed to identify, however, as an instance of matrix multiplication). 
Treating any quantum-mechanical variable x as a classical function of action 
and angle variables, and expanding it as a Fourier series under the 
assumption that the action is quantised in multiples of Planck’s constant, he 
found that the difference xy -  yx was formally analogous to the Poisson 
bracket1 of x and y in classical mechanics, and that (1.8) immediately follows 
from the Poisson brackets for position and momentum variables. It will be 
remembered that Born and Jordan had first obtained ‘quantum’ analogues of 
Hamilton’s equations from the application of a variational principle to a matrix

1 The classical Poisson bracket of two classical magnitudes x and y is
{x y} = dx dy _ dy dx 

da dJ d(o 3J 
where a> is the angle and J the action variable.
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version of the classical Lagrangian, and then derived (1.8) from there. Since 
Poisson brackets are implicit features of Hamilton’s formulation of mechanics, 
it is little wonder that another (operator-based) route to the same ‘quantum 
conditions’ (as Dirac would later1 call them) should give rise to a parallel 
between Poisson brackets and quantum-mechanical commutators.
Finally, Dirac obtained the expression of the dynamical equation a function F 
of the quantum-mechanical canonical variables p and q should satisfy:

i?F = ^ (F H -H F ), (1.9)
dt ih

where H is the quantum-mechanical Hamiltonian (operator), which in analogy 
with classical physics represents the energy of the system. This is the 
equation that regulates the time evolution of a dynamical variable F in the so- 
called ‘Heisenberg picture’.
Although he did not explicitly mention operators as the proper mathematical 
representatives of quantum-mechanical quantities, there was no doubt in 
Dirac’s mind those ‘q-numbers’ (as he referred to them in a subsequent paper) 
should be substituted for the more familiar commuting ‘c-numbers’ of classical 
physics2. However, the need for such substitution did not weaken his 
conviction that any deep understanding of the formalism should make 
obligatory reference to the Hamiltonian formulation of classical mechanics. 
Quite independently, another trend of thought had crystallised around 
Einstein’s notion of light quanta. Louis de Broglie, a doctoral student at the 
Sorbonne (1923), looked for a way to reconcile a corpuscular view with 
periodic features that were apparently part and parcel of the quantum 
hypothesis. He imagined that a moving particle of internal energy m0c2 would 
be the seat of vibrations with frequency vo, such that moc2 = hvo. The moving 
object would also be accompanied by a (fictitious) wave -  Uune onde fictive 
associee au mouvement du mobile” -  that would keep in phase with the 
internal periodicity of the body. The latter assumption was introduced in order 
to eliminate a possible discrepancy between v0 and the frequency observed by 
a stationary observer. The wavelength of the wave associated with a particle 
of mass m and total energy E, subject to a potential V, would be

H h
>- = — = —  where p was the particle’s momentum. De Broglie

p ,/2m(E-V)

applied his proposal to the motion of an electron on a closed trajectory, e.g. an 
atomic orbit. If the accompanying wave described the same orbit, phase 
agreement between the wave and the intrinsic vibratory process within the 
electron led to a stability condition that just happened to be Sommerfeld’s.

1 Dirac 1958.
2 Darrigol 1992.
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The group velocity of the phase waves would then be equal to the actual 
velocity of the particle on its trajectory.
The idea that a particle in motion would, at each point of its trajectory, follow 
the normal to a surface of equal phase at that point was familiar to Louis de 
Broglie. This was in fact a key aspect of a most intriguing analogy between 
optics and mechanics, suggested by William Rowan Hamilton in the 1830s. 
Just as Lagrange had regarded mechanics as a branch of mathematics, 
Hamilton was not so much concerned with the nature of light or motion as with 
developing a ‘harmonious’ formalism that would bring together, for the 
satisfaction of intellect, two seemingly disconnected domains of experience. 
It so happens that mechanics and geometrical optics were both regulated by 
variational principles: mechanics by a principle of stationary action, and optics 
by Fermat’s. In mechanics, the (configuration space) path that connects two 
fixed configurations y(ti) and y(t2) of a system at times ti and t2 satisfies 
Newton’s laws of motion just in case that path makes the time integral of the 
Lagrangian L stationary with respect to (5) variations of the path that vanish at 

*2

the end points: 5 jLdt = 0. Considering only systems for which the total energy
t,

E is a constant and the potential V does not depend on time, letting L = T -  V 

D2and T+V = —  + V = E, the stationarity condition reduces to 8 (Tdt = 0 or 
2m -ii

M2 _________
8 JA/2m(E-V)ds = 0, where ds is an infinitesimal element of the mechanical

M,

path. Fermat’s principle, which states that the actual optical path extremises 
the time taken by light to propagate between the end points, is formally

ds
expressed in a similar way as1 8 J—  = 0.

Consider a single point-like mechanical system (a ‘particle’) of mass m, its 
position being labelled using rectangular (cartesian) coordinates (x,y,z). 
Hamilton’s principal (S) and characteristic (W) functions are related by 
S = W -  Et. Any surface of constant S must therefore coincide, at any given 
time, with some surface of constant W. As time goes by, every surface of 
constant S can be thought of as displaced to another locus in configuration 
space. The surface of action propagates similarly to a wave front, undergoing 
deformations in accordance with local variations of the potential. The velocity 
u with which the wave front propagates -  again, in the relevant configuration 
space, which only accidentally coincides with three-dimensional physical

1 Here, ds is an infinitesimal element of the optical path, v =  — is the phase velocity and n
n

the refractive index of the medium.
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space in the single particle case -  can be defined as the ratio of the 
infinitesimal distance ds normal to the surface, to the infinitesimal time

dsrequired to cover that distance: u = — . The infinitesimal variation of W during 

an infinitesimal time interval dt is dW = Edt. W is a scalar function, hence

dW = VW ds and (VW )2 = 2m(E-V) is the stationary Hamilton-Jacobi

equation. The velocity of the action wave is therefore u =
VW V 2m (E -V )’

hence a function of the potential1. Since the components of the momentum p 
of the one-particle system are the partial derivatives of W relative to the spatial

coordinates, i.e. p = VW, the momentum vector is orthogonal to surfaces of 
equal action in configuration space2. At any time during the motion of the 
particle, the direction of its configuration path will be orthogonal to a constant 
action surface. Between two configuration end points Mi and M2, the motion of

M?dsaction wave fronts must satisfy the variational condition 5 —  = 0 , in close

analogy to Fermat’s principle. As expected however, there are fundamental 
discrepancies between the optical and the mechanical accounts. Thus, in 
geometrical optics, light propagates more rapidly where the corresponding 
wave fronts are far apart, whereas action wave fronts propagate slowly while 
the particle moves fast i.e. where surfaces are tightly packed (u is inversely 
proportional to the speed of the particle). Hence, if a wave motion can be said 
to ‘accompany’ the change of configuration with time of a (N-particle) system 
(in the relevant 3N-dimensional space), the two ‘associated’ motions do not 
keep step. The association of a wave with a particle, or with a multiparticle 
system, is fundamentally formal -  particles do not ‘ride’ action waves.
If Hamilton’s proposal failed to capture the interest of his contemporaries, it is 
mainly because geometrical optics is, after all, only an approximation to 
undulatory optics. A parallel between its variational expression (Fermat’s 
principle) and a variational formulation of mechanics is intriguing -  is it really 
significant? Decades later, the appearance of the quantum raised another, 
deeper issue: could classical mechanics be to ‘wavelike’ motion what 
geometrical optics is to undulatory optics, i.e. a short-wavelength limit?

1 u = E/p in the single-particle case, since the momentum p is such that p2 = 2m(E -  V  ), where 
E -  V  is the kinetic energy.
2 Why it has to be so can easily be figured out: if the particle path ‘crosses’ two neighbouring 
surfaces of constant action St and S2 at Mt and M2 respectively, the orthogonality 
of momentum to both surfaces will imply less action than there would correspond, say, to a 
path connecting Mi to any other point M’2 on S2 (the difference in action is precisely given by 
pds = ^ /2m (E  -  V )d s  , where ds is the infinitesimal distance between the two surfaces and p

the absolute value of the momentum).
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Perhaps undulatory aspects, which are negligible or averaged out in all 
macroscopic situations, can no longer be overlooked as physicists investigate 
finer levels of material structure and their coupling to radiation1. De Broglie’s 
speculative ideas did not create much of a stir in the scientific community. 
Nevertheless, Einstein’s acute vision perceived in them the seed of a 
conceptually more rewarding alternative to the dazzling computational 
techniques of matrix mechanics. What de Broglie’s work seemed to suggest 
was that what was perhaps needed was the derivation of an ‘action wave’ 
equation, which would be to the classical equations of mechanics what the 
wave equation of optics is to the basic ‘eikonal’ equation of geometrical optics. 
Schrddinger’s attention had been drawn to de Broglie’s thesis whilst reading 
one of Einstein’s papers2. He realised that de Broglie’s derivation of 
Sommerfeld quantisation as a constraint on the number n of wavelengths that

1 h‘fit’ within an atomic orbit (n = &—dq, with A, = - )  could be treated as an
J X p

eigenvalue problem. His first application of that treatment to the bound 
electron was quite unsuccessful, but he could not by then have been aware 
that the discrepancy was due to his overlooking electron spin. He concluded 
instead that his special-relativistic treatment of the problem was flawed. Invited 
by Debye, his predecessor at the University of Zurich, to organise a 
colloquium on de Broglie’s ideas, Schrodinger re-examined his initial 
calculations and found that they agreed with experimental data in the 
Galilean-relativistic approximation. In a seminal paper published in 1926, 
Schrodinger elaborates at length on Hamilton’s analogy, carrying it further that 
de Louis de Broglie had done, or was indeed ever willing to do.
In the approximation of geometrical optics, the wavelength of the propagating 
light is assumed to be small compared with distances over which the 
refractrive index n of the medium varies. When the index is constant, 
the equation for wave propagation admits a plane wave solution with phase3 
k.r -  ©t. If the index varies, the wave will undergo bending and distortion and 
the wave equation will no longer admit a plane wave solution. However, under

1Clues to undulatory features could actually have been spotted in the available data as early 
as 1924, i.e. before they were clearly revealed in the results of scattering experiments 
performed with electrons by Davisson and Germer (1925) An interpretation of the latter in the 
light of de Broglie’s thesis (or, by then, of SchrOdinger's version of quantum mechanics) was 
actually delayed until 1927. It is also somewhat ironical that the final confirmation of diffraction 
effects involving electrons should have come from experiments performed by J.J. Thomson’s 
son: three decades after the father had ‘conclusively shown’ that electrons ‘were’ particles, 
George P. Thomson showed that they could ‘behave like waves’...
2 This is the 1925 paper in which Einstein elaborates on S.N. Bose’s original treatment of 
an assembly of light quanta, and derives Plancks’ radiation law on purely ‘statistical’ grounds. 
Einstein briefly mentions de Broglie’s ideas which, in his opinion, “involve more than merely an 
analogy”.
3 The wave number k, wavelength X and angular frequency © are linked by k= nto/c =2n/X, 
where c is the speed of light in vacuo.
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a very gradual change of n the solution will retain a similar form as the plane 
wave. In particular, the total phase can be written k0(L(r) -  ct), where L is a 
real function of position that is usually called the eikonal or optical path length 
(k0 is the wave number in the vacuum). Imposing such a form to the solution of 
the wave equation and retaining only those terms with the highest power of ko

leads to the eikonal equation of geometrical optics: (VL)2 = n2. Hamilton’s 
analogy originates in the observation that this and the Hamilton-Jacobi

equation (VW )2 = 2m(E-V) for the motion of a single particle in a potential V 
have the same basic form. On the mechanical side, the characteristic function 
plays a similar role as the eikonal does in geometrical optics. Action then plays 
the role of phase, the momentum that of the wave vector and the mechanical 
energy that of the frequency. Comparing the total phase of a light wave with 
the relation S = W -  Et, taking into account Planck’s relation E = hv, suggests 
writing a separable solution for quantum action waves in the form

2jti(—)t 9 o
lF(q,t) = \|/(q)e h . ‘Plugging’ it in the wave equation VZlI, + nk0 ¥  = 0 then 

leads to1

V2v|/ + ̂ v ) /  = 0. (1.10)

In fact, this equation appears, prior to its formal derivation, in the first part 
of Schrodinger’s paper, devoted to the hydrogen atom. Schrodinger 
substitutes for the principal function S a term that is proportional to the 
logarithm of some function \\/, whose separable form lends itself to analytical 
treatment. The resulting equation, of the Hamilton-Jacobi type, is written as a 
quadratic form in and its derivatives, where \|/ is required to be real, twice 
continuously differentiable, and extremal when the quadratic form is integrated 
over the whole of the q-Raum (configuration space). The Euler-Lagrange 
equation associated with the variational problem is then the sought wave 
equation. For negative values of the energy E, the equation has solutions only 
provided energy is quantised i.e. takes discretely distributed values 

me4E = ------ - n 2 (n >1 being an integer). The result is in accordance with the Bohr
2K

energy spectrum provided K is set to the value h . A discrete energy spectrum 
thus emerges as a result of requiring that y  functions, solutions of (1.10), have 
suitable mathematical properties. In other words, Schrodinger substitutes 
formal requirements for the (perhaps no more) enigmatic postulation of a 
quantisation of energy or angular momentum. Applied to the harmonic or

1 The convenient symbol  ̂= JL was introduced after 1926.
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Planck’s oscillator, the theory yields the same results (e.g. zero-point energy) 
as Heisenberg’s procedure, although the route is quite different.
The third installment of Schrodinger’s Quantisierung as Eigenwertproblem1 
paper is devoted to the development of an appropriately ‘wave-mechnical’ 
perturbation theory, which is successfully applied to the Stark effect. It is there 
that the general equation

av  fe2
i ft—  = ------ V2vF + W  (1.11)

at 2m

is introduced, the solution of which is a time-dependent function ^(q.t). 
This equation has the typical form of the equation for a diffusion process, 
albeit with an imaginary coefficient. This similarity eventually leads 
Schrodinger to relax the requirement that the ¥  ‘wave function’ should be real
valued. Thus, not only are the solutions of Schrodinger’s equation confined 
within the abstract arena of configuration space, those solutions are now 
generally complex-valued.
De Broglie, unlike Bom and Wiener (in a different context), had not just failed 
to realise he was but a short step away from writing down the equation for 
‘quantum wave’ propagation. But there were waves and ‘waves’: if it had to 
‘evolve’ in configuration space, this in his view would have amounted to 
nothing but denying the wave its ‘physicality’:

L’id6e de M. Schrodinger de definir I’onde 'P d’un systOme dans I'espace de 
configuration m’avait au dObut beaucoup scandalise parce que, I’espace de 
configuration Otant purement fictif, cette conception enlOve a I’onde toute 
rOalitO physique : pour moi, I’onde de la mOcanique ondulatoire devait 
Ovoluer dans i’espace physique £ trois dimensions2.

If Schrodinger’s breakthrough was not to de Broglie’s taste others, including 
Einstein, Planck and Sommerfeld were quite enthusiastic. At last, it looked as 
if all the puzzles of atomic structure and radiation could be dealt with, and at 
least partially resolved, in a relatively comfortable manner. It was something of 
a relief that one did not have to give up the continuum, and that ‘quantum’ 
problems could be tackled using well-tried analytical methods. Schrodinger 
himself entertained a vision of atomic structure and ‘transitions’ that reduced 
them to manifestations of an underlying fundamental vibrational process. 
He deemed it both more plausible and more satisfactory to envision the atom 
as a system of vibrations than as a discontinuous system of ‘permitted’ orbits, 
between which electrons would unexplainably make ‘jumps’ that could not be

1 “Quantisation as an Eigenvalue Problem’’.
2 “Mr. Schrddinger’s idea of defining the wave of a system in configuration space had first 
appalled me because, configuration space being purely fictitious, this conception removes 
all physical reality from the wave: for me, the wave of undulatory mechanics had to evolve in 
three-dimensional physical space" (de Broglie 1956).

28



pictured or analytically accounted for1. As to the nature of the solutions of his 
‘wave equation’, Schrodinger could only speculate. Had it been possible, there 
is little doubt that he would have, like de Broglie, felt much more comfortable 
carrying out his programme using the resources of four-dimensional 
spacetime. There seemed, however, to be no possible wave-theoretical 
treatment of the several-electron problem that could avoid resorting to 
multidimensional configuration space. He suggested, without much conviction,

that XF4/* = I'F]2 might play the part of a weight function in configuration space,

quantifying spatial fluctuations of the electric charge density.
The advocates of matrix mechanics made a somewhat bitter response to the 
favourable reception of Schrodinger’s theory. Conspicuous drawbacks of that 
approach were pointed out: its general formulation in multidimensional 
q-space, which reduced claims of ‘visualisability’ (Anschaulichkeit) to mere 
pretence; Schrodinger’s half-baked interpretations of the 'P  solution; and the 
allegedly undulatory character of a framework in which a basic quantity like 
the velocity of the ‘q-wave’ appeared as a function of the mutual potential 
energy...of particles. The wave packets that Schrodinger had introduced to 
bridge the gap with the notion of localised particles2 were also shown to have 
an irresistible, terribly ‘uncorpuscular’ tendency to spread out3. This made it 
unlikely that the orbital motion of localisable electrons within the hydrogen 
atom could be accounted for in terms of such packets. Schrodinger, though 
unyielding in his rejection of discrete ‘quantum jumps’, was more willing than 
were Pauli or Heisenberg to reconcile the two approaches. He showed that 
basic wave-mechanical relations actually had a counterpart in the Born- 
Heisenberg-Jordan formalism, provided suitable differential operators were 
introduced, and that a wave-mechanical equation could be consistently 
formulated as a matrix equation (not a major surprise once it is realised that 
Heisenberg’s matrix elements are after all nothing but Fourier coefficients ‘in 
disguise’).
Born, at least, soon acknowledged that Schrodinger’s formalism was -  rather 
paradoxically perhaps -  more suitable for a treatment of collision problems 
than the abstract methods he had himself contributed to develop. A suitable 
eigenfunction being ascribed to the incident particle, the wave-theoretical

1 Schrodinger’s judgment on matrix mechanics: a “rather difficult method of transcendental 
algebra, defying any visualisation”, has often been quoted.
2 In his Quantisierung... paper, Schrodinger writes: “One can try to build a wave group with 
relatively small dimensions in all directions. Such a wave group will then evidently follow the 
same laws of motion as a single representative point [Bildpunkf\ of the mechanical system. As 
long as one can view it as being approximately punctual, that is, as long as one can neglect 
its extension with respect to the dimensions of the system’s trajectory, one can view the wave 
group as replacing, as it were, the representative point”.
3 The linear harmonic oscillator, which Schrodinger had made use of to introduce his wave 
packets, is actually a rare and noteworthy exception.
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problem came down to that of the scattering of approximately plane waves. 
Far from the scattering centre, the expression of the outgoing (q-space) wave 
took the form of a weighted sum or integral in which a ‘wave’ function of the 
angles appeared, specifying a direction of scattering. Given his predominantly 
corpuscular viewpoint, Born was compelled to interpret the square of the 
modulus of every such function as a measure of the probability of scattering in 
a given direction. Schrodinger’s 'F could then be regarded as a ‘wavelike’ 
propagator of such a probability, the propagation of the ‘probability wave’ 
being regulated by Schrodinger’s differential equation. Born also formulated 
two basic theorems that were to be of central importance for the calculation of 
probabilities in a quantum-mechanical problem. The theorem of spectral 
decomposition states that a suitable set of eigenfunctions can be chosen for 
expanding linearly a given XF, where each eigenfunction corresponds to a 
possible (experimentally ascertainable) outcome. According to the second 
theorem, the relative phases of the coefficients in any such expansion 
contribute in a crucial way to the evaluation of probabilities. Bom’s 
interpretation of ‘quantum’ probabilities, however, was totally inconsistent:

The dominant tendency in Bom’s writings is to treat the quantum probabilities, 
given by the square of the modulus of the wavefunction, as probabilities for 
measurement outcomes and to waffle on their premeasurement meanings, 
sometimes implying that they express our ignorance (unavoidable and 
ultimately ineliminable, owing to the uncertainty relations) regarding the 
objectively well-defined states of individual systems, but at other times inclining 
to the view that the states of individual systems are, prior to measurement, 
objectively indeterminate...To make matters worse, Bom apparently also 
believed that his own ‘statistical interpretation’ of the quantum theory gave as 
complete a description of the quantum world as could be given1.

The theorists-ideologues of the Copenhagen orthodoxy would soon radicalise 
the role of probability in quantum mechanics, endowing it with a quasi- 
ontological significance. Quantum probabilism was, as it were, the icing on the 
Bohrian cake: for those who had convinced themselves of the impossibility of 
providing any detailed account of transitions within atoms, it was but a short 
step to interpret Born’s probabilities as both a priori and irreducible, and to 
deny the possibility of describing the actual motion of microphysical objects. 
Much of the theoretical effort would, from the end of 1926, be devoted 
to investigating the mathematical structure of the new scheme. Dirac studied 
transformations of 'F functions from the q-space to the p-space of ‘conjugate’ 
momenta, and showed that the coefficients involved in a change of basis 
determine probabilities of transitions through their squared moduli. A major 
step forward was the development of the so-called transformation theory, 
whose main purpose was to find quantum-mechanical analogues of the

1 Deltete and Guy 1990, p.675.
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canonical transformations of classical mechanics. Jordan achieved another 
technical tour de force, unifying all the previous formulations of the new theory 
into a tight mathematical package. Dirac’s and Jordan’s versions of 
transformation theory had all appearances of fulfilling an instrumentalist 
programme, for they merely supplied consistent rules for computing the 
probability that measuring quantity X will yield xkl given the result yp of 
measuring another quantity Y, when the linear operators associated with X 
and Y do not in general commute. Those like Einstein, de Broglie and 
Schrodinger, whose urge for a causal understanding was left unsatisfied, were 
more and more concerned about a drift toward formalism.
No lesser a mathematician than David Hilbert was called upon to assist in 
probing the mathematical structure of the new theory. However, a decisive 
and quasi-final step was made by von Neumann, who was the first to realise 
(1927) that the space of all summable and square-integrable functions is 
actually isomorphic to that of vector sequences involved in the discrete 
quantum-mechanical eigenvalue problem. Nowadays, the abstract structure 
underlying all the formulations of quantum theory is referred to as Hilbert 
space. Von Neumann developed a theory of linear operators and made a 
rigorous treatment of the eigenvalue problem, which he generalised to infinite
dimensional Hilbert space.
Heisenberg’s conviction that basic traits of the quantum-mechanical 
formalism, e.g. the non-commutation of the operators associated with physical 
quantities, could not be reconciled with a causal explanation of transitions, or 
indeed of any process on (sub)atomic scales, was reinforced by the failure of 
Schrodinger’s short-lived attempts at making good physical sense of the tx¥ 
waves’. There was hardly any prospect of ever providing a more or less 
‘intuitive’ picture of atomic structure and microphysical phenomena. On the 
other hand, if the actual purpose of physics was the proper coordination of our 
perceptions1, references to space/time related conceptualisations could not be 
dispensed with. The applicability of classical concepts should then somehow 
be restricted or qualified. Unlike Bohr, Heisenberg looked for a quantitative 
criterion that would signal limitations to the applicability of those concepts. 
Whilst working on transformation theory, Dirac had pointed out that the 
reciprocity, associated with properties of the Fourier transform, of ‘position’ (q) 
and ‘momentum’ (p) in the quantum-mechanical setting implies that one’s 
knowledge of a given numerical value of q implies maximal uncertainty 
regarding p (all values of p are then equally possible.) What was needed was 
a quantitative relationship regulating the theoretically permissible distributions 
of q and p values, or those of other ‘conjugate’ quantities.

1 Heisenberg’s early writings betray the influence of Mach, as do Einstein’s analyses in his 
1905 ‘relativity’ paper.
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In a 1927 paper, Heisenberg worked out a limiting case of such a relation in 
the form of an equality ApAq = h which, he argued, shed light on the rather 
enigmatic canonical commutation relation (1.8). It remained to be seen, 
however, whether that kind of relation was more than just a reflection of 
inherent mathematical traits of the theory -  more precisely, of properties 
associated with the inversibility of the Fourier integral. Heisenberg addressed 
the issue by discussing the conditions of the observation of the position of an 
electron with a high-resolution (y ray) microscope. This well-known 
Gedankenexperiment, which will not be reproduced here, prompted his 
conclusion that our attempts to acquire information about the localisation and 
momentum of a microphysical object imply an inevitable and irreducible trade
off, captured by the inequality ApAq > h (‘uncertainty [Ungenauichkeit\ 
relation’). Heisenberg’s argument1 is the prototype of a widely popularised2 
motivation of the quantum-mechanical formalism based on the idea that 
observing a microphysical object must inevitably disturb its course3.
After 1924, Bohr had mostly been a keen observer of the emergence of 
quantum mechanics in its various guises. The last developments strengthened 
his long-held views. In particular, Born’s suggestion to think of 4* as a sort of 
probability density function must have appeared to him a natural outgrowth of 
his own earlier speculations about the randomness of atomic transitions. 
Spurred by Heisenberg’s derivation of the ‘uncertainty relations’, the 
significance of which he had discussed with Heisenberg himself (and partly 
disagreed upon), Bohr waxed philosophical in an attempt to draw the lesson of 
all the efforts, achievements and debates of the past years. Unlike 
Heisenberg, who emphasised corpuscular aspects as those to be retained, 
if only in a symbolic manner, from classical physics, Bohr saw in Planck’s

(E = hv) and de Broglie’s (p = —) basic relations a compelling indication that
A.

the new scheme had to somehow make room for both classically corpuscular 
and undulatory aspects. These, though mutually exclusive, were none the less 
necessary to a proper account of the phenomenology of atomic physics. 
No logical contradiction was to be feared as long as the set-ups required to 
ascertain either of those aspects could not be simultaneously realised. 
The finiteness of the action quantum (Planck’s constant) somehow seemed to 
imply that the behaviour of a microphysical system could not be generally 
disentangled from the effect of our attempts to observe it The extent to which

1 Somewhat surprisingly, in the same paper, Heisenberg calls upon Schrodinger’s wave 
packets, which he had rejected when Schrodinger propounded them, to support another 
sweeping suggestion: that experimental interventions are required to ‘substantiate’ or, as it 
were, ‘devirtualise’ orbital paths.
2 Notably by Feynman in his Caltech lectures (Feynman et al. 1965, sections 1-8, 2-2 and 
2-6).
3 See Brown and Redhead 1981 for a devastating critique of the disturbance-based account.
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our gathering information about one aspect (e.g. ‘position’) would affect 
another (the component of ‘momentum’ in the same direction) was quantified 
by Heisenberg’s inequalities. The outcome of those ruminations was delivered 
in a lecture at the centenary Alessandro Volta conference by Como lake in 
1927. The rhetorical complexity of Bohr’s presentation actually failed to 
captivate an audience whose technical expertise was far greater than its 
readiness to digest ‘philosophical’ lessons. However, the essentials of Bohr’s 
ideas were, so to speak, already in the air, and it would not be long until most 
physicists paid lip service to the so-called Copenhagen interpretation. At the 
Solvay Congress that took place in Brussels one month after the Como 
conference, Louis de Broglie’s plea for a causal alternative to ‘quantum’ 
computational methods met with utter indifference. Einstein’s dissent 
expressed itself in a number of objections levelled at what he deemed an 
inherent incompleteness of quantum mechanics. Bohr responded to all those 
challenges, pointing out time and again that Heisenberg’s ‘uncertainties’, 
when properly taken into account, would void Einstein’s criticism. However, 
neither Einstein nor Schrodinger would completely give up. Their persistent 
criticism of the emerging orthodoxy culminated in the same year (1935), 
respectively in a paper Einstein wrote in association with two Princeton 
colleagues, B. Podolsky and N. Rosen, and Schrodinger’s with his no less 
famous ‘cat paradox’.
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2
On states’ and physical quantities in quantum mechanics

2.1 Quantum mechanics without 'states’?

Various notions of state occur in science and applied mathematics (e.g. ‘finite- 
state automata’ in computing theory). However, the word as it is used in 
relation to quantum theory originates in analytical mechanics. There, state 
designates a set of generalised coordinates and their derivatives, or a set of 
phase space coordinates (generalised coordinates and conjugate momenta). 
Diachronically, the change with time of the coordinates traces out a path in the 
relevant space, in accordance with Lagrange’s or Hamilton’s equations. 
Synchronically, the state gives a snapshot of the motion. However, it is 
customary to regard it also as a ‘property state’ of a moving object. Saying 
that the value of a dynamical variable lies in a certain range amounts to 
picking off a subset of the relevant phase space, namely that of classical 
states for which the assertion is true. Now, assuming that Hilbert space does 
qualify as an appropriate ‘state space’, a similar assertion in quantum 
mechanics would in contrast pick off a linear subspace. Can a Hilbert space 
ray (i.e. a one-dimensional subspace) be justifiably regarded as supplying a 
‘list’ of properties of a moving (presumably microscopic) body?
If a given Hilbert space ray determines a quantum state, then to that ray 
should correspond a list of definite properties, associated with definite 
(eigen)values of a number of variables. However, because the algebra of 
idempotent variables is no longer boolean1, properties that do not belong to 
the list cannot be regarded as not being the case. Taking propositions which 
assert properties associated with a ‘quantum property state’ as true will not 
imply that all those properties that are not associated with the property state 
are false; nor can we consider as false propositions that correspond to 
subspaces orthogonal to the ray, for then all those (infinitely many) 
propositions associated with subspaces that are neither orthogonal to the ray 
nor include it would be left with no definite truth value. Thus, the idea that 
properties possessed by a system are reflected in the formalism raises basic 
difficulties2. If these arise, it is because it is uncritically assumed that Hilbert 
space is a valid analogue of classical ‘state’ (phase) space, and in particular

1 See e.g. Bub 1999, chapter 1.
2 See Sections 4.3-4.4.
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that Hilbert space vectors or ¥  functions are legitimate representatives of 
some property states of individual systems.
In quantum mechanics, linear combinations of Hilbert space vectors 
(superpositions) arguably reflect dynamical relationships that cannot be 
resolved using the resources of classical mechanics. However, admitting as 
much does not imply that such relationships warrant the interpretation of 
Hilbert space vectors as representatives of ‘non-classical states’. Some of the 
pioneers of quantum theory were wary of the temptation to read too much into 
the new formalism. In a letter to Einstein dated 13 July 1935, Schrodinger 
writes: “The best response so far [to the EPR argument1] is from Pauli, who 
at least admits that the use of the word ‘state’ [Zustand\ for the psi-function is 
quite disreputable2.” Besides Pauli and Schrodinger, other leading figures 
in the development of quantum theory also expressed reservations with 
respect to a view of ¥  functions as representatives of ‘states’.
In his Como lecture3, Niels Bohr points out that “the definition of the state of a 
physical system, as ordinarily understood, claims the elimination of all external 
disturbances.” Observation, however, implies “interactions with suitable 
agencies of measurement, not belonging to the system”, Since, in classical 
physics, such interactions have very little, if any effect on our descriptive or 
predictive abilities, the idea of an individual system having a state is a useful 
and totally harmless fiction. By contrast, in the microphysical domain quantum 
mechanics regulates, “an unambiguous definition of the state of a system is 
naturally no longer possible, and there can be no question of causality in the 
ordinary sense of the word...[t]he space-time coordination and the claim of 
causality, the union of which characterizes the classical theories”, should be 
thought of as “complementary but exclusive features of the description, 
symbolizing the idealization of observation and definition, respectively4.” 
Such complementarity5 precludes attributing to a given system both a 
localisation in space (associated classically with a definite set of generalised 
coordinates) and definite causal behaviour (associated in classical mechanics 
with a definite set of time derivatives of the generalised coordinates or with 
conjugate momenta). Accordingly, nothing in the quantum-mechanical 
formalism qualifies as the representative of the state of a physical system. 
Wave functions or Hilbert space vectors are, in Bohr’s view, just symbolic and 
computational devices whose usefulness is utterly devoid of ontological 
significance.

1 Einstein et al. 1935.
2 Quoted by Fine 1986, p.74.
3 Bohr 1928.
4Bohr 1928; quoted from Jammer 1989, p.366.
5 For a lucid discussion of the evolution of Bohr’s views on complementarity, see Held 1994.
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In his study of collisions (1926), Max Born never regards wave functions as 
valid representatives of objective atomic states. Any such function provides a 
means to calculate the probability of a given process or ‘transition’, but it does 
not appear to connectable to a kinematics of particles. In his later writings, 
Werner Heisenberg1 would also speak of functions as probability functions, 
only conceding that those functions relate, besides our incomplete knowledge, 
to ‘potentialities’ that would be inherent in such experimental situations as 
encountered in atomic physics.
Although he had welcomed Schrodinger’s achievement, Albert Einstein soon 
found himself on the front line of the opponents2 to the new ‘mechanics’. 
He quickly realised that the new function could not be said to describe an 
objective physical state of an individual system unless some major 
concessions were made, which he deemed unacceptable. The inadequacy of 
¥  functions for the purpose of describing physical states was the target of his 
ultimate and most famous attack on quantum theory3. Considering two 
particles A and B that previously interacted and thereby developed 
correlations associated with the conservation of the total linear or angular 
momentum, a complete description of the A+B pair should, Einstein 
contended, (i) ascribe to A and B separately a representative of their objective 
state. Furthermore, (ii) B should retain his unaltered objective state whatever 
occurred to the arbitrarily distant particle A. However, not only did quantum 
mechanics violate (i) in ascribing the A+B a single, non-factorable wave 
function, but contrary to (ii) different final ‘states’ would be ascribed to B 
depending on the outcome of measuring on A a relevant quantity. As Einstein 
wrote to Born4, “If one abandons the assumption that what exists in different 
parts of space has its own, independent, real existence, then I cannot see 
what it is that physics is meant to describe.” If realistically interpreted 'F 
functions violate such a basic requirement it was enough, in Einstein’s view, 
for denying their adequacy as representatives of states of individual bodies. If 
such functions relate in any way to individual systems, they do so in a 
fundamentally incomplete, statistical manner. Nowhere, perhaps, are 
Einstein’s qualms about the claim that 'F functions are representatives of 
states summarised in a more lucid way than in a 1952 letter to Michele Besso:

What relation is there between the ‘state’ ('quantum state’) described by a 
function and a real deterministic situation (that we call the 'real state’)? Does 
the quantum state characterize completely (1) or incompletely (2) a real state?
One cannot respond unambiguously to this question, because each 
measurement represents a real uncontrollable intervention in the system 
(Heisenberg). The real state is not therefore something that is immediately

1 Heisenberg 1963.
2 Deltete and Guy 1990.
3 Einstein etal. 1935.
4 Letter dated 3 March 1947, quoted by Deltete and Guy 1990, p.680.
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accessible to experience, and its appreciation always rests hypothetical 
(comparable to the notion of force in classical mechanics, if one doesn’t fix a 
priori the law of motion). Therefore suppositions (1) and (2) are, in principle, 
both possible. A decision in favor of one of them can be taken only after an 
examination and confrontation of the admissibility of their consequences.
I reject (1) because it obliges us to admit that there is a rigid connection 
between parts of the system separated from each other in space in an arbitrary 
way (instantaneous action at a distance, which doesn’t diminish when the 
distance increases). Here is the demonstration:
A system S12) with a function 'P12, which is known, is composed of two systems 
Si and S2l which are very far from each other at the instant t. If one makes a 
‘complete’ measurement on S1t which can be done in different ways (according 
to whether one measures, for example, the momenta or the coordinates), 
depending on the result of the measurement and the function one can 
determine by current quantum-theoretical methods the function *p2 of the 
second system. This function can assume different forms, according to the 
procedure of measurement applied to S!.
But this is in contradiction with (1) if one excludes action at a distance. 
Therefore the measurement on Si has no effect on the real state S2, and 
therefore assuming (1) no effect on the quantum state of S2 described by 
I am thus forced to pass to the supposition (2) according to which the real state 
of a system is only described incompletely by the function 'F12. If one considers 
the method of the present quantum theory as being in principle definitive, that 
amounts to renouncing a complete description of real states. One could justify 
this renunciation if one assumes that there is no law for real states -  i.e., that 
their description would be useless. Otherwise said, that would mean: laws don’t 
apply to things, but only to what observation teaches us about them (the laws 
that relate to the temporal succession of this partial knowledge are however 
entirely deterministic).
Now, I can’t accept that. I think that the statistical character of the present 
theory is simply conditioned by the choice of an incomplete description1.

According to Einstein, quantum mechanics in its currently accepted form 
would not fulfil the primary aim of a physical theory, which is to provide as 
complete an account as possible of the behaviour (motion) of individual 
objects. Fundamental physical laws cannot “consist in relations between 
probabilities for the real things, but [must consist in] relations concerning the 
things themselves2.” To the extent that quantum theory has to rely on 
probability, it is essentially inadequate as a basic theoretical framework. Their 
probabilistic use suggested to Einstein that ‘wave functions’ referred to 
ensembles of microphysical systems. This would explain why they would be 
essentially inadequate for answering questions such as the decay time of a 
single radioactive atom. The probabilities calculated using the rules of 
quantum theory would merely quantify our lack of knowledge about the 
properties of individual members of one such ensemble3. Einstein occasionally 
mentions the ideal character of ‘quantum ensembles’. This suggests that he 
might have thought of them as something akin to the conceptual (Gibbsian)

1 Quoted by Bernstein 1991.
2 Einstein, quoted by Fine 1986, pp. 100-101.
3 Einstein’s insistence on relating quantum-theoretical probabilities to ensembles suggests 
that his 1916 introduction of a priori probabilities was in his view nothing but a makeshift, that 
should be discarded when a satisfactory dynamical framework would be available.
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ensembles of classical statistical mechanics. As to whether he thought of 
anything more specific, there is room for speculation. Would Planck’s early 
(1912) derivation of the correct expression for the energy of the quantised 
harmonic oscillator count as a step toward such an ensemble view? By 
averaging over a phase-randomised ensemble of harmonic oscillators at

thermodynamic equilibrium, Planck had succeeded in deriving the ^  value of

zero-point energy per harmonic oscillator. This was achieved using classical 
statistical reasoning (with a crucial reference to the non-negativity of 
probability), some thirteen years before Heisenberg’s quantum-mechanical 
treatment of the same problem. Another similar example is a simple derivation 
of the expression j(j+1)fc2of the squared modulus of the total angular 
momentum on the basis of assuming random orientation in a statistical 
ensemble and computing classical averages. Feynman1 ascribes this 
“interesting and somewhat surprising” result to the fact that equiprobability as 
such means fundamentally the same thing whether in a classical or a ‘quanta!’ 
context. This is why applying a simple averaging procedure e.g. to quantised 
momenta can sometimes lead to the correct expression. All the same, it is 
seldom actually possible “to guess the correct formula by using the classical 
calculation2”. Unlike Post3, who advocates an ensemble interpretation of 
quantum theory on the very slim basis of the above two instances, it is unlikely 
that Einstein could have taken such coincidences so seriously as to even start 
thinking of them as evidence for ‘quantum ensembles’. Presumably, the 
reason why he did not care to be more explicit about his view of such 
ensembles is that he was convinced that quantum mechanics was a mere 
expedient4, which would eventually have to be discarded in favour of a 
genuinely fundamental physical theory:

If the statistical quantum theory does not pretend to describe the individual 
system (and its development in time) completely, it appears unavoidable to look 
elsewhere for a complete description of the individual system; in doing so it 
would be clear from the very beginning that the elements of such a description 
are not contained within the conceptual scheme of the statistical quantum 
theory5.

Only an instrumentalist could think of the current framework as the last word, 
but this was an option Einstein rejected vigorously, as it was incompatible with 
his lofty conception of scientific endeavour6. Instead, a radical refoundation

1 Feynman etal. 1965, section 34-7.
2 Ibid.
3 Post 1995.
4 Deltete and Guy 1990, p.679.
5 Letter to Michele Besso, quoted in Schilpp 1970.
6 “If that were so [i.e. if quantum mechanics or any other allegedly fundamental physical theory 
were to be accepted on purely instrumentalistic grounds] then physics could only claim the
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of theoretical physics would be called for, in which the appearance of the 
quantum would find as much of a justification as the constant c does in the 
special theory of relativity1. In this alternative and hopefully final framework 
there would not -  could not -  be any room for probability or statistics at a 
fundamental level. In a letter to Louis de Broglie dated 15 February 1954, 
Einstein recalls how such a goal led him to his final solitary endeavour, away 
from the mainstream:

En v6rit§, je suis, exactement comme vous, convaincu qu’il faut chercher une 
substructure, une n6cessit& que la theorie quantique actuelle cache habilement 
par i’application de la forme statistique. Mais depuis longtemps je  suis 
convaincu qu’on ne pourra pas trouver cette substruture par une voie 
constructive en partant du comportement (empirique) des choses physiques 
connues, car le saut conceptuel ndcessaire d6passerait les forces humaines.
Ce n’est pas seulement par la futility de nombreuses ann6es d’efforts que je 
suis arriv£ & cette opinion, mais aussi par mon experience en theorie de la 
gravitation. Les equations de la gravitation pouvaient etre decouvertes 
seulement sur la base d’un principe purement formel (la covariance generate) 
c’est-d-dire sur la base de la conviction que les lois de la nature ont la plus 
grande simplicite logique imaginable. Comme il etait evident que la theorie de la 
gravitation ne constitue qu’un premier pas vers la decouverte de lois generates 
de champ les plus simples possibles, il me semblait que d’abord cette voie 
logique devait etre poursuivie jusqu’e la fin avant de pouvoir esperer arriver 
egalement d une solution du probteme quantique2.

Dirac may well have been the first of the most prominent theorists of quantum 
mechanics to make extensive use in his writings of the word ‘state’, and intend 
it in its problematic acceptation. The idea of particles being ‘in states’ featured 
prominently in his 1925 study of the quantum gases3. However, it finds its full 
expression in his influential 1930 treatise4. There, setting up a new kind of 
mechanical framework is seen as the necessary outcome of the recognition of 
“a limit to the gentleness with which observations can be made5”. We are 
thereby led to redefining the size of an object in terms of its susceptibility to

interest of shopkeepers and engineers; the whole thing would be a wretched bungle.” (tetter to 
Schrodinger, quoted from Przibram 1967, p.39).
1 See Section 3.1.
2 Einstein 1989, p.249: “Actually, I am, just like you, convinced we have to look for a 
substructure, a necessity that the present quantum theory skilfully hides by its application of 
statistical form. However, I have been convinced for a long time that we won’t be able to find 
that substructure in a constructive way, starting from the (empirical) behaviour of known 
physical things, for the necessary conceptual leap would be beyond human powers. I have 
reached that conclusion, not only because of the futility of many years of effort, but also 
through my experience in gravitation theory. The equations of gravitation could be discovered 
only on the basis of a purely formal principle (general covariance),that is on the basis of the 
conviction that the laws of nature have the greatest imaginable logical simplicity. Since it was 
evident that the theory of gravitation is but a first step towards discovering general laws of field 
that are the simplest possible, it seemed to me that this logical path first had to be followed to 
the end before one could hope to also get to a solution of the quantum problem.”
3 Dam'gol 1986.
4 Dirac 1958.
5 Ibid., p.4.
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disturbance: “If the object under observation is such that the unavoidable 
limiting disturbance is negligible, then the object is big in the absolute sense 
and we may apply classical mechanics to it. If, on the other hand, the limiting 
disturbance is not negligible, then the object is small in the absolute sense 
and we require a new theory for dealing with it1.” The possibility of maintaining 
causal connections would be restricted to undisturbed systems and find its 
expression in suitable differential equations. A key difference with classical 
mechanics is that the new framework should also make the connection 
between some ‘initial’ state of affairs (before observation) and whatever can 
be the case after a disturbing observation. On account of the “consequent 
indeterminacy in the results of our observations2”, the theory would allow us in 
general only to calculate the probability that any subsequent observation 
yields a particular result.
Dirac introduces the principle of superposition as “one of the most 
fundamental and drastic3” of a new set of “laws of nature” whose necessity 
arises from the inevitability of disturbance4. His intention is to provide insights 
into the way the two notions of probability and disturbance connect. Two basic 
examples open the discussion, both of which involve monochromatic light. 
In the case of a beam of light passing through a crystal of tourmaline, Malus’s 
law gives the fraction of outgoing light as a simple (co)sine-squared function of 
the angle between the direction of polarisation of the incident light and the 
optic axis of the analyser. The description of light as “made up of photons5” 
makes it sound like Dirac favours a corpuscular picture. As long as the 
incident light is polarised parallel or perpendicular to the optic axis, a photon- 
based interpretation is straightforward: each photon can be thought of as 
either stopped (absorbed) or going through. The interpretation requires 
thinking of each individual photon as possessing a ‘(linear) polarisation’ 
attribute, or equivalently as being “in a certain state of polarization6”. The 
relative proportions of ingoing photons polarised parallel or perpendicular to 
the optic axis would then be reflected in the probabilities that one photon 
passes or fails to pass through the crystal. Repeated detections of outgoing 
photons should allow us to check that the relative proportion of outgoing 
photons agrees with the fraction calculated using Malus’s law for a given 
angle away from the optic axis.

1 Ibid.
2 Ibid.
3 Ibid.
4 To the extent those laws relate to the effect on our predictive capacities of the disturbances 
caused by our ways and means of observation, the reference to nature itself raises questions.
5 Ibid.,p.5.
6 Ibid.,p.5.
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The fate of an “obliquely polarised” photon is not a priori so easily settled. 
Dirac dismisses from the outset as unscientific1 any attempt at describing what 
takes place inside the tourmaline crystal between the time an individual 
photon gets in and the time ‘it’ comes out: “only questions about the results of 
experiments have a real significance and it is only such questions that 
theoretical physics has to consider2”. This creates a tension with Dirac’s 
insistence on “preserv[ing] the individuality of the photon in all cases3”, which 
is resolved by contending that it is our observation of the outgoing beam that 
“force[s] the photon entirely into the state of parallel or entirely into the state of 
perpendicular polarization4.” On account of the uncontrollable character of the 
accompanying disturbance, which final state an individual photon would 
“jump5” into could not in principle be predicted in any better way than 
probabilistically.
Let us concede that it is sensible to think6 of each photon in a beam as being 
“located somewhere in the region of space through with the beam is passing7”. 
The photon can also be ascribed in the direction of the beam a momentum 
whose magnitude is proportional to the frequency (Einstein’s photo-electric 
law). Saying that the photon “is in a definite translational state*” is just another 
way of expressing our having “information about the location and momentum 
of a photon.” As in the previous example, Dirac acts as a realist in respect of 
photons, although it is ambiguous whether saying an individual photon is in a 
translational state is to be regarded as asserting an objective (transient) 
property of the photon or merely lays some pseudo-ontological veneer on our 
assessment of an experimental situation (as suggested by Dirac’s use of the 
words “know” and “information”). Besides, ascribing a photon a momentum 
that is proportional to frequency amounts to conceding undulatory features 
that cannot obviously be reconciled with a granular view of light. In fact, saying 
that “the photon is partly in one beam and partly in the other9” is tantamount to 
denying that the photon could be a particle in any acceptable sense of the 
word. Dirac does not appear to be concerned with such difficulties. “The 
essential point”, as he sees it, “is the association of each of the translational 
states of a photon with one of the wave functions of ordinary wave optics.” 
Consistency problems that follow from postulating some kind of wave-particle 
‘duality’ need not worry us, for “[t]he nature of this association cannot be

1 “outside the domain of science" (Dirac 1958, p.6).
2 Ibid.
3 Ibid., p.6.
4 Dirac 1958, p.7.
5 Ibid.
6 Dirac writes, more affirmatively, that we “know” it (Dirac1958, p.7).
7 Dirac 1954, p.7.
8 Ibid.
9 Ibid., p.8.
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pictured on a basis of classical mechanics, but is something entirely new.1” In 
the translational case, beam splitting is achieved using an interferometer. 
There again, the upshot is that one should somehow think of the state of each 
photon as split up into two components, its final state being a “superposition of 
the two translational states associated with the two components.2” Attempting 
to determine the energy of one of the components would precipitate a sudden 
change of state, “due to the disturbance in the translational state of the photon 
which the observation necessarily makes3.” As a result of such a disturbance, 
it is “impossible to predict in which of the two beams the photon will be found. 
Only the probability of either result can be calculated from the previous 
distribution of the photon over the two beams.4” The interferometer example is 
also used to introduce the idea that a superposition of two translational states 
somehow involves interference. As in the polarisation example, no detailed 
explanation of such interference can be given at an ‘interphenomenar level. 
Dirac argues that preserving conservation of energy implies that “[e]ach 
photon then interferes only with itself5” -  a very odd and uninformative 
statement if there is one. Inscrutable though such ‘self-interference’ may be, 
on should be reminded that “the main object of physical science is not the 
provision of pictures, but is the formulation of laws governing phenomena and 
the application of these laws to the discovery of new phenomena. If a picture 
exists, so much the better; but whether a picture exists or not is a matter of 
only secondary importance6.” What really matters is that the “principle of 
superposition of states” participates in ensuring the self-consistency and 
predictive efficiency of the new theory.
Considering any (sub)atomic-size systems, elementary or composite, engaged 
in any kind of interaction, “[tjhere will be various possible motions of the 
particles or bodies consistent with the laws of force. Each such motion is 
called a state of the system7.” In classical mechanics, instantaneous numerical 
values of the coordinates of the dynamical system in the appropriate 
configuration space, and the corresponding velocity components, are both 
necessary and sufficient to determine an entire motion. Quantum mechanics, 
if it is based on the recognition that the disturbances suffered by ‘small’ 
systems cannot be arbitrarily reduced or ignored, “puts a limitation on the 
number of data that can be assigned to a state8.” As a result, a quantum- 
mechanical

1 Ibid..
2 Ibid.
3 Ibid.
4 Ibid.
5 Ibid., p.9.
6 Ibid.,p.*10.
7 lbid.,pA 1 (italics added).
8 Ibid.
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“state of a system may be defined as an undisturbed motion that is restricted by 
as many conditions or data as are theoretically possible without mutual 
interference or contradiction. In practice the conditions could be imposed by a 
suitable preparation of the system, consisting perhaps in passing it through 
various kinds of sorting apparatus, such as slits and polarimeters, the system 
being left undisturbed after the preparation. The word ‘state’ may be used to 
mean either the state at one particular time (after the preparation), or the state 
throughout the whole of time after the preparation. To distinguish these two 
meanings, the latter will be called a 'state of motion’ when there is liable to be 
ambiguity .”

Dirac’s decision to skip the explicit reference to motion in the synchronic use 
of the word ‘state’ makes it all too easy for that word to be read, incorrectly, as 
denoting a formal characterisation of a given system’s ‘being’ at a particular 
instant. It takes no more than such a slip to fall head-on into the infamous 
paradoxes and conundrums that continue to plague the conceptual debate 
about the quantum theory.
The postulated expression of a state as a superposition of various other states 
is “a mathematical procedure2” that “is always permissible, independent 
of any reference to physical conditions, like the procedure of resolving 
[the mathematical expression of] a wave into Fourier components.3” 
The procedure is justified in so far as it is useful. Acknowledging its usefulness 
should take precedence over any attempt to interpret relationships between 
‘superposed’ states, which “cannot be explained in terms of familiar physical 
concepts4.” We obviously “cannot in the classical sense picture a system 
being partly in each of two states and see the equivalence of this to the 
system being completely in some other state. There is an entirely new idea 
involved5”. As to what the ‘idea’ might consist in, Dirac treads dangerously 
close to attempting an ontological reading of superpositions: “When a state is 
formed by the superposition of two other states, it will have properties that are 
in some vague way [?] intermediate between those of the two original states 
and that approach more or less closely to those of either of them according to 
the greater or less ‘weight’ attached to this state in the superposition 
process6.” Faced with a conceptual difficulty, Dirac typically reverts to the 
safety of an operationalistic position. Dispelling any temptation to give an 
ontological reading of the puzzling kind of intermediacy that is supposedly 
exhibited in superpositions, he settles the matter by asserting that “[t]he 
intermediate character of the state formed by superposition thus expresses 
itself through the probability of a particular result for an observation being 
intermediate between the corresponding probabilities for the original states,

1 Ibid., pp.11-12.
2 Ibid., p. 12.
3 Ibid.
4 Ibid.
5 Ibid.
6 Ibid., p. 13 (italics added).
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not through the result itself being intermediate between the corresponding 
results for the original states1.” The contentious matter of whether definite 
attributes -  and if so, which -  can be said to be possessed by a system ‘in’ a 
superposed state is conflated, without further ado, with the trivial observation 
that measurement results are never ‘seen in superposition’ (whatever that 
could mean). Questions that one might be tempted to raise regarding the 
definiteness of ‘possessed values’ between observations are brushed aside 
as metaphysical issues of no concern to the physicist. The principle of 
superposition, which reflects the recognition of an irreducible susceptibility of 
microphysical objects to disturbance, “demand[s] indeterminacy in the results 
of observation2”. Period. As a result, developing a probabilistic framework with 
built-in linear (?) features would be legitimate...and inescapable.

Whether or not Dirac is to be regarded as the originator of the current notion 
of ‘quantum state’ is of secondary importance. The fact remains that a view 
of quantum mechanics as being fundamentally about the specification, 
evolution in time and manifold transformations of ‘quantum states’ emerged 
along with the first abstract formulations of the principles of quantum 
mechanics. After Dirac, von Neumann’s authoritative monograph3 (1932) also 
greatly contributed in promoting a state-based conception of quantum theory. 
It is also not coincidental that von Neumann should have been led in his 
treatise to the first expression and discussion of the ‘measurement problem’, 
for this and related objectification4 problems are inevitable consequences of 
conceiving of Hilbert space vectors as representives of physically 
meaningful states of individual objects.
Physics, like other fields, has its own specific terminology in which, besides 
newly coined words, new use is found for older words borrowed from earlier 
stages in its development. ‘Momentum’ or ‘Hamiltonian’ in quantum mechanics 
are instances of the latter. The use of the word state in quantum theory is 
another, albeit one whose potential for breeding confusion should not be 
underestimated. Renewing the use of older terminology in an entirely different 
setting may be convenient, perhaps even desirable. However, terminological 
decisions can have potentially harmful effects, because expectations 
associated with the former uses of words may interfere in a destructive way 
with our efforts to make sense of a new framework. This is all the more so in 
quantum mechanics, the theoretical underpinnings of which are still obscure 
and debated. The decision, if it is insufficiently motivated (e.g. beyond 
superficial analogies), is likely to bias one’s views, with lots of unpalatable 
consequences. For example, entanglement may not, as it was intended by

1 Ibid. The whole sentence appears in italics in the text.
2 Ibid.,p. 14.
3 Von Neumann 1955.
4 See Section 4.4.
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Schrodinger, just bring to mind the purely mathematical fact of non- 
factorability implied by 0 -product composition, but conjure up, in its 
association with a ‘state’ view, the far more problematic vision of individual 
systems being tangled up in a mysterious way.
Here as elsewhere, the later Wittgenstein’s warnings1 should be heeded: a 
terminological decision is not the result of an empirical discovery, forced upon 
scientists by their practice. It is only worth what conventions are, and may be 
misguided if whatever motivates it suffers from a basic lack of insight into the 
new domain to which it is applied. It is hardly needed to say that amending 
such a decision in the ‘quantum state’ case is far from sufficient, for it clearly 
falls short of providing answers to basic conceptual issues raised by the 
emergence and mathematical structure of quantum theory. Nevertheless, it is 
advisable to heed the attitude of some of its founding fathers (regardless of 
their personal appraisal of the theory) and abstain from using a word that is 
too heavily laden with ontological connotations to be so readily -  uncritically -  
accepted.

2.2 The representation of physical quantities

Elementary (Galilean-relativistic) quantum theory cannot, expect perhaps in 
a loosely historical sense, be regarded as deriving from classical mechanics. 
On the other hand, it is most important to be aware of any presuppositions, or 
of any regulative structures, that may be shared by those apparently very 
dissimilar frameworks. Traditional invocations of quantum-classical 
‘correspondence’ are powerless to give any insight into the most significant 
features of quantum theory. Thus, regarding commutators as quantum 
analogues of the Poisson brackets provides little information about their 
central role in quantum mechanics. Moreover, quantum-theoretical quantities 
do not all have a classical counterpart -  spin is a case in point. By contrast, 
focussing on symmetry-invariance principles goes a long way towards 
elucidating any common structure. Foremost among such principles are those 
that relate to basic requirements of descriptions in space and time, for the 
satisfaction of such requirements takes precedence over any detailed account 
of whatever interactions systems are engaged in.
Starting from the actual endpoint of the historical development of the theory, 
let us assume we have a theoretical framework involving Hilbert space vectors 
and linear operators, as they are used for the computation of probabilities 
in quantum theory. The question then arises of how to specify, out of all linear 
operators that are available a priori, the set of self-adjoint operators that are

1 Wittgenstein 1960, p.23.
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to represent physically significant quantities. Although his initial approach 
to deriving the ‘quantum conditions’ hinges on the shaky idea of classical- 
quantal correspondence, Dirac anticipates later group-theoretical motivations 
of the formalism in his 1930 treatise1. How kets and linear operators are 
affected by simple displacements can, he argues, provide “new insight2” into 
the quantum conditions. Relations involving ‘states’ (represented by kets) or 
dynamical variables (represented using operators) are expected not to be 
affected if those states and variables are all displaced in the same way: “any 
symbolic equation between kets, bras, and dynamical variables must remain 
invariant under the displacement of every symbol occurring in it, on account of 
such an equation having some physical significance which will not get 
changed by the displacement.3” Considering a displacement through a 
distance §x in the x-direction and letting 5x tend to zero, Dirac introduces an 
infinitesimal displacement operator dx (in the x direction) that satisfies4 the 
relation xdx -  dxx = 1. Now, this is basically the same commutation relation as 
that between the component px of momentum and the x cartesian coordinate. 
Therefore, the component px of total momentum may be defined, with the 
introduction of Planck’s constant, as a MLT1-dimensional expression of the 
displacement operator along x : px = i/zdx. That different components of 
momentum have vanishing commutators then directly reflects the basic 
geometrical fact that infinitesimal displacements in different directions are 
commuting operations. Similarly, requiring invariance of linear relationships 
under time displacement, i.e. under a resetting of the zeroes of clocks, leads

to an equation for the evolution in time of arbitrary kets: ift— |u) = H(t)|u),

which coincides with Schrodinger’s time-dependent equation (the linear 
operator H then plays the role of a ‘time displacement operator’). Dirac justifies 
his conceiving of H as a representative of the total energy of the system by 
asserting that “the [special] theory of relativity puts energy in the same relation 
to time as momentum to distance.5” Referring to Einsteinian relativity in the 
process of deriving a basically Galilean-relativistic formalism is, to put it mildly, 
incongruous. Dirac, like many others, appears not to have been aware at the 
time that the relations in question reflect the invariance-conservation 
relationships that form the subject matter of Noether’s theorem (1918). 
That theorem connects conserved quantities like total momentum and energy 
to the requirement of invariance under space and time displacements 
(translations) respectively, in the ‘pre-Einsteinian’ framework of Lagrangian

1 Dirac 1958.
2 Ibid., p.99.
3 Dirac 1958, p.101.
4 Ibid., pp. 102-103.
5 Ibid., p.110.
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mechanics. The resilience of Noetherian relationships in the face of the most 
drastic forms of theory change (from Galilean to Einstein-relativistic, from 
classical to ‘quanta!’) testifies to their fundamental character. Their survival in 
the quantum setting certainly is the essential reason why “[t]he laws of 
conservation of energy, momentum, and angular momentum hold for an 
isolated system in the Heisenberg picture [of quantum mechanics], as they 
hold in classical mechanics1.”
According to Wigner’s theorem, a symmetry transformation of Hilbert space 
vectors amounts to the action on those vectors of a(n) (anti)unitary operator. 
Requiring invariance under a symmetry transformation implies the existence 
of a unitary projective (Hilbert space) representation of the relevant group. 
If the symmetry group is continuous (Lie group), then for each of its 
one-dimensional subgroups there must exist a self-adjoint operator that plays 
the role of an infinitesimal generator for that subgroup (Stone-Naimark 
theorem). The operator representative of the group can be written as a 
product ]”Jexp(iakA k), where {AJ is a set of self-adjoint operators and each

k

of the real parameters ai< parameterises a one-dimensional subgroup. 
As Jean-Marc Levy-Leblond points out,

“it has become customary for physicists to describe with the same notation the 
elements of the Lie algebra and their operator representatives, as well as the 
Lie bracket of two elements and its representation by the commutator of two 
infinitesimal generators. It is now clear that the set thus obtained of self-adjoint 
operators furnishes good candidates to the title of physical properties of the 
quantum system. Indeed, all these operators have simple meanings as they are 
associated with invariance under some one-parameter group (e.g. time 
translations); they can be given their usual names by comparison with, and 
extension from, their classical analogues (e.g. it is well known in classical 
mechanics that time translations are generated by the energy, or Hamiltonian, 
of the system). In this approach, the reason for the particular importance of the 
commutator structure of the operators representing the physical properties 
becomes particularly transparent, since it only expresses their Lie algebra 
characteristics, that is, ultimately, their transformation rules. Further physical 
properties of interest may then be built in the enveloping algebra, that is as 
functions of the infinitesimal generators; this can often be done by relying once 
more on symmetry arguments, for instance the transformation rule of the 
properties sought after (which, once more, will be expressed through 
commutation relations). Among those, a crucial role is given to the invariant 
properties, that is the elements of the centre of the enveloping algebra, since 
they characterize the representation of the group; they are diagonalized for 
irreducible representations, and their (eigen)values thus label the elementary 
physical systems2.”

1 Ibid., p. 115. The sentence appears in italics in the original.
2 L6vy-Leblond 1974.
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A key to the efficiency of both classical and quantum-mechanical schemes lies 
in the fact that invariance under such transformations is almost invariably, 
if only tacitly, assumed as part of our ordinary experience and our 
experimental as well as theoretical practice of physics. Sure enough, we can 
have no a priori guarantee that any such invariance will remain valid as 
physicists venture into hitherto unexplored territories. Nevertheless, it is a 
rather weak requirement that is independent of the particulars of the 
interactions systems may be engaged in. Moreover, recognising that classical 
and quantum mechanics, despite obvious dissimilarities, rely on the same 
basic transformational properties, which all come down to setting up a suitable 
space-time Galilean background for dynamics, provides a common ground for 
gauging the effectiveness of ‘correspondences’ that would otherwise sound 
implausibly accidental.
A basic transformation group operating in classical mechanics is the Galilei 
group. This group is, in one dimension, generated by three one-dimensional 
subgroups: that of space translations; that of time translations; and that of 
pure Galilean transformations (associated with relative motion). The group is 
non-abelian: “jumping into a train running at 60 miles per hour and waiting for 
5 minutes takes you 5 miles away from where you would be if you had first 
waited for 5 minutes and then jumped into the train1.” Constructing the 
relevant quantum-mechanical Lie algebra is done using standard infinitesimal 
methods. The Lie bracket or commutator formed with the Galilean and time 
generators does not generally vanish (it is equal to the space translation 
generator), thereby exhibiting the non-abelian character of the Galilei group. 
A little algebra leads to the possible projective representations of the group, 
and in particular the expression of the continuous exponents. Within a suitable 
extension of the group by an abelian one-dimensional ‘phase group’ (an 
extension based on no assumption of physical significance), a realisation of 
the irreducible representation of the Lie algebra follows, without resorting to 
any analogy with classical mechanics2. The ensuing expressions of the 
generators, diagonal in P (the space translation generator), supply the basic 
quantities required for a quantum-theoretical treatment of the dynamics of an 
elementary system.
Switching from (momentum) P-space to ‘configuration space’ requires 
introducing a ‘position operator’ X that correctly transforms under a space 
translation. Applied to an infinitesimal displacement, this group-theoretical 
requirement implies that X satisfies the canonical commutation rule [X,P] = il, 
where I is the unit operator and the imaginary factor / is introduced to 
guarantee that the generators are Hermitian. Another requirement is that the X 
operator transforms in a correct manner under pure Galilean transformations.

1 Ibid.
2 see Levy-Leblond 1974 for details.
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This in turn implies that X is actually proportional to the Galilean 
transformation generator. The characteristic mass m of the system then 
emerges as the inverse of the proportionality constant. An appropriate function 
'F of space and time coordinates can now be introduced via Fourier transform. 
Owing to its definition and to the form of the position and momentum 
operators, the 'F function automatically satisfies the Schrodinger equation. 
Its role is to translate into space-time coordinates the fundamental relation 

P2H = —  + U, derived on purely group-theoretical grounds, between the 
2m

Hamiltonian (energy) operator H (which corresponds to the time displacement 
generator) and the momentum P (which corresponds to the space 
displacement generator). An alternative route consists in starting from the 
Schrodinger equation in configuration space, working out the way it must 
transform to be Galilei-invariant, deducing the projective form of the Galilei 
group representation and from there the operatorial expression of the relevant 
dynamical quantities (Hamiltonian, angular momenta etc.). This route has the 
disadvantage of relying explicitly on an equation whose initial motivation and 
physical meaning remain obscure besides the probabilistic interpretation of its 
solution.
Extending the formalism beyond the free particle case requires taking 
interactions into account, leading to a modified form for H. Owing to 
the symmetry-breaking effect of an external field, no thoroughly group- 
theoretical approach is now applicable. However, requiring that instantaneous 
Galilean transformations exist and preserve the validity of the Galilean- 
relativistic velocity addition law can drastically restrict the form of the modified 
Hamiltonian. This is tantamount to requiring that no discrimination be possible 
instantaneously between the free and the interacting cases, and can be 
formalised as a constraint on H since the velocity operator depends on the 
Hamiltonian. The generator of pure Galilean transformations remains the 
same as in the free case, but the Hamiltonian operator becomes a function of

X and P: H = —  [P -A (X ,t)]2 +U(X,t), which is the familiar form of the
2m

Hamiltonian for a system under the influence of a scalar (U) and a vector (A) 
potential.
A three-dimensional generalisation has to include transformations under 
rotations. The three-dimensional Galilei group is a ten-parameter Lie group, 
whose Lie algebra is exhausted by giving the generator H of time translations, 
the generators Px, Py, Pz of spatial translations along three orthogonal axes, 
the three generators of pure Galilean transformations and the generators Jx, 
Jy, Jz of rotations about the three axes. As in the one-dimensional case, 
looking for the unitary irreducible representations associated with elementary
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p 2
systems leads to an invariant U = H  that can be readily interpreted as

2m
the internal energy of the system. A position operator X being introduced as a 
direct generalisation of the one-dimensional case, an operator L can then be 
constructed from X and P, in analogy with the vector product rxp, which 
defines the classical angular momentum. Owing to the Lie brackets involving 
the generators Jx, Jy, Jz, the expression of the cartesian components of L 
warrant regarding it as an angular momentum operator1. The difference 
S = J -  L between L (‘external’ or ‘orbital’ angular momentum) and the vector 
operator J (total angular momentum) whose components are Jx, Jy and Jz is a 
linear operator whose components SX| Sy, Sz commute with all the generators 
of the Lie algebra of the Galilei group, but not among themselves (they satisfy 
[Sx, Sy] = iSz and circular permutations thereof). On the other hand, S2 is an 
invariant of the Lie algebra (it commutes with all the generators and with the 
components of S). Likewise, the definition and properties of S warrant its 
interpretation as an internal angular momentum. The dimensionless value of 
S2 in any irreducible unitary representation is shown to be of the form s(s+1), 
where the spin number s can be an integer or a half-integer, and can be used 
as a ‘quantum number* for labelling a system type. Spin is thus seen to 
emerge from constraints imposed on the linear representative framework of 
quantum theory by the structure of the three-dimensional Galilei group 
(involving translations, rotations and inertial motions). Changes of reference 
frame i.e. space-time orientation imply a modification of dynamical quantities 
like energy or angular momentum, but do not affect S.

Summing up,

• Neither the mathematical structure of quantum theory nor tentative 
analogies with classical mechanics warrant the interpretation of 
Hilbert space vectors or 'F functions as representatives of states of 
individual systems. This claim does not amount to asserting that 
these vectors and functions are completely devoid of physical 
significance, but rather that their theoretical significance has to be 
thoroughly reconsidered.

1 Goldstein (1980, p. 419) remarks that “one of the earliest references to the classical Poisson
brackets for angular momentum appears to be the 1930 treatise by Born and Jordan on 
ElementSre Quantenmechanik....while the general change of a vector function under rotation 
has long been familiar in quantum mechanics, until very recently about the only reference to 
its classical version was in the famous thesis of H.B.G. Casimir, Rotation of a Rigid Body in 
Quantum Mechanics, 1931, p.30.”
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• Given the Hilbert space structure which underlies the rules for the 
calculation of probabilities, average values and other quantities of 
operational interest, the form of the relevant physical (observable) 
quantities, with their mutual relationships (commutation relations in 
particular), can be derived as the result of imposing group- 
theoretical constraints associated with elementary space, time and 
inertial transformations.
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3

Quantum mechanics as a principle theory

3.1 The Special Theory of Relativity: a prime instance of a principle 
theory

In Newton’s mechanics, it is -  as it turns out, incorrectly -  assumed that the 
relative time of occurrence of any two events and the order in which they are 
(can be) seen to occur are fixed in an absolute way. Those persistent 
misconceptions of time and simultaneity obviously find their source in our 
ordinary experience: do not we seem to share a single present? Isn’t the ‘rate 
at which time flows’ the same for all of us regardless of our relative motion? 
Einsteinian relativity disposes of all these prejudices, replacing them with 
operational definitions of such notions as ‘time interval’, ‘simultaneity’, ‘length 
of a moving rod’ etc. Instead of assuming that we have an a priori ‘clear and 
distinct’ understanding of space and time, the Special Theory of Relativity 
(STR) adjusts our conceptions of time and space to carefully performed 
readings of our measuring instruments (typically clocks and rulers). 
As a result, observers who bear different space-time relationships to two 
events A and B need not agree as to whether the two events occur at the 
same time, A precedes B or vice versa.
It was subsequently realised1 that Einstein’s postulate of the invariance 
of the speed of light in all reference frames can actually be dispensed with. 
The basic change-of-frame (Lorentz) transformation of STR can be derived2 
on the basis of the sole ‘principle of relativity’, without having to postulate 
some invariant velocity, or to refer in any way to electromagnetic waves. 
According to the relativity postulate, there exists an infinite continuous class of 
reference frames -  so-called inertial frames -  in which the mathematical 
expressions of the physical laws have the same form (claiming that such 
inertial frames exist is tantamount to denying the existence of absolute motion, 
hence of absolute rest). The purpose of a theory of relativity is to provide rules 
of transformation for relating the expression of any given law in one frame to 
its expression in another of the same class.
Deriving the Lorentz transformation requires making a small number of basic 
assumptions about space, time and the composition of inertial 
transformations:

1 E.g. Ignatowsky 1911.
2 Lee and Kalotas 1975, Levy-Leblond 1976.
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• Homogeneity of space and time: the transformation properties of 
a space-time interval do not depend on where the endpoints of 
the interval are located in the chosen frame.

This assumption implies that inertial transformations are linear, and that 
motions obtained from rest by an inertial transformation are uniform motions 
(their velocity is constant in the ‘target’ frame).

• Isotropy of space: there are no directions in space that have a 
privileged status (all possible orientations are physically 
equivalent).

Considering, to simplify, frames such that one spatial coordinate x only is non- 
trivially affected by an inertial transformation, spatial isotropy implies that if 
the sets (x,t) and (x’,t’) are related by the transformation we seek, then so are 
(-x,t) and (-x’.t’). From this requirement, the seemingly obvious result that if S’ 
moves relative to S with velocity v, and S moves relative to S’ with velocity u, 
then u = -v can be derived.

• The inertial transformations have a group structure1: identity 
corresponds to null relative velocity; an inverse inertial 
transformation from S’ to S exists for every inertial 
transformation from S to S’ (the parameters of the two 
transformations are shown to be the opposite velocities v and 
-v); and the composition of two successive inertial 
transformations Si-»S2 and S2->S3 is an inertial transformation 
Si—>S3.

As a result, if S2 moves relative to Si with velocity V i 2 , and S3 moves with 
velocity v23 relative to S2, there must exist a single velocity V i 3  that relates the 
two frames Si and S3. Moreover, the frames being inertial, the sought 
coordinate transformation must be of the same form as that between Si and 
S2, and that between S2 and S3. Given the other (homogeneity and isotropy) 
assumptions, the composition law for velocities has to be of the form

v13= Vl2 +— ?3- - . The change-of-frame transformation also involves a linear 
1 + ( X V 12V  23

coefficient whose expression is a function (1 -  av2)‘1/2 of the relative velocity v 
of the two frames involved. Three cases now arise, depending on the sign of 
the real parameter a, or whether that parameter is equal to zero. Although a 
choice of negative a is permitted a priori, this choice can be ruled out by 
rejecting the possibility that two velocities in the same direction add up to a

1 The linearity of the transformation reflects the fact that the translation group, associated with
arbitrary shifts in space and time origins, is an invariant subgroup of the full transformation
group.
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velocity in the opposite direction1. Equivalently, a < 0 can be rejected on the 
grounds that the sign of a space-time interval between events should not 
change under inertial transformations2 (this is a sensible requirement since a 
transformation is nothing but a change of perspective). We are then left with 
two choices: a = 0, which yields the familiar Galilean transformation, or a > 0,

which corresponds to the Lorentz transformation provided we let a = — .
K

The constant k  then plays the role of a universal limiting velocity. Naturally, 
nothing in the assumptions leading to the ‘Lorentz’ i.e. a > 0 transformation 
implies that any such upper limit to ‘physical3’ velocities is realised in actual 
fact in the physical world as we experience it. Assuming no universal limiting 
speed amounts to letting k  tend to infinity, thus reverting to the a = 0 Galilean 
option as the sole candidate for a theory of relative motion (v13 is then equal to 
V12 + V23, in accordance with our ordinary experience). However, it so happens 
that a finite value of k  appears to be realised in the propagation of 
electromagnetic waves, of which visible light is an instance. It is indeed a most 
remarkable coincidence (?) that light, which propagates with the highest 
known speed, also travels at the maximum permissible speed4.
In hindsight, it seems to be sheer luck that physicists could hit upon a telltale 
sign (when recognised!) that the Galilean option was in fact the wrong one. 
In that context, it is little surprise that the relativistic issue was initially mistaken 
for a difficulty with electromagnetism. Indeed, no less a figure than Henri 
Poincare, who went so far as to obtain the correct form for the ‘Lorentz’ 
transformation and realise its group structure, fell prey to that delusion5. 
Einstein’s position as an outsider was certainly beneficial to his coming to 
realise that the problem had fundamentally been misconceived. However, he 
did not himself completely disentangle the key issues from references to 
electromagnetism, as we can see from his basing his theory of relativity on 
two distinct postulates rather than a single relativistic one. The transition from 
the Galilean to the Lorentz-Einstein transformation would have been both 
conceptually more radical and satisfactory, had Einstein fully realised that 
the nature and properties of light only contingently contributed to the issue of

1 Lee and Kalotas 1975.
2 L6vy-Leblond 1976.
3 It should be clear that the value supplied by k is an upper bound to the relative velocities 
of two inertial reference frames, not the velocity of ‘anything’ observed in any given reference 
frame (values of the latter are not constrained in any way by STR).
4 As far as we presently know. If electromagnetic waves were ever found to propagate with 
a (very) slightly lower velocity than c, this fact would in no way invalidate the principles of 
STR, since those are seen to be independent of any assumption regarding the nature and 
properties of light.
5 Poincare, who is sometimes incorrectly credited as 'co-discoverer1 (or inventor) of Special 
Relativity, was also held back by his own philosophical inclinations; see Miller 1998, pp. 174- 
177, p. 240.
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relativity. In the first part of the 1905 paper, the problem of synchronising a set 
of standard clocks using light rays gives the latter an importance 
electromagnetic radiation need not have in that context: any kind of signal 
propagating at a fixed and uniform speed in the rest frame of its source would 
qualify. However, the propagation of light met all of the prerequisites for 
Einstein’s discussion of what should count as proper synchronisation of 
clocks, simultaneity etc.

Mathematically, STR boils down to the statement that expressions of the laws 
of physics are invariant under the Poincare group (inhomogenous Lorentz 
group). Transformations of that group, which preserve Minkowskian distance, 
can actually be regarded as compositions of reflections in straight lines, 
in much the same way any transformation of the plane that preserves 
Euclidean distance can be defined as a composition of at most three 
reflections1. One fundamental difference between the two cases is that 
Minkowski space(time) exhibits preferred directions (so-called ‘null lines’ 
which, incidentally, appear to coincide with the paths of light rays), whereas 
the Euclidean plane has none. The Galilean and Lorentzian options each have 
consequences that must be subjected to empirical test. Thus, in contrast to 
the Galilean case, the Lorentzian implies the existence of a non-vanishing 
‘residual’ energy associated with any physical body in its rest frame. 
Experimental evidence gathered throughout the twentieth century is known to 
lend overwhelming support to the a > 0 option, i.e. to a framework (STR) in 
which k = c.

Summarising,

51. STR is grounded on a single relativity principle, which 
embodies a small set of compelling assumptions regarding basic 
properties of the space-time framework used for coordinating 
events.

52. Amongst the two possible types of ensuing inertial 
transformations, the ‘Lorentz-Einstein’ one (LE) features a new 
fundamental constant k , usually noted c, which yields an upper 
bound on the attainable velocity of a moving body. The other case 
is the ordinary Galilean transformation, which formally connects to 
LE as its c—>00 limit.

53. On the LE option the classical notion of a velocity as a 
quantity that can be augmented ad infinitum by addition is not 
valid. Nevertheless, the ordinary notion may be retained for

1 Dunn 1981.
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everyday purposes or for treating problems involving much lower 
speeds than the value of c in the same units.

54. The new fundamental constant happens to correspond, to a 
high degree of accuracy, to the empirical value of the speed of 
propagation of electromagnetic waves, hence that of light, in 
vacuo.

55, LE is borne out by a very wide range of experimental tests 
(none of which, significantly, overlaps with our ordinary perceptual 
experience).

STR is perhaps the best instance of what Einstein referred1 to as a principle 
theory, a theory whose foundations consist of a small set of general basic 
statements, observational consequences of which can be tested 
experimentally. Einstein argues that thermodynamics is such a theory, since it 
“seeks by analytical means to deduce necessary conditions, which separate 
events have to satisfy, from the universally experienced fact that perpetual 
motion is impossible2.” That no putatively perpetual motion has ever been 
found to withstand critical examination does not, strictly speaking, warrant the 
claim that the impossibility of any form of perpetuum mobile is an experienced 
fact. In the STR case, caution regarding the empirical status of the basic 
assumptions is all the more required that the most obviously empirical of the 
two postulates in the original (1905) formulation -  that of the invariance of the 
velocity of light -  is in fact unnecessary, and alien as it stands to the very 
motivations and theoretical significance of STR. Principle theories like STR 
are certainly empirical in some of their motivations, but they also give 
expression to conditions of comprehensibility that one inclined to Kantism 
might wish to call ‘transcendental’ -  an aspect that Einstein and those with a 
realist bent are more likely to overlook or just ignore.
To principle theories, Einstein opposes constructive theories. The kinetic 
theory of gases provides a classical instance of such a theory, which is 
characterised by a typically ‘bottom-up’, entity-based approach to the 
explanation of phenomena. Elementary building blocks (e.g. atoms or 
molecules) being postulated, higher-level processes, like diffusion, are shown 
to emerge from the behaviour of the simple underlying entities (e.g. molecular 
motion). Those who think of such reductive efforts are virtually synonymous 
to the aim of science might well dismiss principle theories as mere 
constructive theories manquees. However, the conceptual economy and 
clarity of STR, once it is properly grounded on a single principle, speaks for 
itself: it is as compelling as a universal framework can be. So is the General

1 Einstein 1954.
2 Einstein 1954, p.228.
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Theory of Relativity (1916), despite a tendency to reify the space-time metric 
that leads to some thorny problems1. Constructive approaches arguably fare 
best wherever imagery and metaphors can be heuristically helpful. In contrast, 
a principle approach appears to be suited to those regulative frameworks 
whose principles have to be complied with by theories with quite different 
subject matters (e.g. gases, solids, stellar objects etc). Thus, quantum 
mechanics sounds like the very kind of theoretical framework one might 
expect to be formulated as a principle theory (Einstein himself might well have 
wished it to be so). Instead, its current status is that of a conceptually baffling 
though highly successful compendium of computational techniques, which has 
nothing of the conceptual lucidity of STR.

3.2 Some steps toward a principle-based account of quantum mechanics

If quantum mechanics is to be regarded as a principle theory, a basic set of 
compelling postulates has to be found, from which some basic equation must 
directly follow. The equation, which may or not be Schrodinger’s, should 
embody the essentials of quantum mechanics without any ‘non-standard’ 
addition or omitting any aspect of the current framework. The basic postulates 
from which the theory can be derived should be statements of conditions 
that, like isotropy for STR are expected, or justifiably required, to hold. 
These conditions need not refer to space and time but might e.g. express 
requirements to be fulfilled by a set of generalised coordinates in configuration 
space. On the other hand, in accordance with Einstein’s views, any 
considerations of a probabilistic or statistical nature appear to be quite out of 
place at that fundamental level.
If, following the STR example, some new universal constant § appears 
in the process of deriving the theory, then £ is expected to be simply related 
(e.g. proportional) to Planck’s constant. The heuristic value of the idea of 
classical-quantal correspondence also suggests that classical mechanics 
should, in analogy with (S3), be formally recovered in the appropriate limit 
(say, as This would amount, conceptually, to the relaxation of a
structural limitation implied by the set of grounding postulates. Strictly 
speaking, classical and quantum mechanics would correspond to the options 
5 = 0 and ^ 0  respectively. The two frameworks would therefore stand in 
much the same kind of relationship as the Galilean and the Lorentz-Einstein 
options in the context of working out appropriate inertial transformations. This 
would have totally escaped the attention of theorists because the appearance

1 E.g. the ‘hole argument’; see Butterfield 1989, Earman 1995.
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of Planck’s constant did not give any clue as to what kind of structural 
constraints could lead to the derivation of a quantum-mechanical framework. 
In contrast, the relatively prompt and neat 1905 resolution of the pre- 
Einsteinian crisis was facilitated by two circumstances: that the puzzle 
obviously had something to do with relative motion and with what seemed 
(misleadingly) to be a puzzling feature of the propagation of light.
Now if, in close analogy to (S2), the hypothetical constant % is to express 
some fundamental limitation set to physical processes -  or to our description 
thereof -  then this limitation must be clearly identified. On account of the 
difficulties encountered since 1900 in trying to make sense of Planck’s 
quantum, the essential significance of £ is unlikely to be so easily read off the 
relations implied by the grounding postulates. If § must be interpreted as an 
‘action quantum’, we can hardly expect the said limitation to be so 
straightforward as the recognition of an upper limit to ‘physical’ velocities. Be it 
only dimensionally1, action turns out to be ubiquitous in mechanics, classical 
or quantum, Galilean or Einstein-relativistic. Most significantly, products of 
the members of symmetry parameter/conserved quantity pairs associated 
through Noether’s theorem: timexenergy, position (coordinate)xmomentum 
component, (angular valuex)angular momentum all have the dimensions of an 
action. The selfsame ‘conjugates’ appear in Heisenberg’s inequalities and 
they also form the scalar (time, energy) and vector (position, momentum) 
contributions to 4-vectors. Such is the central role of action in the variational 
formulation of mechanics2 that it has been claimed that “action, not energy, is 
the basic concept in general dynamics.3’’ In view of the greater abstractness of 
this notion -  far greater, indeed, than that of velocity, be it in STR -  any 
fundamental limitation involving it is bound to be subtle and not so easily 
amenable to our intuition. It is likely to point to deeply structural constraints, 
which would account in part for their having been overlooked in the actual 
historical development of quantum theory (another obstacle being the 
intellectual climate that prevailed in the days that saw the emergence of the 
theory).
To give an idea of what a fundamental limitation relating to ‘action’ might be, 
consider a bundle of configuration space curves, each of which corresponds 
to a physical or realisable motion, i.e. to a motion that gives rise to stationary 
action between two configuration endpoints A and B. These motions differ 
from one another by the choice of the constants appearing in the expansions 
of the solutions q and p of Hamilton’s canonical equations. If any one motion 
is to be unambiguously determined, no point can belong to more than one

1 The dimensions of the magnitude ‘action’ are massx(length)2x(time)'1.
2 Synge and Griffiths 1959 (chapter 1 6 ); Goldstein 1980.
3 Synge and Griffiths 1959, p.435 (italics in original).
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curve. One further condition of ‘coherence1’ is imposed on that set of physical

motions: the definite action integral I® = jLdt, where L = ^ ](p kqk -H ) should
K

not depend on the path followed in connecting A and B (the condition is 

equivalent to jLdt = 0 along any closed curve in the relevant

configuration+time space). The condition I® = constant defines a surface that 
corresponds to the geometrical locus of the B points (a different choice of A 
merely adds a constant to the integral). Setting l(q,t) = constant for a given 
value of t determines a surface that ‘propagates’ as a sort of wave front as 
time varies. Propagation does not take place in ordinary space. Rather, at 
some initial time, all physical motions that are compatible with the initial 
conditions and physical constraints are, as it were, generated at once. From 
then on, all configuration paths unfold with velocities that span the range from 
0 to oo, giving rise to an ideal expanding ‘wave’. Evidently, only one among all 
these jointly generated motions is actually instantiated and ever actually 
observed (in real space).
To make it less abstract, let us focus on the simplest instance of action wave 
propagation, namely the free motion of a point mass m in one dimension. 
The generalised coordinate is chosen as the cartesian coordinate q = x.

The Lagrangian then reduces to the constant kinetic energy: L = — mx2= E,

where x denotes the velocity. If the physical motions we are interested 
in are those that start from x = 0 at t = 0, the expression of the action is then

1 1 r2 rl(x,t) = jLdt = -m — , where r = |x| is the distance to the origin, and x = - .  
0 2 t t

1 r2The equation - m — = a = constant defines a surface of action that propagates

in configuration (x-)space, with a velocity that is exactly half that of the point 
mass. There is thus no question -  in case one had any doubt -  of picturing the 
particle as ‘surfing’ on the wave. Action waves have no phenomenological 
significance beyond their providing a means of describing in toto the time 
evolution of all physical motions that are a priori compatible with the initial set.
Let l(q,t) = ct and l(q’,t’) = a’ be the equations of two constant action surfaces

w
£ and £’. If Me£ and M'eZ’, then since the integral Ijj’ = jLdt between any

two points M and IVF within a coherent set of motions does not depend on the 
path connecting the two points, then |JJ = Aa = a’ -  a is the same for all the

1 Synge and Griffiths 1959, p.455.
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motions in the set. In other words, the increment in action between the two 
surfaces is not a characteristic of the actual (observed) motion of the system; 
it is a characteristic of the coherent set (Aa can take a priori any value 
between 0 and oo). In our example, whereas 2 reaches a distance r from the

2 2m r m r
origin after a time t = ------, S’ does so at the earlier time t’ =

2a 2(ct + §)

Assuming that \  is very small, the time difference is At = t - 1’ = mr _ 2<%

2a mx
£

so that E = - ^ . Letting At be the period of action waves, a crest of which 
At

passes through IVT at t’ and through M at t, the frequency is v = — and E = §v.
At

This suggests identifying £ with Planck’s constant h, leading to E = hv. 
Tentatively generalising the conclusion to more complex dynamical systems, 
let us postulate that the constant h is the smallest increment in action between 
two action wave crests. Admitting such a bound on Aa exists, any physical 
motion should satisfy the condition |Aa| > h. A sketchy connection to quantum

—(E t-p xx)
mechanics can be made as follows: the form ^(x.tjoce* of a typical 
solution to Schrodinger’s one-dimensional equation, where Et -  pxx has the

. .  • . . —S(x,t)dimension of an action, suggests writing a general solution as T'fx.t) oc eh
dTThe basic dynamical equation \h—  = HVF can then be written
dt

dt
dS -s

+ H en = 0 in terms of the action function S(x,t). The equation is
J

dSgenerally satisfied if —  + H= 0, i.e. if S satisfies an analogue of the classical
dt

Hamilton-Jacobi equation, where the ‘phase’ S (in units of h ) of the complex 
exponential plays the role of Hamilton’s principal function.
An important aspect of the relation between S and is that it is many-to-one. 
The 'F function is invariant under the transformation S -> S ± nh, where n is a 
natural number: the ¥  representation does not discriminate between S and S’ 
if S’ -  S is a multiple of Planck’s constant, where S’ -  S is just the increment 
Aa in classical action and h the lower bound on such an increment we 
tentatively introduced. Since no non-zero lower bound is implied by classical 
mechanics, the question arises of what factors might determine its occurrence. 
Alternatively, one may decide to take the existence of such a bound as a basic 
postulate on which quantum physics should be grounded. However, the 
existence of a non-zero lower bound on the action wave increment is
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everything but self-explanatory. Indeed, it is enough to compare it with the 
usual interpretation of the universal constant of STR to see how much more 
compelling and ‘natural’ the latter is. Another major drawback of this approach 
is that, if the introduction of an action quantum can be motivated as we just 
did, it is far from obvious how we should go about from there to deriving 
Schrodinger’s equation. For that reason, we shall leave action waves aside 
and concentrate instead on the above-mentioned analogy of form to the 
Hamilton-Jacobi equation.

Writing the solution of Schrodinger’s equation in polar form
jS(r.t)

^(r.t) = R(r,t)e n and separating into real and imaginary parts yields the two 
equations:

and

^s+(vs)l+v=«lv!R
5t 2m 2m R

m— +VR.VS + —RV2S = 0 (3.2.2)
at 2

Equation (3.2.2) can also be written ^ - + V . ( ^  V^ ) = 0 , i.e. as —  + V.J = 0
at m at

2 R2VSwith p(r) = tor)! and J= . Since this is just the kind of continuity
m

equation one encounters in hydrodynamics, a ‘fluid’ metaphor has been 
tentatively applied to the function would describe an assembly of non
interacting point masses whose dynamics, subject to the potential V, would be 
akin to that of a non-viscous fluid. However, since its propagation would not 
take place in real three-dimensional space but in configuration space, the fluid 
in question has to be regarded as an essentially abstract theoretical construct 
(no less abstract, indeed, than waves of action are). Accordingly, its density p 
is usually taken to have no other meaning than that of a probability density of

occurrence while J, such that V.J = - [ vF*(H 4')-(H vF )*xF], is referred to as
h

the ‘probability current density’. Equation (3.2.1) is more directly relevant to 
addressing the genealogy and characteristics of quantum dynamics. It is 
remarkable in that, were its right hand side equal to zero, it would be just 
identical with the classical Hamilton-Jacobi equation, whose solution is 
Hamilton’s principal function S. It is, indeed, as if all potentially quantum- 
mechanical effects were embodied in the non-vanishing right hand side. This 
observation is actually the starting point of an alternative approach to quantum 
theory, first introduced by Louis de Broglie1 and, some twenty-four years later,

1 De Broglie 1928.
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rediscovered by David Bohm1. The parallel with classical mechanics can be 
made even more transparent by writing (3.2.1) in the form

— + ^ ^ - + V  + Q = 0 , (3.2.3)
a  2m '  ’

h2 V2R —where Q = ------------- . With the subsidiary ‘guidance’ condition p = VS and
2m R
5Sletting E = ------ , this equation becomes an expression of the conservation
dt
p2of energy E = + V + Q, provided Q is regarded as an additional ‘quantum’
2m

potential, nonexistent in classical mechanics, and which is held entirely 
responsible for the difference between quantum-mechanical and classical 
behaviour. Equation (3.2.1) generates a set of one-parameter curves that 
Bohm and his followers identify with definite trajectories of particles, subject to 
the guidance condition2. Equation (3.2.2) ensures that the computation of 
probabilities remains in agreement with quantum statistics: provided the 
trajectories of particles happen to be distributed (which raises the question of 
why they should) with a probabilistic weight R2 over a set of initial conditions, 
the weighted distribution of those trajectories will match the predictions of 
quantum theory in its standard formulation.
It is an attractive feature of Bohm’s approach that we don’t seem to be fated to 
abandon trajectories. Indeed, considering the variations of the quantum 
potential might seem to afford a smooth transition from classical (vanishing Q) 
to fully Bohmian trajectories. Besides, given that (3.2.1) follows from 
Schrodinger’s equation by a simple substitution, the issue of providing an 
interpretation of the quantum potential cannot be evaded. The Q potential may 
tentatively be regarded as a new form of energy, which would be required to 
guarantee conservation of energy in all those processes whose typical actions 
are of the same order of magnitude as Planck’s constant. Clearly, the very 
form of Q implies a radical departure from classicality. If it might seem that a 
restoration of intelligibility along classical lines is just round the corner, the 
impression is nothing but an illusion. After all, equation (3.2.3) owes its very 
form to its being derived from the Schrodinger equation, and the Q potential is 
a function of the R-field i.e. the amplitude of the field. This has two (related) 
consequences. Firstly, the quantum potential inherits non-separability features 
from the 'F function. In particular, if 'F is a ‘many-particle’ function that cannot

‘ Bohm 1952; Holland 1993.
2 If the system is conservative and if coordinates are Cartesian, the classical kinematical

1
relation p = mq follows from the guidance relation and the identifcation of q = — VS with the

m
streamline velocity of the probability current.
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be factored into separate individual contributions, then neither can the Q 
potential on a given particle, which will generally depend on the instantaneous 
positions of all the other particles. As a result, on an ontic reading of the 
formalism, it is as if one particle’s interacting externally may affect 
instantaneously at a distance (‘non-locally’) the trajectories of all the other 
particles that make up the system. Such non-locality connects to a remarkable 
feature of the quantum potential: it is independent of the amplitude of 
the R-field (multiplying R by a constant factor clearly has no effect on Q). 
This implies that the motion of particles may be significantly affected by that 
potential even in regions where the value of R appears to be negligible.
The non-classical properties of the quantum potential (especially form 
dependence) prompted Bohm to deny that it could sensibly be regarded as a 
mechanical potential. Whatever underlies all manifestations of quantum 
behaviour could not, he claimed, be reduced to any mechanical picture; the 
concessions that would be required for maintaining such a picture would 
defeat its very purpose. The quantum potential should rather be thought of as 
the surface mathematical expression of some inherently complex and barely 
conceivable ‘subdynamics’. Form dependence and non-locality eventually led 
Bohm and Hiley to suggest that the R-field might act as an ‘organising field’, 
and to introduce the idea of active information\ The word ‘information’ is taken 
here literally and etymologically as referring to a capacity to shape or ‘bring 
order1 into something, where that ‘something’ might be a collection of 
individuals or some underlying indivisible wholeness2. At any rate, the Bohm- 
Hiley active information has little, if anything, to do with the well-established 
and technical concept of information, where the latter, being “information for 
us3”, is devoid of ontological, ‘observer-’ or abstraction-free significance. In 
particular, information in the ordinary sense is not something that can be said, 
except in a loose metaphorical manner, to be ‘carried by’ or be ‘transferred 
between’ objective physical entities.
Bohm and Hiley conceive of multiparticle entanglement in terms of particles 
sharing a “common pool of information4”. An entangled 'P function would 
‘encode’ such information -  understood as a mysterious organising power -  
that is supposed to determine the behaviour of what we ordinarily conceive 
(perceive?) as separate entities (‘particles’ etc.). This suggestion clearly calls 
for an entirely new kind of ontology, where particles would be higher-level 
emanations of what Bohm refers to as ‘the implicate order5’. The common pool 
of information idea would provide a clue as to why ¥  functions are more

1 Bohm and Hiley 1993; Hiley 1999.
2 Bohm 1983.
3 Bohm and Hiley 1993; Maroney and Hiley 1999.
4 Ibid.
5 Bohm 1983.
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generally definable within a higher-dimension configuration space, reducing to 
three-dimensional ‘physical’ space only in the case of a single independent 
particle. The irreducibility of the configuration space representation would be 
ultimately due to the behaviour of N particles being generally co-determined 
by the pool of information they share in an indissoluble manner, and which an 
entangled function represents at the level of quantum theoretical 
description. Disentanglement would mean that the particle(s) concerned would 
no longer have access to that pool. As a result, their behaviour, while still 
regulated by a wave function, would be amenable to a space-time account. 
Those theorists1 who stick to Bohm’s original (1952) approach tend to 
downplay its holistic aspects, but the challenge of making sense of (3.2.1) 
remains. From our perspective, none of the variants of Bohm’s endeavour is 
satisfactory, for the reason that all of them rely on Schrodinger’s equation 
being given a priori. By contrast, a principle-based refoundation of quantum 
mechanics should have that equation, or some alternative ‘master1 equation, 
emerge from the imposition of a small set of compelling postulates. 
That obtaining a square-integrable solution of the Schrodinger equation is a 
prerequisite for getting R, S, and for deriving the kinematics (Bohmian 
trajectories) clearly suggests -  an impression confirmed by the essential role 
of equation (3.2.2) -  that Bohm’s approach is actually rooted in the standard 
approach, with its particular emphasis on the squared modulus of the wave 
function. This and, more generally, the a posteriori character of the Bohmian 
enterprise make it an unlikely candidate for the kind of refoundation of 
quantum physics that we are looking for.
The Bohmian view takes advantage of the favourable circumstance that 
(3.2.3) differs from the classical Hamilton-Jacobi equation only by an 
additional term. This suggests focusing on that term, interpreted as a new kind 
of potential -  a term that would, as it were, be the culprit for all ‘quantum 
effects’. But it is by no means obvious that anything similar to the Hamilton- 
Jacobi equation should actually arise from Schrodinger’s by just writing the 'F 
function in polar form, nor that the outcome should differ from the classical 
equation by an additional ‘corrective’ term (after all, say, the Lorentz 
transformation does not obtain by adding terms to the analytical expression of 
the Galilean transformation). Last but not least, the guidance condition is 
suggestive of a ‘trivialising map’ whereby the current set of phase space 
coordinates is transformed to a set that is constant in time2. What is oddly 
missing is the dual of that canonical transformation. It is as if the separation of 
Schrodinger’s equation into (3.2.1) and (3.2.2) would point toward some sort 
of generalisation of, or yet-to-be alternative to Hamilton-Jacobi theory, but

1 E g . Goldstein 1996,1998; Holland 1993.
2 Holland 2001a.
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without giving more, as it were, than ‘half a hint’. The dependence on S of the 
quantum potential also involves higher derivatives of S, in contrast to the 
classical Hamilton-Jacobi equation. What is the structural function and 
theoretical necessity of such higher derivatives?
Substituting the wave function, in the same polar form, into the one-

h2 d2x¥
dimensional stationary Schrodinger equation---------- =- + F(x)'F = £'F gives

2m dx
rise, again, to two equations1:

and

S '2 - 2 r d E - V ) = h 2 —
R

2R !S '+ R S ’  =  0

(3.2.4)

(3.2.5)

From (3.2.5), -Koc(*S") 2 which, inserted in (3.2.4), yields

-L (S ')2 + ( F - £ ) = | - [ |  | r  -  ^  ] . (3.2.6)
2m 4m 2 \ S  )  \ S  )

The ‘Quantum Hamilton-Jacobi Equation’ (3.2.6) essentially differs, as in 
Bohm’s case, from its classical analogue by its non-vanishing right hand side. 
However, what is remarkable about the right hand side of (3.2.6) is that it is 
proportional to the so-called ‘Schwarzian derivative’ of S. This third-order non
linear differential equation, whose solution is a real function S, can be used2 
as a replacement for Schrodinger’s stationary equation. The initial conditions 
for the wave function determine, up to a constant of integration, a unique 
‘characteristic function’ S, which is the generator of the motion for a single

dStrajectory as a function of time. —  then corresponds to the conjugate
dx

momentum3. Each trajectory is sufficient to specify the wave function (there is 
no need to invoke an ensemble of such trajectories). On the other hand and

' S ' = « .  etc.
dx

2 The WKB (Wentzel-Kramers-Brillouin) approximation method (see Messiah 1961,
O 00

Merzbacher 1970) consists in expanding S in a power series in h : S  =  ^ ] f t 2kS (k), keeping
k=0

only the zeroth-order terms. The result 'd&°>\2

a
= 2 t [E -V (x)] then lends itself to

straightforward integration.
3 The conjugate momentum is not identical with the ordinary linear momentum. It may be 
worth recalling that, in the Hamiltonian formulation of classical mechanics, even if the 
generalised coordinate q is Cartesian, the conjugate momentum need not be identical with

mq (it is not if the dynamical problem involves a velocity-dependent potential).
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for purely mathematical reasons, the representation afforded by (3.2.6) does 
not always resolve the wave function into single trajectories.
Equation (3.2.6) has made appearances in a number of suggested 
alternatives to standard quantum theory, e.g. in Nelson’s stochastic 
quantisation programme1. Amongst the relatively rare and unfashionable 
studies of (3.2.6), it is worth mentioning some well-crafted papers by Floyd2. 
Besides its own merits, Floyd’s representation is of particular interest in that, 
unlike Bohm’s, it has been set in a wider perspective by the seminal work of 
Faraggi and Matone, to which the next section is mainly devoted. These 
authors show how one can actually dispense with Floyd’s need to rely, just as 
Bohm does, on the prior availability of the Schrodinger equation. Instead, 
equation (3.2.6) is itself shown to be a direct consequence of assuming the 
universal validity of a single unambiguously mechanical and, in a precise 
sense, ‘relativistic’ principle.
Floyd considers (3.2.6) in toto rather than as an expression of a ‘correction’ to 
classicality (which, as already mentioned, is a tendency of Bohm and his 
followers). Remarkable aspects of his approach are his identification of 
microstates3 of the Schrodinger equation (which do not correspond in general 
to the L2(R) solutions of the standard account) and his derivation of the 
kinematics directly from (3.2.6). In the bound case, he shows that any given 
trajectory generated as a solution of (3.2.6) is consistent with a unique 
eigenfunction of energy as determined by Schrodinger’s equation. In that 
sense, (3.2.6) affords a finer resolution of the ‘bound state’ problem than does 
the usual focus on wave functions. Nowhere in the description is any 
randomness involved. Nevertheless, the probability rule of the standard 
account cannot be dispensed with given our general inability (whether real or 
dogmatically assumed) to resolve wave functions into distinct microstates. 
According to Floyd4, the use of probabilities in quantum theory is made 
necessary by the incomplete specification of particular microstates that the 
Schrodinger equation affords. On the other hand, any Floydian trajectory that 
corresponds to a microstate is sufficient to specify one solution of that 
(Schrodinger’s) equation.
In Floyd’s ‘trajectory representation of quantum mechanics’, as he calls it, and 
in contrast to Bohm’s, the conjugate momentum is not identified with the 
mechanical momentum. No guiding 'F field is required either, since motion is 
completely determined by (3.2.6). Moreover, Floydian trajectories, though 
consistent with the requirement that probability should be conserved, are not 
distributed in accordance with the wave function density. Another major

1 Nelson 1985.
2 E.g. Floyd 1996, 2000.
3 Floyd’s terminology.
4 Floyd 2000.
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difference with Bohm’s interpretation is that Floyd’s trajectories, which are 
more numerous than Bohm’s, may cross (this may happen given an 
eigenstate of the Schrodinger equation that corresponds to different 
microstates). In the case of unbound systems, although there are no 
microstates and each trajectory is uniquely determined by a set of initial 
conditions, Floydian and Bohmian trajectories correspond to different space
time paths -  the kinematical equations are different. Floyd’s trajectories also 
differ from Feynman paths in that the generator of the motion can be regarded 
as an appropriate variant of Hamilton’s characteristic function, whereas 
Feynman assumes a classical propagator.
Because of the difficulty of obtaining analytical solutions of (3.2.6), closed form 
solutions are yet to be obtained for dimensions higher than 1 or beyond 
simplified pseudo-2-dimensional situations. Another technical drawback is the 
considerable difficulty of time-independent perturbation theory: because the 
right hand side of (3.2.6) does not vanish, the task is bound to be more 
challenging than classical canonical perturbation theory, which is itself much 
more complicated than standard quantum-mechanical perturbation theory. 
Since perturbative treatments based upon (3.2.6) may yield results at variance 
with those of standard calculations1, this could provide and incentive to test 
Floyd’s predictions (if anyone ever cares to do so), hence the validity of his 
alternative approach.

3.3 Quantum mechanics from a single principle

In a recent paper, A. Faraggi and M. Matone2 have shown in a very detailed 
and conclusive manner that quantum mechanics can be derived from a single 
principle. More precisely, Schrodinger’s equation is shown to be an indirect 
consequence of requiring that dynamical laws comply with a so-called 
‘equivalence’ principle. That principle is relativistic in so far as it can be traced 
back to reconsidering the special character of the rest frame in classical 
mechanics. The new approach provides insight into the solutions of the 
Schrodinger equation and sheds more light on the duality of canonical 
variables. No satisfactory refoundation of quantum mechanics as a ‘principle 
theory’ will be achieved in a cheap way. The Faraggi-Matone programme 
outlined in this section3 is clear testimony to the level of technical 
sophistication required, in stark contrast e.g., to STR.

1 Floyd 2000.
2 Faraggi and Matone 2000.
3 The reader is referred to Faraggi and Matone 2000 for all the mathematical details and 
proofs. For easy reference, the notation used here only differs slightly from the one used in 
that paper.
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Canonical transformations are those transformations from a (p,q) set.of 
conjugate coordinates and momenta to another (P,Q) that leave the form of 
Hamilton’s equations of motion invariant. Dynamics is preserved provided that

pq -H  = PQ-K+ — , 
dt

where H(q,p,t) and K(Q,P,t) are the old and the new Hamiltonian, F the
SF 3F d fgenerating function1. Setting p = — and P =  leads to H + — = K.
dq dQ dt
dSThe Hamilton-Jacobi equation H + — = 0 obtains by requiring that K vanish
dt

(F is in then usually noted S and referred to as Hamilton’s principal function). 
As a result, the formerly independent q and p variables have become 
dependent -  in particular, p = dqS(q,Q,t). Integration yields Q and P, 
and inversion of the coordinates the solution to the dynamical problem. 
If the Hamiltonian can be neatly separated into a kinetic and a potential term

p2as H = -r— + V(q,t), the Hamilton-Jacobi equation becomes 
2m

2m
r dS^2+ y + —  = o (3.3.1)

dt ’dq
Assuming that the potential does not depend on time and writing S = So -  Et, 
with E the energy, the characteristic function a.k.a. ‘reduced action’ So 
satisfies the classical stationary Hamilton-Jacobi equation (CSHJE):

2m
^ s 0^2+ W(q) = 0 (3.3.2)

dq
where W = V(q) -  E. The dependence on time is implicit. Time 
parameterisation is introduced at a later stage, usually by identifying the

conjugate momentum p with the mechanical one mq, or through Jacobi’s 

theorem: t - 10 = deSo.
Now consider a similar problem to that of setting up equation (3.3.2), 
with the difference that the relation p = SqSo between reduced action and 
canonical momentum is introduced from the outset, instead of treating q and p 
as independent variables. The question raised by Faraggi and Matone is 
whether a coordinate transformation q -> q’ exists that maps a dynamics 
characterised by So(q) to another characterised by So’(q’), so that they can be 
regarded as equivalent, e.g. in the sense that So(q) = So’(q’). The old and the 
new set of coordinates are independent variables, and dynamics is completely 
characterised by the functional dependence of So on q and that of So’ on q’.

1 F is a function of t and any of the pairs (q,Q), (q.P), (p,Q), (p.P) considered as independent
variables.
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Since the systems are deemed arbitrary, there should exist a coordinate 
transformation mapping So(q), corresponding to a system with W *0, into the 
reduced action that corresponds to the free system with vanishing energy,
i.e. with W° = V(q°) -  E = 0. This is reminiscent of Hamilton-Jacobi theory, 
although coordinate transformations only are considered, the transformation of 
p being induced by that of So through p = dqSo.
As it turns out, requiring that S0A(qA) = S0B(qB) be well-defined irrespective 
of the choice of systems A and B is incompatible with classical mechanics. 
Conflict can be traced back to a peculiarity of the rest frame: from (3.3.2), a 
free particle (point mass) with vanishing energy has a constant reduced 
action, which no coordinate transformation can connect to a non-constant 
function. On the other hand, such a coordinate transformation makes sense 
from the point of view of an observer in motion relative to both A and B, since 
both systems are then ascribed non-constant So’s. Thus, since the connection 
we are looking for is possible only between systems, neither of which is 
described by a constant reduced action, the requested equivalence under 
coordinate transformations requires choosing a frame in which no particle is at 
rest. Formally, the classical impossibility can be overcome by considering 
time-dependent coordinate transformations, which Hamilton-Jacobi theory 
itself cannot accommodate. In classical mechanics, where space and time are 
considered on an essentially different footing, the ‘passage’ of time is extrinsic 
to a system and indifferent to whatever value spatial coordinates may be set 
to. Therefore, it is always possible to reduce to the free system at rest by 
setting q’ = q -  f(t). An example of such a (clearly invertible) transformation is

1 ?the transformation q -» q’ = q g r , which reduces the motion of a point

mass in a gravitational field (expressed by Newton’s law as mq = mg) to that

of a free particle (mq'= 0), where the latter naturally includes the particle at 
rest. Thus, time parameterisation provides a means of compensating for the 
‘privilege’ of the rest frame in classical Galiean mechanics.
Faraggi and Matone’s programme consists in setting up a dynamical 
framework in which no such ‘classical’ restrictions are imposed, tacitly or not, 
on the existence of locally invertible coordinate transformations. The ‘new’ 
dynamical framework is thus required to be such that an arbitrary system can 
be reduced to the null W° case. This suggests the existence of some energetic 
contribution, independent of the form of the potential V, that could prevent 
reduced action to ever be constant, thereby depriving the rest frame of any 
suspicious privilege. Naturally, such a contribution is not to be enforced in an 
ad hoc manner Rather, a modification of the CSHJE (3.3.2) should result from 
consistently satisfying the demands of a basic ‘structural’ principle.
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Whilst classical mechanics never treats canonical variables on a truly equal 
footing, the involutive nature of the Legendre transformation, which is implicit 
in the very definition of the generating function, gives rise to explicit p-q duality 
(Hamilton’s equations of motion are p-q symmetrical, up to sign interchange). 
This duality can be made manifest by introducing the generating function To, 

which stands in the same relation to q as So does to p, i.e. q = 3pTo. 

Duality means that a system with given W can be described in two equivalent 
manners, associated with So and T0 respectively. Writing Hamilton’s principal 
function S = So -  Et, and T = To + Et, where T = q3qS -  S, then

—  = . (3.3.3)
St St '

Equation (3.3.3) ensures that the S-T Legendre duality remains stable under 
time evolution.
Amongst all possible interchanges of the So and To pictures according to 
q -> ap, p -> pq, that with the highest symmetry is such that a = p, which 
leaves unchanged the functional dependence of q and p. Stability under time 
evolution of the Legendre relationship between S and T then requires that 
ap= -1, consistently with the minus sign in (3.3.3). Consequently, a = p = ±i : 
the occurrence of imaginary numbers follows from requiring maximum 
symmetry in the context of Legendre duality, and that the duality be temporally 
stable. This is in fact as far as the imaginary factor occurring in the relation 
between So and solutions of the Schrodinger equation (to be derived later) can 
be traced back.
The duality of So andT0 can be given a ‘geometrical’ expression by noticing 
that So obtains as a result of a Mobius transformation of To. Mobius coordinate

transformations1 q -> q’ = — + B are such that q’Jp7 and Jp7 are linear
Cq+D ^ ^

combinations of the solutions to two second-order linear differential equations2

1, '  
+^{q.s} <Wp = 0 = ( \ (q. s}l-y/p (3.3.4)\ds 2M  2

where s = So(q) . Equations (3.3.4) are ‘equations of motion’ in so far as they 
can be used for solving the dynamical problem (this requires writing q^/p and

7p as linear combinations of linearly independent solutions of the equation,

extracting q as a function of s and inverting it to get So). These equations have 
Mobius symmetry that is signalled by the occurrence of a Schwarzian

‘Generators of the MObius group are translations, dilatations and ‘inversions’ (special 
conformal transformations).
2 Faraggi and Matone 2000, section 4.2.
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f m 3 (derivative {f,x} =  ------ —f  2 f already encountered in equation (3.2.6).

Af + B 1Since { -------- ,x} = {f,x}, the Schwarzian term — {q, s} is invariant under a
Cf+ D 2

Mobius map1. This term, which can be regarded as a canonical potential, is
not invariant under general coordinate transformations. This indicates that
coordinate maps can be used to connect physical systems characterised by
different potentials.

Equivalence Principle (EP) : For any pair of dynamical systems A and B 
with WA = VA(qA) -  EA(qA) and WB = VB(qB) -  EB(qB), there exists a 
coordinate transformation qA —► qB such that WA(qA) transforms into 
WB(qB).

Since A and B are arbitrary, EP implies that any system can be mapped into
that corresponding to W° = 0. For the reasons given above, EP cannot be
consistently implemented in classical mechanics, where So satisfies (3.3.2). 
In that framework the W(q)’s transform as quadratic differentials: 
W’(q’) = (dq-q)2W(q). As a result, W° can only transform into itself, and the 
W(*0) of an arbitrary system cannot be connected to W° by an invertible 
coordinate transformation. Therefore, implementing EP requires a modification 
of (3.3.2). Since adding a constant to S0 changes nothing to the dynamics, 
the general equation that So should satisfy is expected to be of the form 
F(dqSo, dq2S0,...)  = 0. Taking into account the fact that (3.3.2) should be the 
classical limit of the new equation, that equation may, with no loss of 
generality, be written

1
2m

^ S 0^2
+ W(q) + Q(q) = 0 (3.3.5)

6q
so that the classical limit obtains as Q tends to zero. Just as in classical 
mechanics, all the dynamically relevant information is encoded in the 
functional dependence of So on its argument. This solution will still be referred 
to as a ‘reduced action’, bearing in mind that it is not identical with its classical 
namesake.
The scalar nature of So implies that W+Q transforms as a quadratic 
differential. On the other hand, mapping W° into an arbitrary W*0 (and vice 
versa) is possible only if W° transforms with an inhomogeneous term, hence 
non-quadratically. In other words, under the transformation q ->■ q’, 
W’(q’) = (dq-q)2W(q) + (q;q’)f where (q;q’) is the inhomogeneous term picked off

1 This term is invariant under GL(2, C) (MObius) transformations of q. A MObius transformation
A

of S0 corresponds to a simple rescaling of A { q t S} •

71



by the transformation. It is reasonable to expect the coordinate transformation 
connecting WA and W° to be equivalent to the composition of 
two transformations, one mapping WA into W8, the other WB into W0. 
This consistency (‘pseudogroup’) requirement amounts to the satisfaction of 
the basic cocycle condition

(qA;qC) = (a ^ q ^ K q V ) -  (qc;qB)] (3.3.6)

That condition implies the Mobius invariance of (qA;qB), which must then be 
proportional to the Schwarzian derivative {qA;qB}. In fact, (3.3.6) uniquely 
determines1 the Schwarzian derivative, up to a global constant and

t 2a coboundary term. More precisely, (qA;qB) = {qA,qB}.
4m

The inhomogeneous term (qA;qB) vanishes in the £ -> 0 limit, and so does Q 
for a fixed W , whereby (3 .3 .2 ) is recovered with So the classical reduced 
action.

12
Remarkably2, W(q) = (q°;q), hence W(q) = {q°,q}. Such dependence of

4m
an arbitrary W on q° is an indication that departure from classicality relates to 
reconsidering the ‘privileged’ status of the rest frame. Since (dqS0)2, which 
transforms as a quadratic differential under the coordinate maps, can also be 
expressed as the difference of two Schwarzian derivatives:

2U >
2 _  S

( W =  2 {e5Sl,q}-{S0,q}

- s .

and q° = ——  (where Mobius symmetry is manifest), the final
?!s

Ce* + D 
expressions for W and Q are

t 2 TS°W ( q ) = - f - { e 5 ,q> and Q(q) = - f - {S 0,q}.
4m 4m

Thus, consistent implementation of the Equivalence Principle leads to the 
equation:

_1_
2m

^ s 0^2
dq

+ V(q)-E  + - j—{S0,q} = 0 . (3.3.7)
4 m

This equation is formally identical to (3.2.6) provided £ is identified with 
Planck’s ‘reduced’ constant h. Substitution then leads to the quantum 
stationary Hamilton-Jacobi equation (QSHJE):

1 Faraggi and Matone 2000, section 9.2.
2 Ibid. , section 8.1.
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(3.3.8)

—s0 XI/
So is a solution of (3.3.7) just in case es = — , where ^and ip are linearly

V
independent solutions of the equation

(3.3.9)

Identifying \  with % now yields the Schrodinger stationary equation. 
Most significantly, this equation emerges as a formal by-product of the both 
mathematically and physically cogent derivation of the QSHJE (3.3.8). It is the 
latter, rather than Schrodinger’s, which directly reflects the satisfaction of the 
Equivalence Principle.

n 2
The ‘quantum potential’ Q = — {S0,q} is fundamentally different from

4m
Bohm’s in that, consistently with the Equivalence Principle, So can never be 
constant. This fact is reflected in the form

of a general solution to Schrodinger’s equation (3.3.9), with 5 = %. Momentum

is evaluated through p = d̂ So (* mq) as a function of the initial conditions, 
whereby a definite phase space trajectory follows. There is no need to 
introduce any notion of pilot wave or guidance condition.
Solving the QSHJE is facilitated by using two real and linearly independent 
solutions vj/ and ip of the stationary Schrodinger equation -  this is in fact the 

main purpose of introducing that equation. The appearance of both y/and ip, 
which is an indirect reflection of the underlying Legendre duality, links to the 
second-order linear form of (3.3.9). Since there is a many-to-one relationship1 
between reduced action and ‘wave function’ (a consequence of the invariance

2ig

of w = — under a Mobius transformation of e* °), we are justified in regarding

the Schrodinger equation as little more than a useful computational tool, which 
conveys less physically significant information than does the QSHJE. 
If it is admitted that quantum mechanics is -  or rather, should be -  
fundamentally based upon (3.3.8), despite exclusive use of (3.3.9) since 1926, 
then classical mechanics is an approximation to that theory in much the same

1 Faraggi and Matone 2000, section 14.
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sense as it approximates STR in the relevant limit. Neglecting Planck’s 
constant would then amount to relaxing the universal validity of the 
Equivalence Principle i.e. to restoring the privileged status of the rest frame in 
classical mechanics.
Writing the QSHJE in terms of the ‘principal’ function S(q,t) = S0(q) -  Et, 
the time-dependent Schrodinger equation immediately follows. The ‘quantum 
correction’ to Hamilton-Jacobi theory also retains its general structure in an 
Einstein-relativistic context1 (the cocycle condition (3.3.6) remains essentially 
unchanged as a consistency condition on the transformation properties of W 
and Q). Besides that condition, which must be satisfied for (3.3.7) to follow, 
equivalence under coordinate transformations implies that these 
transformations must be locally invertible. Energy quantisation is shown to be 
directly related to local invertibility and the duality structure, via the imposition 
of an appropriate ‘joining condition2’ that implies the existence of a L2(R) 
(square integrable) solution of the corresponding Schrodinger equation. To the 
extent that the QSHJE itself is defined if and only if w  is a local self- 
homeomorphism of the extended real line3, and this makes it necessary for 
the Schrodinger equation to admit a L2(R) solution, energy quantisation is seen 
to be a direct consequence of the QSHJE, hence of the Equivalence Principle. 
In contrast to the usual approach, there is no need to require square 
integrability as an additional condition that must be satisfied by the solution of 
the Schrodinger equation. The fact that a particular solution is square 
integrable is usually taken to select the energy spectrum, determining which 
solutions are to be regarded as ‘physical’. However, the physically relevant 
part of the statement is not that the solution is square integrable, but that the 
equation admits a square integrable solution. In other words, it suffices that 
energy values be selected as those for which such a solution exists. This does 
not mean, however, that for a given value of energy all solutions to the 
Schrodinger equation have to be square integrable (indeed, if that equation 
has, for a fixed E, a square integrable solution, then no other linearly 
independent solution can be square integrable).
Tunnel effect is reproduced without any further assumption. In particular, there 
is no need for invoking a probabilistic interpretation of the ‘wave function’ 
in order to account for the absence of solutions when W(q) > 0 for all q. 
Tunnel effect is found to be wholly imputable to p being a real function even in

llbid., section 19.5.
2 Ibid., equation (15.8); see section 18.

4m  W  —
^ h e  QSHJE (3.3.8) is actually equivalent to the equation { w , q }  =  r— .where w  =  e h .

h
Consistent implementation of the EP requires that the transformation properties of the. 
Schwarzian derivative be satisfied. In particular, its being a MSbius invariant implies that, 
since under inversion (q—>1/q) 0* is mapped into ±oo, continuity conditions for the existence of 
the Schwarzian derivative must hold on the extended real line.
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those regions which are classically forbidden1 (this relates to the fact that the 
quantum potential2 is never trivial).
Faraggi and Matone’s EP is obviously reminiscent of its namesake in the 
General Theory of Relativity (GTR). So far, all approaches to ‘quantum gravity’ 
have been assuming that quantum mechanics, based upon (3.3.9) -  and 
wherever that equation comes from -  is a universal framework with which 
fundamental interactions have to comply, whereas gravitation is properly 
described in the apparently unrelated ‘geometrodynamical’ language of GTR. 
If the basic equation of (Galilean-relativistic) quantum physics is taken to be
(3.3.8), there is no doubt that basic premises of the current attempts to 
‘quantise’ gravity will have to be reconsidered.

Summarising:

1. Quantum mechanics can be derived from a single principle. 
The rationale for the introduction of a finite action quantum is 
‘relativistic’, although in a less intuitively straightforward sense than 
is the case with STR.

2. The outcome of the derivation is an alternative form of the Hamilton- 
Jacobi equation, whose solution is a quantity having the dimensions 
of an action. Schrodinger’s equation follows as a result of linearising 
that equation.

3. Energy quantisation arises as a consequence of a local invertibility 
condition associated with the fact that the stationary Schrodinger 
equation admits square integrable solutions.

4. The existence of such solutions implies that a theoretical framework 
that takes the Schrodinger equation (rather than the Quantum 
Hamilton-Jacobi equation) as its basic equation is bound by its 
characteristic Hilbert space structure. Alternative e.g. matrix or 
operator-based formulations of such a restricted formulation of 
quantum mechanics -  which corresponds to quantum theory in its 
current acceptation -  can be set up accordingly.

1 From the CSHJE, p  =  ± y l2 m (E  -  V ) , implying that V  -  E > 0 corresponds to a

forbidden region. On the other hand, from the QSHJE p  =  ± - y J l m ( E - V - Q ) : because 

of the contribution of Q, p may be real although V  -  E > 0.
2 Both classical and quantum potentials can be regarded as curvature terms in projective 
geometry (the Heisenberg-Born-Jordan canonical commutation relation can be 
expressed in terms of area functions).
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5. The form of mathematical representatives of physical quantities and 
their mutual relationships can be derived and justified on the basis 
of (4) and group-theoretical considerations1.

6. The existence of square-integrable solutions makes it possible 
to develop a probabilistic interpretation, in terms of the squared 
moduli of the relevant functions. Owing to (5), the theoretical 
framework is thereby turned into an effective algorithm for prediction 
(discussed in Part B). Potentially severe analytical difficulties that 
may be encountered while attempting to solve the Quantum 
Hamilton-Jacobi equation are thus bypassed. However, the cost of 
practical efficiency may be a loss of information about finer aspects 
of dynamics, which the QHJE alone affords.

Regarding (6), a parallel can be made with the ordinary probability calculus.
+O0

In that framework, the ‘characteristic function2’, defined as r (a ) = Jeiaxp(x)dx,

use in the calculation of the moments < xn > = —
i

of the distribution.
a=0

where x is a random variable and p denotes a probability distribution, finds its
d T  
dec"

Conversely, the characteristic function is determined by the moments, since 
00 (ia)kr(a ) = £ ^ - < x k >. The probability distribution follows (non-uniquely in

k=o k!
general) by a Fourier transform. As first shown by Khinchin3 a condition, both 
necessary and sufficient, for a complex function r  to be regarded as a
characteristic function is that some complex-valued function cp exists, which

+00

can be normalised to unity ( Jcp * (x)cp(x)dx = 1) and such that
—00

+00

T(a) = Jcp * (x)cp(x + a)dx. It has been suggested4 that a square integrable
—00

solution to the Schrodinger equation might play the role of a generator of the 
moments of probability distributions associated with the outcomes of 
measuring various observables. Substituting for the classical relationship
between T and <p the integral

+ 0 0

r(4) = Jcp * (x)el<,A(p(x)dx, (3.3.10)

1 L6vy-Leblond 1974, Jordan 1975 and Section 2.2 of this thesis.
2 Which clearly has nothing to do with the function of the same name in analytical mechanics.
3 Khinchin 1937.
4 Cohen 1988.
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where A is an arbitrary Hermitian operator, basic features of the ‘quantum 
calculus’ can be retrieved -  in particular, the relationship between position (x) 
and momentum (p) distributions automatically follows from choosing

A = - i —  and letting a = p. The analogy can be carried over to two and 
dx

certainly more dimensions, so that formal constraints on joint distributions can 
be addressed. That there is no unique relationship between the probability on 
the one hand, and Khinchin’s cp or the ‘wave’ function on the other suggests 
that the latter can give rise to as many distributions as there are variables 
associated with sets of compatible observables. On the other hand, it is 
unclear why (3.3.10) should provide the ‘right’ substitute in the quantum 
setting for the classical relationship between q> and T. The main virtue of 
parallels like this lies in their suggesting that square integrable solutions to 
Schrodinger’s equation have just the requisite properties for setting up an 
effective previsional framework (assuming (5) above is satisfied).
A hint at the necessity of resorting to probability in quantum theory may be 
found in implications of an intriguing theorem, which has so far escaped the 
attention of the philosopher (as well as that of most physicists). A symplectic 
transformation is a mapping which, for a choice of real parameter t, takes the 
phase space representative Mo of an ‘initial state’ into another point Mt that is 
a representative of the outcome of a lawful dynamical evolution (i.e. satisfying 
Hamilton’s equations) between times t=0 and t. Symplectic transformations 
associated with different choices of system and different values of the 
parameter t form a group, and symplectic geometry concerns itself with the 
study of such transformations and their invariants. Liouville’s theorem states 
that symplectic equivalence between two sets of phase space points implies 
equality of the phase space volumes. Equality of volumes is, however, not 
sufficient to guarantee symplectic equivalence for those spaces whose 
dimension is at least four. In 1986, another invariant, known as ‘symplectic 
width’, was discovered by Mikhail Gromov1. Although a symplectic 
transformation might appear to allow the embedding of any phase space 
sphere within a cylinder of the same radius (the volume of the sphere is after 
all finite whereas that of the cylinder is infinite), the embedding is in fact 
possible only if the symplectic width of the sphere is actually smaller than that 
of the cylinder. Since the symplectic width of both the sphere and cylinder is 
equal to the square of their radius x 271, the embeddability condition is, in that 
example, tantamount to requiring the radius of the sphere to be smaller than 
that of the cylinder.

1 Gromov 1987; see Hofer 1998 for a survey. I thank Ivar Ekeland for drawing my attention 
to those references.
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In mechanics, any empirical evaluation of the kinematical quantities qif pj 
which determine a dynamical state is made with definite resolutions Aqi and 
Api for each degree of freedom /. For a given degree of freedom, the 
magnitude of the uncertainty is given by the ‘area’ Aj = Aq, Ap*. The smallest 
value q  of A j as / ranges over the n degrees of freedom then yields the 
minimum uncertainty or best resolution afforded by the measurement. 
Conservation of the symplectic width implies that, if Aj > q  for all / at the time T 
of the measurement, no evolution of the dynamical system from that time on 
can make any A j lower than q . If there is a k  such that A k > s > q  at T, then it is 
possible for A k to be subsequently lower than s, provided some A j (j*k) at T 
exists such that A j < e. However, if q is a lower bound for all of the A j, no 
improvement on the resolution of measurement below q  is possible in 
principle, even if the resolution of the qs can be improved upon at the expense 
of that of the pj (and vice versa). The appearance of any such trade-off, 
implied by Gromov’s theorem, in the framework of classical mechanics may 
come as a surprise. Of course, the theorem imposes no limitation on the 
possible a priori resolution of measurements in classical mechanics: if q  is 
assumed to be reducible in principle to zero, then all Aj can be so reduced. 
In contrast, Planck’s quantum of action, which in the FM scheme outlined 
above arises as a structural constant, may be regarded as implying an 
irreducible, structurally enforced lower bound on all Aj products. In fact, the 
authors show1 that their equivalence principle implies phase space non
localisation, as a direct consequence of the fact that one point cannot be 
diffeomorphic to a line. It would be most interesting to investigate which 
connection the structural exclusion of phase space points as representatives 
of states under the equivalence principle bears with the Heisenberg 
inequalities, and whether it might not provide, along with the above 
consequences of Gromov’s theorem, the key to all basic ‘quantum 
uncertainties’. If none of the degrees of freedom of a quantum-mechanical 
system can possibly act as a source of accuracy and improve on the minimal 
resolution quantified by h , it might well make it inevitable to resort to a 
probabilistic formalism, which is fortunately supplied via the square- 
integrability of solutions to (3.3.9).

E n d  o f  P a r t  A

1 Faraggi and Matone 2000.
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Part B
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4

Quantum rules and objectification

4.1 Quantum theory, systems and preparations

In the whole of Part B, and in that part only, it will be convenient to make a 
distinction between quantum theory and quantum mechanics. The latter will, 
as in Part A, denote the theoretical framework that emerged in 1925-1926, 
bringing an end to the rather confused state of affairs that followed Planck’s 
introduction of the quantum hypothesis. On the other hand, the expression 
quantum theory will be restricted to the set of elementary statements listed in 
Section 4.2, or some generalisation thereof. Together, these statements 
supply the basic ingredients and rules of a rather elementary but powerful 
statistical algorithm. The main purpose of this Statistical Algorithm of Quantum 
Mechanics (SAQM), which we shall take to be synonymous to ‘quantum 
theory’, is predictive: its purpose is to calculate the probabilities of 
the outcomes of measurements performed in specified conditions.

The elementary statements or basic rules of the SAQM are usually referred 
to physical systems. For our purposes, it will be sufficient to think in terms of 
types of (micro)physical systems, e.g. a hydrogen atom, an electron, a 
neutrino or a photon. Every such type can be characterised by supplying a 
unique list of invariant quantities such as rest mass, electric charge and a host 
of quantum numbers like spin, baryon number, strangeness etc. These 
quantities, which characterise species rather than individuals, are regarded as 
primitives in quantum theory. As to the heavily loaded word state, it will be 
avoided unless its relevance, use and meaning are the very subject matter of 
discussion. Underwriting common usage would be inappropriate since our aim 
in Part B is to investigate the possibility to reconstruct the whole of quantum 
theory with a bare minimum of presuppositions.

The word preparation will designate, very broadly, those conditions, including 
a reference to system type, that are prerequisites for the computation of 
predicted outcomes of measurements using the rules of quantum theory. 
With an abuse of language, the word will be used regardless of whether 
the ‘preparation’ in question is the result of some carefully devised 
experimental procedure, is just inferred from the knowledge of some prior 
state of affairs or is merely stated with a heuristic aim.
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It may be useful to outline a typical procedure whereby a preparation is 
consciously achieved. The procedure basically involves (i) an appropriate 
source S, and (ii) the selection from the output of S of a definite (range of) 
value(s) of a given physical quantity. Such a selection should not be taken 
to imply that properties inherent to individual systems -  ‘their* momentum, 
‘their* spin (in some fixed direction) etc. -  are thereby made available for 
further tests. As we shall see in more detail in Sections 4.3-4.4, the SAQM 
conflicts with simple-minded assignments of attributes to physical systems, at 
least as long as the attributes in question are deemed associated with the 
eigenvalues of the operators that represent the corresponding quantity.
We shall suppose that S emits electromagnetic radiation at such a low 
intensity that a single quantum of energy (photon) is emitted in a given time 
interval. The output of S is directed toward a polarising filter P<\, the optical 
axis of which is (xx*), followed by another polariser P2, whose optical axis is 
chosen either parallel or perpendicular to (xx*). Radiation is always detected 
after P2 when the axes of the polarisers are parallel, whereas no detection 
ever occurs when the axes are perpendicular. It will be said that setting up the 
first polariser amounts to a preparation whereby the quantity "linear 
polarisation along the (xx*) axis” can be ascertained. That preparation can now 
be used as a basis -  in the ordinary as well as the linear algebraic sense of 
the word -  for predicting the outcome of similar tests to be performed when P2 
is replaced by another polariser P’, the optical axis of which is at a known 
angle 0 away from (xx*). One’s trust in the reliability of the source and testing 
devices Pi and P2 is commonly expressed in counterfactual terms: whatever 
the outcome of detection using P', if detection had been attempted using P2 
instead, the test would have given the expected result for that polariser.
The randomness of events like ‘clicks’ of a Geiger counter, impacts on 
a photosensitive plate, or measurement outcomes in general is an empirical 
fact all discussions and interpretations of quantum theory must reckon with. 
Because of the random character of typical occurrences, quantum-theoretical 
predictions of measurement outcomes are made in terms of probability. 
The probability calculus provides well-tried methods for reasoning consistently 
in the face of uncertainty1. It is also2 in accordance with experimental practice 
to understand probabilities, qua objective chances, in terms of limiting 
frequencies in ideally infinite repetitions of a given experiment (chances, 
regarded as long-run frequencies, satisfy the probability axioms3). If, for

1 Howson and Urbach 1993 ; Howson 2000.
2 Notwithstanding the resistance of some (Fuchs 2001), a thoroughly epistemic notion 
of probability need not conflict with a frequency-based account of objective chances. A rather 
strong case can be made for the latter lending support to the proper evaluation of statistical 
hypotheses (Howson 2000, ch.9).
3 These axioms, as first formulated by A.N. Kolmogorov (1933) a r e : (i) p(A) > 0, where A 
is any member of a well-circumscribed class of factual propositions; (ii) If A and B are mutually
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a given preparation characterised (P1 below) by a ket I >, the result a; of 
measuring the physical quantity A obtains Nt times in N trials, the probability

P4/(aj), calculated using the rules of quantum theory, of that outcome
Nconditional on that preparation is found to be in agreement with lim — .
n

4.2 Basic rules of quantum theory

P1. Linear vector spaces over the field of complex numbers, equipped 
with an inner product (Hilbert spaces) are used as a background 
structure for characterising, for purposes of prevision, preparations 
involving physical systems of any types.

P1a. One element of the Hilbert space H can be associated to any 
definite preparation.

This element is often called, after Dirac1, a ket and more generally, albeit more 
questionably, a ‘state vector*. Kets that differ only by a phase factor lead to the 
same (probabilistic) predictions, in virtue of P6 below. Therefore, within 
the compass of the SAQM, such kets are to be regarded as provisionally 
equivalent.
Preparations for which P1a holds are known as pure cases.

P1a*. There is2 some preparation that is characterised by a given ket 
I 'F > e H. Any such ket can be written as a linear combination or 
‘superposition* of kets in H.

P1b. (mixed case) If, for any reason, no definite ket can be assigned 
for purposes of prevision, all of the relevant predictions may be 
worked out on the basis of an appropriate statistical operator which 
acts upon the elements of H.

A statistical operator is a self-adjoint operator whose eigenvalues are all 
non-negative and all add up to 1 -  hence the more common name ‘density 
operator*. A pure case statistical operator p is a projection operator or 
‘projector* (p2 = p) onto the one-dimensional subspace or ‘ray’ in H spanned

inconsistent, then p(AvB) = p(A)+p(B), where v  denotes the 'or1 connective of prepositional 
logic; and (iii) p(T) = 1, where T  stands for a necessary truth. It is a consequence of the 
axioms that ail values of p are non-negative and that they all add up to 1, suggesting that any 
given p(A) might be expressible as a less-than-unity ratio of appropriate quantities.
‘ Dirac 1958.
2 It is assumed that no ‘superselection rules’ (Wick et al. 1952) forbid linear combinations 
of ‘lawful’ kets. If this happens, the projection operators that correspond to such linear 
combinations do not qualify as observables. Considering such possibilities, which relate to 
subtle group-theoretical issues, falls well beyond the scope of the present study.
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by the ket which, according to P1a, can be ascribed to the preparation. 
The statistical operator assigned to a mixed case is not a projection operator.

P2. If two preparations can be separately assigned (P1a) kets 
I *F > e H and I 'P' > e H' respectively, then predictions bearing on any 
measurement to be performed jointly on *F and ^ ’-prepared samples 
can be calculated using the single ket I'F.'F’ >eH®H\ where ® 
denotes the tensor product of the Hilbert spaces H and H', and 
I , 'F* > is an alternative way of writing I 'F >®| > (also I 'F >| VF’ >).

P3. A ket I 'F(to) > being associated at the time to to a preparation, this 
ket changes with time according to I *F(t) > = U(t,to) I 'F(to) >, where 
U(t,to) is an appropriate unitary operator1, as long as the systems 
involved are not interfered with in the time interval [to,t].

P3’. A (pure or mixed case) statistical operator p evolves, in the same 
conditions as P3, from to to t according to2 p(t)= U(t,to)p(to)Ut (t,t0).

If p2(to) = p(to) (pure case), then it follows from P3* that p2(t) = p(t) for t > to: 
a pure case cannot spontaneously evolve into a mixed case.

P4. To every measurable dynamical quantity A a linear, self-adjoint3 
operator A can be associated, which acts upon the element of H 
defined in P1.

The word observable is commonly used to denote both a dynamical (transient) 
quantity and the associated operator.

P5. Measuring an observable A on a given sample system yields a 
result that is uniquely associated with one of the eigenvalues ak of the 
operator A.

Eigenvalues ak of A are by definition such that A| ak,m >=aiJ ak,m > for some 
vector I ak.m H (that vector is not necessarily unique4). That the A operator 
is self-adjoint ensures that its eigenvalues, hence the results of any

1 The inner (scalar) product of Hilbert space vectors provides the only Riemannian metric 
that is invariant under unitary transformations and is therefore preserved during the time 
evolution of kets.
2 Uf is the operator adjoint to U. If an operator A admits a matrix representative 
with coefficients amn in some given basis, then Af  is a matrix with coefficients atmn= a*nm in that 
basis.
3 By abuse of language, self-adjoint and Hermitian operators will not be distinguished.
4 For a brief discussion of such non-uniqueness or ‘degeneracy’, see d’Espagnat 1976 pp. 17- 
18) and 1995 (3.1 ‘Remark 5’).
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measurement of A, are real numbers1. Eigenvectors I ak,m > and I ai,n > that 
correspond to distinct eigenvalues ak and a\ of the same observable A are 
mutually orthogonal: their inner product < ak,m I ai,n > vanishes2. A complete set 
of eigenkets of any observable defined on H can be used to construct 
an orthonormal basis on which any H vector can be linearly expanded. It is a 
distinctive feature of the SAQM that, for any ket, there are always observables 
of which that ket is not an eigenvector.

If two observables are such that the corresponding operators A and B 
commute (AB = BA), these two observables are said to be compatible: a set 
of eigenvectors can be found that is common to A and B (if the orthonormal 
basis constructed from that set is unique, then the operators are said to form a 
complete set of commuting observables). Observables whose operator 
representatives do not commute, i.e. such that [A,B] = AB -  BA = iC *  0, 
cannot have all of their eigenvectors in common. This implies a reciprocal 
relationship between the statistics of A and B measurements performed on 
some arbitrary preparation associated with a ket I t  >. The trade-off is 
generally expressed as an inequality3

( A A M A B ) *  >  1/21 < C > T  I , (4.2.1)

where A A  and AB denote the square roots of the variances or A and B. 
The mean value of the commutator sets a lower bound on the extent to which 
the dispersions given by ( A A ) y  and (AB)vp can both be reduced. It must be 
emphasised that (4.2.1) supposes that measurements of A are performed on 
(a large number of) elements of the prepared ensemble E (pure case 
described by the ket I >), and measurements of B on other elements of E. 
Average values < A >y and < B >vp are then worked out from the data thus 
collected, and ( A A ) 2^  = < A2 >y -  < A > \  (ditto for B).

P6. Let I >e H be a normalised ket (< I 'F > = 1) that is ascribed to 
a given preparation immediately prior to measuring quantity A 
on a sample system. The probability p^aiO that the result ak 
(eigenvalue of A) will obtain is given by py(ak) = I < ak.m I ¥  > 12 ,

1 It follows from the definition of the adjoint of an operator that A  =Af  implies a*nm = amn, hence 
that all diagonal matrix elements amm are real regardless of the basis choice. The A matrix is 
diagonal in a basis of eigenkets of A and the corresponding eigenvalues are real.
2 Assuming non-degeneracy, let A| aj > = aj a( > and A| ak > = a j ak > ; then <aj IA  I ak > 
= ak <af I ak > and < a, IA  I ak > = <ak IA  I aj >* = a *< a k I a} >* = a( <a, I ak >, so that 
(ai -  ak)<ai I ak > = 0. If af *  ak then it must be the case that <a-f I ak > = 0 .

See e.g. Merzbacher 1970, pp. 159-160 and Redhead 1987, pp. 60-61 for different proofs.
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where1 < ak,m I ¥  > is the inner product of I ¥  > and the eigenvector
I 3k,m

In the ‘non-degenerate’ case2 where the subspace K[Ai kl spanned by the A 
eigenvectors associated with the eigenvalue ak is one-dimensional, the 
probability rule simply reads

P'p(ak) = I < ak I ¥  > 12. (4.2.2)

The complex number < a* IH' > is sometimes called a probability amplitude. 
Rule (4.2.2) is often referred to as the ‘Born rule’ as a tribute to Max Born who 
first suggested it in 1926, but we shall from now on call it PR. A more general 
form of it, valid for pure as well as mixed cases, is (assuming non-degeneracy)

p(ak) = tr(pPA)k) = < ak I p I ak >, (4.2.3)

where p is the relevant statistical operator, PA,k = I ak >< ak I the projector onto 
K [Ai kl and the trace (tr) of an operator O is defined as tr(O) = < vk I OI vk >

k

for any choice of orthonormal basis {(vk >} in H. That this trace form exists3 
is guaranteed by a famous theorem by Andrew Gleason4. That theorem turns 
out to hold only for Hilbert spaces of dimension larger than 2, but the same 
form is none the less adequate in two-dimensional Hilbert space. Given a 
statistical operator p = Wj I cpj >< <pi I , where the I <pi > are not necessarily

i

orthogonal,
d

tr(pPA,k)= 2 Z Wi<Vml ak><akl 9i <Pil Vm > = 2 > , l  < ak I 9 i > | 2 .
m=1 i i

If all the Wj but one are zero (pure case), then p = I q>\ >< cpj I and 
tr(pPA,k)= I < ak I cpj >l2. In the mixed case, where two Wj at least are nonzero, 
the probability is given by a sum, weighted by the Wj, where each squared 
modulus is the pure case expression of probability for an A-measurement 
outcome.

1 The symbol ^  is to be understood as denoting either a discrete sum or an integral taken
a

over continuously varying a ‘s, depending on whether the eigenvalue spectrum of A is discrete 
or continuous.
2 Degenerate spectra will be ignored in what follows, since taking degeneracy into account 
would make most expressions more unwieldy whilst adding nothing of conceptual interest to 
the issues under study.
3 This form of the PR rule gives a consistent probability assignment by virtue of the projectors 
PA,k being positive-semidefinite (<*F I PA>k I ¥  > > 0 for all I ¥  >e  H) and adding up to the

identity operator ( ^ P A,k = I)-
k

4 Gleason 1957 (see Hughes 1989, pp. 321-346 for a somewhat simplified proof).
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For a given ket | *F >, the expectation value of an observable A with possible 
outcomes {a j is

< A > *=  J ]a iM a i)  = X 3i l <3i l vp>l2
i i

= £ < ¥  iai[ai ><ai |'P> = <>P |a |'P>,
i

using A | a-, > = a, | a, > and < a, | *F >* = < *F I a-, >. More generally, for a given 
statistical operator p,

< A >p = tr(pA). (4.2.4)

P7. A preparation being given, if measuring an observable A or any 
other observable A’, A” ... compatible with A is known or expected to 
yield with certainty the result at (for A), a’j (for A’), a’\  (for A” )... 
then the preparation can be assigned the eigenket I Ujj,k... > associated 
(in the absence of degeneracy) with the eigenvalues a ;, a’j , a”k ....

P7\ If such a measurement as mentioned in P7 has been performed, 
then the statistical ensemble of those tested samples for which the 
result aj (a/, ak”...) has been obtained defines a new preparation 
characterised by the eigenket I Ujjik,...> (or the statistical operator
P = P A.A’.-lij,--)*

It should be noted that the basic rules of quantum theory do not imply that the 
result obtained in performing a measurement would determine the 
probabilities of the outcomes of measurements to be performed in the future. 
Rather, once any such result has been obtained, the ket assigned to the 
preparation is updated in accordance with P7-P7\

Summing it up (in the pure case only): a Hilbert space vector is used for 
characterising, in a previsional rather than a descriptive sense, a definite 
preparation (P1a). To each relevant measurable quantity, there corresponds 
a linear and self-adjoint operator (P4), the real eigenvalues of which provide 
an exhaustive list of the possible results of measuring that quantity (P5). 
Given P1, the probabilities of the results of measuring some chosen quantity 
on a sample system are given by the probability rule P6/PR. Since the times 
of preparation and measurement do not in general coincide, the rule is 
generally applied after the initial vector or statistical operator has evolved 
according to P3-P3’.
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4.3 The SAQM is incompatible with a simple-minded ensemble view

The above formulation of ‘quantum rules’ conforms to textbook tradition, but its 
wording carefully avoids suggesting that the probability pvp(ak) calculated using 
P6/PR is that for an individual system to be in such or such a ‘state’ -  a 
hitherto undefined notion. However, it is legitimate to ask whether pvj/(ak) can 
be interpreted as reflecting one’s ignorance of definite but hitherto unknown 
attributes possessed, prior to measurement, by individual members of a 
realistically conceived ensemble. By themselves, propositions P1(a), P4, P5 
and P6 do not imply that a linear combination like

| y > =  £ c i l a i > ,  (4.3.1)
i

where {| a\ >} is a complete set of eigenkets of some observable A and more 
than one coefficient is non-zero, describes one ensemble, members of which 
would actually possess, in proportions given by I cj 12, definite attributes 
associated with the eigenvalues a; of A. In order to find out whether this 
interpretation can be upheld consistently with the SAQM, let a preparation be

hypothetically described using (4.3.1). It is required that^]q|2 =1 and the
i

probability that the result ak will obtain if an A-measurement is carried out is 
given by (4.2.2) i.e. P4>(ak) = I < ak I 'F >l2. If that preparation is conceived of as 
an ensemble of N systems of the same type, then if the number N is large 
enough, it is tempting to interpret that probability as being such that a number 
N* « Npv,/(aj) of physical systems in the ensemble possess, prior to any 
measurement being performed on a sample, an A-attribute that corresponds 
to the eigenvalue aj of A hence, assuming no degeneracy, to the eigenket 
I aj >. This simple reasoning is based on our experience of collections of 
macroscopic objects like balls in a vessel, which are believed to have such 
properties as size or weight regardless of and prior to any observation. 
Applied to a pure case (4.3.1), that simple view is found to be inconsistent with 
the SAQM. The conflict arises because the ket I *¥ > can also be written in the 
basis of eigenkets {) bm >} of another observable B that does not commute 
with A. Similar reasoning as above leads to the conclusion that a number 
Nf *  Npy(bj) = N I < bj I ¥  >l2 of the systems in the ensemble genuinely

possess, prior to any measurement, a B-attribute associated with the 
eigenvalue bj (hence with the eigenket I bj >). If so, then by analogy with balls 
in a vessel, one should expect the number of systems in a subensemble for 
which a measurement of B would yield bj to be N f1 = ]T N*p(bj/ai), where
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p(bj / aj) = I < bj I aj >12. Assuming that the probability p(bj) can be derived from 
a balls-in-vessel model, then

P(bj) = X  P(bj / a0 p(ai) = ^  I < bj I a( > 121 < as I 'F > 12 , (4.3.2)
i i

where PR is applied to each term separately. There is the rub, for the basic 
propositions of the SAQM do not include the claim that a preparation can be 
broken down into any number of ‘subpreparations’, whereas using the PR rule 
in the last formula supposes that the calculation of p(bj) involves probabilistic 
contributions (p3( (bj) = I < bj I aj > 12) that are conditional on as many (actual or

potential?) preparations as there are kets I aj >, where / ranges over the whole 
spectrum of A. N®' *  N®, belying the naive ensemble view. As is customary in 

quantum theory, the inconsistency occurs because of the numerical difference 
between the squared modulus of a sum (as in calculating N®) and a sum of

squared moduli (N®'):

P'p(bj) = I < bj I ( £  I aj >< a;| )l ¥  > 12 = I < bj I as >< as I 'F >12
i i

^ 2 ] |< b j |a i > | 2|< a j | vF > |2
i

where ^  I aj >< aj I is an expansion of the identity operator in H (closure
i

relation for the {I a; >} basis). The correct prediction, i.e. the one that is in 
agreement with experimental data, is py(bj) = = I < bj I 'F >12 as directly 
calculated from (4.3.1), PR being applied after (implicity) summing over the 
amplitude products < bj I aj >< a; I 'P > ({| aj >} can be any orthonormal basis of 
H). This is an instance of a pervasive kind of ‘interference’ that characterises 
calculations made using the SAQM.

4.4 Objectification and quantum theory

We shall assume in this section that a ket I > refers to a single system S, 
designating its so-called state. Following Mittelstaedt1, the hypothetical 
attribution to S of a certain (eigen)value or eigenstate of an observable A, 
whether or not I 'P > is an eigenvector | a; > of A, is called (pure case) 
objectification. In its stronger version, the objectification hypothesis (SOH) 
amounts to claiming that the system actually is in some definite eigenstate of 
A, even if the ket ascribed to the system is (4.3.1), where more than one 
coefficient Cj may be non-vanishing. Which eigenstate it is, however, is

1 Mittelstaedt 1998.
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unknown prior to measuring A on S. According to the weaker form of the 
hypothesis (WOH), a definite (eigen)value a\ of A objectively pertains to S prior 
to its being measured. Again, that value would be subjectively unknown but no 
less definite. On the other hand, WOH does not assume that the ‘true state’ of 
the system is some eigenstate of A.
Pure case SOH entails that, regardless of the ket I *F >, an ensemble of 
identically prepared S’s amounts to a mixture of eigenstates of A, described by 
a statistical operator

Pf.A=SWi|ai)(ai|- (4A1>i

Each weight Wj =p,F(ai) = |ci|2can be simply interpreted as a measure of our

ignorance as to whether any given system in the ensemble actually is in 
the eigenstate la* >. However, we saw in the previous section that the 
quantum-theoretical probability p^(bk) of obtaining bk as the outcome 
of measuring another observable B, where [A,B] *  0, differs from that 
PP4<A(bk )= trWA|bk)(bk|) calculated from the mixture pyA by the presence of

‘interference’ terms that contribute in a crucial manner to the correct 
evaluation of the probability. Since strong objectification would require all 
interference terms to vanish (or more accurately, not to appear at all) in the 
calculation of probabilities for all observables other than A, we must conclude 
that SOH is actually inconsistent with the SAQM.
Something of SOH can be salvaged by restricting its validity to A and to all 
those observables CA that are compatible with it, i.e. such that [A,Ca]=0. 
However, such a concession constitutes a severe setback if one’s primary 
goal was to ascribe truly objective states to an individual system, for such a 
possibility should not be dependent upon a decision to focus on a class of 
quantities (and why that class rather than another?), with the result of 
excluding arbitrarily many others.
One might expect to be better off with WOH, which requires only that some 
eigenvalue of A pertain to S whatever the ket |*F > assigned to the 

preparation. That ket may alternatively be written |*F >=X c*j|v?) • wbere the
j

vectors v®  ̂ are eigenkets of B. This decomposition would appear to warrant

assigning S some definite, merely ignored eigenvalue bk of B. Letting Aj be the 
logical proposition “value aj pertains to S given I ¥  >”, —iAj its negation and Bk: 

“value bk pertains to S given I 'F >”, it is part and parcel of such an assignment 
to assume the logical equivalence of Bk and (BkAAj)v(BkA-iAj). Given the 
booleanity of a framework in which the equivalence normally holds, 
an adequate Kolmogorovian probability measure would be such that 
Pv(Bk) = PT(BkAAj) + pv(BkA-A). Alternatively, assuming that the Aj form
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a complete set of propositions exhausting the spectrum of A, then it is 
expected that p4>(Bk) = ]TpT(Bk a  A j)  .

i

It might be objected that the mutual incompatibility of the two observables, 
expressed as the non-commutativity of A and B, precludes ascertaining the 
joint occurrence of a, and bk. The objection can be met via introducing the 
probability pvp(AjOBk), conditional on IT  >, that an A-measurement will first 
yield aif then a B-measurement (performed immediately afterwards) bk. In the

simplest case, using PR (P6), MAOBO = |(aj |lF)|2|(bk|ai)|2. Since the

assignment of a (‘possessed’) value aj may no longer be granted after the 
B-measurement, py(Aj/\Bk) < p4/(AjOBk), hence py(Bk) < £pvy(AjOBk). The sum

i

£p<r(AiOBk) is equal to tr(pTA|bk){bk|), where again P*,a = X I C' f l ai)(ai|-
i i

Therefore, pvp(Bk) < tr(p^|bk)(bk|). Since the same inequality must clearly hold

for —iBk, then1 p^(Bk) > tr(p^|bk)(bk|), so that pT(Bk) = tr(pTiA|bk)(bk|). But this

is just the probability pPH,A(bk) we encountered whilst discussing SOH, leading

us to the conclusion that WOH is just as inconsistent with the SAQM as SOH 
itself.
There again, there is a -  costly -  way of avoiding that conclusion. The above 
reasoning hinges on the additional assumption that propositions Aj and Bk 
combine according to the laws of classical (boolean) logic. The conclusion 
we have just reached could be circumvented by assuming that Aj, Bk etc. are 
in fact ‘quantum-theoretical propositions’ for which either distributivity 
( (B kA A j)v (B kA -.A j) equivalent to (B kA (A jV -A ) )  or bivalence (implying the 
equivalence of Bk and B kA (A jV -A j) )  is not valid, unless A and B happen to be 
mutually compatible. Tailoring the propositional calculus to the projective 
structure of quantum theory (which connects to the non-universal compatibility 
of observables) must imply restrictions on the Kolmogorovity of probability, 
thus preventing any conflict with the SAQM. This being said, if decades of 
‘quantum logic’ have been conclusive in any respect, it is in that no such logic 
offers any prospect of retaining anything of what the most lenient of realists 
would require of an acceptable property assignment. Besides matters of 
computational efficiency -  which have never been an issue with quantum 
theory -  one may also wonder whether it is advisable to introduce, be it for the 
sake of salvaging something of the idea of attributes being possessed by a

1 py(-.Bk) = 1 -  py(Bk) , and the projector onto the linear subspace associated with -.B k
is the complement with respect to identity of the projector onto the subspace associated with 
Bk.
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system, any concept of probability that does not satisfy Kolmogorov’s axioms 
(aren’t these constitutive of what is meant by probability?).
With respect to objectification, the situation cannot be expected to be any 
better in the mixed case. Two different instances of a mixture have to be 
distinguished. The first one corresponds to a situation where a preparation 
cannot be unambiguously characterised using a single ket. Rather, the 
predictions are based upon the assumption that the actual preparation may be 
any one of those associated with the (not necessarily orthogonal) vectors I Oj > 
in a given set. Each of the set members being weighted by an uncertainty 
measure Wj, the predictions can be derived from the statistical operator 
p j*  = XWjlcDjXOj | (the operator p ^  above provides an example of such an

i

ignorance-interpretable mixture). Such simple mixtures raise no additional 
issue over and above that of objectification for each I <l>j > separately. Another, 
less straightforward instance of a mixed case arises when a statistical 
operator of the same p j*  form obtains as a result of a partial tracing 
operation. The question of objectification in such circumstances will be 
discussed in Section 7.3. The conclusion reached there is also negative: 
mixed case objectification is not compatible with the SAQM.
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5

Deriving rules for amplitudes and ‘quantum’ probabilities

5.1 The composition rules for amplitudes

Simple guiding rules1 for the calculation of probabilities can be formulated 
provided these are conceived of as probabilities of ‘transitions’. By ‘transition’ 
is meant the connection of an ‘initial’ set of physical quantities (e.g. spatial 
co-ordinates) to a required, ‘final’ similar set or configuration. The initial set 
may be thought of as characterising a definite preparation (in the broad sense 
of section 4.1), whereas the final set would correspond to a given outcome of 
measuring a selected observable. Correct prediction requires taking into 
account all intermediate ‘links’ that may consistently connect the initial (I) and 
final (F) set. To each of the ‘virtual paths’ connecting I to F the theory assigns 
an amplitude that encodes its contribution to I -» F. The amplitudes combine 
through the application of two basic composition rules:

(a) If I —> F can be broken down into subtransitions in succession, the 
resulting (total) amplitude is the product of the amplitudes of the 
successive (sub)transitions.

(P) If I -» F can be conceptually analysed into alternative, mutually 
exclusive (virtual) paths, the resulting amplitude is the sum of the 
amplitudes for those alternative paths.

Rules a and p are similar to those that regulate the combination of 
probabilities for a Markovian process. However, the amplitudes they apply to 
are not identical with probabilities (they are generally complex numbers). Any 
one amplitude gives rise to one value of probability, computed with the 
standard rule

(APR) The probability of a transition is obtained by taking the square of 
the modulus of the corresponding amplitude.

APR implies that amplitudes which differ by a phase factor give rise to the 
same probability, and ‘probability interference’ is a direct consequence of the 
necessity of adding all the amplitudes assigned to alternative paths (P rule) 
prior to computing, using APR, the probability p(l -» F).

1 Feynman etal. 1965; Feynman and Hibbs 1965.
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Let I —> { K i Kn} -> F denote N parallel sequences I -» Kj -> F (i = 1 to N),
where the Kj are mutually exclusive intermediate links in the I -> F transition. 
Each of the sequences I —> Kj —> F contributes to the total amplitude A(I->F)

A(I->F) = £ A(l->Kj -»F) (p rule) (5.1.1)
i

where (a rule) for all i = 1 to N,

A(l->Kj->F) = A(l->Kj)A(Kj->F). (5.1.2)

The probability of I —> F, given by APR, is then

p(l-»F) = |£ A (l-> K i-» F ) | 2 (5.1.3)
i

Connecting to the Hilbert space vector formalism is straightforward provided 
that the completeness of the {Kj} is reflected in the definition of an orthonormal 
basis {| Kj >}. A ket associated with I is expanded in that basis as 
11 > = • Q I Kj > where Cj = < Kj 11 > and p(l—>Kj) = I Cj 12 (PR) . The total

i

amplitude is then

A (l->F) = < F l l > = ^ c i < F lK ( > = 2 < F lK i> < K i l l>
i i

= X  A(l-^Ki)A(Ki-^.F).
i

The role of the Kj is to ensure closure, as ]T| Kj >< Kj I is equivalent to the
i

identity operator on the relevant N-dimensional Hilbert space. An alternative 
expression of (5.1.3) is

p(l —> F) = tr(PPF), (5.1.4)

where PF = I F >< F I is the projector onto the one-dimensional subspace 
spanned by I F > and p = Pi = 11 >< I I .
If the experimental conditions are met for any one of the Kj to be ascertained 
i.e. for gathering ‘which-path’ information, the p rule is not applicable. 
If a measurement performed on the system does ascertain Km, thereby 
changing its status from that of a merely ‘computational’ contribution to the 
total amplitude A(l—>F) to that of an actual event, the alternative paths l-»Kj->F 
(j*m) have to be discarded, and the total amplitude is then

A(l—>F) = A(l->Km-»F) = A(l->Km)A(Km-»F)

(using the a rule). In order for the p rule to cease being applicable, it is in fact 
enough that the Kj qualify as experimentally ascertainable events. Thus if 
perfect detectors have been set up in such a way that one of the Kj amongst
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the N can be observed to be the case prior to the final configuration, each of 
the connecting paths I —> Kj —> F then gives an individual contribution

p(l -> K, F) = | A(I-»K|-»F) |2 (5.1.5)

to the probability p(l—>F) of the I -> F transition:

p(I^F) = £  p(l->Kr+F) (5.1.6)
i

The probabilities add up as they do classically i.e. in all situations where 
the possibility of ascertaining alternatives is tacitly granted. The probability can 
also be written, in contrast to (5.1.4),

p(l-»F) = tr(aPF), (5.1.7)

where a = ^  I A(l—>Kj) 121 Kj >< Kj I : whereas in (5.1.4) p is not even a sum of
i

Kj projectors weighted e.g. by amplitudes A(l—>Kj), the weights in the mixed 
case statistical operator ct are the square moduli of those amplitudes 
(probabilistic weighting with p(l-»Kj) = I A(l-*Kj) 12). In general, summing over 
the amplitudes (P) applies in those circumstances or ‘experimental contexts’ 
where no factual information can be supplied that would permit distinguishing 
between any two paths connecting I and F. On the other hand, the p rule 
expresses a requirement of completeness that must be satisfied in those 
situations in which the occurrence of any Kj cannot be ascertained, although 
an alternative choice of set-up could make it possible.
A sequence like I -> {Ki , K2} -» L -» F can be thought of as consisting of 
two parallel sequences I -> K1 -> L -» F and I K2 -> L -> F, or as 
I -> {K1 , K2} -> L being followed by L -> F. If the probability p(l-»F) is to be 
derived from the total amplitude, that probability should be invariant under 
arbitrary decompositions of the total sequence. In fact, requiring that the 
amplitudes associated with different decompositions of the total sequence 
give rise (up to a phase factor) to the same total amplitude turns out to be 
enough for deriving both the a and the p rule, providing that the amplitudes 
can be represented using analytic functions with partial amplitudes as 
variables.
Considering the chain I K -» F and assigning the numbers x and y to the 
subtransitions K -> F and I K respectively, the total amplitude for I K -> F 
will then be a function Aa(x,y). The form of A** is, at this stage, entirely open1. 
Turning to the more complex chain I -» K -> L -> F, we let x be the amplitude 
assigned to L -» F, y that associated with K -» L and z that for I -> K.

1 A Jx.y) *  AJy.x) : it is indeed not clear whether the RHS could be associated with any 

meaningful transition.
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Requiring invariance of the total amplitude under a change of decomposition 
amounts to requiring that the composition law a be associative, i.e. that

Aa(x, Aa(y,z)) = Aa(Aa(x,y)> z) (5 .1 .8 )

where the LHS encodes the assignment that corresponds to the sequence 
“I -»K-»L, then L -»F” and the RHS corresponds to “l-»K, then K->L->F”.
In a similar way, I -> {K i ,K2} -> F will be assigned a total amplitude that is a 
function Ap(x,y), where x and y stand for the amplitudes assigned to l->Ki->F 
and to I—>K2—>F respectively. For the sequence l->{Ki,K2,K3}-*F, with the 
same x and y, z being the amplitude assigned to l-»K3->F, associativity is 
expressed in the equation

Ap(x,Ap(y,z)) = Ap(Ap(x,y),z) (5.1.9)

Finally, going back to l-»{Ki, K2}->L->F, where x, y and z are the numbers 
assigned to l->Ki-»L, l-»K2->L and L-»F . respectively, requiring that 
the aforementioned two decompositions give rise to the same amplitude 
implies that the equality

Aa(Ap(x,y),z) = Ap(Aa(x,z),Aa(y,z)) (5.1.10)

has to be satisfied, i.e. a must be distributive over p.
Independent derivations of the a and p rules, both based upon earlier work by 
E.T. Cox1, have been given by Y. Tikochinsky and A. Caticha2. Cox’s original 
paper was not concerned at all with quantum theory. His aim was to derive, 
from a minimal set of assumptions, the rules of the ordinary probability 
calculus as the only consistent rules for combining numbers if those numbers 
are to be interpreted as probabilities. Cox’s consistency requirements are 
expressed in the form of functional equations, similar to (5.1.8), (5.1.9) and
(5.1.10), involving quantities that directly relate to probability. Cox showed that 
the basic composition laws for probabilities could be derived on the basis of 
those requirements alone. If a derivation of the a and p rules could be similarly 
achieved, such a derivation would certainly be quite significant. It would, if 
anything, strongly suggest that the nature and behaviour of (micro)physical 
objects play no essential role in constraining basic features of the SAQM. This 
would in turn raise the question whether most of the conceptual problems 
associated with ‘state’-based views of quantum theory do not originate in a 
basic misunderstanding of the aim and structure of the theory.
It is easily seen that the functional equations (5.1.8), (5.1.9) and (5.1.10) are 
satisfied if one lets Aa(x,y) = xy and Ap(x,y) = x + y. More significantly still, the 
upshot of Tikochinsky’s and Caticha’s equivalent derivations is that these

1 Cox 1946.
2 Tikochinsky 1988a; Caticha 1998.
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solutions also happen to be essentially the only ones. More precisely, there 
exists an isomorphism <|> that maps Aa(x,y) and Ap(x,y) into the product and 
sum of the transforms of their arguments:

<KAx(x,y)) = <|>(x).4>(y) and <J>(Ap(x,y)) = <|>(x) + <Ky)

Thus, through the <j> transformation, the amplitudes combine according to the 
sum and product rules.
Whereas Tikochinsky’s derivation is fundamentally algebraic, Caticha aims 
to “establish a network of relations among [experimental] setups in the hope 
that information about some setups might be useful in making predictions 
about others1”. Caticha’s work hinges on the ingenious introduction of 
imaginary ‘filters’ (essentially ideal screens with a number of holes at definite 
locations) and his focus is on constraints imposed on their combination, in 
succession or parallel. How amplitudes combine is then shown to reflect 
relationships among set-ups. More precisely, a-p composition expresses in a 
convenient and essentially unique manner the various ways complex set-ups 
can be consistently built up from simpler ones. It is assumed that one number 
may be assigned to each set-up, so that the relations among filters within set
ups translate into relations between the associated numbers (whether these 
numbers should be chosen complex rather than real cannot be decided). 
Assuming such an assignment is possible, equations (5.1.8), (5.1.9) and
(5.1.10) must then be satisfied. A straightforward adaptation of Cox’s method 
leads to the conclusion that the assigned numbers generally combine 
according to the sum (p) and product (a) rules, thereby justifying the 
designation of these numbers as ‘amplitudes’.

The rules that regulate the composition of ‘quanta!’ amplitudes are seen to 
be consequences of complying with three basic consistency constraints. 
These must be satisfied by any scheme in which numbers can be assigned, 
for the purpose of prevision, to a pair of events associated respectively with a 
preparation and an observation, taking into account all the possible links 
(‘paths’) between them. Tikochinsky takes the effectiveness of quantum theory 
as a motivation for the hypothesis that such an assignment is possible, whilst 
Caticha shows it to be implied by requiring consistency in the relationships of 
ideal ‘set-ups’. In any case, the conclusion follows that the way amplitudes 
combine is not specifically ‘quanta!’ in the sense that they would e.g. reflect 
the behaviour of microphysical entities. If it is excessive to claim that “quantum 
theory emerges as the unique way to manipulate quantum amplitudes 
consistently2”, Caticha’s and Tikochinsky’s derivations suggest that the SAQM

1 Caticha 2000.
2 Caticha 1998, p. 1574.
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is an instance of a general kind of predictive framework in which, as we shall 
see, the probabilities are computed using the PR rule.

5.2 From amplitudes to probabilities

It is widely believed that the (A)PR rule finds its sole justification in its 
empirical adequacy: it just happens that calculating the square of the modulus 
of a resultant amplitude, rather the modulus itself, its real part etc. yields the 
correct answer. Success in deriving the rules for the composition of 
amplitudes suggests, however, that deriving PR itself may not be out of reach. 
If that derivation can be successfully achieved, again, without making any 
reference to an underlying ontology (of particles, ‘wavicles’ or whatever) and 
any attendant notion of ‘state’, this would indeed provide even more incentive 
for re-evaluating some vexed issues (e.g. those of value-definiteness and 
‘quantum measurement’). Such a derivation is attempted by both Tikochinsky1 
and Caticha2. The latter’s, which, at a purely formal level, is reminiscent of 
Hartle’s3, will not be discussed here. Despite his insistence on avoiding 
statements about the ‘state’ or position of a ‘particle’ at any given time (“These 
statements are not identifiable with experimental set-ups...they are not even 
wrong, they are meaningless4”), Caticha does not refrain from making 
concessions to more usual but potentially misleading ways of speaking: “the 
particle is located at Xo”; “at time t the system is in a state of wave [?] function 
'F(t)5”, etc. This is especially the case in his derivation of rule PR, which 
makes an explicit reference to an ensemble of N identically prepared, 
independent replicas of [a] particle6” (in the N-»oo limit, the squared modulus 
rule is shown to provide the only assignment that is consistent with the law of 
large numbers). Even though Caticha’s emphasis on set-ups and propositions 
suggests that his preconceptions regarding the physical nature or behaviour of 
physical objects involved in the experiments he discusses are minimal7, his 
concessions to common usage are too pervasive in that particular issue for his

1 Tikochinsky 1988b.
2 Caticha 1998.
3 Hartle 1968.
4 Caticha 2000, section 5.
5 Caticha 1998, 2000.
6 Caticha 1998.
7 “...by avoiding statements about the particle itself we hope to eliminate misconceptions 
about what the particle is and what it is actually doing between source and detector. W e are 
not saying that the particle is either a point particle or a wave, or both, or neither. W e are not 
saying that it went through either one hole or through another, or even that it went through 
both holes at the same time. In fact, beyond the fact that the particle is capable of being 
emitted and detected we are not assuming much at all." (Caticha 1998)
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derivation of rule PR to fit the bill1. Tikochinsky’s derivation, which is sketched 
out below, gives rise to no such qualms.

The probability p(l—>F) we are looking for should take the form of a function 
of the amplitude x = A(I->F): p(l—>F) = f(x). Tikochinsky assumes that 
transitions are Markovian i.e. that the probabilities of the two subtransitions 
l-»K and K-»F, with amplitudes x and y, are mutually independent. If so, then

ffxy) = p(l—>K—>F) = p((l-»K)&(K-»F)) = p(l->K)p(K->F) = f(x).f(y).

The amplitudes being a priori complex, the domain of the function f can be 
chosen as the unit disk I x I < 1 (a zero-amplitude transition is regarded as one 
with vanishing probability: f(0) = 0, and f(x) = 1 for any complex amplitude x of 
unit modulus). The functional relation reduces to f(|xy|) = f(|x|)f(|y|), the 

general continuous solution of which is

f(x) = I x I k (5.2.1)

where k >0.

The probability of the ‘self-transition’ l->l is, from (5.2.1), p(l—>l) = |A(l->l)|k.

In order to make sense of l-»l starting and finishing ‘at the same time’, 
Tikochinsky feels obliged to think of the inverse F->l of a transition l-»F as 
proceeding backward in time. However, since transitions as we conceive them 
here are nothing but abstract connections established, for purposes of 
prevision, between two fixed configurations, there is no more need to 
introduce time in the picture than there was found to be any in deriving the 
composition rules for amplitudes. The identity of its endpoints is enough to 
warrant regarding the self-transition l->l as equivalent to identity, hence 
setting p(l—>l) equal to 1. Using the a and p rules, the amplitude A(l—>l) can be 
expressed in terms of a complete set of alternative subtransitions and their 
inverse: p(l—>l) = I £  A(l—> K j)A (K j—>l) I k. Letting x be the amplitude of any

i

transition and x the amplitude of its inverse, the product and sum rules imply 
that xy = xy and x + y = x + y . Assuming that the correspondence between x 
and x is one-to-one, then for any real number, x= x. If the Xj are complex, the 
amplitude for the inverse of a transition is easily shown to be equal either to 
the amplitude for that transition or to the complex conjugate of that amplitude.

p(l->l) = Z xixi is then either equal to 2>; or to I Xj 12 ) \  depending on

whether x = x or x = x*. Choosing x = x*, then p(l—>l) = ( £  Ixj l 2)k = 1,

1 Caticha’s derivation cannot without disfigurement be reformulated in strictly operational
terms.
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hence £  I Xj I 2 = 1. Since, on the other hand, the probabilities of all the
i

transitions I—>Kj add up to one i.e. £  p(l—>Kj) = ^  I Xj I k =1, it follows that
i i

k=2. The alternative option x = x is rejected on the grounds that there are 
choices of the Xj for which the sum ^  Xj2 vanishes1.

5.3 Destouches’ derivation of the 'quantum’ probability rule

Jean-Louis Destouches (1909-1980) is now a little-known figure in French 
post-Duhemian philosophy of science. In the early 1930s, after completing 
doctoral work on second quantisation, Destouches became increasingly 
concerned that conceptual difficulties with quantum mechanics might be 
deeply rooted in preconceived ideas about the aim and structure of physical 
theories2. Under the spell of Bohr’s complementarity, he considered the cost 
of attempting to unify e.g. corpuscular and undulatory accounts of 
electromagnetic radiation. Unlike Bohr though, he contented such unification 
would require an extension of classical logic and of the rules of the ordinary 
probability calculus. On the other hand, in contrast to many followers of the 
quantum logic programme3, Destouches did not regard any such extension as 
a way of coming to terms with new ontology. The key to a proper 
understanding of quantum theory, he contended, was to recognise that 
information supplied by the knowledge of the values of a given (set of) 
physical quantity (quantities) at a given time might not generally suffice for 
predicting results of measuring other quantities. He then4 set out to develop a 
generic predictive scheme that would accommodate the recognised limitation. 
Suppose our only concern is to evaluate the probability ps(Q, E i.q) that 
measuring a relevant physical quantity Q on randomly chosen samples from a 
given preparation S will yield a result contained in the selected interval Ej,Q. 
Such probabilities are Kolmogorovian: by definition, 0 < ps(Q, E i.q) < 1, and for 
any given S, the probabilities of Q-measurement outcomes are completely 
additive: if Ei(Q and EkiQ are two disjoint intervals (EiiQn E klQ = 0 )  within which 
the result of measuring Q may fall, then the probability ps(Q, E^quE^q) that 
the result will fall in either interval is the sum ps(Q, Ej) + ps(Q,Ek) of the 
probabilities that the result will fall within each interval separately. More

2p
1 For example if x2p = ix2p-i, then I ^ x *  I k = 0.

j=i

2 Destouches 1939.
3 E.g. Jauch 1968.
4 Destouches 1941,1942.
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generally, for any Q ‘observable’, ps(Q,(J Ei.q) = Yj ps(Q, Ei.q) if Ej.QnEk.Q = 0
i i

for i *  k. If gq is the spectrum of Q i.e. the set of all the possible results that a 
Q-measurement may yield, or the complete set of non-overlapping intervals in 
which any outcome may fall, then ps(Q, cjq) =  1, since a Q-measurement will 
by definition yield a result that is contained in ctq.

Following Destouches, let us associate with any given interval Ej* c  <ta a set 
Xo[A,EjiA>to,S], any member Xo[AIEiiAlto,S] of which is called an initial element1 
corresponding to an ‘E^-preparation’ at to i.e. to a preparation such that 
measuring A on any sample at to is known to yield with certainty a value in EiiA. 
If Ei* reduces to a single value n* and X0[A,rjiA,to,S] is unique, then Xo can be 
used to label a preparation for which a measurement of A yields the outcome 
n* with certainty. One further step consists in defining a function X of the time 
t, of to and Xo such that, if t and to are fixed, a bijective relation holds between 
Xo = X(to) and Xt = X(t). The set Xo[A,Ej>A,to,S] is thereby mapped into another 
set Xt[AlEjiAlto,S]l every member Xt[A,Ej)A,to,S] of which we call a predictor2. 
If the initial conditions, i.e. the preparation or the time to are changed, 
the predictor Xt changes with X0. Assuming that if X(tj) = X(tk), then p(tj)=p(tk), 
Xt can be substituted for t in the expression of the probability function p: 
Px(Ej,Q,t) s  ps(Q, EjtQ ; Xt). Predicting measurement outcomes for any time 
t > to and a given preparation S can now be reduced to: (i) identifying suitable 
initial elements X0 at to; (ii) mapping these X0 into a set of predictors Xt; 
and (iii) computing the probabilities of Q-measurement outcomes using those 
predictors. What remains to be found is the form of a probability function 
which, given S and Ej,Q, yields the value of p^ (Ei,q).

We now suppose that the range of a quantity Q can be written as a union 
EiuE2u...uEn, where the intervals Ek do not overlap. For each Ej there is at 
least one predictor that labels a time-evolved preparation Sj such that a 
measurement of Q performed at t on a sample from Sj definitely yields a result
in Ej, i.e. there is at least one XjeX[Q,Ej,t,Sj] for which pSi(Q,Ej,Xj) = Pi(Ej) = 1. 

On the other hand, since the probability function is by assumption completely 
additive, we have3 px(E) = £  Px(Ej), where the sum is over all the disjoint

i
subsets Ej of E = (J Ej in the chosen decomposition D. To each Ej there

i
corresponds a unique positive number fj = px(Ej), and a sequence of numbers 
Cj, real or complex, can be generated from those fj.. Let I Cj I = (|>(fj), so that, to 
each fj, there corresponds by <|> a unique positive number. The postulated

1 Element initial (Destouches 1942).
2 Element de provision (Destouches 1942).
3 Dropping the explicit reference to time.
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correspondence defines a function f, such that fj =  f(Cj) and 0 <  f(x) <  1 for any 
xe{q}. The function is undetermined beside its depending on X, Q and Eif but 
its role as a probability function imposes that £  = X  =  ̂ anc* eac^ ^

i i

must be unique for a given Cj.
Destouches now takes a crucial step: predictors XeX can be conveniently 
conceived as elements of a vector space V: if X is a real or a complex number 
and XeV, then XXeV ; and if XieV and X2eV, then Xi+X2eV. Destouches 
adds one further requirement: if XeX and c is a complex or real number, then 
cXeX only if I c I =1. Each pair (Cj, Xj) can now be written as a unique vector 
Yj = CjXjeV. It is therefore equivalent to consider a complete sequence of 
Yj vectors or the predictor X, since the latter is completely characterised by 
specifying the complete set of the q, hence the associated Xj. Since f is still 
arbitrary, we are also free to require that f(0) = 0, letting O.Xk = OeV where 
XkeX. Two vectors CjXj and c’jX’j will be predictively equivalent (with respect to 
Q, D) if Xj and X’j are both members of X[Q, Ej,t,S] and f(Cj) = f(c’j) = fj. We 
may thus write I Cj I = I c’j I = <t>(fj), hence c’j = Cje10 for some arbitrary 0.
The whole purpose of Destouches’s introduction of vector space structure is to 
write any predictor as a vector sum over the complete set of the Yj i.e. as a 
linear combination of the corresponding Xj with coefficients (‘amplitudes’) Cj: 
X = 2 > X i.

i

Now, px(E) = Px(|jE i) = £  P x (E i)  = £  px(Ei)pi(Ei) since1 pk(E0 = 6ik.
i i i

Therefore2, px(E) = f(Cj)pj(E), where each coefficient fj = f(Cj) gives the value
i

of the probability that the result will fall in Ej.
Its probabilistic role suggests that f should take the same form for any choice 
of decomposition. Consider another decomposition D’ into disjoint sets
E’i  E’j, ..., such that every Ek in D is a union of E’j ’s (e.g., Ei = E’i u  E’2 ,
E2 = E^uEVjE ’s etc.). Since D and D’ are just distinct partitions of the same 
‘spectrum’, probabilities like p(E0 and p(E’i u  E’2) should be equal, etc. 
What is imposed, in other words, is a consistency constraint on the values of 
probability ‘across’ decompositions, hence on the form of f. Following 
Destouches, we shall consider here only the case of two decompositions D

‘This amounts to regarding (XJ as an orthonormal basis of V (Destouches 1942, pp. 542- 
547).
2lf Ej c  E, then pj(E) = 1, and 0 otherwise.
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and D’ such that any E’i in D’ is a subset1 of just one Ek in D. Letting reference 
to E and Q implicit, we can write

p(X)=^f(C i)p(X i) = X f(c ,j)p(X’j)l
• j

where the X ’j are predictors associated with D’, X  = ^  c ’j X ’j and f(c’j) = px(E’j).
j

Since p(Xj) itself can be expanded in terms of the X’j : p(Xj) = f(c”ij)p(X’j),
j

then p(X) = ]T f(Ci)f(c”ij)p(X’j), where the coefficients c”ij are those of the
U

expansion of Xj in the {X ’j} basis: Xj = c”jj X ’j. Consistency requires that
j

f(c'j) = f(Ci)f(c”ij). (5.3.1)
i

Because there is just one Ej such that E’j c  Ej, (5.3.1) reduces to

f(c ’j) =  f(Ci)f(c”ij). (5.3.2)

Besides, X = ^CiC”ijX’j and X = J ]  c’jX’j imply that c’j and the sum
U j

J ]  CjC”j must coincide.
i

A coefficient q gives rise to the same predictions as c’j if the same probability 
follows, i.e. f(Ck) = f(c’k), hence I c j  = I c’k I . Since E’j c  E j, there is only one / 
for which c”y is not zero. Therefore, c’j = q c”y e10 and f(q c”y e'9) = f(Cj)f(c”y). 
The (a priori complex) numbers q and c"y are not subject to any condition 
further than those imposed on f(q) and f(c”y). Any complex numbers x and y in 
the range of the q and c”y respectively must satisfy the functional equation

f(xye'9) = f(x)f(y). (5.3.3)

This is precisely the equation that must be satisfied, according to 
Tikochinsky2, by probabilities when the latter are required to be functions 
of ‘quantum’ amplitudes. However, (5.3.3) is here obtained without making any 
reference to ‘transitions’, to considerations involving time or Markovian 
properties. In the present framework, the functional equation results from 
requiring that the calculation of probabilities be consistent under arbitrary3 
choices of decomposition of the spectrum of a measurable quantity. Rejecting 
constant solutions like f(x) = 0 or f(x) = 1 as trivially inadequate, and imposing 
the further condition that f should be continuous, then the general form of the 
solution, identical with (5.2.1), is

1 Destouches 1942, pp. 529-537. The author claims to have shown that relaxing 
this assumption makes no difference to the final form of the function f. However, to the best of 
my knowledge this more general derivation has never been published.
2 Tikochinsky 1988b.
3 See, however, note 3 p. 93.
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/ W  = H ‘ (5.3.4)

where the constant k is a positive number1. This is the most general form 
of a continuous function /  used for calculating the probabilities of 
Q-measurement outcomes given prior knowledge of the preparation on which 
those measurements are to be made. The predictive programme involves 
the selection of an appropriate set of X j; writing the predictor X evolved from 
a given initial element Xo as a linear combination of those Xj , where each 
coefficient Cj is such that the probability p(Q, EjiQ> X) is equal to f(Cj) = I Cj I k and 
k is an as yet unspecified positive number.
We are but a small step away from rule PR. Destouches, however, leaves it 
at that, merely suggesting that, since the SAQM provides a sufficiently clear 
instance of the kind of linear framework for prevision outlined above, the value 
2 should be ascribed to k for a certain class of theories to which the quantum 
theory belongs2. This class would comprise all those theories in which 
no ‘state magnitude’ (grandeur d’etat) exists, from which all other physical 
quantities of interest can be derived. Unlike, e.g., classical mechanics, in 
which dynamical variables are all functions of generalised coordinates or their 
derivatives, such theories imply necessary trade-offs associated, in quantum 
theory, with the non-commutation of ‘incompatible’ observables. Destouches’s 
arguments in favour of the distinction are dated both in their content and 
expression. Nevertheless, that k must be equal to 2 was subsequently argued 
by Paulette Destouches-Fevrier3 as part of her own reflections4, initiated by 
her husband, on the nature and aim of physical theories. Making sense of her 
logico-algebraic approach to the issue calls for a reminder of its background.

In an influential paper5, Garrett Birkhoff and John von Neumann (1936) set out 
to examine to what extent elementary propositions stating observational 
outcomes, and operationally meaningful combinations of such propositions 
connect to relevant structures of Hilbert space. In classical analytical 
mechanics, a set of phase space coordinates defines a ‘state’, from which all 
of the quantities of interest to the characterisation of the motion can be 
derived. In order for phase space to be “imbued with reality6”, it should be 
possible to correlate any of its various subsets to what Birkhoff and 
von Neumann call experimental propositions. Such a proposition is

I I ̂
1 If discontinuities are permitted, then / ( x )  =  |x| £ (* )>  where § (x ) reduces to 1 in

the completely continuous case (Destouches 1942, pp. 534-536).
2 Destouches 1942, pp. 541-542.
3 F6vrier 1951 (an earlier sketch of the argument appeared in F6vrier 1946).
4 F6vrier 1951,1956.
5 Birkhoff and von Neumann 1936 - reprinted in Hooker 1975, vol.1 (page numbers refer 
to that volume).
6 Ibid., p.3.
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a statement to the effect that the outcome of measuring some quantity lies 
in a definite subset of an adequately defined “observation space1”. 
The unrestricted compatibility of observable quantities in pre-quantum physics 
always made it possible to establish an unambiguous correspondence 
between phase space subsets and definite experimental propositions. 
Since every boolean algebra is isomorphic to a field of sets, i.e. a non-empty 
set of subsets, closed with respect to complementation, union and 
intersection, the ‘logic of classical mechanics’ is boolean. As a result, there 
can arise no semantic difficulties with the assignment of truth values 
to experimental propositions, nor is there any restriction to regarding the truth 
of any such proposition as reflecting the possession by an individual system 
of a corresponding physical attribute.
In quantum mechanics, the only readily available substitute for classical phase 
space appears to be the Hilbert space of state vectors or so-called ‘wave 
functions’. If so, it sounds reasonable enough to regard a closed linear 
subspace Sp of Hilbert space as a “mathematical representative” of a subset 
Sp of some appropriate observation space corresponding to a given set 
of compatible observables. An obvious candidate for the role of representative 
of the set-complement of Sp is the orthogonal complement 1Sp of Sp. Birkhoff 
and von Neumann make the additional assumption that the set-theoretical 
product of any two representatives of experimental propositions is a valid 
representative of an experimental proposition2. This is enough to generate a 
propositional calculus that reflects the basic features of quantum theory. 
Relations of implication between propositions are expected to correspond to 
set-theoretical inclusion relationships between corresponding linear 
subspaces of Hilbert space. Asserting that two experimental propositions 
P and Q are such that P implies Q (the probability of P cannot therefore 
exceed the probability of Q) is equivalent to asserting that the representatives 
of P and Q satisfy SpcSQ.In general however, as the authors point out, a 
closed linear subspace of Hilbert space corresponds, not to a single 
proposition, but to an equivalence class of experimental propositions. 
In any case, since the properties of logical implication are isomorphic to those 
of set-inclusion, equivalence classes of experimental propositions can 
in principle be correlated with subspaces of Hilbert space, and those classes 
then form a partially ordered system, a.k.a. a lattice. With complementation as 
introduced above, the partially ordered system is an orthocomplemented 
lattice3.

1 ibid., p.2.
2 This automatically follows if it is conjectured that all Hermitian operators qualify 
as observables.
Postulating that the set-product of any two representative subspaces is itself a valid 
representative of a class of propositions implies no restriction on the structure of the lattice.
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The supremum or least upper bound of two lattice elements X and Y, 
sometimes written XvY, is the unique element lying above X and Y that is also 
below all other elements above X and Y, where ‘above’ and ‘below’ are to be 
understood with respect to partial ordering1. The infimum or greatest lower 
bound of X and Y, written as X a Y , is the unique element below X and Y 
in the lattice that is also above all other elements which are below X and Y. 
The ‘meet’ (a )  and ‘join’ (v) operations turn out to satisfy2 identities which in 
ordinary logic are also satisfied by the AND and OR connectives. There is in 
fact total identification of meet and join with conjunction and disjunction if the 
lattice is boolean. Since the defining properties of a boolean algebra all have a 
set-theoretic counterpart, a propositional calculus which admits as 
mathematical representatives (in the sense of Birkhoff and von Neumann) 
subsets of a ‘phase’ space must be isomorphic to a boolean algebra. 
The lattice of experimental propositions in classical physics is boolean, 
implying that the meet Coin) of any two propositions is a valid proposition 
-  a conjunction (disjunction) of those propositions. Truth values can 
be consistently assigned to those equivalence classes of experimental 
propositions that correspond to nodes in the lattice. The booleanity 
of the lattice implies mutual distributivity of join and meet3 
i.e. X a ( Y v Z )  =  ( X a Y ) v ( X a Z )  and X v ( Y a Z )  =  (X v Y ) a ( X v Z ) .

The relative independence of ‘classical’ propositions, which allows various 
measurement readings to be logically combined into a meaningful proposition, 
no longer holds in the quantum setting. Rather than that of a boolean algebra, 
equivalence classes of experimental propositions have the structure 
of an orthocomplemented but non-distributive lattice. This arises because their 
‘representatives’ are not simple subsets but linear subspaces of a vector 
(Hilbert) space with specific projective properties. Constraints, which relate to 
the non-universal compatibility of observables, are thereby forced upon 
the propositional calculus. The apparent breakdown -  or rather, non
applicability -  of (A.v)-distributivity in quantum theory can be traced back to 
more basic limitations affecting the composition of experimental propositions. 
Any finite-dimensional orthocomplemented lattice that satisfies a ‘modular 
identity4’ is the direct product of a finite boolean algebra and a finite number of 
abstract projective geometries. Conversely, the direct product of a finite 
number of projective geometries and a finite boolean algebra is an 
orthocomplemented (orthomodular) lattice. A necessary and sufficient 
condition for such a lattice to be equivalent to a single projective geometry

1 See Hughes 1989, p. 185.
2 Hooker 1975, p.8. For a review of the properties of lattices, see Hughes 1989, pp. 186-190  
or Bub 1999.
3 A Boolean algebra is an orthocomplemented distributive lattice.
4 If X, Y  and Z are elements of the lattice and X cZ , then X v (YaZ) = (Xv Y)a Z.
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is that it contains no element U, distinct from the minimum and maximum of 
the lattice, such that for all X, (UaXMUaiX) = U. To such a lattice element 
would correspond a projection operator that would commute with 
all observables1. This, however, would be inconsistent with certain group- 
theoretical conditions that must be satisfied by projection operators 
in quantum theory2. Providing dimensions are both finite and larger than 2, 
a propositional calculus that correctly reflects such restrictions to mutual 
compatibility as encountered in quantum theory must have the same structure 
as an abstract projective geometry. Given a (not necessarily commutative) 
field F  a condition, both necessary and sufficient, for a ( n - 1) -dimensional

projective geometry P ^ F )  to allow orthogonal complementation is that

the field admits an involutory anti-isomorphism3 w with a definite diagonal
n

Hermitean form J]w(x,)y4,, where y, <=F are fixed and such that w{yi ) = yi ,
M

n

and ^w(jc,)y,jc, =0 implies xt =0 for all / = 1 to n. §(§1, ...,£n) and
M

n

x(xi, ..., xn) being n-uples of elements of F , the sum ^ w ( 4/ )Y,*, can be used
/= i

to define an inner product < § , x >, and the orthogonality of £ and x then 
corresponds to < £ , x > = 0. As long as F  admits an involutory anti- 
isomorphism that satisfies the above conditions, the choice of field remains 
almost arbitrary, but the options can be reduced to three -  real, complex or 
quaternion -  by imposing a locally compact topology4 on the projective 
geometry. Making the connection to the SAQM requires choosing F as the 
field of complex numbers, in which case w(x) = x * , the complex conjugate of
x e F , implying that the y, are real (they can be chosen equal to 1 to ensure
normalisation). Thus, the classical vs. quantum-theoretical opposition boils 
down to that of boolean vs. non-boolean algebras (lattices) or to the distinction 
between set-theoretical structures and projective geometries. Rather than 
encourage the view that logico-algebraic features, abstracted from the basic 
formalism of quantum mechanics, somehow infringe upon the tacit acceptance 
of a boolean norm, Birkhoff and von Neumann suggest that quantum theory 
thereby exhibits greater ‘logical’ coherence than does any boolean-based 
framework. None the less, the question remains of whether meet and joint 
should can be imbued with semantic content, since interpretations in terms of 
conjunction and disjunction are no longer applicable.

‘The foregoing identity is automatically satisfied if a , v  denote the logical AND, OR  
connectives (a then distributes over v  and X v -.X  is a tautology).
2 see Hooker 1975, note 28 p.26
3 Hooker 1975, p.14.
4 Ibid., note 31 p. 26.
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Far from those lofty concerns, P. Fevrier’s inference1 to the value k - 2  
in (5.3.4) comes down to requiring consistency between a projective structure 
on the one hand, and the algebra of suitable representatives (in Destouches’s 
scheme) of experimental propositions. To any proposition P[Q,i] of the form 
“the result of measuring Q at to lies in Ei.q” there can be made to correspond -  
albeit not biunivocally -  a closed linear manifold of the vector space of 
predictors. The manifold associated with a given (equivalence class of) 
proposition(s) is that which is generated by the {XJ that are attached to 
the proposition(s). Asserting that the result of measuring both Q and R at to 

falls in (EQjxGRMaQxERj), where oq and aR are the ‘spectra’ of Q and R 
respectively, corresponds to the weak logical sum of the propositions P[Q,il and 
P[R,jl (if Q and R are the same, the assertion amounts to saying that the result 
of measuring Q falls in EqjuEqj). Similarly, the logical product of P10,11 and PIR,jl 
is taken to correspond to measurements of both Q and R at to yielding a result 
in (EQiiXCR)n(aQxERij). The logical product is false if, for any reason, Q and R 
cannot be simultaneously measured. Establishing such a correspondence 
between elementary propositions and linear manifolds also leads to 
associating the negation of a proposition with the orthocomplement of the 
relevant manifold. The resulting structure is that of an orthocomplemented 
lattice. The non-distributivity of the logical product with respect to the weak 
logical sum is a signal that some observables cannot be simultaneously 
measured: the incommensurability or incompatibility of certain physical 
quantities is, as it were, coded into the combinatorial properties of the relevant 
linear manifolds, and the underlying lattice structure should be equivalent to a 
single projective geometry. In particular, the fundamental properties of 
orthocomplementation2 are satisfied if the associated field F  admits an 
involutory anti-isomorphism, which can be understood as defining an inner 
product. These are the basic observations underlying P. Fevrier’s derivation, 
which is here simplified and updated in terminology.
In Destouches’s formalism, the decomposition into two parts of a given 
predictor X is always possible: each part then corresponds respectively 
to the truth or to the falsity of the experimental proposition: “measuring Q at t 
yields a result within E q ,p ”. X can be written as a linear combination 
X = aXp + bX^p, where XP and X^p are vectors in Vn , whose representatives 

are elements of the closed linear subspaces Ip  and I^p = 1Sp respectively.

1 Fevrier 1951.
2 -LLI P = ZP ; Zpn^Ip = 0  ; Zp©1!?  = V ; (Zp c^p ) - » (ZP = 0 ) ,  where Z 0 S  denotes the smallest 
closed subspace of V  that contains both Z and S.
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X , Xp and X^p can also be expanded in the {Xj} basis as

X = X c ,X i , XP= X a iXi and X ,P= £b ,X ,.
i i i

Consistency between the expressions of X in the bases {Xj} and {Xp , X_,p} 
then requires that

c, = aa, + bbj for all / = 1 to n . (5.3.5)

Given the form (5.3.4) of Destouches’s probability rule, it must then be 
the case that

I N k = i
i

(5.3.6)

z w k = i
i

(5.3.7)

I N k = i
i

(5.3.8)

I lk lulk Aa + b  =1 (5.3.9)

From (5.3.5) and (5.3.6), it follows that ^ |a a j +bbj|k =1 or equivalently
i

k
2](|a|2|aj|2 +|b|2|bj|2 + a*ba*bj +ab’ajb' ) 2 =1 (5.3.10)
i

Orthocomplementation implies the existence of an involutory anti-isomorphism 
w, i.e. of an inner product such that Xp. X_,p = ^ w (a j)yjbi = = 0,

i i

where w(aj) = a-, F being chosen as the field of complex numbers, and yi = 1 

(the vanishing of Xp. X_,p then expresses the orthocomplementarity of Sp 
and S-,p). Since

X.X= ^ |a |2|aj|2+|b|2|bj|2+a*ba jb j+ab*a jb j) ,  (5.3.11)
i

letting it = 2 in (5.3.10) turns it into an expression of the normalisation of X. 
Alternatively,

X.X = |a|2||XP||2 +|b|2| M 2 = |a|22 > , |2 +lbr i > i f  (5-3-12)
i i

and ||X||2 = 1 with k = 2 in (5.3.7) and (5.3.8) makes (5.3.12) identical to

(5.3.9). Thus, predictive vectors are normalised consistently with requiring that 
probabilities add up to unity provided the value of k is set equal to 2.
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This is essentially the same requirement from which Tikochinsky would, more 
than three decades later, derive the same general form of the probability 
function, i.e.

/ ( * )  = |xf (5.3.13)

The rule px(Ei,o) = |c,|2 whereby the probabilities of Q-measurement outcomes 

are computed is thus identical to rule PR.

Though Destouches’s framework is clearly intended to recover basic features 
of quantum theory (SAQM), the above derivation of PR is not a petitio principi 
(no more, indeed, than is Tikochinsky’s). Once it is accepted that predictors, 
as introduced by Destouches, may be conveniently represented within 
a vector space framework, PR follows from requiring consistency between 
various possible expressions of the probability of a given measurement 
outcome. Requiring that the basic form of the probability function be invariant 
under various expansions of a given predictor is closely related to Caticha’s 
requirement that a given ‘connection’ be predictively invariant under 
alternative set-up choices. The fulfilment of such consistency requirements 
does not depend on any assumption on the nature or properties of physical 
systems, whether considered individually or collectively. That rule PR can be 
derived at all from such requirements suggests that quantum theory does not 
so much owe the ‘non-classicality’ of its treatment of probability to 
the mysteriously ‘quanta!’ nature of microphysical objects as to having 
to satisfy constraints associated with the relaxation of a major (generally tacit 
and unquestioned) premise of classical physics: that of unrestricted access 
to joint values of any two ‘observable’ quantities.
It might be objected to Destouches’s approach that his introduction of vector 
space structure cannot be justified beyond his intention to recover basic 
features of the SAQM. However, since we are after all concerned with making 
sense of ‘quantum rules’ and their implications, we may just acknowledge that 
the space of solutions to Schrodinger’s equation happens to have the requisite 
mathematical properties for setting up a linear predictive scheme a la 
Destouches. That such a scheme could be set up as early as 1926 certainly 
proved beneficial to the rapid development of (sub)atomic physics. On the 
other hand, this favourable circumstance may have hampered the conceptual 
appraisal of such basic aspects of the theory as superpositions or probability 
interference. The work reviewed in this chapter, as well as more advanced 
developments discussed in chapter 9, strongly suggests that such features 
have little, if anything, to do with the enigmatic nature and behaviour of 
hypothetical ‘quantum objects’. Rather, these are distinctive mathematical 
traits of a kind of predictive scheme that is instantiated by quantum theory.
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6
Quantum theory as a linear scheme for prediction

6.1 Basic features

• Bases, observables, ‘eigenpreparations’

In accordance with Destouches’s1 approach, to each outcome E^a of 
measuring quantity A we associate one predictive vector, written |u ^  using

Dirac’s convenient ‘kef notation2. Vectors |u ^  such that Pi(Ek,A) = 5h< (with

the notation of section 5.3) form an orthonormal basis ((u*|u*^ = §j|<) of the

n-dimensional Hilbert space Hn. As a result, any normalised ket I X >eHn can 
be expanded as

I X - I q . a K } .  (6.1.1)
i

From each coefficient CjiA = (uf  |x), obtained by taking the inner product of 

IX > and |u*) i.e. projecting IX > onto the linear subspace (ray) 2ltA spanned 

by |u f) the probability of obtaining Ej^ for a preparation associated

with the ket IX > can be calculated using PR: px(EjiA) = I q )A 12 Since 

|X > = ( ^  |u*) (u*|)|X >, 2 | u* ) ( u*| 's Just an°tfier expression of
i i

the identity operator I. Letting PAij = |u ^  (u* | be the projection operator such

that PAJ u > = I u > for any I u > e SiiA and PAJ u1 > = 0 for any vector I u1 > 
orthogonal to that ray (< u11 u > = 0 v| u ^ e  ±ZAlj), then I = PA(i.

i

All that the predictive purpose of the formalism requires us to know about A 
is the exhaustive list of the values that can obtain when a measurement of A 
is performed on X-prepared samples (pure case). In order to avoid difficulties 
that are essentially irrelevant to our concerns, we shall henceforth assume 
that every interval EiiA reduces to a single value au which corresponds to one

1 See Section 5.3.
2 Dirac 1958.
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normalised ket |u ^ .  The dimension of H is then equal to the number

of elementary items in the list ai,...,an of possible outcomes.
The mean value of A with respect to the preparation ‘encoded’ at time t in 
IX > is the average over results obtained upon many repetitions of an 
A-measurement on samples from a preparation characterised by (6.1.1). It is 
therefore a sum of these results weighted by the corresponding probabilities:

where PR has been used.
Since < A >x = < X I (£ai< Pa*) I X >, the operator to be associated with

the measurable quantity A can be defined as a linear combination of 
projectors:

Because a projection operator is self-adjoint, then so is A from (6.1.3). 
This ‘spectral’ definition of A is only intended to provide a predictive handle on 
the corresponding physical quantity. Whatever theoretical or empirical 
justification is to be given for the composition of the spectrum of A falls 
completely beyond the compass of quantum theory qua predictive framework. 
Mean values are not statistically significant unless the variance of the 
distribution is also specified. The standard deviation (AA)X around the mean 
value < A >x is by definition such that

Consider a ‘preparation X ’ for which (AA)~ = 0 i.e. such that the same result 

obtains each time a measurement of A is carried out. Then from (6.1.4)

identical, up to a meaningless constant factor, to one of the vectors in {|u j^ }

< A >x = £ a kpx(ak) (6.1.2)

k

A —def ^ 9 kPA,k (6.1.3)
k

(AA)X2 = < A2 >x -  < A >x2 = < (A -  < A >x)2 >x i.e. 

(AA)X2 = 11 (A -  < A >x )l X >l 12 . (6.1.4)

(6.1.5)

< A > j  is an eigenvalue of A that corresponds to the eigenvector

to (6.1.3) and since < A > ̂  must be equal to one of the values a-,, a) must be



where ak«={ai,...,an}. Each u ^ ,  which satisfies the eigenvalue equation

(6.1.6) with the appropriate eigenvalue a;, can be said to label one 
A-eigenpreparation, i.e. a preparation that is such that measuring A will yield 
a\ with certainty. To a complete set of eigenpreparations of A is symbolically
attached a basis set { |u ^ } t in terms of which the representative operator for

that observable can be defined. The spectral decomposition (6.1.3) of A is 
all that is needed for the purpose of predicting outcomes of measurements, 
provided that the quantities involved are spectrally defined in Hn.

If two eigenvectors |u*) and |u£) correspond to eigenvalues aj and ak 

respectively, then (a: -  ak)(u*|u£) = 0. Hence if a; *  ak> then (uf|u£) = 0 :

eigenvectors that are associated with distinct eigenvalues of the same 
observable are orthogonal. Retrospectively, this provides a justification for 
expanding a predictive element in the { |u ^ }  basis, for the latter provides

a clear-cut distinction between the elements associated with different possible 
outcomes of an A-measurement. However, such a correspondence can be 
meaningfully maintained only in the case of discrete spectra. When the basic 
scheme outlined above is extended to continuous observables like position or 
momentum, the most one can achieve in a preparation is to approximate1 
‘eigenfunctions’ which are at best useful fictions. Whether they label 
experimentally accessible dispersion-free preparations or approximations 
thereof, basis vectors remain a key item in the statistical algorithm.

• Compatibility

Two observables are said to be compatible just in case any eigenpreparation 
of one is also an eigenpreparation of the other. If A and B are compatible, 
then the commutator [A,B] = AB -  BA = 0. Conversely, if [A,B] *  0, 
these quantities are ‘incompatible’: there is at least some eigenpreparation 
of one that is not an eigenpreparation of the other (non-commuting operators 
may have some eigenvectors in common ; they cannot share a complete set 
thereof). In other words, there exists a discrepancy between the two 
observables in terms of their reference sets (see Section 6.2 below). 
This discrepancy must show up in the analysis of statistical data, when A-lists 
and B-lists of outcomes are compared. If A and B do not commute, letting

1 Dirac 1958, p.48.
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[A,B] = iC, then standard deviations around the mean values < A >x and 
< B >x for any preparation X  must satisfy the inequality1

(AA)x(AB)x > ^ l < C > x l  (6 .1 .7 )

The mean < C >x vanishes if X is an eigenpreparation of either A or B. 

In general (AA)x(AB)x > 0 for an arbitrary preparation X: there is a reciprocal 
relationship between the variances of A and B, in the sense that any 
A-eigenpreparation will be statistically ‘unsharp’ with respect to B, and vice 
versa. The lack of ‘sharpness’ will affect both observables if the preparation 
is not predictively optimal or proper (‘eigen’) for either A or B. In a predictive 
scheme where (6.1.7) holds, no preparation can in fact be dispersion-free 
for all observables2. Inequalities like (6.1.7) are characteristic of linear 
frameworks. Their form is familiar to engineers who work with linear time- 
invariant systems in control, navigation and signal processing3, and their 
occurrence can be traced back to a common concern with optimality4.
(6.1.7) is correctly interpreted only in terms of sequences of measurements 
of A and B made on different X-prepared samples. As such, it has nothing to 
do with the question whether a truth-value can be assigned to any joint 
statement regarding A and B values for an individual system.

• Mixed cases, statistical operators and a fundamental asymmetry

A so-called mixed case typically combines an expression of our ignorance and 
the uncertainty, embodied in a ket, regarding measurement outcomes for a 
given pure case. More precisely, a mixed case is a probabilistic mixture of 
pure cases. Suppose that we are confronted with an experimental situation, 
which is such that the actually observed or expected distribution of 
the outcomes of any measurements of relevant observables is consistent 
with an a priori weighting of kets |u; > by probabilities Wj. Measuring a 
quantity A then amounts to estimating the mean (average) value < A > of A.

1 See Merzbacher 1970, pp. 158-160 for a standard proof, and Redhead 1987 pp. 60-61 
for a derivation which does not explicitly rely on the Schwarz inequality (the only condition 
imposed is nonnegative norm). In a relatively little-known paper presented to the Prussian 
Academy of Sciences, SchrOdinger (1930) points out that a weaker inequality 
can more generally be established: (AA)2X(AB)2X > < F >2X + % < C >2X , where 
< F > = < Vz (AB + BA) - < A >< B »  can be interpreted as the first correlation coefficient for 
A and B considered as two random variables. Perina etal. 1994 and Schroeck 1996 address 
situations in which < F > must be taken into account.
2 See Redhead 1987, p. 62 for a short proof.
3 See e.g. Hamming 1988.
4 Some of the technical problems QIT theorists have been confronted with, e.g. optimising 
data transfer and compression, also overlap with the general concerns of the linear-algebraic 
theory of majorisation (Marshall and Olkin 1979 ; Bhatia 1997).
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Since
< A > = £w , <u, | A | u, > = tr(( X)w,|u,){u, |)A),

i i

let us define

P = 2 > i | ui)(ui| (6-1.8)
i

as a statistical or density operator for that particular mixed case. As an 
average of projection operators associated with all the relevant pure cases, p 
exhausts what we need to know in order to make correct predictions in the 
given situation (< A >p = tr(pA)). On the other hand, the decomposition (6.1.8) 

of p is not unique in general. If degeneracy occurs (i.e. not all Wj are different), 
there are arbitrarily many different ways1 of decomposing the density operator. 
For example, there is an infinite number of decompositions of a maximally 
degenerate mixed case statistical operator i.e. one for which all of the Wj are 
equal. Since all predictions about what can be found under any experimental 
investigation are based on p alone, all those mathematically distinct 
decompositions are provisionally equivalent. It is up to us to exercise our 
judgment and choose the representation we deem the most appropriate. 
While such multiplicity can be viewed as a manifestation of the inherent 
flexibility of a representative structure (Hilbert space), which makes it possible 
to change the reference set in accordance with the focus of prediction, there is 
quite another and rather fashionable interpretation of the mutual equivalence 
of various decompositions of a given p: the impossibility of empirically 
distinguishing between those decompositions would be “another manifestation 
of the inherent inaccessibility of quantum information2”. Calling upon ‘quantum 
information’ might be heuristically useful. However, the relevance of that 
notion to discussing the multiplicity of representations of mixed cases appears 
to be especially questionable, for such multiplicity certainly owes as much to 
the weighted sum form of ‘classical’ averaging (meant to reflect our ignorance 
of some finer details of a preparation) as it does to the vector form of ‘maximal’ 
(pure case) predictors (kets) in a linear predictive scheme like quantum 
theory3.
Recent emphasis on the ‘inaccessibility’ of whatever information is embodied 
in pure or mixed cases stems from the realisation, prompted by more 
mundane concerns with compressing data, optimising data transfer etc., of a 
fundamental asymmetry between what is required in principle to specify a pure

1 Hughston etal. 1993.
2 Jozsa 1998, p.62.
3 Reading QIT literature one gets the impression that many workers in the field are convinced 
that the multiplicity of decompositions of density operators is a newly discovered fact (for 
which Hughston et al. 1993 are often credited), whilst it has long been well known to more 
philosophically-minded explorers of quantum foundations (e.g. d’Espagnat 1976).
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case, and the comparatively very limited amount of information any given 
measurement yields. For example, specifying a given pure case in a 2-D 
Hilbert space requires giving two real numbers (Bloch-sphere angles) 0 and <|> 
(if both coefficients are real, the corresponding point lies on the equatorial line
-  azimuthal angle <|> = 0 -  and the preparation is specified by one parameter 0 
only). The range of both numbers is continuous. On the other hand, any given 
outcome of a single measurement of a dichotomic e.g. spin-34 observable is 
consistent with an infinite number of linear combinations of eigenkets of that 
observable. What the outcome tells us is merely that the initial predictive ket is 
not orthogonal to the eigenket corresponding to the result or (degeneracy) that 
it does not belong to a subspace that is orthogonal to the one spanned by the 
eigenvectors associated with the actual outcome. A measurement e.g. of az 
will yield at most 1 bit of information1; there are two possible outcomes, +1 or 
-1. Obtaining either of them is of no help to distinguish between two linear

combinations of eigenkets I z+ > and I z. > of oz, e.g. —  ( I z+ > -  I z. >) and 

a/3 1-i— I z+ > +—I z. >. Furthermore, performing any number of measurements of 

az on identically prepared samples will not allow to distinguish between, say,
V2 a/2—  ( I z+ > + il z. >) and —  ( I z+ > -  I z. >). The reason is simply that, if

the frequencies of az outcomes can be thought of as approximating the 
probabilities of those outcomes, the rule PR with which the probabilities are 
computed makes no difference between coefficients whose moduli are the 
same. Making the distinction requires measuring other spin components on 
sufficiently many samples prepared identically. Specifying a H2 (‘qubit’) 
preparation thus requires that 3 independent real numbers, e.g. the 
components of spin in the three directions x, y and z be known, which 
determines a 2x2 density matrix (the procedure is obviously inapplicable if 
only one system is available).
This huge asymmetry between information ‘content’ and information yield 
is just a consequence of the fact that Hilbert space vectors are not all mutually 
orthogonal: no single measurement can distinguish between preparations 
associated with mutually non-orthogonal vectors. The more overlap between 
the kets, i.e. the larger in modulus their inner product, the less reliable 
the discrimination. It will become clearer as we proceed that the ‘surplus 
structure’ of Hilbert space is required in order to accommodate the contextual 
aspects of the predictive scheme, which cannot be dissociated from non
commutation and non-orthogonality.

1 The information yield is log2D bits for a D-dimensional Hilbert space, hence equal to N bits 
in the N-qubit case, for which D = 2N.
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• Context

An experimental context (|'F), A) is formally specified by (i) giving 

the representative of a preparation (ket | VF)) and (ii) selecting a self-adjoint 

operator A associated with the measured observable. If {|a,)} is a basis of 

eigenkets of A, the statistical operator

P =  Z w i|a i)(ai| (6 .1 .9 )
i

where Wj = |(aj l ^ 2, reproduces the probability distribution of A (eigen)values 

given a | VF) preparation, and therefore expresses our predictive position vis-a- 

vis A values for that preparation. Each |a,), being an eigenket of A, 

corresponds to one definite measurable (eigen)value of A; the la ja re  

mutually orthogonal (which corresponds to the mutual exclusiveness of the 
corresponding eigenvalues); and none of the |aj) is orthogonal to I1?) (each

eigenvalue a; associated with an |aj) in (6.1.9) can be experimentally 

ascertained in the (|T ), A) context. Whereas (6.1.9) is adequate for the 

context (I1?), A) (again, it yields the same probabilities as I1?) for the 

outcomes of measuring A or any observable that is compatible with A), it is 
inadequate, given I'P), as a predictor for the calculation of probabilities of 

measurement outcomes if the ‘observables’ involved do not commute with A.
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6.2 Angular and statistical distance in quantum theory

Some two decades ago, William Wootters1 unveiled a link between the Hilbert 
space inner product and a statistical measure introduced by Ronald Fisher 
in the early 1920s2. By practical necessity, the number of trials of a random 
experiment must be finite. As a result, inevitable statistical fluctuations set a 
limit to the extent any two weighted coins or two ‘quantum’ preparations 
associated with different kets can be regarded as distinct on statistical 
grounds. Statistical distance is introduced to quantify ‘how far apart’ from each 
other any two preparations are. If the preparations are to be distinguishable at 
all, the absolute difference in the probabilities p(l) (i=1,2) each of them yields 
for the same occurrence (e.g. ‘heads’) has to be no smaller than the amplitude 
of a typical fluctuation. If binary alternatives only (heads vs. tails, yes/no 
experiment) are considered, that amplitude is given, for N trials, by the root-

mean-square deviation Ap(l) = P{i)(1-P(i)) A simple criterion for

distinguishability (in N trials) is that the regions of uncertainty of the p(l) be non
overlapping: I p(1) -  p(2> I > Ap(1) + Ap{2), where each p(,) may represent, for 
example, the probability of obtaining the result ‘heads’ upon tossing coin No. i. 
Fisher’s statistical distance d(P(1), P(2)) between the two ‘preparations’ P(1>, P(2) 
that consist in the selection of either coin is defined as the limit, as N tends to

_ i

infinity, of N 2 times the “maximum number of probabilities intermediate” 
between p(1) and p(2) that may be distinguished, in the above sense, from one 
another in N trials. Because it is harder to distinguish between the two

preparations around p = -  than when the probabilities are further apart,

d(P(1), P(2)) cannot simply be Euclidean distance on the probability space. 
Indeed, in the two-coin case, calculating d(P(1), P(2)) yields a function of the 
cos'1 form.
Generalising to a number n of possible outcomes greater than 2 (e.g. dice 
throws rather than coin tosses), a preparation /, where pk > 0 for all k= 1 to n 
and3 Zk Pk = 1, can be represented by a point M(,) (pi,p2,...,Pn) within a flat 
(n-l)-dimensional hypersurface of the probability space. For a large number N 
of trials, the multinomial distribution is well-approximated by a Gaussian. 
Two preparations P(1) and P(2) associated with points M(1) and M(2) will, 
as before, be called distinguishable when their uncertainty regions do not

‘ Wootters 1980,1981.
2 Fisher 1922.
3 Each pk(l) is the probability of the k-labelled outcome amongst the n, given the i-th 
preparation.
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overlap1. An arbitrary smooth curve, parameterised by A.e[0,1] and connecting 
distinct points M(1) and M(2) on the hypersurface, where p(A,=0) and p(A.=1) 
correspond to M(1) and M(2) respectively, has a statistical length that is given 
by

t? PiW

dP|(X)
dX

dX (6.2.1)

Statistical distance is then defined as the length of the shortest curve between

the two p-space points. A change of variable, letting X j(m ) = (p[m) for m=1,2,
transforms the statistical length into the ordinary Euclidean length of 
the connecting curve in x-space:

i

L = J
d^L
6X

\ 2

dX (6.2.2)

The normalisation of probability translates into the condition ^  x 2 = 1.
i

The points must lie on the unit hypersphere centred on the origin O in 
the n-dimensional x-space, and the curve of minimal length (geodesic) is 
an arc of a great circle of that sphere. Statistical distance is2 then just the

angle between the unit vectors OM(1) and OM(2):

d(M(1), M(2)) = cos'1(OM(1) ,OM(2)), (6.2.3)

hence

d(P(1), P(2)) = = co s -fX xP 'x '2’ |= c o s -fe (p !1))*(p<2>)l j (6.2.4)

Although the change of variable was dictated only by the quadradic form 
of exponents in Gaussian approximations to the multinomial distribution, 
switching from the pi to the Xj is suggestive of reasoning in terms of 
‘amplitudes’ rather than probabilities (the relation between them being a real 
number version of rule PR).

1 A quantitative notion of ‘uncertainty region’ appropriate to the Gaussian form of 
the distribution is introduced by Wootters 1981, p. 360.
2The result also holds in the case of a countably infinite number of outcomes (Wootters 1981, 
p. 360).
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Fisher’s metric is useful to eliminate spurious distinctions that may arise as a 
result of the choice of a ‘flat’ metric1. This is nicely illustrated by Wheeler2, 
following Wootters3:

We find ourselves in the midst of a tribe of people who speak an unknown 
language. Are they the Eddas, who are friendly? Ore are they the Thors, who are 
cannibals? All we have to go on is the color of the eyes of the sixteen warriors 
who encircle us. Our scouts have told us that 67.3% of the Eddas have grey 
eyes; 32.7%, blue eyes; whereas for the Thors the proportions are the other way 
around. Our statisticians have told us that, if the majority of the sixteen pairs of 
eyes are grey, we have close to a twelve-to-one chance of being safe. And so 
they are -  and so we are! That is distinguishability in action.
Unfortunate explorers, we find ourselves on a new journey to a new continent 
confronted anew by the old issue. Are the sixteen who now surround us the 
friendly Aeolians or the deadly dangerous Boreans? At first sight, it appears that 
it will be much more difficult to be certain of our appraisal. Why? Because the 
differences are now so much less between the two tribes in count of grey and 
blue eyes. This conclusion bases itself (plane p grey + pbiue + Pbrown = 1 in the upper 
left hand diagram [below]) upon the separation of the two representative points in 
question in a linear probability diagram, a separation large in the one continent, 
small in the other.
Statistical analysis, however, shows that if the grey eyes are again in the majority 
we again have close to a twelve-to-one assurance of being safe. The linear 
diagram is misleading because it is based on probabilities. To make 
distinguishability properly shine out, we should use not probabilities but 
probability amplitudes; not linearly related quantities that lie on a sector of a 
plane, but quadratically related quantities that lie on a sector of a sphere,
/ r >  1 / 2 x 2  , / „  1 / 2 x 2  , ,  1 / 2 x 2  _  M
(Pgrey ) + (Pblue ) + (Pbrown ) — 1-
In brief, the proper depiction of distinguishability demands Hilbert space. 
The angle in [here, real] Hilbert space between two nearly identical probability- 
amplitude vectors (stippled lines in the lower right-hand diagram [below])...is the 
proper measure of their distinguishability.

1 Fisher himself was concerned with a statistical analysis of the phenomenon of genetic drift -  
Fisher 1956 (pp. 8-17); Kimura 1962.
2 Wheeler 1988.
3 Wootters 1980.
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The ‘quantum’ analogues of coin or dice ‘preparations’ would be what 
Wootters calls “preparations of pure states1”. However, one “new feature” in 
the quantum setting is that, “[w]hereas for dice there is only one possible 
experiment to perform (namely, rolling the die), for quantum systems there are 
many, one for each different analyzing device2”. Such multiplicity is 
characteristic of those situations to which PR applies, its most significant 
aspect being that “two preparations may be more easily distinguished with one 
analyzing device than with another3”. To put it differently, each type of 
measurement instantiates a context for the acquisition of information, and it 
turns out any two such contexts are not generally equivalent in that respect. 
On the other hand, detailed knowledge of the system-apparatus interactions 
required for measurement to have a definite outcome have no more role to 
play in the statistical analysis than they do in the case of a coin toss4. 
Characteristically, maximum distinguishability in one context implies maximal 
uncertainty (equal probability) in some other context, the two contexts being 
associated with incompatible observables.
Let P(1) and P{2) be two preparations to which a ket and

respectively can be associated, A an observable the measurement of which is 
used to distinguish between the two preparations. The probability of the

outcome ai< associated with the eigenket I ak > of A is p('\tf*) = |(tf*|xI,('))|2for

preparation /= 1,2.
Using PR, the statistical distance (6.2.4) between the two preparations in 
the context determined by choosing the A observable is

If probabilities are computed from the same eigenket of A for either 
preparation, the two preparations are trivially indistinguishable and 
d(P(1), P (2))=0. In contrast, if P (1) and P (2) correspond to two distinct eigenkets 
of A, they are statistically as far apart as two preparations can possibly be. 
Those two extremes aside, best discrimination is afforded whenever one 
of the preparations, say P(1), happens to be described by an A-eigenket. 
Because of the mutual orthogonality of A-eigenkets, the sum in (6.2.5) 
then reduces to a single term:

‘ Wootters 1981, p.360.
2 Wootters 1981, p.361.
3 Wootters 1981, p.361.
4 One should thus be wary of such utterances as “with respect to a particular measuring 
device” (Wootters 1981, p.361 - italics mine).

(6.2.5)

(6.2.6)
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with, say, I *F(1) > = I ak > and the statistical distance between two preparations 
is then identical with the Hilbert space angle between the rays associated with 
the preparations. Thus (6.2.6) holds only provided a ‘reference’ observable is 
selected, relative to which one of the two preparations (P(2)) is statistically 
‘gauged’. No such simple quantity as the angle between two Hilbert space 
vectors supplies a measure of statistical distance unless such a reference is 
provided.

Summarising:

Given a general notion of statistical distance (6.2.4) between 
two preparations, then if (i) two such preparations are ascribed 
representatives for purposes of prediction using the resources of 
quantum theory, so that the probabilities of measurement outcomes 
are calculated using PR; and if (ii) a context 0F(1),A) is selected such 
that the predictive vector ,|'F<1) > associated with one of the 
preparations denotes an eigenpreparation of the observable A, then 
the statistical distance between the two preparations is the angle 
between the corresponding two Hilbert space rays.

Since statistical distance is determined entirely by the size of statistical 
fluctuations, regardless of whether the analysed preparations involve quantum 
mechanical systems, coins, dice or human populations, one may find it 
“surprising1” that Hilbert space angle, which is not a statistical concept, should 
be found to connect with it at all. How come “nature rather mysteriously makes 
these two kinds of distance identical2’’? Wootters believes that Hilbert space 
angle separates ‘quantum states’, which he appears to conceive of as 
representations of inherent objective features of a quantum-mechanical 
system (the reference to nature suggests as much). Such states would be 
objectively ‘distant’ from one another, regardless of any operational procedure 
whereby their ‘degree of likeness’ could be ascertained. But then, how can 
“ubiquitous statistical fluctuations in the outcomes of measurements3”, which 
have a priori nothing to do with the nature and properties of physical objects 
those measurements are made upon, so tightly connect to a “geometry of 
the set of states4” that is taken to have nothing a priori to do with statistics 
but everything to do with the nature and properties of physical systems? 
Rather than seize the opportunity to re-evaluate the cogency of referring to 
‘states’ in relation to the SAQM, Wootters appears to seek an objective, 
‘natural’ grounding for the equivalence: “It is as if nature defines [?] distance

‘ Wootters 1981, p.361.
2 Wootters 1981, p.357.
3 Wootters 1981, p.357.
4 Wootters 1981, p. 357.
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between states by counting [?] the number of distinguishable intermediate 
states1”. It is little wonder that “we cannot claim to understand physically 
this connection between statistics and geometry2”, if by understanding 
‘physically’ one means getting insights into some mysterious counting (?!) that 
would spontaneously take place in the physical world. Should we think of 
Nature Herself as capable to distinguish between objective ‘states’, and to do 
so in a manner that would happen to be most convenient for the purpose of 
hypothetical statisticians?
Following such a track any further would be pointless. Instead, let us 
reformulate Wootters’s sentence in a way that is more mindful of 
the predictive aim of the basic framework of quantum theory: “It is as if 
distance between pure case preparations could be defined by counting 
the number of operationally distinguishable3 intermediate, virtual 
preparations”. Rather than as one more riddle about nature, the angular- 
statistical distance link should be regarded, in a more positive way, as 
providing a statistical justification for setting up a predictive framework based 
on a projective, Hilbert space structure. This is the closest to an empirical 
grounding for a linear predictive scheme a la Destouches we can possibly get. 
The introduction (Section 5.3) of a sequence of (real or complex) numbers q 
can now be justified by regarding their moduli as expressions, given by (6.2.6), 
of the statistical distance between the preparation P on which the predictions 
are based and a complete set of ‘counterfactual’ eigenpreparations relative to 
the chosen observable A. Those preparations are such that every one of 
them, if it were realised instead of P, would yield with certainty the associated 
outcome at when an A-measurement is carried out. Letting

d j =cos"1((a|‘1) af2))) be the statistical distance between two

eigenpreparations Pa,i<(1) and Pa,i(2), then |< ak(1) lai(2) > I = cos(dJ)= Sk|. 
Expanding the ket I > associated with P in the { | a; >} basis, the positive real 
number I ck 12 = I < ak \w  >|2 = cos2 d(PA,k , P) < 1 can be regarded as 
the probability4 that measuring A on P-prepared samples will yield ak. 
The probabilities of measurement outcomes as computed using PR can then 
be understood as measures, in the unit interval, of the statistical distance 
between P and a complete set of counterfactual eigenpreparations that form 
what may be called a ‘distinguishability basis’. On the other hand, Wheeler’s

’ Wootters 1981, p. 361.
2 Wootters 1981, p.361.
3 In principle, though not necessarily in practice, because of instrumental limitations that 
could, or could not, be overcome.
4 In the first part of his 1981 paper, Wootters shows that the cos2 form of a probability 
distribution, as observed in polarisation experiments is actually the only form that is 
compatible with a notion of distinguishability based on the relative angle between two 
polariser orientations.
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claims that “Wootters derives Hilbert space with its familiar complex probability 
amplitudes1” is incorrect, for (6.1.6) obtains only once probabilities 
of measurement outcomes are inserted into (6.1.5), and these are computed 
using PR, which supposes the very kind of structure Wheeler claims is being 
derived. It is none the less significant that a basic metric feature of Hilbert 
space should be matching statistical requirements that are essentially 
independent of assumptions regarding the nature and properties of physical 
systems.
Some QIT-related work in the 1990s has been concerned with finding ways 
to quantify gains of information in typical ‘quantum’ situations2. Suppose we 
sample once from what we know to be either of two distributions p(1)(aO or 
p(2)(aj), a\ being a possible outcome of an A-test, without knowing in advance 
which distribution is sampled from. Prior to sampling, the most we know is 
the prior probabilities Wi and w2 of each preparation being the case. 
The probability of our making an error in guessing the identity of 
the distribution after A-testing a sample is defined as 
pe = ^m in{w ip(1)(ak),w2p(2)(ak)}. The smaller its numerical value, the better

k
our guesswork succeeds in differentiating between the two distributions. 
As it stands though, pe is unacceptable as a distinguishability measure 
because it leads to paradoxical results in multiple sampling3. On the other 
hand, its asymptotic form (the so-called Chemoff bound), which is exponential 
in the number N of samples tested before the decision is made, happens to be 
conveniently independent both of the number of trials and of the prior 
probabilities wi and w2. Letting pe(N) be the probability of error after sampling- 
testing N times on the distributions, the Chernoff theorem4 says that

P e (N )  <

-iN

mina X P l1’ (a,)aP(2,(al)1-“ (6.2.7)

where 0 < a < 1. Coming up with an analytical expression for the Chemoff 
bound appears to be hopeless. However, setting a = 'A yields the simpler sum

1 1

2P™(ai)5P(2)(al)5 , (6.2.8)
i

which is a distinguishability measure known as statistical overlap. The choice 
of exponent is dictated by considerations of symmetry and

1 Wheeler 1990, p. 12. - Italics mine.
2 Fuchs 1996 ; Fuchs and Peres 1996.
3 Cover 1974.
4 Chemoff 1952 ; Cover and Thomas 1991.
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tractability. Assuming a Riemannian Fisher metric1, the quantity
2 2

cos'1(^ ]p (1)(ai)2p(2)(aj)2)> already encountered as (6.2.4), measures the
i

extremal (geodesic) distance between the two distributions on the probability 
simplex. A quantum-theoretical adaptation of the same decision problem is 
expected to lead to a Hilbert space expression of (6.2.7), just as (6.2.5) was 
found to be a ‘quanta!’ expression of (6.2.4). The problem now involves two 
(pure or mixed case) preparations to which the two statistical operators pi, p2 
are associated. The observer does not know which is actually the case and 
assigns them the prior probabilities wi and w2. The challenge is for him to 
perform any measurement he deems appropriate and guess the identity of the 
preparation on the basis of the outcome. The ‘best’ choice of measurement 
and the best guess are those that, together, minimise the expected probability 
of error, i.e. the probability of pi (resp. p2) being the correct choice times the 
conditional probability that the decision based on the result of measurement 
will be wrong when pi (resp. p2) is the ‘right’ preparation2. There again, for 
multiple sampling, minimising the probability of error over all possible 
measurements leads to an unwanted result: the optimal measurement 
explicitly depends on the number of measurements performed. Since working 
out an analogue to the Chemoff bound raises the same kind of analytical 
difficulties, we are again led to restrict ourselves to the symmetric case a = Vz. 
A rather straightforward ‘quantum’ version of (6.2.8) is given by

2 2 1
F(pi, P2) = tr(p2 2 pi p2 2) 2. (6.2.9)

This quantity, often referred to as quantum fidelity3, owes much of its 
usefulness to its being symmetrical under permutation of pi and p2 
and invariant under unitary transformations. If pi = I t ' i  > < ^  I and 
P2 = 1^2 >< ^2 I (pure cases), then F(pi, p2) reduces to the modulus of 
the inner product < ¥1 I ¥ 2 >, leading to (6.2.6). In the mixed case, where 
F(pi,p2) > I < ¥ 11 ¥2 > l, quantum fidelity provides an upper bound for so-called 
purifications4 of pi and p2 (the ‘best’ such purification would give a modulus 
of the inner product equal to F).

1 Fisher's metric plays an important role in maximum likelihood parameter estimation (Cover 
and Thomas 1991), where the aim is to calculate the decrease of an estimator’s variance with 
the number of samples drawn. One of its first uses was found in estimates of the divergence 
between two statistical populations defined by their probability distributions (Bhattacharyya 
1943).
2 Helstrom 1976.
3 The name comes from its providing a criterion (Jozsa 1994) for the ‘fidelity’ of the signals 
conveyed via ‘quantum’ channels (e.g. using photons in an optic fibre cable).
4 Uhlmann 1976 ; Jozsa 1994.
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Different approaches to the estimation problem lead to different measures 
of distinguishability. None of these quantities can be regarded as the most 
adequate measure: “In any case, the best measure...is the one that is 
relevant to the actual application in which we are interested1.” This is one 
further motive for doubting that any expression of the angular-statistical link 
reflects objective constraints forced upon our formalisations by the natural 
world.

6.3 Evolving, measuring and predicting

Between the observations nothing at 
all happens, only time has, 'in the 
interval’, irreversibly progressed on the 
mathematical papers!
W. Pauli (letter to M. Fierz, 1947)

How predictors evolve in time as long as no attempt at gathering information is 
made has yet to be addressed. Conservation of probability is guaranteed via 
introducing a unitary, hence inner-product-preserving operator U, such that 
IX >t- = U(t,t’)| X >t for two times t and t\  The U operators, parameterised by 
the time t, must have the combinatorial properties that characterise groups: 
they must be invertible, their combination must be time-wise associative 
and there must be a neutral element U(t,t) that is equivalent to the identity 
operator on H. According to Stone’s theorem2, if the operators {Ut} form a 
weakly continuous group of unitary operators isomorphic to (9t,+,0), i.e. a 
group parameterised by the real numbers, then there exists a unique 
Hermitian operator H such that, for all te , Ut = e'lHt. If H is not itself time- 
dependent, then

dtUt=-iHUt , (6.3.1)

where dt = — . Writing IX >t = Ut IX >o, where IX >o is some fixed predictor 
dt

at t=0, one gets3
i dt I X >t = H| X >t (6.3.2)

1 Fuchs and Peres 1996.
2 see Fano 1971 ;Hughes 1989, pp. 114-118.
3 The burden of time-dependence may be shifted from kets to self-adjoint operators 
representing observables. This is the so-called 'Heisenberg picture', as opposed to 
the ‘SchrOdinger picture’ of the main text. Letting At = U^AUt, where A is a time-independent 
observable, then the time-dependent observable At satisfies the equation idtAt = [At , H]. 
At is therefore time-independent iff At commutes with H.
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Again, determining the explicit form of H falls beyond the compass of quantum 
theory qua predictive framework. Given a suitable1 expression for H, it is 
enough for all predictive purposes that (6.3.2) maintains a deterministic 
relationship between predictors (Hilbert space vectors) at different times. 
In any case, the U-evolution is that of the ‘predictive potential’ of a 
preparation, not that of a system and its physical attributes.
If a ket |X > is expanded as (6.1.1), time-dependence is borne by 
the coefficients cn, while the eigenkets |u ^  supply a fixed reference

associated with definite values of the statistical distance dn,x. No simple 
equation relates dn,x to its rate of change. On the other hand, from (6.1.1) and
(6.3.2):

i dtck = X h :„c„ , (6.3.3)
n

where H*n is the matrix element (u* H|u*^ .

Any change in our knowledge brought forth by our gathering information 
through measurement has to be reflected in the formalism. Suppose the initial 
preparation is denoted by the ket |X >, expanded as (6.1.1) (with q s c,^). 
Three different (highly idealised) cases will now be considered and contrasted:

Casel
An ak-filter is set up after the emitting device or source of X-prepared samples 
(tests measurements of A are made to check that all outcomes a*, i*k are 
filtered out). Measuring B after the ak-filter yields the outcome bj, associated 
with the eigenvector |v®), with probability

P(k>(bj) = p(b/ak)px(ak) = |(vf |uf f  |(<  |x)|2 (6.3.4)

The action of the filter amounts to an effective ak-preparation on which 
the probability of obtaining bj is conditionalised. p(k)(bj) is the product of the

probability p(bj/ak) = (v® u ^  that measuring B on an ak-filtered sample

system will yield bj and of the probability px(ak) = I ck 12 that a released sample 
will pass the attest. Weighting by the prior probability Ick I2 that an 
X-prepared sample will yield ak if the sample is subjected to an 
A-measurement after the ak-filter is no different from the weighting of the 
probability that a coloured ball drawn from vessel No. k will be blue, say, by 
the probability I ck 12 that the vessel (picked at random) is actually the k-th. 
The only presupposition is that the prior probabilities of A-measurement 
outcomes are not affected by the presence of an ak-filter.

See Section 2.2.
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Case 2
Here, no ak-filter is included in the set-up. The probability is now only 
conditional on the preparation at the source, i.e.

Px (bj) = (vB|x) (6.3.5)

Regardless of the fact that no A-related filter is present, the predictive 
formalism gives us freedom to write that probability in terms of the 
eigenvectors of A:

Px(bj) = IWK)K|x) (6.3.6)

This is just an instance of the application of the a and p rules, since we can 
write, with the notation of Section 5.1:

Px(X XjB) =  I ^ A (X -» X ,A)A(XiA-» X jB) 12

The p rule applies, as it should, in a situation where no ai-filter is actually set 
up.

Case 3
The third and last case is one in which a measurement of A is performed 
on X-prepared samples, prior to B being measured. As in Case 2, no ak-filter 
is part of the set-up. It is also assumed that a sample is not destroyed in 
the process of being A-measured. After a measurement of A, we shall 
suppose that a B-measurement is performed on the same sample, yielding bj. 
The frequency of a given pair of outcomes (aj,bj) provides, up to fluctuations, 
an estimate of the probability p(bj I aj) that the result at will be followed by bJf 
both measurements being performed on the same sample. The probability of 
obtaining bj whatever the outcome a; is the sum over the possible a; of the 
probabilities p(bj I aj), each of them being weighted by the probability px(aj) that 
a prior measurement of A on the same (X-prepared) sample will yield a{ :

Px(bj) = £  p(bj I ai)px(aO = £  piiA(bj) k l 2 (6.3.7)
i i

(6.3.7) is just the sum ]Tp(l)(bj), where each summand has the same form
i

as (6.3.4), because I q 12 appears in both expressions while p(bj I aO and 
p(bj/aj) are evaluated using the same inner product. It is therefore tempting 
to interpret each p(l)(bj) as an instance of the kind of situation from which
(6.3.4) follows. Indeed, if one selects, in Case 3, only those pairs (ak, bj) 
for which measuring A gives the result ak, the probability p(k)(bj) is given
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by (6.3.4). However, identifying with (6.3.4), as obtained in Case 1, the 
expression of p(k)(bj) derived on the basis of such a selection supposes that 
picking the corresponding entries in the list of A-measurement outcomes is 
regarded as equivalent to the physical operation of an ak-filter prior to 
measuring B, and that corresponding bj entries in the B-list are understood 
as if they were results obtained in measuring B after such filtering. 
The identification is made despite the fact that no filter is included in the Case 
3 arrangement and the only preparation to which the prediction must refer to 
in that case is X.
Within the limits of the predictive scheme, A-measurements can be, although 
improperly, conceived as effecting A-filtering in a random fashion. There is 
no predictive harm in confusing with an actual eigenpreparation a merely 
conceptual sampling of outcomes as extracted from the A-list. Moreover, 
the mathematical identity of (6.3.4) and (6.3.7)-reduced-to-its-k-th-term comes 
in handy: if the result ak of an A-measurement is known to be the case, 
calculating the probability of an outcome bj of a subsequent B-measurement 
can be conveniently simplified using p(k)(bj). The ‘reduction’ rule (P7) 
(see Section 4.2) amounts to taking advantage of a useful formal coincidence. 
In the words of Omnes1,

...reduction is...a recipe allowing the erasure of irrelevant information: ...(one) 
forgets much of the initial preparation of the system (sometimes even 
everything). One sticks only to the result. The justification of this simplification is 
much less trivial in the present case than it is in mathematics and information 
theory, but the result is the same, namely, a modus ponens or essentially a rule 
for oblivion.

Unless A-measurements are made in the meantime, predictions from an
X-preparation are computed using (6.3.5-6.3.6). In contrast, if measurements 
have actually been made, the correct expression for p(bj) is no longer (6.3.5) 
but (6.3.7). The computational difference lies in that, since (6.3.6) is 
the squared modulus of a sum, it contains non-quadratic ‘cross-terms’. 
The change from (6.3.5-6.3.6) to (6.3.7) is usually interpreted as one from a 
pure case to a mixture. The word mixture conveys the idea that the simple 
sum of probabilities (6.3.7) just expresses one’s ignorance of which outcome 
of the A-measurement is actually the case, it being understood there is a fact 
of the matter about any given outcome immediately after any A-measurement 
(one just has to look at the A-list to find out which amongst all possible 
outcomes is actually the case). However, since a pure case cannot 
consistently be regarded as describing a union of subensembles of physical 
systems endowed with given attributes2, interpreting (6.3.5) as an expression 
of our ignorance is not a viable option. The essential difference between the 
two cases where (6.3.5) and (6.3.7) respectively hold is that, in the first, no

1 Omn6s 1994, p. 341.
2 See section 4.3.
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intermediate measurement is actually performed, nor are the conditions 
actually met for such a measurement. By contrast, in the second A- 
measurements are systematically performed prior to predicting the later 
occurrence of bj. Therefore, the legitimacy of switching from (6.3.5) to (6.3.7) 
as the ‘right’ way of evaluating the probability p(bj) depends on the realisation 
of the appropriate context, associated here with the A-measurement. 
Switching from (6.3.5) to (6.3.7) raises none of the phenomenological issues 
that might be suggested by hasty parallels with a two-slit experiment. 
Whilst the presence of nonquadratic terms has a bearing on the value of 
probability, there does not correspond to it any observable effect such as a 
distinctive pattern of dark and bright fringes. Any ‘interference’ exhibited in
(6.3.6) is, as it were, ‘paper interference’. None the less, the change from
(6.3.5) to (6.3.7) has often been described as a loss or disappearance of the 
cross-terms in (6.3.6). Implicit in that view is the belief that (6.3.5) and (6.3.7), 
arid in particular the vectors entering in their evaluation, relate to objective 
physical attributes, measured or not, of an individual system. A sudden 
change in the form of probabilities would then reflect the occurrence of a real 
process, whereby any prior ‘coherence’ between the ‘eigenstates’ in 
superposition in (6.1.1) would be wiped out (as far, at least, as we can 
practically tell). However, as far as the predictive task is concerned -  a task 
that is the sole purpose of the formalism outlined in this chapter and the next 
ones -  it is idle to inquire about any ‘losses’. Distinct operationally definite 
cases have to considered, to which there correspond distinct ways of 
calculating p(bj), and that is all. ‘Interference’ is just a characteristic of the 
Hilbert space-based formalism used to compute the probabilities. The p and 
the PR rule were shown to be derivable from consistency requirements and 
assumptions that nowhere make any reference to properties of physical 
systems or ensembles thereof. The p rule, in particular, holds in cases where 
no context is actually picked out that would supply valid statistical reference 
for the predictive task. On the other hand, one gets to (6.3.7) by assuming 
such a context has been picked out. The ‘transition’ from (6.3.5) to (6.3.7) can 
thus be understood as from a non-contextualised to a contextualised case, 
where each case calls for its own mode of probabilistic evaluation. 
Interference does not so much ‘vanish’ in the contextualised case as it simply 
does not arise: different circumstances, different uses of a single basic 
formalism. As to the ‘reduction’ of (6.3.7) to (6.3.4), it consists in nothing but 
updating the predictor as a result of acquiring the relevant ‘outcome 
information’. The scheme does not (cannot) account for a given result being 
the case rather than another (among those with nonzero probability). But then, 
neither does the ordinary probability calculus (have to) account for a coin 
landing tails rather than heads in any single toss.
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7

Hilbert space composition and quantum theory

7.1 n-ary preparations

Suppose that two different and totally unrelated preparations (I) and (II) are 
such that measuring A on any (l)-sample will yield am and no other ak (k*m), 
and that measuring B on any (ll)-sample will yield bp and no other bq (q*p). 
Letting |u*)eHA and |v j^eH B denote eigenkets of A and B respectively, the 

predictors for (I) and (II) can be simply ‘pasted’ by taking their direct product 

um)|vp )= I'Fm.’p) G Ha<S>Hb, where <S> is the symbol for the tensor product1 of HA

and Hb. The probability that measurements of A and B, performed on a (I)- 
sample and on a (ll)-sample respectively, will yield ak and bi is given by

p £  (ak a  b,) = |((u* |(V|B |)| T *;pB)|2 : (7.1.1)

the probability is calculated as if one were dealing with a single (l)+(ll) 
preparation corresponding to the ket 'F*1®).

There may not seem to be much benefit to be derived from such 
a representation, which is clearly equivalent to running the predictive algorithm
using HA and HB kets separately. Furthermore, since a complete set of } 

form a basis of eigenkets of A<8>B, any ket |*F) e HA<8)HB can be expanded as

l'j,) = Z clk|'i 'uB)= E c4 u0 K )  <7-1-2) ■i,k i,k

Can any sense be made of, and any use be found to a notion of binary 
preparation, or more generally of n-ary preparation, to which a ket in 
the tensor product HA®...<8> Hk of n Hilbert spaces would be associated? 
Besides the two trivial instances of such preparations we have already 
encountered: (i) unary (n=1) and (ii) that which boils down to a mere 
conjunction (‘pasting’) of n preparations (product of n kets), it is by no means 
obvious whether any other can be reasonably conceived, to which a non-trivial 
linear combination (7.1.2) of ket products would be ascribed. On the other 
hand, if what matters to prediction is the statistical distance between 
the current preparation and suitably chosen reference eigenpreparations,

1 If dim (Ha) = nA and dim(HB) = nB , then dim(HA<8> HB) = nAxnB.
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a complete set of eigenket products xJ/iJ,B)=  u,A^ v ^  is a natural choice for

providing such a reference. If pT(am,bp) is the probability of obtaining results

am and bp when a joint measurement of A and B is carried out on ,xF-prepared’ 
samples, where |*F) has the general form (7.1.2), then

P*(am.bp) = | « p  I ' i ' f  = cos2 d ( ^ , < pB) = |cik|2 (7.1.3)

With the notation of Section 6.2, d(vF,xFA;pB) is the statistical distance between

the preparation associated with |'F)eHA®HB and the reference

eigenpreparation vFm,pA'B (the latter is in fact nothing but the conjunction of two 
independent preparations). Let us temporarily set aside the question of 
the meaning of such a binary preparation and focus on the possible 
significance of such a predictive vector.
If (7.1.2) reduces to a simple product I 'F > = I u >l v >eHA®HB with I u >eHA 
and I v >€Hb, then

P*(am,bp) = pu(am)pv(bp), (7.1.4)

2 2 
where pu(am)= (uA u) and pv(bp)= (vB v) : this probability is the product

of the probabilities for the outcomes as computed separately for each 
preparation. Since (7.1.4) is a ‘quanta!’ version of the classical rule for 
the computation of the joint probability of two independent events, it may be 
worthwhile to consider whether the classical formula

p(am a  bp) = p(am). p(bp/am) , (7.1.5)

where p(bp/am) is the probability of bp conditional on am being the case, 
has any quantum-theoretical analogue. When the ‘events’ are independent,
(7.1.5) reduces to a product of probabilities, in direct analogy to (7.1.4). 
In the ordinary probability calculus, the probability of the outcome bp obtains 
via summing over the complete set of the a\ :

P(bp) = X  p(ai).p(bp/as) (7.1.6)

The closest we can get, in the linear scheme, to the classical formulae 
(7.1.5-7.1.6) follows from a simple algebraic property: any ket I 'F > of the form
(7.1.2) can be written

|*>=2>,K)K> (7-1J)i

where the wf^ are normalised HB vectors. This so-called Schmidt or 

biorthogonal decomposition of the ket I 'F > secures a one-to-one relationship
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between HA and Hb terms by the association of a relative1 ket w®  ̂ with

any given ket |u*). The mutually orthogonal wf^may then be regarded

as eigenkets of some observable R^/a operating on HB. For example, the ket

I > = 1 1Z+ >| z+ > + 1 1 z+ >| z. > + 1 1 z. >1 z+ > -  1 1 z. >| z. > (7.1.8)
2 2 2 2

where |z± > are eigenkets of the spin observable ctz corresponding 
to the eigenvalues ±1, can be written in biorthogonal form as

l xF> = 2'm I z+ >| x+ > + 2~V21 z. >| x. > , (7.1.9)

where I x± > are eigenkets of ax (= R fc ) associated with the eigenvalues ±1 
(dim(H0 ) = dim(Ha ) = 2). The decomposition (7.1.7) is not unique -  (7.1.9)

is a case in point -  unless the moduli of the coefficients are all distinct.
If each of the products |0,) = |u ^  w?^, considered separately, is interpreted

as relating to a conjunction of two preparations (I) and (II), these will be such 
that the outcomes of A-measurements on (I) and R^/A-measurements on (II) 
are uncorrelated. The probability that am and bp will obtain when A and B 
are independently measured is

P* (am a bp) = |(u* |u* )f|(vpB |wf )|2 (7.1.10)

On account of the |u ^  being normalised and mutually orthogonal, (7.1.10) is

non-zero only if i = m. This suggests interpreting v̂® wf^ as the probability

of obtaining bp, conditional on the preparation being such that measuring A 
will yield a; with probability 1. Then, p ^ fo  Abp) = p<Di(ai).p<I)|(bp/a,), with

Pa> (ai) = 1 • Using (7.1.7) and summing over the /,

P4.(bp)=5NKv: K)f= / a i) ■i i

where pT(a,) = |X(|2 = 2 lcik|2-

(7.1.11) looks similar enough to the classical total probability rule (7.1.6). 
However, the expression essentially differs from the latter by the nonexistence 
of such homogeneous ‘background conditions’ as classical treatment 
assumes: p 0( (bp/aj) explicitly refers to a preparation Oj for which measuring A

would yield a\ with probability equal to 1, whereas p^(ai) *  1 when I ¥  > does

1 The idea was introduced under the name 'relative state’ by Everett 1957. Needless to say,
switching from (7.1.2) to (7.1.7) implies no acceptance of Everett’s interpretation, let alone of 
any of its many-worlds/minds offshoots.
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not reduce to any one A-eigenket. Each summand on the RHS of (7.1.11) 
expresses, as it were, a conditionalisation of bp on the a; with respect to 
a ‘virtual’ i.e. counterfactual eigenpreparation Oj. Contributions of all Oj must 
be taken into account in the calculation of p^bp),  just as a complete set

of non-actualised ‘intermediate links’ must be in the calculation of the total 
amplitude using the p rule. Another fundamental limitation of the analogy 
is that the uniqueness of the Schmidt decomposition is not guaranteed for all1 
kets I >. In what follows, we shall just acknowledge the usefulness of 
a tensor product extension of the basic formalism outlined in chapter 6, 
postponing the question of how to justify tensor product composition till 
chapter 9. That kind of extension is exploited in quantum theory in two basic 
circumstances:

(i) when two compatible observables are to be jointly measured 
on samples from a unary preparation.

An instance of (i) would be the assessment of both spatial and spin degrees 
of freedom on identically prepared samples. Consider a Stern-Gerlach 
experiment in which a beam of silver atoms is subjected to a non-uniform 
magnetic field in the z direction. Since the experiment gives rise to two 
distinctive regions of impact on a screen in the z direction, observed values 
of the spin component2 az are then correlated to those of the spatial 
z coordinate.

(ii) When two observables, compatible or not, are measured on 
the members of pairs (n-uples) generated in the process of a 
genuinely binary (n-ary) preparation.

Instances of (ii) are the generation of two-photon ‘cascades3, or the splitting 
of a diatomic molecule. We shall admit that there exist experimental situations 
that give rise to a ‘fragmented preparation’, on the members of which it is then 
possible to act separately. However, given our purely predictive aim, we shall 
not be concerned with the thorny matter of deciding whether such 
‘fragmentation’ can legitimately be analysed into genuine ‘particles’.

So far, Hilbert spaces HAl HB etc. have been labelled with reference to 
particular observables. This does not mean, of course, that predictions are

1 In the ternary case, it has been proved (Bub 1999, pp. 164-167) that the triorthogonal

decomposition of a ket I 'F >= ]TcJ Uj > U  Hwj >, when it exists, is unique without
i

any condition on the coefficients. Such a decomposition, however, does not always exist. 
The issue remains unsettled for n>3.
2 For any direction a  the a a notation for spin-!4 operators is used rather than Sa = !4 <ya , 
and the ubiquitous constant oo is set equal to 1.
3 As in the Paris Xl-Orsay experiments of Aspect et al. 1982.
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restricted to a set of ‘preferred’ observables. Rather, the choice of A and B 
sets the dimension, finite or not, of the relevant Hilbert space. On the other 
hand, since we shall be mainly concerned with (ii), a distinction must be 
clearly maintained between experiments performed separately on either 
member (1) or (2) of any produced ‘pair1. Accordingly, the relevant Hilbert 
spaces will from now on be designated as Hi and H2. One should, in any case, 
refrain from the temptation to conceive of either Hilbert space as a ‘state 
space’ for subsystems that, together, would constitute the sample pairs 
prepared as ‘specified’ by a given Hi <8>H2 ket. Any reference to composite 
systems and subsystems allegedly involved in n-ary preparations will, in the 
remainder of this chapter, be fundamentally conventional or ‘symbolic’. 
The discussion will also be almost exclusively confined to binary preparations, 
bearing in mind that all remarks and conclusions generally apply to n-ary (n>1) 
preparations. Any Hilbert spaces involved will be thought of as referring to 
potential choices of observables to be measured on sample pairs or pair 
members separately. For example, H2 may be chosen as the two-dimensional 
linear space appropriate to predicting outcomes of measuring any spin (!4) 
component an; the subscript 2 here indicates only that the corresponding 
information is restricted to 'member 2’ of any sample pair. It is only required 
that this label be consistently maintained for a given set-up and a given 
sequence of measurements (e.g. those detections or measurements that 
occur ‘on the left’, as opposed to those occurring ‘on the right’, may 
conventionally be labelled ‘1’).

7.2 Correlations and entanglement

The probability of obtaining result am if an A-measurement is made on 
member 1 of a sample pair, given that all such pairs originate in a single 
binary preparation associated with the statistical operator p, is given by

PP(a!?)=tr(p(PAim®l) (7.2.1)

where the trace is taken over any complete orthonormal set in Hi<8>H2,
PA|m projects onto the ray associated with the eigenvalue am of A
and I is the identity operator1. The probability of joint results am and bp
of an A-measurement on 1 and a B-measurement on 2 is

Pp(aS,bjf>) = tr(P(PA,m<g>PB,p)). (7.2.2)

If gathering information on 1-samples has no bearing whatsoever on 
2-samples (and conversely), then p can be written

1 In any tensor product X<8>Y, X  (left) is taken to act upon Hi, and Y  (right) upon H2.
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p = p(1)<g)p(2) (7.2.3)

where p , p(1) and p(2) all correspond to pure cases. (7.2.3) is then equivalent 
to the ket product I ¥  > = I Ui >| u2 >e H1<S)H2, where I u; >eHj (all density
operators involved are projectors: p0) = I us >< Uj I and p = I >< I ). Each p(i) 
(i=1,2) obtains (trivially) by performing a partial trace over Hj (j = 3-i):
p(i) = trj(p). Partial tracing can be thought of as averaging over any complete 
set of eigenkets of Hj, hence over all eigenpreparations that may be used 
as a reference for assessing statistical distance with respect to ‘subsystem’ j. 
The partial trace uniquely determines, for any p (whether or not it takes 
the product form (7.2.3)), two reduced or marginal statistical operators p(i) 
that can be used to calculate the probabilities of the outcomes 
of measurements to be performed on i-samples (i = 1 or 2) separately. 
These two operators must satisfy an evident consistency constraint: as long 
as predictions are restricted to outcomes of measurements performed on 
i-samples exclusively, they must agree whether they are calculated using p 
or p(l), e.g. with i=1:

pp( aff) = tr(PPA,m®l) = tr, (p(1)PA,m) = PpW ( a j . (7.2.4)

Equivalently, p(l) must give rise to the same expectation value as p for all 
observables measured on i-samples only.
Most1 binary preparations will be associated with non-trivial linear 
combinations (7.1.2). As a result, pure case statistical operators will not 
in general reduce, via partial tracing, to p(,) which are pure. Most importantly, 
if the reduced statistical operators are ‘mixed’ i.e. expressible as irreducible 
linear combinations of projection operators, then these operators do not 
suffice to determine the statistical operator p of the binary preparation. This is 
usually interpreted as an indication that the preparation embodies ‘more 
information’, in the form of correlations empirically accessible via joint 
measurements of sample pairs, than can reveal measurements performed 
on 1-samples or 2-samples only. The correlation index a.k.a. ‘mutual 
information2.

1 The set of product kets is a zero-measure subset of H1OH2.
2 The term originates in classical (Shannon) information theory, where the joint entropy 
H[S,S’] is at most equal to the number H[S] + H[S’] of binary questions that are needed to find 
out the content of two messages S and S’ (H is the Shannon information function 
or ‘entropy’). It is strictly lower if the two messages are not statistically independent. If the 
S-message has been figured out, the number of questions it will take to find out S’ 
is the entropy of S’, conditional on S: H[S’/S] = H[S,S’] -  H[S]. The 'mutual information’ l[S,S’] 
= H[S’] -  H[S’/S] is the amount we learn about S ’ from knowing S, i.e. it corresponds to 
the average number of questions that knowing S saves us from having to ask about S’. 
Thus if S ’ represents the signal picked up by the receiver, l[S,S’] quantifies how much of the 
emitted message S is, as it were, embodied in that signal. The qualification ‘mutual’ arises 
just because I happens to be symmetrical in its arguments: l[S,S’] = l[S’,S]. However, mutual
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Ie = S (p (1>) +  S(p(2)) -  S (p) (7 .2 .5 )

where S(p) = -tr(plogp) is the von Neumann ‘entropy*, quantifies 
the possibility of any information gain over and above that provided by 
measurements performed on 1 and 2 separately (without any comparison 
of lists of 1 and 2-data). Ic = 0 only if p can be written in the product form
(7.2.3) i.e. in the absence of any correlation. In that case, the expectation 
value for joint outcomes of measuring A on 1-samples and B on 2-samples 
is a simple product of the two means obtained separately:

< A®B >p = tr(p(A®B) = tr(p(1)A).tr(p(2)B) = < A >p(1) < B >p{2) . (7.2.6)

Conversely, if p cannot be written in product form, then there must be 
correlations (lc *  0). For example, if a mixed case binary preparation is such 
that ps = £ w k(p<1) ®pk2)), with wk e [0,1] and 2 ]wk = 1 (with more than one

k k
wk* 0), then the index lc *  0, or

< A®B > = tr(Ps(A®B) = £ w k tr( p<1) A) tr( p<2) B) , (7.2.7)
k

which is clearly different from (7.2.6). Since such a ‘separable’ mixed case 
is just a binary version of the sort of ignorance-interpretable mixture 
exemplified by (4.4.1), any correlations can be given a common cause 
explanation.
Let us now consider the biorthogonally expanded ket

l*>=2>.KK}' (7-2-8)

information is a rather unfortunate expression that should rather be avoided, for it suggests 
that subsystems, qua potential sources, may hold information about one another, although 
there is no clear notion of what ‘holding information’ could mean for physical systems if no 
reference is made to non-physical notions such as pattern recognition abilities etc.
1 The (PR) expression of probability pk = tr(pPk) being inserted in Shannon’s function
Hs = -Zkpklogpk (Shannon 1948 ; Cover and Thomas 1991), optimal predictability obtains 
(Wehrl 1978) when the projection operators Pk form a set of eigenprojectors for the statistical 
operator p. The ‘quantum version’ of Hs then reduces to S(p), which quantifies the predictive 
uncertainty associated with a standard projective measurement in optimal conditions. 
Predictability is maximal in the pure case, for which S(p) = 0, and least in the ‘maximally 
mixed’ case (p proportional to the identity operator) for which the outcomes of any 
measurement are equally likely. S(p) can be thought of as measuring the minimal amount 
of information that is missing towards identification of a preparation as a pure case, given any 
mixed case statistical operator p. Its value cannot exceed the logarithm of the dimension 
of the Hilbert space i.e. of the least number of orthogonal vectors that can form a basis 
for that space. It should be noted that whether S(p) qualifies as a quantum-theoretical 
analogue of the thermodynamical entropy remains controversial (Shenker 1999, Hemmo and 
Shenker2003).
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where |u ^  and |v,B̂ are eigenkets of two observables A and B and more than

one Cj is non-zero. A predictive vector like (7.2.8), or more generally (7.1.2), 
does not generally factor into Hi and H2 kets. Erwin Schrodinger1 coined 
the adjective entangled to designate such non-factorability. In his first 
characterisation of so-called entanglement, his emphasis is, significantly, 
not on any changes in some definite ‘states’ of the bodies involved, but on 
structural changes in our ‘maximal knowledge’ as afforded by the relevant 
vF-function or Hilbert space vector (7.1.2):

If two separated bodies, each by itself known maximally, enter a situation in 
which they influence each other, and separate again, then...the knowledge 
remains maximal, but at its end, if the two bodies have again separated, it is not 
again split into a logical sum o f knowledges about the individual bodies2.

In order to shed light on the peculiar traits and possible difficulties alluded 
to by Schrodinger, let us consider the density operator p = I 'F >< 'P I , where 
I ¥  > is given by (7.2.8). Then,

P = S ICi f l Ui)(Ul |® lVi>(Vi| + E CiCk|Ui)(Uk |® lVi)(Vk|- <7 -2 -9)
i i*k

The first sum in (7.2.9): pd = 2 l ci|2|ui)(ui|® lv ')(v 'l = 2 N 2Pi1) ®Pi2) 's Just
j i

of the same form as the mixed case statistical operator ps we considered 
above. Since the second, non-diagonal or ‘interference’ term in (7.2.9) gives 
a null contribution to the partial traces, the reduced statistical operators

p(1) = tr2p= X lc i f | ui)(ui| and p(2) = trlP = X lci f | vi)(v i| (7.2.10)
i i

do not differ in any way from those derived from pd alone. This means that

all the statistics to be derived from the p(i) must fail to distinguish3 between 
p and ps. No series of measurements performed on 1-samples alone, 
or 2-samples alone, can tell ps and p apart; nor can the statistics of 
any measurements performed on 1 and 2-samples, the ‘joint’ observables 
being of the form U<8>V, where U commutes with A and V commutes with B. 
On the other hand, p and ps can in principle be distinguished by performing 
suitable measurements on both 1 and 2 (the relevant observables should be 
linear combinations of tensor products of Hi and H2 observables, or such

1 Schrodinger 1935a.
2 Schrodinger 1935b (italics added). However, Schrodinger occasionally reverts to more 
problematic state-based formulations, as in his discussing the EPR issue: ult is rather 
discomforting that the theory should allow a system to be steered or piloted into one or the 
other type of state at the experimenter’s mercy in spite of his having no access to it.” 
(Schrodinger 1936, p. 451)
3 Von Neumann 1955, pp. 426-429.
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products X0 Y provided X does not commute with A and Y does not commute 
with B).
If the reduced density operators p(,) underdetermine the potential for prevision 
that is embodied in a binary preparation described by p (unless one of them 
at least is a projection operator), correlations amongst partitions of a n-ary 
preparation suffice to determine the associated statistical operator. Given 
a n-ary preparation to which there corresponds a density operator p, then p 
is entirely determined by the mean values < X0 Y >p = tr(p(Xi0X2...0Xn)), 
where Xi,X2,...,Xn are suitably chosen observables acting upon Hi, H2,...Hn 
respectively: everything that may be predicted given a n-ary preparation 
is completely pinned down by the expectation values of Hi0H20...0H n 
observables, all of which are products of Hi, H2,...Hn observables. In other 
words, the relevant statistical operator can always be inferred from 
the correlations among results of measurements performed on each 
subsystem separately1. This basic property of the formalism follows from 
the observation that a basis for the algebra of Hi0 H2 observables is provided 
by a subset of the set of all products of Hi and H2 observables, together with 
the fact that the algorithm whereby expectations values are computed is linear 
on the algebra of observables2. All the correlations for any m-partite resolution 
of a n-ary preparation (e.g. into Hi and H20...Hn, into H1&H2, H30...0Hk and 
Hk+i0...0Hn, etc.) can be calculated from the appropriate statistical operator p 
on Hi0H20...Hn. Moreover, these are all the correlations p can possibly 
encapsulate (Gleason’s theorem3).
Might tensor product composition itself follow from requiring previsional 
consistency amongst all possible resolutions? Some recent work4 hints 
at this possibility. Meanwhile, similar considerations have motivated 
the suggestion5 (‘Ithaca Interpretation’) that quantum theory might after all be 
fundamentally about correlations rather than correlata (‘states’ and/or 
attributes of individual systems). Since “anything you can say in terms 
of quantum states -  and some strange things can be stated in that language -  
can be translated into a statement about subsystem correlations i.e. about 
joint probability distributions6”, a ket or density operator in the n-ary case 
appears to be “nothing more than a concise encapsulation of the correlations

1 Wootters 1990; Mermin 1998, Appendix 1. For example, the 15 = 42 - 1 means < aj<8>l >, 
< l<8>Gj > and < aj<8>Oj > (i,j=x,y,z) entirely determine the density operator for any binary 
( ‘two-qubit’) preparation.

For instance, the density operator for the singlet is expanded in the operator basis'
1

{ h ® \2, a x®CTx, ary<8><Ty, a z0 a z} as p = — (l<8>l - <tx®ctx - a y<8>ay - ctz®ctz).
4

3 Gleason 1957.
4 Fuchs 2002 ; see Section 9.3.
5 Mermin 1998.
6 Ibid.
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among its subsystems1.” The kind of linear predictive scheme outlined in this 
and the previous chapter encompasses all the relationships between 
the statistics of measurements for all predictively relevant resolutions of 
a n-ary preparation. Correlations can be revealed by a careful comparison 
of outcome lists for measurements made independently on matching pair or 
n-uple members. Quantum teleportation or dense coding, discussed in 
chapter 8, provide a most striking illustration of how the potential to exhibit 
correlations in statistics of measurement outcomes that is embodied in some 
n-ary preparations may be brought into use, but also of the risks inherent in 
forcing objectivistic and non-statistical readings upon the interpretation of the 
data.
Operators that represent symmetry transformations of Hilbert space must be 
(anti)unitary2. Since the tensor product of two (anti)unitary operators is an 
(anti)unitary operator acting upon vectors of the composite Hilbert space3, 
(anti)unitary transformations operating separately in Hi and H2 have a definite 
net effect on elements of Hi<8>H2. On the contrary, the ® product of a unitary 
and an antiunitary operation results in a transformation of Hi<8>H2 that is neither 
unitary nor antiunitary with respect to a binary preparation; it is indefinite 
unless the preparation can be represented as a product of kets or a separable 
mixture ps : the net effect of the combined transformation on the latter is 
another statistical operator that is also separable. Now, any antiunitary 
transformation can be written as the product of a unitary operator and the time 
reversal operator. Accordingly, the time evolution of a two-qubit separable 
statistical operator (or factorable ket) can be factored into a product involving 
‘time arrows’ pointing towards opposite directions. The temporal structures of 
the Hi and H2 contributions to a separable mixture are thus disconnected: it is 
as if the whole does not keep track of a single time direction in respect of both 
arms of the preparation, so that time reversal ‘locally’ affects that part of the 
predictor that is relevant to one arm, without affecting the time evolution of the 
other4. On the other hand, an /nseparable preparation is such that an

1 Ibid.
2 Wigner 1959, p.233.
3 A tensor product of operators (matrices) is unitary if and only if each one of the operators 
(matrices) is unitary up to a constant (see e.g. Hungerford 1974).

Sanpera et al. 1997. Reversing time on one of the arms of a two-qubit preparation is 
equivalent to complex conjugation being taken on the relevant part of Hilbert space. This 
operation yields the partial transpose of the density matrix p. For the directionality of time in 
subsystems to remain uncorrelated, the transpose must satisfy the Peres separability 
criterion (Peres 1996) i.e. the matrix obtained after partial transposition of the total density 
matrix p must have non-negative eigenvalues only (pT2 = (pT0 *  > 0). The condition is both 
sufficient and necessary provided that the dimension of the tensor product Hilbert space does 
not exceed 2x2 (two-qubit case) or 2x3 (qubit-trit case). For composite systems associated 
with spaces of higher dimensions, the positivity condition of pT2 is only a necessary one for 
separability: statistical operators have been found that satisfy the criterion despite their not 
being separable.
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antiunitary transformation performed on any of its subsystems would 
jeopardise the time evolution of the whole. This suggests regarding 
entanglement as required to maintain consistency in temporal evolution of the 
full predictive potential of a n-ary preparation. On the other hand, one should 
refrain from thinking of entanglement as indispensable for the manifestation of 
‘non-classical’ statistics. Sets of orthogonal ket products relating to two ‘three- 
level’ particles have been exhibited1, which cannot be reliably distinguished by 
two arbitrarily separated observers who are given one particle each, as long 
as the observers do not know which preparation, associated with a ket in the 
set, they actually deal with (as usual in QIT Gedankenexperiments, the 
observers are allowed to perform only local operations -  i.e. on their own 
particles in their own labs -  and to communicate using classical means, e.g. a 
phone line). The existence of such possibilities should warn us against a 
tendency to over-emphasise the importance of entanglement.

7.3 Binary case objectification

Given a large ensemble of N pairs to the preparation of which a ket (7.1.2- 
7.2.8) is ascribed, suppose it is claimed that a definite value am of A pertains, 
prior to any measurement, to a number

N™ * NPp„,(am) = Ntr(p<1)PA,nl)= N|cm|2

of the 1-subsystems in the ensemble, and that a definite value bp of B similarly 
pertains to a number of the 2-subsystems. An ensemble Em p o f 1+2 pairs

whose members have those attributes should then, following d’Espagnat2, 
be correctly described using the ket product I um ><8>l vp >eHi®H2 , 
or equivalently the density operator pmiP = I um >< um I ®| vp >< vp I . If all there 
is to the preparation is an ordinary mixture of all such pairs, then the whole 
ensemble of pairs should be the set-theoretical union |J Em,p of all such

m,p

subensembles. But a statistical operator that corresponds to that union is 
a weighted sum of all the pm,p, hence a separable density operator that can 
in principle be distinguished from (7.2.9). Therefore, mixed cases represented 
by density operators p(1) and p(2) (obtained by partial-tracing p) cannot be 
regarded as descriptions of ordinary mixtures that would reflect one’s 
ignorance of actually possessed values. ‘Mixtures’ (7.2.10) obtained by partial 
tracing from (7.2.8) are, appropriately enough, sometimes called improper3, as

1 Horodecki etal. 1999, Bennett eta l. 1999.
2 d’Espagnat, 1976, pp.59-61; 1995, 7.3
3 d’Espagnat 1976.
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opposed to ‘proper1 mixtures of which an interpretation can be given in terms 
of attributes that are genuinely possessed but (yet) unknown.
The trouble with objectification in the quantum setting is that one considers 
as reflections of attributes of individual objects (‘particles’) values that can be 
ascertained only in a piecewise manner in definite contexts, the realisation 
of which calls for mutually exclusive experimental arrangements. If empirical 
access to measured values of physical quantities is so constrained, it is little 
wonder any essentially context-independent prior value assignment should 
conflict with the predictions of quantum theory1. That no ‘instruction set’ 
or simple common cause explanation, associated with an ‘individual particle’ 
view of pair members, can possibly account for such correlations is just 
a reminder that a predictive scheme in which statistical distance appears 
to play a central role is irreducible to a simple-minded ensemble-based 
picture, with all the ‘context-free’ expectations that usually accompany such a 
picture.
Entanglement has recently come to the fore with the rise of Quantum 
Information Technology (QIT). Quantum teleportation, (super)dense coding, 
quantum algorithms and quantum cryptography take advantage of hitherto 
unsuspected data storage and processing capacities implied by Hilbert space 
structure and tensor product composition2. Entanglement also helps to protect 
information by spreading it over a ‘N-qubit’ codeword or block. DiVincenzo and 
Peres3 have used 5-qubit4 blocks to give one more illustration of the conflict of 
the SAQM with some unwarranted expectations. The claim they consider is 
that indirect ways of determining the value of, say, ax for one of the qubits by 
measuring other qubits in the block must necessarily agree -  as if that value 
were decided a priori, regardless of any choice and actual implementation of a 
measuring procedure whereby such a value is ascertained. They show that 
such a claim cannot be reconciled with the SAQM. The proof is nothing but a 
32-dimensional equivalent to earlier ones involving 2 or 3-particle 
entanglement5.

On the purely predictive view of quantum theory that is developed here 
(Part B) there is no ‘measurement problem’, since the latter is an offshoot

1 Following Greenberger et al. 1990, Mermin 1990 gives a simple and elegant algebraic proof 
that any such value-assignment leads has to conflict with the SAQM. The proof involves three 
spin-1/4 fermions and crucially hinges on the anticommutativity (‘incompatibility’) of the Pauli 
operators.
2 See Clifton 2001 for a review of basic issues raised by entanglement in QIT; Lo et al. 1998.
3 DiVincenzo and Peres 1996.
4 Quantum error-correcting codes take advantage of the resilience of N-qubit blocks under 
random corruption of part of their encoding. Being able to correct general errors requires 
at least 5 qubits to encode any one qubit (Knill and Laflamme 1997); for a review, 
see J. Preskill, in Lo etal. 1998, p.224., and Section 8.1 for the definition of a qubit.
5 Mermin 1990.
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of the basic difficulties raised by objectification in the binary case1. 
Within the extended framework outlined in this chapter, values ak of a system 
observable A may be correlated with definite values nrik of an ad hoc ‘pointer 
observable’ through some appropriate correspondence between HA 
and Hm kets (expanded in the {) >} and the {| rhi >} basis respectively).
Starting from an initial ket |cpo >gHa and ‘pasting’ it to a ‘void’ ket |m0 >:
I cpo > I m0 >eHA0 HM, a suitable unitary evolution of that product can be worked 
out, such that a strict ak nrik correlation allows pointer readings rrik 
to be regarded as faithful representatives of measured A values ak.

The U-evolved ket I'Fs+m > =2 cj|ai)|mi) can treatec* as it were
j

associated to a genuine binary preparation involving system and apparatus. 
The one-to-one ak <-> mk correspondence embodied in the predictor I'Fs+m > 
guarantees that predictions for system-related observables are reflected in the 
apparatus i.e. in the HM contribution. There is little if any gain in introducing the
extra set { I >}, for this merely ‘doubles’ the mathematical resources needed 
for the calculation of outcome probabilities.

1 Mittelstaedt 1997.
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8

Quantum Teleportation
a case s tu d y

8.1. (Teleporting a quantum state’

The seemingly puzzling claim has recently been made1 that, even if nothing is 
known about the quantum ‘state’ of a given individual system, a perfect replica 
of that state can none the less be made available ‘at a distance’. The state 
would be “disassembled2” at one location in such a way that it can be 
“reconstructed [at another] from purely classical information and pure 
nonclassical Einstein-Podolsky-Rosen (EPR) correlations3”. Reference to 
‘EPR correlations’ means that Alice, the sender, and Bob, the receiver, each 
have in store one particle from a suitable A+B pair, such that the HA0HB ket 

that is ascribed to the A+B preparation is not factorable into HA and HB kets. 

If A and B are two qubits4 e.g. two spin-1/£ particles, an appropriate ket will be 
for example

I ^ A B *  2 ' 2( |01  > - 1 10 >), (8.1.1)

where 10 > and 11 > are QIT (Dirac) notations for eigenkets of az, such that 
Oz I 0 > = 10 > and <xz 11 > = - 11 >. (8.1.1) is characteristic of a so-called 
singief.
A third party, Claire, supplies Alice with another qubit C. In the { I 0 >, 11 > } 
basis, the ket ascribed to that qubit js of the form | X > c = a |0 >  + b |l >, 
but the values of a and b are not disclosed by Claire. Obviously, if Alice knew 
everything about the way Claire prepared C, she could just inform Bob about

1 Bennett et al. 1993.
2 Ibid.
3 Ibid.
4 The oddly spelt word qubit (pronounced ‘kewbit’), coined by B. Schumacher (1995), is just 
another name for a two-level system. ‘Qubit* is actually a misnomer, conveying as it does 
the idea of a unit of information that would be specific to quantum theory. Claiming that “there 
is a lot more than one bit of information in a qubit" (Deutsch and Hayden 1999) is just another 
way of pointing out the 'intermediacy* (Dirac 1958) of linear combinations of basis kets 10 > 
and 11 >, which is the key to devising secure cryptosystems or fast algorithms, 
these feats exploit the characteristic asymmetry mentioned in Section 6.1: whereas there is 
an infinite number of possible qubit preparations, the amount of information that can be 
gained empirically from a qubit is just 1 bit (all of the relevant observables are two-valued).
* This is such that a measurement of any given spin component on A and B (the same 
each) yields opposite values (strict anticorrelation).
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IX >c and that information would allow him to prepare a particle of his own 
‘in the same state’. If, on the other hand, Alice is not privy to Claire’s 
preparation, this trivial option is not available, and this is precisely what makes 
the claim that Bob can still recover IX > so intriguing.
Measuring a two-valued observable like ax or az on a single qubit supplies 
only 1 bit (there are two possible outcomes). This is greatly insufficient to 
determine both a and b. As a matter of fact, no measurement performed on C 

could provide Alice with the information she needs to identify IX >c. Another 
solution that comes to mind is that, using identically prepared particles, she 
could perhaps produce many copies of IX >c and then work out a density 
matrix, using the mean values obtained in measuring appropriate observables 
on those copies. The ‘no-cloning’ theorem1, however, precludes any general 
(unitary) procedure whereby copies of quantum states could be generated at 
will, without having first to identify those states. None the less, by taking 
advantage of the entanglement of A and B Alice can still achieve what seems 
prima facie to be impossible. A simple protocol involving both IX >c and I 'V' 
> a b  makes it possible for Bob to ‘recover’ I X > as the ‘state’ of his own qubit, 
whatever IX > may be.
The initial 3-qubit product

l vF i > = | X > c 0 l vr > A B  = 2-1/2( a |O > c  + b| 1 > c)(l 01 >AB-110>AB) ,

(8.1.2)

can be expanded as

1 The no-cloning theorem (Wootters and Zurek 1982, Dieks 1982) is a straightforward 
consequence of linearity in the SAQM. As the word ‘cloning’ suggests, the idea is to end up 
with two copies of the same ‘state’ | u > as a result of a linear, unitary transformation V, 
which takes an initial product I u >®| s >eH 1®H2 into I u >®l u >, for any input I u >. If V  exists, 
then V[a I u >+ b I v >)<S> I s >] should be both equal to (a I u >+ b I v >)<S>( a I u >+ b I v >) and 
to aV( f u ><S> | s >) + bV( | v ><8> | s >) = a | u >® I u > + b I v >® | v >. This is clearly inconsistent 
if neither a nor b vanish. Notice that, since V  is unitary (VtV=l<S>l), then < u ; s I V fV  I v ; s > 
must be equal both t o < u ; u | v ; v >  = < u | v > 2 and to < u | v >. If | u > and | v > are not 
identical, these two results agree only if the vectors are mutually orthogonal: members of a 
set of clonable ‘states’ must be orthogonal to one another. This theorem was later found to be 
a special case of another (no-broadcasting theorem, Bamum et al. 1996.), which is applicable 
to both the mixed and the pure case. ‘Broadcasting’ here means a H i®H2 transformation 
which, given an input statistical operator p acting upon H1( yields marginal statistical 
operators that are empirically indistinguishable from p (in other words, the transformation is 
p<8»a p’, such that tr^p’) = tr2(p’) = p). Pure case broadcasting is clearly just cloning.
However, broadcasting is not simply mixed state cloning, for p’ is not required to be 
factorable. The theorem says that broadcasting can be achieved for members of a given set 
of statistical operators if and only if the operators in that set commute. No-broadcasting and 
no-cloning are actually consequences of a more general mathematical fact: completely 
positive maps, which encompass all lawful forms of time evolution in quantum theory, cannot 
increase distinguishability (in the sense of Section 6.2); Fuchs and van de Graaf 1999; 
Nielsen and Chuang 2000.
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14*1 > = 2‘1/2(al 001> -  al 010> + bl 101>-b| 110>), (8.1.3)

where the first two ‘bit slots’ in every three-place ket refer, in this order, 
to Alice’s qubits C and A, the third to Bob’s. More significantly, (8.1.2) 
can be written in terms of the four normalised and mutually orthogonal ‘Bell’ 
kets l vF± > = 2'1/2(I 01 > ±110 >) and I O* > = 2’1/2 ( I 00 > ±111 >):

14<i > = I (  I <D+ >caI U3 >b + 1 >l u2 > - I  'V *  H U! > - I  4r  >| u0 > ),
2

(8.1.4)

where I u0 >  =  I X  > ,  I U i  >  =  c tz  I X  >  , I u2 >  =  ax I X  >  and I u3 >  =  c txc tz  I X  > .

It is easily seen how what has been promised can now be delivered. 
Alice performs on both C and A a ‘Bell analysis', which amounts to 
a discriminating operation among the four Bell ‘states’1. As a result of the 
interaction of C and A within an appropriate device (Bell analyser) and 
regardless of the input I X  >c, one of four equally probable outcomes will 
randomly obtain. Suppose that the ‘Bell measurement’ picks out I <3>‘ >. 
Since letting A and C immediately through the analyser again would yield 
with certainty the same outcome, that measurement can be conveniently 
thought of as effecting, symbolically, a projection of the initial ket I ¥ j > onto 
one of the four products that are linearly combined in (8.1.4), namely 
I S > = I <D‘ >l u2 >. A definite outcome of the Bell measurement provides 
an unambiguous answer to a 2-bit question. Alice sends those 2 bits to Bob, 
whereby he learns how the ‘state’ of his qubit differs from that of Claire’s, 
whatever that state was. This follows from the one-to-one correspondence, 
explicit in (8.1.4), between each of the Bell kets and the result of a simple 
unitary transform I Uj > of IX  >. In the example, Bob just has to perform a NOT 
operation (ax) to ‘recover’ the state. Depending on the outcome of Alice’s Bell 
measurement, Bob may have to perform a phase shift (crz), a NOT followed by 
a phase shift (ctzctx), or indeed do nothing at all if Alice informs him that she 
picked out a singlet.
After Alice’s measurement has been performed2 and assuming a symbolic 
reduction to I S > of the initial ket I 'Fj >, the marginal statistical operator 
associated with Claire’s qubit is

1 For a discussion of the explicit form of the ‘Bell observable’, see Braunstein et al. 1992.
2 Claire’s particle is not required to be destroyed in the process. In familiar science fiction 
accounts of ‘teleportation’, an object or person is said to be ‘disassembled’ at one place to be 
‘reassembled’ somewhere else; the teleportation device is usually portrayed as a kind of 
sophisticated 3-D fax machine that scans-and-destroys the original. Although such 
destruction is not necessary, it is generally assumed in order to avoid ‘who is I’ conundrums 
that would arise if a copy of a ‘teleported’ person were to coexist with the original (see Parfit
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pcf = trABd S >< S I) = — (10 >< 0 i +|1 ><1|) = — lc, (8.1.5)
2 2

where lc is the identity operator with respect to the Hilbert space He.
(8.1.5) is sometimes said to correspond to a maximally mixed state. 
The irreversible transformation of pc' = IX >< X I c into pcf is usually taken 
as evidence that quantum teleportation complies with the no-cloning theorem. 
However, since no unitary transform can possibly map a linear combination 
like (8.1.4) into a ket product, the no-cloning theorem is not strictly speaking 
applicable to the transformation described above. Besides, if any ‘loss’ can be 
said to occur in the process of Bell analysis, it is only with respect to the 
predictions Alice could have made using the ket IX >c, had she known what it 
was from the outset. Since that knowledge was not available to her in the first 
place, she is not better off (nor worse) in that respect afterwards.
It is essential for the success of the whole procedure that Alice and Bob 
‘share entanglement1’. Suppose that the A+B pair has been prepared 
according to, say, I 01 >ab (performing a measurement of az(A) would yield 
with certainty +1 whereas a measurement of crz(B) would yield -1). The initial 
C+A+B ket would then be

IX ><8>| 0 ><S>| 1 > = a 1001 > + b 1101 >
= 1/2 (al 0 +> + al $ >  + b| ¥ + > -  b| VF  >)| 1 > : (8.1.6)

the ket ascribed to B would remain 11 > whatever the outcome of Alice’s Bell 

measurement. Since A and B are not correlated, no teleportation can be 
achieved (and no 2-bit message sent by Alice would be of any help to Bob). 
The same conclusion holds if Alice and Bob’s pairs originate from an 
ensemble associated with a statistical operator like

P A B =  | ( |0 1  ><01 I + 110X10.1). (8.1.7)

Such a mixture can be (non-uniquely) realised by drawing A+B pairs 
at random from a collection in which 50% of those pairs are correctly 
‘described’ using I 01 >, 50% using 110 >. A and B spins are then correlated: 
spin components of the members of the same pair in the z direction are 
always found opposite. To C+A+B is then associated the diagonal statistical 

operator pcab = IX >< XI c ®pab- There again, the absence of entanglement

1987). The discussion should make it clear that quantum teleportation hardly has anything to 
do with any sort of fax, be it based on quantum-mechanical principles.
1 It is sometimes said that Alice and Bob ‘share 1 ebit. The word ebit (‘e ’ for entanglement) 
is used to denote a single instance of maximal entanglement, i.e. a binary preparation 
associated with a Bell ket. The remarks made about the word ‘qubit’ apply, with the difference 
that the maximum empirical yield of an ebit is just 2 bits.
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makes it impossible to achieve teleportation1: after the Bell analysis, 

PBf = trCA(pcAB )= j  I b , which is different from IX >< X I and from any unitary 

transform thereof.
No less crucial to teleportation are Alice’s 2 bits. Failing to be informed of 
her result, Bob could not do any better than bet on one of the four equally 
likely possibilities exhibited in (8.1.4). Acting on B accordingly, he would then 
hopefully, but with a 75% chance of being proven wrong later by Claire, 
prepare his own qubit ‘as’ I X >b. All he could rightly claim is that the final 
‘state’ of B is related to IX > by some transformation ctx, <jz, ctxCTz or lB 
(together, these transformations form a group P). Besides, that the 2 bits must 
be ‘classically’ conveyed e.g. broadcast or transmitted over the phone, 
also ensures that no observable conflict with STR occurs: it cannot take less 
time for Alice’s message to reach Bob than what it takes for a signal to 
propagate between their two locations at the maximum speed c. This rules out 
any superluminal signalling based on iterating the procedure.
As long as Bob cannot compare lists of his own measurement results with 
Alice’s, the marginal statistical operator pB is the only predictive handle he has 
on his own particle(s). Before Alice Bell-measures C+A,

Pb' = trcA(l >< Ti I )= i  ( i 0 >< 0 1 + 11 >< 1 1) = I | B (8.1.8)

Were Bob to measure ctz(B), he would therefore get either +1 or -1 with equal
<| k=3

probability. Since this operator can also be written pB' = —2 |u k)(uk| then,
4  k=o

until he receives Alice’s message, and regardless of whether she had by then 
acted at all on her qubits, he might as well believe that B is ‘already’ 
characterised by one of the four kets I Uj >, except that he does not -  cannot -  
know which. His ignorance is maximal and it takes the 2 bits Alice supplies for 
him to be able to ‘recover the right state’.
Because of the non-factorability of (8.1.4), probabilities of predicted outcomes 
at Bob’s end are ‘strongly dependent’ on the outcomes of measurements 
carried out by Alice, in the following sense: whilst the probability that Alice 
obtains I O '  > c a  and that Bob ‘ends up with’ I u2 >B is p .̂ ( O ' c a  & u2| B) = 1A

the probability that the Bell measurement yields I O '  > c a  is p^ ( O ' c a )  =  %  ,

which implies that the conditional probability pvpj(u2i B / O ' c a )  =  1. However, 
the value 1 of that probability does not imply that the outcome associated with 
I u2 >B is itself determined by the actual, recorded occurrence of the Bell 
measurement result associated with I O '  > c a -

1 Popescu 1994.
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Suppose that Claire provides Alice with a large number of particles, all 
identically prepared according to IX >c. Instead of patiently waiting for Alice’s 
information, Bob measures oz(B) on some of his own particles. If he gets, say, 
+1 for the B particle of pair No. 326 at time te, then he can legitimately assign 

tO C + ( A + B ) 3 2 6

IA > = 1/2 ( al 'P* > + a I > + b I <D+ > -  b I O' >)| 0 > (8.1.9)

(his assignment is (8.1.6) if the result is -1). Unaware of Bob’s doings, Alice 
subsequently measures C + A 326 and obtains a result that corresponds to one 
of the four Bell kets. That result is just as compatible with (8.1.9) or (8.1.6) as 
it is with (8.1.4). There is no way she can infer from the outcome what the 
‘right’ ket for C + ( A + B )326 was (if indeed ‘right’ means anything in this context) 
immediately before the time tA > ts when she performed her measurement, i.e. 
distinguish, using that measurement, between (8.1.4) and (8.1.9).
The adherent to an ontic, single-case view of quantum states might object 
that, whatever the outcome of Alice’s Bell measurement, the state of B326 did 
physically ‘collapse’ at ts into the eigenstate I 0 > of crz(B) as a result of Bob’s 
(previous) measurement. There would thus be a fact of the matter regarding
(8.1.9), rather than (8.1.4), being the ‘right’ C+A+B-state immediately before 

tA. If so however, since C+A326 in (8.1.9) is uncorrelated to B, the state of B326 
is none1 of the I Uj > at the time te’ > tA > ts when Bob is informed of the result 
of Alice’s Bell measurement on C+A326. As a result, regardless of 
Alice’s instructions, none of the four unitary transformations associated with 
the Bell-measurement outcomes will ‘put’ B326 ‘in’ the intended state IX >c. 
The problem with such reasoning is that it overlooks the fundamentally 
statistical significance of the quantities and operations involved. 
No measurement performed on 8326 alone will make it possible to determine 
‘its state’. On the other hand, if Claire supplies Alice with many identically 
prepared C particles, Bob can later compare his own table of crz(B) outcomes 

with the outcomes of Alice’s Bell measurements. Matching A ’s and B’s from 
the same pairs, he can select in his table those entries for which Alice’s 
measurement corresponds to a given Bell ket, e.g. I <D+ >. Provided the list 
is large enough, his working out the statistics of his own measurement 
outcomes as recorded on the B-list will convince him they are compatible with

1 Unless, perhaps, IX  >c happens to be an eigenstate of crz(C)-  but this neither Alice nor Bob 
knows anyway.
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ascribing the ket |X >b, up to a P-transformation, to the corresponding 

B-ensemble (compare (8.1.6) and (8.1.9)): for a sufficiently large 0 +-list, the 
frequency of ‘O’ outcomes among his az(B) measurements will, in agreement 
with (8.1.9), approximate the probability I b 12. But this is just the probability 
distribution that will obtain if, instead of performing any measurement prior to 
Alice’s, Bob measures <jz(B) after tA and then works out the statistics of the 
results for those of his qubits that are associated with a I <D+ > outcome. Bob 
will, of course, not be able to make any such selection unless Alice provides 
him with the relevant information, i.e. with her own list of measurement 
outcomes (2 bits per item).
Bell analysis hinges on a very special kind of interaction of C and A. However, 
the required interaction can be dissociated from measurement without 
changing the essentials of ‘teleportation’. Instead of a Bell measurement on 
C+A, Alice may choose to carry out a controlled not (CNOT) operation on C 

and A, where ‘controlled’ means that the value of the C-bit in a HC®HA product 

of kets determines whether or not a change occurs in the value of the A-bit. 

More precisely, a bit flip (NOT) is applied to the target A  bit if and only if the 

value of the control C bit is 1:

CNOTl j , k > = I j , j 0  k > (j,k = 0,1),

where © denotes the addition modulo 2. Two-qubit basis kets I 00 >, I 01 >, 
110 >, 111 > are therefore mapped into I 00 >, 101 >, 111 > and 110 > 
respectively. This operation amounts to an XOR (exclusive OR) being 
performed on the two bits and coding the result into the second bit. Applied to
(8.1.2), this yields

I A > = (C N O T Ca ® Ib)I ^ i>

= 2'1/z(al 00 > 11 > — a| 01 H 0 > + b| 11 H 1 > -  bl 1 0 > |0> )

(8.1.10)

or

IA > = — [ I 0’ 0 > I u3 > + 11 ’ 0 >| u2 > — I 0’ 1 > I Ui > — 11 ’ 1 >I u0 > ,
2

(8.1.11)
where I 0’ > = 2’1/2 (I 0 > + 11 >) and 11 ’ > = 2'1/2 (10 > - 11 >) are eigenkets 
of ctx (‘NOT gate’) associated with the eigenvalues +1 and -1 respectively.
As a result of the CNOT interaction, the marginal statistical operator for 
Claire’s qubit becomes pc(A) = I a 12 I 0 >< 0 I + Ib 12 11 >< 1 I *  pc'. The two 
operators cannot be distinguished on the basis of measuring <rz(C) on the 
single particle C, for the outcome would be +1 or -1 in either case. On the
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other hand, measuring cjx(C) and a z(A) provides Alice with the two bits required
for Bob to recover the input state1 (with the above qualifications regarding the
meaning of that ‘recovery’). If CNOTca is followed by a Hadamard transform2
H(C) on C (the final C+A+B ket | r  > has the same form as (8.1.11) with 0
replacing O’, 1 replacing 1’), a measurement of CTz(C)®az(A) would actually
suffice. The only ‘cost’ in involving just one observable explicitly3 is that the

Hc-related marginal statistical operator becomes maximally mixed: pc(r) = 1  lc
2

(this means that, if Alice were to repeat the “CNOTca, then H(C)n sequence on 
identically prepared C’s and A ’s, subsequent measurements of any spin 

component on C would yield +1 and -1 with equal probability). The pc' - *  pc(r) 
transformation can be reversed by applying the sequence twice. Therefore, if 
an irreversible change in the marginal statistical pc is taken as a criterion for 
teleportation to be achieved, the latter is not completed until Alice records a 
definite outcome and applies the reduction rule (P7’) in order to update her 
C+A+B ket assignment.

8.2. The fastest way from A to B?

It is tempting to think of Alice’s intervention as resulting in a physical change in 
the B particle, a change that is made possible by the ‘EPR link’ provided by 

the A+B entanglement. The question then arises of how local interactions of 

C and A  can possibly affect Bob’s qubit at a distance. Even if we admit that 
“some sort of action-at-a-distance or (conceptually distinct) nonseparability 
seems built into any reasonable attempt to understand the quantum view of

1 The four recovery (P) operations remain the same as they were in the original scheme.
2 The Hadamard transform H, such that (up to normalisation) Hi k > = 10 > + (-1 ) 1 1 > with

7t i
k = 0 or 1, amounts to a reflection in an axis whose direction is at an angle — from the 10 >

8
(i n

axis. The corresponding matrix is H = 2'1/2(ax + a z) = 2 'm  , which is its own inverse:
U - V

H2 = I. A  measurement of ctz after application of H to either basis ket 10 > or 11 > yields either 
bit value with equal probability: H yields a ‘random bit1. The different relative phases exhibited 
by Hi 0 > = I O’ > and H| 1 > = 11 ’ > are exploited for the reinforcement or the cancellation of 
terms in an automatic computation. That H is a Fourier transform on the additive group of 
integers modulo 2 is also essential to the implementation e.g. of Shor’s fast factoring 
algorithm (Shor 1994).
3 Reference to another observable (ctx) remains implicit since the Hadamard transform maps 
the {| 0 > 11 >} basis into the dual basis {I O’ >, I T  >} of ctx eigenvectors.
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reality1”, most physicists are reluctant to contemplate the possibility of what 
Einstein dismissed as unacceptable spooky actions at a distance (Spukhafte 
Femwirkungeri). One way of retaining the idea of a ‘teletransport’ without 
introducing spooky influences is to allow backwards-in-time propagation 
of an essential part of what is deemed transferred. In the words of Richard 
Jozsa2,

Alice succeeds in transferring the quantum state I vy > to Bob by sending him just 
two bits of classical information. Clearly these two bits are vastly inadequate to 
specify the state I vj/ > so how does the remaining information get across to Bob?
What carries it? What route does it take?... there is clearly only one other route 
connecting Alice to Bob (apart from the channel carrying the two classical bits) -  
it runs backwards in time from Alice to the creation of the EPR pair and then 
forwards in time to Bob. Hence we must conclude that most of the quantum 
information of I vj/ > was propagated along this route, firstly backwards in time and 
then forwards to Bob.

This proposal, endorsed by prominent figures in QIT like Charles Bennett 
or Sandu Popescu, is summarised in the space-time diagram below. 
The arrows indicate the direction of flow of what Jozsa refers to as quantum 
information.

time
Bob recovers XB 

M B s
2 bits sent

via classical channel

Alice’s Bel sasurement

Claire prepares X "

H  Eo Creation of EPR pairto

Bob’s labAlice’s lab

“With the above routing, we can deduce”, according to Jozsa, ’’that at times 
between t0 [creation of the EPR pair] and ti [Alice’s measurement] most 
of the quantum information was already [?] well on its way to Bob (in his arm 
of the EPR pair) even though Alice had not yet performed her measurement.

1 Redhead 1987, p. 169; see Mermin 1999 and Fuchs 2001 for dissenting views about 
the relevance of non-locality to quantum theory.
2 in Lo et al. 1998, p.58.
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Indeed she may not yet have decided to transmit anything to Bob or even 
have been born yet!1”. Roger Penrose, who subscribes to Jozsa’s picture, 
claims that an “especially noteworthy2” aspect of quantum information is that it 
“is not constrained by the usual spatiotemporal ‘causality’ requirements of 
relativity3”. Whilst entanglement cannot be used to enhance signalling beyond 
the relativistic (speed-of-light) limit, there is “nothing against quantum 
information ‘travelling backwards in time’; indeed, such curious behaviour 
seems to be required* ”...
Jozsa’s answer to the question “Quantum Information -  What is it5?” is hardly 
explanatory: it is information that “is embodied in a given unknown quantum 
state6”. Although it is mostly “inaccessible”, it is “still useful -  for example it is 
necessary in its totality to correctly predict any future evolution of the state and 
to carry out the processes of quantum computation7.” This is pretty much all 
that QIT theorists usually have to say about quantum information, and is at 
best another way of alluding to the specific traits of a Hilbert space-based 
predictive scheme, and to new possibilities in computing, cryptography etc. the 
implementation of such a scheme affords. Understandably, QIT workers revel 
in exploiting the representative capacities of Hilbert space to computational or 
cryptographic ends. It is also remarkable that we should be able at all to 
recover or reconstruct the full statistical make-up of a preparation about which 
no information, as classically conceived, is actually available. However, do 
such feats (which, to this day, remain more theoretical than effective8) require 
introducing a new kind of information? If the calculation of probabilistic 
connections between inputs (‘state’ assignments) and selected outputs 
(values associated with measurement outcomes) calls for a drastic departure 
from an ordinary version of the probability calculus, this by itself does not 
warrant the claim that some specifically ‘quanta!’ form of information comes 
into play (no more, indeed, than that the ‘kolmogorovity’ of probability is 
undermined). Penrose and Jozsa’s invocation of quantum information does 
little more than articulate their intuition that since ‘teleporting an unknown 
(quantum) state’ is classically impossible, certainly ‘more than just 2 bits’ are 
required. Those 2 bits would be needed only to ensure that Bob recovers the

1 Ibid.
2Penrose 1998, p. 1928. Penrose’s view of quantum information (“an aspect of quantum 
entanglement”) appears to be more restrictive than Jozsa’s.
3 Penrose 1998, p. 1928.
4 Ibid. (Penrose’s emphasis).
5 Ibid., p.49.
6 Ibid.
1 Ibid., p. 50.
8 Advances in nonlinear optics have made it possible, at least, to test the feasibility 
of quantum teleportation with polarised photons; all of the tests confirm the predictions 
of quantum theory (Mattie et al. 1996; Boschi et al. 1998; Kim et al. 2001). On the other hand, 
Shor’s factoring algorithm is unlikely to run on a quantum computer in the near future.
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intended state, rather than some P-transform thereof. ‘Something else’, then, 
must have travelled or been exchanged one way or another between parts of 
the A+B+C system to guarantee that the final state of Bob’s qubit is, up to a 
P-transformation, identical with the initial state of Claire’s qubit. If a 
superluminal link is rejected, then there is little choice but to conceive of some 
kind of backwards-in-time information transfer from the A particle to the A+B  
pair, along the space-time path that links the two events EA and Eo, ‘followed’ 
by a forward propagation of that information up to the time when Bob acts 
upon B according to Alice’s instructions (Eb). Penrose and Jozsa never point 
out, however, how radical a shift in our understanding of information such an 
option calls for. Quantum information would have little if anything to do with 
the precise notion variously formalised since R. Fisher and C. Shannon. 
Whereas information in Shannon’s sense1 comes down to a simple logarithmic 
measure of average ‘surprisal2’, quantum information would have to be an 
objective feature of the physical world. Being generated as a result (?) of 
physical interactions, this novel addition to the category of substance would 
propagate -  forward and possibly backward in time, if the latter makes any 
good physical sense -  and determine at a distance some attributes of physical 
systems... Need less to say, there is not a shred of evidence in support of the 
existence of any form of backwards-in-time propagation in the physical world. 
Besides, as Jozsa himself concedes, “for all physical3 purposes, in Bob’s 
laboratory his original EPR particle is completely indistinguishable from an 
equal probabilistic mixture of the four states. Thus until the two bits of classical 
information arrive from Alice, the quantum information (which flowed partly 
backwards in time) is utterly useless and completely indistinguishable from the 
situation in which Alice performed no measurement at all4.” The “inherent 
inaccessibility5” of that information hardly speaks in favour of the proposal. 
However, Jozsa argues that it is precisely because the two mixtures 
1k=3
~ X luk)(uk|) and trcA( I 'Pi ><: 'Pi I )> both equal to i l B, cannot be empirically
4 k=o 2
distinguished that one might just as well claim, without any threat to causality, 
that the ‘state’ of Bob’s particle was, between to and ti, already (?) a mixture of 
the four I uk >. Should we understand that Bob’s qubit was actually ‘in’ one of 
the I uk >, but that Bob just ignored which one -  and could not possibly find 
out? But since it is improper (being obtained by a partial tracing operation), the

1 Shannon 1948.
2 The word ‘surprisal’, which is evocative of an observer’s response to the occurrence 
of a given symbol, was coined by Tribus 1961 (Shannon’s information equals the average 
surprisal in a message only in the absence of noise); see also Dretske 1981.
3 By what Jozsa seems to mean practical.
4 Jozsa, in Lo etal. 1998, p.60 (italics mine).
5 Ibid.
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*1 k=3
mixture described by —5Z|uk)(uk | cannot be regarded as an ensemble of B

4 k=o

particles, each of which would definitely be in one of the I Uk > — and why in 
those I uk > for that matter rather than, say, some eigenstate of ctz?
Suppose that we decide not to dismiss altogether the suggestion of quantum 
information flow, be it partly backwards in time. Are the interactions involved in 
Bell analysis or the CNOT responsible for its being released? Or is 
backwards-in-time propagation triggered by a ‘collapse’ induced by Alice’s 
acting upon both C and A? In the CNOT picture, is the release delayed until 
Alice makes her spin measurements and obtains definite results, or -  less 
plausibly still -  does it occur in a piecewise fashion, partly as a result of the 
CNOT interaction, partly as a consequence of collapse? Let us modify the 
standard procedure so that it now involves, instead of just Alice and Bob, a 
number of intermediate agents. Nothing prevents in principle n = 2p qubits to 
be prepared as

\ ' ¥ n > =  2 ' 1/2( I ii i2 ...in >  +  I j l  ]2 ...jn >)■ ( 8 . 2 . 1 )

where for all k = 1 to n, ik = 0 or 1 and jk = 1 -  ik, hence
< ii h . iN Iji \2 -jN > = 0. These n qubits Q\ may be distributed over p+1

agents so that Bobi receives Qi, Bob2 receives Cfe and Q3, ... Bobp receives

Qn-2 and Qn-i and the last in the chain, Bobp+i, receives Qn. Claire supplies 

Bobi with a qubit C whose ‘state’ X is unknown to all of the Bobs. The ket 
ascribed to the (n+1)-qubit system might be, for example,

I So > = IX >d %  > = 2'1/2(a| 0 > + b| 1 >) (I 0101...01> + 11010...10 >),

(8.2.2)

which can also be written

| So > = I  [ I ¥ + >(a| 01 ...0 > + bl 10...1 >) + | vF  >(a| 01 ...0 > -  b| 10...1>)
2
+ 1O* >(a| 10...1 > + bl 01...0 >) + 1 O' >(a| 10...1 > -  bl 01...0>)].

(8.2.3)

Let n= 6. At time ti, Bobi performs a Bell measurement of C+C^. If the result 
corresponds, say, to I 0 + >d, Bobi can update the initial ket to

| S1 > = | 0 + >ci (al 10101 > + bl 01010 >)
= 2'1/21 0 +ci >[ I 'F* >23(al 101 > + b| 010 >)456

+ 1 >23(-al 101 > + bl 010 >)456 (8.2.4)
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Without being informed of the result, Bob2 subsequently (at t2) Bell-measures 
Q2+Q3 Assuming that the outcome is that which corresponds to |\F  >23, 
whoever knows the outcome of Bob2’s and Bob-i’s measurement will update
(8.2.4) to

112 > = I o* >C11 ' r  >23 (-al 101 >456 + bl 010 >)
= 2"1/21 <D+ >ci I 'F  >23 ( I >45! U3 >6 + 1V  >l U2 >). (8.2.5)

Eventually, Bob3 measures Q4+Q5 at t3 and he finds, say, I *F >45. In order to
‘recover1 |X >c, Bob4 must first receive 2 bits from Bobi, 1 bit from Bob2 
and 1 bit from Bob3, allowing him to write the ‘final’ ket as

I Xf > = I <D* >C11 'F  >231 'K  >451 U2 >. (8.2.6)

The cost of the recovery cannot be less than 4 bits* or more generally 
p+1 bits. Bob4 then knows which P transformation he must apply (ax in the 
example) to complete this variant of teleportation. If the process is supposed 
to involve any quantum information transfer from Q1 to Qn, then this transfer 
appears to be achieved piecewise rather than all-at-once (any of the Bobs 
may choose to postpone his own intervention as long as he pleases). 
This would appear to require a fine tuning of the ‘partial quantum information’ 
released at different times ti, t2) t3 to properly affect Gti +...+ Qn prior to the 
first Bob’s intervention and yield the ‘right’ teleported state, casting more doubt 
on the plausibility of the Jozsa-Penrose account. This can, however, not really 
threaten a proposal that does not lend itself to experimental refutation.

According to Maroney and Hiley, the Bohm-Hiley interpretation would be 
unique in affording a clear physical picture of what goes on in quantum 
teleportation. They aim to show, in particular, that loose invocations of 
‘quantum information’ and its alleged transfer can be advantageously replaced 
with an explanation in terms of the transfer of objective ‘active information’. 
Bearing in mind remarks made in Section 3.2, the expression BH-activity is 
used in what follows in place of Bohm, Hiley and Maroney’s ‘active 
information’. Likewise, BH-passivity is used instead of their ‘passive 
information1, (by what is simply meant lack of active information).
If a system (‘particle’) is held to be ‘described’ using a superposition of two 
non-overlapping wave functions or packets, the Bohm-Hiley interpretation has 
it that the objective position of the particle will be located within either one or 
the other of the packets. The kinematical behaviour of the particle will then 
only depend on the action of the quantum potential on the wave packet that 
does ‘contain’ the particle or, to put it another way, the resulting subquantal 
trajectory will then only depend upon the mathematical form of that wave

1 Bohm and Hiley 1993.
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packet. That particular wave packet is said to be endowed with BH-activity, 
whereas the other one is BH-passive. Inducing the overlap of the two wave 
packets through some appropriate interaction will have the effect of activating 
the previously BH-passive packet. The surge of BH-activity that is supposed to 
be prompted by the recombination will then affect the particle’s trajectory via 
what, at the wave function level of description, corresponds to complex 
interference effects.
Now consider the case of a two-particle entangled wave function of the 
positions xa, xb of the particles A and B:

^(Xa , x „ ) = 4>a (xA )x„ (XB) + <I>D (XA )xp (Xb ) (8.2.7)

In accordance with the ‘common pool of information’ idea, BH-activity will then 
depend upon the simultaneous position of both particles. Assuming that the <|> 
wave functions are overlapping but that the % functions are not and that, say, 
the objective position of the A particle lies within <|>a only, then the only BH- 
active contribution to ^ x ^ X g )  will be <|>a(xA)xa(xB), whereas the other

‘branch’ will be BH-passive. As a result, particle A will be affected by only, 
despite the <|> overlap. If the latter is physically suppressed, particle B will only 
ever be found within Xcx(xb)- If the <|> overlap is restored afterwards, BH-activity 
will remain confined within the ‘a part’, because of the absence of x overlap. 
BH-activating the BH-passive branch of the superposition would require that <|> 
and x functions in the a and p branches be simultaneously brought back into 
overlapping positions, which is generally hardly achievable if not impossible1. 
Spin is accounted for by including in the polar decomposition of the total wave 
function a spin factor, which has the form of a spinor with unit magnitude and 
zero average phase. The resulting modified Hamilton-Jacobi-like equation 
then includes a spin quantum potential, which determines through a ‘quantum 
torque2’ the BH-activation of the spinor wave function, hence the evolution of 
the spinor states, over and above the effect of the classical interaction of the 
magnetic dipole moment of the particle with an external magnetic field. 
Maroney and Hiley assume that each of the three particles A,B,C involved in 
the teleportation protocol can be ascribed a localised position wave packet. 
Initially, the three wave packets are not entangled: the trajectory of each 
particle is determined separately by a BH-activating quantum potential. On the 
other hand, the spin degrees of freedom of A and B are linked via the spin 
quantum potential. If a spin measurement is performed on particle A alone, the

1 The ‘measurement problem’ is solved or, rather, does not arise on that account since, if one 
particle is replaced with a macroscopic measuring device, it is deemed impossible for the 
restoration of BH-activity to be achievable via any controllable interaction. The resulting 
permanent de-BH-activation of one or more branches plays in the Bohm-Hiley approach the 
part of wave function collapse in the orthodox Dirac-von Neumann account.

Bohm and Hiley 1993; Maroney and Hiley 1999.
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wave packet that was initially ascribed to A divides into two parts and the 
position of A must fall, with equal probability, within either of those ‘branches’. 
The measurement has the effect of BH-activating the branch picked off by the 
outcome. Although a subsequent spin measurement of B will also divide the 
wave packet ascribed to B into two parts, the only branch that will be BH- 
activated is that which was ‘selected’ by the previous spin measurement 
performed on A. Since C is, on the other hand, linked to A and B neither 
through its position nor through its spin, no measurement performed on C 
alone can possibly affect the behaviour of A or B.
Maroney and Hiley’s account of quantum teleportation requires an appropriate 
measurement device (D) to be included in the representation. The device is 
initially ascribed a wave packet ri(x0) where x0 characterises the relevant 
‘pointer’ position. When extended to include the apparatus, the initial 
representation (8.1.4) becomes

^  ( 10+ >CaI u3 > b  + 1 O' >| u2 > -14 /+ >| ui > - I  'F  >| u0 > ) I Ti(x0) >

(8.2.8)

A ‘Bell interaction’ is introduced, which generates a quantum potential that 
couples A, B, C with the device. More precisely, the Bell interaction effects a 
coupling of the xo coordinate of the apparatus to a ‘Bell state’ of C+A, leading 
to the final representation

A

-  ( I 0 + >caI u3 >bI Ti3(xo) > + 1 O" >l u2 >l r|2(xo) > -  I VF+ >| Ui >| rn(x0) >

- | ' F > | u 0 > I t i o ( X o ) >  ( 8 . 2 . 9 )

where I Tii(x0) >, i = 0,1,2,3 denote four non-overlapping ‘position states’ of the 
apparatus, each of which corresponds to one possible outcome of the Bell 
measurement. That measurement entangles all four systems in such a way 
that their subsequent behaviour is determined by their inherited “common pool 
of information”. Whereas the initial form of the quantum potential was a 
product of two factors, one pertaining to C and the other to the A+B pair, the 
quantum potential produced by the interaction is a product of a C+A- and a B- 
related factor, both of which are functions of x0. This transformation 
corresponds to the decoupling of A and B, whereby the dependence of the C 
factor on the coefficients a,b of the ‘unknown state’ Xc gets ‘transferred’ to the 
B factor of the final quantum potential. The Bell interaction results in the 
position variable x0 of the device entering one of the four non-overlapping 
wave packets r|i(x0), thereby affecting the spin of B through the action of the 
quantum torque. That influence of the Bell measurement on B is non-local and 
instantaneous. The crucial point is that the branch in (8.2.9) that gets, as it 
were, highlighted by the apparatus coordinate remains BH-active, whereas all
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three other branches become BH-passive. Bringing about that change of three 
branches from BH-active to BH-passive would be the essential purpose of the 
interaction within the Bell analyser. Of all bases that may be used for 
expanding the C+A+B+D initial state, the Bell basis would be special (only) in 
that it guarantees that, whilst only one of the branches remains active, the 
coefficients of the ‘teleported’ Xc state end up identical in every branch with 
those of the ‘spin state’ of B, up to a definite unitary P-group transformation. 
Thus, quantum teleportation would boil down to BH-activity being transferred 
from one particle to another, through the mediation of a non-locally operating 
quantum potential. The eventual ‘presence’ in the B term of the “information 
carried by1” the a,b, coefficients would signal that transfer of BH-activity from 
Claire’s particle to Bob’s. However, which of the four branches remains BH- 
active after the completion of the Bell measurement cannot be guessed by 
Bob. Fortunately, the 2 bits’ worth of information Alice provides suffice for him 
to know which of the four P-related spin states of B corresponds to the 
BH-active branch, perform the appropriate transformation and ‘recover’ the 
hitherto unknown former spin state of C.
Maroney and Hiley dismiss alternative accounts, based on so-called ‘quantum 
information’, on the grounds that the applicability of that concept is restricted 
to mixed cases. Their argument is that, if its von Neumann ‘entropy’ is the 
appropriate measure of the information that is potentially conveyed by a given 
quantum state, then since that entropy is zero in a pure case like |X >, 
regardless of the values of a and b, no such ‘quantum information’ is relevant 
to individual systems like A, B, C in a one-shot implementation of the quantum 
teleportation protocol. What is physically transferred from C to B should, in the 
authors’ view, have “nothing to do with any kind of quantum information, which 
is, in any case, only ‘information for us’2”. Quantum teleportation should rather 
be thought of in terms of a transfer of “objective active information3”, which 
they appear to conceive of as some kind of disposition or potentia, encoded in 
the wave function or state vector and “carried”, as it were, by he a,b 
coefficients.
Maroney and Hiley assume that quantum teleportation cannot be understood 
without making an explicit reference to the interaction of the systems involved 
with an appropriate Bell-measuring device, ‘position states’ of which have to 
be included in the representation. However, whilst it is clearly necessary for A 
and C to interact in some suitable way in order to highlight any one ‘branch’ in
(8.1.4) or (8.2.9), it is by no means clear why the basic Hilbert space 
representation should make an explicit reference to ‘states’ of the device 
involved. Position is also granted, in the Bohmian fashion, a suspicious

1 Maroney and Hiley 1999.
2 Ibid.
3 Ibid.

158



privilege as an (the) indicator of the alleged BH-activity. At any rate, 
BH-activity (or lack thereof), the common pool idea and attendant aspects of 
the Bohm-Hiley view are all highly speculative, and the idea of a BH-activity 
transfer turns out to be just as immune to empirical disproof as the Jozsa- 
Penrose backwards-in-time transfer of their homespun ‘quantum information’. 
What, here as elsewhere, appears to really count for any claim that quantum 
teleportation has been successfully achieved is Alice’s 2-bit message. 
Whatever else may be added is, some might say, superfluous metaphysics 
that may or not, depending on one’s taste and outlook, be regarded as 
providing further insight into the overall ‘effect’.

8.3. From classical cryptography to quantum teleportation

Quantum teleportation as discussed in section 8.1 comprises four stages:

(i) Alice is provided with a qubit (C ), the preparation of which remains 
unknown to her.

(ii) She jointly performs on C  and A  a special type of measurement. 
Alternatively, she first lets the qubits interact in a way that
amounts, logically, to an XOR (CNOT), then measures them
separately.

(iii) She informs Bob of the outcome of her measurement.

(iv) Bob operates on B , that must be suitably correlated to A ,

conditional on the information supplied in (iii), after what he can 
claim that his qubit is correctly ‘described’ using the ket, whatever it 
was, Claire had initially assigned to C.

Both the purpose: recovery of a ‘message’, and the means of achieving it: 
Alice and Bob’s sharing a ‘key’ (in the form of pairs correlated in a definite 
way); a discriminating operation performed on C + A ; the transmission of 
information that is necessary for retrieval of the message and Bob’s eventually 
‘decoding’ it bear a striking resemblance to the aims and methods of classical 
cryptography. Indeed, the four stages listed above are strongly reminiscent of 
a simple procedure for communicating secret messages1, invented by the 
American engineer Gilbert Vernam in 1917.

1 Stinson 1995.
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Suppose Alice’s task is to send a message to Bob whilst ensuring nobody else 
can possibly read it. For convenience, Alice’s text is written in binary code 
(each letter, punctuation mark etc. being represented, say, by a 5-bit block: 
00001 for A ’, 00010 for ‘B’ etc.) and the message forms a bit string MA. 
Bob and Alice also possess their own copy of another and no shorter binary 
string KAb, which they intend to use as a key for encryption and decryption. 
Alice takes the two strings MA and K/vb and she performs XOR between each 
Ma bit and its match in the KAB sequence: if the bits are different, the output bit 
is 1, and 0 otherwise (001=100=1,000=101=0). This generates a string CA 
that forms the encrypted message. Alice then either sends the string to Bob or 
she broadcasts it bit by bit. After he gets holds of CA> Bob takes his own copy 
of K/̂ Bi computes CA0KAB and recovers the intended message MA.
The exchange is secure insofar as an eavesdropper who does not know the 
key cannot read the message1.

Despite similarities to (ii)-(iv), Vernam cryptography might seem to have little 
to do with quantum teleportation: after all, what is transferred is not 
a ‘quantum state’ but a finite sequence of bits that is known to Alice; the 
scheme involves no (pairs of) particles (not to say anything about
entanglement); Alice and Bob perform no measurement. The parallel with 
teleportation can, however, be made more compelling if the original procedure 
is replaced with a stochastic variant. The relevant ‘message’ is no longer any 
given finite sequence of bits; rather, it is a probability distribution of bit values 
0 and 1. These values may correspond to the outcomes of coin tosses, or to 
those of measuring a two-valued observable, e.g. ctz. Given the initial 
preparation (a coin, a collection of identically prepared qubits...), repeated 
trials or measurements, yielding N random outcomes, will generate one 
of 2n bit sequences. As N -> oo, those sequences converge2 toward 
a probability distribution, and it is that distribution Alice wants to convey 
to Bob. We shall suppose that the distribution is realised in Claire’s
preparation of an ensemble Ec of qubits: this preparation is such 
that measuring az yields the value +1 for 100I a 12 percent of the qubits, and 
-1 for 100I bl2 percent of them, hence p(+1/Ec) = Po = I a l2 and
p(-1/ Ec) = pi = I b 12. The statistics for the ensemble can be calculated using 
the density operator

pc = I a I 21 0 >< 0 [ + 1 b 1211 >< 1 1 (8.3.1)

1 Vernam ’s cipher is also known as ‘one time pad’ because it is secure only if any one key Kab 
is used for encryption and decryption of one message only.
2 With all the due qualifications regarding such ‘convergence’; see e.g. Howson and Urbach 
1993 ; Howson 2000.
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Alice holds a number of such C  particles prepared in accordance with (8.3.1). 

Alice and Bob also hold A  and B  members of pairs of spin-!4 particles, 
prepared in such a way that their z components of spin are always found 
opposite. More precisely, we shall assume that the ensemble of pairs is 
a mixture associated with the operator

P A B =  I |0 1  ><011 + I 1 10 ><101 , (8.3.2)
2 2

and pcab' = pc' ®Pab • (8.3.3)

Alice performs on randomly chosen C  and A  particles a ‘s/d measurement’. 

This measurement amounts to discriminating between C  and A  bits being 
the same (‘s’, coded as 0) or different (‘d’, coded as 1). The discriminating 
operation is the analogue of the XOR performed in the Vernam procedure. 
A suitable device can achieve it without Alice having to know anything about 
the bits involved. These results form a bit string Alice can then broadcast. 
If the value of the bit he receives is 0, Bob then performs a NOT operation (<jx) 
on the matching B particle, whereas he does nothing if it is 1. In one case, 
the updated statistical operator is

pB,d = trcAKBcA^lBjpCAB^BcA^lB^] = p 'b/c  (8.3.4)

and in the other
PB,s = trCA [(B g  <8)lB)pcAB'(BgJ ®lB)f] = ax p b /c g *  (8.3.5)

where Bg> = 101 >< 01 I + 110 >< 10 I , Bg = I 00 >< 00 I + 111 >< 11 I

and p'b /c is (8.3.1) acting upon HB.

Provided the experiment is repeated a large enough number of times, Bob can 
estimate the probability distribution of az outcomes for the ensemble Ec. 
This is clearly only made possible by the correlation between the bit values of 
A  and B.

In such a probability distribution transfer (PDT), each of Alice’s measurements 
supplies 1 bit that must be communicated to Bob. This is just half of what 
is required for quantum teleportation. Implicit in choosing (8.3.1) is 
the selection of a context for experimental trials: the density operator (8.3.1) 
corresponds to a definite probability distribution with respect to just one 
observable (ctz), and the operations performed in PDT refer to bit values 
associated with eigenkets of that observable. Besides, the expansion of
(8.3.2) comprises none of the off-diagonal terms that are typical of 
entanglement and signal ‘EPR correlations’. Thus, the effectiveness of PDT
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hinges on A+B pairs forming an ordinary 50%-50% mixture (8.3.2), in contrast 
to quantum teleportation where it hinges on maximal entanglement (Bell kets). 
This suggests writing a density operator for A+B pairs as

Pa b  x = — [  I 01 ><01 l +  l 10>< 101 - X ( l  01>< 101 + |  10><011)].
2

(8.3.6)

PDT is realised by taking (8.3.1) as the input and letting X = 0. The ordinary 
mixture X = 0 gives rise to no ‘quantum correlation’. At the other extreme, the 
singlet (X = 1), like the other ‘Bell states’, exhibits the highest degree of such 
correlation. For any given value of the parameter Xe[0,1] and an input IX >c 
the output density operator pBf, after Bob has performed the appropriate 
operation, is

pBf = I a 1210 >< 0 1 + | b | 2| l > < l |  + X (ab* 10 >< 1 1 + a * b l l> < 0 | ) .

(8.3.7)

The input is (statistically) retrieved only if X = 1: entanglement is required 
for teleportation to be successfully achieved. If X = 0 the output is a ‘classical’ 
mixture, whose predictive potential is clearly not equivalent to that of a ket 
IX >. There is no ‘teleportation’ since the off-diagonal contribution to the input 
statistical operator does not appear in the output.
Let us briefly examine how the probability of retrieval of the input by Bob is 
affected by the value of X. The most general form of IX >c is

IX >c = cos(—)| 0 > + e* s in(-)| 1 > ,
2 2

where the range of values of 0 and <|> is continuous. Using (8.3.7), the 
probability of interest is

p(0,X.) = trB(pBf IX >< X I ) = I [2.(1 -  cos28) + cos26 + 3] (8.3.8)
4

This probability does not depend on the relative phase <|> (it is indifferent 
to whether the amplitudes are real or complex). As an affine function of X, 
p(Q,X) has a maximum p(0,1) = 1. For X*1 the probability, as a function

of the angle 0, has a minimum p(£,A.) = I(X+1), and the lowest value
2 2

p(2L ,0) = I obtains for PDT and a ‘maximally quanta!’ input i.e. for
2 2

a superposition of basis kets 10 > and 11 > with equal probabilities. 
This shows that PDT is fundamentally inadequate for transferring 
the predictive potential embodied in a Hilbert space vector (note that, for all X, 
the probability is unity for the orthogonal inputs I 0 > (0=0) and 11 > (0=7t)).
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Just as the quantity of information that can be experimentally acquired ‘on’ 
a single qubit equals 1 bit, the amount that can be acquired in measuring a 
qubit pair is just 2 bits. Alice’s s/d measurements supply only 1 bit, which is 
enough for Bob to be able to recover (8.3.1), but only half of what a binary 
preparation yields to experiment. Pairs of qubits can be prepared in such 
a way that measuring a given observable separately on each member yields 
a given outcome with probability 1 (such preparations are denoted by ket 
products). Alternatively, a binary preparation may be completely specified 
by reference to the relative outcomes of measuring two incompatible 
observables. Suppose that a pure case binary preparation is such that 
the ‘experimental question’ Qopp(z) : ”Are the values of the z spin component 
found opposite when that component is measured separately on A  and B ?” 

will have a ‘yes’ answer for every A+B pair from a given ensemble. 
The corresponding HA0HB ket must then be a linear combination 
al 01 > + p| 10 >, where a and p are two complex numbers related by 
the condition | a l 2 + l p l 2 = 1 .A  ‘yes’ answer to Qopp(z) yields just 1 bit; 
it is insufficient to determine a and p. Requiring that the question Qopp(x) : 
’’Are the values of the x spin component of A and B  found opposite?” be also 
answered ‘yes’ adds one more bit, making it possible to specify (up to 
a meaningless phase factor) the Ha®Hb vector associated with 
the preparation: consistency between the linear combination written above 
and AjOT > + p | l ’0’ > demands that p = X = -p = -a, i.e. that the preparation 
be ascribed the ket I >. The other three Bell kets similarly obtain 
by requiring a ‘yes’ answer to a Q(x) and a Q(z) question: I 0 + > by requiring that 
the values of both spin components be found the same for A and B, and IXF+ > 
(I O' >) that the values of the x (z) component be the same, those of the z (x) 
component opposite1. The four Bell kets exhaust the range of possibilities2 
when it comes to sorting ensembles of qubit pairs on the basis of the s/d 
dichotomy3. This sheds some light on the reason why Bob eventually has to

1 A similar remark is made by Zeilinger 1997,1999. This author also claims, however, that 
all there is to qubits is that they are ‘carriers of information’, and also that it is necessary 
that the ‘information content’ of a system [?] scale with its size. Zeilinger’s Bohrian 
inclinations notwithstanding, this suggestion comes dangerously close to ontologising 
information. It is perhaps worth mentioning that statements to the effect that physical systems 
possess or carry information abound in the literature; for example: “In the absence of 
connections between the detectors and the source, a particle has no information about how 
the switch of its detector will be set until it arrives there...It would seem essential for each 
particle to be carrying instructions for how its detector should flash for either of two possible 
switch settings it might find upon arrival.” (Mermin 1990b).
2 They form an orthonormal basis of 2-qubit Hilbert space.
3 Aspects of the same vs. opposite distinction in QIT are discussed by Maroney 2000. 
Unsurprisingly, sameness and oppositeness measurements in the quantum setting differ from 
their classical counterparts essentially because of non-orthogonality in the former. Non- 
orthogonality implies that even if there is a fact of the matter as to any two preparations
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perform one of four P-transformations: those transformations exhaust 
the possible compositions (products) of ctx and crz, which are the two reference 
observables for the above questions. Nor is it a coincidence that in the CNOT- 
based account, Alice’s measurement involves (whether explicitly or not) those 
same two incompatible observables.
Generalising PDT to input kets rather than classical mixtures calls for 
the resources of maximal entanglement, i.e. pab must be of the form (8.3.6) 
with X = 1. The quantum teleportation of a qubit appears to be such 
a generalisation. Any information transferred would then boil down to 
the 2 bits Alice must acquire and then communicate to Bob, in contrast to 
the single bit PDT requires. In either case, Bob has to wait for Alice’s 
message, conveyed via ordinary channels, to reach him wherever he is -  
patience at a distance...This conclusion is a far cry from a vision of individual 
‘states’ being disassembled to be later reconstructed at a remote location. 
Many, indeed, will resist it on the grounds that quantum teleportation, as it is 
usually conceived, is a ‘one-shot’ operation: it is believed to ‘work’ with a 
single instance of Claire’s qubit and a single A+B pair. The issue actually 
boils down to that of the meaning of the various state assignments at stages
(i) to (iv) for each of the agents involved. Claire’s assignment of IX >c reflects 
her maximal knowledge of her preparation. On the other hand, Bob and Alice, 
who have no prior information about that preparation, are justified in assigning

the density operator pc1 = ^  lc- No measurement Alice could have performed

on C alone at any time between to and ti (see diagram, Section 8.2) could 
possibly have refuted that assignment - fo r  all Alice and Bob can know, Claire 
might just as well have supplied Alice with a member of some maximally 
entangled pair. After X2, their epistemic situation with respect to C has not

changed: they would then still assign to that qubit a density operator pcf = ^  lc,

consistently with trAB( IE >< E I ). On the other hand, because all of them know 
that A and B are members of a maximally entangled pair Claire, Alice and

Bob assign them the statistical operators pA' = ~ *a and pe' = i  Ib- After she

learns that Bob performed on his qubit the P-transformation that corresponds

counting as ‘same’ or ‘opposite’ in the appropriate sense, performing measurements 
associated with different basis choices cannot give us any certainty as to whether samples 
from either preparation will both 'pass’ or fail’ (‘same’ case) or only one will (‘opposite’). 
A clear-cut same vs. opposite discrimination requires the relevant logical gates to operate in a 
properly specified basis, making any such discrimination a contextual matter. One 
consequence of this is that quantum algorithms cannot in general simply be broken down into 
separate and locally operating sub-algorithms.
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to Alice’s two-bit message, Claire can confidently update her B-related 

assignment to the same ket IX >b she had initially assigned ‘to’ C. Alice and 
Bob, on the other hand, can only trust the formalism of quantum theory to 
correctly account for a ‘transfer1 to which they contribute as blind agents. 
Claire can later on persuade Alice and Bob that ‘teleportation’ was actually 
achieved by asking Bob to perform a ‘yes-no measurement’ associated with 
the operators Ox = IX >< X I (‘yes’) and I -  Ox (‘no’). Then, provided Alice 
did supply Bob with the appropriate 2 bits and he operated on B accordingly, 
that measurement should yield a ‘yes’ answer. But Claire only would know 
which yes-no measurement to choose. If Bob instead picked off that 
measurement by a sheer guess, his obtaining a ‘yes’ answer would not 
warrant his claim that B is at that time ‘in the state’ IX >: had he measured the 

same observable on B before ti, he would have had a 50% chance of

obtaining a ‘yes’ answer, since trB(pB‘ Ox(B)) = ̂ .

The mystifying weird ness of quantum teleportation resolves into a 
straightforward account provided Hilbert space vectors or density operators 
are regarded as predictors and properly referred to the epistemic status of the 
parties involved at the various stages in the procedure. The objectivity of the 
‘transfer’ then boils down to the mutual consistency of the assignments made 
by all of those parties.

8.4. Dense coding, entanglement swapping

Let, again, a binary preparation correspond to the ket I 'F  > A b - One particle (A) 

of each prepared pair goes to Alice, the other one (B) to Bob. Acting upon A  
in a suitable way, Alice can send to Bob a 2 bits’ worth of information, hence 
twice as much as might be expected given the mere 1 bit that a spin 
measurement performed on A can yield. The two-bit message may, for 
instance, be one of the four DNA bases A, C, G, T. Alice and Bob agreed to 
make each of the four letters correspond one-to-one to a P-operation
performed on A: az for the letter A, <rx for C, crxa2 for G and the identity Ia for T. 

To encode ‘C’, Alice takes particle Ak from the pair No.k and subjects it to a 

NOT gate (ctx): the resulting (A+B)k ket is I O' > A b - Once this is done, Ak is 
returned to its box and that box sent to Bob. After he receives it, Bob Bell- 
measures Ak+Bk and the resulting ket, as intended by Alice, is I O' > A b  • This is 
enough for him to learn that Alice’s message is ‘C’. This works because,
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given the choice of a Bell ket, there is a one-to-one correspondence between 
Alice’s operation, hence the letter she encoded, and the result of Bob’s Bell 
measurement: if the initial ‘state’ is I 'V  > Ab , Bob is sure to obtain (a result that 
corresponds to) IVF+ > for A, I 'F  > for T, I 0 + > for G and I O' > for C.
Such (super)dense coding1 hinges on the initial preparation being associated 
with a Bell ket, for Alice’s operation on A  consists in a 1-1 mapping of one 

such ket into another one from the same set (Ia®Ib, ctx(A)<8>Ib » az(A)®lB and 
(JxCfz(A)<8)Ib form a group that maps the Bell basis onto itself). Each operation 
affects the Hilbert space vector that is associated with the relevant pair in the 
following way: identity aside, Alice’s operation alters the initial preparation by 
turning one or both of the ‘same’ questions that define the associated Bell 
vector2 into an ‘opposite’ question, and the other way round. If the preparation 
is a singlet, ox(A) leaves the initial Qopp(x) unchanged but enforces a ‘Yes’ 
answer to the alternative question Qsame(z). Similarly, ctz(A) changes the initial 
Qopp(x) into QSame(x) whilst leaving the initial Qopp(z) unchanged, and ctxctz(A) turns 
Qopp(x) and Qopp(z) into Qsame(x) and Qsame(z) respectively. Notice that <ix (ctz) 
effects a change in the question that corresponds to the ‘complementary’ az 
(ax) observable: 2 bits are what it takes to specify any Bell ket; 2 bits can also 
be acquired (dense coding) by identifying a P-transform of a Bell ket.

An ontological reading would have particle B be affected in an obscure and 
seemingly rather spooky manner3 by an operation performed on the remote 
particle A . This overlooks the fact that no definite (pure) state can be 

meaningfully ascribed to B  or A  prior to Alice’s operation (any possible

outcome of measuring a given two-valued observable on A  or B separately 
is equally likely; mixtures associated with the reduced density operators on HA 

and H b are improper). Given the above-mentioned mapping, Alice’s 
intervention changes nothing to this. Her performing any P-group 
transformation alters the s/d relation between the possible outcomes of 
measurements that may be carried out on A  and B separately. Because a 
‘Yes’ answer to any of the Q(x) and Q(z) questions provides no clue regarding 
the value that may be found if some observable is actually measured on B, 

the statistics of measurements to be performed on B alone are not altered 

in any way by Alice’s intervention. Whether any single particle B undergoes 
any change as a result of Alice’s operation is a question that cannot be given 
an operational meaning -  no more indeed than enquiring about the state

1 Bennett and Wiesner 1992.
2 See Section 8.3.
3 An account of dense coding along the lines of Jozsa’s interpretation of quantum 
teleportation raises the same questions and prompts essentially the same remarks as in 
Section 8.2.
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of the B particle, as long as the preparation is properly ‘described’ using a Bell 
vector.
As a final illustration of the necessity to be mindful of the predictive and 
statistical significance of ‘state’ vectors, let us briefly consider one last ‘effect’ 
involving pairs associated with a Bell ket. After their production, Alice picks out 
any two pairs A+B and C+D. She labels them identically e.g., (A+B)i6 and 

(C+D)i6, keeps one member of each, say A i6 and Ci6, and sends the other 

two (B i6 and Di6) to Bob. All of the particles remain isolated until Alice or Bob 

decide to operate on them. Since any two (A+B)k and (C+D)k pairs are 

mutually uncorrelated, all predictions regarding part or all of the qubits Akl Bk, 

Ck and Dk can be derived from the single product ket

I ^ABCD > = I ^AB ^CD >

=  2 ' 1 /2(  I 0 1  > a b  - 1 1 0  > a b ) ® 2 ' 1 /2 (  | 0 1  > c d  - 1 1 0  > c d ) .

(8.4.1)

Let us expand that ket, with the bit slots in the alternative order ACBD, as

| n A C B D > =  -  ( I o o n > - 10110>- 11001 > + 11100>)
2

(8.4.2)

and write it finally

I Q a C B D  >  =  —  ( I > A C ®  I > B D  —  I O  >  ® |  O  >
2

- 1VF + ><8>| lF+ > + 1 'F  >® | *¥ >). (8.4.3)

At any later time she likes, Alice takes stored A  and C particles that bear the 

same label, e.g. Ai6 and C i6, and lets them interact inside a Bell device. 
The output corresponds, with equal probability, to any one of the Bell kets 
I ^  >ac , I 'F± >ac- Given (8.4.3), Alice is led to the same assignment with 
respect to Bob’s matching (B+D)16 pair. Alternatively, she may perform 

CNOTac, followed by a Hadamard transform on A, so that I Qacbd > evolves 
into

I T a c b d  >  =  %  ( I 0 0  >AC®I <P+>BD - 1 0 1  > ® l - 1 1 o  > ® l < » >  + 1 11  > ® l  H T> ) ,

(8.4.4)

and then measure az on Am and Cm separately. There again, each ordered 

pair of outcomes uniquely corresponds to a Bell ket for the remote (B+D)m . 

Since the location where Bm and Dm are held by Bob is arbitrarily distant from 
Alice’s, the effect has been interpreted as the creation at a distance of
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previously nonexistent correlations. The above procedure, known as 
entanglement swapping\  would “entangle two quantum systems that have 
never interacted directly with each other2”. However, the remarks of 
Section 8.1 also apply. Bob has to be informed by Alice of which A+C pairs 

she Bell-measured and which result she got if he is to select those B and D 
particles that correspond to a given Bell ket, say 10+ >Ac , perform 
e.g. appropriate spin measurements on B’s and D’s from that subset and 
obtain statistics that are consistent with the assignment of a given Bell ket. 
Failing to receive that information, Bob would be at a loss to corroborate 
in any way the claim that some of his B ‘end up entangled’ with the similarly 

labelled D. If he were to perform spin measurements on randomly chosen Bk 

and Dk particles, the statistics he would obtain would not reveal any 

correlation. Thus, no evidence of B+D entanglement can be exhibited unless 

subsets of (B+D)k particles are selected by Bob on the basis of Alice’s 
information, and the correlations are computed for one subset thus selected. 
The telltale statistics are characteristic of selected subsets of Bob’s records, 
that must be consistent with Alice’s records and (8.4.3). In fact, Bob could just 
as well have performed measurements on B’s and D’s before Alice did 
anything with her qubits, and discarded his particles immediately afterwards3. 
After Alice had made her measurements, he would then still have been able, 
using the information she provided, to gather as much evidence of maximal 
entanglement as if he had just kept his particles in store and patiently waited 
for her message to carry out any operation on B’s and D’s bearing the same 
label.

1 Zukowski et al. 1993 ; Bose et al. 1998 ; see Pan et al. 1998 for an experimental realisation 
with polarised photons.
2 Bose eta l. 1999.
3 Peres 1999.
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9

Further developments

9.1 Gleason’s theorem and positive operator-valued measures

A linear predictive scheme hinges on two basic assumptions:

(i) Simple experimental questions correspond to orthonormal
bases over some appropriate metric vector space or,
equivalently, to complete sets of orthogonal one-dimensional 
projectors over some Hilbert space.

(ii) The probability of a given outcome must not depend on any
particular choice of embedding set for the corresponding
projection operator.

Probability assignments associated with sets of linearly independent but 
not necessarily orthogonal vectors would be mere expressions of indifference, 
thereby nullifying the predictive value of the mathematical scheme. Why this is 
so can be seen from the crude following argument. If, to each of n linearly 
independent but non-orthogonal Rn vectors Vj, there corresponds a unique 
probability pi, then rotating one vr of those vectors whilst holding the others 
fixed should leave the probability Pr unchanged, as long as Vr does not end up 
collinear to any other Vj. Nearly all the unit sphere vectors (except for those 
that fall on a ray spanned by any one the n-1 remaining Vj) will therefore 
correspond to probability pr. Since this must be the case for any k, it follows

1
that all of the pi will be the same i.e. Pi = —.

n

Assumption (ii) makes perfectly good sense within a scheme in which 
the predictors are fundamentally conventional. Gleason’s theorem1 is 
a rigorous expression of the consistency of probability valuation with the basic 
structure of a linear predictive scheme: if predictors associated with definite 
yes-no answers to experimental questions are constrained, in accordance with
(i) and (ii), by the projective structure of Hilbert space, some suitable statistical 
operator acting upon Hd exists such that the probabilities of measurement 
outcomes take the usual trace form (no structure of interest happens to be 
pinned down if the Hilbert space is two-dimensional). More precisely, if we

1 Gleason 1957; Hughes 1989 (appendix).
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postulate the existence of a function p from the set of one-dimensional
d

projectors into the real interval [0,1] that satisfies £  p(Pj) = 1 (d > 3), then for
i=1

any such function p there exists a statistical operator p such that, for all /, 
p(Pj) = tr(pPj). No further assumption is required for the result to hold e.g. 
there is no need for p to be continuous or for Hd to be over the complex field. 
Paul Busch recently proved1 a new version of Gleason’s theorem as part of an 
attempt to meet common objections to von Neumann’s ‘no go’ argument 
against non-contextual hidden variables2. The upshot of reformulating the 
original argument in terms of ‘unsharp’ observables (POVM) rather than self- 
adjoint operators is a strengthening of von Neumann’s result: there are no 
dispersion-free valuations on the set of ‘effects’. Positive operator-valued 
measures (POVM) were introduced in the 1980s with a view to generalising a 
projective account of measurement3. In the standard approach, possible 
measurement outcomes are identified with the eigenvalues of self-adjoint 
operators (P5) or complete sets of eigenkets thereof. Given a suitable 
statistical operator p, consistent probability assignments require that 
eigenprojectors Pi corresponding to the eigenvalues a* of some observable A 
form a resolution of the identity operator I: ]$TP| = I (so that the probabilities

i

Pp(aj) = tr(pPj) add up to 1). In the new approach, it is assumed instead 
that sets {E^ of positive-semidefinite operators (< u I I u > > 0 for 
all I u >eH) that sum up to identity (^ E ^  = I) qualify4 as (‘unsharp’)

observables. The probabilities of p-labelled outcomes are computed using a 
POVM version of PR: pM = tr(pEp). There is no a priori constraint on the 
number of indices and the E^s need not be mutually orthogonal. Whereas 
projection-valued measures are representations of ideally ‘sharp’ observables, 
the set of positive operators (technically known as effects5) is intended to 
correspond to a more spread out, hence ‘more realistic’ range of experimental 
questions.
In Busch’s version of Gleason’s theorem, a frame function p from positive 
operators {EJ> to [0,1] is postulated, such that p(EJ > 0 and £p(Ejx) = 1,

The theorem says that there must exist a density operator p such 
that p(E^) = tr(pE^). The assumptions behind the proof are straightforward

1 1999, published in Busch 2003; see Caves etal. 2004 for an independent, equivalent proof.
2 Von Neumann 1955. See Mermin 1993 for a review.
3 Kraus 1983; Peres 1993; Busch etal. 1995.
4 If | u > is a normalised ket, it is necessary and sufficient for < u J Er | u > to represent 
a probability that Ej be an operator bounded between the null and the unit (identity) operators.
5 Kraus 1983.
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POVM analogues of (i) and (ii). One of the most striking features of Busch’s 
proof is its simplicity, which contrasts with the rather formidable technical 
resources mobilised by Gleason’s. No less remarkable is the fact that Busch’s 
version encompasses the two-dimensional case, to which Gleason’s fails 
to apply. Qubits are no longer ‘special’; it just happens that all outcome 
statistics for ideally sharp measurements on two-level systems can be 
mimicked using the resources of some non-contextual hidden variable theory. 
Finally, the greater simplicity and wider scope of the Gleason-Busch theorem 
suggests POVM might contribute in an invaluable manner to illuminating 
the foundations of quantum theory.

9.2 'Quantum’ Bayesian update, complex numbers 
and 0-composition

On the standard account, the ‘final’ eigenket, after application of the reduction 
rule P7, may be almost orthogonal to the initial ket, as if the actual outcome 
was barely related to the ‘initial conditions’. In contrast, the ordinary probability 
calculus gives a very simple account of the update of one’s knowledge after a 
piece of evidence ei< has been gathered. The probability distribution p(h) for 
some given hypothesis h is expanded as a sum

Pinitiai(h) = £  P(hAei) = £  p(h/ei)p(ei), (9.2.1)
i i

where {e*} is a relevant data set and p(ej) the prior probability assigned to the 
data ej. The term that corresponds to the acquired data is just picked off the 
sum, so that the updated probability of h given the acquired information is

Pfinai(h) =  p(h/ek) = p(hAek)/p(ek) (9.2.2)

It has been suggested that reduction might be “an artifact of a problematic 
[Hermitian operator-based] representation1” and that using POVMs might help 
to make the connection tighter between classical ‘Bayesian’ update and the 
change of statistical operator prompted by the acquisition of fresh information. 
Given an initial density operator p, the one that is associated with the final 
situation after the measurement2 of a POVM {EJ is not unique but only

1 Fuchs 2001.
2 The measurement of a POVM on a system can be represented as a projective measurement 
on an auxiliary system (‘ancilla’) that formerly interacted with it  Information is then gathered 
indirectly by measuring the ancilla rather than the system of interest. This possibility is a 
simple consequence of Hilbert space tensor product composition and of the P R  rule in its 
trace form, which together imply that whatever pertains to the auxiliary system can be 'traced 
out’ (Holevo 1973a; Davies 1978).

171



-J

required to be of the general form pM = — - - Y  A^pA^1-, where ^  A ^A ^  =
i i

(there is no constraint on the number of indices p, nor do the A operators have 
to be self-adjoint). The reduction rule (P7’) of the standard formalism is a 
special case1 of the p-»p<j transition (following Fuchs2, the subscript d -  for 
‘data’ -  will from now on be used in place of p).
Trying to work out as close a ‘quantum’ analogue as possible to the classical 
expansion (9.2.1), one faces the difficulty that the initial p cannot simply be 
expanded in the form ^  p(d)pd, where p(d) = tr(pEd). However, rewriting p as

d
p1/2lp1/2 with I = ^  Ed leads to p = p(d)pd , where the operators pd and pd

d d
happen to have the same eigenvalues. The p->pd transition can then be 
regarded as comprising two stages: first, a p-»pd transition, followed by a 

formal readjustment (unitary transformation) that is required to complete the 
change from p to pd. A projective measurement amounts to a mere 
readjustment3 whereas one’s performing a measurement on one member of 
an ‘entangled pair* prompts an update of one’s beliefs regarding both 
members, without any further readjustment4. Thus a POVM treatment leads to 
thinking of the effect of acquiring information through measurement as a 
variant of classical Bayesian update satisfying constraints imposed by a non- 
commutative framework. Writing p = X  PW Pd• ^ en P(^) = 2  P ^P ^/d ),

d d
where p(h/d) = tr(pd Ed), and the analogy with (9.2.1) is complete. Some light

is also thrown on the assumption (ii) of the previous Section: it is the Hilbert 
space analogue of the simple remark that, while updating from Pimtiai(h) to 
Pfinai(h) = p(h/d) depends on p(d), the transition itself does not depend on how 
the remainder of the outcome set to which the data d belongs has actually 
been partitioned.
Holding a view of Hilbert space vectors or density operators as predictors 
rather than descriptions of objective states of affairs confronts us with the 
possible meaning of unknown states. This is not an idle question, for 
references to ‘unknown quantum states’ pervade the QIT literature. The case 
of quantum teleportation is easily settled: as argued in detail in chapter 8, 
it requires one party at least (Claire) to hold maximal information about the 
C-preparation i.e. to make at the outset a pure case assignment in the form of 
the Hilbert space vector | X >c. However, other mention of ‘unknown states’

1 Fuchs 2001, Nielsen and Chuang 2000.
2 Fuchs 2002.
3 Fuchs 2001,2002, part 6.
4 Ibid.
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may not so easily be disposed of. Proponents of a Bayesian interpretation of 
the probability calculus have encountered a rather similar problem: whereas 
the frequentist or the propensitist have no difficulty thinking of unknown 
probabilities, the expression is an oxymoron for the Bayesian, whose job starts 
with an assignment of non-zero priors. Fortunately, Bruno de Finetti’s 
representation theorem1 disposes of the need to refer to any problematic 
notion of unknown probability, replacing it with the assignment of an 
exchangeable distribution in multi-trial space2. Caves et a l3 have adapted de 
Finetti’s approach to the quantum setting. Under the assumption that 
frequency data only are relevant to updating a density operator assignment, 
these authors show that the updating rule is similar to that for classical 
Bayesian update4. As long as two experimenters are not inflexible in their 
beliefs, the accumulation of new data may force them to revise their 
assignment until they reach closer agreement. The account dispenses with the 
need to think in terms of objective, initially unknown ‘quantum states’ that 
would reveal more and more of their identity as evidence accumulates.
An intriguing aspect of this ‘quanta!’ version of the de Finetti theorem is that it 
fails for real Hilbert spaces5. Whether or why complex numbers are actually 
necessary for the SAQM to work at all remains a vexed issue. Would the 
probabilistic machinery of quantum theory retain anything of its effectiveness if 
Hilbert space were chosen real rather than complex? Peremptory claims 
notwithstanding -  e.g. “complementarity...demands that the probability 
amplitudes of quantum mechanics be complex6” -  attempts to answer the 
question have been rather inconclusive. Thus, Caticha7 just confesses his 
inability to justify the need for amplitudes to be complex rather than real. 
William Wootters8 showed that the way points are distributed over the 
probability simplex is uniform if the associated amplitudes are complex, 
whereas the points turn out to be concentrated toward the border of 
the simplex if the amplitudes are chosen real (and toward the centre 
for quaternions). However, it remains to be proven that quantum amplitudes 
must be complex if uniformity over the Hilbert hypersphere is to 
translate into uniformity (maximal randomness) over the probability simplex9.

1 de Finetti 1964.
2 Multi-trial probabilities are said to be exchangeable if they are invariant under any 
permutation of their arguments; see Kyburg and Smokier 1964, Howson and Urbach 1993, 
Howson 2000.
3 Caves et a t  2001; Fuchs 2002.
4 Schack et at 2001; Fuchs 2002.
5 See Fuchs 2001,2002 for a counterexample.
6 W heeler 1990, p. 12 (italics added).
7 Caticha 1998.
8 Wootters 1980.
9 Wootters (1980) also tried to derive PR using a variational method. Extremising the gain of 
Shannon information as an A-measurement yields an outcome a„ a squared-modulus form
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More recently, an intriguing relationship has been unveiled between the 
question of ‘complexity’ and another basic issue: that of tensor product 
composition. Let {EJ and {Fv} be two POVM measured separately on systems 
labelled 1 and 2 respectively, the relevant Hilbert spaces Hi and H2 being di
and d2-dimensional. {E*} is also introduced1 as the POVM measured on 1

conditional on having previously obtained the outcome v when measuring {Fv} 
on 2, and the other way round for {Fv̂ } (then, ^  E* = I for all v and FVM = I

H V

for all p). The crucial assumption is now made2 that the joint probability p^v 
associated with either ordered pair S^v of operators (E^, F*) or (E*, Fv) should

not depend on which set of ordered pairs S^v is embedded in (the assumption 
is clearly reminiscent of the ‘non-contextuality’ assumption (ii) behind 
the Gleason-Busch theorem). Fuchs’s theorem3 says that, given the existence 
of a function f from the set of such ordered pairs into the interval [0,1], 
satisfying the condition ^  f(S^) = 1, there must also exist a linear operator a

H.v

on the tensor product space H i <S>H2, such that for any ordered pair of locally 
measurable POVM (E,F) : f(E,F) = tr(<r(E<S>F)). Moreover, a happens to be 
unique if both Hilbert spaces are defined over the field of complex numbers, 
because the set {En®Fv} then forms a complete basis for Hermitian operators 
on H i <8>H2. Whether uniqueness holds only in the complex case remains open. 
This is plausible though since, when the field is complex, the operator space 
of the tensor product is isomorphic to the tensor product of the original 
operator spaces. The isomorphism does not hold, however, in the real field

1
case, because the dimensionality -dj(dj+1) of the space of symmetric

operators4 on a real Hilbert space Hi is strictly less than the dimensionality d 2 
of the vector space of Hermitian operators over the base space in the complex 
case, and hence insufficient for cr to be uniquely specified. Fuchs’s 
assumptions are not strong enough to establish that cr must be a density 
operator5. Nevertheless, it is significant that one should get so close to the 
correct trace form of probability valuation in the binary case from a purely local 
account of measurement, which closely parallels Wootters’s ‘local 
accessibility’ thesis: “any set of measurements which are just sufficient for

for the expression of the probability Pv(aj) is recovered. However, the derivation, made under 
the assumption of real Hilbert space, fails in the complex case.
1 Fuchs 2002.
2 Ibid.
3 Fuchs 2002.
4 Symmetric operators are the real-case analogues of Hermitian operators.
5 See Fuchs 2002, equ. (61) for a counterexample.
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determining the states of the subsystems are, when performed jointly, also just 
sufficient for determining the state of the combined system1.”

9.3 A simple axiom set for quantum theory

An important contribution to our understanding of quantum theory has been 
made by Lucien Hardy2, who shows that the SAQM can be derived from five 
basic axioms. The axioms in question, which make no prior reference to 
Hilbert space or set a priori limits on the mutual compatibility of physical 
quantities, give rise to a POVM formulation of quantum theory. P1-P7 follow if 
the operators are restricted to being Hermitian. One of the most remarkable 
aspects of this reconstruction is that both quantum theory qua linear predictive 
scheme and the classical probability calculus satisfy four of the axioms. 
In fact, dropping a continuity requirement that is crucial to the fifth axiom is all 
it takes to switch from the SAQM to classical probability theory. Hardy’s 
approach makes a strong case for claiming that, consistently with the view 
advocated in the whole of Part B of the present dissertation, “[qjuantum 
theory, when stripped of all its incidental structure, is simply a new type of 
probability theory3”.
To motivate his approach, Hardy introduces a typical set-up allowing 
measurements to be performed on suitably prepared samples (the axioms by 
themselves make no reference to any such set-up). This includes (i) a 
preparing device that releases samples when it is in the ‘on’ mode (the device 
comprises a knob for selecting the preparation); (ii) a transforming device such 
that any released sample undergoes a systematic transformation as it passes 
through it (a knob setting on the device specifies the applied transformation); 
and (iii) a measurement apparatus, which has a knob for selecting the 
measurement being performed. As far as the statement of the basic axioms 
and their consequences are concerned, the role of (ii) can be reduced to the 
identity transformation. For a given setting of the knot and provided the 
preparing device is on, the measurement yields any one of a fixed number of 
non-null outcomes (one, and only one, of a number of properly installed 
detectors must then fire). The outcome of a measurement is null (no detector 
fires) if the preparation device is ‘off. The relative frequency of a given output 
(including the null output) can be calculated from a series of runs of the 
experiment with fixed settings of all three devices. The purpose of the first 
axiom (HA1) is precisely to connect probabilities of measurement outcomes to

1 Wootters 1990, p. 44.
2 Hardy 2001a.
3 Hardy 2001b, p.1.
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the actual gathering of relevant data. This is done in the usual way by 
identifying those probabilities with limiting relative frequencies: the relative 
number n* of instances of a given outcome ak in N runs of a measurement for 
a given setting of all the devices (and provided the release button of the 
preparation device is pressed) is assumed to have a definite limit as N->oo, 
which limit yields the probability of that particular outcome.
A given setting of the preparation device determines the probability of each 
non-null outcome for any measurement performed on a released sample. 
Hardy chooses to designate by the word state whatever, in the preparation 
effected by (i), is relevant to predicting any such probability. Unfortunately, 
saying that we “ascribe states to preparations1” or, worse still, that the device 
prepares “systems in some state2” is a very misleading way of expressing our 
capacity to work out all the predictive consequences of a given choice of knob 
setting for (i). A ‘state’, as introduced above, is not meant to provide e.g. a list 
of attributes of each individual (sample) system released by the preparation 
device. The primary -  indeed, the sole -  purpose of the formalism to be 
derived from the axioms is predictive rather than descriptive.
It is reasonable to assume that there exists a minimum number3 K of 
probabilities that suffice for specifying the state i.e. the ‘predictive content’ of 
the preparation. To each of those probabilities will correspond a definite 
measurement, and the state will be exhausted by listing the corresponding 
probabilities pi, i=1 fo K. A major step toward the representative framework to 
be derived is Hardy’s choice, reminiscent of Destouches’s4, to write those 
probabilities as a K-dimensional column vector:

'P i'

P=

P2

Besides, it is assumed that sets of ‘states’ exist, such that those states can be 
distinguished from each other within any such set by a ‘single shot’ 
measurement. If each state in the set gives rise to a different outcome for a 
given setting of (iii), then performing that measurement will suffice to identify 
the state, hence the preparation (of course, this requires that whoever is 
provided with a sample thus prepared is informed of which measurement he 
should perform). Let N then be maximum number of states in any such set, i.e.

'H ardy2001b , p.2.
2Ibid., p.3.
3 Hardy refers to K as the “number of degrees of freedom". W e shall not use this terminology, 
for it suggests a parallel with classical mechanics that is almost incongruous in the current 
context.
4 Section 5.3.
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adding any more state would imply some ambiguity in identifying members of 
the extended set. In quantum theory, the number N *  K will be shown at a 
later stage to coincide with the dimension of the predictively relevant Hilbert 
space.
The remaining four axioms (HA2 to HA5) impose structural constraints on the 
predictive scheme to be derived. We have no reason a priori to expect K and 
N to be equal, although we do expect and shall assume that there exists a 
structural relationship between those two numbers. According to Hardy’s 
second axiom (HA2), such a relationship exists regardless of the types of 
physical systems involved. Hardy himself ascribes that link to “a certain 
constancy in nature1”, but one can alternatively motivate it by requiring 
consistency between the conditions set to the distinguishability of observable 
outcomes within a vector space structure (the N side) and those set to the 
specification of an appropriate preparation (the K side). Hardy includes in 
(HA2) a clause to the effect that K, as a function of N, takes the smallest value 
that is consistent with the axioms. If the mode of preparation constrains 
observations in such a way that some outcomes, though possible a priori, are 
never actually observed, then (HA3) the maximum number of distinguishable 
states i.e. the dimension of the relevant space can be reduced to a lower 
value M < N (the probability of occurrence of a given outcome within a set 
should not depend on whether that set is embedded in some larger set).
Before going any further let us, for the sake of illustration, think of the 
preparing device as a machine that releases either red or green ‘balls’. Any 
given preparation i.e. knob setting of the device is fully specified by giving the 
two probabilities pR and pc of observing a red or a green ball respectively.

can be introduced (pr + pg < 1Accordingly, K = 2 and a ‘state’ vector p =

in general if balls are not systematically released by the device). Since the 
maximum number of observational outcomes that may be distinguished in this 
experiment is N = 2 (any released ball is either green or red), K = N in this

- - f-n - - (o'particular example. The two vectors p1 = pR =
vOy

and p2 =P G = will

correspond to a setting of the preparation device such that the balls it releases 

are respectively all red (p.,) or all green (p2). These two ‘states’ are special in

so far as, unlike any p whose components are strictly less than 1, they cannot 
be simulated by probabilistic mixtures of other states. Hardy calls pure such 

states as denoted by p, and p2. If the preparing device is ‘off, no ball is

1 Hardy 2001a, 6.14.
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-  (O']released and Pr = Pg = 0, hence the ‘null state’ corresponding to p0 =

p0,p1 and p2are extremal in the K-dimensional space of acceptable states

(the set of allowed states is the ‘simplex’ defined by the condition Pr + po < 1). 
A measurement performed on any released ball consists in finding out which

'1 '
colour it is. If we ascribe a vector n = tr = to a basic measurement of the

‘red observable’, the probability that such a measurement will yield a ‘yes’ 

answer for a preparation specified by the vector p is Pr = n.p.  Similarly, a

‘green’ measurement corresponding to r2 = re =
'O '

will have a positive

outcome with probability pg = r2. p .
This extremely basic formalism is readily generalised to higher dimensions. 
Since any probability that can be ascertained (HA1) by measurement is 
determined by the setting of the preparation device, that probability must be a

function f of p (that function will generally differ from one measurement to 
another). Suppose that Bob selects at random with probability w a preparation 

associated with the vector pA or, with probability1 1 -  w, another setting of the

preparing device that corresponds to the vector pB. Unless she is informed of 
the selection procedure, Alice will not identify either preparation through her 
own measurements. Rather, she will ascribe the results she obtains to

a fictitious preparation associated with a vector pc , whilst only Bob can 

write explicitly the probability function as the convex combination 

f(pc ) = wf(pA) + (1 -  w)f(pB). For each of the K measurements used to

determine p, the relation pc.i = wpA,i + (1 -  w)pB,i , i = 1 to K, holds between 
the probabilities. It must therefore hold for the ‘state vectors’ themselves: 

Pc = w P a  + ( f -  w)pB, suggesting that the function f is linear. Hardy shows 
that it is and that the probabilities of measurement outcomes are given by the 

dot (scalar) product r .p of the appropriate r and p vectors2.

Since the set S of allowed states is convex and bounded (the components of 

p are obviously confined within the interval [0,1]), it admits an extremal set: 

this is the set of those vectors, like p^nd p2 above, that cannot be written as

1 This probability must here clearly be understood as a measure of degree of belief, throwing 
doubt on the necessity of Hardy’s commitment to a frequency interpretation (HA1); see 
Schack 2002.
2 Hardy 2001a, Appendix 1.
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a convex sum of other vectors in S (the null state is excluded from the set of 
‘pure’ states). Hardy takes it as a “driving intuition” in his approach that “pure 
states represent definite (non-probabilistic) states of the system'”. Why should 
this be the case, however, since ‘states’ were introduced in the first place as a 
conventional listing of probabilities based (HA1) on repeated runs of test 
experiments? In accordance with the predictive aim of the proposed 
formalism, Hardy’s ‘pure states’ should rather be thought of as providing 
‘reference preparations’ in a somewhat similar sense as the 
‘eigenpreparations’ of Section 6.1. That Hardy’s states can be indifferently2

represented using p-vectors or r-vectors is another motive for resisting the 
temptation to ascribe states to individual systems and to uncritically reify them. 
The fourth axiom (HA4) is concerned with circumstances when “a preparation 
device ejects its system in such a way that it [the system] can be regarded as 
made up of two subsystems3” i.e. with binary preparations. If unary 
preparations involving 1-systems only are characterised by a number Ni of 
distinguishable states, and unary preparations involving 2-systems only by a 
number N2, the number of distinguishable states associated with 1+2 
preparations cannot be less than N1N2. According to (HA4), for all binary 
preparations N is equal to N1N2. Probabilities for measurements performed 
on (i)-samples (i = 1 or 2) can be listed as the Kj = K(Nj) components of a

vector p (,). Sets of pure states {p m(1)}, with m = 1 to Ki, and {p n(2)}, with n = 1 
to K2 must then exist, from which K1K2 linearly independent matrices pmn(1+2) 

can be constructed. To each pk(l> there corresponds a measurement rn(l) that

picks it off, and the probability pmn that measuring rm(1) and rn(2) separately will 
yield a ‘yes’ outcome for both is the product of pm<1) and pn(2). The pmn form the 
K1K2 entries of a matrix p(1+2) and the corresponding ‘joint state’ can be 
expressed as a convex combination of K1K2 linearly independent ‘product 
states’ associated with the pmn(1+2) matrices. These considerations suggest 
(second part of HA4) that the number K of real parameters that are necessary 
and sufficient for defining a state in the binary case is also just equal to the 
product K1K2. Hardy further motivates equality by asserting, in accordance 
with Wootters’ local accessibility idea4, that “[tjhere should not be more 
entanglement [and, should we add, no less] than necessary5” to carry out our 
predictions successfully.

1 Ibid. (italics added).
2 Ibid.,2.
3 Ibid. 6.16.
4 Wootters 1990.
5 Hardy 2001b, p. 10.

179



For a fixed choice of basis set in the N-dimensional vector space of
Nldistinguishable states, there are a number -------:—  of m-dimensional

n£(N-ni)\

subspaces and a number um of measurements that are necessary and 
sufficient to completely characterise a ‘state’ confined to that subspace. 
The number K can be expanded as

K = N u1 + M U2 + ...
2

From (HA3-HA4), K(N2) = K2(N) and K(N+1) > K(N), hence the only 
polynomial in N that satisfies those conditions is K(N) = Nr, with r an integer.

In quantum theory, if the relevant Hilbert space is of dimension N, then N2 -  1 
independent real numbers are required to specify a density matrix. If the 
predictors associated with the two experimentally accessible ‘sides’ of a binary 
preparation are M and N-dimensional respectively, then the number of 
independent probabilities that are necessary and sufficient to determine the 
density matrix pertaining to the whole is

(M2 -  1) + (N2 -  1) + (M2 -  1)(N2 -  1) = (MN)2 -  1.

This is an expression of Wootters’ ‘local accessibility’ thesis1: quantum theory 
as a predictive scheme makes an optimal use of the information supplied by 
measurements performed separately bn subsystems, including the 
correlations one may extract from a careful comparison of outcome lists. 
If g(N) is the number of parameters needed to specify a normalised ‘state’ 
(in Hardy’s sense) when the relevant preparation is such that the maximum 
number of distinguishable outcomes of an appropriate reference measurement 
is N, the optimality condition can be written

g(M) + g(N) + g(M)g(N) = g(MN).

This condition is satisfied both by complex Hilbert space quantum theory, 
where g(N) = N2 -  1, and by classical probability theory, where g(N) = N -  1. 
On that basis, Wootters (1990) conjectured that any theory that satisfies the 
optimality condition might have to be such that g(N) = Nr -  1, with r a non
negative integer. But this is just the expression that follows from Hardy’s 
axioms: K(N) = g(N) + 1 = Nr. Adhering to the simplicity clause of (HA2) leaves 
us with only two kinds of predictive scheme: those for which r = 1 or 2. It is at 
least conceivable that the SAQM itself might be embeddable in some r > 2 
framework, just as the classical r = 1 framework is shown to be embeddable in 
‘quantum theory’ (r = 2). The restriction is sensible, however, if it is 
acknowledged that quantum theory functions as a r = 2 predictive scheme, by

1 Wootters 1990. The product MN is of course just the dimension of the tensor product space
H-I&H 2-
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virtue of the mathematical structure implied in the selection of square 
integrable solutions of the Schrodinger equation. On the other hand, there is 
as yet no basic framework for theoretical physics that would appear to call 
for the resources of a r > 2 scheme. We are thus left with two cases. K = N i.e. 
r = 1 corresponds to a linear representation of the classical probability 
calculus, in which the number of parameters needed to characterise a 
preparation is equal to the maximum number of distinguishable ‘states’. In the 
ball example, specifying the state boils down to supplying the probabilities Pr 
and pg (K=2), while the number of distinguishable pure ‘basis states’ is 
obviously N=2: at most two colours can be reliably distinguished in a single 
observation of any given ball. That K and N must be equal just means that no 
observation can be performed that cannot be reduced to identifying the colour 
of the ball. On the other hand, there is a priori no reason why, for all 
conceivable types of system and preparation, the maximum number of 
observable outcomes for a given setting of the measuring device should be 
equal to the number of probabilities required to completely specify the 
preparation (or more accurately to determine all predictions for a given setting 
of the knob of the preparing device). The complex Hilbert space structure of 
the SAQM is known to satisfy K = N2 i.e. r = 2. Real Hilbert spaces are 
actually ruled out1 by (HA4). It is a structural property of those spaces that 
ui = U2 = 1, Uj;>3 = 0 i.e. K = N(N+1)/2, hence K > K1K2 : the specification of 
states in the binary case requires more than can provide information gathered 
separately on subsystems2 and working out correlations between the two lists 
of outcomes, thus belying local accessibility. In other words, complex numbers 
appear to be required for setting up an optimal linear predictive scheme.
Let us briefly outline how the SAQM can be recast so as to contrast it with the 
ball example. All predictions stemming from a ‘qubit’ preparation can be

( a b^
calculated from a statistical operator or its realisation p =

b* d
in a given

basis, e.g. that of the eigenkets of crz. Since, then, a = pZi+ = prob(‘az=+1’), 
d = 1 -  a and the real and imaginary parts of b are equal to px,+ -  14 and 
!4 -  py,+ respectively, knowing the probabilities of '+’ outcomes of a spin 
measurement in the three directions x ,y and z is sufficient to completely 
determine the preparation. If normalisation is not imposed, one further 
probability pZi. is required, and it is completely equivalent to represent the state

1 A counterexample is given by Wootters 1990, p.44.
2 Hilbert spaces over the quaternions, for which Ui= 1, u2 = 4 (u2 = 2 in the complex case), 
Ufe3 = 0 would require strictly less: K < KiK2.
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by p or using the 4-component vector p = In the normalised case,Pz.- 

Px.+

vPy.+;
the allowed states can be represented as a ball sitting inside the unit cube in 
the coordinate system (pXt+, py,+, pZl+). The surface of that ball is an exact 
analogue of the Bloch sphere representation of qubit ‘states’ (the points on the 
surface of the ball represent extremal (pure) states). If normalisation is not 
assumed, all the predictively useful information encoded in a N-dimensional 
density matrix p will be equivalent to that supplied by a vector whose 
components are K = N2 probabilities. This equivalence can be traced back to 
the algebraic fact that any Hermitian operator that can be represented by a 
NxN matrix can also be written as a linear combination (with real coefficients) 
of K = N2 projection operators Pi ,...,Pk. Writing these K operators as 
the components of a vector P , Hardy’s ‘state’ vector can be expressed as 

p= tr(pP). The most general expression of probability in quantum theory is 

tr(pA), where A is a positive operator associated with the measurement. 

A measurement vector r is introduced1 through the relation A = r.P, leading 

to the same expression of probability as in the red-or-green ball case: p = r . p . 
The fundamental difference between the ‘classical’ and the ‘quanta!’ cases 

resides in the composition of the sets of allowed states i.e. of p and r vectors. 
The distinctive composition of those sets is shown to be deducible from all of 
the axioms, without any extra assumption.
One last axiom (HA5) is introduced in order to select the r = 2 case. 
Quantum theory obtains if it is additionally required that, for any dimension N, 
a continuous and reversible transformation2 exists along a (continuous) path 
connecting any two pure states (the intermediate states are also pure). 
The set of classical pure Hardy states (K = N) is discrete (vertices of a triangle 
in the ball example), whereas e.g. qubit pure states form a continuous set 
(points on the surface of the Bloch sphere). The continuity requirement is, in 
Hardy’s approach, the key difference3 between ‘quantum’ and classical 
probability theory: it is simply not possible in the latter for a pure state to be 
continuously transformed into another, and (HA2) implies that the only 
alternative is quantum theory (K = N2). It is somewhat ironical that classical 
probability theory should be characterised by a necessity to ‘jump’ between

'H ardy 2001a, 5, 8.7.
2 A continuous transformation is understood as built up from transformations, each of which 
differs only infinitesimally from the identity.
3 “It is rather striking that the difference between classical probability theory and quantum 
theory is just one word.” Hardy 2001 b, p. 10.

182



pure states, whereas the basic trait that singles out quantum theory among 
the schemes that satisfy Hardy’s other axioms (HA1 to HA4) would be the 
existence of continuous transformations! Following his “driving intuition”, 
Hardy suggests that the necessity to ‘jump’ from a classical state 
corresponding to, say, a ball being in one box to that corresponding to its 
being in another would just (?) reflect our crude partitioning of possibilities into 
what just appears to us to be clear-cut alternatives. The range of (objective) 
possibilities might stretch infinitely beyond such crude alternatives, as befits a 
world that is supposedly suffused with that famous ‘quantum 
uncertainty’...How such speculations relate at all to the kind of basic 
framework Hardy sets up is hard to see. They sound, rather, like a desperate 
attempt to secure a minimum of ‘physical content’ to a framework that is 
conspicuously independent of assumptions relating to features of the physical 
world, or to systems as identifiable parts thereof. When it comes to assessing 
the basic differences implied by the acceptance or rejection of the fifth axiom, 
the relevant comparison is between two distinct but closely related types of 
probabilistic schemes (sharing four axioms out of five) and not between 
e.g. quantum and classical variants of mechanics. The radical view of 
quantum theory that emerges from Hardy’s work is one “in which states (pure 
or mixed) are the analogues of classical probability distributions, and are not 
seen as a property of the individual system, but [relate to] a specific way of 
preparing the systems1”, or more accurately to all the predictive (and only 
predictive) consequences of any such preparation.

For any choice of r, the effect on p of the transformation device can be 
described by a KxK real matrix. In the r = 2 case, this is equivalent to a linear 
transformation of the statistical operator p. The most general transformations 
that are consistent with all the axioms are linear and completely positive 
maps2 on the space of operators on Hilbert space, such that the time evolution 
does not increase the trace (or equivalently the normalisation coefficient in the 
pure case). Unitary evolution obtains if it is required that the corresponding 
transformation should also be invertible and that it should preserve the trace, 
whereas ‘reduction’ means net trace decrease signalled by the increase of the 
von Neumann entropy. None of these two special cases, however, 
corresponds to any necessary constraint on the generalised formalism. How 
the representation should be updated when new information is acquired is 
subject to the same basic constraints in classical (probability) and quantum 
theory, but the updating rules reflect the structural features of each particular

‘ Werner 2001.
2 Since the mid-1990s such maps (Busch et al. 1995, Nielsen and Chuang 2000) have 
become the stock in trade of the Q IT theorist. Typical concerns include looking for the optimal 
map that satisfies some information-processing criterion, or showing that no such map is 
consistent with certain information-processing requirements.
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scheme. Thus, the POVM alternative to reduction outlined in Section 9.2 can 
be regarded as a r = 2 variant of classical (r =1) Bayesian update.

9.4 Can information-theoretical concepts and methods illuminate 
the foundations of quantum theory?

The technological benefits of developing a ‘quantum mathematical theory of 
communication’ were recognised only during the last decade of the twentieth 
century1. QIT underwent fast development in the 1990s following the 
publication of two influential papers: that of Bennett et al. (1993) on quantum 
teleportation and Shor’s (1994) on ‘quantum factoring’. The extremely 
ambitious goal of some QIT theorists is “to arrive at a set of principles like 
energy and momentum conservation, but which apply to information, and from 
which much [and indeed, according to the most radical, the whole] of quantum 
mechanics could be derived2.” Expressions of that goal and of major insights 
of QIT, e.g. that “according to the laws of quantum mechanics, Nature 
remarkably is able to process information exponentially more efficiently than 
can be achieved by any classical means3” usually conflate references to an 
objective physical world (‘Nature’) with capacities and demands -  e.g. of 
computational efficiency -  that hardly made any good sense irrespective of 
cognitive agents, their interests and purposes (e.g. to carry out and finalise a 
computation).
John A. Wheeler’s speculations have been a source of inspiration for a 
number of prominent QIT theorists, like Deutsch, Fuchs or Wootters. Wheeler 
tirelessly advocated4 his conviction that the bedrock of theoretical physics will 
be found to consist in simple truths about information (It from bit). His concern 
with information ties in with his participatory view of quantum theory, which 
gives the observer a key role in ensuring the self-consistency of his 
bootstrapping picture of reality as emerging through ‘quantum networking5.’ It 
is much more unclear what a basic informational grounding for theoretical 
physics could amount to in the context of an entirely observer or IGUS6-free 
picture of reality. Nonetheless, there is a widely shared feeling inside the QIT 
community that the new field is actually heading toward the fulfilment of part at 
least of Wheeler’s grand vision. As David Deutsch puts it,

1 The emergence of quantum computing can be traced back to some thought-provoking 
papers by Feynman 1982,1986.

Steane 1998, p.42.
3 Ekert and Jozsa 1998 (italics added).
4 Wheeler 1982,1983,1988,1990.
5 Wheeler 1988.
6 ‘Information Gathering and Utilizing System’ (Gell-Mann and Hartle 1990).
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Of John Wheeler’s 'Really Big Questions’, the one on which most 
progress has been made is It From Bit? -  does information play a 
significant role at the foundations of physics? It is perhaps less 
ambitious than some of the other Questions, such as How Come 
Existence?, because it does not necessarily require a metaphysical 
answer. And unlike, say, Why the Quantum?, it does not require the 
discovery of new laws of nature : there was room for hope that it might 
be answered through a better understanding of the laws as we 
currently know them, particularly those of quantum physics. And this is 
what has happened: the better understanding is the quantum theory of 
information and computation1.

Pace Deutsch there is very little, if anything, in what has been achieved in QIT 
so far that lends any clear support to Wheeler’s It From Bit. QIT has, from its 
inception, been chiefly a matter of adapting traditional IT engineering 
problems e.g., that of optimising data transmission over a suitable channel or 
that of enhancing algorithmic efficiency, to a setting in which vectors and 
matrices, subject to specific constraints, are used in place of ordinary 
probability distributions2. Sweeping statements about ‘quantum information’ 
and its virtues notwithstanding, the endeavour, as it stands, appears to offer 
little prospect of illuminating the aim and structure of an essential part of 
theoretical physics. Besides, there is something circular in attempting to 
ground quantum physics on a novel treatment, never mind a new kind of 
information, if the latter owes its ‘non-classical’ features from its being 
precisely abstracted from the basic formalism of quantum theory.

1 Deutsch continues: “How might our conception of the quantum physical world have been 
different if It From Bit had been a motivation from the outset? No one knows how to derive it 
(the nature of the physical world) from bit (the idea that information plays a significant role at 
the foundations of physics), and I shall argue that this will never be possible. But we can do 
the next best thing: we can start from the qubit.” (Deutsch 2003).
2 For example, the ‘quantum’ noiseless coding theorem (Schumacher 1995) is a rather 
straightforward adaptation of Shannon’s. Let X  be a set of symbols xk (k=1 to M) whose 
probability of occurrence is p(xk). A  N-symbol message, where N is very large, will typically 
contain Np(Xj) occurrences of Xj. The number of typical sequences is
_________Nl_________~2NH(X)> where H(X) = -V  p(Xi)logp(Xj) is the Shannon function.
(Np(X l))!...( Np(xM))! ~ t "
H(X) is said to represent the quantity of information per symbol or, by abuse of language, the 
‘information content1 (in bits) of the source. As N tends to infinity, atypical sequences occur 
with negligible probability and there remains only 2NH(X) equiprobable typical sequences. 
Every such sequence can be labelled with a number and that number be sent in place of 
the N-letter m essage: the original message is compressed from NIogM bits to NH(X) bits. 
This compression is optimal (Shannon’s theorem). In Schumacher’s version, the source is 
assumed to ‘prepare’ systems as specified by the statistical operator p. Although an 
assembly of N qubits can be generally ascribed a N-qubit subspace, the Hilbert space 
characterisation of the assembly can be projected onto a subspace of lower dimension 2NS(p), 
where S(p) is the von Neumann entropy. In close parallel with Shannon’s theorem, in which 
H(X) is a measure in bits of the resources required to convey the statistical features of the 
source X  (described by a given probability distribution), the von Neumann entropy S is 
a measure (expressed in terms of a number of qubits) of the resources required to convey 
the statistical features of a preparation specified using the operator p.
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Christopher Fuchs, who is currently one of the most dedicated and consistent 
proponents of the ‘strong Ql* program, has been briskly defending1 his 
conviction that one of the priorities of theoretical research in physics should be 
to look for a small set of information-theoretic principles from which the whole 
of quantum theory would be seen to emerge in an almost self-evident manner. 
His personal driving intuition is that the whole of quantum physics might follow 
from a single ‘crisp’ statement like ‘gathering information generally implies a 
disturbance to the information that may be gained by some other party2’. 
If quantum theory is ‘physical’ as it is meant to be, it would be through that 
property, distinctive of a ‘quantum world’, whereby observers are kept from 
ever gathering more data than Hilbert space vectors allocated to a pure case 
preparation allow them to. Quantum theory would be nothing but the 
essentially unique framework for prediction that could accommodate that 
property. Fleshing out the idea of a fundamental trade-off between information 
gain and ‘disturbance’ requires being able to quantify such gain. The three 
information measures Fuchs considers3 are mutually consistent in that larger 
‘mutual’ Shannon information (1) corresponds to a smaller probability of error
(2) and to smaller statistical overlap (3). On the other hand, these measures 
do not mesh to the point that any measurement that is optimal for any one of 
them is also optimal for the others. On the ‘disturbance’ side, the extent to 
which a prior assignment is affected by one’s gain of information can be 
variously thought of in terms of a distance between the initial and the final 
epistemic situation (a disturbance measure will typically vanish if the initial and 
final assignments coincide). Drawing on the ‘no-broadcasting4’ result, Fuchs5 
suggests that non-commutativity (of density operators) might be the key 
feature behind the sort of basic trade-off between information gain and 
disturbance he is after. Indeed, a ‘which is which’ gain of information regarding 
the identity of two pure case preparations implies no disturbance just in case 
the two density operators are orthogonal, hence clonable. However, no such 
connection exists in the mixed case between broadcastability and ‘no 
disturbance’. It remains to be seen whether such considerations can lead to 
some simple reciprocal relationship (as simple, say, as a Heisenberg-type 
inequality) between the two kinds of measure. Until this is achieved, Fuchs 
programme cannot be regarded as more than theoretically motivated wishful 
thinking. Besides, the endeavour falls short of addressing pressing questions.

‘ Fuchs 2001,2002.
2 Such a statement is central to quantum cryptology, and in particular to the implementation 
of secure schemes of quantum key distribution; see Bennett and Brassard 1984; H.K. Lo in 
L o eta l. 1998; Nielsen and Chuang 2000.
3 Fuchs 1996,1998. These are also, in a definite sense, measures of distinguishability; see 
end of Section 6.2.
4 Barnum etal. 1996 ; see footnote 1 p. 144.
5 Fuchs 1998.
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First and foremost, why did physicists have to start probing the world on 
microscopic scales and look for an appropriate framework for atomic physics 
to hit upon what would later be (properly?) recognised as an expression of 
trade-offs that are necessarily part and parcel of our attempts to gather and 
exchange information within a ‘quantum world’? And why quantum for that 
matter? Why should the impressive empirical adequacy of quantum 
mechanics and its derivative frameworks (quantum field theories in particular) 
relate to any such trade-offs? And why should that kind of trade-off have 
anything to do with the finiteness of an action quantum?
It is a consequence of the structural impossibility to establish by a single 
empirical test the veracity of a statement about a ‘quantum’ preparation1 that 
performing a measurement on one of the two arms of a binary preparation 
cannot be used .to implement a scheme that would allow information to be 
conveyed superluminally. If one could, just by measuring an individual system, 
find out ‘its’ ket or density operator, then one could at the very least decide 
whether one is dealing with a pure or with a mixed case. Then, given 1+2 
pairs prepared e.g. as singlets, it would be possible for Bob, by performing just 
one measurement on 2, to deduce whether or not Alice had carried out a 
measurement on the matching particle 1: the answer would be ‘yes’ if his 
measurement identified a pure case, and ‘no’ for a mixed case. Since this 
could be achieved regardless of the spatial separation between Alice and Bob, 
this possibility would provide them with a strategy for communicating ‘faster 
than light’. Thus there is a sense in which, because of the above limitation, 
quantum theory precludes any form of instantaneous or superluminal transfer 
of information between two parties via entangled pairs, if any such transfer is 
meant to be achieved through measurements performed on either pair 
member2.
Another implication of the standard formalism is the non-existence of a 
systematic procedure whereby, starting from two uncorrelated preparations 
with density operators a and p, one would end up with a binary preparation 
generally exhibiting entanglement and such that the reduced (marginal) 
density operators for the two ‘parts’ would both be p. Such ‘broadcasting’, the 
restriction of which to pure cases (a®p -> p<8>p) is ‘cloning’, is known to be 
ruled out in the quantum-theoretical setting, unless the preparations to be 
broadcast (cloned) happen to be associated with mutually commuting density 
matrices (orthogonal kets)3. ‘No cloning’ had, a decade prior to broadcasting,

Various proofs have been given that any such attempt is doomed to failure. See e.g. Dieks 
1988, Peres 1988, Jaeger and Shimony 1995, Busch 1996. All that one can afford is to 
increase the confidence level by testing more than one sample.
2For a critique of ‘quantum no-signalling’ proofs in historical perspective, see Kennedy 1995, 
and Lo etal. 1998; Nielsen and Chuang 2000 for typical Q IT  arguments.
3 Barnum etal. 1996, Dieks 1982, Wootters and Zurek 1982. See note 1 p.144.
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been pointed out as a rather trivial though intriguing consequence of the 
linearity1 of the standard formalism of quantum theory. In fact, one may 
wonder whether much of the psychological impact of ‘no cloning’ did not arise 
because of the very choice of the word2 cloning. Coupled with a view of Hilbert 
space vectors or density matrices as representatives of ontologically 
construed ‘states’, this results in a problematic picture in which all the 
objective physical attributes of a single individual system would be 
systematically reproduced in a different embodiment3.
Finally, unconditionally secure ‘bit commitment’ is precluded by Hilbert space 
structure and ®-composition. In a bit commitment protocol one party, Alice, 
supplies an encoded bit to another, Bob. The encoding procedure is such that 
it should not allow Bob to ascertain the value of the bit until Alice provides him 
with additional information. This she does at the time she ‘reveals’ the bit 
value she committed initially. Can a bit commitment protocol be set up, such 
that Bob can confidently assume that the value Alice reveals to him actually is 
the one she committed earlier on? In 1984, Bennett and Brassard4 showed 
that, by making cunning use of two-qubit entanglement, Alice can cheat 
without Bob being able to detect it. Lo and Chau5, and independently Mayers6 
subsequently showed that a cheating strategy based on entanglement is 
always possible in principle.
Consider the following three ‘no go’: (i) performing a measurement on one 
system only cannot instantaneously or ‘superluminally’ have any influence on 
future predictions pertaining to any remote and independent system (modulo a 
suitable criterion of independence); (ii) no broadcasting; (iii) no unconditionally 
secure bit commitment. Clifton, Bub and Halvorson (CBH) have recently 
argued7 that these three ‘no go’ are, if they are taken as postulates, sufficient 
to deduce a very general formulation of quantum theory, encompassing all 
variants of quantum field theory. Taken together, they are shown to entail the 
mutual commutation of observables pertaining to different ‘parts’, general non
commutativity for the observables that pertain to any one part considered on 
its own, and the pervasiveness of non-classical correlations associated with

1 The original ‘no cloning’ argument of Wootters and Zurek (1982) makes no reference to 
unitarity.
2 A. Peres suggests that another initial source of attraction towards ‘no-cloning’ is its loose 
connection to the question of 'superluminal influences’ (identified as such in QIT related work 
despite the general absence of relativistic considerations stricto sensu), adding: “As it often 
happens in science, these things were well known to those who know things well.” (Peres 
2002)
3 A similar remark could just as well be made about the expression ‘quantum teleportatiori.
4 Bennett and Brassard 1984.
5 Lo and Chau 1997.
6 Mayers 1997.
7 Clifton et al. 2003.
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entanglement. As it turns out, those three features are all one needs for 
setting up an abstract quantum theory as the authors view it.
In accordance with a general trend in theoretical QIT work, CBH opt for a 
thoroughly C*-algebraic treatment, the generality of which encompasses all 
forms of quantum theory, from the most familiar to the most exotic. By a unital 
C*-algebra1 is meant a Banach *-algebra over the field of complex numbers,

such that involution (*) is related to norm by A*A = ||A||2. A C*-algebra is

spanned by positive operators that constitute its so-called ‘effects’. If * is the 
adjoint operation and || || the standard operator norm, then the basic Hilbert

space structure of Galilean-relativistic quantum mechanics obtains2. A crucial 
step taken by the authors consists in defining a state of a C*-algebra as any 
positive and normalised linear functional on the algebra. In standard quantum 
theory, such a state obtains by selecting a positive and unit trace operator p 
and defining a linear and positive functional via tr(pA) for any A in the bounded 
algebra of linear operators. The physical, or more accurately operational 
significance of such a state lies entirely in its supplying “a catalog of the 
expectation values of all observables3”. The physical observables are to be 
represented by self-adjoint elements of the relevant unital subalgebras, where 
the latter encompass everything about the relevant systems that is amenable 
to prediction. To what extent such elements qualify as observables is to be 
justified on group-theoretical grounds, as outlined in Section 2.2, but the 
authors have no concern with that particular issue.
The C*-algebraic notion of state just introduced does not presuppose 
countable additivity, hence Gleason’s theorem is not applicable. The absence 
of any such presupposition is primarily due to the fact that no assumption 
needs to be made a priori regarding the availability of an infinite and 
convergent sum of orthogonal projectors. As a matter of fact, there are pure 
(dispersion-free) states in the C*-algebraic sense that cannot be represented 
by Hilbert space vectors or density operators. On the other hand, it so 
happens that, for any C*-algebraic state, some representation can be set up in 
which that state admits a vector representative (whether in the pure or mixed 
case). Eventually, “every abstract C*-algebra has a concrete faithful 
representation as a norm-closed *-subalgebra of the bounded algebra of linear 
operators, for sdme appropriate Hilbert space. So there is a sense in which 
C*-algebras are no more general than algebras of operators on Hilbert spaces 
-  apart from the fact that, when working with an abstract C*-algebra, one does

1 See e.g. Kadison and Ringrose 1997.
2 Every von Neumann algebra is a C*-algebra, but the converse does not hold.
3 Clifton etal. 2003.

189



not privilege any particular concrete Hilbert space representation of the 
algebra1.”
It is a somewhat neglected fact2 that an operator formulation can be given for 
both classical and quantum mechanics. Classical observables being real- 
valued functions on a 6N-dimensional phase space, pure states then 
correspond to phase space points, warranting the tacit identification of the 
C*-algebraic predictive notion of state with the usual kinematical one3. 
Probability measures on phase space are introduced to tackle those cases in 
which detailed knowledge of kinematically relevant values is not available. 
As the authors point out, “not only does every classical phase space 
representation of a physical theory define a C*-algebra, but, conversely, 
behind every abstract abelian C*-algebra lurks in its function representation 
a good old-fashioned phase space theory4.” We would therefore be justified in 
“treating a theory formulated in C*-algebraic language as classical just in case 
its algebra is abelian”, and believing that “a necessary condition for thinking of 
a theory as a quantum theory is that its C*-algebra be non-abelian5.” 
The condition is not sufficient, however, for non-commutativity by itself implies 
nothing as to the existence or not of such non-classical correlations as are 
associated in the standard formalism with entanglement.
A conveniently “larger” C*-algebra AvB can be generated from two C*- 
algebras A  and B and used as the appropriate arena for a C* state 
representation of joint (predictive) statements pertaining to both ‘arms’ of 
a binary preparation. A criterion for regarding those arms as mutually 
independent, for all predictive purposes, regardless of whether or not 
A-related observables commute with B-related ones is that, for any ‘state’ 
p ieA  and p2eB, there exist a state peAvB such that the restriction, obtained 
via partial tracing over Hb (resp. HA) in the standard Hilbert space formulation, 
of that state to A  (resp. B) is pi (resp. p2). A condition, both necessary and 
sufficient, for this to be the case is that6, for all AeA and BeB, ||AB|| = ||A|||B||.

Let us assume (i) i.e. that merely performing a measurement on one system 
cannot instantaneously affect our predictive capacities with respect to an 
independent ‘subsystem’ (in the above sense of independence). By saying 
that an operation Alice performs conveys no information to Bob, it is meant 
that the abstracted ‘state of Bob’s system’ (in the authors phrasing) is left 
invariant by that operation. More precisely T, defined on AvB, conveys no 
information to Bob iff the restriction to B of T*, applied to the ‘global’ state

1 Ibid.
2 Despite its early recognition e.g. by Koopman 1931.
3 Or with an objective ‘property state’ (Bub 1999, Chapter 1).
4 Clifton etal. 2003.
5 Ibid.
6 Florig and Summers 1997.
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PgA vB, satisfies [T*(p)]b = pB. If this is satisfied, then all expectation values for 
the outcomes of measurements of Bob’s observables will not differ in any way 
after the operation from what they were before. Expressing T as a positive 
operator valued resolution of the identity in A, the condition is simply that for 
all observables BgB, T(B) = B, and this is shown by CBH to be equivalent to 
asserting that an effect on A, representing the measurement performed by 
Alice, commutes with any effect on Bob’s side. Such commuting is thus 
equivalent to imposing the ‘no instantanteous conveyance of information by 
measurement’ constraint. It should be noted that the authors interpret the 
mutual commutation of A and B observables as an expression of kinematical 
independence, regardless of the fact that no consideration of a clearly 
mechanical nature is included in their premises -  not least in the very 
definition of a C* state -  nor in the course of their derivation.
Having established the existence and uniqueness of product states of AvB, 
such that p(AB) = p(A)p(B) for all AeA and BeB, where A  and B are both C* 
and kinematically independent, CBH proceed to show that it suffices that the 
algebra of observables be abelian for a map to exist, which broadcasts 
(clones) an arbitrary pair of input mixed (pure) C*-defined states. Pairwise 
broadcasting (cloning) is thus always possible in a classical, hence abelian 
theory. In fact, abelianity is also a necessary condition for pairwise 
broadcasting to be possible. Since a quantum theory, in the author’s 
C*-algebraic acceptation, is fundamentally non-abelian, broadcasting (cloning) 
is therefore precluded in a ‘quantum’ setting.
If binary preparations were restricted to product (pure) or separable (mixed) 
cases then, by properly acting upon spacelike separated ‘subsystems’, one 
could devise a bit commitment protocol that would be unconditionally secure. 
In other words, if their respective operations and cross-comparison of their 
locally gathered data can provide them only with evidence of ordinary 
(‘classical’) correlations, Alice cannot cheat by making a preparation she could 
later at will transform into either of two preparations associated with the 
committed bit, without Bob ever being able to detect the substitution. 
Assuming kinematical independence hence, according to (i), the absence of 
any instantaneous predictively significant repercussion on Bob’s side of any 
measurement being performed by Alice on hers, and assuming also the non
commutativity of their respective algebras of observables, then enforcing the 
prohibition of unconditionally secure bit commitment1 requires that 
entanglement should be a generic feature of binary preparations. The authors 
obviously understand this requirement as meaning that entanglement is 
endemic amongst pairs or n-uples of individual quantum systems, or that

1 Behind Alice’s capacity to cheat lies the basic fact, linked to non-commutativity, that 
different mixtures can be associated with the same density operator.
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“spacelike separated systems occupy entangled states”. Notice, however, that 
the aforementioned equivalence is derived on the basis of a notion of ‘state1 
that bears no evident relationship to any form of ‘occupation’ associated with 
the possession of attributes by individual systems.
The main technical limitation of the CBH endeavour, which the authors duly 
acknowledge, is their inability to establish, within a C*-algebraic framework, 
the complete equivalence between a theory being ‘quantum’ and claiming that 
the three postulates hold. A proof that it is sufficient to allow entanglement in 
order to block the possibility of unconditionally secure bit commitment is still 
wanting. This is because, if the results of Mayers and Lo and Chau suggest it 
might be so, their proof hinges on properties of the elementary formalism of 
quantum theory -  in particular, on the biorthogonal decomposition theorem, 
and a basic theorem1 about the ‘extractability’ of any mixture from a given 
‘entangled state’. Deciding whether the implication holds in the C*-algebraic 
framework would require an appropriate generalisation of the latter theorem, 
which remains an open question.
CBH view their results as a significant step toward the goal of securing 
‘physically’ compelling and solid foundations for the whole of quantum 
physics. In particular, they claim that “[t]he foundational significance of [their] 
derivation...is that quantum mechanics should be interpreted as a principle 
theory, where the principle at issue is information-theoretic.”...Indeed, their 
principle-based characterisation of quantum theory is intended to “lendfs] 
credence to the idea that an information-theoretic point of view is the right 
response to adopt in relation to quantum theory.” The suggested refoundation 
would be achieved by “substituting for the conceptually problematic 
mechanical perspective on quantum theory an information-theoretic 
perspective. That is, we are suggesting that quantum theory be viewed, not as 
first and foremost a mechanical theory of waves and particles, but as a theory 
about the possibilities and impossibilities of information transfer.” In that 
respect, CBH make a parallel with STR, which is regarded as a paradigmatic 
principle theory:

A relativistic theory is a theory with certain symmetry or invariance 
properties, defined in terms of a group of space-time transformations.
Following Einstein, we understand this invariance to be a consequence 
of the fact that we live in a world in which natural processes are subject 
to certain constraints. A quantum theory is a theory in which the 
observables and states have a certain characteristic algebraic 
structure. Unlike relativity theory, quantum mechanics was born as 
a recipe2 or algorithm for calculating the expectation values 
of observables measured by macroscopic measuring instruments.

1 Hughston eta l. 1993.
2 This is a somewhat misleading statement: neither Heisenberg nor even Born (and obviously 
not SchrOdinger) had a probabilistic interpretation in mind when they worked out the basic 
formalism of quantum mechanics (see Chapter 1).
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These expectation values (or probabilities of ranges of values of 
observables) cannot be reduced to probability distributions over the 
values of dynamical variables (or probability distributions over 
properties of the system). Analogously, one might imagine that the 
special theory of relativity was first formulated geometrically by 
Minkowski rather than Einstein, as an algorithm for relativistic 
kinematics and the Lorentz transformation, which is incompatible with 
the kinematics of Newtonian space-time. What differentiates the two 
cases is that Einstein’s derivation provides an interpretation for 
relativity theory: a description of the conditions under which the theory 
would be true, in terms of certain principles that constrain the law-like 
behavior of physical systems. It is in this sense that our derivation of 
quantum theory from information-theoretic principles can be 
understood as an interpretation of quantum theory: the theory can now 
be seen as reflecting the constraints imposed on the theoretical 
representations of physical processes by these principles1.

Thus a given type of algebraic structure is, according to CBH, the defining 
characteristic of a quantum theory. This is accordance with QIT practice and 
conceptions, but also with much modern work on the conceptual foundations 
of quantum mechanics2. Algebraic structure would be the reflection of certain 
definite constraints to which natural processes would be subject, and ‘a’ 
quantum theory would owe its particular structure to those constraints being 
distinctively information-theoretical. This might account for the long delay in 
our coming to terms with the more puzzling aspects of the basic quantum 
formalism. Information only came to the fore as a theoretical concept a good 
fifteen years3 after the emergence of quantum mechanics, and engineering 
concerns with data processing were not extended to quantum-theoretical 
representations until the rise of QIT more than a half-century later.
But in what sense are the three constraints chosen by CBH information- 
theoretic? Although (i) is allegedly about the possibility of instantaneous 
information transfers ‘between systems’, no technical concept of information 
plays any part in the proof of equivalence with ‘kinematical independence’. 
Given the fundamentally predictive significance of the C* notion of state, a 
more adequate expression of the constraint would be that performing a 
measurement on system A cannot (should not) by itself alter the manifold of 
probability distributions associated with measurements to be potentially 
performed on B alone. This is all there can be, realistically, to the kind of 
‘influence’ the principle is intended to prohibit. If this is admitted, however, 
then it is somewhat inappropriate to think of the stated constraint as one to 
which natural processes, as opposed to an abstract agent’s capacities of 
‘acting in the world’, would be subject.

1 Clifton et al. 2003.
2 One of the three authors (Bub 1999) has been, for decades, advocating the importance of a 
logico-algebraic approach to those basic issues.
3 Prominently through Norbert W iener’s cybernetics programme in the early 1940s (Dupuy 
2000), then Shannon’s ‘theory of communication’ (Shannon 1948, Shannon and Weaver 
1949).
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Of the three suggested postulates, the first is that which might appear to lend 
itself to the closest analogy with STR. This is deceptive, however, for the latter 
is not grounded on the recognition of an upper bound on the speed at which 
any physical influence can be propagated. In its original (1905) form, the 
theory only assumes that the speed of light is invariant in all references 
frames, an assumption that can in fact and should rather be dispensed with 
(see Section 3.1). Moreover, widespread though the reference to 
‘superluminal’ influences or signalling is in the QIT literature, it must be 
repeated that neither at a technical nor at a conceptual level are 
considerations of relativity (Galilean or Einsteinian) involved. What is at stake 
here is the fact that two (n) observers who locally perform operations on ‘parts’ 
of a binary (n-ary) preparation exhibiting entanglement cannot transmit data to 
each other without actually exchanging some of the particles they measured, 
or performing further operations on their own particles on the basis of 
instructions supplied (‘classically’) by the other parties involved.
In its very content and formulation postulate (iii), which prohibits 
unconditionally secure bit commitment, is that of the three postulates which 
ties in most clearly with information-theoretical issues and concerns. Not so 
surprisingly perhaps, it is also the one to which the idea of a constraint to 
which natural processes should be subject is least applicable. All of the 
founding fathers, including Von Neumann (arguably the most likely to have 
responded with sympathy to the idea of bringing together physics and 
information theory1) would have been utterly perplexed with the suggestion to 
ground quantum physics, be in part, on the always open possibility for one 
party to cheat with total impunity whilst committing one bit to another. And this 
is not a mere matter of information-theoretical concerns not being ‘in the air’ 
when quantum mechanics emerged and its basic mathematical structure was 
unravelled. The urge to develop a new kind of mechanics arose as a response 
to the challenge of ‘saving phenomena’, whether these took the form of 
spectroscopic data, the black-body spectrum or the empirical values of the 
specific heats of solids. This cannot be simply brushed aside as a mere 
accident of history, that would have been both fortunate in its pointing (?) 
towards the need for a novel kind of framework, and rather unfortunate in its 
letting very little transpire of the actual necessities behind such a framework. It 
might well be, as CBH suggest, that quantum mechanics is not primarily about 
microscopic objects as such, be they conceived as particles, as waves or 
unlikely hybrids thereof. Indeed, the idea is put forward in chapter 3 of this 
dissertation that quantum mechanics can be seen to arise, albeit in an indirect 
manner, from the satisfaction of some rather abstract regulative constraints, 
encapsulated in Faraggi and Matone’s ‘equivalence principle’ (Section 3.3).

1 Bearing in mind that von Neumann was a co-originator of game theory, the theory of cellular 
automata and computer science.

194



On the other hand, it sounds prima facie rather implausible, to say the least, 
that given its relevance and its tremendously successful application to 
processes and physical structures on microscopic -  typically (sub)atomic -  
scales, quantum mechanics, as a physical theory, should find the rationale of 
its efficiency in such broadly construed information-theoretical principles as 
suggested by CBH, Fuchs or others. Such endeavours should rather be 
thought of as alternative ways -  possibly illuminating, more likely misleading -  
of pointing to essential differences between two kinds of predictive 
frameworks, associated with values 1 (‘classical’) and 2 (‘quanta!’) of Hardy’s r 
parameter (see Section 9.3).

End o f Part B
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10

Finale

It was argued (Part A, Chapter 3) that, given its status as a fundamental 
theoretical framework, one should reasonably expect quantum mechanics to 
be formulated as a principle theory. Indeed, Schrodinger’s equation can be 
shown to follow, albeit in an indirect way, from the requirement that a 
Hamiltonian dynamical framework comply with a single (‘Equivalence’) 
principle. As discussed in Section 3.3, a principle account of quantum 
dynamics can be given on the basis of ‘relativistic’ requirements that relate to 
the suspension of any privilege that is classically granted to the rest frame. 
The Faraggi-Matone (FM) equivalence principle boils down to the statement 
that all mechanical systems are equivalent under coordinate transformations. 
In particular, there must exist a trivialising coordinate map that reduces any 
system to the free zero-energy case. A direct consequence of assuming the 
universal validity of the FM equivalence principle is an alternative (3.3.8) to the 
classical form of the stationary Hamilton-Jacobi equation. The (not simply 
Bohmian) ‘quantum potential’ whereby the ‘quantum-mechanical’ alternative 
(3.3.8 or QSHJE) to the Hamilton-Jacobi equation essentially differs from the 
latter is a direct consequence of postulating the universal existence of the 
trivialising map. That potential must be proportional to the Schwarzian 
derivative of the reduced action (a straightforward generalisation of Hamilton’s 
characteristic function), which is the physically significant quantity in this 
principle-based refoundation of quantum mechanics. The new ‘quantum 
reduced action’ can never be constant, which guarantees the universal 
existence of the map. In contrast, the absence of any quantum potential in 
classical mechanics can be traced back to a suspiciously non-relativistic 
peculiarity of that frame in which a system is ‘at rest’.
Schrodinger’s equation turns out to be only derivative: it arises as a result of 
linearising the QSHJE. Consequently, and as a reflection of underlying 
symmetry, there is no one-to-one relationship between quantum reduced 
action and wave function. Therefore, a theoretical framework that, like 
quantum mechanics in its current acceptation, relies on Schrodinger’s 
equation alone lacks the finer resolution, hence descriptive power, that a 
dynamical framework based upon (3.3.8) affords in principle. For the existence 
of the trivialising coordinate transformation, hence the non-existence of a 
constant reduced action to be secured, a general solution of the Schrodinger 
equation must have a bi-polar form (a real wave function must be the sum of a
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polar expression and its complex conjugate). Whilst differing from Bohm’s 
representation, this feature is in full agreement with Floyd’s. Unlike Bohm’s, 
Floyd’s representation is based directly upon considering the solutions of the 
QSHJE (3.2.6-3.3.8), from which more general solutions of the Schrodinger 
equation can be subsequently derived. As Einstein had objected to Bohm1, in 
the case of stationary systems and real wave functions (necessarily square- 
integrable in Bohm’s account), the classical motion is not retrieved in the limit 
‘as Planck’s constant tends to zero’. The objection is precisely met in the FM 
approach through the occurrence of a bipolar form, which reflects the 
impossibility for the reduced action to be constant if the FM equivalence 
principle holds.
Bearing in mind that it is the stationary quantum Hamilton-Jacobi equation that 
is derived from the FM equivalence principle, it is a condition, necessary and 
sufficient, for the Schwarzian derivative, hence for the quantum potential, to 
exist that the total energy E be such that the Schrodinger equation derived 
from (3.2.6) have E as an eigenvalue, or equivalently that the Schrodinger 
equation admit a solution that is a square-integrable function on the real line. 
On the other hand, that all solutions of the Schrodinger equation have to be 
square-integrable responds to no dynamical necessity. On the view here 
propounded, the usual and exclusive focus on square-integrability is justified 
only in so far as this property turns out to underlie the adequacy of a special 
kind of predictive scheme (SAQM). Such a scheme, which identifies with 
‘quantum theory’ as it is commonly used and discussed, has proved to be 
most effective in its capacity to overcome in a pragmatic way the loss of 
descriptive power involved in switching from the solutions to the Q(S)HJE to 
those of the Schrodinger equation.
There remains the question of why FM equivalence, as reflected in the 
QSHJE, should go unnoticed unless the systems subject to theoretical 
treatment have typical actions that are much smaller than those that 
characterise ‘classical’ ones, and should (?) conversely be relevant and 
adequate to investigating (sub)molecular structure and behaviour (dimensional 
analysis shows that small action values typically coincide, albeit not 
necessarily, with microscopic scales). Why the proportionality factor in the 
non-homogeneous contribution to the QSHJE (FM quantum potential) should 
coincide with the empirically given Planck’s constant is certainly no less, but 
no more mysterious than is the identification of the maximal permissible value 
of speed in STR with the empirical value of the speed of light. It is also 
intriguing, and perhaps quite significant though presently obscure, that both 
universal constants c and h should be so centrally involved in processes 
involving electromagnetic radiation, despite the fact that none of those

1 See Holland 1993, p.243.
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constants appears to be structurally bound by the nature of any particular 
interaction.

On account of the rather abstract character of the FM equivalence principle 
and of the technicalities involved in deriving the QSHJE, it is no wonder that 
no late nineteenth-century expert in analytical mechanics ever contemplated, 
be it as a purely intellectual exercise, any such amendment to the Hamilton- 
Jacobi theory. If anything, the endeavour presupposes relativistic concerns 
and insights that were not really ‘in the air* before1 1905. Besides, if our 
hypothetical mathematician or physicist had, none the less, managed to derive 
the QSHJE, he could hardly have been aware of the underlying symmetries 
associated with the Schwarzian derivative and, beyond it, with the Legendre 
transformations. Last but not least, it is most unlikely he would ever have felt 
the urge, even with Hamilton’s analogy between optics and mechanics in 
mind, to take the step of linearising the resulting ‘quantum’ alternative to the 
stationary Hamilton-Jacobi equation, thereby arriving at the ‘Schrodinger’ 
equation. If the occurrence in the quantum stationary Hamilton-Jacobi 
equation of an ‘additional’ potential-like term makes it inevitable to reassess 
basic tenets of classical mechanics (much as the replacement of the Galilean 
by the Lorentz transformation must lead to rethinking fundamental notions like 
inertia and energy), it is by no means clear a priori what the purpose and the 
significance of the Schrodinger equation might be, let alone that it should be 
crucial to an appropriate though probabilistic treatment of microphysical 
systems and processes. In hindsight, it is therefore not surprising that the 
actual emergence of quantum mechanics took an entirely different course. 
The breakthroughs of the first two decades of the twentieth century, from the 
resolution of the black-body or photo-electric puzzles to the Bohr-Sommerfeld 
model of the hydrogen atom, had given physicists no clue as to what kind of 
structural necessity the occurrence of Planck’s quantum might be the 
manifestation of. A baffling duality of wave and particle aspects, which 
seemed from the outset to be part and parcel of the quantisation issue, was 
emphasised, rightly enough, although perhaps at the expense of another 
conceptually no less, and maybe far more important question: might the fact 
that Planck’s constant has the same dimensions as classical action be a 
pointer toward its structural/physical significance? Faced with the urgency to 
come up with a unified account of the phenomenology of atomic physics, the 
matrix theorists on one side and Schrodinger on the other hit upon operator 
relations and differential equations that, quasi miraculously, led them to 
predictions that were empirically adequate. All of them failed to realise that 
Schrodinger’s equation is in fact not the master equation of a theoretically

1 The full significance of Einstein’s Zur Elektrodynamik... paper was not immediately 
perceived (Miller 1998, 7.4 ).
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well-grounded ‘quantum’ alternative to classical (Newtonian) mechanics. 
That the QSHJE can be derived from the Schrodinger equation through a 
formal substitution is by itself of little help to figure out what set of theoretical 
requirements could give rise to that equation (QSHJE) in the first place (this is 
arguably the most basic shortcoming of Bohm’s approach). For the sake of 
rapid progress in the development of atomic physics, it was most fortunate 
that mathematical properties of solutions of the Schrodinger equation should 
lend themselves to the formulation of a most effective probabilistic algorithm. 
Again, it so happens that square-integrable solutions of the Schrodinger 
equation have the requisite mathematical features for setting up a consistent 
linear scheme, the aim of which is to compute the probabilities of 
observational outcomes. It took decades, however, for this to be fully 
recognised, and for it to be realised that such a predictive scheme owes its 
characteristic structure to its adequacy for the calculation of probabilities of 
context-dependent occurrences. The best generalisation to date of such 
a scheme is a Hardy r = 2 theory1. The linearity of both r = 1 and r = 2 
Hardy frameworks, hence that of the SAQM, certainly reflects, at least in part, 
the linearity that is an inherent feature of averaging. However, this is not to say 
that linearity in the Schrodinger equation itself actually is a consequence of its 
yielding an adequate algorithm for computing expectation values. This would 
be reversing both theoretical priorities and historical facts. Rather, it is the 
case that the Schrodinger equation, the linearity of which arises from the very 
mathematical procedure whereby it is derived from the QHJE, lends itself 
to setting up a predictive algorithm that is isomorphic to a projector-based 
instantiation of a Hardy (r = 2)-type scheme. The implementation of such an 
algorithm is made possible by Hilbert space structure, which is itself 
abstracted from the existence of square-integrable solutions to the 
Schrodinger equation. At any rate, dynamics does -  and must -  come first, be 
it in the conceptually obscure embodiment of the Schrodinger equation (or 
‘Heisenberg picture’). The emergence of a most efficient probabilistic scheme 
for prediction should thus essentially be regarded as a practically welcome, 
but conceptually misleading by-product of a more basic and well-motivated 
alternative to classical Hamilton-Jacobi theory.
Hilbert space structure, which reflects the truly ‘quanta!’ dynamics regulated by 
the QHJE only in an indirect manner, constrains the form of physical quantities 
via the linear representation of the relevant groups2. The linear operators that 
represent fundamental observables, with their distinctively ‘quantum- 
mechanical’ commutator structure, arise as a response to requirements of 
invariance under time, space and inertial transformations. A Hilbert space- 
based scheme for the calculation of probabilities of measurement outcomes is

1 Section 9.3.
2 Section 2.2.
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optimal given the ensuing limitations to the mutual compatibility of such 
observables -  in other words, the scheme has no ‘surplus structure’. Indeed, 
“if all observables were compatible, not only would the Hilbert space have, as 
it were, some surplus capacity for the representation of observables, but a 
number of rays would represent the same pure1 [case].” The dynamics 
regulated by the QHJE exerts fundamental constraints on the kind of linear 
vector space structure on the basis of which a consistent and effective 
predictive scheme can be set up (via Schrodinger’s equation). These include 
the necessity for Hilbert space to be defined over the* field of complex 
numbers2 (such necessity can be traced back to symmetry associated with 
Legendre duality and time evolution; see Section 3.3), which contributes in a 
crucial manner to the optimality of the predictive scheme.
If the mutual compatibility of experimentally accessible quantities is restricted 
to non-equivalent classes, all experimental propositions cannot be coordinated 
in a unified way within a boolean framework, isomorphic to the algebra of set- 
theoretical operations. Instead, the validity of boolean logic and the 
Kolmogorovity of probability can be maintained only within precisely 
circumscribed contexts. Predictive consistency across non-equivalent contexts 
then calls for a metacontextual logic with a lattice structure that is 
orthocomplemented and non-distributive. This point was emphasised several 
decades ago by P. Heelan3, who tentatively argued that “the locus of 
nonclassical logic in quantum mechanics is in the plane in which physical 
contexts are related to one another, and not, as all writers have hitherto held, 
in the plane of single quantum-mechanical events4”. According to Heelan, “the 
proper subject matter of so-called quantum logic would be the manifold of 
experimental contexts in which it is relevant to use one linguistic or conceptual 
framework rather than another5” (ibid.). Its characteristic (orthocomplemented 
and /70/7-distributive) lattice structure would then consist in a partial ordering of 
a set of experimental languages that are pairwise incompatible, in the sense 
that each one corresponds to a distinct choice of basis for spanning the linear 
subspace the ket ascribed to the current preparation belongs to (each basis 
choice picks off a definite context, hence a definite class of meaningful, 
testable experimental propositions). Thus, the need for ‘quantum’ logic would 
arise because limits to the compatibility of quantities in Hilbert space quantum

1 Hughes 1989, p.112.
2 Attempts to cast quantum theory in real Hilbert space (Stuckelberg 1960 ; Mackey 1963) 
have shown that preserving the full and empirically adequate predictive potential of the SAQM  
requires e.g. introducing an ad hoc operator J, which commutes with all the operator 
representatives of observables, and such that J2 = -I. Since the latter relation is just another 
representation of the imaginary number /, this is tantamount to reverting to the complex 
formulation.
3 Heelan 1970a, 1970b.
4 Heelan 1970b.
5 Ibid.
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theory enforce a metacontext-language (used to coordinate propositions that 
pertain to context-related languages) that is precisely structured as a non
distributive lattice.
A predictive framework that is made possible via the square-integrability of 
solutions to the Schrodinger equation will typically rely on the identification of 
a context-neutral mathematical entity or predictor (Hilbert space vector, 
density matrix) used to characterise the predictive yield of a given preparation 
upon the selection of an appropriate context. An adequate predictive scheme 
must obviously preserve the validity of the ordinary (Kolmogorovian) 
probability calculus within any given context, but the form of its basic rules 
also reflects a characteristic meta-context lattice structure. Although neither 
Hardy’s axioms nor Destouches’s more rudimentary scheme1 make any 
explicit reference to context-dependence, it is satisfying to think of the 
statistical algorithm of quantum theory -  i.e. of quantum theory tout court as it 
is usually debated on or conceived of in QIT -  as coordinating probabilistic 
valuations at a meta-context level, in other words as an algorithm that 
functions both within and across definite contexts.
Tensor product composition allows the predictive formalism to be applicable 
to ‘fragmented’ or n-ary preparations. Whether any such preparation can be 
empirically realised, and what it amounts to physically, e.g. in terms of 
constituent subsystems and properties thereof, falls beyond the compass of 
the SAQM. In any case, comparing locally gathered data may exhibit 
correlations that cannot be accounted for on the basis of a simple-minded 
picture based on common causes. Owing to the purely predictive scope of the 
scheme, this means nothing but that some commonsense expectations 
associated with classical probability calculus (Hardy r = 1 theory) need not 
apply to a ‘non-classical’ predictive scheme (r = 2 theory). In particular, the 
fact that correlations are predicted, which cannot be interpreted as originating 
in any sort of preordained ‘instruction set’ does not imply the existence of non
local influences or any other kind of spooky links between distant localised 
entities2. Whilst it is legitimate to inquire about the way mutual relationships 
between parts of a composite system should be treated in a quantum 
dynamical framework based on the QHJE, and whether this should call for 
holism or non-locality, those are matters to be addressed on the basis of that 
equation and of its solutions.
The question of non-locality primarily arose in discussions of the Einstein- 
Podolsky-Rosen gedankenexperiment3, and the violation of Bell’s inequalities4

1 Section 5.3.
2 Mermin 1999 goes so far as to dismiss all claims of non-locality in the quantum setting as 
mere “fashion at a distance".
3 Einstein et al. 1935; reprinted in Wheeler and Zurek 1983.
4 Bell 1964,1987.
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by statistics of measurements performed on ‘entangled systems’. In a simple 
version1 of the EPR experiment, diatomic molecules with zero total angular 
(spin) momentum split into two identical atoms I and II whose spins are 
opposite. The resulting two beams travel in opposite directions and interact 
separately with Stern-Gerlach magnets: l-atoms ‘on the left’ (L), ll-atoms ‘on 
the right’ (R). All predictions relating to observations performed, with that 
particular set-up, on I and II atoms, including all correlations between results 
of such observations, can be calculated using the rules of quantum theory 
given a ket of the form (8.1.1).
The direction of the magnetic field and its gradient is the only characteristic of 
each of the Stern-Gerlach (SG) magnets that is deemed relevant to spin 
analysis. Let that direction be given by the vector §Lfor the SG device on the 

left, and by BR for that on the right. Let us further assume each particle 
behaves, for all the purposes of the experiment, like a microscopic spinning 
top. A definite and separate spin attribute for each of the atoms of any given 
pair would then be tantamount to the specification of a ‘preferred’ spatial 
direction. If it is assumed that the spin orientation of an atom is randomly 
selected at the time when the l-ll pair is created, the relevant parameter X in 
Bell’s analysis will be an angular value, treated as a random variable with a 
uniform distribution over the interval [0,27i]. Any l-ll correlation is then 
imputable to a rigid symmetrical relationship between values of X\ and A,n, 
irrespective of the orientation of the SG magnets.
Br can be chosen to provide a reference direction for angular deviations of 
the I and II beams. If the orientations of the analysers are parallel, the I and II 
deviations will be observed to be systematically opposite. On the other hand, if
Br and Bl make an angle 0, then this very sketchy model leads one to expect 
‘correlation errors’, i.e. failures of such oppositeness, which should occur with 
a probability that is proportional to 0. Owing to the hypothesis of angular

equiprobability, the probability of any such error is pe(0) = — and the
71

2|0|
correlation is E(0) = pe(0 )-(1 -p e(0)) = — -1 . The latter satisfies Bell’s

71

inequalities
|E(011) + E(012)±E(022) + E(021)|<2 ,

1 Bohm 1951.
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where the 0̂  denote relative orientations of the SG analysers1. By contrast,

1 C O S  0 0the prediction of quantum theory is pe(0) = — - —  = sin2 — and E(0) = -cos0,

for which there are choices of the 0’s that violate the inequalities.
A convenient picture of the difference between the two kinds of distribution is 
given by a unit circle with a preferred diameter (D), the direction of which is 
chosen parallel to that of the field gradient of one of the SG devices (e.g., that 
on the right). A point M on the circle can be taken to correspond to a given 
and hypothetically predetermined orientation of spin for the corresponding 
particle (e.g. II on the right). If the point N is the result of an orthogonal 
projection of M onto (D), then if M falls within one of the two angular sectors of 
amplitude 0 for which there may arise correlation errors, the corresponding N 
will fall within a line segment of (D), the length of which is 1 - cos0. Let us now 
transfer the randomness assumption from angular values to their cosines, i.e. 
from the M points to the N points. A uniform distribution, which corresponds to 
equiprobability along D, then takes the form that quantum theory predicts2:

/ m  2 ( 1 - c o s 0 )  . 2 9pe(0) = -L — ------ = sin — .

A probability pe that is proportional to 0 reflects the initial assumption that the 
angular X parameters are randomly distributed at the time when the l-ll pairs 
are created, and that any possible future interaction with a SG device is totally 
irrelevant to the ensuing statistics. In contrast, the analysers force upon the 
experiment a preferred choice of directions3. Thus, the rationale for a violation 
of Bell-type inequalities appears to come down to whether the probability law 
is deemed an (indirect) expression of respective physical attributes of I and II, 
and should therefore only be dependent on the local circumstances of the 
creation of the l-ll pairs; or whether prediction, in that particular set-up, should 
only hinge upon the relative orientation of two suitably positioned analysers. At 
any rate, there is no logical necessity in requiring that the correct probability 
distribution should be in agreement with a preconception of I and II as 
anything remotely like microscopic marbles produced with definite and 
randomly selected spinning axes. Besides, the first horn of the dilemma 
overlooks the non-isotropy of the set-up, which is, predictively speaking, its

1 For example, the maximum value of 2 obtains for q _ q _ a + !_  and e „  = e .. + % .
12 21 11 2

2 Although a given N may correspond to two distinct points on the circumference, ambiguity 
can be removed by distinguishing the two semicircles (D) separates and by counting the 
diameter once for each semicircle; this accounts for the number 4 in the denominator of the 
following expression.
3 In either case, it should not matter whether the direction that is chosen as a reference is that 
of the field gradient of one of the SG analysers rather than the other. In other words, the 
probability law ought to, and does indeed depend only on the relative orientation of the 
analysers.
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most significant characteristic Should not, on the contrary, the probability 
distribution reflect the symmetries -  or lack thereof -  of the experimental 
arrangement, which in this case boils down to relative orientations of the SG 
analysers? If so, then if one can speak at all of any influence on II of one’s 
measuring I, it is only in the sense that those relevant characteristics of the 
set-up should determine specific correlations, which comparing data obtained 
separately on I and II would exhibit. In any case, such dependence of 
prediction on basic traits of the set-up should not lead one astray into 
contemplating the existence of spooky links between the two atoms of any 
given pair1.

Let us stress it again: the effectiveness of the predictive rules of Section 4.2 -  
or some generalisation thereof -  must be grounded in a proper dynamical 
account, if they are not to be vacuous, or their adequacy incomprehensible. 
This must be borne in mind whilst assessing anti-realist construals of quantum 
theory, which may draw on such material as that covered in Part B of this 
dissertation. An especially significant example is provided by the theses 
propounded by Michel Bitbol. In a number of thought-provoking books and 
papers2, Bitbol has argued that a correct philosophical appraisal of quantum 
physics should have the beneficial -  indeed, almost therapeutic -  effect of 
dispelling a major illusion: that a phenomenon can always be in principle 
detached from the very conditions that make its occurrence possible. Bitbol’s 
stance is clearly neo-kantian. However, his more recent writings attempt to 
minimise the idealistic flavour of a ‘transcendental reduction’ via emphasising 
scientific practice and cognitive-operational preconditions to its effectiveness. 
Another acknowledged influence is that of Bohr and Heisenberg. Bitbol reads 
them as both striving, perhaps in a rather inadequate fashion, to articulate the 
view that such phenomena as encountered in atomic physics are necessarily 
and indissolubly co-determined by the experimental conditions of their 
manifestation. Provided our anthropological situation of cognisers and 
experimenters is properly accounted for, there would be “no need to further 
explain” the efficiency of quantum rules “by their ability to reflect in their 
structure the backbone of nature3”. Rather, Bitbol contends, “the basic 
formalism of quantum mechanics can effortlessly be construed as a structural 
presupposition of any activity of production and unified anticipation of mutually

1 This might well be what Bohr had meant in his notoriously obscure reply to Einstein, 
Podolsky and Rosen (Bohr 1935; reprinted in Wheeler and Zurek 1983); Halvorson and Clifton 
2001.
2 Bitbol 1996,1998,2002.
3 Bitbol 1998. By contrast, asserting that “self-existent objects are what justify the intentional 
attitudes” would be “very imprudent”, and “[the] project of ontologizing certain theoretical 
entities appears a mere attempt at hypostatising the major invariants of those activities.” 
(ibid.)
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incompatible contextual phenomena1.” This belated recognition of the aim and 
structure of quantum theory would eventually

“undermine the pictures so cherished by supporters of the ontological 
(disengaged) outlook...by showing that the predictive success of some of our 
most general scientific theories can be ascribed, to a large extent, to the 
circumstance that they formalize the minimal requirements of any prediction 
of the outcomes of our activity, be it gestural or experimental. The very 
structure of these theories is seen to embody the performative structure of the 
experimental undertaking2.”

Bitbol bases his claims entirely on (i) Destouches’s reconstruction of the basic 
formalism of quantum theory (SAQM) and (ii) Heelan’s tentative appraisal of 
quantum logic3. These prompt an outright denial of the physical reality of 
Schrodinger’s <VF waves’: the sole purpose of ¥  functions or kets is to provide 
abstract predictors (in Destouches’s sense, which Bitbol makes his own 
without further criticism), the mathematical properties of which would only 
reflect their invariance under changes of experimental situations (contexts). 
What remains of ‘complementary’ corpuscular aspects is a metaphorical way 
of referring to series of discretely distributed events as they occur under given 
experimental conditions. Thus one could say that quantum ‘waves’ are 
physically vacuous appearances that manifest the intercontextual 
effectiveness of a particular kind of predictive scheme, whereas the 
appearance of particles is a manner of describing, in a rather inappropriate 
classical mode, the discreteness of intracontextual occurrences. When all is 
said and done, the inter vs. intra distinction is all that should be left of Bohr’s 
half-baked idea of complementarity.
Given Bitbol’s rejection of any kind of disturbance based view, it is 
somewhat unclear why it should have taken the physicists’ confrontation with 
new -  typically microscopic -  domains of experience for them to realise that 
our means and procedures of investigation cannot be neutralised in all 
circumstances, and that they may in fact be constitutive of the very objects of 
investigation. On the other hand, it hardly comes as a surprise that, rather 
than seize the opportunity to re-assess preconditions of our cognitive- 
empirical activities within a world-as-experienced, many should have remained 
caught within the illusion that science can, in all circumstances, afford a 
disengaged outlook and have access, in a ‘strongly objective4’ way, to truths 
about a real-world-out-there.
Should we then consider, as Bitbol invites us, “quantum mechanics as a 
general technology of mesoscopic action and experimentation, or as a

1 Bitbol 2002.
2 Bitbol 1998.
3 Heelan 1970a, 1970b.
4d’Espagnat 1995.
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dialectical relation between situated phenomena and predictive invariants1”? 
It is the object of Part B of the present thesis to show that the SAQM functions 
as a context-sensitive kind of predictive formalism, in which the actual form of 
the relevant physical quantities is determined by symmetries. This suffices to 
account for the basic structure and the effectiveness of quantum theory, and 
“automatically defuses major paradoxes2”. Is this, however, all that one should 
reasonably expect from a fundamental physical theory such as quantum 
mechanics purports to be, and is generally regarded as? Bitbol’s answer is 
unambiguous: “[t]he only thing a physical theory does, and the only thing it 
has to do, is to embed documented actualities in a (deterministic or statistical) 
framework, and to use this framework to anticipate, to a certain extent, what 
will occur under well-defined experimental circumstances3”. Science can and 
should be concerned only with the web of interrelationships woven by carefully 
conducted experimentation/observation and the relevant modes of 
communication4, in contrast to classical (‘p re-critical’) views that 
“systematically favour a disengaged outlook, even though their very 
undertaking is grounded on the presuppositions of an engaged activity5.” 
Duhem’s remark6 that ontological pursuits in physical science can be 
motivated only by ‘reasons of the heart’, which neither analytical reason nor 
experience can prove legitimate, is as cogent today as it was in the first 
decade of the twentieth century. All the same, and whatever the seductions of 
the transcendental programme, it sounds rather implausible that physicists 
between 1900 and 1926 did, through the finiteness of Planck’s constant, 
unwittingly stumble upon nothing but the empirical trace (?) of regulative 
constraints their cognitive and experimental activity cannot but comply with. 
Bitbol also fails to address in any convincing manner such issues as the 
emergence in the long run, in a given ‘two slits open, no which-way detection 
attempted’ experimental situation, of an interference pattern that seems to 
indicate that some genuinely physical and, in a sense, ‘wavelike’ process is 
going on. Whilst ‘wavelike’ cancellation or reinforcement of terms in the 
calculation of probabilities need not raise any qualms about its physicality or 
lack thereof, the actual build-up of fringe patterns in a two-slit or other kinds of 
experiments cries out for an explanation (which standard quantum mechanics 
notoriously fails to provide). If anything, it sounds almost incongruous that a 
basic mathematical trait associated with the flexible use of a predictive 
scheme ‘across’ non-equivalent contexts should be underwritten by specific

1 Bitbol 2002.
2 Ibid.
3 Bitbol 1998.
4 Our most successful theoretical frameworks are to be seen as “embodiments of the 
necessary pre-conditions of a wide class of activities of seeking and predicting” (Bitbol 1998).
5 Bitbol 1998.
6 Duhem 1954.
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patterns exhibited on photographic plates. This is precisely the sort of pitfalls 
the principle (re)foundation of quantum mechanics suggested in Part A of this 
thesis avoids. For then, although the basic predictive rules of quantum theory 
can thoroughly be justified without making any reference to an underlying 
ontology of physical systems, just as important is the realisation that, while the 
current predictive scheme owes its structure to properties of a certain class of 
solutions of the Schrodinger equation, the latter is (merely) a by-product of a 
principle-based dynamical framework that is regulated by the QHJE. One 
cannot therefore, as Bitbol -  or QIT-inspired thinkers whose own motivations 
are extremely different -  would invite us to do, so readily dispense with any 
claim of ‘physicality’ in regard of the predictive efficiency and conceptual 
significance of q u a n tu m  m e c h a n ic s .

On the principle view advocated in Chapter 3, what is called for is a radical 
shift of attention from the Schrodinger equation and toward the Q(S)HJE. 
Investigating solutions of the latter equation cannot be bypassed if 
fundamental aspects of ‘quantum behaviour’ are to be elucidated -  one 
example among thousands is the vexed problem of accounting in a fully 
intelligible manner for the fine details of the actual emergence of an 
interference pattern in a two-slit experiment, beyond the mere statistical 
distribution that the SAQM predicts for a given choice of experimental set-up, 
and without resorting to such baffling ‘explanations’ as ‘self-interference’ of 
individual particles. Our hopes and ambitions are most likely to be tempered 
by analytical difficulties, although numerical methods should be very helpful 
where the techniques of calculus are powerless to reach. However difficult the 
task might prove to be, the endeavour cannot and hopefully will not be 
indefinitely postponed, for only then will our understanding of quantum 
dynamics and our appraisal of conceptual issues measure up to our predictive 
abilities.
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