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A bstract

This dissertation provides a contribution to the option pricing literature by 

means of some recent developments in probability theory, namely the Malliavin 

Calculus and the Wiener chaos theory. It concentrates on the issue of faster 

convergence of Monte Carlo and Quasi-Monte Carlo simulations for the Greeks, 

on the topic of the Asian option as well as on the approximation for convexity 

adjustment for fixed income derivatives.

The first part presents a new method to speed up the convergence of Monte- 

Carlo and Quasi-Monte Carlo simulations of the Greeks by means of Malliavin 

weighted schemes. We extend the pioneering works of Fournie et al. (1999), 

(2000) by deriving necessary and sufficient conditions for a function to serve as 

a weight function and by providing the weight function with minimum variance. 

To do so, we introduce its generator defined as its Skorohod integrand. On a 

numerical example, we find evidence of spectacular efficiency of this method for 

corridor options, especially for the gamma calculation.

The second part brings new insights on the Asian option. We first show 

how to price discrete Asian options consistent with different types of underlying 

densities, especially non-normal returns, by means of the Fast Fourier Transform 

algorithm. We then extends Malliavin weighted schemes to continuous time 

Asian options.

In the last part, we first prove that the Black Scholes convexity adjustment 

(Brotherton-Ratcliffe and Iben (1993)) can be consistently derived in a mar­

tingale framework. As an application, we examine the convexity bias between 

CMS and forward swap rates. However, for more complicated term structures 

assumptions, this approach does not hold any more. We offer a solution to this, 

thanks to an approximation formula, in the case of multi-factor lognormal zero 

coupon models, using Wiener chaos theory.
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Introduction

This dissertation provides a contribution to the option pricing literature by 

means of some recent developments in probability theory, namely the Malliavin 

Calculus and the Wiener chaos theory. It sheds new light on some old and 

complicated problems by means of these new techniques. It concentrates on the 

issue of faster convergence of Monte Carlo and Quasi-Monte Carlo simulations 

for the Greeks, on the topic of the Asian option as well as on the approximation 

for convexity adjustment for fixed income derivatives. This Thesis consists of 

six different chapters. Among these, chapters 3 and 5 try to contrast the afore­

mentioned new tools of probability theory by presenting other approaches like 

the Fast Fourier Transform technique and the martingale framework.

The first part presents a new method to speed up the convergence of Monte- 

Carlo and Quasi-Monte Carlo simulations of the Greeks by means of the Malli­

avin weighted scheme. The pioneering works were the ones of Fournie et al. 

(1999), (2000). However, two important questions remained unsolved. Can 

we derive necesary and sufficient conditions for a function to serve as a weight 

function? Which weight function has the minimum variance?

The first chapter tries to answer these two questions. To be able to provide 

necessary and sufficient conditions for the weighting function, we introduce its 

generator defined as its Skorohod integrand. This new definition turns out to be 

very powerful since it provides a description of all weight functions. An integra­

tion by parts, by means of Malliavin calculus, leads to these conditions. These 

conditions, expressed through conditional expectations, provide the whole set of

13



weight functions for an option pricing kernel in a continuous-time model. We 

show how to find the ones with minimum variance. This minimum-variance so­

lution is the projection of any weight function on the filtration spanned by the 

payoff functional. We give some key examples of the weight function generator. 

It turns out that in some cases, the optimal solution is not easy to calculate 

explicitly. We discuss the question of the most appropriate weight function in 

this complicated case. We finally conclude that this method is very efficient for 

discontinuous payoff options, like binary and corridor options. This is a conse­

quence of the fact that this method avoids differentiating the payoff function.

The second chapter is a numerical application of this general theory in the 

case of the Black pricing model. We quantify the gain in the variance reduction 

when using the Malliavin weighted scheme. We find evidence of spectacular effi­

ciency of this method for corridor options, especially for the gamma calculation. 

Indeed, the Malliavin weighted scheme variance reduction should be more effi­

cient for second order derivatives compared to first order ones, ceteris paribus. 

We examine, furthermore, a mixed strategy based on the Malliavin weighted 

scheme and finite difference approximation. The Malliavin weighted scheme is 

used only locally, at the kink of discontinuity. This leads to so called ” local 

Malliavin” formulae. This method appears to be a very efficient way to simulate 

the Greeks, either for very standard payoffs like call options or more discontin­

uous ones. A subtle point of this method concerns the choice of the location 

of the discontinuity. We conjecture that this is depending on the form of the 

payoff functional.

The second part brings new insights on the Asian option by means of the 

Malliavin calculus. It first studies an alternative to this probabilistic method 

by means of the Fast Fourier Transform algorithm. It shows how to compute 

discrete Asian options consistent with different types of underlying densities, 

especially non-normal returns as suggested by the empirical literature (see Man­

delbrot (1963) and Fama (1965) for the early ones). The interest of this method

14



is its flexibility compared to standard option pricing ones. Based on Fast Fourier 

Transform, the algorithm is an enhanced version of the algorithm of Caverhill 

and Clewlow (1992). The contribution of this chapter is to improve their algo­

rithm by a systematic recentering at each stage and to adapt it to non-lognormal 

densities. This enables us to examine the impact of fat-tailed distributions on 

price as well as on the delta. We find evidence that fat-tailed densities lead to 

wider jumps in the delta. We then examine the case of the Greeks for continuous 

Asian options and show how to extend the work of the first part to this case. 

The Malliavin weighted scheme turns out to be adaptable to this particular case. 

We conjecture indeed that these results should be adaptable to the case of the 

continuous lookback options.

The last part concentrates on the old but still very interesting problem of 

the convexity adjustment. We first introduce the notion of convexity. We show 

that old results of Brotherton-Ratcliffe and Iben (1993) and later by Hull (1997) 

and Hart (1997) can be consistently derived in a martingale framework. The 

motivation of this chapter lies in two directions. First, we set up a proper no­

arbitrage framework illustrated by a relationship between yield rate drift and 

bond price. Second, making an approximation, we come to a closed formula 

with a specification of the error term. Earlier works (Brotherton et al. (1993) 

and Hull (1997)) assumed constant volatility and could not specify the approx­

imation error. As an application, we examine the convexity bias between CMS 

and forward swap rates. However, for more complicated term structures as­

sumptions, this approach does not hold any more. The contribution of the last 

chapter is precisely to provide a solution to this problem and to give good ap­

proximation formulae of the convexity adjustment for multi-factor lognormal 

zero coupon models, which are more general term structure yield curve models. 

We show how Wiener chaos theory enables us to derive a closed form solution. 

We apply results to various well-known one-factor models (Ho and Lee (1986), 

Amin and Jarrow(1992), Hull and White (1990), Mercurio and Moraleda(1996)).

15



Quasi Monte-Carlo simulations confirm the efficiency of the approximation. Its 

precision relies on the importance of second and higher order terms.
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Brief Review  of the literature 

about Malliavin calculus and 

W iener Chaos

Traditionally, option pricing literature is divided into different fields depend­

ing on the background of the authors. Option pricing theory can be developed 

either from a probabilistic referred to as the martingale point of view (theory 

initiated by Bachelier (1900) for the former, Harrison, Kreps (1979) and Har­

rison, Pliska (1981) and El-Karoui et al. (1995) for the most famous articles), 

a partial differential equation one (with a stress on finite difference methods 

introduced in finance by Schwartz (1977) for the explicit scheme, Brennan and 

Schwartz (1978) for the implicit one and by Courtadon (1982) for the Crank 

Nicholson one), a lattice-based concern (Sharpe (1978), Cox Ross and Rubin­

stein (1979)) or a Monte Carlo simulation emphasis (Boyle (1977) and later 

Broadie and Glasserman (1996)). Indeed, over the last few years, it has turned 

out that these fields are not that different. Many ’’bridges” like the Feynman 

Kac formula tie the aforementioned fields. The seminal Black Scholes (1973) 

option pricing formula has been derived by various techniques. Moreover, lat­

tice methods can be seen as a particular case of finite difference methods (Hull 

(1997)). A stochastic differential equation can be translated into a partial dif­

ferential equation and the Black Scholes equation can be shown to be a modified 

version of the heat equation (see Wilmott et al. (1993)). Our aim in this Thesis
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has been to further integrate and link the various approach. We have tried to 

see how new developments of the probabilistic theory, that is to say Malliavin 

calculus and Wiener chaos could help solve option pricing problems.

Indeed, the Malliavin calculus and the Wiener chaos theory have turned 

out to be very powerful tools for various problems modelled by continuous­

time stochastic processes. Moreover, these two theories are nowadays taught 

together since the Malliavin derivative can be expressed in terms of its Wiener 

chaos expansion.

The starting point of both Wiener chaos and Malliavin calculus lies in some 

mathematical considerations. The Wiener chaos theory was initially used to get 

a Hilbert basis of square integrable function expressed as an Ito integral. It in­

tuitively relates the Cameron Martin sub-space with the wider Hilbert space of 

square integrable functions expressed as an Ito integral. In particular situations, 

this expansion could be intuitively thought of the generalization of Taylor’s ex­

pansion to stochastic processes with some martingale considerations. This rep­

resentation of stochastic processes initially proved for the Brownian motion by 

Wiener (1938) and later for Levy process (see Ito 1956) has been recently refo­

cussed, motivated by the contemporary development of the Malliavin calculus 

theory and its application not only to probability theory but also to mechanics, 

economics and finance (1995).

The Malliavin calculus was initiated by Malliavin and further developed by 

Stroock, Bismut, Watanabe and others. The original motivation was to provide 

a probabilistic proof of Hormander’s sum of squares theorem. One of the impor­

tant conclusions is the existence of an adjoint operator of the Malliavin derivative 

called the ’’Skorohod integral”. It has the elegant property to be an extension 

of the Ito integral for non-adapted process. The great advantage of this the­

ory is also to allow the formulation of regular solutions of stochastic differential 

equations, in case where the solution is not adapted to the Brownian filtration. 

One can roughly say that the Malliavin calculus is the calculus of variation in
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a stochastic framework. Or, comparing with the deterministic framework, Ito 

calculus would correspond to the ordinary derivative in infinitesimal calculus 

and the Malliavin derivative on Wiener Space to the Frechet derivative on a 

function space. As an introduction to Malliavin calculus, we suggest the reader 

to refer to the appendix section A.

Interestingly, these two techniques have turned out to be very useful for 

many fields. There has been a growing literature on the use of Malliavin calculus 

theory as well as Wiener Chaos over the last ten years. Uwe et al. (1998) have 

applied Malliavin calculus to quantum mechanics. They showed that certain 

types of quantum stochastic processes could be defined by means of their Wigner 

densities on the Eisenberg-Weyl algebra and that they had to satisfy a diffusion 

equation. Using the integration by parts formula of the Malliavin calculus, they 

proved the existence and regularity of these solutions. They applied this theory 

to the phenomenon of creation and annihilation on Fock space.

Furthermore, going over to the modelling of perturbation for high-frequency 

telecommunication queuing networks, Decreusefond (1994) applied successfully 

Malliavin calculus to get high order derivatives as an input to the likelihood 

Ratio Method. In his model, fluxes are modelled by stochastic processes. There­

fore, techniques about stochastic processes are valid. This enabled him to find 

estimators with faster convergence and to specify a criterion for the absolute 

continuity for the law of a reflected process.

Bally and Talay (1995) and later Kohatsu and Antonelli (1999) have used 

Malliavin calculus to study the convergence rate of an appropriate discretisation 

scheme on the solution to the McKean Vlasov equation, describing the behaviour 

of a high-density gas. Millet and Sole (1997) used Malliavin calculus to prove 

the regularity and the smoothness of the law of the solution of a stochastic wave 

equation in two dimensions.

In economics and finance, Malliavin calculus has been introduced in many 

works. Serrat (1996) has used the Malliavin derivatives in his model of dynamic
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equilibrium for two-country exchange economy with non-traded goods and com­

plete financial markets. 0ksendal (1997) was among the first ones to suggest 

the use of Malliavin calculus in economics and especially in the option pricing 

literature. Bermin (1998) (1999) has suggested an alternative approach to delta 

hedging by means of the Malliavin calculus. He has examined the complicated 

case of hedging strategies of barrier options. Recently, Gobet (2000) has used 

Malliavin calculus theory to study the convergence rate of killed diffusions using 

Euler schemes and has applied it to barrier options. Last but not least, Fournie 

et al. (1999) (2000) have suggested the use of Malliavin calculus for the faster 

computation of the Greeks.

The same is true for Wiener chaos theory. The study of chaos expansions 

and multiple Wiener-Ito integrals has become a field of considerable interest in 

applied and theoretical areas of probability, stochastic processes, mathematical 

physics, and statistics. It has been used in filtering theory (Rozovskii (1997)) 

stochastic physics, biological cybernetics (Johanessma and Victor (1986)) and 

pattern recognition. In Finance, it has been used by Lacoste (1996) to provide 

a probabilistic framework for transaction costs, by Brace and Musiela (1995) to 

find an approximation formula for interest rates derivatives and by Barucci and 

Mancino (1997) for a model similar to the one of Lacoste focussing on transaction 

costs and hedging problems.
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N otation

General N otation

M Set of real numbers

M+ Set of real non-negative numbers

A~x Inverse of a number, a matrix, according to the definition of A

log(x) Natural logarithm (Neper basis)

f '(x)  First order derivative function with respect to x

f"(x)  Second order derivative function with respect to x

O  ( e )  Notation of Landau defined by there exists r j  so that it is

bounded in absolute value by t j e  

■L2([0,T])d Real separable Hilbert space of d -dimensional real functions

squared integrable, defined on [0, T]

(.,.) Canonical scalar product of L2([0,T])d

HD Canonical norm of L2([0,T])d

Cf? Set of infinitely differentiable functions with compact support

Cp° (.) Set of infinitely differentiable functions

with all their partial derivatives with polynomial growth 

C§° (.) Set of infinitely differentiable functions

with their all partial derivatives bounded 

8n rn Kronecker delta defined by £n>m =  1 if n  =  m, <5njm =  0 otherwise

1A 1A (x) — 1 if x  G A  and 0 otherwise

=  Equals by definition

Particular sets

Cn Set of strictly increasingly-ordered n-uplets

{ ( s i , ..., sn) e  Rn, 0 <  si < ... <  sn < t}

Tm Set of L2 [0, T] normalized functions

with respect to the Lebesge measure under [0, £*]
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defined by |a  G L2 [0, T] | a (t) dt = lV i  =

Tm Set of L2 [0, T ] normalized functions

with respect to the Lebesge measure under [£*_!, 

defined by j a  G L2 [0, T] \ a (t) dt — 1 Vi =

Probability

(fl, F, Q) Complete probability space

{Fu t G [0,T]} Augmented filtration generated by

a standard Wiener Process (Wi)teR 

a.s. almost surely

Var (X)  Standard variance defined as E(X2) — (E(X))2

Cov (X , Y)  Standard covariance defined as EpfY")) — E(X)E(y)

P  Historical probability measure

Q Risk neutral probability measure

QT Forward neutral probabifity measure

E^ [.] Expectation under the probability measure Q

E«[.] E«[.] =  E«[.|X0 =  x]

El x tl t l =  *g  [•!*<■>- , X tJ

Stochastic Processes

(Wt)tER Wiener process, either one dimensional

or multi dimensional 

(Mt)t€R Square-integrable martingale

with respect to an appropriate filtration 

(M)t Doob Meyer brackets defined through the

requirement that (M f  — (M)t) be a martingale 

(^n)ne/V Morphism from C? (Cn) to C2 (Too) defined by

$ n ( f ) : C 2(Cn) - > £ 2(T»)

(/)  =  fo<si<..Si<...s„<T f  (Sl» *•'» Sn) dMan dMSl
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S  Set of stochastic functions F  of the form

V 1,2 Banach space, completion of S  with respect to the norm

|| F  ||ll2=  (E(F2))V2 +  (E( f i ( D tF)2dt)W  

h,i>o (V, T, Tk) Wiener Chaos of order i

spanned by the function V  (., T, Tk) at time T

defined by

M alliavin Calculus

DtF Malliavin derivative

* 0 Skorohod integral

weight Malliavin weight
y j d d t a Malliavin weight for the delta
w gam m a Malliavin weight for the gamma

wrho Malliavin weight for the rho
yjVega Malliavin weight for the vega

TTO Malliavin weight with minimal variance

U nderlying

Price of the underlying security at time t

X Initial value of the underlying security at time t = 0

R t Log return defined as —  log(Xti/ X ti_x)

r or rs Risk-free rate

a Constant Black Scholes volatility

0S Black volatility (deterministic, time dependent)

b(t,Xt) Drift term

Diffusion term

P ertu rb a tio n  on th e  U nderlying
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Yt First variation process

b' (t, X t) Partial derivative of the drift term

with respect to the second variable 

& (t, X t) Partial derivative of the diffusion term

with respect to the second variable 

b (t, X t) Perturbation of the drift term

a (£, Xt) Perturbation of the diffusion term

X l ,rho Perturbation of the underlying

along the drift term 

X l ,vega Perturbation of the underlying

along the diffusion term 

Sensitivity of the underlying along the 

perturbed drift term 

Z ^ a Sensitivity of the underlying along the

perturbed diffusion term

Payoff and Price

/  (Xt ) Payoff of an option

/  ( Xt l X tm) Payoff of an option depending on a

finite set of dates 

f ( f o  X 8ds^ Payoff of an option depending on the continuous

arithmetic average (simple Asian option)

/  ( * r ,  Jo Xads'j Payoff of an option depending on the terminal

value of the underlying security as well as the 

continuous arithmetic average (complex Asian option) 

F  = e~ fo rad3f  (Xt) Discounted payoff

P  (x ) Price of the option as a function of the underlying level

In te res t R ate
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e~Jo r»da

B  (^) ^)t<T,T<T

Y f

BTi

CA

K

V(s,Ti)

v F 'Ti)

C{TUT5)

Discount factor

Price at time t of a default-free forward zero coupon 

maturing at time T  

Forward swap rate

Value at time t = 0 of the T-forward zero coupon 

maturing at time T* 

defined as

Convexity adjustment between different products

depending on the context

Sensitivity of the forward swap

defined as the sum of the forward zero coupon bonds

K  = T L i B Tr
Instantaneous volatility at time s of a forward zero coupon 

maturing at time T*

Forward volatility of a T-forward zero coupon 

maturing at time 7* defined as V  (s, Ti) — V  (s, T ) 

Correlation term between the returns of 

T-forward zero coupon bond 

defined as J0T ( v j T,Ti\
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Chapter 1 

M alliavin W eighted Scheme for 

Fast Com putation of the Greeks

Sum m ary o f th e  chapter

This chapter presents a new method to speed up the convergence of Monte-Carlo 

and Quasi-Monte Carlo simulations of the Greeks by means of the Malliavin weighted 

scheme. The contribution to the pioneering works is to derive necessary and sufficient 

conditions for a function to serve as a weight function and to find the weight function 

with the minimum variance. To do so, we introduce the generator of the weighting 

function defined as its Skorohod integrand. This new definition turns out to be very 

powerful since it provides a description of all weight functions. An integration by 

parts, by means of Malliavin calculus, leads to these conditions. These conditions 

are expressed through conditional expectations. We show that the minimum-variance 

solution is the projection of any weight function on the filtration spanned by the 

payoff functional. We give some key examples of the weight function generator. For 

complicated diffusion, the optimal solution is not easy to calculate explicitly. We 

discuss the question of the most appropriate weight function. We finally conclude 

that this method is very efficient for discontinuous payoff options, like binary and 

corridor options.
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CHAPTER 1. MALLIAVIN WEIGHTED SCHEME

1.1 Introduction

27

Since price sensitivities are an important measure of risk, growing emphasis on 

risk management issues has suggested a greater need for their efficient compu­

tation. Collectively referred to as ’’the Greeks”, theses sensitivities are mathe­

matically defined as the derivatives of a derivative security’s price with respect 

to various model parameters.

The traditional way to compute a Greek is through its finite difference ap­

proximation. If we denote by P  (x) the price of the option for an underlying’s ini­

tial value equal to x, one calculates the delta by means of (P (x +  e) — P  (x)) /e. 

This can produce a significant error since one takes the difference of terms P  (x) 

and P  (x +  e) which are already calculated by approximations. When looking 

at Monte Carlo and Quasi Monte Carlo methods, Glynn (1989) showed that 

the quality of this approximation was depending on the way of approximat­

ing the derivative: forward difference (P(x + e) — P  (x)) /e, central difference 

(P (x +  e) — P (x — e)) /2e, or even backward difference scheme (P (x) — P  (x — e 

In the case of the forward and backward difference scheme, if the simulation of 

the two estimators of P  (x +  e) and P  (x) or P  (x) and P ( x  — e) is drawn inde­

pendently, he proved that the best theoretical convergence rate is n-1/4. As of 

the central difference scheme, the optimal rate is n-1/3. When taking common 

random numbers, this optimal rate becomes n -1/2. This is the best to be ex­

pected by standard Monte Carlo simulation as described by Boyle, Broadie and 

Glasserman (1997) Glasserman and Yao (1992), Glynn (1989), and L’Ecuyer 

and Perron (1994). However, the finite difference method has a slow conver­

gence rate when dealing with discontinuous payoffs. This restriction applies to 

many of the exotic options such as digital, corridor, Asian and lookback options.

To overcome this poor convergence rate, Curran (1994), (1998) and Broadie 

and Glasserman (1996) suggested to take the differential of the payoff function 

inside the expectation required to compute a price. This leads to a convergence 

rate of n -1/2. However, this can be applied only to simple payoff functions.
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Fournie et al. (1999) (2000) extended their method to payoffs depending on 

a finite set of dates, in very general conditions. The original idea comes from 

a result by Elworthy (1992) which suggests, in a probabilistic framework, to 

shift the differential operator from the payoff functional to the diffusion kernel, 

introducing a weighting function. They came to the central result that the 

common Greeks could be written as an expected value of the payoff times a 

weight function.

Greek = |e- °̂ radsf(Xr).weight^ (1.1)

The theoretical tool used was the stochastic calculus of variations, traditionally 

called Malliavin calculus. Their results were given for particular examples of 

weight functions. However, a natural question, starting point of this research 

was to examine all the weight functions and to determine which conditions 

a weight function should satisfy. Another important question is to find the 

minimal-variance solution.

The contribution of this chapter is precisely to answer these questions. We 

show how to characterize by necessary and sufficient conditions the weight func­

tions in the Malliavin weighted scheme. Expressing weight functions as Skorohod 

integral, we introduce the weight function generator defined as the Skorohod in­

tegrand. We show that these functions can be characterized by necessary and 

sufficient conditions on their generator. We then examine the different weight 

functions and show how to find the one with minimal variance. We then give 

some key examples of the weighting function generator. We finally discuss the 

issue of the most appropriate weight function.

The remainder of this chapter is organized as follows. In section 2, we explicit 

the intuition of the methodology with the Black Scholes model as well as some 

preliminary definitions and results. In section 3, we derive the necessary and 

sufficient conditions for the weight function generator. In section 4, we show 

various examples for the weight function generator. We conclude in section 5. 

For clarity reasons, we put all the proofs which turned to be quite involved, in
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the appendix section.

1.2 M athem atical framework and preliminary 

results

1.2.1 Intuition

In this subsection, we show by means of the Black Scholes (1973) model, how 

to derive a formula that reduces the variance of the Greeks when computed by 

simulation methods. The core of our methodology lies in an integration by parts 

formula. This allows us to avoid taking the derivative of the payoff functional 

and instead shift the differential operator on the diffusion kernel.

Following Harrison and Kreps (1979), Harrison and Pliska (1981), the price 

of a contingent claim is traditionally calculated as the expected value of the dis­

counted payoff value in the risk neutral probability measure Q uniquely defined 

in complete markets with no-arbitrage. We consider a continuous-time trad­

ing economy with a finite horizon t G [0,T]. The uncertainty in this economy 

is classically modelized by a complete probability space (ft, F, Q) . The infor­

mation evolves according to the augmented filtration {Fu t G [0,T]} generated 

by a standard one dimensional standard Wiener process (Wt)t£ Q̂T\. The price 

P (x ) of our contingent claims at time t  =  0 with expiry date T  is defined by 

the expected value of the discounted payoff function at expiry /  (Xt ) (for a 

call /  (Xt ) = (Xt  — K )+) conditional to the present information, described by 

<7-algebra Ft=o

P  (x) =  E« [ /  (XT) e~ $ r“<s|F0] (1.2)

E^ [.] is the expectation under the risk neutral measure Q, X t is the underly­

ing price, and r8 is the risk-free rate. Following Black Scholes assumptions, the 

underlying, either an equity, a commodity, an interest rate or an index price, 

follows a geometric Brownian motion characterized by the following diffusion
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equation:
j  y
— ± = r d t  +  adWt (1.3)
Xt

Let us denote by X t  the unique continuous strong solution of (1.3) with initial 

condition x (X q = x). Replacing in (1.2) X t  by its probability density function 

gives us that the price P (x) can be written as an explicit integral:

/ + C O  1 2

e-rTf(xerT+" ^ y ^ T) - - ~ e - ^ d y

To calculate a Greek, traditional methods compute numerically the finite differ­

ence between two shifted prices. For the clarity of the proof, we chose the delta. 

This leads in the case of a centered scheme to:

P (x  +  §) - P ( x - § )  
delta ~   ̂ -- -2 ;-------^ ^

£

Its continuous limit leads then to take the derivative of the payoff function since

the expression —*------' g * ^inside the expectation operator in (1.4) tends

to the derivative of the function f  as e tends to zero.

(1.4)

The driving idea of this chapter is to avoid taking the derivative of the function, 

by doing an integration by parts. Assuming that / ( . )  is a.s. differentiable 

with derivatives with polynomial growth1, we can show that the derivative with 

respect to x  is proportional to the derivative with respect to y :

1These are assumptions that justify the interchange of the integration and the differential 

operator by dominated convergence.
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leading to the following integration by parts:

x c r y /T

: rT f ( x e rT+ay^ y  2 f f 2 r ) -  ^  e  * 2 * d y )

v
xerT+ay/fy 2a2r)—L=e *2" ydy

This enables us to write the delta as the expectation of the discounted payoff 

times a weight function:

In the above formula, the differential operator has disappeared. Instead, this
—r Tmethodology has introduced a weight function ^ 1 1 ^ .  The weight is not de­

efficiency of this method does not depend on the payoff type. On the contrary,

the payoff function is discontinuous. This is the case of digital, simple, double 

barrier and many other exotic options. Furthermore, we can conjecture that 

this method should be more efficient for second order Greeks, like gamma, than 

first order ones, like delta. Moreover, this methodology should provide us with 

similar rates of convergence for the Greeks as for the price. The only difference 

between the price simulation and the Greek simulation comes from the weight 

function to simulate.

pending on the payoff function and is easy to simulate. This indicates that the

the standard way to compute the Greeks relies on the payoff function since it 

takes the finite difference approximation of the derivative of the payoff function

(1.4). Since this integration by parts method smoothens the payoff function 

with a weight independent of the payoff function, it is all the more efficient that

1.2.2 N otations and hypotheses

To avoid heavy notations, and for clarity reason, we present our results in one 

dimension. However, the results can be easily extended to the multi-dimensional



CHAPTER 1. MALLIAVIN WEIGHTED SCHEME 32

case. Following the traditional literature on continuous-time option pricing (see 

Duffie (1995), Musiela and Rutkowski (1997) or Lamberton and Lapeyre (1991)) 

the evolution of the underlying price, Ito process (^ t)tG[0,T] > *s described by a 

very general stochastic differential equation (SDE):

dXt = b (t, X t) dt +  a(t, X t)dWt (1.5)

with the initial condition X0 =  x, x  € R. The function b : R+xR —► R 

represents the determinist drift of our process and the function a  : R+xR —► R 

its volatihty. The risk-free interest rate is denoted by r ( t ,X t). We assume that:

•  the functions b and cr are continuously differentiable with bounded deriva­

tives and verify Lipschitz conditions, i.e., there exists a constant K  < +00 

such that

\b(tJx ) - b ( t 1y)\ + \(r ( t ,x ) -a ( t ,y ) \  < K \ x - y \  (1.6) 

\b(t,x)\ + \a(t,y)\ < K ( l  + |a:|) (1.7)

Inequalities (1.6) and (1.7) are classical conditions to ensure the existence 

and uniqueness of a continuous, strong solution of the SDE (1.5) with its initial 

condition. We denote by X?  the continuous, strong solution X t starting at x.

•  the diffusion function a (t, x) is uniformly elliptic2:

3e > 0, V£ G [0,T] ,Vx € R |<r(t,x)| >  e |x| (1.8)

We denote by (^t)tG[0,r] t îe variati°n process of p ^ ) fGj0T], which is 

characterized as the unique strong continuous solution of the linear stochastic 

differential equation (1.9) with initial condition (Yf=o =  1):

d Y
= b'(t, X,)dt +  X,)dW, (1.9)

________________________ If
2This is to ensure that we can find some solutions for the weighting functions, since it often 

requires to take the inverse of the volatility function.
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where the prime stands for the derivatives with respect to the second variable. 

We can show that the first variation process is the derivative of p f f)f€j0T] with 

respect to x, (Yt =  Malliavin calculus theory proves (see Nualart (1995)

page Theorem 2.3.1 page 110 on the absolute continuity) that the Malliavin 

derivative can be written as an expression of the first variation process as well 

as the volatility function:

DaX t = Yt X ,)l{s<f}a.s. (1.10)

To be as general as possible, we assume that our payoff is depending on a 

finite set of payment dates: t i , t2, with the convention that to — 0 and 

tm = T. The price P {x ) of the contingent claim given an initial value of the 

underlying price x  is traditionally computed as the expectation under the risk 

neutral probability measure of discounted future cash flow:

P (x)  =  E? [ e - # rl''x -*u f ( X tl,X la,.. .,X tj \

with the traditional shortcut notation E J [.] =  EQ [.|«Xo =  x\. The function 

/  : R x R x .. .x R  —> R denotes the payoff, and is supposed to be first order 

differentiable with derivatives with at most polynomial growth. We denote by 

F  the discounted payoff F  — e~ fo r(s’x »)dsf  (X tl,X t2,...,X tm). If we need to 

specify that the underlying is a function of the initial value x, we denote the 

discounted payoff by Fx.

1.2.3 G eneralizing Greeks

We take the common definition of the delta and gamma as the first (respectively 

the second order derivative) of the price with respect to the underlying initial 

level. However, for the rho and vega, the definitions need to be extended. Since 

by assumptions, the drift and volatility terms are functions of the underlying and 

time but not constant coefficient, we need to develop a more robust framework 

than the common sensitivity with respect to a fixed parameter. The meaning of
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the rho and vega is to quantify the impact of small perturbation, in a specified 

direction, on either the driift term or the volatility term. We therefore define an 

’’extended” rho as well as an ’’extended” vega defined as the derivative function 

of the price along a  specified perturbation direction either on the drift term or 

the volatility term.

Let denote by b : R+ x R —> M a direction function for the drift term 

and a  : M x R —* R for the stochastic term. We assume that, for every 

e G [—1,1], b (.,.), +  eb^ (.,.), a (.,.) and (cr +  so) (.,.) are continuously dif­

ferentiable with bounded derivatives and verify Lipschitz conditions and more­

over that a (.,.) and (g +  eg) (.,.) satisfy the uniform ellipticity condition (1.11).

V e G [- l ,l]

37? > 0, V i e  R,Vi G [0,T], \(& + ecr)(t,x)\> rj\x\ (1-11)

We then define two different perturbed underlying processes, with their re­

spective prices. The ’’drift- perturbed” process is the stochastic process | X t’rho, t G 

solution of the perturbed diffusion equation, in the direction 6, defined by (1.12) 

and the unmodified initial condition (XQ,rho =  x )

dXl'Tho =  [ft ( t ,X ct -rh°} + eft ( t , d t  + a ( t ,X t’rho)  dWt (1.12)

Similarly, the volatility-perturbed underlying process is the stochastic process 

{X l'vega, t  G [0,T]} solution of the perturbed diffusion equation in the direction 

a defined by (1.13) and the unmodified initial condition (XQVega =  x )

dX et 've9a =  b (t,X et 'vega) dt +  [g  (t,X £t 'vega) +  eg (*,X et 've9a)\ dWt (1.13)

We can relate two perturbed prices to these two perturbed processes: (x)

and P^ega (x) defined by

P?(x) =  E? [ e ' t f '( * .« '> /  (X c,f,X % , . . . ,* £ ) ]

with i =  rho or vega
3we put either rho or vega in upp<erscript so as to be able to distinguish the two perturbed 

process X f,rtl° and X l'vega- One is corresponding to a perturbation on the drift term whereas 

the other one on the stochastic term..
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The physical meaning of the above definitions is to set an appropriate frame­

work so as to see the impact on the underlying process as well as on the price 

function of a structural change of either the drift or the volatility term. The 

extended rho and vega quantify this effect. They are given by the following 

definitions:

D efinition 1 The extended rho is the Gateau derivative of the perturbed price 

function P^ho (x ) in the direction given by the function b (.);

(1.14)
£=0,6 given

where the sign =  stands for a definition Similarly, the extended vega is the 

Gateau derivative of the perturbed price function P^ega (x) in the direction given 

by the function cr (.,.);

vega = ^ P E (x) (1.15)
E=0,cr given

1.2.4 R esu lts on the first variation process

This section shows that the first variation process is at the core of

the extended Greeks theory. In this section, we introduce Gateau derivatives 

implied by the extended Greeks. We show that these two Gateau derivatives can 

be expressed as a simple function of the first variation process Yt. We denote 

by Tj (respectively (Z^ega)te 0̂T\) the Gateau derivative of the drift-

perturbed underlying process ^ X ^ rho, t £ [0 ,T ]J, respectively the volatility- 

perturbed underlying process {X l've9a,t  G [0,T]} along the direction 6, respec­

tively a. These two quantities are defined as the limit in L2, uniformly with 

respect to time t :

respectively

y e , r h o   y

z ; h°=  lim ^ 5 (1.16)
L2,€—► 0 €■

■ ye ,v eg a   y

Z?‘°°=  lim ^ ---------—  (1.17)
L 2,e-*0 £

Interestingly, these two processes can be expressed in terms of the first vari­

ation process (Yt)tG[o,T] 35 the following proposition states:
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Proposition  1 The process (^ t^ te io r]  can exPressed *n terms of the first 

variation process by
^ = f Y M ^ Q ds (U 8)

Js=0  *s

Similarly, the process (Z te9a)t€[o,T\ can exPresse-d tn terms of the first variation 

process {Yt)te[QiT] by

Z r 9“ =  f  Yta{Sv X ,) dW, -  [ ‘ Yta' (S,X ,)  a {%^ -dS (1.19)
Jo *8 Jo *s

Proof: see the appendix section, section B.l, page 158.D 

The proposition above explains intuitively why the Malliavin weights for 

the rho and vega can be expressed in terms of the first variation process. The 

difference between the volatility-perturbed framework and the drift-perturbed 

one comes from an additional term in the case of the volatility-perturbed one.

1.3 M alliavin weighted scheme: a new m ethod  

for com puting the Greeks

This section shows the necessary and sufficient conditions for a function to serve 

as a weight function. We first give the state of the art, then give the necessary 

and sufficient conditions and finally show how to extend these conditions to 

models where the risk-free interest rate is a function of the underlying as in 

interest rates models for the spot rate (model of Vasicek (1977), Cox Ingersoll 

Ross (1981), Black Derman Toy (1990), Black Karinski (1990) and so on).

1.3.1 S tate o f  art

Foumie et al. (1999) and (2000) were the first to suggest that the three Greeks 

delta, vega and rho could be computed as an expected value of the discounted 

payoff times a suitable weight function (1.20)

Greek =  E °  fe" !« ^ f ( X T)weight] (1.20)
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The article of Fournie et al. (1999)leaves many questions unanswered, like which 

condition(s) a function should satisfy to serve as a weight function and which 

weight function is the one with minimal variance.

It is worth noticing that all weight functions could be expressed as a Skoro­

hod integral. This is because the Skorohod integral is the adjoint operator of 

the Malliavin derivative. It means that the only way to have an integration by 

parts by means of the Malliavin derivatives is that there exists a weight func­

tion that could be written as a Skorohod integral. The following subsections 

shows that the weight function generator (defined below) should satisfy neces­

sary and sufficient conditions. Interestingly, these conditions are different for 

each Greek but independent of the payoff function. Therefore, the Malliavin 

weight is independent from the payoff function.

1.3.2 G eneralization o f  th e m ethods: Exact determ ina­

tion  o f the M alliavin W eights

Writing the weight function weight as a Skorohod integral, we call weight func­

tion generator w the Skorohod integrand

weight =  6 (w) (1*21)

We will assume as well that the weight is L2 integrable that is

E [weight2]1̂ 2 <  oo (1.22)

This equation is the condition to ensure the existence of the Skorohod inte­

gral. Since the Skorohod integral is at the core of the Malliavin integration by 

parts formula, the weight function is better characterized by its weight function 

generator. We first examine the most common case where we assume that the 

instantaneous risk-free interest rate does not depend on the underlying process 

r' (s ,Xa) = 0 where the prime stands for the derivative function with respect to 

the second variable. Denoting by the conditional expectation with

respect to X tl, .-.,X tm, i.e. [.] =  E j  [\Xtl,...,X tm] , we show that:
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Greeks
N ecessary and Sufficient conditions 

on th e  Malliavin Weights

delta (1 M i) : M '

=  ...x,m P5J

gamma ( 1 M 2 ) :  K x , .....

= ...[ « K " “) +

’’extended”

rho

(1 M3) : ®Sr..... [Yu (*) dt]

=  E?*t, ...[ n  /„'•

’’extended”

vega
(1.M4) :

= %&x X
ju  ^ ) X l ± dWt

Table 1.1: Necessary and Sufficient conditions for the Weighting Function Gen­

erators in a model with interest rates independent of the underlying. The proofs 

for the equations (1.M1), (1.M2), ((1.M3 ) and (1.M4) are given in the appendix 

section, respectively in section B.2!, B.3, B.4, B.5

Theorem  1 Malliavin formula fa r  the Greeks

There exist necessary and sufficiemt conditions for a function w to serve a,s a 

weighting function generator for the simulation of the Greeks. The first condition 

is the Skorohod integrability of this; function. The second condition, different for 

each Greeks and summarized in table 1.1, is depending only on the underlying 

diffusion characteristics and is indlependent from the payoff function.
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1.3.3 Extension  to  m odels w ith  stoch astic  interest rates

When we assume that the risk-free interest rate is a function of the underlying, 

we need to take into account the dependency of the risk-free rate from the 

underlying process. The necessary and sufficient conditions given in table 1.1 

are not sufficient and need to be completed by other conditions. We need to 

include in the expectation operator the discount factor e~ fo *•(«>*?)<*»} term which 

is stochastic. This provides a second condition. The second condition is obtained 

the same way the first one was derived. However, since this expression does not 

bring any new intuition and is tedious rephrasing of the simpler results of table 

1.1, we have put the set of these condition in the appendix section, section B.7, 

page 175 in table B.2.

1.3.4 The m inimal variance w eighting problem

If we want the weight function with the minimal variance, we have to under­

stand the way the Greeks are calculated. We have found that the Greeks are 

expressed as the expectation of a weighting function times the discounted pay­

off. The only information we have about the payoff function is its measurability 

with respect to its spanned filtration FT. It means that the product inside our 

expectation can be seen as the scalar product of the weighting function with any 

Fr-measurable function. The projection theorem proves us that the weight func­

tion with minimal variance is the conditional expectation of any weight function 

with respect to the filtration Ft  by means of the theorem of projection. More 

precisely, we have the following proposition

Proposition  2 The weight function with minimal variance denoted by 7To is the 

conditional expectation of any weight function with respect to the filtration Ft

7Tq — E  [w e ig h t\F T ]

Proof: Let 7r be a weight function. The Greek ratio can be expressed as 

the expected value of the scalar product of the discounted payoff, F , with this
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weight function time Greek = E [F.7r]]. The variance V  of this estimator is given 

by the quadratic variation of our estimator of the Greek minus the true value of 

the Greek.

V = E [(F.ir -  Greek)2]

We can introduce the conditional expectation 7To, leading to

V  =  E [(F. (ir — no) +  F.iro — Greek)2]

=  E [(F. (ir -  7T„))2] +  E [(F.iro -  Greek)2]

+ 2E [(F. (7r — tto)) . (F.ir0 — Greek)]

But indeed the last term in the equation above is equal to zero since

E [(F. (n — 7r0) ) . (F.tto — Greek)] = E [E [(F. (n -  7r0) ) . (F.7r0 -  Greek) |Fr ]]

= E [E [(F. (n — 7r0)) |F r] . (F.ttq — Greek)\ 

=  0

where we have used the fact that (F.tto — Greek) and F  are F^-measurable and 

therefore E [(F. (n — 7To)) |Ft] =  0.D

This is a strong result. It indicates that the best weighting function should 

always be the one that is /^'measurable. It indicates as well that without any 

more specification on the payoff function, the variance is lower-bounded by the 

variance of the particular weight function 7r0. This indicates as well that with 

more information on the payoff function, we can have more efficient estimators. 

This is the case when for example, we have a payoff function which can be 

expressed in terms of some particular points of the Brownian motion trajectory. 

In this case, the best weight function would be the one expressed in terms of 

these particular points.

1.4 Examples of Malliavin weights

In this section, we give examples of weight functions generator. Instead of using 

the necessary and sufficient conditions derived above, expressed as an equality
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Greeks
W eighting Function G enerators 

of Founie e t al.

delta a W <T(t,Xt)

’’extended” rho

’’extended” vega sefejSW  EZLi ( K e9a ~  z Z T )

Table 1.2: Summary of Particular Malliavin Weights given by Fournie et aL

of conditional expectations, we look for solutions that satisfy the equality of the 

two terms inside the expectation. Of course, these conditions are stronger and 

are only sufficient but not necessary.

We show that the solutions given by Fburnie et aL (1999) are particular 

solutions for generator functions. But we exhibit other solutions. This raises 

the interesting question of the choice of the weight function generator.

1.4.1 Fournie et al. solutions

Let us define Tm = | a  6 L2 [0, T] | a (t) dt =  1 Vi =  l .. .m | and

Tm =  | a  G L2 [0, T] | a (t) dt =  1 Vi =  l...ra J . Rewriting all the weight 

functions of Founie et al. (1999) as Skorohod integral, we can see immediately 

that of course these functions satisfies the necessary and sufficient conditions. 

Indeed, an easy way to check that the conditional expectations of the equations 

(1.M1), (1.M2), (1.M3) and (1.M4) are equal is to verify that the terms inside the 

expectations are equal. The table 1.2 summarizes the different weight function 

generators of Fournie et al.



CHAPTER 1. MALLIAVIN WEIGHTED SCHEME 42

1.4.2 O ther exam ples

In fact, there many other judicious choices of weight function generators that 

can be used. We only need to find functions that satisfy the necessary and 

sufficient conditions and are elements of the Skorohod operator domain denoted 

by D1'2.

Such functions written as piecewise stochastic constant are given below:

w delta (t) =  ( L23)
t = l

with X dt =  1 Vi =  l ...m  (1.24)
j=l A - l  Yt

It is interesting as well to examine the case of the gamma. However, for some 

simple diffusion assumption, we can find a proportionality relationship between 

gamma and vega. This is when the first variation process is proportional to the 

underlying. This implies that the underlying process follows a Geometric Brow­

nian motion (see Benhamou (2000c)). For a more general model, the calculation 

of the formula for gamma cannot be avoided. And because of the second order 

differentiation, formulae become soon complicated. This might be the reason 

why gamma calculation is missing in previous works like Broadie and Glasser­

man (1996) and Fournie et al. (1999). We need to assume for this calculation 

that b and cr are continuously differentiable up to second order with bounded

first and second order derivatives. These conditions are to justify the existence

of the weight function. We can then show that one particular solution of the 

weighting function for the gamma is given by:

( /o  a W  — fo ® | (̂a W ff(Mft)) ] ^

f L < *  (b"(s1,X ,1) - a ' ( s 1,X . l )o ''(Sl,X .1))dSldW.2

+  /»=«<«

w eight y =

(1.25)

Proof: given in the appendix section, section B.3 page 166.□
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We can as well define piecewise solutions for the other Greeks : rho and vega:

m  m

( t ) = £  ^ esa w = £  -<.<«,
t = l  i—1

We have seen that the generator has to satisfy some necessary and sufficient 

conditions. Indeed, when rendering these conditions stronger, as when demand­

ing the equality of the terms inside the conditional expectations, we get that the 

generator satisfy some technical conditions, which can be expressed in terms of 

the different elements a fdta, c%ega, a ^ .  We have summarized these conditions 

in the table 1.3.

Greeks
S trong Conditions for th e  generator 

in  term s of th e  elements ag-reek

delta

’’extended” rho £ j - i  / £  = Jo

’’extended” vega V* n^ega _  Zt‘9a 
^-0=1 3 Jtj-1 Yt aZ ~  Yti

Table 1.3: Strong Conditions for piecewise constant generator

We can also define weights, which emphasize the role of the first variation 

process, as linear combination of first variation processes, with linear coefficients
pgreek  s t o c h a s t i c :

m

^ w = £ / ? r t K1x{t,_ . < « < „

i = 1

where the index greek stands for either delta, vega or rho. Like in the previous 

case, we can express the sufficient conditions of the generator in terms of these 

elements. Like in the previous case, we have summarized all these results in the 

table 1.4
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Greeks
Conditions for th e  generator 

in  term s of th e  elem ents (39-reek

delta Y . U ^ ta S t l ^ x i)dt = l

’’extended” rho e ;= i  . x ‘)d t = io

’’extended” vega

Table 1.4: Conditions for piecewise constant times the first variation process 

solution for the generator

1.4.3 Choice o f the generator

When dealing with Malliavin weight, the true question is the choice of the best 

generator. Since the Skorohod integral coincides with the Ito integral for adapted 

processes, it is very interesting to find an adapted generator. A second feature 

is to base the choice of weight on a variance minimization criterion as well. 

However, this problem is extremely difficult to treat in its general framework. 

To tackle this issue, one needs to specify our diffusion parameters : drift and 

volatility term. The problem is then to determine the adapted generator with 

the lowest formula variance. However, this problem cannot be solved in this 

too general framework. We need stronger assumptions on the diffusion of the 

underlying for a fruitful discussion about the choice of the generator.

1.5 Conclusion

In this chapter, we have presented the theoretical framework for the simulation 

of the Greeks with no differentiation of the payoff function. Its innovation can 

be classified into two parts:

•  We have found the exact condition for a function to serve as a weight
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function. The problem was solved by means of the Skorohod integrand, 

referred to as the generator of the weight function.

• We have given the weight function with minimal variance. It is the projec­

tion of any weight function on the filtration spanned by the payoff func­

tional.

There are many possible extensions and applications of this theoretical chap­

ter. One area of research is to extend the previous results to other option types: 

e.g. continuous time Asian options Benhamou as explained in chapter 4 of this 

Thesis. Another domain of interest is to find specific examples of weight func­

tion, according to a certain criterion. The question of the choice of generator 

needs to refer to stronger hypotheses on the diffusion of the underlying. Another 

question is a comparison study of the efficiency of Malliavin weights compared 

to traditional methods. In chapter 2, we examine numerical examples in the 

particular case of the Black diffusion. They concluded that Malliavin formulas 

are very efficient for non-linear payoffs but not for vanilla options. Their main 

conclusion is that one should be cautious when using the Malliavin formulae. As 

a suggestion, one should use locally the Malliavin formulae at regions of discon­

tinuity and the finite difference method elsewhere. This point will be precisely 

the subjects of the following chapter.



Chapter 2

Faster Greeks for Discontinuous 

Payoff Options (A Malliavin 

Calculus Approach in Black 

World)

Sum m ary o f th e chapter

This chapter is a numerical application of the general theory introduced in the first 

chapter. It examines the case of the Black pricing model. We quantify the gain in the 

variance reduction when using the Malliavin weighted scheme. We found evidence that 

this method is very efficient for corridor options, especially for the gamma calculation. 

Indeed, it can be shown that second order derivatives are the most efficient quantities 

for the Malliavin weighted scheme. We examine a mixed strategy based on Malliavin 

weighted scheme as well as a finite difference approximation. The Malliavin weighted 

scheme is used only locally at the kink of discontinuity. This leads to so called local 

Malliavin formulae. Local Malliavin formulae offset the drawback of slow convergence 

of Malliavin weighted scheme for very standard payoffs like call options.

46
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2.1 Introduction

47

The traditional approach of option pricing relies on hedging. Since the sem­

inal work of Black Scholes (1973), the fair price of an option is given by the 

portfolio that replicates exactly the option payoff at maturity. If we introduce 

incompleteness in our model, the hypothesis of perfect replication should be re­

laxed. One should use different types of criteria to find a price. There is an 

extensive literature on super-replication or risk minimizing (see for example El 

Karoui and Quenez (1995), Jouini et al. (1996), Frey (1999)). However, this is 

not always very realistic since this approach leads to too expensive prices. As a 

consequence, the derivatives industry still assumes a perfect replicating portfolio 

and is still very much concerned about the way of calculating it. This problem 

is commonly referred to as the computation of price sensitivities known as the 

Greeks.

In this chapter, we examine the particular case of the Black diffusion. We 

try to quantify the variance reduction induced by the Malliavin method and to 

define an empirical typology of option for which the Malliavin based formula is 

more efficient than the traditional finite difference method.

The remainder of this chapter is organized as follows. In section 2, we ex­

plain why the finite difference method fails to get fast Greeks for discontinuous 

payoffs. This suggests to use Malliavin based formulae. In section 3, we give 

explicit formulae of Malliavin weights for options depending on a finite set of 

dates. In section 4, we examine simulation results that confirm our theoretical 

predictions: Malliavin formulae are more efficient for strongly discontinuous pay­

off options. We define a typology of option types for which the Malliavin based 

formula should be efficient and quantify the variance reduction on our numerical 

simulations. We briefly conclude in section 5, giving possible extensions.
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2.2 W hy a new m ethod for the estim ation of 

the Greeks?

In this section, after summarizing our model hypothesis, we explain why the 

finite difference, advocated to be quite fast by the use of common random num­

bers, fails to get efficient estimates of the Greeks in the case of discontinuous 

payoff options. An exact knowledge of the Greeks is important for risk man­

agement issues. Indeed, traders usually delta hedge their portfolio no matter 

how important transaction costs are. (see the extensive literature on transaction 

costs: Leland (1985) for the early one, Bensaid et al. (1992), Hodges and Neu- 

berger (1989), Boyle and Vort (1992), Davis, Pana and Zariphopoulou (1993), 

Hodges and Clewlow (1997), Jouini and Kallal (1991))

2.2.1 D escription  o f th e  Black pricing m odel

We consider a continuous-time trading economy with a limited period of hori­

zon T  G [0, Too] (Too<+oo). The uncertainty is characterized by a complete 

probability space (Cl, F, Q) where Cl is the state space, F  is the cr-algebra repre­

senting the measurable events, and Q is the risk neutral probability measure1. 

The information evolves according to the augmented right continuous complete 

filtration {Fu t £ [0, Too]} generated by a standard one dimensional Brownian 

Motion {Wt, t  G [OjTJ}. We assume the underlying price process (A * )^ ^  

follows a geometric Brownian motion with a time-dependent volatility,given by 

the Ito process solution of the following Stochastic Differential Equation:

dXt = rtX tdt +  (TtXtdWt (2.1)

with initial condition Xo = x  and with rt the deterministic risk-free interest rate 

and crt the deterministic Black (1976) volatility. The instantaneous variance
1since this basic model assumes markets completeness, this risk neutral probability measure 

exists and is uniquely defined
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a (t, X t) of the Ito process (-Xt)te[0,:n given by crtX t and its drift b (Xt) by 

rtXt. The ’’first variation” process, a Ito process itself, defined as a derivative of 

the Ito Process PG)«e[o,T] with respect to its initial condition x, is proportional 

to the underlying process

Yt =  —
X

The proportionality between the first variation process and the underlying im­

plies a proportionality between vega and gamma (see Benhamou (2000c)). There­

fore, the gamma can be obtained easily for a known vega and vice versa.

2.2.2 The failure o f finite difference for discontinuous 

payoff options

As pointed out by Glynn (1989), by Glasserman and Yao (1992), Boyle, Broadie 

and Glasserman (1997) and by L’Ecuyer and Perron (1994), a finite difference 

scheme can be improved by taking common random numbers for the compu­

tation of the Greeks. If we denote by P(x)  the option price with an initial 

underlying’s level of x, by X t  (e) the underlying’s value at time T  with an ini­

tial condition x +  £, and by K  the strike of the option, a finite difference scheme 

for the particular case of the delta leads to approximate the delta by a finite dif­

ference approximation like (P  (x -f e) — P  (x)) /e. The decisive element for the 

variance of this estimator is the variance of the numerator, which turns out to 

be equal to

Var (P (x)) +  Var (P (x +  e)) — 2Cov (P  (x +  e) , P  (x))

Therefore, the more positively correlated the two prices P  (x +  e) and P  (x) 

are, the more efficient the above estimate of the Greek is. This is why using 

common random numbers for the simulation of the two options prices: P  (x +  e) 

and P  (x ), is very efficient. Going even further, L’Ecuyer and Perron (1994) 

proved that the convergence rate is n-1/2, which is the best that can be obtained 

from Monte Carlo simulations. The dramatic success of common numbers relies
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on the fast rate of the mean-square convergence of P (x -f e) to P  (x ) . The rate 

of n -1/2 unfortunately does not apply in all cases. For example, it fails to hold 

in the case of the digital call, an option paying 1 in the case of an underlying 

above the strike X t > K  and zero elsewhere. This comes from the slow mean 

square convergence of P (x +  e) to P (x) . The difference between the shifted 

digital call P  (x +  e) and the regular digital call P  (x) is given by a probability 

times a discount rate squared:

E [|P  (x +  e) -  P  (x)|2] =  e-2rTP  [XT < K  < X T (e)]

Assuming an homogeneous underlying process, X t  (e) =  X t * (1 +  §) , it leads 

to a convergence rate of e for this probability. Writing with Landau notation, 

we get that the convergence of P  (x +  e) to P (x) is only Unear in £ :

E [|P  (X0 + e ) - P  (X0)|2] =  O (e)

On the contrary, in the case of the plain vaniUa call option, it can be shown 

(see for example Broadie and Glasserman (1996)) that for the geometric Brow­

nian motion, the convergence rate is of e2

E [ |P ( i  +  £ ) -P (a :) |2] <  E [|A r ( e ) - A , |2] '

<  £2E

where Z  is a normal variable N  (0,1), leading to

E [ |P (x  +  e ) - P ( x ) |2] =  O (e2)

This is why the methodology of finite difference under-performs for all dis­

continuous type options like simple digital, corridor (option which pays 1 if the 

underlying at time T  is inside an interval L < X t < H),  barrier option and so

on.
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2.3 Determ ination of the Malliavin W eights

To overcome this problem, Foumie et al. (1999) and Benhamou (2000a) (reprinted 

as chapter 1 of this Thesis) advocated the use of an integration by parts for­

mula so as to construct smooth estimators of the Greeks. This section show 

how to apply the results derived by in the chapter 1. We remind important 

characteristics of Malliavin weights:

• all Greeks can be written as the expected value of the payoff times a weight 

function.

• the weight functions are independent from the payoff function. The method 

efficiency is therefore increased for discontinuous payoff options.

• the weight functions are given as the Skorohod integral of some genera­

tor, characterized by necessary and sufficient conditions being expressed 

through conditional expectations. However, since it is easier to handle 

and still very robust, we use sufficient and stronger conditions that are the 

equality almost surely of the terms inside the conditional expectations.

• there is an infinity of solutions for the generator function. However, it is 

more efficient to choose weight functions expressed with the same points 

of the Brownian motion trajectory as the option payoff. For an option 

depending on a series of dates t\ < £2 < ••• < tm it is appropriate to choose 

a weight function expressed in terms of Wtl, ..., Wtn. No extra simulation 

is required for the computation of the weight function and it can be shown 

that the variance of the weight function is minimum.

The latter stronger condition can in some cases not be fulfilled. In these 

cases, it becomes very difficult to determine the most efficient weight functions. 

In the rest of the chapter, we take the convention that to =  0. We denote by F  

the discounted payoff. The option is depending on a series of increasing dates 

ti < t2 < ... < tm with tm = T . This dependance is very general. It can
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represent many options depending on a finite set of dates, as in discrete Asian, 

barrier and lookback options.

2.3.1 D elta

In chapter 1, we have seen that the delta is equal to the expected value of the

discounted payoff F  times a weight function expressed as a Skorohod integral

(equation (2.2))

delta =  Eg [F6 (wdelta)] (2.2)

where the function «/delta, called the weighting function generator, has to satisfy 

a sufficient condition given by:

rT
xa twdelt* (t) 1 {t<u}dt =  1 Vi =  l...m  (2.3)/Jo'0

as well as the L2 integrability of its Skorohod integral, which is the condition 

for the existence of the Skorohod integral (0ksendal (1997) page 22).

Among the different weight function generators, it can be shown that the one 

with the lowest variance is the one expressed in terms of the same points of the 

Brownian motion as the option payoff, that is to say Wtl, ..., Wtn. This implies 

to use a piecewise constant generator. We denote by (Aj)i=1 n the sequence 

initialized with Ai =  xj t i a dt and defined by the following recurrence: for 1 < 

iQ < n, A^+i is given by

i  -  E:°=1 f t  ko td t

X T * *

With these definitions, the most appropriate solution for our generator (in terms 

of computation) is given by the following proposition:

P roposition  3 The piecewise solution for our generator is given by

»**•(*) =  E - M , (2-4)
i=1
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leading to the following expression for the delta

delta = E? f E M w i . - w i w ]
»=i

Proof: the solution (2.4) verifies condition (2.3).□

R em ark 1 In the particular case of an option depending only on a final date 

T  (European option) with a Black Scholes diffusion (at = cte = a), we find the 

following particular solution:

8 = E e~J«r’dsf ( X T)
WT

(2.5)Tax

The weight function is very simple in this special case. It is the Brownian 

motion divided by the maturity of the option times the volatility times the initial 

condition. This suggests that for an option close to maturity, the Malliavin 

weight of the delta should explode. Indeed, when the option is close to maturity, 

the condition (2.3) leads to increase the generator. The problem of a wider 

hedge close to the maturity is well-known, especially in the literature about 

barrier options. As far as the volatility is concerned, the intuition is that more 

volatility makes the option price more convex. It smoothens in a way the Greeks. 

This is why it is consistent with the decrease of the Malliavin weight with respect 

to the volatility parameter.

2.3.2 G am m a

The gamma (T) computation is harder than for the other Greeks since it is a sec­

ond order derivative. However, since in the Black model, the first variation and 

underlying process are proportional, there is a proportionality between gamma 

and vega (see Benhamou (2000c)). The vega v is given by (in the case of a 

European option)

v = x2aT  * 7

Using this property enables us to compute easily the gamma. That is why we 

do not develop any further our analysis for the gamma and refer to the vega
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section for an elegant way of calculation. So as to be as extensive as possible, 

we can mention that a straightforward computation of the gamma can be done. 

Using the theoretical results on the Malliavin weight function (see Benhamou 

(2000a)), we find that one particular solution for the weight function of the 

gamma is given by:

( f  — d .w ) -  r  (—)  d a -  f T - r - d W t
V o X(Jt )  Jo \xcrt J Jo X 2crt

Rem ark 2 In the particular case of an option depending only on a final date T  

(European option) with a Black Scholes diffusion (at =  cte = <j), we find:

weight? = (2.6)

r =  e - J f r . d s

2.3.3 Rho

The meaning of the classical rho is to examine the price sensitivity with respect 

to the risk-free rate. The results derived by Benhamou (2000a) are for a pertur­

bation on the drift part of the diffusion of the underlying. However, a change 

in the risk-free rate impacts in two ways. It alters the drift of the underlying 

diffusion but it also modifies the discount factor:

rho = £ e «  (X?;rh° , X ^ ) ]

(2.7)

where X l'Tho stands for the underlying with a perturbed drift b (u , X u) =  X uru, 

and where the limit is almost surely, taken for e =  0. The second term can 

be calculated by interchanging the expectation and the derivative operator and 

differentiating the discount factor with respect to e:

A EQ [e- j f  -.+-.*7 X , j ]  =  E« [ -  j ) " 'r ,ds e - ^ r‘f ( X tl, . . . ,XtJ

Like in the case of the delta, the first term of the right hand side of equation 

(2.7) can be expressed as the expected value of the discounted payoff F  times a
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weight function expressed as a Skorohod integral

[ e - i f * * /  (X*, =  E« [FS (u,rh»)] (2.8)

where the function wTho, called the weight function generator has to satisfy a 

sufficient condition given by the following equation

/ xatwrho (t ) d t=  xrtdt Vz =  1 ...m (2.9)
Jo Jo

as well as the L2 integrability of its Skorohod integral. An obvious solution is 

wTho =  Using the fact that the classical rho is the price sensitivity with 

respect to the risk-free rate, we get the following proposition:

P roposition  4 The rho is given by:

rho = E® '•G f
2.3.4 Vega

The vega is the perturbation along the volatility term of the diffusion. We write 

the perturbation as a  (t, X t) = otX t. Like in the case of the other Greeks, we 

can define a weight function characterized by its generator. The weight function 

generator wvega (.) should satisfy:

f  atwvega (t) dt = (  crtdW t— f  0 t&tdt Vz =  l...n (2-10)
Jt=o Jt=o Jt=0

as well as the L2 integrability of its Skorohod integral, which is the existence of 

the Skorohod integral. One possible solution is a piecewise constant solution. 

We denote by (A*)i=1 n the sequence initialized with

A It=o °‘dWt -  It=o Wtdt
1 H=oatdt

and defined by the following recurrence: for 1 < zo < n, Aio+i is given by

. £o  -  &  w dt -  s t i 1 IL  m
a 'dt

We then get that there is a piecewise constant solution as the following propo­

sition states it:
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P roposition  5 piecewise constant solution

One particular solution for the weight function generator is defined by:
n

»"■•(*) =  5 > 1h_„ti|M  (2-12)
1=1

Proof: The solution given by equation (2.12) verifies the necessary and 

sufficient condition to be a weighting function generator equation (2.10).D

Corollary 1 In the case of an option depending only on a final date denoted by 

T, we get

vega — E e-SZrM f  (Xt )  s (

Proof: immediate, since the weight function is defined as the Skorohod 

integral of the particular solution for the weighting function generator wvega 

given by the equation (2.12).D

Corollary 2 In the Black Scholes case, we get

vega =  E e~ £ T-ds f  {XT) ( W }  -  T  -  oTW t )] (2.13)

Proof: Using the fact that the Skorohod integral is a linear operator and 

that the Skorohod integral reduces to the Ito integral for adapted process, we 

get

We need to calculate Ju==0 f v=0 dWudWv . This expression can be seen as a 

Wiener Chaos term of second order and is related to the Hermite polynomial of 

second order, so that (0ksendal (1997) page 19)
rT

r2I fJ  u = 0  J  v~
dWudWv = W f — T

—0 Jv=0
Putting all these terms together leads to the result. □  

Corollary 3 The classical vega is given by 

Classical vega =  E

Proof: to obtain the classical vega, we must divide the above formula (2.13)
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2.4 Num erical Result on the Efficiency o f M alli­

avin weights

In this section, we compare the results of Malliavin weighted simulations with the 

ones obtained by a centred finite difference approximation (P (x + e) — P (x — e)) / 2e 

for three different types of options in the Black-Scholes framework (so as to have 

closed formula):

• a corridor option: the payoff, given by l{ smax>sT>smin}, displays two dis­

continuities. This is exactly the type of options we are targeting to since 

it has two discontinuities.

•  a binary ca ll: the payoff given by l{ s r >smin} displays only one discontinu­

ity. The payoff is smoother than the one of a corridor option.

• a vanilla call. This last example is to examine the impact of the formula 

when there is a smooth payoff.

A point we had to resolve at first, was the type of simulations to use. Boyle 

Broadie and Glasserman (1997), Caflisch Mokoroff and Owen (1997), Galanti 

and Jung (1997), Boyle Joy and Tan (1997), Papageorgiou and Traub (1996), 

Paskov (1994), Paskov and Traub (1995) and Williard (1997) show that low- 

discrepeny sequences are more efficient than random sequences for low dimen­

sion problems. Bratley, Fox and Niederreiter (1992), Galanti and Jung (1997), 

Morokoff (1997) and Moskovitz and Caflish (1995) demonstrate that low dis­

crepancy sequences become less efficient for high dimensions. Galanti and Jung 

(1997) demonstrate that the Sobol sequence exhibits better convergence proper­

ties than either the Halton and Faure sequences. Therefore, we used the Sobol 

sequence.

Since the Sobol sequence fills the space with a pseudo periodicity, the sim­

ulations display pseudo-periodicity as well. We took the same parameters in 

the three option examples: Xo=100, r=5%, <r=15%, T = 1  year, Smin=95,
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Smax=105, K=100. We display for each option the delta and the gamma. Rho 

and vega parameters lead to same results and are given for illustrative purpose 

in the particular case of the corridor option.

The results consist in two remarks:

• For discontinuous payoff function, as is the case of digital and corridor 

option, with a mean-square convergence of the shifted option P  (Xo + e) 

to P  (Xo) linear in e (see section 2.2.2, page 49), Malliavin formula out­

performs finite difference method. This is because Malliavin simulation 

has lower simulation variance and converges faster. This comes from two 

self-reinforcing facts. First, Malliavin technique uses a smoothened payoff. 

Second, finite difference method is lengthy because of the slow mean-square 

convergence of the shifted option P (Xo +  e) to the normal one P  (Xo).

• On the contrary, for vanilla options, smooth enough not to require the 

integration by parts technique and for which the mean-square convergence 

of a shifted option P (Xo + e) to the normal one P (Xo) is quadratic in 

e (see section 2.2.2, page 49), finite difference outperforms the Malliavin- 

based method.

2.4.1 Com parative analysis: F in ite Difference versus M alli­

avin w eighted scheme 

Corridor Option

This important example illustrates the drastic efficiency of the Malliavin theory. 

The corridor option pays 1 if the underlying at maturity is inside the corridor: 

payoff equal to l{smax>Sr>Sinin}* The outperformance of the Malliavin simulation 

is illustrated by the figures 2.1, 2.2 which display the delta and gamma of the 

corridor option. Results on the vega and rho are similar. They are given only 

for illustrative purpose as figures 2.3 and 2.4. A more quantitative analysis of 

the result is given in the section 2.4.2.
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Sim ulations Num ber

  Malliavin Simulation

Finite Difference

Exact value -0.00411

Figure 2.1: Efficiency of the Malliavin weighted scheme for the computation of 

the delta of a Corridor option

The figure 2.1 compares the two methods: Malliavin weighted scheme (black 

line) and the finite difference method (grey line). The Malliavin weighted scheme 

converges to the right answer fast with almost no oscillations, whereas the finite 

difference estimator fluctuates with a pseudo-periodicity around the correct value 

The figure 2.2 examines the computation of the gamma. Like in the case of 

the delta, the Malliavin weighted scheme outperforms dramatically compared 

to the finite difference method. It is worth noticing that this outperformance is 

even more pronounced for the gamma than for the delta.

Vega and Rho for the  Corridor option

We decided to study the delta and gamma to compare different type of options. 

However, the efficiency (or not) of the Malliavin weighted scheme for the rho 

and vega is similar to the case of the delta and gamma.

Binary Option

The binary option is a didactic example of a payoff function with small discon­

tinuity (lsT>smin)- Like for the corridor option, Malliavin weighted simulations
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3  -0 0015
  Malliavin Simulation

Finite Difference

Exact value -0.000917

Figure 2.2: Efficiency of the Malliavin weighted for the computation of the 

gamma of a Corridor option

compute faster and more accurately the Greeks than the finite difference method. 

Finite difference simulation performs poorly since the mean-square convergence 

of the shifted option P  (Xo +  e) to P  (Xo) is only linear in e. Figures 2.5 and 

2.6 are respectively example of delta and gamma computation. They illustrate 

the outperformance of the Malliavin weighted scheme.

Like for the corridor option, Malliavin outperformance is more pronounced 

for the gamma than the delta as a comparative study of figure 2.5 and 2.6 shows. 

Gamma is a second order Greek. This suggests an increased efficiency for higher 

order Greeks.

Call Option

Last but not least, the Call option is an instructive case of a smooth payoff 

function. Since the payoff function does not present any strong discontinuity, it is 

smooth enough not to require any integration by parts smoothing. Therefore, the 

Malliavin-weighted simulations do not provide any technical advantage. Indeed, 

since the mean-square convergence of the shifted option P  (Xo +  e) to the normal 

one P  (Xq) is quadratic in e, the finite difference method embodies a pseudo
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antithetic variance reduction. As a consequence, it converges faster than the 

Malliavin method as shown by figures 2.7 and 2.8, which represent respectively 

the delta and gamma.

Even for the case of the gamma, which is a second order derivative, the 

finite difference is more efficient than the Malliavin based formula as proved by 

figure 2.8. The second order smoothing is not enough to offset the quadratic 

convergence of the shifted option C (X q +  e) to the normal one C (Xo) as shown 

by figure 2.8. Still, the comparative study of the figures 2.7 and 2.8 indicates an 

increased efficiency of the Malliavin weighted scheme for second order Greeks 

like gamma.

2.4.2 T ypology o f options requiring M alliavin weighted  

schem e

As shown by simulation examples, a paradox of the Malliavin weighted scheme is 

the implication of the payoff function on the method. The weight function does 

not rely on the payoff function. However, its comparative advantage versus finite 

differences does depend on the form of the payoff. Indeed, the finite difference 

method are crucially related to the form of the option payoff. Moreover, the 

weight function is not depending on the payoff. However, the total variance 

of the Greeks simulated by a Malliavin weighted scheme is the variance of the 

product of the payoff function times the Malliavin weights. This does depend 

on the payoff type. An interesting and open problem is to classify the option 

types for which the Malliavin weighted scheme should be preferred. In this 

section, we precisely try to define a typology of options for which the Malliavin 

technology outperforms the traditional finite difference method. We can make 

many remarks:

• the Malliavin weight function is independent from the option payoff. This 

indicates that the disturbance caused by the weight function is not influ-
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enced by the payoff. This is not the case of the finite difference method

for which the payoff function matters crucially.

• the weight function explodes for small maturities. This suggests that the 

Malliavin technology is inappropriate for small maturities options.

• the computation of the gamma is similar to the vega since in the case of the 

Black and Black Scholes model, there is a direct proportionality between 

the gamma and vega coefficient. The proportionality can be read on the 

weight function, whereas it is not obvious in the finite difference method. 

A standard finite difference method would lead to compute the gamma by 

the finite difference approximation

^  Price {So +  dSo, o) — 2Price (So, a) +  Price (So — dSo, <r) 
rRS dS$

as well as the vega v «  .

•  the Malliavin technology in the case of the gamma reduces a second order

differentiation to no differentiation. This implies that the efficiency of the 

Malliavin method is enhanced in the case of the gamma compared to the 

delta.

Before, giving an empirical typology of option, we quantify the variance 

reduction induced by the Malliavin method. And we can claim that Malliavin 

based formula is a variance reduction technique. This is well illustrated by 

table 2.1, where we have given the ratio between the estimated volatility of the 

Malliavin simulation and the finite difference simulation. We can see that the 

method is more efficient for gamma, then for vega.

The variance reduction is of comparable order for delta and rho. The num­

ber of simulation draws for the table 2.1 was N=20,000. We give the ratio of 

simulation variances between finite difference and Malliavin-based simulation. 

Since the variance decreases roughly linearly in n, a ratio of ten means that we
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Option

type

Variance ratio

^ F in ite  D ifference/^M alliavin

delta gamma rho vega

Call N=20,000 0.1273 0.1272 0.401 0.0735

Binary N=20,000 7.15 4916 6.56 81

Corridor N=20,000 144.98 6864 33 5920

Table 2.1: Comparison of the Malliavin weighted scheme and the finite difference 

method

need to do 10 n draws in the finite difference method to get the same variance 

as the one obtained by the Malliavin method with only n draws.

We found that for the corridor option, the Malliavin weighted scheme, when 

compared to finite difference, improved the computation of the Greeks by a 

factor bigger than 100 for the case of the delta, 6000 for the case of the gamma, 

33 for the case of the rho and 5900 for the case of the vega as stated by table 2.1. 

These are big numbers. It means for example that we need about 6 millions of 

draws to compute the gamma with the finite difference method to get the same 

accuracy as a simulation based on a Malliavin weighted scheme.

The faster convergence of Malliavin weighted scheme over the finite difference 

method with common random numbers comes from the fact that the Malliavin 

method avoids differentiating and smoothens considerably the payoff of the op­

tion to simulate.

Summarizing all the results given by the simulations, we draw the following 

conclusions:

• The Malliavin method is appropriate for option for which the mean-square 

convergence of a shifted option P (Xq -I- e) to the normal one P  (Xo) is 

linear in e. This is the case of any option with a payoff expressed as a 

probability that a certain event occurs conditionally to the underlying 

level at a certain time. This is the case of any binary and corridor option.
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• The maturity of the option is a crucial factor for the Malliavin method 

since it leads to an exploding weight function. However, the traditional 

method underperforms as well.

• The Malliavin method leads to weight functions which are roughly (poly­

nomial) functions of the Brownian motion. The variance of the weight 

function increases for high values of the Brownian motion. To get the 

Greek, we multiply the weight function by the option payoff. This implies 

that if the payoff function is very small for high value of the Brownian 

motion, the variance is going to be low. This indicates that Malliavin for­

mulae are more efficient for put than call options. Therefore, it is more 

appropriate to use the put-call parity and calculate Greeks only for put 

options. Furthermore, we can use a mixed strategy referred to as the 

Malliavin local approach, which smoothens the discontinuity locally. This 

is the subject of the next subsection.

• The relative performance shows however that the Malliavin weighted un­

derperforms only slightly for the case of call but outperforms greatly for the 

case of the corridor option as shown by the figures 2.9, 2.10, 2.11, 2.12. The 

relative performance is calculated as the ratio of the difference between the 

simulation result and the theoretical result over the absolute value of the 

theoretical one. Therefore, in the charts, a positive relative performance 

means that the simulation’s estimate is greater than the theoretical one 

by the given relative percentage. The opposite holds. A negative relative 

performance of 10% means that the simulation underestimates the result 

by a relative 10%.

2.4.3 Local M alliavin formulae

The intuition behind the integration by parts is to smoothen the payoff at the 

discontinuity kink. However, there is no advantage in using the Malliavin for-



CHAPTER 2. BLACK MODEL 65

mula when the payoff is smooth. This hints at using a mixed strategy. At the 

discontinuity, we use an integration by parts by means of the Malliavin formula. 

Elsewhere, we use the traditional finite difference. The finite difference method 

contains a variance reduction method of antithetic variate when implemented 

with common numbers (as explained in section 2.2.2, page 49). Let us describe 

the idea on the case of the delta of a call. We have seen that the delta can be 

written as the expected value of a payoff times a weighting function (section 

2.3.1, page 52), which in the simple case of the Black Scholes framework leads 

for a European option to

6 = E + WT
xoT  ̂

The weight function is multiplied by the term (X t — K )+ which is big for 

large values of X t ,  corresponding to large values of the Brownian motion Wt- 

This generates some increased variance because of the weight function W t / xctT.

When X t  is ’’large”, W t  is ’’large” and therefore (X t  — K )+ * W t / x (tT  is even 

’’larger” with a substantial variance. Writing the delta as the sum of two terms, 

we get

delta =  [<r (XT -  K )+ l lK<xT<K+e}] + J^ E  (XT -  K )+ \ {K+c<xT}\

Using the Malliavin integration by parts only for the first term, and interchang­

ing the expectation and the differentiation operator for the second, we come 

to

WT 1delta =  E e So r*d3 (xT — K )+ l{K<xT<ic+fi}^7pj +  E |e Jo radsl{K+s<xT}^T]

Indeed, it is very efficient to take a small localization parameter like e =  1. In 

this case, it leads to a reduction of variance, that is to say ^MaiUavin/̂ LcaiMaUiavin 

=13.88 and a variance reduction from finite difference to local Malliavin of 1.77, 

that is to say finite Difference/̂ LcaiMaUiavin =1-77. Therefore, the Malliavin local 

formula is more efficient than the standard finite difference method. The factor 

of 1.77 means intuitively that we need a simulation of 17,000 draws with a finite
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difference approximation to get the accuracy of a 10,000 draws simulation with 

the local Malliavin based formula. Indeed, the crucial point in this formula is to 

find an interesting value of e, taken here as 1% of the underlying initial level. It 

would be nice to examine the impact of this parameter on the variance reduction 

with some theoretical considerations. That is one of the promising future area 

of research for the Malliavin technique.

2.5 Conclusion

In this chapter we have seen that using Malliavin calculus and its integration 

by parts formula, we can smoothen the function to be estimated by the Monte 

Carlo or Quasi Monte Carlo procedure. This outperforms traditional finite dif­

ference method in the case of digital option as well as corridor, with a gain on 

the variance of the simulation of more than 4900 and 6800 for the gamma of 

respectively the digital and the corridor option.

However, we recommend a cautious use of the Malliavin formula. It turns 

out to be very efficient for discontinuous functions like a digital, corridor payoff 

function. However, for smooth functions, it can handle the computation of 

the Greeks more inefficiently than a finite difference method. This is because 

the finite difference method includes an antithetic variate variance reduction 

method. We suggest to use a local version of the Malliavin method, so as to 

smoothen the payoff at the kink and elsewhere to use finite difference method 

with common random numbers. Other relationships like put-call parity should 

be used as well.

There are many extensions to this chapter, especially to more complicated 

models than the Black one. An interesting enlargement is the advanced study of 

the local Malliavin method. As a conclusion, we conjecture that the Malliavin 

method is going to have an increasing influence over the next years since it is a 

powerful method to compute the Greeks.
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Sim ulations Number

Malliavin Simulation

Finite Difference

Exact value -0.6517

Figure 2.3: Efficiency of the Malliavin weighted for the computation of the rho 

of a Corridor option. The pseudo periodicity of the finite difference comes from 

the pseudo periodicity with which the Sobol sequence fills the space

Simulations Number

Malliavin Simulation

Finite Difference

Exact value -1.376

Figure 2.4: Efficiency of the Malliavin weighted for the computation of the vega 

of a Corridor option. The case of the vega is very similar to the one of gamma 

since these two sensitivities are proportional in the case of a single option in the 

Black Scholes framework
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Malliavin Simulation
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Figure 2.5: Comparison of the computation of the Delta of a Binary option by 

finite differences and by Malliavin weighted scheme

Sim ulations Number

S -0 001

Malliavin Simulation

Finite Difference

Exact value -0 001057

Figure 2.6: Comparison of the computation of the Gamma of a Binary option 

by finite differences and by Malliavin weighted scheme
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Malliavin Simulation

Finite Difference

Exact value 0.7735

Sim ulations Number

Figure 2.7: Comparison of the computation of the Delta of a Call option by 

finite differences and by Malliavin weighted scheme

Malliavin Simulation

Finite Difference

Exact value 0.02007

Simulations Num ber

Figure 2.8: Comparison of the computation of the Gamma of a Call option by 

finite differences and by Malliavin weighted scheme
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Sim ulations Number

Malliavin Simulation

Finite Difference

Figure 2.9: Relative performance of the Finite difference method over the Malli­

avin weighted scheme for the delta of a call option

Malliavin Simulation

Finite Difference

Figure 2.10: Relative performance of the Finite difference method over the Malli­

avin weighted scheme for the gamma of a call option
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  Malliavin Simulation

Finite Difference

Sim ulations Number

Figure 2.11: Relative performance of the Malliavin weighted scheme over the 

Finite difference method for the delta of a corridor option

  Malliavin Simulation

Finite Difference

Figure 2.12: Relative performance of the Malliavin weighted scheme over the 

Finite difference method for the gamma of a corridor option



Chapter 3 

Fast Fourier Transform for 

D iscrete Asian Options

Sum m ary of the chapter

This chapter presents a new methodology for pricing discrete Asian options consistent 

with different types of underlying densities, especially non-normal returns as suggested 

by the empirical literature (see Mandelbrot (1963) and Fama (1965) for the early ones). 

The interest of this method is its flexibility compared to the more standard ones. Based 

on Fast Fourier Transform, the algorithm is an enhanced version of the algorithm of 

Caverhill and Clewlow (1992). The contribution of this chapter is to improve their 

algorithm by a systematic recentering at each stage and to adapt it to non-lognormal 

densities. This enables us to examine the impact of fat-tailed distribution on price as 

well as on delta. We find evidence that fat-tailed densities lead to wider jumps in the 

delta.

72
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3.1 Introduction

73

First introduced in Tokyo, Asian options are options based on any type of av­

erage of underlying equity prices, interest rates or indices. They are among 

the most popular path-dependent derivatives, since their characteristics cap­

ture partially the trajectory of the underlying, with often reduced exposure to 

volatility. In addition, Asian options are less sensitive to possible spot manipu­

lations or extreme movements at settlement and offer flexibility in the way the 

average is settled. Consequently, they have become very attractive for investors 

since they provide a customized cheap way to hedge periodic cash-flows (see 

Longstaff (1995) for a discussion of the efficiency of Asian interest-rate options 

for corporations with reasonably predictable cash flows)

When pricing an option, one of the first questions that arises concerns the 

distributional assumptions for the underlying. Very often the distribution of the 

latter is taken to be lognormal as in the Black Scholes model. However, when 

it comes to arithmetic Asian options, one is confronted with the problem of the 

distributions. Indeed, the empirical literature has rejected normality of returns 

and hence the geometric Brownian motion. It has rather suggested fat-tailed 

distributions (see Mandelbrot (1963) and Fama (1965) for the early ones).

The motivation of this chapter is therefore to provide an efficient method 

for the pricing of Asian options consistent with various underlying densities, 

especially non log-normal ones. Because of the challenge of getting a correct 

price for Asian option with a widely used option pricing model, previous research 

has focussed on the Black Scholes model, adopting different strategies. It has 

first focussed on the geometric Asian option case (Vorst (1992), Turnbull and 

Wakeman (1991), Zhang (1995)). It has as well looked at the question of the 

continuous-time Asian options (Geman and Yor (1993), Rogers and Shi (1995), 

Alziary et al. (1997), He and Takahashi (1996), Forsyth et al. (1998), Nielsen 

and Sandmann (1998)). However, the type of average for traded Asian options is 

arithmetic and discrete: daily, weekly or monthly. Approximating these options
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by their continuous-time limit is inaccurate and misleading for options with a 

period of time between two fixing dates longer than a day.

To account for the discrete arithmetic averaging, it has been suggested to 

use different approximations of the density of the sum of lognormal variables 

leading to various closed-form solutions: approximation via the geometric av­

erage (Vorst (1992)), via a lognormal density (Turnbull and Wakeman (1991)), 

via an Edgeworth expansion (Levy (1992) and Jacques (1996)), via a Taylor ex­

pansion (Zhang (1998) and Bouaziz et al. (1998)) or via the reciprocal Gamma 

distribution (Milesvky and Posner (1997)).

It has also been advocated to use different numerical methods: Monte Carlo 

(Kemma and Vorst (1990)), tree methods (Hull and White (1997)) and Fast 

Fourier Transform techniques (Caverhill and Clewlow (1992)). However, none 

of these works has considered non-lognormal distributions.

When the underlying density is not lognormal, the approximation methods 

do not hold any more since they heavily rely on the lognormal assumption. Nu­

merical methods like PDE or lattice methods are as well not easy to adapt to the 

non-lognormal case, since we need to restrict ourselves to certain types of dif­

fusion like stochastic volatility or deterministic volatility models which implies 

strong assumptions on the underlying diffusion. It is not very straightforward 

to derive an empirical density from market data, requiring very often a calibra­

tion stage. The two methods adaptable to an ad-hoc empirical non lognormal 

distribution without too much difficulty, axe indeed the Monte Carlo and the 

Fast Fourier Transform method. However, these two methods perform poorly 

for non-lognormal case as well as for lognormal one. The Monte Carlo has the 

drawback to be slow. The algorithm of Caverhill and Clewlow (1992) requires 

large discretization grid and has slow convergence.

In this chapter, we offer a solution to improve the method of Caverhill and 

Clewlow (1992) and to adapt it to the case of non-lognormal densities. To 

reduce the size of the grid and therefore the computational time, we recenter
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intermediate densities. We test this algorithm in the lognormal case since it is 

only in this particular situation that we have benchmarks in the literature. We 

then examine the impact of non-lognormal densities on the price as well as on 

the delta.

The remainder of this chapter is organized as follows. In section 2, we de­

scribe our algorithm in detail. In section 3, we examine numerical results for 

the lognormal case, using it as a benchmark for the efficiency of our method. 

Section 4 deals with non-lognormal densities. It examines the impact of various 

densities on the price of the option as well as on the delta. We conclude briefly 

in section 5 suggesting further developments.

3.2 Description of the m ethod

3.2.1 Framework

We consider a continuous-time trading economy with infinite horizon. The un­

certainty in the economy is classically modelled by a complete probability space 

(fi, F, Q) . The underlying is denoted by (St)tGR+. The information evolves ac­

cording to the natural filtration (Ft)teR+ implied by the underlying process. 

Following the traditional empirical literature, we assume that returns ( R u ) ^ ,  

defined by Rti = log for a given sequence of time (U)ieN, are indepen­

dently distributed and have a well-known density fo (.), with a well-known mean 

denoted by //j. In the case of the Black Scholes model, each of these densities is 

a normal distribution with mean (U ~~ U-1) and variance o2 (U — £*_i).

The underlying price is then calculated as the initial price Sto increased by the 

different returns :

St. =  StoeRii +Rt2+- +Rti

Assuming that we have n fixing dates for the average, denoted by £1,̂ 2>•••>£«>
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the arithmetic average A  is defined through:

A
n i = i

In complete markets with no arbitrage opportunity, there is a unique risk neutral 

martingale measure denoted by Q. In this framework, the price P  of an Asian 

call, with strike K , expiring at time T, is defined as the expected value of the 

time-T payoff discounted at the risk-free rate r :

P = Eq [ e 'rT (A -  K )+] (3.2)

where X + stands for max (X, 0). Since the discrete average process has no well- 

known density, there is no closed formula. However, we show in this chapter 

that we can compute numerically this density, giving a method which converges 

to the real densities as long as the size of the discretization grid tends to the 

infinity.

3.2.2 W hy Fast Fourier Transform?

Well known in signal theory, Fast Fourier Transform (FFT) is efficient for the 

resolution of many numerical problems. More specifically, the FFT is an efficient 

algorithm for computing the sum:

1 N - l

F F T  ( /  (fc)) =  -==  V  (_,) for k = l...N
V2jr

where N  is typically a power of 2. This algorithm reduces the number of multi­

plications in the required N  summations from O (N2) to that of O (N log2 (AT)). 

This suggests that for a grid with 2P points, the complexity is p2p, which is 

typically the complexity of a binomial tree.

Recently, this technique has gained popularity in option valuation (Baskhi 

and Chen (1998), Scott (1997), Chen and Scott (1992), Carr and Madan (1999)) 

in view of its numerical efficiency. The property of the Fourier transform used 

here is its efficiency to calculate convolution products. The Fourier transform of
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such a product is simply the product of the Fourier transforms. This is helpful in 

getting the density of the sum of two variables since this is just the convolution 

product of the individual densities as long as the variables are independent. In 

the case of the Asian option, the expression involved is not a straightforward 

sum of independent variables. In the algorithm section, we show how to use 

independent variables in a recursive scheme.

The interest of this method is its efficiency compared to a straightforward 

computation of the density. Instead of computing an n — 1 dimensional integral 

with a complexity of 0 ( N n~1), we reduce this complexity by means of Fast 

Fourier Transform to O (N2 log (N)).

The use of FFT method for Asian option valuation was first suggested by 

Carverhill and Clewlow (1992). However, their work assumes lognormal densities 

and is not very efficient since it requires large grid and converges rather slowly. 

To speed up convergence, one needs to reduce the size of the grid required 

by the FFT algorithm. To cope with smaller grid, we introduce a proxy for 

the mean of intermediate densities. This enables us to recenter the different 

variables. We extend as well the FFT method to non-lognormal densities. We 

look particularly on the Student-density case since the latter is a well-known 

example of a fat-tailed distribution. We use the FFT algorithm as described 

in Press et al. (1992). Indeed, the method explained here is very general and 

can be applied to many other fat-tailed densities, like extreme value, Pareto and 

generalized Pareto distributions.

3.2.3 A lgorithm

Inefficiency o f the Carverhill and Clewlow m ethod

A simple way to calculate the density of a sum of dependent variables is to 

transform then into independent variables. With our assumptions on the in­

dependence of returns, this comes naturally. Notice that when the underlying 

distribution is lognormal, returns are normal and their Fourier transform has a
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1 (iwm_closed form solution equal to /  (w) = - ^ e \  2 / ,  where m  stands for the

mean and a 2 the variance. We introduce the sequence (B i ) i=0 n_1 defined by its 

initial condition: B\ = Rtn and for the recursion i =  2...n,

B i  =  -Rtn+i-i +  loS (!  +  exP B i - 1) (3 -3 )

The Steward and Hodges factorization expresses the sum variable A  defined by 

(3.1) in terms of the variable Bn as stated in the following proposition:

P roposition  6 The sum variable A can be expressed in terms of the last term 

of the sequence {Bi)i=0 n -l: f?n- i/  through :

A  = — eB" 
n

P ro o f : We decompose the underlying price as a function of the difference 

of returns: Stt — eRti+Rt* + -+Rti . Factoring terms leads to a multiplicative 

expression of the sum variable:

A  =  —  [eH*i * (l +  eRt2 * (l +  eRt3 (l +  ... ( l +  ei?tn))))]

When taking the logarithm of the above equation, we get an additive expression:

A  =  ^  * exp (R tl +  log (1 +  exp (Rt2 +  log (... -I- log (1 +  Rtn))))) 
n

The term inside the outermost exponential can be calculated recursively using 

the sequence (Bi)i==1 n.D

The Proposition 6 together with the recursive equation (3.3) was the starting 

point of the work of Carverhill and Clewlow (1992). At the ith step of the 

recursive equation (3.3) the return Rtn+x_t is added. The latter is, however, not 

centred and has often a positive mean which for high volatilities can become 

negative (see the expression for the mean (r — * „)* F°r positive mean, the

distribution of B i+1 is consequently shifted to the right of the distribution of 

B^  If we discretize the distribution of Bi+1 on the same grid as the one of £?*, 

this implies that the discretization grid must be large enough to contain the two
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X

Figure 3.1: Evolution of the densities

distributions. When we have n dates in our arithmetic average, this tends to 

shift more and more in one direction as the order of the distribution increases 

as shown in figure 3.1. This is precisely why the algorithm of Carverhill and 

Clewlow requires a large grid.

Recentering interm ediate densities

To cope with a smaller grid and therefore reduce computational time, we can 

recenter the densities at each step. The difficulty here is that we do not know 

the exact mean of the variable Bi. Denoting by /zt the mean of the return Rti 

(/q =  E which is supposed to be known, we can approximate the mean of

the variable Bi with the following sequence: (rrii)i=1 n initialized with mi =  /in 

and for i =  2 ...n

=  Mn+i-i +  log (1 +  exprrii-i) (3.4)

The term m* acts as a proxy for the mean of the variable Bt. The approximation 

of the average is done by taking the lagged equal to its mean m*_i in the 

recursive equation (3.3). It is worth noticing that even if we do an approximation 

on the mean, it does not mean that we approximate the density of B*. It just 

means that we do not perfectly center this variable. However, there is no new
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error implied by the recentering. Indeed, since the function log (1 +  ex) is convex, 

we are underestimating some convexity adjustment term as stated by the Jensen 

inequality for convex functions /  (E (X)) < E ( /  (X)).

The recentered sequence is defined as (Ai)i=1 n with Ai =  Bi — m*. Replac­

ing Bi-1 by its expression in terms of Ai-i and m,i-i leads to a recursive two 

dimensional sequence summarized by the following proposition:

P roposition  7 The sum variable A can be expressed in terms of the last term 

of the recursive sequence An and m n : as follows:

n

where the sequence (m*)i=1 n is defined as above (3.4) and the sequence (Aj)i=1 n 

is given by the initial condition A i = Rtn — m\ and for i = 2..n

Ai =  Rtn+l_i +  log (1 +  exp Ai-i exprrii-i) -

To get the density of Ai with respect to the one of A i- i, we use the standard 

change of variable theorem, which relates the density of a variable Y  — g (X ) , 

denoted by dqy, with the one of the variable X y denoted by dpf- i(y), through 

the Jacobian of the function / -1 (Y) =  X

dPiog(i+e"'<-.+x) -m, (y) = eS+mt _  ]Vx (log (e#+m< -  1) -  m ^ )  !{,>-„*}<&

We can now describe the different steps of the first algorithm. The algorithm 

is initialized with the value of the two dimensional sequence mi =  /xn and 

A\ =  Rtn — m \. It finishes when we get m„ and An.

The recursive sequence is calculated as follows. Assume that we know the 

value of the bi-dimensional sequence at step i — 1 , that is m»_i and A i-1.

1*0 4 n+mn

leading to the interpolation formula:

ey+mi

(3.5)



CHAPTER 3. DISCRETE ASIAN OPTIONS 81

• We then interpolate the variable A^ i  by means of the remark (3.5) to get 

the density of the variable log (l +  g ^ -i+ ^ -i)  _  m i.

• We calculate the density of Ai as the sum of the two independent vari­

ables and log (l +  emi-i+^i-i) — 77̂  by calculating the convolution 

product via FFT.

• Having obtained the density of the average, we calculate the payoff of the 

option, defined as an expectation, by a numerical integration, using the 

Simpson rule.

Discussion o f the numerical techniques

The FFT algorithm requires the density function to be represented at a sufficient 

number of equally spaced points. The grid for the discretization of the different 

densities needs to be sufficiently dense as well as sufficiently large to avoid inter­

ference errors implied by the periodisation of the density function in the FFT 

algorithm. We use the FFT algorithm as described in Press et al. (1992)

Errors in the numerical integration by the Simpson rule (exact for the inte­

gration of polynom up to degree 3) are negligible compared to the ones produced 

by the discretization of the distribution. The error in the Simpson rule for the 

integral of a function /  infinitely differentiable f  (x ) dx can be shown to be

anO((^)5/ (4))-

3.3 Efficiency of the algorithm for the lognor­

mal case

3.3.1 Black Scholes assum ption

The information evolves according to the augmented filtration {Ft, t  € [0, T \} 

generated by a standard one-dimensional standard Brownian motion (Wt)teR+.
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We assume the underlying price process is a geometric Brownian motion, solu­

tion of the Black Scholes (1973) diffusion defined by equation (3.6) with initial 

condition St=o =  5o
j n

= [idt +  crdWt (3.6)

In this case the returns Rti have a normal density with mean (r — (U — U-i) 

and variance a2 (ti — i ) .

3.3.2 Choice o f the Grid

The choice of an efficient grid is not easy. The grid is determined by its range as 

well as its number of points. Choosing a range not correctly leads to interference 

errors. Taking a grid not dense enough leads as well to inaccurate Fourier 

Transform computation. We choose a centred grid with 4096 points, that is 212 

and with a width of 9nay/dt, where n stands for the number of fixing dates, 

a the volatility, dt the time between two fixings. For a one year weekly Asian 

option, with fifty fixings, the number of fixing n is equal to 50 and the period 

of time between two successive prices dt is equal to one week or 1/52 of a year.

Recentering th e  densities

The improvement of this chapter is to recenter densities at each step. Since we 

approximate the mean, the recentering is imperfect as figure 3.2 shows. For low 

volatilities up to 20%, densities are perfectly recentered for a one-year weekly 

Asian option. For volatilities higher than 20%, the approximation of the mean 

is not rigorously correct and leads to a shift of the different densities to the 

right. Indeed, since the function log (1 +  ex) is convex, we are underestimating 

a convexity adjustment term, as stated by the Jensen inequality for a convex 

function / ,  /  (E (X)) < E ( /  (X)). However, the bias in our estimation is quite 

small, since for large values of x, the function log(l +  exp (x)) is very little 

convex, roughly equal to x, justifying our method.
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D e n s i t y  V a l in Density Value

Figure 3.2: Evolution of the density with recentering at each step. The two 

graphics concern a one year weekly Asian option. The figure on the right is with 

30% of volatility whereas the one on the left is for 20% volatility

In the figure 2, we can see that for small volatility level (20%, figure on 

the left), the recentering is perfect whereas for higher volatility (30%, figure 

on the right), we are missing the convexity adjustment term. In the original 

algorithm of Caverhill and Clewlow, the grid size can be shown to be equal to 

Qno\[dt +  fin. The gain in our method can be measured by the grid width ratio

(9na\/di +  m ^j /9nay/dt. For the case of a one year option with 10% volatility 

and a risk-free rate of 20%, this gain is equal to 1.317. This means that with 

the old algorithm, we need 1317 points to get the same precision as 1000 points 

with the new one. This means that the equivalent of 4096 points with the new 

algorithm is about 5400 points with the old algorithm.

Interference on the FFT algorithm

When the grid is not large enough, interference alters the results’quality as 

shown in figure 3.3, where we used a grid width of only Anvyfdt. This comes 

from the fact that the FFT algorithm assumes the periodicity of our function. 

It can cause interference terms when the grid size is too small.
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Figure 3.3: Interferences on the densities

3 .3 .3  C om p arison  o f  th e  different m eth o d s

Because of no well-known example, we arbitrary decided to use as a benchmark 

the same option example as in the work of Levy (1992) . We compute the price 

of a one year Asian option, with the underlying starting at 100 (S  = 100), with a 

risk-free interest rate of 10% (r =  10%), and 50 fixings per year (weekly average 

with two weeks of holidays).

The results, given in the table 3.1, compare different methods and show that 

the convolution method is efficient for the pricing of Asian option. Regarding 

the column titles, MC stands for Monte Carlo with its standard error given in 

the next column SE. WE means Wilkinson Estimates, E Edgeworth method, RG 

the reciprocal Gamma approximation, CV the Convolution method of Caverhill 

and Clewlow, CVR the convolution method with recentering. The reference 

price is the one of the Monte Carlo simulation. The efficiency of a formula is 

given by its comparison with this reference price.

We found that recentering the density improves significantly the efficiency 

of the Fast Fourier Transform method for high volatilities since the estimation 

of the density becomes more important. Among the traditional approximation 

methods, we tested Wilkinson estimates, Edgeworth expansion, and the recip­

rocal gamma approximation. We found that Wilkinson estimates was the most 

robust method. The Edgeworth expansion formula can blow up when the third
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M ont*  C a rlo  S a m p lin g

U nderlying V alue

Figure 3.4: Comparison of the different densities for a one year Asian option for 

30 % volatility

and fourth moments are too different from the ones implied by a lognormal. We 

also got poor results for the reciprocal gamma approximation. This comes from 

the small number of variables in our Asian options. The density of the average 

is therefore far from its asymptotic limit, which can be shown to be a reciprocal 

gamma density (see Milesvky and Posner (1997)).

3 .3 .4  D en sity  C om parison

Our results confirm that the lognormal approximation slightly overprices Asian 

options (Levy and Turnbull (1992), Zhang (1998)). This is indicated by the skew 

to the right of the Wilkinson estimates (or lognormal approximation) density in 

figure 3.4. The efficiency of the FFT method is confirmed by the close fit with 

the Monte Carlo sampling in figure 4. The Monte Carlo sampling was based on 

a simulation of a Sobol sequence with 30,000 draws.

It is worth noting that the precision of the method is heavily depending on 

the type of the options: in, at or out-of-the-money. One should expect little 

difference in price for options depending on a wide part of the distribution like 

in or at-the-money options. However, for out-of-the-money options, that are 

depending mainly on the tails of the distribution, there is a real advantage
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cr K MC
Std

Err
WE E RG CV CVR

80 22.78 0.00 22.78 22.78 21.64 22.78 22.78

90 13.73 0.00 13.73 13.73 13.1 13.73 13.73

10% 100 5.24 0.00 5.25 5.25 4.98 5.25 5.25

110 0.72 0.00 0.72 0.72 0.71 0.72 0.72

120 0.03 0.00 0.02 0.02 0.02 0.02 0.02

80 23.07 0.01 23.14 23.07 21.92 23.09 23.08

90 15.22 0.01 15.30 15.16 14.46 15.29 15.26

30% 100 9.01 0.01 9.08 9.00 8.56 9.08 9.05

110 4.83 0.01 4.84 4.85 4.58 4.86 4.84

120 2.35 0.01 2.33 2.40 2.23 2.40 2.33

80 24.83 0.03 25.06 24.10 23.58 25.01 24.88

90 18.32 0.03 18.57 17.83 17.40 18.50 18.37

50% 100 13.18 0.03 13.34 13.02 12.52 13.47 13.20

110 9.23 0.03 9.33 9.36 8.77 9.45 9.19

120 6.36 0.03 6.37 6.63 6.04 6.68 6.40

Table 3.1: Comparison of different methods for the Asian option cr stands for 

the volatility, K  for the strike
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in terms of precision to use the Fast Fourier Transform method compared to 

Wilkinson estimates. Indeed, fat tails are the true motivation of this chapter. It 

is already interesting to realize that even in the case of a lognormal underlying, 

the Fast Fourier Transform method takes better account for fat tails than most 

standard approximation methods with closed form.

3.4 Using non-lognormal densities

3.4.1 Interest o f the m ethod

It is now widely accepted that markets differ from the seminal Black Scholes 

(1973) lognormal model. The empirical literature has extensively reported on 

these anomalities, especially on two of them, which indeed are closely linked. 

First, it is has been shown that unconditional returns show excess kurtosis and 

skewness, inconsistent with normality assumptions (see Mandelbrot (1963) and 

Fama (1965) for the early ones, Kon (1984), Jorion (1988) and Bates (1996)). 

Second, research has concentrated its attention on the implied volatility smile 

or skew (see Dumas et al. (1995) for a survey). Interestingly, the second fact 

is just another hint of the non-normality of returns. However, research has 

focussed at implied Black Scholes volatility since implied volatility has become 

a key concept in option pricing. Option prices are often quoted by their implied 

volatility. A more rigorous justification of the interest in modelling volatility 

is its less volatile character when compared with prices. Since, corresponding 

prices fluctuate more than implied volatilities, the trading environment is best 

captured by a model about the implied volatility.

How to cope with the smile in option pricing has become an extensive field 

of research. Classically, it is divided into two different approaches: parametric 

and non-parametric ones.

In the first method, the equation of the evolution of the underlying process 

is given. This description can consist in a continuous diffusion process with
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either a so called deterministic volatility (Rubinstein (1994), Dupire (1993) and 

Derman and Kani (1994)) or a stochastic volatility process (Hull and White 

(1987), Wiggings (1987), Melino and Turnbull (1990), Stein and Stein (1991), 

Amin and Ng (1993) and Heston (1992)) or a model with jumps (Aase [1993, 

Ahn and Thompson (1988), Amin (1993), Bates (1991), Jarrow (1984), Merton 

(1976)).

Other works close in spirit are assuming constant elasticity of volatility distri­

bution often called power-law (Cox Ross (1976)) or a mapping principle between 

normal and lognormal distributions (Hagan (1998), Pradier and Lewicki (1999)).

The second type of methods involves infering the underlying distribution 

from market data. This has been called the expansion method where one induces 

the different terms of the expansion and can reconstitute the distribution (Jarrow 

and Rud (1982), Bouchaud et al.(1998), Abken et al. (1996)).

The interest of our methodology lies in its flexibility on the distributions of 

returns. We do not assume any specific distribution. The distribution is an 

input like all other parameters. Therefore, we can use distribution derived from 

market data, like option prices. In this chapter, we decided to illustrate the fat­

tailed distribution with the specific case of a Student density. This is because 

this density is often used in the literature. It has the additional advantage to 

converge to the normal density when the number of degree of freedom tends to 

infinity. Indeed, there are many other densities which could have been used, like 

Pareto, generalized Pareto, power-laws distributions and many more.

3.4.2 D ensities for leptokurtic effect

To account for leptokurtic returns, we assume that centred and pseudo-normalized 

(with a parameter A > 1) returns -**■■■( 2- ^ * ■ have a density given by a

Student distribution with a degree of freedom n given by
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The cumulative distribution is then given by

r m
n+l

2

Pr ( X < t) = \ 2r — f  ( * +  —u2} duv " ' iXDvW-ooV n  J
where T(y) = e~xxy~ldx is the Gamma function at y. Since a Student 

density has always a variance bigger than one we need to specify this variance 

by the parameter A.

3.4.3 N um erical results 

Effect on th e price

As expected, fat-tailed distributions hereby illustrated by the Student density 

lead to a more expensive price of the Asian option. The Fast Fourier method is 

efficient as confirmed by a comparison with Monte Carlo simulations with 20,000 

draws. To simulate the Student density, we simulate uniform distribution and 

inverse the cumulative distribution by means of the approximation given in the 

appendix section D.

Without any surprise, the discrepancy between the lognormal distribution 

and a distribution with fat tails increases with the volatility. It also grows 

for distribution with fatter tails as shown by the increase of price between the 

Student density with 44 degrees of freedom and the one with only 22. We 

have chosen the Student density since its asymptotic distribution is precisely 

the normal distribution when the degrees of freedom tend to infinity.

Interestingly, practitioners have kept on using the lognormal approximation 

for the Asian option. We have seen that the approximation of a sum of lognormal 

by a lognormal distribution is not correct. It tends to overprice the Asian option. 

However, when assuming a fat-tailed distribution for the underlying, we also 

found that the price of the option was more expensive than the corresponding 

one with lognormal individual underlyings. This explains why practitioners have 

been very keen on using the lognormal approximation since this includes the rise 

of price due to fat-tailed distributions.
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cr K Lognormal
Student 

44 df

MC

Student 

44 df

Student 

22 df

MC

Student 

22 df

80 22.7838 22.7911 22.7914 22.8021 22.8028

90 13.7347 13.7420 13.7425 13.7539 13.7550

10% 100 5.2438 5.2843 5.2850 5.3278 5.3294

110 0.7211 0.7642 0.7649 0.8078 0.8094

120 0.0336 0.0358 0.0362 0.0423 0.0430

80 23.0733 23.2033 23.2050 23.3372 23.3406

90 15.2231 15.4014 15.4036 15.5808 15.5855

30% 100 9.0110 9.2238 9.2277 9.4335 9.4416

110 4.8338 5.0345 5.0379 5.2355 5.2426

120 2.3545 2.5097 2.5117 2.6682 2.6728

80 24.8324 25.2213 25.2243 25.6099 25.6168

90 18.3207 18.7471 18.7510 19.1694 19.1779

50% 100 13.1811 13.6182 13.6239 14.0508 14.0628

110 9.2300 9.6476 9.6530 10.0610 10.0721

120 6.3615 6.7363 6.7412 7.1104 7.1209

Table 3.2: Price of Asian option with Fat-tailed distributions, cr stands for the 

volatility, K  for the strike, df for degrees of freedom
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Figure 3.5: Evolution of the delta with time to maturity under different distri­

butions

D elta hedging

The motivation for our numerical method is to examine the impact of fat-tailed 

distributions on the delta. In the case of the discrete Asian options, the delta 

jumps every time we cross a fixing date.

The comparative study of the delta evolution with lognormal density and 

the Student density shows that a fat-tailed distributions lead to higher jumps 

in the delta, a logical consequence of the fact that fat-tailed distributions imply 

more expensive prices and therefore larger drop of the price with the downfall of 

a fixing date. The difference in the delta is quite significant as shown by figure 

3.5 and 3.6. The figure 3.5 show the evolution of the delta for a weekly Asian 

option far from the maturity of the option. The Student density taken here is 

the one with 22 degrees of freedom.

There is no rule concerning the difference between the delta for lognormal 

densities and for Student densities. In the figure 3.5, the option is 50 to 44 weeks 

before the expiration. In this particular case, the delta implied by the Student 

density is on overall more expensive. This is not the case when the option is close 

to the maturity as shown by figure 3.6 where there are only 10 to 1 week before
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Figure 3.6: Evolution of the delta with time to maturity under different distri­

butions when closed to the expiry

the maturity of the option. However, it is worth noting that on the average the 

delta is almost the same for the two densities. This suggests that for a long-run 

delta hedging, assuming normal returns is not too much inaccurate. However, 

for short run delta hedging, the assumptions on the return densities lead to very 

different hedging strategies.

3.5 C onclusion

In this chapter, we have seen that Fast Fourier Transform is an efficient way 

for pricing discrete Asian options with non-lognormal densities. The systematic 

recentering of intermediate densities enables to reduce the size of the grid so as 

to speed up the convergence. We show that the price of the Asian option should 

be more expensive with fat-tailed distributions. This indicates that approxi­

mation methods overpricing the Asian option incorporate, in a way, fat-tailed 

distribution. However, as far as the delta is concerned, fat-tailed distributions 

lead to very different hedging strategies, especially on the short run.

Our methodology raises many remarks. First, the Fast Fourier Transform 

technique enables to take into account volatility smile since, as an input, we 

can take returns’distribution derived by market data incorporating the smile
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effect. Second, the same approach can be applied with minor changes to basket 

and multi-asset options. Third, this methodology raises the issue of the way of 

deriving the density from market data properly.



Chapter 4 

An Application of M alliavin  

Calculus to Continuous Time 

Asian Options Greeks

Sum m ary o f th e chapter

This chapter extends the results on the Malliavin weighted scheme as described in 

the first chapter to the case of continuous Asian options. We give the necessary 

and sufficient conditions for a function to serve as a weight function introducing its 

generator. We discuss in greater detail the case of an option depending both on the 

continuous average as well as the maturity value of the underlying. We refer to this 

difficult case as the "complex Asian option”. We conjecture indeed that these results 

should be adaptable to the case of the continuous lookback options as well.

94



CHAPTER 4. MALLIAVIN SCHEME FOR ASIAN OPTIONS

4.1 Introduction

95

When handling sophisticated models with non standard and discontinuous payoff 

options, classical methods like lattice methods and numerical methods for solving 

partial differential equations like finite differences and finite elements, could 

be inefficient. The Monte-Carlo and Quasi-Monte-Carlo methods, often seen 

as last resort methods can overcome this technical difficulty. However, in the 

case of a strongly discontinuous payoff function, a well-known fact is their poor 

convergence to the exact solution, when computing the Greeks (price sensitivity 

to parameters like delta, gamma, rho and vega).

Traditionally, to speed up convergence, one relies on different more or less 

successful variance reduction techniques among which the most famous ones are 

antithetic variates, control variates, importance sampling, stratified sampling, 

Latin hypercube sampling and moment matching techniques. One uses as well 

deterministic methods based on low discrepancy sequences like Halton, Sobol, 

Faure sequences (see Glasserman and Yao (1992), Glynn (1989), and L’Ecuyer 

and Perron (1994)). Their straightforward use provide nonetheless little im­

provement when handling the Greeks for strong non-linear payoff functions.

The reason of this inefficiency lies in the way the Greeks are commonly 

computed. One estimates the Greeks by simply taking the finite difference 

of two particular simulation results. Denoting by P(x)  the option price for 

an underlying level of x, the different schemes can be classified into forward 

difference (P (x +  e) — P (x)) /e, central difference (P (x -f e) — P (x — e)) / 2e, 

or backward difference scheme (P (x ) — P ( x  — e)) fe. Despite a quasi antithetic 

technique implied by the substruction of terms P ( x  + e ) , P  (x)} and P  (x — e), 

this method embodies two different errors:

• discretization of the derivative function by a finite difference.

• imperfect estimation of the option prices P  (x +  e ) , P (x), and P  (x — e).

For discontinuous payoff functions, the main error is the first one. Recently,



CHAPTER 4. MALLIAVIN SCHEME FOR ASIAN OPTIONS 96

Fournie et al. (1999) (2000) and Benhamou (2000a) (rewritten as chapter 1 of 

this dissertation) have suggested a new methodology based on Malliavin calculus. 

The intuitive idea is to eliminate the need of taking the derivative of the payoff 

function, which is numerically approximated by a finite difference. They showed 

that we can transform the initial formula as an expectation of the discounted 

payoff function e~ &  rads/ ( X t ) multiplied by a suitable weight function referred 

in the literature as the Malliavin weights, denoted hereby weight:

Greek =  ^weight.e~ r' dV (^ r)J  (4.1)

Their works were for options depending on a finite set of dates. The con­

tribution of this chapter is to extend previous results to continuous-time Asian 

options. We give necessary and sufficient conditions for a function to serve as 

weight function by means of its generator. We give explicit solutions for the 

case of the Black diffusion.

The remainder of this chapter is organized as follows. In section 2, we la­

conically describe the mathematical framework of the chapter. In section 3, we 

investigate the case of Asian options. In section 4, we give explicit formula for 

the case of the Black diffusion. Section 5 shows by means of numerical results 

the efficiency of this method. We briefly conclude in section 6 giving possible 

extensions.

4.2 N otations and m athem atical framework

For clarity, we assume a one dimensional diffusion of the underlying price pro­

cess. Results can be easily extended to the multi-dimensional case. We consider 

a continuous-time trading economy with a limited horizon t  G [0,T]. Following 

Harrison and Kreps (1979), Harrison and Pliska (1981), the price of a contin­

gent claim is calculated as the expected value of the discounted payoff value 

in the risk neutral probability measure Q. The uncertainty is characterized by 

a complete probability space (Q, F, Q) where Cl is the state space, F  is the o-
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algebra representing the measurable events. Information evolves according to 

the augmented right continuous complete filtration {Ft, t  E [0,T]} generated by 

a standard one dimensional Brownian Motion {Wt, t E [0, T]}. The underlying 

price process is defined as the Ito process solution of the following

stochastic differential equation:

dXt = b (it, X t) dt +  a(t, X t)dWt (4.2)

with the initial condition

X q = x  (4.3)

x  E R is the initial value of our underlying, b : R+ x R  -> R represents the 

deterministic drift and a : R+xR —► R the volatility structure of the process 

(Xt)fG[0 rj. We also assume that the deterministic drift and the volatility struc­

ture verify Lipschitz conditions and uniform ellipticity of o.

We define the first variation process (^t)t€[0>rj as the derivative of X t with 

respect to the initial condition Yt = -§^Xt. As show in Nualart (1995) page 

Theorem 2.3.1 page 110, Malliavin calculus theory proves that the Malliavin 

derivative can be expressed as a function of the first variation process and the 

volatility structure a (£, X t) :

D .X t =  £ tf (a ,X .) l{.<t} a s • (4-4)
* a

4.3 Asian options

Since there is no closed formula for arithmetic Asian options as opposed to ge­

ometric ones, Asian options, sometimes called average options, are a prefered 

field for numerical solutions such as lattice methods, partial differential equa­

tions solving, convolution, Monte-Carlo and Quasi -Monte-Carlo methods (for 

an extensive survey on Asian options, see chapter 3 of this dissertation). How­

ever, these numerical methods have often low convergence for the Greeks. It is

precisely this inefficiency that suggested us to extend the work of Fournie et al. 

and Benhamou to the case of the continuous-time Asian option.
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Traditionally, the average in the Asian options can be computed as a discrete 

or continuous-time one. In the case of discrete Asian options, we can apply the 

analysis done by Benhamou (2000a) for a fast computation of the Greeks. In 

the case of continuous-time arithmetic Asian options, Fournie et al. (1999) gave 

a specific example of the weighting function generator for the delta. We provide 

here formulae for other Greeks with more general conditions and for any type 

of weight functions, specifying only the necessary and sufficient conditions for 

a function to serve as a weight function in derived formulae. We introduce the 

weight function generator. We give a detailed version in the case of the delta, 

generalizing to the case of the other Greeks. In the rest of this section, we also 

distinguish as well two type of Asian options:

• the simple Asian option, an option whose payoff is a function of the 

continuous-time average only. Classically, for a call, it is called the fixed 

strike option.

• the complex Asian option is depending on both the underlying and the 

continuous-time average. Classically, for a call, it is the floating strike 

option.

4.3.1 Sim ple A sian option

The simple continuous-time Asian option is an option only depending on the 

continuous-time average ^ X tdt. Thus, its price can be written as the ex­

pected value of the discounted payoff:

Prr =  E,

Like in the case of an option depending on a finite set of dates, we can show 

that the Greeks can be written as the expected value of the discounted payoff 

f ( l o  X tdt  ̂ times a suitable weight function weight:

Greeks = K !  X tdtJ weight
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We also impose the existence of the Skorohod integral expressed as a non ex­

ploding condition (L2 integrable) on the weighting function (4.5):

E [(weight)2] <  +00 (4.5)

Writing the weight function weight as the Skorohod integral 6 (w) of a stochas­

tic function w : R+ —> R s —> u/s, we define the Skorohod integrand ’’the 

weight function generator”. Interestingly, this generator can be characterized 

by necessary and sufficient conditions as stated in theorem 2.

Theorem  2 Malliavin formula for the Greeks

There exist necessary and sufficient conditions for a function w to serve as a 

weight function generator for the simulation of the Greeks. The first condition is 

the Skorohod integrability of this function (4-5). The second condition, different 

for each Greek and summarized in table 4-1 depends only on the underlying 

diffusion characteristics and not on the payoff function.

Proof: we give in the appendix section the proof for the delta section 

C.l page 176. Proofs for the other Greeks are similar and are available upon 

request. □

4.3.2 Particular solutions

To get particular solution, we only need to find solutions that satisfy the con­

ditions given in table 4.1. One can show the following results by checking that 

these solutions satisfy the necessary and sufficient conditions of table 4.1:

• Delta: one solution for the weight function generator is the one given by 

Fournie and al. (1999):
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Greeks
N ecessary and Sufficient conditions 

on the M alliavin W eights

delta (4 M l) . E* [ £ . *  ( C *  ^ ™ r tads) dt\ £ X tdt]

=  E« [/0T Ytdt\ £  X tdt]

gamma
E § (wsamma) 1 £  x M  

(4.M 2): L J0 J
E g  (wMtaS +  £ w Mta) | £  X tdt1

’’extended”

rho
(4.M 3): E? [/l=° ̂  /or  * * ]

=  E? [/.lo J L o ^ ^ d s d t l  £  X tdt]

’’extended”

vega II

[ £ o  fL o  * ^ w r adsdt\ £  Xtdt] 

f L f L ^ w d t  \  '

Table 4.1: Necessary and Sufficient conditions for the weight function Generators 

of a simple Asian option
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Another solution is:

(4.7)

Depending on the nature of the first variation process as well as the struc­

ture of volatility, it would be preferable to use either the first or the second

solution.

• Rho: a solution for the weight function generator of the rho is given by

b (s, .
WS =  f y -X (4.8)

<t ( s , X 3)

• Vega: a solution for the weight function generator is given by

Y, £ a {s , X, )*( s ,X , )
Wa <r(s,Xa) fZ o ty tdt <r(s,Xa)

4.3.3 C om plex A sian option

The complex Asian option is an option depending both on the continuous-time 

average L X tdt and the underlying price at maturity, X t . Its price can be 

written as the expected value of its discounted payoff:
rT

P* = E, e~ s i  r*daf  n

We can extend previous results of theorem 2. We restrict ourselves to the case 

of the delta. With minor changes, this can be adapted to all other Greeks.

Proposition 8 Malliavin formula for the delta

In the case of the complex Asian option, in addition to the non-exploding con­

dition, the weight function generator for the delta should verify the conditions

E‘  [ / - 0  Y ‘ ( / - o a(SY * ‘ ) w ^ ta d s )  d tI j f  X ‘d t ’ X t  =  E?  [ £  Y td t \ [  X ‘d t ’ X t ]

E? [yT £  ^ SyX ,) l{.<T)W?“ads\ £  X tdt, X T =  E« jyr | £  X tdt, XTj
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Proof: given in the appendix section C.2 page 177.D

We can find particular solutions. We introduced two different discriminants 

A and A

A ■ -  i T  , A .  (UO)
2 ( £ ,« ) ’

Proposition  9 Particular solution

When the discriminant A is not equal to zero, one particular solution for the 

weight function generator is given by:

vi, =  , , \ A  + B —ifz — | (4.11)
lo Ytdt)

with the coefficients A and B  verifying: 

This solution is unique.

Corollary 4 When the discriminant A is not equal to zero, one particular so­

lution for the weight function generator is given by:

*Y, (
( “  / 0T Ytdt

with the coefficients a  and (3 verifying:

f L f L s Y , d s Y tdt Sl a H ^ l Ytdt S l aYtdt
HoIlo^^dsYtdt

Proof: given in the appendix section C.3 page 178.□

The two solutions differ in the form of their basis since in one case it is 

Ys/(t (s , X 8) and in the other case it is rather sYs/ a ( s , X s).



CHAPTER 4. MALLIAVIN SCHEME FOR ASIAN OPTIONS

4.4 Formula for a Black diffusion
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In the case of the Black diffusion, formulae can be explicit. In this framework, 

the drift term b (£, X t) is equal to rtX t which is the growth at the risk-free rate 

whereas the stochastic term a(t,Xt)  is equal to atX t , with at a deterministic 

time-dependent volatility. This leads to the following expression for the under­

lying process X t = xe(r~* a»d3)t+fo ^  and for the first variation process to 

Yt = X t/x.

4.4.1 Sim ple A sian option

With these more restrictive assumptions, we can derive results for the simple 

continuous Asian option (the complex one leads to the same type of calculations, 

with lengthier formulae). Being a second order Greek, the calculation of the 

gamma requires two integration by parts and is consequently not as straightfor­

ward as first order Greeks. However, it can be shown that there is a proportion­

ality between the vega and the gamma (see Benhamou (2000c)). The Gamma 

is subsequently obtained as the vega times this proportionality factor.

D elta

Proposition 10 The particular solution for the weight function generator =
pT2Xs/xcrs J0 X tdt leads to the following weight function

2 t f & w -  . 1
x X tdt x

+  -  (4.15)

Proof: the weight function is defined as the Skorohod integral of the weight 

function generator

Weight =  8 (w])

Using the property of the Skorohod operator that gives the Skorohod integral 

of a product: if F is a smooth random variable (Nualart notation (1995)) and u
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is an element of L 2  ( Q  x [0, T]), then the Skorohod integral can be expressed by 

means of the Malliavin derivative:

8 (uF) =  8 ( u ) F -  f  uDtFdt 
Jo

This leads in our case to

28 (V) r
Weight = -  j  ( rT '  | ds

•t 2 X .8̂
X  f o  X t d t  Jo x c r s y / *  x t d t

Using the fact that the Malliavin derivative follows regular derivation rules, we 

get:
n  (  1 \  XT YtY,~lo ,Y sl{,<t)dt

’ \ £ x td t )  ( f T Xtdty

where in the last equation, we have used the fact that D a X t  =  Y t Y ^ a g Y s l ^ t } .  

We finally get
2 fT ^ d W ,  l

Weight =  0  +  -
x f g X tdt x

□

P roposition  11 The other solution for the weight function generator ws = 

■A- Jqt  Ytd t/ Jq tYtdt leads to the following weight function

1 f lp Y td t f  [ T d W ,+ i fp t2Ytd t\  
x fZo t^ d t  \Js=o v , * tYtdt )

Proof: following the same procedure as in the proof of the proposition (4.15), 

we calculate the weight function as the Skorohod integral of the weight function
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generator:

l ^ d t d s

x Jq tYtdt \J s=0 as X / 0T tYtdt )

□

Rho

Interestingly, the condition given for the rho of a continuous Asian option weight 

function generator is the same as the one for an option depending on a finite set 

of dates as in Benhamou (2000a). Therefore, the same results can be applied 

leading to the two following propositions:

Proposition  12 The extended rho as defined in Benhamou (2000a) can be ex­

pressed as

is defined as the Skorohod integral of the weight function generator.□

Proof: See Benhamou (2000a) (rewritten as chapter 1 of this dissertation).□

Proof: we obtain the result by considering the particular solution of the 

weight function generator (4.8) and by using the fact that the weight function

Proposition  13 The classical rho is given by:

Classical rho =  e rTf  y j
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Vega

Using the particular solution for the weight function generator (4.9) and assum­

ing a perturbation defined as a (t, X t) =  atX t, we get the following proposition.

P roposition  14 The extended vega can be expressed as

rT rt
EQ

f U tYdt

Proof: in the case of the Black diffusion, the weight function generator is 

defined as
m i lLlL^ytdw,dt
w3 = ---------- ^  i- crs

(Js L o  ̂ td t  
leading to the following weight function:

' 1 H o S l ^ Y tdWsd t\  , , s
U .  fL tV d t  / Jos;=0tytdt 

□

Corollary 5 In the case of the Black Scholes model, this leads to the following 

results

Eq f x A  + i
\Jo  /  \ a t f i X t d t  z Jo  ( £ t x tdt)

The traditional vega is then obtained for <7 =  1.

Proof: the Black Scholes assumptions are that the volatility is constant:

<ja =  <7. The perturbation is defined as cr8 =  <7. This leads to the following

weight function

(  [?Y tWtd t \  _
weight =  —6 [ ---- I -I- oW?

c  \  fo tY‘dt )
~ s ( f 0T X tWtdt) z  f T f T tD Xtd t J _

= -------------------- -  + -  I X ,W tdt ^ — ’- ^ - i d s  + aW T
a fo tX ‘dt c  Jo J ~ o ( £ t X tdt)

+  <tWt
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Then using the fact that

rT fLtD.Xjdt^  = a SLt2Xtdt 
• '-»  ( f 0T t x t d t y  x  ( /0r t x t d t ) 2

and

\ J t =o /  J s = o \ J t =o
leads to the final result. The traditional vega is the extended vega divided by 

the perturbed volatility a S3

section 2.3.2 and Benhamou(2000c)).

4.4.2 C om plex A sian

Specifying the terms in the solution of (4.11), the weight function for the delta 

of the complex Asian option is in this simple case given by:

In this section, we examine the particular case of an Asian option with the 

following characteristics: a one year continuous time Asian option with risk-free 

interest rate r =  3%, a null dividend rate, an initial underlying <So of 100, two 

strikes Ki, K 2 of 100 and 110 respectively and a volatility a of 20%. We consider 

two different options:

Gamma

The Gamma can be calculated as the vega divided by x2aT  for the Black Scholes 

model and by x2 a3dt in the Black model (see the remarks of chapter 2 page53

(4.16)

with the coefficient A  and B  verifying:

4.5 Numerical m ethod
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• a corridor Asian option whose payoff is 1 stdt<K2}

• an up and out Asian call s td t<K2}  T  ~  ^ ) +

4.5.1 Simulation of the Gamma

We examine the Malliavin simulation on the gamma, since it is precisely in 

this particular case that the Malliavin weighted scheme should dramatically 

outperform finite difference. These results confirm the efficiency of the Malliavin 

weighted scheme compared with the standard finite difference. The figure 4.1 

compares the two methods: Malliavin weighted scheme (black line) and the finite 

difference method (grey line). The Malliavin weighted scheme converges to the 

right answer quite fast with almost no oscillations, whereas the finite difference 

estimator fluctuates with a pseudo-periodicity around the correct value.

Sim ulations Number

g  -0 0015

Malliavin Simulation

Finite Difference

Exact value -0 001443

Figure 4.1: Efficiency of the Malliavin weighted scheme for the computation of 

the gamma of the first option

This advantage of the Malliavin weighted scheme is even more striking in 

the case of the second option as shown by figure 4.2. The Malliavin weighted 

scheme is given by the black line and the finite difference method by the grey 

one.
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4.5.2 Comparison o f variance

The purpose of the Malliavin weighted scheme is to reduce the variance of the 

simulations. We compare the variance implied by the Malliavin weighted scheme 

and the one of the finite difference in the case of the same two options for 

the delta, gamma, vega and rho. We found that Malliavin weighted scheme 

provides a quite efficient way of reducing the variance as shown in table 4.2. 

The number of simulation draws was 20,000 as indicated by N=20,000. Table

4.2 gives the ratio of simulation variances between finite difference and Malliavin- 

based simulation. When this ratio is bigger than 1, it means that the Malliavin 

method reduces the variance. Indeed, the numbers found are big numbers. Since 

the variance decreases roughly linearly in n, a ratio of 10 means that we need 

lOn draws with the finite difference method to get the same variance as the one 

obtained by the Malliavin method with only n draws. We found evidence that 

the Malliavin weighted scheme is more efficient for the first than the second 

option. The first option payoff is indeed more discontinuous. The ratios found 

are big numbers. For the gamma, it means that the same accuracy as 1,000 

draws with the Malliavin weighted scheme is obtained with 14,000,000 draws for 

the first option and 7,000,000 for the second option when using the traditional 

finite difference method.

4.6 Conclusion

In this chapter, we have seen that using Malliavin calculus and its integration 

by parts formula, we can extend Malliavin calculus based formulae, for the 

Greeks, to the continuous-time Asian option. This enables us to smoothen the 

function to be estimated by the Monte Carlo or Quasi Monte Carlo simulation. 

This extension to Asian options is of particular interest since there is no closed 

formula for Asian options, even in the simple case of a geometric Brownian 

motion.
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Option

type

Variance ratio
- 2  / -  2 

F inite  D ifference/^M alliavin

delta gamma rho vega

First option 

l { K x< f f  Stdt<Kz )
N=20,000 160 14256 69 7422

Second option

&*<*,} “  K J +
N=20,000 146 7210 47 5900

Table 4.2: Variance ratio between the Malliavin weighted scheme and the finite 

difference method

There are many possible extensions to this work. A first one is to study a local 

version of Malliavin weighted scheme, which smoothens the discontinuity at the 

kink and is based on a finite difference scheme enhanced by the common random 

numbers method everywhere else. A second one is to extend this methodology 

to continuous lookback options. However, the case of the continuous supremum 

of the underlying is not as easy to handle as the continuous time arithmetic 

average.
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Sim ulations Number

Malliavin Simulation

Finite Difference

Exact value -0.003932

Figure 4.2: Efficiency of the Malliavin weighted for the computation of the 

gamma of the second option



Chapter 5

A M artingale Result for 

Convexity Adjustm ent in the  

Black Pricing M odel

Sum m ary o f th e chapter

This chapter explains how to calculate the convexity adjustment for interest rate 

derivatives, using martingale theory, when assuming a deterministic time dependent 

(often referred to as the Black (1976) pricing model) volatility. In this present chapter, 

we proceed as follows: first, we set up a proper no-arbitrage framework illustrated 

by a relationship between yield rate drift and bond price. Second, by making use 

of an approximation, we derive a closed formula with a specification of the error 

term. Earlier works (Brotherton-Ratcliffe and Iben (1993) or Hull (1997)) assumed 

constant volatility and could not specify the approximation error. As an application, 

we examine the convexity bias between CMS and forward swap rates.

112
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5.1 Introduction
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The motivation of this chapter is to provide a proper framework for the convexity 

adjustment formula, using martingale theory and no-arbitrage relationship. The 

use of the martingale theory initiated by Harrison, Kreps (1979) and Harrison, 

Pliska (1981) enables us to define an exact but non explicit formula for the 

convexity. We show that by making an approximation, we can rederive previous 

results, first discovered by Brotherton-Ratcliffe and Iben (1993) and later by Hull 

(1997) and Hart (1997). However, the approach hereby adopted has the great 

advantage to enable us to specify the error of the approximation. We extend 

results derived in the Black Scholes framework to time-dependent volatility, often 

referred to as the pricing model of Black (1976). This is more in agreement with 

the consideration of practitioners who commonly use time dependent volatility 

to best fit the market prices.

The convexity adjustment hereby derived is of considerable interest to mea­

sure the convexity adjustment required for a security paying only once a swap 

rate. The rate of this kind of security is named in the fixed income market as 

the CMS rate.

The formula, first discovered by Brotherton-Ratcliffe and Iben (1993) and 

later by Hull (1997), is an analytic approximation of the difference between the 

expected yield and the forward yield, collectively referred to as the convexity 

adjustment. It assumes a constant yield volatility a. Brotherton-Ratcliffe and 

Iben (1993) show that the convexity adjustment for a yield bond was given by:

partial derivatives of the bond price h (y) with respect to its yield. Hull (1997)

(5.1)

where denotes the value today of the forward bond yield, h (y) the price of 

the bond that provides coupons equal to the forward bond yield and that is 

assumed to be a function of its yield y, h' (y) and h" (y) the first and second
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shows that this convexity adjustment can be extended to derivatives with payoff 

depending on swap rates. Hart (1997) sharpened the approximation with a 

Taylor expansion up to the fourth term. However, all proofs, based on Taylor 

expansion, never referred to the error of the approximation. Deriving this error 

is precisely the motivation for this chapter. We show that formulae similar to

(5.1) can be derived with an exact definition of the error term, when a proper 

no-arbitrage framework is assumed.

The remainder of this chapter is organized as follows. In section 2, we give 

some insight about convexity. In section 3, we derive convexity adjustment from 

a no-arbitrage proposition implied by martingale condition. We show how to 

derive a approached formula, with a control on the error term. Monte Carlo 

simulations confirm the efficiency of the approached closed formula. In section 

4, we give a formula for the convexity adjustment required for a CMS rate. We 

conclude briefly and refer to future developments.

5.2 Insights about convexity

For fixed income markets, convexity has emerged as an intriguing and challeng­

ing notion. Taking correctly this effect into account could provide competitive 

advantage to financial institutions.

5.2.1 T he definition o f the convexity

One main difficulty is to give a unified framework for all the different meanings 

of convexity. Indeed, it is true that the notion of convexity refers to different 

situations, which can be sometimes seen as having almost nothing in common. 

It is sometimes used as the gamma ratio for interest rate options, as an indicator 

of risk for bonds portfolios, as a measurement of the curvature of some financial 

instruments or as a small adjustment quantity for a wide variety of interest rate 

derivatives. Indeed, convexity has become a synonym for small adjustment in
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fixed income markets, related somehow to the notion of mathematical convexity 

and more generally to a second order differentiation term. The situations which 

are of particular interest for practitioners can be classified into two types with 

different causes of adjustment:

•  the bias due to correlation between the interest rate underlying the fi­

nancial contract and the financing rate. An example is the bias between 

forward and futures contracts. This correlation, capitalized by the mar­

gin calls of the futures contract, leads to a more expensive (respectively 

cheaper) futures contract in the case of positive (respectively negative) 

correlation.

• the modified schedule adjustment. Even if the analysis is the same for 

the two sub-cases above, it is traditionally divided into two categories 

depending on the type of rates:

— One-period interest rate (money-market rates, zero-coupon rate) and 

bond yield. An example is the difference between plain vanilla prod­

ucts and in-arrear ones, or in-advance ones. Another one is the 

differentiation between forward yield rate and expected bond yield. 

Furthermore, a modified formula for every type of path dependent 

interest rate option, like Asian options, multi-European options is 

required.

— Swap rates. These products are called by the market CMS products 

(CMS: constant maturity swap). A convexity adjustment is required 

between forward swap rate and expected swap rate. This rate is 

traditionally called the CMS rate. Indeed, this analysis is very similar 

to the previous case. It comes as well from a modified schedule.

For practitioners, the two sub-cases have long been separated because they 

were concerning different products. As a result, they were seen as two types of
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adjustment. Indeed, the two required convexity adjustments are coming from a 

modified schedule of the rate.

In this chapter, we concentrate on the distinction between forward and ex­

pected bond yield as well as swap rate.

5.2.2 A  rough m odel

As pointed out in our definition section, one should make a distinction between 

the convexity adjustment required between futures and forward contract (cor­

relation convexity) and the modified schedule adjustment. As a general rule 

for the second type of situation, it is necessary to make a convexity adjustment 

when an interest rate derivative is structured so that it does not incorporate 

the natural time lag implied by the interest rate. This is the case obviously of 

in-arrears and in-advance products where the rate is observed and paid at the 

same time. This is as well the case of the CMS rate where the swap rate instead 

of being paid during the whole fife of the swap is only paid once.

Let us now explain intuitively the convexity defined as the difference between 

forward rate and expected rate. We examine the case of bond but this applies to 

the swap rate as well. Since the relationship between bond price and the bond 

yield Y  is non-linear, it is not correct to say that the expected yield is equal to 

the yield of a forward bond (also called the forward yield). Similarly, it is not 

correct to say that the expected swap rate should be equal to the forward swap 

rate.

This can be well understood by taking a two state world. The bond price 

can be either Pi, P2 with equal probability The corresponding yields are Y±, 

Y2. In this binomial world, the expected price Pe is given by sum of the different 

possible prices multiplied by their corresponding probability: Pe =  ^P± +  |P 2. 

The forward yield Y* is the yield corresponding to the expected price Pe. The 

expected yield Ye is the one given by the expected value of the yield Ye = 

i n  +  i  Y2.
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Price

Y 2 Y i e l d

Figure 5.1: Convexity of the bond price with respect to its yield: Case of a 

simple two state model. This graphic shows that the expected yield denoted by 

Ye is higher than the corresponding forward yield Y*

However, since the relationship between price and yield is decreasing and 

convex, the two given yields, forward and expected one, are not equal and the 

expected yield Ye is above the forward one as figure 5.1 shows it.

These results can be derived in a more general stochastic framework. From 

the Jensen inequality on convex functions, applied to the function P(y),  one 

sees that the forward price defined as the expected value of the price, under the 

risk neutral probability E (P (Y)) should be higher than the bond price with a 

yield equal to the expected rate P  (E(Y)):

E (P  (Y)) > P  (E (Y))

Using the fact that the bond price is a decreasing function, we get that the 

expected bond rate defined as the expected value of the yield E (Y) is higher 

than the forward bond rate corresponding to the forward price E (P  (Y)) (Y* = 

P -1 (E (P(Y )))). The difference between the expected yield and the forward 

yield Y e — Y f  is called the convexity adjustment and defined by

Y e -  Y f  =  E (Y) -  P " 1 (E (P  (Y))) (5.2)

With these rough modelling framework, we can already get interesting results.
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Receiver Swap Price
A Yl Forward

Swap Rate

Swap Rate

Figure 5.2: Convexity of the swap price with respect to its swap rate: The 

relationship between the receiver swap price and the swap rate is convex and 

decreasing. The only difference between swap and bond contract lies in the 

possible negative values of the receiver swap

When a bond or a security price is a convex function of the interest rate, the ex­

pected bond yield E (T) is always above the forward bond yield P~l (E (P (Y)))-

This can as well applied to swap rates. Indeed, a receiver swap, swap where 

one receives the fixed rate and pays the floating one, is also a convex decreasing 

function of the swap rate. The only difference comes from the fact that the swap 

price contrary to the bond price can be negative. This is illustrated by figure 

5.2. Since only hypotheses on the monotonicity and convexity of the function 

are required for deriving our result above (5.2), we conclude that the expected 

swap rate is above the forward swap rate.

As a general conclusion of this subsection, expected bond yields or swap rates 

should be higher than the corresponding forward for convex contracts and lower 

for concave ones.
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5.2.3 Static hedge: locking th e convexity

We saw above that the difference between the forward yield and the expected 

yield is due to the fact that the underlying bond price is a decreasing convex

function of the yield. We can take advantage of this by a static hedge. Let us

consider a continuous time trading economy. The uncertainty in this economy 

is characterized by the probability space (Q, F, Q) where 0  is the state space, 

F  is the a —algebra representing measurable events, and Q is the risk neutral 

probability measure. We denote by y{ the value of the forward yield at time t. 

We denote by h (y{  ̂  the payoff of a security depending on the forward yield. We 

denote by y$ the value today of the forward yield. We denote by a  the constant 

volatility of the forward yield at time T when compared with the today forward 

yield. This means that the square difference between the forward yield at time 

T  and the today value is proportional to the volatility times the time elapsed 

times the square of the today value of the forward yield:

e Qt f (vt -V o )  )
 V ,  A 2 1  =  o*T (5.3)

W
The above analysis is carried out for yield bonds for clarity reasons. However, 

this can be easily adapted to swap rates. We consider the following portfolio:

- a forward contract on the forward yield with a strike at the today value 

of the forward yield. The payoff at time T is simply the difference between the 

forward yield at time T: y^ and the strike: today value of the forward yield y£.

- a hedging portfolio composed of n  forward contract (s) on the bond set at at- 

the-money strike. The payoff of the forward contract is therefore the difference 

between the non-linear security payoff at time T, h (y f^  the price if the yield 

were the value of the today forward yield, h (vCj • This is a hedging portfolio 

since the variation of the forward contract on the forward yield y^ is offset by 

the variation of the forward contract on the bond. Since the forward contract is 

set at at-the-money strike, this contract is of zero value.
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Since the value of the total portfolio is equal to the sum of its two compo­

nents, with the second one of zero value, the total value of the portfolio is equal 

to the value of the first component of the portfolio, given at maturity time T 

by the expected difference between the forward yield and the today value of the 

forward yield, which is exactly the definition of the convexity adjustment. The 

value today of the total portfolio is therefore the convexity adjustment times the 

zero coupon maturing at time T. The determination of the convexity adjust­

ment is consequently equivalent the one of the global portfolio. Its expression is 

given by the following proposition:

Proposition 15 Convexity adjustment

The value at time t  =  0 of the portfolio denoted by P  is given by

P  l 1̂ (2 /0  )  /  »\2
B(0,T)  = ~ 2 h. ^  M  T  (5 4)

Proof: By means of a change of probability measure, from risk neutral 

to forward neutral probability measure, the price P  of all the portfolio can be 

written as the expected value of the payoff under the forward neutral probability 

measure Q t times the zero-coupon bond maturing at the payment time T:

P  = B  (0,T)  E q , ( ( » £  -  </„') + n * ( h  { y ’T)  -  h ( j r f ) ) )

Using a Taylor expansion up to the second order around the today forward yield, 

we get that the payoff of the hedging portfolio at time T  can be expressed as a 

simple function of the difference between the forward yield at time T  : ŷT and 

the today value of the forward yield y£.

h ( y ^ j - h  ( y l )  =  (vt ~  Vo) h' ( 2/0 )  +  ^ ( vt ~  Vo) h" (vo)  + 0  (^(vt ~  Vo) )

we can assume that the difference between the value at time T  of the forward 

yield and its today value y l  is small since the forward yield at time T  should 

be close to its initial value. The total value of the portfolio can therefore be
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expressed as a quadratic function of the difference between the value at time T 

of the forward yield and its today value

P — B (0 , T) Eq7 ( Vt  ~ Vo) ( l  +  (2/0) )  +  \ n ( v t  ~ Vo) h" (2/0) J

To ehminate the first order risk (role of our hedging strategy), the quantity of the 

hedging portfolio should exactly offset the variation of the forward contract (up 

to first order):
1

n = ------7 r-
h> (2/0)

The quantity n is positive and confirms that the second component of the global 

portfolio is a hedge against the variation of the first one. The value of the 

global portfolio is therefore coming only from the second order risk or gamma 

risk. Getting all the deterministic terms out of the expectation sign leads to the 

following expression:

»" (2/0)

’ " ' " ' " W S

Using the strong assumption (5.3) about the pseudo ’’volatility” a, we get that 

the price of the total portfolio can be expressed as a function of the today value 

of the forward yield y$ and the parameter of ’’volatility” a

h" (vo)1 11 IS O  ) /  2

which is exactly the result (5.4).□

5.3 Calculating the convexity adjustment

In this section, we show how to derive the convexity adjustment required when 

assuming a time-dependent volatility, an assumption similar to the Black model. 

The difference between our model and the Black model lies in the fact that in 

our model, the drift term is supposed to be stochastic. However, when we take
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a deterministic approximation of our drift term, our model becomes a standard 

Black model.

Our proof is based on the martingale theory. We obtain that the martingale 

condition implies a strong condition on the drift term of the forward yield. 

Making approximations, we obtain as a particular case (when the volatility is 

constant) the well-known formula for the convexity adjustment (5.1), obtained 

by Brotherton-Ratcliffe and Iben (1993) and later by Hull (1997). However, the 

motivation of this approach is to specify the error of the approximation. Monte 

Carlo simulations prove that the error is relatively small.

5.3.1 Pricing framework

We consider a continuous trading economy with a limited trading horizon [0, r] 

for a fixed r  > 0. The uncertainty in the economy is characterized by the proba­

bility space (fi, F, Q) where fl is the state space, F  is the a —algebra representing 

measurable events, and Q is the risk neutral probability measure uniquely de­

fined in complete markets (Harrison, Kreps (1979) and Harrison, Pliska (1981)). 

We assume that information evolves according to the augmented right continu­

ous complete filtration {Fu t E [0,r]} generated by a standard one-dimensional 

Wiener Process (Wt)t€[0 Tj .

We assume as well that the price at time t of the bond can be defined as a 

function h (.) of the bond yield at time t, (y{^ : h (y{^ . The two stochastic

variables (y{^ , (h  (y{^ ̂  are supposed to be adapted to the information

structure (Ft)tĜQ Tj . We examine a bond security whose payoff is paid at time 

T. Following the work of El Karoui et al. (1995), the no-arbitrage condition 

and the markets’ completeness assumption enable us to define a unique forward 

neutral probability measure Qt , under which the price h (y{^ is a martingale. 

Under this probability measure Qt , the volatility of the forward yield rate y{ is 

supposed to have a deterministic volatility function depending only on the time,



CHAPTER 5. MARTINGALE AND CONVEXITY 123

leading to the following diffusion:

=  ALtdt +  <7tdWt
Vt

where the drift term is stochastic. Since the volatility is supposed to be a de­

terministic function of time, this is sometimes referred to as the ’’Black” pricing 

model. However, the drift is stochastic. It is therefore different from the stan­

dard Black model where the drift is deterministic. We denote the zero coupon 

bond price at time t , maturing at time T  > t by B  (t, T). The following theorem 

gives us the necessary condition on the drift term for the price h (y{^ to be a 

martingale.

5.3.2 C onvexity adjustm ent formula 

Theorem  3 Convexity Adjustment formula

Under the hypotheses mentioned above, the drift term should satisfy the following 

nonarbitrage condition
(y{) <>tVt

, s ' 5 >

Proof: Ito lemma gives 

dh {yCj =  h' (yty y{atdWt + ^y{h’ (yty pt +  ^h" (y(} (a ty{)  j dt

Under the forward neutral probability Qt , the price of the bond h {vf}  a

martingale. This implies that the drift term y(h' (Vt)  Mt +  {yf^j [crty t)  

should be equal to zero, which leads to the necessary condition (5.5).□

We take the following definition of the convexity adjustment:

Definition 2 The convexity adjustment is defined as the difference between the 

expected yield under the forward neutral probability measure and the forward 

yield, leading to the exact but non-explicit formula:

e Qt {vt/ f o)  ~  2/o (5-6)
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The above definition provides us with an exact but not tractable formula of 

the convexity adjustment. Assuming that the drift term can be approximated 

by its value with the forward yield equal to the today forward yield t/g, we get 

a closed and tractable formula given the following theorem:

Theorem  4 Under the assumptions above, we can prove that the convexity ad­

justment for the expected bond yield can be approximated by

y’A e  h M  - l l  (5.7)

where h' (vC) and h" (vo) denote the first and second derivatives of the bond 

price with respect to its yield y taken at the point y$.

Proof: Calculating the expected yield under the forward neutral probability 

gives:

E<?r ( v t / F o)  =  EQ t  ( y £ e t r (* -W W J » T-.<ra'.)

And using that pt — ~  leads to

/  \ /  1 h" ( y £ \  rT \
Jo i7‘d t j

Consequently, using its definition (2), the convexity adjustment is given by the 

final result (5.7).□

An approximation of the theorem formula is then given by a Taylor ex­

pansion of the exponential up to the first order, leading to an extension, to

time-dependent volatility, of the formula of Iben (1993)

1 h" (y l)  , s 2 rT
~ 2 )  f \  W  /  a* (5-8)2 h' ( y l )  V '  Jo

Corollary 6 Black Scholes formula

When the volatility is constant, the convexity adjustment derived here leads ex­

actly to the one obtained by Brotherton-Ratcliffe and Iben (1993) and later by 

Hull (1997)
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Proof: Using the approximation formula (5.8) with a constant volatility 

leads to the result.□

The calculation in the proof relies in the fact that the drift term y,t can be 

approximated by the initial deterministic value equal to — ■— T̂ / y ' - This im­

plies two interesting remarks. First, it means that the Black Scholes convexity 

adjustment used by markets is a very rough approximation formula when as­

suming a deterministic volatility. One assumes that the stochastic drift term 

is indeed deterministic. Second, this approximation is highly depending on the 

initial value of the forward yield rate y^. If this forward yield rate is unstable, 

it might be more appropriate to use the historical average of past observations.

We can now specify the error term as the difference between our closed 

formula (5.7) and the formula (5.6). We can see that in the difference, the two 

terms, y l  simplify each other, leading to an error term given by:

E,Q t 2/o
J f i v t - t f  )<*+!?<rtdWt _

.sjM )
2r f i j7 f Vo Jo a t dt

Using a change of probability measure (Girsanov theorem), we can see that this 

expression is, under a probability measure denoted by Q , the difference between 

two terms, where the Radon Nykodim derivative of Q with respect to Q t is 

given by e^o a tdW t~ \  Jo a t d t  ̂ Using the Taylor-Lagrange theorem, we get that 

there exists a parameter 0 t between 0 and t so that this difference of terms 

can be expressed as the difference between the two rates yt and y$ times the 

derivatives of the exponential:

2/o
(  _ rT Jo

\
^  9  ( y Q  dt (y{ -  y ^

~h (y) y
where the function q () denotes the derivatives of the function -  , . ;  \—cr? with

h (V)
respect to y. To go further, we need to be more specific on the function h. 

This implies of course to specify more the diffusion equation of y. Without
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any further information, nothing very specific can be derived on the error term. 

Another way to measure the error term is by means of Monte Carlo simulations.

5.3.3 M onte Carlo sim ulations o f th e error

In the previous section, we have assumed that the forward yield rate y{ can be 

approximated by the today value of the forward yield t/q. In this subsection, 

we analyze, by means of Monte-Carlo simulations how big this error is in this 

approximation. We consider a derivative that provides the payoff equal to the 

one-year zero coupon rate in T  years multiplied by a principal of 100. For the 

simplicity of the simulation, we take a constant volatility (crt =  a) equal to 20 % 

and a forward rate of 10%. Since our bond is a one year zero coupon, its payoff 

is equal to the discounted value of its unique coupon.

The no-arbitrage condition (5.5) implies that the yield should have the following 

diffusion
f <r*yJtdy{ " 2nJ—f  — -------jdt +  crdWt

Vt 1 +  &
with the initial value y{ = y^. The aim of the Monte Carlo simulation is to 

examine the quality of the approximation done for the convexity adjustment. 

We compute the expected yield [yr\ which is called theoretical yield in table 

5.1 (calculated with a Sobol sequence Quasi-Monte Carlo with 20,000 draws) 

and compare it to the approximated formula for the convexity adjustment

Vo e  M  =  y l  e 1 + ,o

The results are given in table 5.1. These are simulations for different value of the 

expiry time T  : 3, 5 and 10 years. It means that our derivative asset is paying 

the one-year zero-coupon rate determined at time T  and paid at time T. The 

price of this derivative is therefore the forward rate with a convexity adjustment 

times the principal 100 discounted by the zero coupon bond maturing at time T.



CHAPTER 5. MARTINGALE AND CONVEXITY 127

Time

T

Approached

yield

Theoretical 

yield (MC)

Approached

Price

Theoretical 

Price (MC)

3 10.1097 10.1099 7.59556 7.59572

5 10.1835 10.1844 6.32314 6.32373

10 10.3703 10.3888 4.83783 4.84646

Table 5.1: Results of the simulation for the expected rate. The simulations show 

that the rough approximation is quite valid.

The results show that the approximation is quite efficient and can therefore been 

used as a good estimator of the convexity adjustment required for the derivatives 

concerned.

5.4 CMS rate

5.4.1 Introduction

The CMS rate is the rate of a contract that pays only once the swap rate. 

Because a regular swap rate should be paid during the whole period, this product 

includes a modified schedule. The swap price is a convex function of the swap 

rate. Therefore, as explained in the first section, the expected swap rate should 

not be equal to the forward swap rate. The difference should be positive because 

of the convexity of the function.

This result can be proved in a very basic way. We want to calculate the 

expected value of an annual swap rate assumed to have n  payments at date 

T  + i with i = l...n. Let us denote by y$ the forward swap rate, and by y{ the 

swap rate at time t. A useful relationship between a receiver swap price with a 

fixed rate equal to the forward swap rate and the swap rate is the following: the 

receiver swap price, Pswap, is equal to the difference between the forward swap
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rate and the swap rate times the swap sensitivity.
n

Pswap (t) =  B  (t, T  +  z) ( ijq — y{^j (5.9)
*=0

Therefore, introducing this quantity, we get that the expected swap rate can be 

calculated as:

E q t  [ j / r ]  =

E,"=o B (T ,T  + i ) ( y ' - yf,) '

EIU B {T ,T  + i) +Vo

Knowing that the swap sensitivity B ( t ,T  +  i ) is positively correlated with 

the receiver swap price XliLo B ( t ,T  + i) (y£ — y{^j for every time t, we get that 

the two variables, the opposite of the inverse of the sensitivity of the swap 

~  o b (t  T + i ) anc* t îe receiyer swap Er=o B (T ,T  +  i )  (y l — y^ j are positively 
correlated. A simple result is that when two stochastic variables X \  and X i  are 

positively correlated, the expectation of their product is bigger than the product 

of their expectation

EpfiXa] > E [A i]E[X2]

In the case of a strictly positive correlation, the inequality is strict. Since the 

forward swap is exactly at the money (fixed rate equal to the forward rate), its 

expected value should be equal to zero. This leads to the final result that the 

expected swap rate should be higher than the corresponding forward swap:

EQr M  >  2/o

5.4.2 H edging strategy

The hedging point of view is interesting as well. If an investor who is long a 

CMS rate hedges it like a forward swap rate, he will make almost surely profit. 

Let us show how to make an arbitrage in this situation. The hedging strategy 

should cost today exactly the discounted swap rate y^B  (0, T).

Take the following strategy. An investor is long a CMS rate which maturity 

is denoted by T, with an underlying swap rate of an n years maturity. He hedges
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it as if the CMS contract were giving him the forward swap rate. A hedging 

strategy is to replicate synthetically the forward swap rate:

• be long the corresponding forward receiver swap with an amount equal to 

the inverse of the forward swap sensitivity ]g(r r ^j] with a fixed

rate equal to the forward swap rate. Since the receiver swap has its fixed 

rate equal to the forward rate, the value today of this swap is 0.

• be short at the same time a risk-free zero coupon bond maturing at time T  

with an investment amount equal to the forward swap rate y l . The value 

of this zero coupon bond is today yjj J9 (0, T ) .

We verify that the today’s hedge cost is the discounted forward swap rate 

y^B  (0, T). Let us now examine our total portfolio. It is long a CMS rate, long a 

forward receiver swap, short a zero coupon. The total value I lr  of the portfolio 

at time T  is:

Pswap (T)
n T =  [ ( j / t  - V o )  + E r = iE o r [ s (T ,r + i) j .

using again the useful relationship between swap price and swap rate (5.9), we 

get
Pswap (T)

=  [ _ _  
I e ^ i

H t  _  I Rswap {T)
U B ( T , T  + i) J

+
L E ^ B o r P C r . r  +  t)]]

Using the fact that being short the receiver swap is equivalent to being the 

corresponding payer swap, the first position is exactly long a stochastic amount 

E ?  i B(TT+i) a PaYer swap. Denoting by PP_swap (T)  the price of the payer 

swap, we get that our total portfolio can be decomposed into two sub-portfolios:

• portfolio 1: the sum of the CMS rate and the zero coupon bond times the 

forward swap rate. Its value at time T  is equal to a payer swap Pp_swap (T) 

with a stochastic amount —bvvyv-x
/  -j j —1 * V

• portfolio 2: the forward receiver swap with an amount equal to the inverse 

of the forward swap sensitivity ^  xeq |g(rr+t)]*
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Let us examine different scenarios for the interest rates.

•  If the swap rate realized at time T  is exactly the forward swap rate, the 

two portfolios have zero value.

• If the swap rate is above the forward swap rate — t/q, the portfolio 

1 increases because of two things. First, this is because the payer swap 

ends in the money. Second, it increases as well because the sensitivity 

of the swap has decreased. This is in turn equivalent to an increase of 

the inverse of the swap sensitivity. In contrast, the portfolio 2 decreases 

only because the receiver swap ends out of the money. This offsets only 

the profit realized on the payer swap. Therefore, in this case, the total 

portfolio will increase.

• If the swap rate is below the forward swap rate, the payer swap ends out 

of the money whereas the receiver swap ends in the money by the same 

amount. However, the loss on the payer swap of the portfolio 1 is offset 

by the decrease of the inverse of the swap sensitivity, leading again, to a 

positive value for the total portfolio.

As a conclusion, we can see that whenever the swap rate is above or below 

the forward swap rate, our total portfolio ends in the money. This positive value 

is due to the convexity effect. We see on this example that the static hedge does 

not hedge against the convexity term. Since this effect is depending obviously 

on the importance of the move between the swap rate and the forward one, in 

either directions, this should be related somehow to the volatility. A hedging 

strategy against the convexity term should therefore have a volatility component. 

This can be done with options like swaptions. However, since swaptions are not 

perfect substitute for the convexity term, the hedge needs to be re-evaluated 

dynamically. Many questions remain unanswered. Which option should one 

take and more specifically which option maturity and strike should one choose? 

These questions are depending mainly on the market type.
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5.4.3 Pricing CMS rate

The price of a bond that gives the forward swap rate at each coupon date, and 

with no principal exchanged at the end of the swap is given by

F F
h (v) = 7T“— + — +(1 + y)T' (l + y f -

This leads to the following calculation for the convexity adjustment denoted by 

CA  (equation (5.8))

(Ti +  1) Ti F’ y +4 +  ... + (Tn +  1) Tn-~- f  Tn+2 rp
CA  =  i  ~  f  ( o) U )  /  oidt

T lJ ^ ^  + ---+ Tn( ^ T :TT Jo

This shows us that it is only because of some volatility on the swap rate that 

the CMS rate is different from the forward swap rate. Our result shows that the 

influence of the volatility is linear in the volatility of the whole process a\dt.

5.5 Conclusion

In this chapter, we have seen that using martingale theory enables us to give a 

more robust proof of the convexity adjustment formula in the Black framework.

Looking for a definition of convexity, we classified the convexity adjustments 

into two categories: a correlation convexity, futures versus forward contracts and 

a modified schedule convexity, mainly the rest of the convexity adjustments. We 

explain on a static hedge the origin of the convexity. We derive convexity adjust­

ment from a no-arbitrage proposition implied by a martingale condition. This 

enables us to give a definition of the convexity adjustment, with no approx­

imation. Then making approximation, we show how to get a tractable closed 

formula, which encompassed previous results. We specify the error term between 

the approximated closed formula and the exact but non-explicit formula. We 

show that under certain conditions, this error term can be bounded by a ’’mod­

ified” Laplace Transform of the yield variable. Monte Carlo simulations show
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that the error is relatively small. One can consider the approximate formula a 

good estimate of the convexity adjustment.

There are many possible extensions to this chapter. The first one is to relax 

the hypothesis of a Black diffusion. This is more in agreement with the use 

of term structure models by financial institutions. However, the problem turns 

to be non-linear and complex. Its solving requires sophisticated approximation 

techniques like Wiener chaos, Cramers-Moyal expansion or the theory of stochas­

tic perturbation (see Benhamou (2000b) reprinted as chapter 6 for a discussion 

and a solution by means of Wiener Chaos). A second development concerns the 

pricing of in-arrear derivatives. These derivatives are well-known for their con­

vexity component. An approximate pricing can be obtained by using forward 

rates modified by the correct convexity adjustment, as explained in this chapter. 

Another extension to this work should be to compare the no-arbitrage dynamic 

approach with hedging models like the one developed by Besseminder (1991) 

and Neuberger (1999) among others. Last but not least, the same methodology 

could be applied to the convexity adjustment of futures against forward con­

tracts, fact that has been studied empirically by French (1983), Park and Chen 

(1985) and Viswanath (1989) and that is still little explored.



Chapter 6

Pricing Convexity A djustm ent 

w ith W iener Chaos

Sum m ary o f th e chapter

This chapter presents an approximated formula for the convexity adjustment of Con­

stant Maturity Swap rates, using Wiener Chaos expansion, for multi-factor lognormal 

zero-coupon models. We derive closed formulae for CMS bonds and swaps and apply 

these results to various well-known one-factor models (Ho and Lee (1986), Amin and 

Jarrow (1992), Hull and White (1990), Mercurio and Moraleda (1996)). Quasi Monte 

Carlo simulations confirm the efficiency of the approximation. Its precision relies on 

the importance of second and higher order terms.

133
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6.1 Introduction

134

Due to the main role of interest rates swap rates in the determination of long term 

rates, it has been of great relevance to develop exotic options that incorporate 

swap rates. This has led to new products that use the rate of a Constant 

Maturity Swap (CMS) as an underlying rate. These are very diverse, ranging 

from CMS swaps and bonds to more complicated ones like CMS swaptions, caps 

and other traditional exotic fixed income derivatives. These CMS derivatives 

are tailored instruments for trading the steepening or flattening of the yield 

curve, since one receives/pays, in the future, the swap rate (long term rate) and 

finances/borrows himself/herself with money market rates (short term rates). 

Even if there are other products for a trade on the steepening or flattening of 

the yield curve, like in-arrear derivatives, CMS derivatives have become more 

popular because they are more leveraged than their competitor derivatives and 

correspond to long duration investment.

A main limitation for pricing and hedging these derivatives has been the 

inability to get closed formula within a standard term-structure yield curve 

model. Usually, practitioners compare the CMS rate with the forward swap rate 

of the same maturity. Since in the CMS case, the investor pays/receives the 

swap rate only once, whereas in the case of the forward swap, during the whole 

life of the swap, this modified schedule leads to a difference between the two 

rates, classically called convexity adjustment. The term convexity refers to the 

convexity of a receiver swap prices with respect to the swap rate. Traditionally, 

this adjustment is calculated assuming that swap rates behave according to the 

Black Scholes (1973) hypotheses.

There has been extensive research for the so called Black Scholes convex­

ity adjustment. Brotherton-Ratcliffe and Iben (1993) first derived an analytic 

approximation for the convexity adjustment in the case of bond yield. Other 

works completed the initial formula: Hull (1997) (extension to swap rates), Hart 

(1997) (better precision approximation), Kirikos and al (1997) (extension to a
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Hull and White yield curve) and recently Benhamou (1999) (estimation of the 

approximation error).

However, when assuming that interest rates follow a diffusion process dif­

ferent from the Black-Scholes and Hull and White’s ones, using the convexity 

adjustment in the Black Scholes setting is irrelevant. Indeed, since nowadays, 

almost all financial institutions rely on more realistic multi-factor term-structure 

models, the traditional formula looks old-fashioned and inappropriate. In this 

chapter, we offer a solution to this problem. Using approximations based on 

Wiener Chaos expansion, we provide an approximated formula for the convex­

ity adjustment when assuming a multi-factor lognormal zero coupon model 

(Heath Jarrow hypotheses). This is consistent with most common term struc­

ture models.

The remainder of this chapter is organized as follows. In section 2, we explain 

the intuition of the convexity adjustment as well as the products based on CMS 

rates. In section 3, we give explicit formulae of a coupon paying a CMS rate 

when assuming a lognormal zero coupon bond model. In section 4, we explicit 

formulae for different term-structure models and compare the closed form results 

with the ones given by a Quasi Monte Carlo method. We conclude briefly in 

section 5. In appendix (section E.3 page 185), some key results on Wiener chaos 

expansion are presented as well as the proof of the approximation’s theorem.

6.2 Convexity: intuition and CMS products

In this section, we explain intuitively the nature of the convexity adjustment as 

well as the CMS products.

6.2.1 C onvexity o f Swap rates

In the modem derivatives industry, two risks have emerged as intriguing and 

challenging for the management and control of secondary market risk: for equity
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Figure 6.1: Convexity of the swap rate. In this graphic, we see that the convexity 

of the receiver swap price with respect to the swap rate leads to a higher expected 

swap rate than the forward swap rate, corresponding to a zero swap price.

derivatives, it has been the volatility smile and for fixed income derivatives, the 

convexity adjustment. Taking correctly these effects into account can provide 

competitive advantage for financial institutions.

Our chapter focuses on swap rates. Since the receiver swap price is a convex 

function of the swap rate, it is not correct to say that the expected swap is equal 

to the forward swap rate, defined as the rate at which the forward swap has zero 

value. This can be seen with the figure 6.1.

6 .2 .2  C M S d eriva tives

Since their early creation in 1981, interest rates swap contracts have grown 

very rapidly. The swap market represents now hundreds of billions of dollars 

each year. Reasons given to justify the existence of swaps range from market 

misperceptions, rationing and taxes (Bicksler and Chen (1986)) to agency prob­

lems (Wall and Pringle (1989)) and signalling (Titman (1992)). Subsequently, 

investors have been and are potentially looking for new instruments to risk- 

manage and hedge their positions as well as to speculate on the steepening or 

flattening of the yield curve. Indeed, the main interest of investors has turned 

out to be speculation. Even if other products like in-arrear derivatives enable
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to trade the flattening or the steepening of the yield curve, CMS derivatives are 

of particular interest since they are highly leveraged.

CMS derivatives are called CMS because they use a Constant Maturity Swap 

rate as the underlying rate. They are very diverse ranging from CMS swaps, 

CMS bonds to CMS swaptions and all other types of CMS exotics. Two major 

products are mainly traded over the counter: CMS swap and CMS bond. Logi­

cally, a CMS swap is an agreement to exchange a fixed rate for a swap rate, the 

latter referring to a swap of constant maturity. Assuming that our CMS swap 

starts in five years, is annual and is based on a swap rate of five year maturity, 

this typical contract will be the following: in five years, the investor will receive 

the swap rate of the swap starting in five years from today maturing in ten years. 

The investor will pay in return a fixed rate agreed in advance in the contract. 

One year later, that is in six years from today, the investor will receive the swap 

rate of the swap starting this time in six years from today maturing in eleven 

years. Again, the investor will pay the fixed rate. We see that at each payment, 

the investor receives a swap rate of a different swap. All the swap have in com­

mon to be settled at the date of the payment and to have the same maturity. A 

CMS bond is very similar to a CMS swap. It is a bond with coupons paying a 

swap rate of constant maturity. Therefore a CMS bond is exactly equal to the 

swap leg paying the swap rate. Since the swap leg paying the swap rate can be 

decomposed into each different payment, to price the CMS swap or CMS bond, 

we only need to price one payment of a swap rate. The value of a swap rate paid 

only once is called CMS rate value. The difference in value between the forward 

swap rate and this CMS rate is called the convexity adjustment.

Indeed, other CMS derivatives can be priced using forward rates increased 

by the convexity adjustment. The rest of the chapter will concentrate on the 

pricing of the CMS rate. Knowing these rates, one can use them to plug it into 

derivatives pricing formula to get an approached value of the CMS derivatives.
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6.2.3 C M T bond and CM S swap

We consider a continuous trading economy with a trading interval [0, r] for a 

fixed r  > 0. The uncertainty in the economy is characterized by the probability 

space (£1, F, Q) where Q is the state space, F  is the a —algebra representing mea­

surable events, and Q is the risk neutral probability measure uniquely defined in 

complete markets with no-arbitrage (Harrison, Kreps(1979) and Harrison, Pliska 

(1981)). We assume that information evolves according to the augmented right 

continuous complete filtration {Ft,t  £ [0,r]} generated by a standard (initial­

ized at zero) k—dimensional Wiener Process (or Brownian motion). Let (rt)t<T 

be the continuous spot rate, B (t, T )t<r t <t the price at time t  of a default-free 

forward zero coupon maturing at time T  and (vt)t <t the swap rate at time T. 

These three stochastic variables are supposed to be adapted to the information 

structure (F,)(e|0iT].

Referring to each coupon by the subscript variable i, the ith coupon of a CMS 

bond pays the swap rate yr^ with a constant maturity specified in the contract, 

determined at a fixing date Ti often equal (eventually prior) to the payment date 

Tf. Therefore, the coupon value at time I f  is the swap rate times the nominal

yTi N  while, at the fixing time, it is this value discounted by the forward zero

coupon : B  (Ti,Tf) y ^ N . Assuming the no-arbitrage condition in a complete 

market, the value of one coupon C {  at time zero is obtained as the expectation 

under the risk neutral probability measure Q of the discounted payoff:

C i  =  E q  [ e ~ f o ‘ ' A J J ( T „ T f ) v t . n ]  ( 6.1)

The total value at time zero of a AT-nominal bond with m  coupons with value at 

time zero (C i ) i=1  m, with payment dates (T f) i= 1  provided that the nominal 

N  is paid at the end date 7^, is given by:
m

CM S-Bond = ^  C.- +  IV * B  (0,7£) (6.2)
*=1

In an interest rate CMS receiver swap, the fixed rate is received and the Constant 

Maturity Swap rate is paid. The different payment dates are also noted T f, •■•T£l.
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The fixed leg valuation is easy. Its total value, denoted by Vp, is equal to the 

sum of all the discounted cash flows equal to the fixed rate Rfixed.-

m

V f  =  ^  R fh sed8  ( 0 , T [ )
1=1

The fixing dates for the swap rates are denoted by Ti, ...Tm. The CMS leg can 

be valuated as the sum of all the different coupons with value at time TJ, 

and paid at time Tf. Its total value as of t =  0, denoted by Vcms-, is the sum of 

individual swap rate coupons:
m

Vc m s  =  J 2 E Q [e-I°‘r-dsB (T i,T f)y r ]  (6.3)
t= l

The price of the CMS swap is the difference of price between the two legs: 

Vf — Vcms for a receiver CMS swap and the opposite for a payer CMS swap. As 

a consequence, the rate RcMSswap, called the CMS swap rate, is the one which 

makes the value of the two legs equal:

R c  M S sw a p  =  ( 6 ' 4 )

The term of the denominator is classically called the sensitivity of the swap. The

CMS swap rate is consequently the value of the CMS leg over the sensitivity of

the swap.

As a conclusion of this subsection, CMS swap or CMS bonds are valued 

exactly with the same procedure. One needs to determine the exact value of a 

coupon paying the CMS rate. To calculate explicitly these quantities, we need 

to specify our interest rate model.

6.3 Calculating the convexity adjustment

In this section, we explain how to price the convexity adjustment with an ap­

proximated formula based on a Wiener Chaos expansion. Indeed, techniques 

based on perturbation theory or Kramers Moyal expansion could have also been
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used. Moreover, a recursive use of the Ito lemma gives exactly the same re­

sults. However, the framework given by Wiener Chaos expansion is much more 

powerful and leads to a straightforward calculation instead of very tedious ones.

6.3.1 Pricing framework

We assume that default-free zero coupon bonds are modelled by a lognormal k- 

multi-factor model, with a fc-dimensional deterministic volatility vector denoted 

by V =  (vi (£,T),..., vj. (£,T)) verifying the Novikov condition VT < 

r , e2/orllF(*«;r)ll2d3 < -f-oo. This enables us to use probability measure change 

since this condition is sufficient for the Girsanov theorem. The default-free T — 

maturity zero coupon bond price at time t is denoted by B  (£, T) and it is defined 

as the unique strong solution of the stochastic differential equation given under 

the risk neutral probability Q by:

=  n d t +  (V  (t , T ) , dWt) (6.5)

with (V  (t , T ) , dWt) =  Ylk vk (£> T) dW f. The initial condition expresses that at 

maturity, the zero coupon bond is equal to the unity coupon B  (T, T) =  1. Using 

traditional results (El-Karoui et al(1995)), we can define the forward neutral 

probability at time t , Ql either by means of its Radon Nykodym derivatives 

with respect to the risk neutral probability measure or by the fact that dWs = 

dWa — V  (s, t) ds is a standard Brownian motion under Ql. We get that under 

this new probability measure, the bond price solution of the equation (6.5) can 

be written as a normalized Doleans martingale times the value of the forward 

zero coupon bond at time zero:

B  (t, T) =  B  T) ( v ( s , T ) - V ( a, t ) , d W . ) - h /o (IIv(s,T)-V(s,t)II2)da
B  (0, t)

To price a CMS swap/bond, we need to determine the value of one coupon, 

knowing that the total value of the swap/bond is the sum of the individual swap 

coupons. The core of the pricing problem is to determine the value at time zero,
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ITo, of a contingent claim that at a payment time T, gives the swap rate yr  fixed 

at time T, of a vanilla interest rate swap. The underlying interest rate swap has 

n equally separated payment dates : 7\, ...Tn. We ignore the issue of credit risk 

for valuating interest rate swap as described in Cooper and Mello (1991) and 

Duffie and Huang (1994). As proved for example in Musiela Ruttkowski(1997) 

page 389 equation (16.4)) the no-arbitrage condition gives a simple expression 

of the swap rate t/y with respect to the zero coupon bonds (B (T, Ti))i=0 n

B(T,T0) - B ( T , T n)
* = E  (6'7)

We then adopt the following definition of the CMS rate:

Definition 3 The CMS mte is the expected value under the forward risk neutral

probability measure at the payment time T  of the swap rate yr

CMS-Rate =  EQr (yT) (6.8)

When the payment date T9  is different from the fixing date T*, the above formula 

is modified in CM S-Rate =  EQrp {VTf )

The guiding idea of the chapter is to obtain an approximate formula for the 

expression above, by means of Wiener Chaos expansion. Let us introduce some 

notation. We call the forward zero coupon bond:

B (0, Ti)
T‘ B  (0, T)

(t  r*)Let the forward volatility V} ’ be the volatility of a T —forward zero coupon 

maturing at time T*:

V<t .t<) = V (s ,T i) - V ( s ,T )

Let C (Ti, Tj) denote the (symmetric) correlation term between the return of 

the zero coupon bonds (mathematically between the logarithm of zero coupon 

bonds)

C (T « T j)=  f T (V f Xi), V}TW )  ds
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and K  the sensitivity of the forward swap defined as the sum of the forward zero 

coupon bonds K  —

D efinition 4 Convexity adjustment CA is the difference between the CMS rate 

and the value today of the forward swap rate:

CA = C M S rate -  (6.9)

The value today of the forward swap rate is given by the equation (6.7) with
P  P

the time considered being zero leading to y f ° rward =

6.3.2 C losed formulae

The chapter’s main result is the following approximation theorem. By means 

of approximations based on Wiener chaos, we can get a closed formula for the 

CMS rate.

Theorem  5 Under the above assumptions, the convexity adjustment denoted 

CA can be expressed as a sum of correlation terms, plus an error term expressed 

with Landau notation as anO  (||V  ̂(., .)l|4) ;

(  E£,i BT.(BTnC(Ti^n)-B^C{TuToj) \

CA =
K 2

■ . l f o r w a r d E i j = i B T i B T j C ( T i , T j )T  y  K 2 J

+ 0(||F.(.,.)||4) (6.10)

Proof: see section E.3 page 185.D

This theorem shows us that the convexity adjustment on a swap rate is 

a simple function of correlation terms. Interestingly, it is a linear function 

of the forward swap rate y f ° rw ard. The terms BxnC (Ti,Tn) (respectively 

BxiBroC (Ti, To)) can be interpreted as the convexity adjustment between the 

zero coupon bonds B (T, TJ) and B  (T, Tn) (respectively B (T, Ti) and B (T, To)) 

as the following proof states:
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Proposition 16 The convexity adjustment CA between two zero coupons bonds 

can be expressed in terms of the correlation term through:

CA  =  & T [B(T,Ti)B (T ,T j )]-'E fiT [B(T,Ti)]VPT [B(T,Ti)] (6.11) 

= BnBjiCpuTJ + O (||K(.,.)||4)

Proof: Plugging in the expression of the zero coupon bond (6.6), the con- 

vexity adjustment can is given by:

CA  =  BTiBTjEQT
i s U r* h v M V(T,Ti) 2

+ V(T'Ti)
J - 1

Using the fact that ê ° 2 /o (ll/(«)ll )ds js a martingale for any determinis-
( t i U T'Ti)y ^ Ti))ds \

tic function /  (.), this expression simplifies to B ^ B ^  ( e ° \  * /  — 1 ),

which leads to the result (6.11) when taking a Taylor expansion up to the first 

order.D

Corollary 7 When the underlying CMS swap is a spot CMS swap; then: T =  To 

and the formula simplifies to

\
(6.12)CA =

( BTn E”=1 BTiC(TM  
K 2

, forward B ri Btj C T̂i >Ti  )
+ y   k 2 ---------

Proof: When the CMS swap is a spot CMS swap, the correlation term 

C (To, Ti) (convexity term due to the fact that we have a forward swap) becomes 

zero.D

In this latter case, equation (6.12), the convexity adjustment is always pos­

itive. This result can be easily derived within an elementary term structure 

model (since we notice that the rate of a forward bond should always be above 

the forward rate). Put another way, for this CMS, it is pure convexity.

The previous results are approximation formulae. Specifying the error term 

as the difference between the intractable expression of the convexity adjust­

ment and the closed formula obtained by Wiener Chaos, we can stipulate an
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upper bound for the error term. Indeed, using Wiener Chaos expansion, we 

conclude that the error term is dominated by the following quantity O3 =

O f .S 1 < S 2 < S 3 < T
V (T,Ti) 
Vs 1

i/CTJi)
VS3 dsi ...ds^j

1 /2

. This indicates that our

approximation is all the more efficient than the volatility is small.

6.3.3 E xtension

It turns out that some CMS rates present a delayed adjustment. This case is 

more complicated to handle. However, the same methodology gives a closed 

formula for the price.

Theorem  6 In the case of a payment date T 9  different from the fixing time 

T, the above expression gets additional terms due to delayed adjustment The 

convexity adjustment is then given by:

CA =

f Etei BTi(BTnC(Ti,Tn)-BTQC(TilTo))

_̂ _y  forward  l Bl i BTj{CCTt ,T j)-C <?i ,TP))^

\
(6.13)

Proof: The proof goes along the same lines as the one of theorem (5) and 

can be done using thee same techniques. □

Corollary 8 The convexity adjustment can also be expressed as:

CA =

Bt„ (C (Ti, T„) — C (Ti, Tj) +  C (Ti, T*)) 

- B n  (C(Ti,T0) -  C(Ti,Tj) +  C(Ti,T>)) 

K~3
(6.14)

The interpretation is simple. This formula expresses the convexity adjust­

ment as the difference of correlation terms. Since these terms are small, this 

suggests already that the convexity adjustment is small. This a posteriori jus­

tifies our approximate method where we truncate the Wiener Chaos expansion 

after the second order. Indeed, the theoretical justification of this truncation
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can be found as well in the theorem of Pawula which states that a positive tran­

sition probability, the Kramers-Moyal expansion (similar to the Wiener Chaos 

one) may be stopped either after the first term or after the second term. If it 

does not stop after the second term, it must contain an infinite number of terms.

For the interpretation of this convexity adjustment, we assume that the 

correlation term C (Ti, Tj) is an increasing function of both Ti and Tj. Let 

us assume that the payment date T 9  is prior to the payment dates of the 

underlying swap p i ) i=1 n, i.e., Ti > T9 for every i. Consequently, the first 

term in the right hand side of equation (6.13) of the same sign as

S L i  HTiBxj (C (Ti,Tj) — C (Ti1Tp)) is positive. The other term is closely con­

nected to the sign of
n

Y  B t .  ( B t .  (C (Tj, Tn) — C (Tp, T„)) — B t 0 (C (Tj, T„) - (7 (7 * , T0)))
t=l

This leads to think that this expression, expressed as a difference, should be 

relatively small and in many cases, smaller than the first correction term. In 

the case it is non positive, it should be slightly negative. This result is of great 

significance since it states that under non-classical conditions, the expected swap 

rate can be lower than its corresponding forward swap rate, mainly due to a 

negative delayed adjustment.

6.4 Application and results

In this section, we apply the formula to different types of stochastic interest rate 

models.

6.4.1 A pplication to  different m odels

In this section, we apply our closed formula to various one-factor interest rates 

models. Therefore, for all of them, the number of factors k equals 1.
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Ho and Lee m odel

Among the early one-factor interest rate term-structure models, the Ho and 

Lee (1986) model was originally stated in the form of a binomial tree of bond 

prices. After the appearance of the Heath Jarrow Morton formalism, this model 

has been rewritten in the form of a diffusion of the zero coupons bonds:

dB (t, T) , _
~ ^  = rtdt + * ( T - t ) d W t

It has been observed that the volatility of zero coupons bonds was decreasing 

with time. This model assume a linear decrease. The forward volatility as well 

as the correlation were consequently taken to be of the form:

V}T'Tt> = a ( T i - T )

and C(Ti,Tj)  =  <x2 (7* — T ) (Tj — T) f .  The convexity adjustment formula

(6.13) can then be expressed as a function of forward zero coupon and the 

volatility:

convexity =

(  _2 t e l  S r<r(T i -T P ))(B Tn(7’n- T ) - B ro(r0- r ) )  \  
a  k2, forward r 2 E ? j^  Bri BTi{Ti-T){Tj -TT>)T

\  ' y u k2

A m in and Jarrow m odel

The purpose of the Amin and Jarrow (1992) model was to take into account a 

phenomenon called the volatility hump. Basically, the volatility of zero-coupon 

bonds is first increasing and then decreasing. Amin and Jarrow offered to model 

the volatility as a second order polynomial given by ao (T — t) +  o\ . This 

leads to the following expression for the zero coupons bonds diffusion

d B (t,T ) (  „ ,r= rtdt + I <r0 (T - 1) +  <7!----   j dWt
B  (t,T )

The forward volatility is expressed as a second order polynomial expression of 

the different maturities v jT,T̂  = (Tj — T) -j- ft 1̂  whereas the
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correlation term, which is more complicated, is expressed in this particular case 

as a sum of four terms:

C  (^i> Tj) =  A\  +  A2  +  A3  +  A4

with
A ^ a K T i - T )  ( T i - T ) T

A 2 = <tq<t 1 (Ti — T ) \  

A 3 = a 0f7i (Tj - T ) \
3 3

T ? - { T j - T ) 3 _  j *
3 3

A 4 = <j1 (Ti -  T ) (Ti -  T)  [ f  (TT-Tj  +  | T 3 ) ]

The convexity is then calculated using the convexity adjustment formula (6.13).

Hull and W hite m odel

This model represents a significant breakthrough compared to the Ho&Lee 

model. It is a one factor model, extendable to a two-factor or more ones, that 

enables both to incorporate deterministic mean-reverting features and to allow 

perfect matching of an arbitrary yield curve. It has become very popular among 

practitioners since one can derive closed forms for vanilla interest rates deriva­

tives like cap/floor and swaption (one factor version). This implies a quick 

calibration. The time-dependent volatility version of this model has been advo­

cated to be unstable and is consequently not used in practice. We will give here 

the convexity adjustment for the classic Hull and White (1990) model with a 

constant volatility o  and constant mean reverting parameter A. In this model, 

in its formulation on zero coupons bonds, the latter follow a diffusion given by:

dB( t ,T)  ^_ _ =r(dt + (T _ dWt.

The volatility structure is realistic since it is decreasing with time. It does 

not allow for the hump and this can be seen as the main drawback of this model.
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and the forward volatility is given by VjT,Tî  =  a e -Ar~e XT' eXs whereas the cor­

relation term becomes:

1 _  e - m - T ) 1 _  e - A ( T i - T )  i  _  -2A T
C(TitTj) =  ^  %  26a

It is worth noticing that this model implies a lower correlation between the 

different rates than the Ho&Lee model. As for the convexity adjustment, we get 

the following formula: 

convexity =  HW \ +  HW2 with:

D  D  l - e - 2 ( e - K T P- T ) _ e~ X{Ti - T)  \
2 ^ i J = 1 Ti Tj 2A-------------- A  I ---------------- A----------------  j

HWx =  o2yf°rward------------------------------- —------ ' ----------------------- L
K *

d  l - e ~ 2XT ( e - x(TP- T) - e ~ x(Ti - T) \  f  r> l - e - A(T" - r > i _ e-A(T0-T )^

W s  =  * r°

or for the simplified version T  = To = TP

D  l - e -2AT l - e _A(T*- T ) n  /  _—\ ( T ; —T \ \

i = i  '  '

r-Mi T-, j  e —2A2* ( 1  e~ A(T*~r ) \

W ,  -  ( * . 1 = 1 ^ 2 )

M ercurio and M oraleda m odel

Last but not least, we examine the case of the Mercurio and Moraleda (1996) 

model. This model has been introduced like the Amin and Jarrow model to 

take into account the volatility hump. Mercurio and Moraleda (1996) suggested 

to use a combination of Ho and Lee and Hull and White volatility form to 

get another volatility in which the hump would be modelled more realistically 

while still analytical tractable. This leads to the following diffusion for the zero 

coupons bonds:

d B (t,T )  / l  —e -x<T- ‘> / l - e - A<T- ‘> (T -  t)e _*(r_<)\ \=  ----------

y  forward
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In this particular case, the volatility structure takes the following form: v jT,Tî  — 

g(s,Ti) + f  (s,Ti)

g {s ,T i)^ (T ^ T- f XTieXa 

f  (s, Ti) =  y ,  { & -> -*

and
C (Ti, Tj) =  M2i +  M22 +  Af23 +  M24
w  _  - 2  l - e - i ( ^ - T)  l-e -» (» V -T )  i _ e-2»T
J«21 -  a   x ---------------------------A------ 2A-

Afe =  Jq f  (s, Ti) f  (s,Tj) ds

M23 = fo 9 (s>Ti) f  (s,Tj)ds

M u — Iq 9 (s> Tj) f  (s, Ti) ds

or after simplifying:

m 22 = ^(35,2))

m 23

M24 = <*(j)0(O

/ *\ o 1_e
a  M  =  7°~ A

0(j)  =

^ / r,e *(*> r ) - n - e - 2 A T  1—e-*(Ti~r ) 2A r-l+ e-^r >\ ^
I A 2A ' A 4A5 1

V
1—e-> (Tj_T) l - e ~ 2XT

 3? 2A /

t P M )  = (yr?

(  ( i - e - K Ti - T ) \  ( 1—e X( rJ r ) A  / 2A27*2—2TA+1—e ~ 2TA(*=4 ^ )  ( 4A

(
A ' A2 J \  A

rje~*(T'~ T) - r  +  i —e~AC7J~r ) ^ zrx-i+e-t

- x (T i-T )_ T  \  (  T*e ( T*~T) - ' l

4\

Tie'
+

V
1 _ e - A ( T i - T )  

 T2------ \
1 — e ~

2A

/
The convexity is then calculated using the convexity adjustment formula (6.13)
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6.4.2 R esu lts for a standard contract

In this section, we gave some results for the case of a Ho and Lee model, a 

one factor Hull and White model, and a Mercurio and Moraleda model. We 

compared them to the results we got from a Quasi Monte Carlo simulation with 

10,000 random draws. The difference between the two was negligible. These 

results are summarized in the four tables given in the appendix section: table 

E.l, E.2, E.3 and E.4. Interestingly, convexity adjustment differ from one model 

to another but all adjustment are approximately the same.

6.5 Conclusion

In this chapter, we have seen that Wiener Chaos theory provides closed formulae 

which are very good approximations of the correct result. The interesting point 

is that this methodology is quite general and could also be applied to many 

other products where the payoff function is a non linear function of lognormal 

variables.

Indeed, there are many extensions to this chapter, like the one in deriving 

the convexity adjustment between futures and forwards contracts. A second 

development, quite promising, is to apply Wiener chaos technique to other option 

pricing problems.



General Conclusion and Future 

Research

The final word of this dissertation is that these new techniques, Malliavin calcu­

lus and Wiener chaos expansion, have turned out to be extremely powerful for 

different pricing problems where no explicit formula could be found. The interest 

of the Malliavin calculus theory is that it imposes few restrictions on the payoff 

function. Therefore, it can handle very general situations. We have shown in 

this dissertation how to use it properly to get very efficient Monte Carlo schemes 

for the computation of the Greeks. We have contrasted this approach with a 

new numerical technique based on Fast Fourier Transform. The Wiener chaos 

expansion theoiy enables to calculate approximations of small perturbations. 

We have used it to get accurate pricing formulae for the convexity adjustment.

We conjecture that these methods are going to be more and more used in the 

coming following years. Many possible developments and extensions have been 

already mentioned in the preceding chapters like the extension of the Malliavin 

weighted scheme to continuous lookback options, to stochastic interest rate mod­

els, the advanced study of local type Malliavin weighted scheme, the extension 

of the Wiener Chaos expansion theory to other type of term structure models.
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A ppendix A

M alliavin calculus

This appendix summarizes the main results needed for this dissertation. It is 

intended for the reader who is unfamiliar with this domain of stochastic calcu­

lus. A rough idea of Malliavin calculus is that Malliavin calculus is the calculus 

of variations in a stochastic framework. Or, comparing with the deterministic 

framework, Ito calculus would correspond to the ordinary derivative in infinites­

imal calculus while the Malliavin derivative on Wiener Space to the Frechet 

derivative on a function space. This theory was initiated by Malliavin and fur­

ther developed by Stroock, Bismut, Watanabe and others. The original motiva­

tion was to provide a probabilistic proof of Hormander’s sum of squares theorem. 

One of the important conclusions is the existence of the adjoint operator of the 

Malliavin derivative called the Skorohod integral which has the elegant property 

to be an extension of the Ito integral for non adapted process. The great advan­

tage of this theory is also that it allows the formulation of solutions of stochastic 

differential equations in those cases where the solution is not adapted to the 

Brownian filtration. For further reference see Nualart (1995). All the definitions 

and propositions below are taken from this book.
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A . 1 K ey Results

Let (ft, T , P) be the classical Wiener space which supports a standard d-dimensional 

Wiener process (Brownian motion) {Wt = (W} ,..., W f)  , t G [0, T]}. Let (L2([0, T]))d 

be the real separable Hilbert space of d-dimensional real functions defined on 

[0,T] with squared integrable, with its canonical scalar product and its 

norm ||||. We denote by W  the isonormal Gaussian process (Nualart (1995) 

definition 1.1.1 pp 4) associated with (L2([0, T]))d and defined as for h element 

of

W (h) = {W1(h ),...,W d {h)) 

where the sign =  stands for a definition with

W (h) = [  h{t)dWt 
Jo

W j (h) = f  hj (t)dWtj 
Jo

where the symbol =  stands for a definition We denote by C£° (.) (respectively 

Cg° (.)) the set of infinitely continuously differentiable functions /  such that /  

and all its partial derivatives have polynomial growth (respectively bounded). 

Let S  be the set of stochastic functions F  of the form:
rT rT

F = f ( [  hM dW t,..., f  hn(t)dWt) 
Jo Jo

where f  belongs to C£° (M™*) f  (xn , ...,xdn) and h i,...,hn to

CJ° (L2([0,T])d). V 1,2 designates the Banach space, completion of S  with re­

spect to the norm

|| F  | | li2=  (B(f'2))1/2 +  (E( f  {DtF f d t f l 2
Jo

We then have the interesting definition of the Malliavin derivative (Nualart 

(1995) definition 1.2.1 pp 24):

Definition 5 The Malliavin derivative of a stochastic function of a type men­

tioned above is the stochastic process {DtF, t G [0, T]} or equivalently the random
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gradient D F  =  (D lF , ...,DNF) given by

n d f  rT rT
D iF  = Y , 7rL ( h ( t)  dWu ..., /  hn(t) dWt)hi(t), t  G [0, T] a.*.

»=i */o

The intuitive idea behind this Frechet derivative in Wiener space is to dif­

ferentiate F  with respect to the chance parameter w € Cl.

The two major facts that are heavily used in the present dissertation are the 

following ones:

• the integration by parts formula and its link to the Skorohod integral which 

turns out to be an extension of the Ito integral (Nualart (1995) Chapter I 

1.2, 1.3) and

• the formula of the Malliavin derivative of the solution of a stochastic dif­

ferential equation (Nualart (1995) Chapter II II.2, II.3) with respect to its 

first variation process.

The integration by parts is closely linked to the Skorohod integral. Indeed, 

the adjoint of the closed unbounded linear operator D  : T>1,2 —> L2 (Q x [0 , T \ f  

is usually denoted by 8 and is called the Skorohod integral. Its domain Dom (8) 

can be characterized as the set of measurable process u E L2 (Cl x  [0,T]) such 

that there exists a positive constant C for which

E ( l  D,Futdt \ < C(u) ||F ||W.

for all F  E D 1,2. Then the Skorohod integral for u G Dom (8) is the square- 

integrable stochastic variable determined by the duality relation

E (F S («)) =  E ( j f  DtF utdt) VF € D 1-2 (A.l)

This defines the integration by parts which is at the core of our proof. The 

major result concerning the Skorohod integral is its link to the Ito integral. 

The Skorohod integral turns out to be an extension of the classical Ito integral 

and even it allows the integration of processes that are not necessarily adapted.
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Therefore if u is an adapted process in L2(Cl x [0,T]) then we have (Nualart 

(1995) Proposition 1.3.4 pp 41)

T
S(u) =  J  utdWt

=  £  r ^ d w ;
i= 1 ■'°

We have also the classical chain rule useful to the work in hands:

Proposition 17 chain rule (Nualart (1995) Proposition 1.2.2 pp 29)

Let </? : Rn —» R be a function continuously differentiable with bounded 

partial derivatives. Suppose that F  = (Fi,...,Fn) is a random vector whose 

components belong to the space D 1,2. Then <p(F) G D 1'2 and
n

DtV(F) = £  V M F ) D,F, t  € [0,T] a.s.
*=1

The chain rule can be extended with only a Lipschitz condition (Nualart (1995) 

Proposition 1.2.3 pp 30)

P roposition 18 Let F  be a Ft -adapted stochastic process of D 1,2, then Vu G 

Dom (5)

6 (Fu) = F8 (u) -  [  DtF u (t) dt 
Jo

The second important fact concerns the Malliavin derivative of the solution 

of a stochastic differential equation:

Proposition 19 Derivative of a function being a solution of a Stochastic Dif­

ferential Equation with respect to its initial condition

Let {X t, t  G [0,T]} be a vector with value in Rn solution of the following 

SDE

dXt = b(t,X t).dt + <r(t,Xt).dWt 

X q = x, iG R "
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or written in the integral form

X t = x  +  f  b(s, X a).ds +  f  <j(s, x s).dws 
Jo Jo

We also supposed that b(), cr() are globally Lipschitz functions with linear 

growth and continuously differentiable. Then (X t, t E [0tT\) belongs to D1,2 

(Nualart (1995) Theorem 2.2.1 pp 102-104) and

DrX t = (<r(r,Xr) +  J  y 2b(s,X ,)D rX J s  + V 2a{s,X ,)D TX,dW t^  l {r<t)

Thus (DrX t)t>r is a solution of the following Stochastic Differential Equation:

dZt =  S72b(t, X t)Zrdr +  V20r(t, Xt)ZtdWt 

Zt=r — X ^

One of the key mathematical Malliavin derivative function for our dissertation 

is the derivative function of the process with respect to its initial condition 

(useful for the delta and gamma computation). The derivative of our process 

{X tit 6 [0,T]} noted {Yt — £ € [0,T]} with respect to its initial condition

x  is a solution of the following SDE :

dYt =  V2 b(t,X t)Y tdt + VxT{t,Xt)Yt dWt 

Y0 = In

where /„ is the Mn identity matrix. The interesting link between the two pro­

cesses {X t, t  6 [0,T]} and {Yt, t  € [0,T]} is then given by the following proposi­

tion (Nualart (1995) equation 2.38 page 109)

D .X t = Yt y -V (s , X .)  l {,<t}a.s. (A.3)

(See also Elworthy (1992)). One important consequence is, when a  is moreover 

hypoelliptic, that for s < t

Yt =  D ,X tY ,cr-\s ,X ,)
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that is

Yt -  r s *h  T

= f f  D ,X tY,cr-l(s,X ,)ds

A.2 The Elworthy formula

The motivation of chapter 1 is very similar to the one used to derived the Elwor­

thy formula (Elworthy (1982) and (1992)). The Elworthy formula is summarized 

by the following proposition:

P roposition  20 Elworthy formula

I f  {Xt, t  G [0,T]) is the solution of the SDE (Stochastic Differential Equation)

X t =  x  +  f  b(s, X 3)ds +  f  cr(s, X s)dW3 
Jo Jo

with 6(), <t() globally Lipschitz functions with linear growth and continuously 

differentiable, then for any function (p G Cl (Rn) and for any t > 0, we have

[%>(**)] =  E 

=  E

<p(xt)6  0<7-1(s1x.)y,)

<p(Xt) ± [ < T - 1(s,X ,)Y,dW .

Proof: see Elworthy (1982) and (1992).□



A ppendix B

Technical Proofs of Chapter 1

B .l  Proof of the proposition 1 concerning the 

link between first variation process and sen­

sibility of the underlying to  perturbation  

page 36

The proof is only given for the Ztr/M> process. It is identical for Z \ega. To prove 

proposition (1), we first show that the process (^tr/l°)tG[or] verifies a stochastic 

differential equation (B.l). Since the two process (^tr/lo)t€[0T] and

( f* YtY ~ lb (s, X s) d s ) verify the same SDE (B.l) and have the same ini-
\ u /«€[0,71

tial conditions, they are equal according to the stochastic version of the Cauchy 

Lipschitz theorem. □

We now prove the lemma about the stochastic differential equation (B.l):

Lem m a 1 Under the assumption of continuous differentiability ofb, a with bounded 

derivatives, the process ^efine^ by (1-16) is the unique solution of

the following stochastic differential equation

dZt = (b (t, X t) +  Ztb' (t, X ,) )  dt + Z ta' (t, X ,) d.Wt (B .l)

with initial condition Zq = 0n.

158
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Proof: Solving the diffusion equation (1.12) with the initial condition

gives

X t Th° = x  + j ‘ [b(s, X ^ )  + eb(s, ds + J ‘ a (s, X ^ )  dW,

For e ^  0

X f’Tho -  X
£

Using the hypothesis that 6, a are continuously differentiable with bounded 

derivative, as well as the continuity of X £,rho in £ with its limit equal to the non­

perturbed process ( t̂)«€[o,r]> we can show that the Gateau derivative (Z/710) ^  ̂  

of the drift-perturbed underlying process |x*e’r/lo,t  G [0,T]j-along the direction 

b can be expressed as:

Z*h° = Jo (s’ +  ^ (s’X ,)) ds + Jo Z’h° ° '(s’X s)d w "

which in its differential form is exactly equal to the result. The uniqueness is 

then given by the stochastic version of the Cauchy Lipschitz theorem.D

B.2 Proof of the delta formula (1.M1)

In this section, we prove that the weight function for the delta should satisfy 

necessary and sufficient conditions. The proof is given for the case of a stochastic 

interest rate depending both on time and the underlying. As a special case, we 

derive the necessary and sufficient conditions given in table 1.1 when the interest 

rate is only a function of time. For the sake of simplicity, we denote in this section 

w deita  b y  the derivative with respect to the second variable by a prime

. The part of the proof based on integration by parts is quite short and goes 

along the same line as the one of Elworthy (1992). The technical difficulty here 

is to justify rigorously the use of weaker assumptions. The proof can be divided 

into three major steps:
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• first preliminary: weaker conditions on the payoff function / :  show that 

if the result holds for any function of C (set of infinitely differentiable 

functions with compact support), it also holds for any element of L2.

• second preliminary: interchange of the order of differentiation and expec­

tation: show that one can interchange the order of differentiation and 

expectation.

• integration by parts:

— necessary condition so as to fulfil an integration by parts.

— sufficient condition so as to fulfil an integration by parts.

Step 1: Weaker assum ptions

The idea of the first technical point is the following: taking /  as an element of 

L2 is the same as assuming /  infinitely differentiable with a compact support. 

It is based on a density argument using Cauchy Schwartz inequality and the 

continuity of the expectation operator.

More precisely, let assume the result is true for any function of Cj? (set of 

infinitely differentiable functions with compact support). Let /  be now only 

in L2. Using the density of C^  [0,T] in L2, there exists a sequence (/n)nĜ - of 

C k  elements that converges to /  in L2. Let ’s denote by u (x) =  [F] and

un =  [Fn] the prices associated with the discounted payoff functions F  and Fn 

and x  as the starting point of the underlying security price. Since L2 convergence 

implies L1 convergence, we know that the set of functions Un converges simply 

to the function u.

Vx € R un (x) —► u (x)n—»oo

Since the result is true for payoff functions element of CJ?, the derivative of the 

un function can be written as the expectation of the discounted payoff function 

f n  times a suitable ’’Malliavin” weight 8  ( w )  defined as the Skorohod integral of
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a function w:

J U „ (x )  =E®[Fn5(to)]

Let’s denote by g the function obtained as the expectation of the discounted 

payoff function /  times the Malliavin weight 6 (w) : g (x) = E j  [F6 (w)]. By 

Cauchy-Schwartz inequality, we get:

9 ^  “  ^ x Un

with

h (x) =  Eg [(6 (u>))2] 1/2 (x) =  Eg [(F -  F„)2]1/2

By definition, the L 2 convergence of un means en (x ) converges simply to zero 

as n  tends to infinity. Therefore we already know that the function sequence 

{&rUft)neN converges simply to the function g. By property of Lebesgue com­

pactness and the fact that the functions F  and Fn are continuous and that h (x ) 

is bounded (non-explosive condition (1.22)), inequality (B.2) proves that this 

convergence is uniform on any compact subsets K  of R..

We conclude using the fact that if a sequence of functions (un)n€N converges 

simply to a function u and the sequence of function’s derivative (J^un)nGN con­

verges uniformly to a function g on any compact subsets of R, the limit function 

u is continuously differentiable with its derivative equal to the limit function of 

the sequence of function’s derivative ( J ^ « )nGN leading to the final result:

£ e O[F]=E«[F6(«;)]

□

Second step: Interchanging the order o f expectation and differentia­

tion

The second technical point is to show that we can interchange the order of 

expectation and differentiation (using the dominated convergence theorem).

=  |E? [(F -  Fn) S H ]  | <  h (x) en (x ) (B.2)
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More precisely, since because of the first step, f  is assumed to be element 

of Cj? and therefore is continuously differentiable with bounded derivative, we 

have
p x + h  _  p x  (JLp.h)

- —> 0 a.s.

An elementary calculation gives us

I

l F  =

E H i r^ x - ^ d J  (*g,Xf 2, x * J  f x i

- F f i r ' ( s , X * ) f xX*ds

( ~ F h \
Since /  has bounded derivative,first, ' ' is uniformly integrable in h and

second, by the Taylor-Lagrange theorem,

p x + h  _  p a
< m £

*=i ll l̂l

UXx+h—Xx II
~  ^  uniformly integrable in h (See Theorem

2.4 pp 362 Chapter IX Stochastic Differential Equations, Revuz and Yor (1994)) 

leads to the uniform integrability in h of

This, in turn, tells us that *s unif°rmiy integrable in h.

Since it converges a.s. to zero, the dominated convergence theorem gives us that 

it converges also to zero in L1. We conclude that

dx (B.3)

□

In teg ra tio n  by parts:

N ecessary condition: In this subsection, we examine the necessary condition 

to be satisfied by the weight function. The delta is defined as the derivative of 

the price function with respect to the initial condition x

delta =  J^ E ?  [e-JT-W S>“7  (B.4)
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Assuming the delta can be written with a weight function leads to

delta = E j  

=  E?

E?

E?

y g « + x a i . f  { x i , x ^ ,  s  («)]
' ( a  ( e -J f  ■ < • • * » * / , « ; ( < ) ) ]

Using the property of Malliavin derivatives for compound functions, this can be 

written as:

e- g r l. x : >u j j _ id i f  { x * ,x g , . . . ,x ? J  f tl 0Dtx ty ( t ) d t

~ F  f l o  l l o  & r(s ,X ? )  Dtx .w  W dsdt 

Using the relationship between the Malliavin derivative and the first-variation 

process (1.10), we can replace the expression of DtX u u > t  in the equation 

above, leading to

e " d j  (Xt* ,X f2, . . . ,X l )

Jo Yu X?)w  (t) 1 {,<«,,*

- F f l o l l o  Wcr (s>X *) Y*Yt~l^ t ,  X fiw  (t) n {t<.}dtds 

On the other hand, the delta is defined as the derivative of the price function 

with respect to the initial condition x. Using (1.10) and the second step’s results 

(B.3), we can change the LHS of (B.4) to

e - l j r i s . x r ^ ^ g j  { x * ,X f3, £ x ti

-F fo T r '( s ,X ? ) £ X 3ds

e- f j r ( . , x ^  Q.f  (X?i,Xf2, X f J  Yti 

~F  Jo r' (s, X*) Yads 

At this stage, equalling the two expressions of delta gives us:

d if x ^ ,  . . . ,x ? J  

f j Y kY r l° ( t ,X t)w ( t) l{t;:t,}dt 

- F  f l o l l o  r ' (*. X f) Y .Y f ^ i t ,  X t)w (t) n {t<s}dtds

e- f j r ( s , x ; ^ Q . f  (X *,X S , X I )  Yu

~ F  J l  F (s,X *)Y ,ds

delta = E?

=  E?

E?

=  E?
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Using the fact that this should hold for any /  and any function r (.,.), we get 

that the following two quantities should be equal on any functions measurable, 

leading to conditions expressed with conditional expectations (where, to simplify 

notations, the x  in superscript has been omitted):

, - f ? r { s , x f ) d s  f u  Y t j V f a X t ) .E?

=  E?
: I. *

Vi =  1... (B.5)

=  E?

E? [ /  /  r1 (s ,X .) X t)w ( t) t l{t<a}dtds\Xtl,...,X tm
l J a = 0 J t = 0

X ,)Y sds\Xh ,...,X t,

= E?

This is exactly (1.M1) when the interest rate is a only function of the time □

Sufficient condition: Let’s assume that there exists a function w that verifies

the two equations (B.5) and (B.6) and its Skorohod integral is L2 integrable, 

the above proof can be conducted backwards:

delta =

Y Z i  eScTT(’. x ^ dJ ( X tl,X t2, & X k

~  ( e - t f ' i ’W f  (X tl,X t2, ...,X tj )  / 0r r1 (s ,X ,) £ X ,d s  _ 

then using the conditions (B.5) and (B.6), we get

E H i e - J o r ^ x . ^ g j  (x tl,xh, ...,X tJ  

f i Y ttYt- lo ( t,X t) w ( t) lm i} dt 

- F  f i=0 J l 0 r ' (s, X .) Y, X t) w (t) t l {l<s)dtds

e - K r ( ,X . ) ,U  E m  1  V j /  ( X ( 1  _ ;  Xtm) j T o  D tX t  W ( t )  d t

- F  I l o i l o ' X . )  DtX„w (t) dsdt 

and finally the expression of the Malliavin derivative in terms of the first varia­

tion process, leads to

E? [ ( A  (e-S°T* ’x ^ f ( X tl,X t2,...,X tj )  ,t» (f))]

=  E?

=  E?



APPENDIX B. TECHNICAL PROOFS OF CHAPTER 1 165

that is:

delta = Eg{FS(w)] 

where in the last step, we made use of the integration by parts formula. □

B.3 Proof of the gamma formula (1.M2)

Necessary and sufficient condition

The proof goes along the same lines as for the delta case, so we omit to give 

all details of it. We assume that /  is continuously twice differentiable with 

bounded first and second order derivatives. To remind that the generator wdelta 

does depend on i ,  we adopt an explicit notation w ^lta.

r = AjEjif’]

= £ ( I b?[fi)
a

+  E?

Using the fact that one could invert the Skorohod integral operator 8 (.) and the

differential operator ^  (thanks to a mathematical argument based on dominated

convergence theorem), we get

r =  E? F  (w?“°) S “■) + S

=  E? Ft) (w delta6 (w fl,a) +

where in the last inequality we used the linearity of the Skorohod integral op­

erator. Since this should hold for any F, the necessary and sufficient condition

is

[8 (w?arnrna)] tQ
JxJCt l ,...,Xtr )]
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P articu lar solution

In this section, we prove the formula for the particular form of weight, we have 

already encountered, namely:

w ^ ta ^ Y ta~l ( t ,X t) \ t

with

/ Af 1 {t<ti}dt =  1 Vi =  l...m 
Jo

Using the result on the Gamma weight function, a sufficient condition on the 

Malliavin weight is the equality:

g _  g f j L wdelta\  + g (wdeltaj g (ykUaj

with

S(wddu‘)S (w Mta) =  Q f  \ ta - \ t ,X ,)Y tdW,'\ ( J  K v ' 1 (X»)Yud W ^  

which can be expressed in terms of the square of the simple integral:

6 (tode,1“) S («>*'“*) =  ( T  A X l)Yld w \  - j \  J(A(<r_1(f, X,)K()2] ds 

The term can be calculated as the sum of two terms:

± WM‘° =  A( (d 2 (cr~l) (t, X t)Yt + X t) ^ Y ^

We then use the following equation:

d, (a -1) (t , X t) = -<r-2(i, X ,)</ (t, X t) yt 

and we use for the second term that

| ^  =  f  YtY,b" (s ,X ,)d s+  f  YtYta" (Sl, X , ) dW. 

-  f  YttY (s,X ,)Y ,o"  (s ,X .)d s  
Jo

giving:

dx (wMta) = f  f 2 \ K< ,-\s2,X n )Yt2Y3l{V'(su X sl) - o ' ( s l ,X , l)o "{s1,X .1))dsldWn
J82,0 J3—0

+  [  A>2o--1(s2,X >2)y42 r  Ytlo"(su X ,l)dW .ldWn
J  8 2 = 0  j  3i =0

We then conclude that the Malliavin weight is given by (1.25).D
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B .4 Proof of the rho formulae (1.M 3)

167

Since the rho is a perturbation on the drift term, we can prove the formula by 

means of a measure change (Girsanov theorem). We can also use the technique 

developed in the delta proof.

S tandard  P roof

The following proof is based on Malliavin calculus. As explained in the chap­

ter 1 section on extended Greeks 1.2.3, page 33, we are perturbing our pro­

cess along a perturbation direction given by the function &(.,.). We denote by 

|^e,r/io, ̂  ^ [o, T] |  the perturbed underlying process following equation (1.12) 

and the unmodified initial condition (<Xj,rho =  x). We denote by (^tr/w>)tG[07»j the 

Gateau derivative of the drift-perturbed underlying process ^X%’rho,t  G [0,T] j  

along the direction 6, defined as the limit in L2, uniformly with respect to the 

time t and given by equation (1.16). To find a necessary condition for the weight 

function, we apply the same methodology as the one described for the compu­

tation of the delta. We assume therefore that we can write rho, defined as in

(1.14) as the expectation of the discounted payoff function F  times a suitable 

weighting function weightrko

rho = E? [F6 (wrho)] (B.7)

g e P ‘h o ( x )

Transforming equation (B.7) leads to

e= 0 ,6  given

=  E?
r T f E" 1 (Xtl, X l2, X ' J  DtX ti

'‘=° { - F  f l 0 (s,Xs) DtX a ds
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Using relationship (1.10), we write:

168

( Y . ? = 1 e - }° r ( ‘ 'X ‘ )d’ V i f ( X t „ X h , . . . , X lJ  N

B 0 /
J t = 0

Yt,Yt- 'o ( t ,X t) l {t<(() wrho(t) dt

v ~ F  JZ=o 5xr  (s> x >) Y,Yt~lo(t, X t) l{(<a} ds y

= E?

(B-10) 

\E ” ,e - f° ri-s'x ‘'>iaV i} ( X tl 

f l o YuYt-'<r(t,Xt) l {t<ti}w ^ ( t )  dt

~ F  C o  £ cr (s>x >) ( f Z o  YaYt~lo(t, * t) ™rh° «  dt)  ds )
(B.

On the other hand, equation (1.14) leads to

Z t i  e - X W - W ’V J  (Xfl ,X t2,.. .,X tJ  

_  (e~£ f ( X tl, X, „. . . , X< j)  £ o & r ( a ,X . ) Z * ’<b>

1)

rho =  E?

(B.12)

=  E? (B-13)

using the proposition 1 page 36 with the equation (1.18), we get 

Y Z i  e - ! « ^ x .)dsV .f  ( x ^ X i , , . . . .  X u )

j £ o « . i r 1» (* .* ) l{ w I}*

- F  fZo £cr (s> X .) J lo  Y .Y f'b  (t, X t) 1 {PO}dtds

This should be verified for any / ,  any process (-Xt)t6[0|r|> any Process r (•» •)• 

Thus, we find that the necessary conditions are

E Qy YX , A t j r i '  Y i ' wrh° w dt

= EQ L  f Ub (t,X t)r b ( t , i
J*'x 'i * -  [ Yt‘J0 Yt

equation (M3) and the conditions for stochastic interest rate models 

K x tl x,m [f T r '( s ,Xt) Y’^ X ‘) w ^ ( t ) d t d s
L7o=t<s 11

(B.14)
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In fact, we can go backwards as well. Rho is defined by equation (B.12), 

which is equivalent to (B.13). Assuming (B.14) and (B.15), (B.13) is equivalent 

to (B .ll), (B.10), (B.9), (B.8) leading to the result.D

Probabilistic  proof

This proof requires stronger assumptions. In this part we assume that the 

Novikov condition (B.16) is satisfied so as to be able to use Girsanov’s theorem.

B [ e * < +oo (B.16)

The idea of this probabilistic proof is the following: in the special case of 

rho, the perturbation of the diffusion equation is only on the deterministic term 

and not on the stochastic term. Therefore, a judicious change of measure can 

remove the drift term. In this new probability measure, the process follows the 

same diffusion equation. The calculation of the Malliavin formula turns out to 

be a change of measure. This proof is inspired by Fournie et al. (1999).

The proof is based on the following lemma:

Lem m a 2 Change of measure

Introducing the new probability measure Q£ defined by its Radon-Nikodym deriva­

tive with respect to the risk-neutral probability measure Q:

dQ£
dQ

we get that pff)*€[0T] f°tt°ws the same SDE under Q£ as {Xt)t€ 0̂T  ̂ under Q

Proof: Justified by Novikov condition (B.16), the Girsanov theorem enables 

to rewrite the perturbed equation (1.12) into a regular one:

dXl'rho = b ( t,X l 'rhô  dt + cr ( t ,X ’t 'rh° \d W t (B.18)

with Wt a Qe—Brownian motion given by:

dw, = dWt + e<j-1 ( t ,X et 'Tho\  b ( t ,X t ’Tko) dt

□
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Lem m a 3 The Radon-Nikodym derivative Jp- is differentiable ine  — 0 and:

d£L _  j
l i m ^ L =  — f  a -1 (t, X t)b ( t ,X t) dWt in L2 (B.19)

JoE -+ 0  £

Proof: Writting

We have that M£>3 is the solution of the SDE (by the use of Ito lemma):

dMc,t = -£<j~l (t, X f’rh°') b (t, X f rho)  Me,tdWt (B.20)

with initial condition

MSjt=0 = 1 (B.21)

(B.17) gives us
dO

— Me,s
dQe

Using dominated convergence, since b cr(.,.) ,fe(.,.), and & +  £&(.,.) are 

supposed to satisfy linear growth conditions, we obtain:

=  - a - 1 ( t , X t rho) b (t, X t rho)  Me,(

Since b ( .,.) , 6 ( .,.) , and b +  eb (.,.) for every e 6 [0,1] are supposed to

satisfy the global Lipschitz and linear growth conditions, by Theorem 2.4 pp 362 

Chapter IX Stochastic Differential Equations of Revuz and Yor (1994) or by The­

orem 2.9 pp 289 Chapter V 5.2 Strong Solution of Karatzas and Shreeve (1988), 

the processes | X f’rho, e € [0,1], t  E [0, T\ J  (respectively {M£ft, e G [0,1], t G [0, T]}) 

defined as the continuous strong solution of the SDE associated (1.12) (re­

spectively (B.20)) with unmodified initial condition (X qtHo — x) (respectively 

(B.21)) belong to L2 ([0,1] x [0, T] x f2) and converge in the sense of the L2 

norm to the no perturbed process {X t,t  £ [0,T]} respectively { l,t  £ [0,T]} as 

e tends to zero. Using continuity of a~l (.,.), b (.,.), we get
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Using the continuity and differentiability of the exponential, we get that 

7*7 [m£,t  - 1  +  eo~l ( t,X t)b ( t ,X t)] 

is uniformly integrable. By dominated convergence, we conclude that the limit
i

of — (in the sense of L2 norm) is given by:

lim dQ* 1 =  lime—*0,£ĵ 0 £ e—>0,e/0 £
-1

□
Fined Proof:

Let us denote by the perturbed discounted payoff function. 

F*rho = e~ 1° r(>'x ‘ rh°)dsf  ( x t ; rho, x t 2rho, ...,X tZh°)

Therefore

rho =

= lime—»0,ê 0
E « [ f * J - E ? [ F ]

But on the first term of the numerator, we can change our probability measure:

E ? ! ^ J = E f  r ™ dQ 

by lemma (2), this is equivalent to
dQ£ J

E ? dQ
=  E ?

leading to

therefore

'dQ£ J

F̂ hc (x ) ~  p  (x ) e q

dQ
x L dQ£l

i dQe

<

Pfko( x ) - P ( x )
£

dQl _  1
dQ 1

< \\F\\L2
dQL _  1 
dQ 1

- E * \ f J  cr-l { t,X t)b { t,X t) , 

- j f  0 - l ( t,X tjb { t,X t),dW t

I  o - 1 ( t,X t)b ( t ,X t),dW t 
Jo

dWt
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The last equation is justified by Cauchy Schwartz inequality. We trivially 

conclude using lemma (3) result (B.19)

The method is very similar to the one used in the rho calculation except that 

we cannot use a measure change to find the Malliavin weight. As explained 

in the chapter 1 section on extended Greeks 1.2.3, page 33, we are assuming 

that we are perturbing our process along the direction given by the function 

<7 We also assume hypoellipticity of the perturbed diffusion term (1.11). 

We denote by {X^'vega, t G [0,2"]} the perturbed underlying process following 

equation (1.13) with the unmodified initial condition (Xq vega = x). We denote 

by (Z tega)t£[o t\ the Gateau derivative of the volatility-perturbed underlying pro­

cess {X l'vega, t G [0,2]} along the direction a and defined as the limit in L2, 

uniformly with respect to the time t as summarized by equation (1.17). To find 

a necessary condition for the weight function, we apply the same methodology as 

the one described for the computation of the delta or rho. We assume therefore 

that we can write vega, defined as in (1.15) as the expectation of the discounted 

payoff function F  times a suitable weight function weightvega

e—*0,e^0 £ L Jo

□

B.5 P roof of the vega formula (1.M 4)

vega =  E® [F6 (wve!"‘)] (B.22)

de vesa e= 0 ,6  g iven

Transforming equation (B.22)

vega = wvega(t) dt

(B.23)
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Which using (1.10), is written as:

173

t>T
f Y Z i ( x tl, x t„ . . . , x tj  '

/
J t =0

YuYt-'<T(t,Xt) l (1<(i} wvesa(t) dt

^ - F  C o V »r  ( « - X ’ )  Y ’ Y t ~ l v ( t ,  Xt) 1{,<S) ds j

= E?

E " i e - (X tl,X t2,.. .,X tJ

fZo Yt<Yrla(t>Xt)l{t<u}W'“9a (t) dt

A  ~ F  £ «  (s . * • )  ( £ «  x t) i ( t<.) «,»*■ (t) dt) d s )

(B.24) 

\

(B.25)

vega

On the other hand equation (1.15), we have

Y Z i  e- (X tl, X t2, X J  Z r a
= E? (B.2(

-  ( e - l ^ ( ‘-x->d’f ( X tl,X t2,...,Xt^  S ^ 2 T ( s , X s)Z:‘0“ds 

and using the lemma (1) equation (1.19), we get

£ ” i e-So^X .^ j (xtl,Xt21 ...,X tJ

= E?
fZo Y tY ^ d (t , X t) l {l<uidWt -  f 0T YtY t- lV 2a (s, X s) a (s, X s) l {t<t,)(is

p r T u  , V J  f l c Y Y r ' d ^ X J l ^ d W ,
—F  / „ V2r(s ,X 3)

~ fo  Y.Yt~lV 2a  (t , X t) 5  ( t,X t) l {t<s}dt
ds

(B.27)

This should be verified for any / ,  any process (-Xt)te[o,T]’ an^ Process r •)• 

Thus, the following two necessary should hold

*  <r(t,Xt)E;9

=  E q v v

-wvega(t)dt
Yt

f ‘‘ ^ - f p 'dWt 

/ 0V ( s , X , ) ^ f ^ d S

(B.28)



APPENDIX B . TECHNICAL PROOFS OF CHAPTER 1 174

Greeks Weighting Function

delta

’’extended” rho I I  ^ x t)H t , x t)d w t

’’extended” vega
/  /  7ve9a y v e g a  \  \

5 (a(i,X t) a  W  S i = 1 y  Yti yt‘_x J

Table B.l: Summary of Fournie et al. Results

E Q v  V

=  E Q v  V

[ f  r' (s ,X .) (t) dtds
lJo=t<a

(B.29)

f l t<S ( s , X 3)

% Z (t,X t)dWt
ds

-% < r'(t,X f)* (t,X t)ds

In fact, we can go backwards as well. Rho is defined by equation (1.15), 

which is equivalent to (B.26) and (B.27). Assuming (B.28) and (B.29), (B.27) 

is equivalent to (B.25), (B.24), (B.23) leads to the result (B.22).D

B.6 Summary of Fournie et al. particular solu­

tions

Founie et al. proved that the weight function could be written in the case of 

adapted processes as some Ito integral. Let us define 

Tm =  {a e  L2 [0, T \ \ t f a  (t) dt =  1 Vi =

and Tm — | a  6 L2 [0, T \ \ J ^ a  (t) dt =  1 Vi =  . Their results are sum-

marized in the table 1.1 , where the symbol 8 stands for the Skorohod integral 

and a is an element of Tm, a an element of Tm.
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Greeks Supplementary conditions

delta
[ / „ = , < » r '  (S, X , )  ( t ) * * ]

gamma

the extension to this case 

is included in the equality 

of the delta

’’extended”

rho

Kg*.... * .  [ / £ * < .  ^  (». x ‘) (t) dt ds]

=  Kg*...... . .  [ / „ = « < ,  ^  (*. X .) ^ d t d s ]

’’extended”

vega

Bg*. [ / £ « < .  > • '  ( « •  X .)  (*) dtds\

lo=t<,r' ( s ’X *)

=  (  % Z (t,X t)dW t \

 ̂ ( t,X t) a ( t ,X t)ds J
Table B.2: Supplementary conditions for models with risk-free rate depending 

on the underlying

B .7 Second conditions for stochastic interest 

m odels



A ppendix C

Technical Proofs of chapter 4

The proof is given for the delta formula (4.M1). However, similar methods lead 

to the one for the gamma, formula (4.M2), the rho, (4.M3) and the vega, (4.M4).

For the sake of clarity of the proofs given below, we take a discount factor 

equal to 1. The risk-free interest rate is deterministic. The discount factor is 

therefore a multiplicative constant. Consequently, it does not change the results.

C .l Simple Asian option delta: necessary and 

sufficient conditions (Formula (4.M 1))

The proof goes along the same lines as the one given in Benhamou (2000a). First 

of all, using the density of the set of infinitely differentiable functions with com­

pact support Ck  into the set of square integrable functions, L2 [0,T] as well as 

the continuity of the expectation operator and the Cauchy-Schwartz inequality, 

we can prove that if the results hold for a payoff function element of C|?, the 

result is true for any function of L2 [0, T ] . Second, using dominated convergence 

theorem, we can justify the interchange of order between the expectation and 

the differential operator as well as the interchange of the differential operator 

and the integral operator. We get therefore that a weight function w should

176
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satisfy

L Vo
The RHS is also equivalent to the following expressions:

\J  o

L \ J  0 J  J  i=0 J  s=0

\ J  0 J  J t = 0 J s = 0

where in the last equation, we have used the fact that DsX t — Yt Ya 1<j (s , X 5)l{ a<q 

formula (4.4). The Left Hand Side (LHS) or the delta is defined as the gradient

which is equivalent to the equality of the terms inside the conditional expectation.□

C.2 Complex Asian option delta: necessary and 

sufficient conditions

Using the same arguments as for the simple Asian option case, we can justify 

the interchange of integral and derivative operator and vice versa. The Right

with respect to the initial condition, leading to the following developments:

A weight function should verify that the two expressions derived should be equal 

for all functions /  of L2:

L \ J o /  Jt=oJs=o
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Hand Side (RHS) is also equivalent to the following expressions:

E [ /  ( £ * * , * ' )  S m ]

=  E f / ^ - /  Q r  X td t,XT)  £ D ,X tdt +  ^ - /  ( £ X td t,X r )  D ,XT,w,

using the fact that D3X t =  YtY8 1a (s ,X 3)l{s<t}, this leads to

E

= E

f U  X td t,X T \s(w )]

i t j  (So X td t,XT)  fS=0Yt ( j l oy .- 1̂ , X . ) l i.<t}wadS)  dt 

+ £ r j (fo X td t,X T) Yt  ( f l o Y ' - ' a & X J l ^ T y w J s )

The Left Hand Side (LHS) is equivalent to the following expressions:

i't'G f***)] r

A weight function should satisfy that the two expressions derived should be 

equal for all functions /  of L2:

■f ( f f  X td t,X t )  J loY t ( f ^ Y ^ a ^ X J l ^ w J s )  dt '  

+ SSJ (So X td t,XT)  Yt  ( f l 0Y,-1<r(s,X,)l{.<r}w.dS)  J j

± ,  ( f  X * , X T)  £ y #  *  X ,  ( f w r )  Yt}

which is equivalent to the equality of the conditional expectation of inside 

terms.D

d
dxi

=  E

C.3 Particular solutions for the Com plex Asian  

delta

To examine a particular solution, let us write Gs =  a(s ,X 3) w8/Y s. We obtain 

that a stronger condition of the necessary and sufficient conditions is given by 

the equality of term inside the conditional expectation:
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E* \ 1 >  i l i o  a('SY X , ) w ' e‘tads)  d t

« [ Y r L
* (s ,X a)

Ya
l{s<T}wfltads fJo

X td t,X T

S l 0G , H Y tdt
fg Ytdt

ds =

fJs=0
Gqds =

E« \ j \ td t \ £ x td t ,X T 

E« WT\ j \ td t,X T

(C.l)

(C.2)

C.3.1 First particular solution

If we assume a particular form of the function G with:

Y
Gs — a +  b~pr-------

f lo Y td t
we get

L r ™  iL>Ytdt 2
used Fubini theorem for the integration. We

t  rrt U / O  * “  U  m  |  f t

J , ^ f Z 0Ytdt Ytdt 2

where in the last equation, we have 

get then:

I Gads — clT  4" 6 
J s =o

The solution should therefore verify:

J ‘f tYtdt+ \ b = i
uT -I- b

The discriminant of this system is

and the solutions satisfy:

A C o tY d t  1 
C o Y d t  2
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a =   Jt=0 T (C.3)

b = ~ (C.4)

in the particular case A ^  0, we get

J 'Z v W
2 fZ o tY‘d t - T f tL0Ytdt 

2 ( f Z „ t r td t - T f Z 0r ld t )  

2 jZ 0tYtd t - T j l 0Ytdt

which is exactly the final result (4.11) with the two constants a and b defined 

by the conditions (C.3) and (C.4) respectively.□

C .3.2 Second particular solution

If we assume a particular form of

G, = as + (3 J Y*
IL aYtdt 

we get the same type of system:

j L ' i Y d t  t j L S L ' Y A ’Y 'd t =  x

fZ o Y d t ( fZ o Y d t)

2 l l o Y d t

The discriminant of this system is

a i L l L ^ P ^ d s Y t d t  

( fZ o Y d t)2

The solution when the discriminant is not equal to zero is

„  =  fZa fZ t  sY,dsYtdt 
fZo C o  ^ s Y A s Y tdt

a = J L ^ p Y ' f t & Y ' #  
f lo fL ^ sY .d s Y td t

leading to the solution (4.13).D



A ppendix D

Inverse of the cum ulative 

distribution of the Student 

density

The general algorithm (given in Abramovitz and Stegun (1970)) for computing 

the inverse tp of the cumulative distribution of the Student density, with n 

degrees of freedom is given below with 0 < p < 1 and with xp the inverse of the 

cumulative distribution of the normal density It is very useful for generating 

random number distributed according to a Student density iV (0,1):

_  , 9 l ( X p )  . 92 (Xp)  , 93  ( Xp)  , 94  ( Xp)
h  -  XP +  n  +  n 2  +  n 3 +  n 4

9 i ( x ) =  ̂ ( x 3 +  x)

9 2  (x) =  (5x5 +  16x3 +  3x)

9 3  (x) =  (3x7 +  19x5 +  17x3 -  15x)

g4 (x) = —(79x9 +  776x7 +  1482x5 - 1920x3 - 945x)

181



A ppendix E

W iener Chaos and C onvexity

E .l  Introduction to  W iener Chaos

Introduced in finance by Lacoste (1996) (in an article about transaction costs) 

and by Brace and Musiela (1995), Wiener Chaos expansion could be intuitively 

thought of the generalization of Taylor’s expansion to stochastic processes with 

some martingale considerations. This representation of stochastic processes ini­

tially proved for the Brownian motion by Wiener (1938) and later for Levy 

process (see Ito 1956) has been recently refocused, motivated by the contempo­

rary development of the Malliavin calculus theory and its application not only 

to probability theory but also to mechanics, economics and finance (1995).

More precisely, we present in this section the basic properties of the chaotic 

representation for a given fundamental martingale. Let M  be a square-integrable 

martingale with respect to an appropriate filtration called Ft with deterministic 

Doob Meyer brackets (M)t (defined through the requirement that (M 2 — (M)t) 

be a martingale). The latter property is vital for obtaining the chaotic orthog­

onal representation of the space C2 (Fqq). Let

Cn =  {(si,...,sB) e  Mn,0 < si < ... < sn < t} 

be the set of strictly increasingly-ordered n-uplets. Let ($n)nGAr be the mor-

182
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phisms from C? (Cn) to C2 (Foo)

<M /)  : C2 {Cn) C2 (^oo)

— I f  (̂ >1, ..., 5n) dAfan dMsl
J 0<si <..Si<C...sn<'T'0<si<..ai<...sn<T

The interesting property of the series of the images of C2 (Cn) by the morphisms 

($n)n€/ f  is the orthogonal decomposition of the space C? {Too)-

c 2 ( T ^ )  =®$„(£2(Cn))
n

This fundamental decomposition of the space C2 {Too) into sub-spaces, called 

M-chaos sub-spaces leads to the interesting representation of any function F  of 

£ 2 (Too) in a form of a series of terms resulting from the orthogonal projection 

of the function F  on the series of M-chaos sub-spaces.

F  =  ( /)  =  f  /„ (Sl, S „ ) dM3J M n
n  n  ^ Cn

where f n G L2 (C„). Deriving the Wiener Chaos expansion of a function /  

element of L2 (î oo) is very simple as the following theorem proves it:

E.2 Theorem  and proposition

Theorem  7 Decomposition in Wiener Chaos

Let DnF  represent the nth derivative of function F  according to its second vari­

able. The M-chaos decomposition of the process (F  (t , Mt))t>0 gives, for a llt>  0,

oo -
+ /  dMSn...dMn

n=1 '*Cn

P ro o f : See Lacoste (1996) Theorem 3.1 p 201.

The following two propositions refer to important and useful results about 

Wiener Chaos.
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P roposition  21 Orthogonality of the different chaos

The fundamental properties used are the orthogonality of the different chaos. Let

with Sn,m the Kronecker delta.

<$n,m =  1 i f  n = m

=  0 otherwise

The other result we use is the decomposition of a geometric Brownian motion 

(or a Doleans martingale).

P roposition  22 Wiener Chaos decomposition of a geometric multi-dimensional 

Brownian motion

The geometric multi-dimensional Brownian motion denoted by Ark can be ex­

panded as the Hilbertian sum of orthogonal terms called Wiener Chaos of order 

i, denoted by /*:

Proof: see either 0ksendal (1997) exercise pl.2.d. page 19 or Lacoste (1996) 

page 201 Theorem 3.1.D

/„  G L2 (C„) and f m 6 L2 (Cm) and let (M)teR+ be a martingale process defined 

as in the previous section

(E.1)

(E.2)
OO

t=0

with

«1

I0 (V,T,Tk) =  l  

( v (su T ,Tk) ,m n )  ... ( v (8 i ,T ,T k) ,

il
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E.3 Proof of the theorem

185

This appendix section gives the proof of therorem 5.

E.3.1 Finding the convexity adjustm ent

We remind some notations for the proof. We denote by K  the sensitivity 

of the forward swap, K  = J2i=i^Ti- We also postulate that a zero coupon 

bond can be written as a normalized Doleans martingale times its value at 

time zero, leading to the following notation: B ^ ,Tî  =  B ^ A ^  with A ^ =

e !° ( V' IK ‘I  *  and B Ti =  § ^ .  We need to calculate the fol-

lowing quantity:

n 0 =  3 (0 , T) Eqt

Using the linearity of the expectation operator, we get that the above expression 

can be separated into two terms:

=  ( e i U - e m J  “ B t3 qt

Using the technical lemma (by means of Wiener chaos expansion) proved be­

low, we get that the two expectations can be approximated by the following 

expression:

P  (  a t> \  1 E ^ C ' f f i . r , )  E " t= iB r .B rt C (T „ r fc)
° H e l o  + l o  +°3

with the signification of O3 explained in the technical lemma. Rearranging the 

term, we get that the price of the expected swap rate could be written as a 

simple expression

no =  B T o - B Tn EL. B ToB TiC  (T 0, T j)  -  B T„ B TiC  (T „ , T t )

B  (0, T )  K  K 2

B TiB TkC { T h T k)
K  2

which leads to the final result.D
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E.3.2 A pproxim ation using W iener Chaos

Let O3 denote a negligible quantity with respect to the *e*

0 » = o ( ( [  IlK f*>||2 ... ||K<™>||2 dsi..M 3) 1/2)
\ \ J  SI< 8 2 <S3 < T  J  J

We can prove the following lemma:

Lem m a 4 The expected value of the non linear stochastic expression 

can be given by a simple function of the correlation terms:

T (  ^  \  1 Y .U B Tf i(T „ Ti) £"*=1Br.BrfcC (r„T 0 _
Qt  ~  K  K i  +  * 5  + £

where the error term , e, denotes a negligible quantity with respect to the  ||l/^T,:r̂ ||^2 , 

i.e. e =  O3 .

Proof: let us introduce some notations: Uq — 1, U\ = BTPl v̂,T,Tt̂  

U2 =  ^ i=1 BTi*2(v,T,Tll . By a Wiener Chaos expansion theorem 22, and result 

(E.2), we can expand the term A to get:

n  n  n  n

Y^Br{ATi = ^ BTi + '£ l Bi iIi{V,T,Td + '52BxiI2(V,T,Tl) + e1
i = 1 i = l  i = l  *=1

where the error term E\ is a negligible quantity with respect to the ||V' (r,T j)||^2 

(e! =  O3 ). The simple Taylor expansion jT_. =  1 — x +  x2 +  o (x3) gives that 

the denominator can be written as a sum of terms:

1 (E.3)

2
E ”=i BTiATi

K  K 2 K* K \  J2i=i BTi )

where the error term £2 is a negligible quantity with respect to the J|V^T,T<)||^2
(

By. yjy f \
*b J At  j  j the term A ts

can be seen as a change of probability measure. We denote by QT,Tj the new 

probability measure defined by its Radon Nikodym derivative with respect to the
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T T m  rpforward neutral probability measure Qt , and Ws ’ 3 the QT,T* standard Brownian 

motion:

y iT-Ti)
2
dsdQT'Ti _  e/0r ( v ^ W ) - U 7 

dQr
dWj'K = dWs - V ^ d s

Then the measure change eliminates the numerator term and simplifies the ex­

pectation to calculate as only a function of b t .a t . *n  a  n e w  probability 

measure QT,Tj. By linearity of the expectation operator and using the approxi­

mation (E.3) , we get

1 p ( Y . U B TM V ,T ,T i) \  ( Y .U B tM V ,T ,T J \=  -  -  E Q T,T, ^-------—  —  J -  E q T .T j { ------- - 2------- j

where the error term £3 is a negligible quantity with respect to the ||V^T,ri)||^2 

(s3 =  O3 ). One can derive the results after proving that:

E ̂ ( h f r T ' T i ) )  =  C ( T h T j )

EgTP.r, I2 (V, T , T i )  =  O3

E0T3> j  = Y . B n BTkC(Tt,Tk) +  0 3

□

E.4 R esults o f the Quasi M onte Carlo simula­

tion

This sub-section reports results of a Quasi Monte Carlo simulation for the four 

different models. The simulation was done using 10,000 draws. The convexity
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Year

forward

Swap

Rates

CMS

Swap

QMC

price

convexity 

adjustment 

in basis point

0 4.163826 4.163826 4.163826 0

1 4.385075 4.43604 4.436145 5.57

2 4.600037 4.699187 4.699212 9.91

3 4.80722 5.951161 5.951101 14.39

5 5.13929 5.36107 5.36087 22.18

7 5.366385 5.649873 5.649921 28.35

10 5.586253 5.935744 5.935735 34.95

Table E.l: Convexity adjustment for Ho and Lee model. Result obtained with 

<r=l%

term was calculated on an interest rate curved dated September, 2, 1999. In­

terestingly, convexity adjustment are different depending on the model, but not 

that much different indeed.
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Year

forward

Swap

Rates

CMS

Swap

QMC

price

convexity 

adjustment 

in basis point

0 4.163826 4.163826 4.163826 0

1 4.385075 4.400307 4.400318 1.52

2 4.600037 4.635506 4.635521 3.55

3 4.80722 4.868121 4.868136 6.09

5 5.13929 5.266523 5.266514 12.72

7 5.366385 5.579279 5.579263 21.29

10 5.586253 5.959299 5.959281 37.30

Table E.2: Convexity adjustment for Amin and Jarrow model. Results obtained 

with do =  0.1% and a\ =  0.1%

Year

forward

Swap

Rates

CMS

Swap

QMC

price

convexity 

adjustment 

in basis point

0 4.163826 4.163826 4.163821 0.00

1 4.385075 4.441479 4.441467 5.64

2 4.600037 4.708704 4.708715 10.87

3 4.80722 4.963449 4.963459 15.62

5 5.13929 5.375376 5.375363 23.61

7 5.366385 5.662372 5.662368 29.60

10 5.586253 5.940745 5.940736 35.45

Table E.3: Convexity adjustment for Hull and White model. Results obtained 

with a — 1.1% and A =  1%
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Year

forward

Swap

Rates

CMS

Swap

QMC

price

convexity 

adjustment 

in basis point

0 4.163826 4.440826 4.440826 0.00

1 4.385075 4.440826 4.440812 5.58

2 4.600037 4.707352 4.707347 10.73

3 4.80722 4.961371 4.961368 15.42

5 5.13929 5.371831 5.371820 23.25

7 5.366385 5.657425 5.657414 29.10

10 5.586253 5.933928 5.933938 34.77

Table E.4: Convexity adjustment for Mercurio and Moraleda model. Results 

obtained with a — 0.9% A =  1%7 =  0.11%
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