
Supporting Design Understanding in

Evolutionary Prototyping
An application of change theory and semiotics

Amir Albadvi

Information Systems Department

London School of Economics and Political Science

Submitted for the Degree of Doctor of Philosophy

University of London

1997

UMI Number: U615416

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U615416
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

S

F
7003

Abstract
This thesis researches the problem of building design understanding in rapidly changing

environments. Although evolutionary prototyping has been proposed before as a

solution, little serious investigation has been undertaken into its practical and theoretical

adequacy. This thesis assesses the evolutionary development approach and on the basis

of the findings of an exploratory case study conducted in a large car manufacturer

company, proposes a new perspective in this approach. It combines the planned

organisational change theory and semiotics which respectively underpin implementation

management and design understanding.

The cornerstone of the proposed perspective is a semantic analysis technique which

complements evolutionary prototyping. The perspective builds on three cycles of

planned change model: a vision cycle providing easy access to design knowledge, an

action cycle supporting modular development of prototypes based on the semantics of

design knowledge, and a fusion cycle institutionalising design understanding. An

explanatory empirical study conducted in a management consultancy, provides a first

step towards a subjective validation of the proposed approach.

A conceptual training process is suggested as a means of partnership between designer

and user. This process provides a way for both user and designer to find a common

designation for the terms they share in their communication, and to build a shared

meaning and interpretation of actions in the workplace.

Keywords: evolutionary development, prototyping, semiotics, semantic agent-based

modelling technique, planned change theory, design explanation, design understanding,

conceptual training, user participation.

Acknowledgements:

I would firstly like to express my thanks and gratitude to my supervisor, Dr James

Backhouse, who has never ceased to amaze me with his astute comments and

suggestions.

For constant support and encouragement and from the deepest part of my heart, I wish

to thank my best friend and my wife, Shahla, whose help I could not have done

without. Only due to her undying patience, understanding and devotion have I been

successful. She has sacrificed much and I dedicate this dissertation to her. There are

two special young people to thank as well, Elham and Parham, who often had to do

with less attention from their father than any of us would have preferred.

I am very grateful to Dr Jonathan Liebenau and Dr Edgar Whitley for their careful

reading of the draft manuscript and for many lively discussions that have often helped

to crystallise ideas and made my stay at LSE that much more enjoyable.

Declaration:

This thesis is entirely the result of my work and includes nothing which is the result of

work done in collaboration. Any reference to the work of other researchers is clearly

indicated in the text. This thesis has not been submitted in whole or in part as

consideration for any other degree or qualification at the University of London or any

other Institute of Learning.

Table of Contents

Chapter 1: Introduction and research approach

1.1 Introduction.. 14

1.2 Motivation.. 15

1.3 Objective of the research... 16

1.4 Basic Terminology.. 18
1.4.1 Business change environment ... 18
1.4.2 Information systems development .. 19
1.4.3 Conceptual model and schema ... 20
1.4.4 User, analyst and responsible a g e n t.. 21

1.5 Research approach .. 23
1.5.1 Stage one: description ... 24
1.5.2 Stage two: development.. 26
1.5.3 Stage three: validation ... 27
1.5.4 Method of further research.. 31

1.6 Outline of the thesis and its contribution... 32

Chapter 2: The evolutionary development process

2.1 Introduction.. 39

2.2 Historical survey ... 40
2.2.1 Software development life cycle .. 41
2.2.2 Requirements elicitation phase ... 43

2.3 Requirements determination problems.. 46
2.3.1 Complexity.. 46
2.3.2 Risk and uncertainty ... 47
2.3.3 representation ... 48

2.4 Requirements representation techniques... 49
2.4.1 Textual list of requirements ... 51
2.4.2 Interpretive models ... 51
2.4.3 Working models or prototypes .. 52

2.5 Requirements prototyping process... 54

2.6 Evolutionary development approach .. 58

2.7 Current difficulties with evolutionary prototyping approach.. 62
2.7.1 Problems with managing the implementation process... 62
2.7.2 Lack of a theoretical foundation for analysis of requirements statements 63
2.7.3 Portray the requirements together with the prototype... 65

Information loss and a prematurely bounded system representation 65
Information misunderstanding.. 66

2.7.4 Lack of an effective technique to assist in the discovery of requirements features and in

prototyping subsections of a large system .. 68
Manual review .. 69
Automated keyword search... 69
Hypertext search ... 70

2.8 Problems statement and overview of the research approach.. 71

2.9 Conclusion ... 73

Chapter 3: A theoretical framework for evolutionary development

3.1 Introduction...76

3.2 Organisational change theories... 77
3.2.1 The theoretical perspective of change and persistence ... 78
3.2.2 Third order change and evolutionary information systems.. 81
3.2.3 Evolutionary information systems implementation.. 84

3.3 Change process theories ... 86
3.3.1 Change Process theories and implementation of evolutionary information

systems ... 86
3.3.2 Lewin’s change process model .. 87

3.4 Semiotic theory ... 89

3.5 Semantic analysis.. 93
3.5.1 Semantic agent-based modelling .. 95
3.5.2 Key issues in semantic analysis... 97
3.5.3 Ontology charting ... 100

An example of automated banking system ... 103
Recasting the example into the semantic constraints .. 104
Implicit features of ontology ch arts .. 124

3.5.4 Subject area clustering concep t .. 126
Reducing complexity through subject clustering ... 126
Analysis reuse at the subject lev e l... 128
Guidelines for specifying subjects... 131

3.6 Conclusion .. 132

Chapter 4: Exploratory empirical study

4.1 Introduction.. 137

4.2 Exploratory case study: Product definition system .. 137
4.2.1 Background ... 138

Automanufacturing industry .. 138
The UK car industry .. 139
The company .. 139

4.2.2 Company’s corporate policy: toward continuous business change 140
Corporate p o licy ... 142
Product definition under product customisation p o licy 144
Production policy ... 146

4.2.3 Information Technology and production p o lic y .. 147

Current information technology structure... 147
Information technology projects ... 148
Product definition system ... 150
Time scales and users .. 151
Development approach.. 151
Roles and responsibilities... 153
Focus of study ... 154

4.2.4 Findings.. 155
Clay model as a surface representation tool .. 155
Matching users’ conceptual model with designers’ ... 156
Terms of reference .. 157
Prototyping user experience .. 158
Change con tro l... 160
Semi-formal nature of the systems... 162

4.2.5 Summary of findings... 163

4.3 Conclusion ... 167

Chapter 5: A method for evolutionary development

5.1 Introduction.. 169

5.2 Review of the research problem ... 171

5.3 Overview of the proposed theoretical fram ework.. 172

5.4 Overview of a new method for evolutionary development.. 173

5.5 A new perspective to evolutionary development... 176
5.5.1 Vision c y c le ... 177
5.5.2 Action c y c le ... 178
5.5.3 Fusion c y c le ... 181
5.5.4 A new metaphor for information systems development... 184

5.6 The proposed development m ethod.. 185

5.7 Conclusion .. 192

Chapter 6: Explanatory empirical study

6.1 Introduction.. 196

6.2 Explanatory case study: corporate data model ... 197
6.2.1 Agency structuring... 200
6.2.2 firm mem ber..201
6.2.3 Business partner .. 205
6.2.4 C lient... 209
6.2.5 Minority owned business partner... 219
6.2.6 Business liaison.. 222
6.2.7 Client j o b .. 222
6.2.8 Business unit contact ro le .. 227
6.2.9 Client account... 233
6.2.10 Business category ... 236

6.3 Conclusion .. 240

Chapter 7: Conclusions and recommendations

7.1 Research sum m ary.. 242

7.2 Recommendations for future research ... 247

References... 250
Appendix I. Automated teller machine example.. 263

List of figures

Figure 1.1 An illustrative model for understanding the research m ethod....................................... 25
Figure 1.2 Mapping the outline of the thesis into the research m ethod 36

Figure 2.1 A waterfall model of the Software Development Life Cycle ..42
Figure 2.2 A physical scientific method for problem solving.. 53
Figure 2.3 Prototyping approach to problem solving.. 55

Figure 3.1 Unary association in ontology chart ... 101
Figure 3.2 Binary association in ontology c h a rt... 102
Figure 3.3 Instance diagram of a class diagram .. 102
Figure 3.4 ATM network (example adapted from Rumbaugh et. al., 19 9 1)................................ 104
Figure 3.5 Generic-specific relationship in ontology ch art.. 107
Figure 3.6 Affordance identifiers in ontology chart .. 109
Figure 3.7 Root agent, agents and pseudo-agents in ontology chart .. I l l
Figure 3.8 First cluster ontology chart of the ATM network example.. 112
Figure 3.9 Role names and role qualifiers in ontology chart .. 116
Figure 3.10 Whole-part relationship in ontology chart .. 117
Figure 3.11 Ontology chart for an account within the banking system .. 119
Figure 3.12 Communication act representation in ontology c h a r t .. 122
Figure 3.13 Representation of transaction as communication act .. 123
Figure 3.14 The notion of authority in communication act ... 124
Figure 3.15 Cluster one: Basic communication relationships... 129
Figure 3.16 Cluster two: Cashier representation.. 129
Figure 3.17 Cluster three: Account representation ... 130
Figure 3.18 Cluster four: Transaction sign ty p e .. 130

Figure 4.1 Towards business change environment (adopted from Boynton et al., 1993) 141
Figure 4.2 Traditional Bill Of M aterial.. 145
Figure 4.3 New Bill Of Material ... 145
Figure 4.4 New Bill Of Material with combination of features and parts 146
Figure 4.5 IT projects towards achievement of product customisation policy 148
Figure 4.6 Overview of transactions in the new IT system ... 149
Figure 4.7 The focus of case study ... 154

Figure 5.1 Three levels of abstraction in the proposed method .. 174
Figure 5.2 Three cycles of the proposed development m ethod.. 176
Figure 5.3 The vision cycle of the proposed development m ethod .. 177
Figure 5.4 The action cycle of the proposed development m ethod .. 180
Figure 5.5 The fusion cycle of the proposed development m ethod.. 181
Figure 5.6 Two inter-linked development processes... 182
Figure 5.7 Planned change model of the development m ethod.. 183
Figure 5.8 Connecting system interpretation to system d es ig n .. 185

Figure 6.1 Agency structuring.. 200
Figure 6.2 Cluster 1: Ontology chart for firm m em ber.. 203
Figure 6.3 More details about firm member 203
Figure 6.4 Cluster 2: Ontology chart for business partner... 208
Figure 6.5 Cluster 3: Ontology chart for client .. 209
Figure 6.6 More details about client and client ty p e s ... 211
Figure 6.7 Connection between client and (client) service products ... 214
Figure 6.8 More details about connection between client and (client) service products.............. 215
Figure 6.9 Invoicing the sundry sales client... 218
Figure 6.10 Cluster 4: Ontology chart for minority owned business partner................................. 221
Figure 6.11 Cluster 5: Ontology chart for business liaison ... 223

Figure 6.12 More details about business partner and client job (extension of cluster 2) 224
Figure 6.13 A complete ontology chart for cluster 2: business partner and client job 226
Figure 6.14 Cluster 6: Ontology chart for business unit contact ro le ... 230
Figure 6.15 More details about business unit contact r o le ... 231
Figure 6.16 Cluster 7: Ontology chart for client account.. 235
Figure 6.17 Cluster 8: Ontology chart for business category ... 238

List of tables

Table 2.1 Characteristics influencing risk in requirements determination (Armour, 1993)
Table 2.2 Requirements representation techniques (Armour, 1993).................................

Table 3.1 An overview of design constructs in semantic agent-based modelling

1
C H APTER -JL.

Introduction and research approach

Chapter overview
This thesis explores the potential for a new perspective on evolutionary information systems development.

By providing semantic knowledge in an accessible form, the new perspective aims to facilitate the

evolution of complex and uncertain systems in business change environment. This is the opening chapter

of this thesis. The motivation and objectives of the research are discussed in sections 1.2 and 1.3

respectively. Changes in the business environment and the potential for an evolutionary prototyping

approach to deal explicitly with these changes are the main impetus behind this research. The motive is

to enhance design understanding in the development of dynamic information systems. The main objective

of this work is to investigate the way in which a more supportive evolutionary environment can be

developed so that designers may be capable of dealing with the changes in information requirements.

Section 1.4 defines the basic terms used throughout this thesis. Section 1.5 sets out the rationale behind

the research method we have employed. This section reviews the subjective/argumentative research

method in building new approaches and techniques for information systems implementation. Three stages

of this research are presented and also illustrated in figure 1.1 defining description, development, and

justification in order to distinguish between theory building and theory testing phases of the research.

Short-circuiting any one of these stages can result in dysfunctional research activities which produce war

stories, black boxes, or ivory-tower prescriptions (Meredith, 1993). A convincing descriptive and logical

argument was made about subjective justification for the research, based on the beliefs and assumptions

about the better way of developing information systems. Subsection 1.5.4 argues that this research still

needs further important work by case researchers, action researchers, and critical theorists to allow field

experience and field data to generate greater refinement of the research result. This subsection also

suggests a methodological long-term perspective of such an effort in a continuation of this research. Last,

but not least, section 1.6 outlines the content of this thesis using figure 1.2 and its main contributions.

It submits the major contribution of the research as the application of planned change theory and semiotic

theory in evolutionary information systems development.

Chapter one: Introduction and research approach 14

1.1 Introduction

Rapid change in the business environment means that organisations now face entirely

new situations for which operating rules and procedures have to be supplemented by

integrative devices, hence increasing the need for coordination. The growing diversity

of the parts of an organisation increases the amount of information required for

coordination and integration. Indeed, it is information that forms a vital component for

the survival and continued development of any organisation. In view of the increasing

importance of information, information technology is believed to be instrumental in

transforming organisations (Child, 1988; Drucker, 1988).

Organisations are finding that they are now considering and using information as a

resource, as a means of production, and as a strategic component. The increasing use

of information technology to tap this resource has brought about the need for new

implementation methods. When developing information systems, the question is how

to implement appropriate systems within the context of the prevailing change in the

business environment. It thus became apparent that in order to implement usable

information systems, they have to be consistent with the organisational context within

which they are intended to function. Much work has been done to this end. Much

research and practice has been carried out; and a plethora of methods, tools and

techniques have been produced. These range from hard-core structured systems analysis

and design methods emphasising the technological content within which the information

systems are being implemented, to soft information systems analysis and design

methods that focus on the organisation or human context, and place considerable

emphasis on getting the requirements right.

The prototyping approach offers responses to some of those concerns. With the

increased involvement of end users in the development of information systems, the

popularity of prototyping methods made it easier for systems to be built and refined

iteratively. A number of methods and supporting tools and techniques fall into the

general category of the prototyping approach. This research is a contribution to this

category. It aims to marry subjective organisational views to objective technical issues

of the prototyping approach. It proposes a method for a balanced design in which the

Chapter one: Introduction and research approach 15

technological constraints as well as the human and organisational restrictions are

considered.

1.2 Motivation

Requirements understanding has for a long time been recognised as an important

attribute for good information systems design. This is not surprising since design

understanding has been loosely equated with a designer’s ability to ask sensible

questions of users, to make good decisions based on incomplete data and knowledge,

to produce practical designs, to diagnose the causes of system failures, and to be able

to justify design decisions to users. The problem that information systems design

methods and techniques are not supporting thoroughly the designers’ understanding of

the system under study is therefore of great concern. However, with advances in

information technology, there has been great progress in computing techniques and the

software solutions available. These offer excellent opportunities for developing more

supportive systems. A fundamental question exists, however, as to what form this

support should take.

To date there seems to have been a tendency to take each new offering that computer

scientists provide, such as logic programming, object-oriented systems, functional

languages and expert systems, and apply it to problems in information systems design,

and prototyping techniques have been no exception. Such techniques have been applied

largely without serious consideration of the fundamental problems involved in

information systems design tasks and hence of the best way in which these techniques

could be used. The prevailing changes in the business environment have also evoked

great concern over the importance of prototyping techniques in general, and of

evolutionary prototyping approaches in particular, as one of the most appropriate

approaches for designing systems in this environment.

During the past decade the complexity of design tasks has led to development of

support for the procedures that constitute the tasks themselves. In contrast to hard-core

technical approaches to information systems design, some commentators (Avison &

Chapter one: Introduction and research approach 16

Wood-Harper, 1990; Checkland, 1981; Checkland & Scholes, 1990) advanced the

provision of other forms of soft support for understanding requirements. These two

approaches run parallel with Habermas’(1972) theory of knowledge interests, namely

with knowledge that helps to achieve human understanding, and with knowledge that

helps to achieve technical control. The managerial use of the information systems is

driven by the need to understand the meaning of data for action, whereas the technical

operation of the information systems is driven by the need to control the data and

maintain its consistency to allow correct program behaviour (Lyytinen, 1987).

Business change and its impact on changing information requirements require that

information systems development is not just a matter of (software) technology change.

Information systems development brings in its train both social and cultural change.

Therefore, the choice of information systems design is not the question of one or the

other but a question of the balance between them.

Therefore, there is a need to investigate the practical adequacy and theoretical utility

of evolutionary information systems design methods. The focus of this analysis is on

the evolutionary development approach using the prototyping technique and on how the

approach can be supported by a framework into which social concerns of business

change can be also fitted, so that integrated systems can be understood, developed and

demonstrated. It is highly desirable that this analysis and design framework should

provide more supportive environment so that it has the potential for helping the user

and analyst both to increase their understanding of the system under study.

1.3 Objective of the research

The major objective of this work is to investigate the way in which evolutionary

information systems design can be supported in a changing business environment. The

difficulty with rapid changes in business is that while introducing an information system

induces a change in some current state of the organisation, the evaluation and

expectations of the organisation have themselves in the meantime changed. The amount

of change affecting organisations today means that there is no longer a state of

Chapter one: Introduction and research approach 17

equilibrium and we have to learn to design systems which cope with instability. This

problem continues to stymie the development of successful information systems.

Evolutionary prototyping offers a technical approach for improving this difficulty.

To achieve the main objective of developing a more supportive evolutionary

environment requires an in depth study of the evolutionary prototyping approach, in

particular, of the constraints encountered when implementing this approach, of the

problem designers face in eliciting changing requirements using prototyping and of the

design understanding the approach brings to bear. In this thesis, a study of these

important issues is undertaken.

In the adopted research method a critical sub-goal is to determine important features of

design problems in business environment and of methods needed to overcome them.

Any partnership of designer and user within the evolutionary prototyping framework

must be capable of dealing with these problems and may, therefore, incorporate design

understanding techniques. Another crucial sub-goal is to study a supportive modelling

technique that encapsulates design understanding. Using this technique the roles that

designer and user should take in an effective partnership can be planned. Little work

has been reported on planning the evolutionary process and managing it in changing

conditions. It is essential that this be achieved, however, if the support environment for

evolutionary development that can conduct change planning is to be constructed.

Crucial to the present research is the provision of a planned change approach for

developing evolutionary information systems.

The development of a more supportive design environment involves recognising and

providing conceptual training for the system under study. A new concept of partnership

between designer and user can be described by offering a conceptual training process.

This must be based on a sound representation of the users’ knowledge of the workplace,

which in turn requires a sound theoretical base for developing a modelling technique.

The study of the basic nature of the user’s knowledge and how it can be represented

is, therefore, an important objective of this work.

Chapter one: Introduction and research approach 18

Knowledge transfer between agents1 in the workplace (we will argue that this applies

to the development of understanding) depends on some form of language construct. A

critical objective of this work is the study of a set of scripts for conceptual modelling

which can be used to identify the constructs necessary for expressing user’s knowledge.

These scripts should be able to represent the socially-constructed user’s language to

allow the knowledge to be easily expressed by users, captured in a schema, accessed

by other users and hence transferred. It will be argued that satisfying this objective will

satisfy the goal of providing support for design understanding and conceptual training.

1.4 Basic Terminology

This section will elaborate a set of basic terms about information systems development

which we use throughout the thesis. We describe the key features of the business

change environment and information systems design by postulating that information

systems development is a form of object system change. This helps to focus on the

features of object systems, their content and representation as forms, and to define the

concept of a systems development methodology as a social institution (knowledge plus

resources) which conditions and guides the perception, analysis, synthesis, evaluation

and implementation of object system changes.

1.4.1 Business change environment

Today we are witnessing a transition from a predictable business environment to one

where the greatest certainty is change itself (Backhouse & Albadvi, 1994). To be

successful in a global competitive environment, organisations have to compete and win

across the board. Not only do they need simultaneously to deliver high quality and low

cost, which were once regarded as trade-offs, but they also need to be innovative,

flexible and fast to the market on a continuing basis. The bundling of internal resources

called for by this prevailing environment of heightened competitiveness is potentially

very different from the configurations that allowed organisations to be successful in

previous eras (Bum, Galliers, & Sauer, 1995).

1 The term agent is used in this work to refer to one who (or that) commits intentional acts.

Chapter one: Introduction and research approach 19

Today’s economic situation is characterised by increasingly competitiveness, due to

world-wide, fast-reaction competition and process/product innovation competition. The

present business environment embodies dynamic and continuous changes. In order to

address new competitive requirements, companies are realizing new important changes

in their internal organisation, as well as in inter-firms links. Environmental uncertainty

and dynamism have grown strongly, so that business researchers and managers use the

word "turbulence" to refer to the new emerging environment. We refer to this

environment as business change environment throughout this thesis.

The analysis of new inter-firm interactions2 and of innovations in internal organisation3

reveals a need for a continuous exchange of ever greater amounts of information.

According to this analysis, information technology is fundamental in supporting and in

fostering new inter-firm interactions and emerging organisational innovations (Ferioli

& Migiarese, 1995).

The business change environment demands the exchange of significant volumes of

information which in turn increases the problems of complexity and uncertainty that

companies have to face. These problems, which will be discussed in chapter 2, stymie

the requirements determination process in information systems development.

1.4.2 Information systems development

We define information systems development as (Welke 1983): a change process taken

with respect to object systems in a set of environments by a development group to

achieve or maintain some objectives.

Object systems consist of phenomena perceived by members of the development group.

What is perceived is socially constructed through sense-making and institutionalised

conventions. The concept of sense-making is defined as the mode in which a group

interacts to interpret their environment and arrive at socially shared meanings. Object

2 see Williamson model (Williamson, 1979) for inter-firm interactions

3 see Galbraith information-based model (Galbraith, 1973; Galbraith, 1977) for a detailed analysis

Chapter one: Introduction and research approach 2 0

systems identify a target of change. In general, there is more than one object system

which a development group can identify. Object systems are often related, so that a

change in one can induce a change in others. Designer and user perceptions of object

systems need not coincide. This raises the issue of how to handle ambiguous or

conflicting views of object systems throughout systems development. Object systems

can be further characterised in terms of their underlying concept structure,

representation form and ontology. The approach of this thesis to these issues is

discussed further in chapter 3.

Information systems development is intentional, to the extent it reflects a planned

change. It is based on developers’ intentions to change object systems towards desired

ends. Intersubjectivity means that the change process is founded on recognition of

phenomena by more than one participant and on mutual understandings and

coordination of participants’ actions. Systems development cannot be just an artificial

intervention because it always has to be embedded in a social and cultural milieu

entailing many uncertainties. Therefore, the change process is not a deterministic one.

For example, developers are often uncertain whether the planned intervention can be

carried out, and whether the resulting object systems will have the desired properties

(Hirschheim, Klein, & Lyytinen, 1995). The proposed framework of this thesis for a

planned change approach in information systems development is discussed in chapter

3.

1.4.3 Conceptual model and schema

Systems developers must find an explicit representation for object systems, after they

have been identified, to communicate them to others and themselves in the development

group. Prototyping is one form of object system representation. Object systems can

be represented in multiple ways. The chosen representation form depends primarily on

the concept structure and its degree of accuracy and formality. Different requirements

representation techniques are discussed in the next chapter.

Applying representation forms results in object system representations which correspond

to information systems models as used in some parts of the information systems and

Chapter one: Introduction and research approach 2 1

software engineering literature. Conceptual modelling produces changes in the

representational forms, structure, and use of language (language change) that form the

environment for communications through information systems use. Throughout this

thesis, we use the terms conceptual model or information model4 in order to refer to

a set of conceptual and notational conventions which help to perceive, organise and

specify some data.

In the literature, the term data modelling is also used with the same meaning. Data

modelling, however, deals not only with linguistic issues but also technical ones such

as data structures and storage organisation. In the sense of conceptual modelling, the

term data model is sometimes combined with the word language, as for example in data

modelling language or data description language (DDL). When a conceptual model

refers to the outcome of using a modelling language in some specific situation, we use

the term schema. To clarify the difference between the two meanings, consider the

following example. In accounting, the conceptual model (data modelling language)

consists of the terms and principles of double-entry bookkeeping that guide our

perception and arrangements of economic data. The schema is the chart of accounts

for a specific company (Hirschheim, Klein, & Lyytinen, 1995). The distinction between

conceptual model and its use (in a schema) implies that the first must exist before the

second can be created. Usually they are also developed by different people.

Conceptual modelling is the activity of creating a conceptual model (in the sense of a

schema). If the model becomes accepted by the organisation it will produce changes

in the organisational knowledge base. Hence, we shall consider conceptual modelling

as a change process.

1.4.4 User, analyst and responsible agents

The term user is often a catch-all for anyone who works with the system who is not

part of the technical team and unlikely to be an expert in computing (Avison &

Fitzgerald, 1995). In any information system development project, it is crucial to

4 We also use the term ’enterprise information model’ to refer to a class of conceptual models which
covers the whole organisational activities. Again this term connotes that part of data modelling which deals only
with linguistic modelling.

Chapter one: Introduction and research approach 2 2

identify the potential users of the object system. Different information systems

development approaches have different assumptions and definitions for user, analyst or

system developer.

Throughout this thesis, we use the term user as organisational agents who interpret and

make sense of their surroundings. The analyst is the change agent who helps the users

make sense of the new system and its environment. This assumption presupposes a

working environment where the users and analysts work as a team rather than as expert

and non-expert. It rejects the idea of representative participation (Mumford, 1983) by

management assuming that those representatives do indeed represent the interests of all

users affected by design decisions. Managers are not necessarily the only organisational

members who know systems objectives. The socially constructed view of systems

objectives taken in this thesis suggests that there is no single reality which can be

represented by one group of organisational members. Management, too, tries to make

sense of the confusion with the commitment to the organisational missions. Systems

objectives are not given, but constantly evolving.

The role of the analyst is to interact with all potential users to find out what type of

system makes sense, but there is no objective criterion which distinguishes good from

bad systems. It all depends on what the parties come to believe to be appropriate. The

analyst should work from within the users’ perspective and help them to find their

preferred view. He should ease the transition from one view point to another, thereby

alleviating possible resistance to change. Ideally, analysts or systems developers are

able to reduce the pains of change. In this change process, we emphasize on the

process of negotiation of meanings and clarification of responsibilities.

The approach of this thesis is consensus participation (Mumford, 1983) of all users

throughout the design process. It has the merit of making the design decisions by all

users on the basis of an agreed responsibility structure. An immediate consequence of

this assumption is that active responsible agents are always included into the syntax and

semantics of any representation of the system under study. These responsible agents

are those users who construct the social world and hold responsibilities for their actions.

Chapter one: Introduction and research approach 2 3

To achieve consensus about responsibility structure, continuous interaction among all

parties is crucial.

Consensus participation among all the users, with the help of the analyst as facilitator,

provides the process of increasing mutual understanding. One criticism to this view is

that it is difficult to know how close or far these understandings are from each other.

Some people would claim that the goal of a single unified interpretation of the

responsibility structure is illusory and no formal representation can resolve the problem

and challenge of different understandings. This argument concerns the role of power

in organisations. Although we believe that power is always a factor in a change

situation (Mumford, 1996) and a principal obstacle to genuine participation, we do not

intend to study this issue in this research. Our assumption is that with a balance of

power within the organisational structure, the semantic gap problems are supposed to

be resolved through rational communication, given sufficient time. But where there is

power asymmetry, there is greater value in being able to reach agreement in a

systematic and non-disruptive manner.

1.5 Research approach

The practice of research is a messy and untidy business which rarely conforms to the

models set down in methodology textbooks (Brannen, 1992). This research can be

broadly classified as a qualitative research which through a wider lens is searching for

patterns of inter-relationship between a previously unspecified set of concepts.

The research was begun by defining general concepts on the shortcomings of

evolutionary prototyping approach in information systems development methods which,

as the research progressed, changed in their definitions. Very soon it became clear that

the modes for traditional empirical approaches, mostly based on observation, do not

represent well the research agenda with an integrative view of information systems

development methods. The object of the research is to evaluate an information systems

development method, hence more interpretations for understanding observations will be

needed.

Chapter one: Introduction and research approach 2 4

This research adapts to the newer research modes based on the proposed taxonomy of

information systems research approaches by Galliers and Land (1987). Using that

taxonomy, the present research is classified in the subjective/argumentative category

which was first defined by Vogel and Wetherbe (1984) as "capturing creative MIS

research based more on opinion and speculation than observation". In their view, this

category complements empirical research methods by extending the domain of MIS

research beyond that based on observation. The research method designed for this

research emphasizes socio-technical interpretation over the entire information systems

development process. While the basis of concept formulation is an argumentative

description, empirical case studies and basic research on related literatures are also used

as supports for the main argument. Three stages in the research cycle of this particular

research have been identified: description, development and validation. The three stages

as three dimensions of the research effort used for understanding the research method

applied in this study can be presented in a time sequence order. Figure 1.1 shows the

suggested relationships.

1.5.1 Stage one: description

This stage is inductive and is begun with an argumentative description about the main

shortcomings of the evolutionary prototyping approach in software systems

development. The description stage of the research sets out to assess the evolutionary

prototyping approach to information systems development for its practical adequacy and

theoretical utility. Although the evolutionary approach gave the software industry the

technical capacity to develop more relevant evolving systems, the assumptions behind

the approach are found to be very implementation-oriented. This problem continues to

stymie the development of successful information systems. This difficulty is rooted in

the use of a physical scientific model as a seminal theory for evolutionary software

development methods.

At the beginning of this stage, the basic research of the literature has been conducted

covering four major topics: information systems development methods with particular

emphasis on prototyping approach, semiotic theory and semantic analysis technique,

organisational change theories and theories on the possible levels of change, and finally

Chapter one: Introduction and research approach 25

ies and examples
y case study
]UStlflGation;::yy:

inductive approach

th roughput

output

ba$ic research
theory building;::::

concept reform ulation

technique enhancement

secondary studies and
•v ' . ' y explanatory

j:. subjective

deductive approach

Figure 1.1 An illustrative model for understanding the research method

process theories.

To com plete this stage and link it to the developm ent stage of the research, an

exploratory case study in evolutionary prototyping approach for the developm ent o f a

highly com plicated software system in a car m anufacturer com pany was also conducted

to analyze the argum ent in the real world. This case study, em ploying participant

observation of the developm ent environm ent and in-depth interviews with developers,

had an exploratory purpose to gain a better understanding o f the key issues related to

the success o f evolutionary prototyping. The analytical induction, which is simply

descriptive, takes the research focus from the findings of the case study through the

formulation o f concepts to their validation and verification. Findings o f the exploratory

case study pinpointed two lacunae in the evolutionary developm ent: the lack of an

Chapter one: Introduction and research approach 2 6

effective implementation process management, and the use of hard systems thinking

without having a support model as a frame of reference for analysis and design.

1.5.2 Stage two: development

While at the start, the research problem was only roughly defined, the exploratory case

study from the description stage inspected those features which were essential to the

problem definition and through an induction process generalized them by abstraction

(Denzin, 1970; Znaniecki, 1934). Injecting theory into the findings of the case study

from the results of the literature survey provided a working outline for the research

problem, which was then formulated. A new perspective on an evolutionary

prototyping approach, using theories of change for planning the whole process of

implementation and using semantic analysis as an explanatory technique, form the

expected logic of inquiry in the development stage.

The proposed perspective to evolutionary development is supported by a theoretical

framework. The framework consists of two theories: planned organisational change

theory and semiotic theory. Both theories adapt to the key building blocks of

evolutionary approach, e.g. cooperative design, facilities for learning and

communication, improving user understanding. Although both theories assume socio-

technical approach to information systems development, they employ different

assumptions in dealing with information systems as a social design problem. Planned

organisational change model takes a process-oriented view to information systems

development. It emphasizes mainly how to go about developing an information system

and concentrates on means to achieve systems objectives but not ends. The

assumptions behind the theory is that the system objectives are legitimate and agreed.

The main weakness of this theory is the failure to focus on the legitimation of the ends

in information systems project.

In contrast, semiotic theory by employing the semantic analysis technique offers an

analytical tool to understand a complicated web of organisational behaviours which link

different concepts and actions into a rich array of varying phenomena in a socially

constructed world. It continuously strives for consensus where there are found to be

Chapter one: Introduction and research approach 2 7

ambiguities and conflicts in requirements and helps to achieve more stable, extendable

and flexible semantic schemata of the language used in the workplace. The technique

explicitly analyzes the multiple linguistic barriers to learning and communication that

may exist both within and beyond the immediate work situation. Of particular concern

is the recognition that work practices are connected to different work languages and to

change either one means a change in "forms of life".

The above descriptions suggest that planned organisational change theory and semiotic

theory can complement each other and form one theoretical framework in response to

the main shortcomings of evolutionary approach. Planned organisational model

provides the means necessary to manage the implementation process, while semantic

analysis technique aims at discussing ends and creating a common understanding among

all users. Semantic analysis implicitly assumes that ends in any information systems

development are conflictual, ambiguous and a subject of considerable disagreement and

debate. Requirements are seen as emerging from interaction between user and analyst

as both try to understand the organisational situation and make sense of it. The

management of this emerging process is the concern of the planned change model.

The idea behind the proposed theoretical framework implies some type of coherence

and integration between two theories. Both theories share some concepts and beliefs

on the change process and also complement each other on achieving a specific change

in support of an information system development. Therefore they offer more while

together than separate. The proposed theoretical framework supports a new method as

a well-defined description of the techniques employed in the proposed perspective to

evolutionary development. The method addresses itself to the middle stages of

information systems development covering analysis and design. By taking a socio-

technical view, the new method suggests that information systems development should

lead to both an optimal social as well as technical system.

1.5.3 Stage three: validation

The issue of the generalizability of findings in a broader context raises the question of

the validation of the research results. During the early stage of research the problem

Chapter one: Introduction and research approach 2 8

of assessing the value of the new approach to evolutionary development and of the

generalizability of the research results to other development environments was foremost.

At first sight, engaging with the issue of validation seemed very difficult and somehow

impossible. The researcher felt like a person painting himself into a comer! But soon

an investigation of similar efforts for developing new paradigms and techniques in

software engineering showed how it might be done.

Fitzgerald (1991) addresses carefully this issue in his research for the development of

a technique called "action modelling". He defines the term validation as "the

justification of the technique (or approach) in terms of its power, effectiveness and

practicality in relation to its purpose and objective". He examined the problem of

justification for a new technique addressing different possible answers and angles. The

reductionist approach of scientific method for breaking a problem down into smaller

parts for examination and explanation was investigated and was found wanting. He

concluded that it was difficult to conduct laboratory experiments using the proposed

technique to model the real world, or even to model an artificial situation. We can

model example situations using the proposed perspective in evolutionary development,

but comparing the results with other approaches in order to justify the new approach

is very difficult because we enter the realms of subjectivity. Fitzgerald (1991) looked

at a number of papers from the discipline of computer engineering and discovered that,

in general, there is no evidence of seeking validation for new techniques and approaches

in software specification techniques in any more satisfactory way. In his words, "it was

really a surprise that so many argued that their techniques were useful without really

undertaking studies to prove it in any way." The examination of papers on new

software engineering techniques shows an almost total absence of any attempt for

validation of this type of research. He also mentioned that, in spite of the assertions

by practitioners that the major way to validate is by constant use and reuse, this merely

determines what is popular but it certainly does not determine what is best. Jeffrey

(1987) argues that the excuse of the immaturity of information systems studies as a

youthful discipline avoids us conducting the testing and validation stage for new

techniques and approaches. It perhaps can only be undertaken after maturity, i.e. when

hypotheses in this discipline have been proven!

Chapter one: Introduction and research approach 2 9

Finally, Fitzgerald (1991) asks us to recognise that the methods of validation which can

be selected will be subjective justification for the product of the research and that the

best that can be achieved may well be a circular validation based on the researcher’s

own beliefs and assumptions. Tumer(1967) has called it "contextual justification” with

great emphasis upon validation within the context and assumptions. He stated that we

need not, and should not, insist on any ultimate justification which does not exist.

We need to be more rigorous in the area of subjective justification and at this stage of

research a method o f triangulation can be adopted implying the use of multiple research

strategies (Burgess, 1982; Burgess, 1984) to tackle the problem of validating new

perspectives in information systems development. Method triangulation can be

between-methods using different methods in relation to the same object of study.

Denzin (1970), in his original formulation of triangulation, saw the combining of

research strategies as a means of examining the same research problem and hence

enhancing claims concerning the validity of the conclusions that could be reached

(Brannen, 1992). It is also mentioned in Rieger & Wong-Rieger (1988) that the

different methodological approaches tended to compensate for each other’s deficiencies

and lent confidence to the validity of the findings. Fitzgerald (1991) refers to this as

a pluralistic approach, using a number of different approaches to help validation. The

argument is that researchers ought to select a range of methods that are appropriate to

the problem of justification of the research. Therefore, this stage of research represents

a fundamentally different type of inquiry compared to the description stage. Here we

need to employ a deductive approach, by starting with a well-articulated general model

resulting from the development stage, and then by collecting data to test the

propositions put forward in that model, using different approaches and methods.

The findings of the exploratory case study guided the research focus to the change

process theories and their application in the management of information systems

development. A number of researchers have studied planned organisational change

theory and its effectiveness in managing an information systems development project.

Therefore, a review of those research results as secondary materials have been

undertaken in the validation stage of this research. The aim is to study the main

Chapter one: Introduction and research approach 3 0

requirements of the planned change model and how they coordinate with characteristics

of semantic analysis technique.

An explanatory case study was also conducted to demonstrate the power of semantic

analysis in role clarification and conceptual training of people, especially when

organisational change is going to happen. This case study, which explains the

semantics of the substantive business of one of the biggest management consultancy

groups, showed the roots of conflicts in meaning and application of terms within the

company. This case study directly addresses the usefulness and practicality of semantic

analysis in role clarification and responsibility negotiation, and also in providing a

supportive model for conceptual training specifically at the early stage of

implementation of any organisational change. The findings of the case study shows that

the characteristics of the semantic analysis technique addresses the need ,found by other

researchers, for a successful planned change approach. Indeed this case study had an

explanatory function about the benefits of semantic analysis, through viewing the in-

depth character of change in the organisations and also by mapping the norm structure

in relation to the rule-guided activities, with norms acting as the meta-rules of the

system. The case study was deliberately selected without any implication of developing

a software system, in order to examine the independence of semantic model of any

functional or procedural detail, and the ability of this technique to specify the

underlying prime business tasks and information needs of the organisation, without

committing to any particular computer model. This case study points to the power,

effectiveness and practicality of this technique in relation to its purpose as an

explanatory prototyping tool.

The use of an example to show how semantic analysis technique can be applied will

be used as a way to explain better the technique, with the understanding that this simply

helps to illustrate the technique rather than to validate it. Strictly speaking, by using

examples it cannot really be said that the proposed model for information systems

development has been proved, even if it can repeatedly be shown by examples to be

effective and useful. What is intended is that the research hypothesis can be shown to

be difficult to refute. For this purpose we adapted an example by Rumbaugh et al.

Chapter one: Introduction and research approach 3 1

(1991, p. 151) from their book "Object-oriented modelling and design".

Finally, it is necessary to mention the importance of using empirical real world projects

as another strategy to provide better justification of the proposed perspective.

Unfortunately, owing to its inherent difficulties such as uncontrollabity in a specific

period of time, unpredictability and extensive resource consuming, this strategy could

not be easily fitted in the limited time frame of this research. However, according to

Scott Morton’s (1984) research typology, real world projects should eventually be used

to evaluate the effectiveness of any new concept, but ought to be left for further

research.

1.5.4 Method of further research

Some methodologists or researchers approach research from an either-or framework.

They make rigid distinctions between basic research and applied research. This

framework dislocates the close connection between situated practice and the generation

of theory (Suchan, 1993). Hence it is necessary to present an outline of the future

agenda for further efforts in continuation of this research from the viewpoints of both

applied and basic research concerns.

Given that any definitive validation for the research is impossible, any further research

should be planned on the basis for designing and implementing a "validation

endeavour". This is indeed possible through the adoption of a long-term perspective:

• developing a clear vision of the nature of the information systems

development contexts and processes

• providing a complete and deep understanding of the inherent nature of the

proposed perspective on evolutionary information system development

• assessing applications of the proposed approach in practice through field-

based methodologies

Chapter one: Introduction and research approach 3 2

• synthesizing and contrasting the results of these assessments, given the

growing body of literature regarding development contexts and processes

• discovering and expressing the strengths and weaknesses of the proposed

approach

• enhancing and revising the body of literature on information systems

development contexts and processes

Through the above process of steady accumulation of evidence and paradigms regarding

information systems development methods, we can indeed lay down a further research

strategy to approach the validation of the research. It is practical ...though slow and

might be often tortuous.

1.6 Outline of the thesis and its contribution

In chapter 2 the study of evolutionary prototyping approach starts with a reassessment

of problems of requirements determination. It argues that requirements determination

problems can be described abstractly in terms of complexity and uncertainty. These

generic problems are defined as: complexity- having too much knowledge/information

and uncertainty- having too little knowledge/information. The ever growing

competitiveness of the business environment means that new emerging interactions

among organisational actors require a continuous exchange of ever more information.

The turbulent conditions in the business change environment escalate the problems of

uncertainty and complexity. A study of these dual problems and methods of

overcoming them has led to the identification of prototyping as a more effective

requirements representation technique compared with any text-based and interpretive

model of requirements. In this chapter the requirements prototyping process will be

discussed and then the evolutionary development approach as a completely independent

approach to information systems development is described. A study of evolutionary

development problems in a business change environment is undertaken. This study

highlights the various aspects of problems in the approach and leads to the conclusion

Chapter one: Introduction and research approach 3 3

that the problems can be described in terms of: (1) lack of process management system

in evolutionary development approach, and (2) lack of a conceptual model for the

systematic and rational selection of requirements to prototype, for an effective grouping

of actual requirements into clusters and for an interactive traceability to original

requirements statements.

The central theme of chapter 3 consists of a proposal for a new theoretical framework

for evolutionary information systems design and development. The new theoretical

framework is rooted in two theories: planned organisational change theory and semiotic

theory, in response to the two shortcomings identified in the evolutionary development

approach in chapters 2. These theories are presented in two parts of chapter 3. The

first part of chapter 3 begins with the theoretical perspective of change and persistence.

After defining different orders of change, we discuss process theories of change in

relation to information systems development. Lewin’s (1952) three-phased change

process model - unfreezing, moving and refreezing - is suggested as a model for

managing the implementation process in evolutionary development. The model uses

prototyping in the moving cycle and applies a semantic analysis technique in the

unfreezing and refreezing cycles. The proposed analysis technique is based on the

application of semiotic theory in requirements elicitation. The second part of this

chapter discusses semiotic theory and focuses on the users’ own interpretations of what

they do. This concept in requirements analysis can be applied by carefully studying the

users’ communication during work. The results of this can be used to design

conceptual structures that fit into the language of users. From the study of language

and how it relates to work situations using semiotic theory, requirements understanding

emerges from discerning patterns of behaviour by organisational actors in their work

situation. Chapter 3 also introduces the semantic agent-based modelling formalism and

its graphical representation - the ontology chart - with the aid of a comprehensive

example. This representation technique, it is argued, can provide design understanding

and the potential for conceptual training. The semantic analysis technique appears to

accord well with features of the planned change model proposed for managing the

evolutionary development process. Chapter 3 lays down the theoretical foundation for

a new perspective on evolutionary development proposed in this research.

Chapter one: Introduction and research approach 3 4

Chapter 4 discusses a case study conducted in a large car manufacturer, which identifies

constraints encountered when implementing evolutionary prototyping approach in a

business change environment This case study justifies the problem formulation

investigated in the description and development stages of the research method. This

exploratory case study investigates the identification of the main difficulties of using

the evolutionary development approach in practice and the utility of the proposed

theoretical framework to overcome those difficulties. The case studied is a highly

complicated product definition system under development in one of the biggest car

manufacturers in the U.K. The development method adopted is the evolutionary

prototyping approach, using object-oriented techniques. The description of the case

starts with the background of the car industry and the company in order to gain a better

understanding of the magnitude of the problem and complexity of the environment.

Then the characteristics of the business change environment and how it affects the

development of a highly complicated information system are examined. This provides

a clear idea of the business change environment in this industry and also the rationale

behind the chosen case. The discussion leads on to the results and findings of the case

study and puts them in the form of an argumentative description about the shortcomings

of the evolutionary approach. Two critiques are developed of the principles of

evolutionary development which underpin this conceptual practice. The chapter

concludes that the lack of an effective implementation process management system and

the lack of a support model for evolutionary development are tangible shortcomings in

the evolutionary development approach, especially in regard to the changing business

environments. On the basis of the findings of the case study, the main argument of the

research is then formulated using the proposed theoretical framework in the previous

chapter.

Chapter 5 offers the proposal of the research. It presents a new perspective on an

evolutionary development approach based on the proposed theoretical framework. First

an overview of the proposed approach is introduced in three main levels: organisational,

conceptual and technical, showing the combination of top-down and bottom-up cycles

in the proposed method. A detailed discussion follows of the new perspective to

evolutionary development using semantic analysis and prototyping techniques within the

Chapter one: Introduction and research approach 3 5

control of planned change model. Using the new perspective, a development method

is introduced to formalise the stages and to merge them into a coherent whole. The

new method consists of three cycles: vision, action and fusion corresponding to the

three stages of the change process. The objective of the new method is not to offer step

by step prescriptions in analysis and design, but is intended to cover just the most

important issues raised in using the proposed perspective.

Chapter 6 discusses the issues related to the justification of the proposed method. First,

it summarizes the results of the empirical studies carried out by other researchers as

attempts to justify the application of the planned change model in managing information

systems development. It then presents the findings from a second case study, conducted

in one of the ’Big Six’ management consultancies. It examines the relevance of a

semantic agent-based modelling formalism for high level corporate modelling and its

utility in vision and fusion cycles of the proposed method. It explains how the semantic

analysis technique enforces reconciliation of data definitions across the organisation.

The validation stage of the research method prescribes an explanatory case study in

order to provide a better justification for the proposed perspective. The case studied

is an important part of the company’s corporate data model and explains the substantive

business of one of the biggest management consultancy companies. The findings of the

explanatory case study directly address the usefulness and practicality of semantic

analysis in role clarification and responsibility negotiation, required in applying a

planned change model. The findings are presented in the form of observations which

show the benefits of the proposed method in response to the shortcomings of the

evolutionary development found in the first case study presented in chapter 4.

Chapter 7 concludes this thesis and starts with the summary of the research. It then

presents the outlook for further research.

The aim of each chapter in thesis can be mapped into the requirements of the research

method. Figure 1.2 represents the contribution of each chapter in the designed research

approach. The thesis can be read linearly from start and finish. Every effort has been

made to ensure that this thesis perfectly reflects the research undertaken.

Chapter one: Introduction and research approach 36

Chapter one (research approach)
Chapter two (argumentative description)

Chapter three (theory building)
v Chapter four (exploratory case study)

development

Chapter six (explanatory case study)

Chapter seven (research summary)
justification

deductive approach

inductive approach

Chapter five (concept formulation)

Figure 1.2 Mapping the outline of the thesis into the research method

The major contribution of this work is demonstrating the application of planned

organisational change theory and semiotic theory in evolutionary information systems

development. It is a new perspective on evolutionary development with a new kind of

supportive design environment that results from applying these theories. This research

also describes how such theories can complement each other in supporting evolutionary

information systems development.

Another contribution of this research is the concept of clustering user requirements into

subject areas based on their semantic properties. The current data modelling approaches

offer subject-clustering, where entities are assigned to a specific subject group to allow

easier navigation of the model. However a major problem lies in assigning entities

arbitrarily to subjects, and in the inability to sustain consistently over time the

categorisation of subjects. The proposed clustering concept in this research encounters

no such difficulty, because the semantic constraints within the semantic agent-based

modelling automatically associate each semantic element with its natural subject area.

Therefore it provides us with a major complexity-reducing concept in modelling large-

scale information systems.

Chapter one: Introduction and research approach 3 7

Finally, a further contribution of this research is introducing to the evolutionary

development the concept of an information system as a social institution. Whereas the

evolutionary development approaches information systems as technical systems with

social consequences, the new perspective of evolutionary development proposed in this

research assumes information systems as social systems with technological

implementations.

2C H A PTER

The evolutionary development approach

Chapter Overview
The focus of this chapter is on the problems associated with evolutionary development. After a historical

survey, section 2.3 discusses the dual problems of uncertainty and complexity in information

requirements determination. The problems which will be intensified in a business change environment

are those where a continuous exchange of ever more information is required. Complexity and uncertainty

of systems can be reduced by requirements representation techniques. Section 2.4 discusses different

requirements representation techniques among which requirements prototyping has the potential to cope

with change in requirements. In section 2.5 requirements prototyping process and its origin in physical

scientific approach to problem solving is presented. The subsequent section introduces the evolutionary

development approach. The approach starts with gradual development of a requirements prototype and

then allows the prototype to evolve continuously and be adapted in the use environment. This

characteristic renders the approach viable as a strategy for system development in business change

environment. Some evidence of the problems associated with evolutionary development in large system

design is presented in section 2.7: difficulties with managing the implementation process, lack of a

theoretical foundation for analysis of requirements statements, lack of a technique to assist in the

discovery of requirements features and clustering subsections of a large system and finally lack of a

technique to portray effectively the original requirements during prototype evaluation (traceability of

requirements features). Section 2.8 outlines the main argument of this research. It states the difficulties

in the evolutionary development approach for large scale systems in business change environment. The

rest of the section 2.8 describes the overview of the research approach around two important issues: first,

the development of a holistic process management system and second, the development of a support model

for the systematic and rational selection of requirements to prototype. The support model also needs to

sustain an effective means of grouping requirements into clusters and an interactive traceability to

original requirements information. Section 2.9 concludes this chapter.

Chapter two: The evolutionary development approach 3 9

2.1 Introduction

As the reliance upon information has deepened and its value recognised, increasingly

interest has focused on the development and integration of methods for constructing

computerised information systems. The classic prescription for the development of

information systems is to follow sequentially the stages of the system development life

cycle. The information system analyst can choose among several methods that address

individual stages of the systems development life cycle. Alternatively, a systems

analyst can select one of the many integrated methods which address two or more of

the stages.

One common shortcoming of most methods of the integrated system development life

cycle is that they do not completely address the information requirements determination

stage. The stage of determining enterprise information requirements is the most critical

phase of the system development life cycle (Cooper & Swanson, 1979; Khan, 1985;

Brooks, 1987). Therefore, a method which can simplify the information requirements

determination phase would potentially result in enormous benefits for developers of

computerised information systems as well as for users. Ironically, most integrated

system development life cycle methods fail to capitalize on those potential benefits

(Colter, 1982; Couger, 1982).

The classic life cycle approach follows sequentially a set of phases. Some alternatives

to the approach have been developed (Ahituv & Neumann, 1990). The most popular

is system prototyping for constructing computerised information systems (Naumman &

Jenkins, 1982; Andrews, 1983; Appleton, 1983; Davis & Olson, 1985). In particular,

developing an information system using evolutionary prototyping has rapidly gained

acceptance as a preferred approach in business change environment (Connell & Shafer,

1995; Guimaraes, 1985; Young, 1984).

One reason for the popularity of requirements prototyping is that it allows for the

information requirements determination to be handled iteratively as the system is

constructed. This is done in response to the difficulty of determining a complete set

of information requirements prior to starting the design stage of a system development

Chapter two: The evolutionary development approach 4 0

project. An information system analyst can construct a prototype of an enterprise

information structure and be comfortable in the knowledge that the structure can be

easily modified in subsequent iterations of the evolutionary process to incorporate any

piece of information that was missed in earlier iterations (Kravshaar & Shirland, 1985;

Naumman & Jenkins, 1982; Sroka & Rader, 1986; Wetherbe, 1982).

Conversely, one major disadvantage of evolutionary development approach is the

difficulty of controlling it, especially for large projects (Alavi, 1984; Andrews, 1983;

Dennis, Bums, & Gallupe, 1987; Mahmood, 1987; Pliskin & Shoval, 1987). In

particular, it is difficult to determine which subsystem and how large a portion of

information requirements needs to be addressed in each iteration of the prototype and

how much need to be deferred to the next iteration. As a result, information systems

scholars have been somewhat hesitant in recommending this approach as an alternative

to the classic life cycle approach (Ahituv & Neumann, 1990).

This chapter focuses on the main challenges in evolutionary development approach and

its difficulties in business change environment. It also provides an overview of a

complementary approach to evolutionary development.

2.2 Historical survey

Insights into the historical development of information systems analysis and design

methods can be gained by looking at the software development life cycle model. There

are numerous models of the life cycle of system development. Some of these methods

are descriptive (i.e., they describe what exists), some are prescriptive (i.e., they

prescribe what steps should be taken), and some are normative (i.e. they establish a

standard; for example, government regulations that set out specific development phases

that must be followed).

As concern for the information systems development process has increased almost

exponentially during past two decades, so has concern for having the right life cycle

model. This concern had some very positive aspects and also some that may be

Chapter two: The evolutionary development approach 4 1

counterproductive. On the positive side, the backbone of any systematic, visible

information systems development process has to be a clear set of workproduct

definitions and an indication of what steps should be taken to create those

workproducts; this is precisely what the life cycle model is intended to do and can do,

if properly used.

The negative side of this concern over having the right life cycle was that much effort

has been expended for little or no gain. It must be remembered that we are discussing

models, not reality. Models, by definition, are an abstraction of reality. They can help

us shape reality by helping us see the relationship between different aspects of

development more clearly, and thus it is important that they be relatively accurate.

However, since they are always simpler than reality (or should be!), we should not

become too impatient when they seem not to capture everything we see in practice.

It seems that our collective understanding of the characteristics of information systems

development life cycles is changing rapidly. In such a situation, we must be prepared

to cope with models that always seem inadequate; eventually the rate of change of our

understanding will slow down, and then we will be able more easily to prescribe

appropriate life cycle models (Freeman, 1987).

2.2.1 Software development life cycle

The development of information intensive systems is comprised of a series of phases

called the software development life cycle (SDLC), that provides a framework for the

effective management, guidance, and control of the process. The advantages of this

model is the breaking down of a large complex process into a manageable, well-defined

series of small steps (Sage & Palmer, 1990). The classic representation or paradigm

of the software development life cycle is the traditional waterfall model. The waterfall

model has its roots in traditional systems engineering. Figure 2.1 presents the main

stages of the waterfall model. It views the process as a set of phases or steps, starting

at requirements analysis and capture, moving then to system design, on to

implementation and testing and finally to system operation and maintenance. Although

the model is viewed essentially as sequential, it should be noted that iteration will

Chapter two: The evolutionary development approach 42

T I M E

Figure 2.1 A waterfall model of the Software Development Life Cycle

almost certainly occur between the steps and within each step. In more detail these

steps are:

• System requirements analysis: The first phase in any information

systems development is the development of a set of information

requirements, that will drive the remaining steps. In this step the overall

system requirements and also the software requirements are detailed. The

outcome of this step is a requirements specification document that is used

to guide the rest of the development process. This thesis is specifically

focused on this phase and will develop this phase in much greater detail

later.

• System design: The translation of the requirements specifications into a

design representation is the outcome of this step. Design is divided into a

series of smaller steps which include the elaboration of a high level design

model of the system and then the development of a detailed design model

that maps directly to the implementation structures being developed.

Chapter two: The evolutionary development approach 43

Design traditionally focuses on the representation of data structure, software

architecture and procedural details (Pressman, 1987).

• Implementation and testing: In this phase the design is translated into

machine-readable form. This is generally accomplished by coding the

detailed design in a high level or machine level programming language.

The individual units of code are tested individually, integrated and tested

as a group. The first form of testing is called unit testing, the second is

referred to as integration testing.

• Operation and maintenance: The developed system is placed in

operation and maintained. Maintenance is performed on the operational

system in response to any errors that escaped the testing and review activity

of the previous steps, as well as to implement changes so the system can

remain responsive to changing conditions in its environment.

2.2.2 Requirements elicitation phase

The most difficult aspect of information systems development is eliciting the

requirements for the system (Brooks, 1987). Requirements definition is performed in

the earliest phase of the development life cycle and is commonly known as

requirements elicitation (or requirements engineering). The requirements elicitation step

is defined to include the capture, analysis, and definition of requirements or needs to

be met by development of an information based system.

The requirements elicitation phase has come to be regarded the most important stage

due to its overwhelming influence on system quality. Errors in requirements

specification are the most costly, in financial terms, in terms of effort and time needed

to correct, and in their impact on final user satisfaction (Boehm, 1984). Empirical

evidence has constantly demonstrated that errors made in the requirements definition

process exact a disproportional cost compared to errors made later in the life cycle.

Studies (Boehm, 1976; Fagan, 1976) have shown that there are two orders of magnitude

difference in the cost to repair an error made during requirements definition than in

Chapter two: The evolutionary development approach 4 4

repairing the same error near the end of system development. Historically, (Tavolato

& Vincena, 1984) more than fifty percent of all detected errors are made during the

requirements definition process. The impact of requirements errors result in creation

of systems that will not satisfactorily address system needs (Davis, 1990b).

Table 2.1 indicates a set of characteristics that we look for in requirements information

so we can produce a system that is both correct and what the user wants. These

characteristics have been found to be of critical importance in determining whether a

requirements specification represents an accurate representation of system needs (Davis,

1990a; Palmer & Fields, 1992; The Institute of Electrical and Electronic Engineers Inc.,

1984). A set of system requirements specifications which can boast all these

characteristics reduces the possibility of errors within the requirements and therefore the

risk that the requirements will be inaccurately developed.

Table 2.1 Characteristics influencing risk in requirements determination (Armour,1993)

Complete everything the system is required to do is included in
the requirements

Correct every requirement statement must represent something that the system requires

Maintainable changes needed to the requirements can be achieved easily, completely and
consistently

Traceable the origin of each requirement is clear

Unambiguous each requirement statement must have only one interpretation

Validatable every requirement statement must be validatable, either by manual or
automated means in a finite cost effective manner

Feasible each requirement must be achievable within the scope of project resources

Consistent no subset of individual statements may have conflicts

Precise each requirement must be stated in manner that is clear and specific to both
user and designer

Testable each requirement must be stated in manner that allows a test case to be
developed for it

Understandable the requirements must be understandable by both users and designers

Verifiable every requirement statement must be verifiable, either by manual or automated
means in a finite cost effective manner

Chapter two: The evolutionary development approach 4 5

Errors introduce the potential for multiple interpretations, which may cause

disagreements between users and designers and result in costly rework, lawsuits or

unproductive system. Given the high cost of requirements errors, it is widely

acknowledged that effort is needed to determine the causes of errors and how to address

them. It is at this level that risk in requirements is addressed and that risk management

is introduced as a necessary component to produce quality requirements with the

characteristics shown in the above table.

Designers and users view requirements issues from very different perspectives. Users

may have a difficult time articulating an accurate, complete, and precise picture of

system needs. Errors occur during the requirements phase because the user may not

clearly understand system needs and/or may use imprecise or ambiguous terms to

describe these needs. Designers may lack the necessary communication skills needed

to elicit system needs. The designers may not be sufficiently acquainted with the user

domain and therefore unable to determine if the requirements specifications accurately

reflect system needs. Users and designers may speak different "languages" and lack

a common ground to communicate. The language of the user is usually specific to the

domain, while the language of the designer is based on the technology used to attempt

to solve user needs. In addition, there may be multiple users with different and

incongruent views of the system needs. These users may not be able to visualise how

a system will satisfy their needs (Goma, 1983). Furthermore, designers may not be able

to represent the system via paper-based requirements in a form that users can

understand and relate to their needs. These paper-based requirements are the result of

transformation process that may not accurately record the intent of the user (Palmer &

Aiken, 1990). Users and designers lack the complete perception needed to ascertain the

accuracy of such a transformation. This disparity in understanding must be bridged to

effect a successful transfer of user needs to requirements specifications.

Brooks (1987) feels that it is extremely difficult for users to articulate "completely,

precisely and correctly", an accurate set of requirements without first iterating through

versions of the system. These versions allow users to visualise how the system satisfies

their needs and help to simulate any as yet unarticulated needs.

Chapter two: The evolutionary development approach 4 6

The difficulties described above herald a significant risk that requirements will not

reflect a clear and accurate understanding of the problem being addressed. The next

section of this chapter discusses the main problems of requirements elicitation in

information systems development.

2.3 Requirements determination problems

This section discusses the problems associated with complex and uncertain design

domains. The aim is to highlight pertinent features of enterprise information

requirements determination as a precursor to being able to give a comprehensive

description of the problems that the thesis investigates.

The main difficulties with requirements determination are complexity and uncertainty.

Constant change in business and highly dynamic business environment escalate these

problems and make them harder to cope with. Different representation methods have

been developed to lessen the problems of uncertainty and complexity, by supporting

better communication between users and designers. These issues will be discussed in

detail in the rest of this section.

2.3.1 Complexity

Complexity normally implies large amounts of information with many parts and many

interconnections. Its presence, therefore, suggests difficulty in reasoning or prediction.

Complexity is a structural quality. More complex entities arise out of a combinatoric

play upon the simpler entities. The larger and richer the collection of building blocks

that is available for construction, the more elaborate are the structures that can be

generated. The complexity of a large structure is due to the number of the simpler

ones, plus the complexity of interactions between them.

Two types of complexity that are important to design can be identified as state

complexity and process complexity. State complexity is associated with describing the

state of a design problem, or its representation. The processes by which the world, or

Chapter two: The evolutionary development approach 47

a design problem, moves between these states is associated with process complexity.

Both these forms of complexity are dependent on the representation chosen for the

entity being described. When describing the complexity of any entity, it is the

complexity of the representation of that entity that is being delineated. An absolute

measure of the complexity of physical objects, for example, can never be provided.

Instead the complexity of some representation of the physical reality has to be

described. In the same way a description of the complexity of a process, such as

performing a design, can only be given in terms of the complexity of a representation

of that process (Williams, 1990). In subsection 2.3.3 the problems related to the

representation will be discussed.

Systemic risk is a result of the complexity implicit in all large systems, but particularly

in socio-technical systems where people interact closely with the technical system. This

sheer complexity, not just in the technology itself but in its interaction with many

application environments is likely to cause problems (Angell & Smithson, 1991) in

requirements determination of information systems.

2.3.2 Risk and uncertainty

Uncertainty can be thought of as complementary to, or the counterpart of, complexity,

in that, in the same way as complexity is used as a measure of amount of information

present, uncertainty is used to measure the lack of information.

Just as complexity is associated with having too much information, uncertainty is

associated with having too little. The concept of certainty leads to many thorny

problems. Indeed much of Western philosophical effort has been directed at

establishing what can be known with absolute certainty. For the purpose of design

actions the term certainty can be used in a constrained sense, which takes account of

the finite nature of processing powers of men and machines (Williams, 1990).

We define requirements uncertainty as the difference between the knowledge already

possessed about a problem and knowledge that is needed to derive an acceptable system

for the users. Requirements uncertainty can result from among other things:

Chapter two: The evolutionary development approach 4 8

communication difficulties between user and analyst, inexperienced analysts,

technologically naive users, and unstructured tasks supported by the proposed system.

The most important forms which requirements uncertainty may take are ambiguity and

conflict or inconsistency. Ambiguity exists when requirements statements that are

vague may be interpreted by the user in an unexpected manner. Conflict or

inconsistency exists when requirements statements which are in conflict with each other

may result in confusion, misinterpretation and incorrect design decisions being made

by designers. Both these forms can be highlighted when we represent a problem. This

is the subject of the next subsection.

Risk may occur during requirements determination because of a lack of certainty. Risk

manifests itself through the characteristics of imprecision, conflict, incompleteness or

ambiguity in requirements statements used to represent system needs (Sage & Palmer,

1990). Uncertainty is created as to whether requirements statements accurately reflect

system needs, and increases the risk of an unsuccessful development effort. Risk is

defined within the context of requirements determination as the likelihood that user

needs will not be accurately represented in a requirements specification containing such

characteristics. Requirements at risk in this context are ones that contain characteristics

such as ambiguity and inconsistency (Armour, 1993).

2.3.3 Representation

A representation of a system is an ordered arrangement of symbols that stand for

objects and relations in the real world. The way in which symbols can be ordered or

built up in a meaningful way is dictated by notations and a grammar. By defining

symbols and notations in a way that allows unnecessary information to be suppressed,

complexity is reduced. This process of limiting information is referred to as

abstraction. It is this abstraction process that yields the capacity to describe real world

objects with reduced complexity. The complexity of a system depends heavily on the

representation chosen, i.e. the symbols and notation. For instance a computer system

may be represented using the notation of block diagrams with symbols for the CPU,

interface and memory; alternatively it could be represented using a circuit diagram. The

complexity of the latter will be far greater than the former.

Chapter two: The evolutionary development approach 4 9

The grammar of a representation defines meaningful relations between symbols and

notations. The grammar can reduce ambiguity and inconsistency by providing a

consistent and understandable representation. The representation itself can reveal

inherent conflicts and uncover ambiguities in a way that reduces uncertainty and as a

result can provide a design effort with reduced risks. The next section discusses

different representation techniques employed in design domains.

2.4 Requirements representation techniques

The previous section described the major difficulties of requirements determination as

complexity and uncertainty; difficulties which are intensified by today’s business change

environment in enterprise design domains. Representation techniques have been

developed to facilitate communication between users and designers and overcome the

difficulties of information-based design domains. This section offers an overview of

existing requirements determination techniques.

Described in this section are the common specification techniques used in requirements

analysis. The techniques have been developed, in part, to address the issues discussed

above. Formal specifications are an attempt to represent requirements in a manner that

facilitates common understanding as well as reducing errors such as ambiguity and

inconsistency. Requirements documents created by designers and presented to users for

the purposes of requirements definition traditionally include (Carey & Mason, 1983):

textual lists of requirements, an interpretive model of the proposed system and a

working model of the proposed system. The first two of the three techniques attempt

to represent the proposed system behaviour through abstraction. Although each of the

techniques brings specific benefits to requirements specification, abstract representation

can present significant difficulties. This leads to the third method, prototyping for

specification of user requirements.

Table 2.2 lists commonly used requirements representation techniques and places them

into the above mentioned categories.

Chapter two: The evolutionary development approach 5 0

Table 2.2 Requirements representation Techniques (Armour, 1993)

Text-based requirements List of requirements

Narrative English descriptions

Interpretive models Structured Requirements Definitions (SRD)

Structured Analysis

Object Oriented Analysis (Object model)

Finite State Machines

Statecharts

Decision Tables and Decision Trees

Entity-Relation Diagram

Data Models

Working model

(traditional prototypes)

Storyboard prototypes

Paper-based prototypes

Breadboard prototypes

Simulation prototypes

Skeleton prototypes

Throw-away prototypes

Evolutionary prototypes

Executable requirements prototypes

One of the major difficulties of requirements definition is communication. Users and

designers do not generally communicate on even terms (Palmer, 1988). A "semantic

gap" (De Brabander & Thiers, 1984) may exist between user and developer. The

inability of text-based and interpretive methods to bridge completely this

communication gap leads to the use of a third method- prototyping. When requirements

are poorly understood they are likely to change during the development life cycle,

resulting in a final product that does not meet user expectations. Prototyping attempts

to provide a common ground of understanding between users and designers by

presenting users with a relatively realistic model of how the system will appear and/or

behave. In arriving at a common understanding concerning the acceptability of a

proposed system, it has been shown that users and designers benefit from viewing

examples of, or having practical experience, with a working representation of the system

(Boar, 1984; Davis, 1990b).

Chapter two: The evolutionary development approach 5 1

This section first reviews several analysis and representation methods for requirements

analysis, and presents a rationale for prototyping during the requirements determination

phase of the information systems development.

2.4.1 Textual list of requirements

Text-based requirements specifications are traditionally used to list the requirements

which the system must meet. Text-based specifications, usually in the form of

unstructured English, are a communication medium very familiar to the average user.

In fact, even if another form of requirements representation is officially used, such as

an interpretive or a working model of the system, most requirements are still presented,

however informally, in a text format at some time during the requirements

determination phase. When deriving initial requirements from users, text-based

specifications provide a communication advantage over an interpretive model of the

requirements specifications. However, because of the inherent imprecision and

ambiguity of natural language, text-based specifications have the potential of

introducing errors into the requirements definition process.

Text-based requirements tend to be lengthy and difficult to read because they are

psychologically distant (Carey & Mason, 1983) from what the users will eventually

receive as a software system. Text-based requirements have been known to be as

extensive as five thousand pages (Davis, 1990b). When developers are assigned to

analyze system requirements and develop a written specification document reflecting

those requirements, users often find great difficulty in understanding the documents and

still miss errors embedded in requirements statements. Inconsistency, conflict, and

redundancy often insinuate themselves into a large text-based document. Many system

features are difficult to represent using a text-based description, for example, clearly

defining how a graphical user interface will look and behave using just text is nearly

impossible.

2.4.2 Interpretive models

Interpretive models are graphical representation of what system will do. Examples of

graphical interpretive techniques include: Structured analysis (SA) (DeMarco, 1979;

Chapter two: The evolutionary development approach 52

Yourdon, 1989), object oriented analysis (Coad & Yourdon, 1990; Coad & Yourdon,

1991) and object model (Rumbaugh, Blaha, Premerlani, Eddy, & Lorenson, 1991), state

transition diagram, and statechart (Harel, 1987). Also considered within this category

are formal specification languages. Interpretive techniques such as graphical

representations of requirements and specification languages attempt to provide a

common and precise language for requirements specification. Interpretive techniques

try to reduce the inherent imprecision and ambiguity that exist in natural language

(Davis, 1990b). If a technique is computer automated, the computer can provide

support to trace inconsistencies, redundancies, and ambiguities.

The format and syntax of interpretive models may be foreign to the user, making

understanding and evaluation difficult. As the model becomes larger, it becomes even

more difficult for users to comprehend the representation. Our personal experience in

trying to review page after page of a sizeable ER model has convinced us that for large

systems, interpretive techniques present difficulties in understanding requirements

representations. One problem with this modelling technique is how to decide where to

begin reading the chart. While interpretive models have been beneficial, they still

present requirements in a form to which users find difficult to relate. If needs are not

understood, a precise requirements language is of little use (Taylor & Standish, 1982).

2.4.3 Working models or prototypes

In the late 1970s and early 1980s, the idea of prototyping emerged as a distinct software

development technique. Originally the concept of prototyping in software engineering

was borrowed from other engineering disciplines. In manufacturing industry the

scientific method to problem solving has been used in applied engineering problems,

in the form of the prototyping approach. A physical scientific approach presents a

simple method for how scientists solve problems. The scientific approach to problem

solving is an old and well-established technique which is widely used in the physical

sciences. The following figure (figure 2.2) shows the steps involved. The objective is

to provide a better understanding to a problem-oriented approach in physical science.

In this method the problem is to formulate a hypothesis which gives an accurate and

Chapter two: The evolutionary development approach 53

consistent description of the

observed behaviour of the

system being studied. The

solution is then the theoretical

model used to capture and

predict the behaviour of the

system (Maude & Willis, 1991).

By using this method, scientists

are able to assess the validity of

the problem formulation prior to

proposing the final solution.

Through the cycle of hypothesis-

experiment-verification and

revision a better convergence

between the prediction of the

model (solution) and the behaviour of the system being modelled (problem) can be

achieved. This cycle of experimentation of the validity of the hypothesis formulation

is the key idea in physical scientific approach to problem solving.

In the prototyping approach, based on a scientific model, instead of preliminary

formation of the hypothesis, a scaled working model is built in order to discover the

problem involved in manufacture; and then the cycle of experimentation of this model

will be exercised until validation of the solution to the problem is achieved. By

constructing a scaled-down prototype version of the envisaged computerised information

system, the analyst can present not only a model of the organisation’s conceptual

information structure, but also a model of how the information will be processed after

the computerised information system has been constructed and installed.

Unfortunately until now, there has been no real agreement on the definition and

categorisation of a prototype within the context of software engineering. The different

expectations and the various ways in which prototypes can be used in systems

development have led to many attempts at classifying prototyping. The most popular

hypothesis
'formulation*

revision of
hypothesis experimentation

verification
of hypothesis'

Figure 2.2 A physical scientific method for
problem solving

Chapter two: The evolutionary development approach 54

classifications include (Maude & Willis, 1991):

• data-driven prototyping (Appleton, 1983)

• exploratory/experimental/evolutionary prototyping (Floyd, 1987)

• horizontal/vertical prototyping (Floyd, 1987)

• mocked-up/breadboard

• throw-it-away/incremental/evolutionary

• exploratory/experimental/organisational (Deamley & Mayhew, 1983)

• early/middle/late prototyping

• cooperative prototyping (Bodker & Gronbaek, 1991)

• explanatory/exploratory/experimental/evolutionary (Maude & Willis, 1991)

The Shorter Oxford dictionary defines the prototypes as follows:
"a prototype is ’the first or primary type of anything; a pattern, model, standard, archetype’ being derived from

Greek words protos meaning first and typos meaning a type [Shorter Oxford Dictionary]."

In most reports, the process of problem solving in building a prototype has been named

"a learning process". First-of-its-type is a pilot system, so that prototyping is the initial

attempt to produce the system, purely with the intention of learning how to do the job

properly (Brooks, 1975). Prototypes are working models of the system and present

users with a realistic view of how the system will behave. This technique is discussed

in detail in the next section.

2.5 Requirements prototyping process

According to the scientific problem solving approach, problem formulation is concerned

with eliciting user requirements for an information system and the representation of the

solution is concerned with stating the specification and properties of the system

precisely and unambiguously (Hekmatpour & Ince, 1986). Every representation of the

solution to the problem needs to be validated: ensuring that the final developed system

built around the specification can meet its user requirements. In seeking for a better

fit solution, the concept of prototyping uses the cycle of prototype-exercise-verify-

revision to allow a model of the system behaviour (a representation of the solution) to

Chapter two: The evolutionary development approach 5 5

evolve toward final solution. Figure 2.3 represents the requirements prototyping

process.

Developers elicit initial

requirements information

from users, transform

t h e s e o r i g i n a l

requirements into an

informal specification,

and then develop a

prototype based on the

informal specification.

The prototype is then

evaluated by users and

the feedback is used to

refine and to formalize

th e r e q u i r e m e n t s

specification. This

i t e r a t i v e p r o c e s s

continues until users and designers feel satisfied that the specification adequately

defines system needs. The output of the process is a refined set of requirements

specifications as shown in figure 2.3 and discussed below. The final requirements

specification acts as input into the software design effort. It should be noted that the

specific goal of a requirements prototyping activity is the refinement of a requirements

set that will guide the future design effort. These prototypes can be used or enhanced

during a later phase of development.

Requirements prototyping increases user awareness of the developing system (Sage &

Palmer, 1990) by allowing users to view how a representation of the system will

function before the formal requirements specification is defined. In contrast with paper

or written specifications which can be very difficult for users to understand and to relate

to the proposed system functions, prototypes allow a diverse set of users to discover

>robl

Incomplete
and/or
informal

version
elicitation

of user
requirem ents

r e v * ®
prototype

prototype

<>
user
■ p r o to ty p e

representation
of system
specification

solution

Figure 2.3 Prototyping approach to problem solving

Chapter two: The evolutionary development approach 5 6

how the system will look and operate. If users cannot understand the requirements

specification presented to them by designers, they will not be able to determine whether

the resulting system will address system needs. Prototyping helps eliminate this

uncertainty by presenting refined requirements information in a form which both users

and designers understand and can communicate. Requirements prototyping represents

an attempt to narrow the communication gap between users and designers.

Communication breakdowns between users and designers can be discovered through the

use of requirements prototyping (Armour, 1993).

The result of the requirements prototyping process is the identification of ambiguities,

omissions, and inconsistencies in the specifications (Goma & Scott, 1981). The

benefits, when compared with other formats of communication, include reduction of risk

by ensuring that requirements specifications are more complete, correct, consistent, and

unambiguous.

Since cost, time, and maintaining user interest will probably be important criteria

driving the requirements prototyping process, it is important that the prototype be

developed as quickly as possible. This requisite is often referred to as rapid

prototyping. For a prototype to be effective, it must be developed quickly so that it

may be evaluated in the requirements analysis phase of the system development life

cycle (Goma, 1983; Goma & Scott, 1981; Sage & Palmer, 1990). Users will grow

impatient if the requirements definition is stretched out over a long period of time. If

concrete progress is not demonstrated to users, they may lose confidence with the

process, creating unneeded tension and difficulties between users and designers.

Prototyping is a useful technique to address the requirements determination problems

mentioned earlier because:

• Since prototyping provides a closer representation of the system than the

other forms of requirements representation, it provides a simpler and less

ambiguous means of communication between users and developers. When

requirements are reflected through features in a prototype, conflicts in

requirements statements become more apparent. Prototypes allow both user

Chapter two: The evolutionary development approach 57

and developer to view requirements in a clear, less ambiguous form.

Conflicts can no longer hide in ambiguities of the English language or the

arcane vocabulary of computer terms.

• Prototypes allow alternative requirements to be tested and represented.

When given sets of requirements are in conflict, developers may be unsure

which set of requirements to implement. Prototyping allows the effect of

alternatives to be demonstrated and explored.

• Users get to see the system or subsets of the system as they appear,

reducing the uncertainty that the developer has misinterpreted user

comments.

• Subsystems, such as the human-computer interface, which cannot be

accurately represented with written requirements may be evaluated.

As prototypes are a cheap, flexible and simplified working model of a system with the

potential of use in an operational environment, conventional approaches have benefited

from building prototypes in different phases of software development: for exploration

of user requirements in analysis phase or experimentation of the different solutions in

design phase or as a testbed during implementation phase. Because in conventional

approaches the development process is organised in a sequential order, there is little

room for further modification on previously frozen stages. As a result some researchers

tried to incorporate the prototyping technique into the conventional approaches in order

to address some of their deficiencies. At any stage where we need a cycle of user

experimentation in order to provide a better understanding of the problem, analysts can

use the prototyping technique and benefit from user participation towards finding the

solution. Many organisations that adopt the life cycle model also use prototyping

(Boehm, 1981). However, the central importance of conventional approaches as a

support model to software engineering has always been widely acknowledged by many

developers (Musa, 1983; Riddle, 1984).

Chapter two: The evolutionary development approach 5 8

Despite the fact that the proponents of conventional methods believe that prototyping

is simply different practice that can be plugged into existing phases of the life cycle,

many researchers have mentioned that, by retaining the life cycle model we inherit its

shortcomings, which limit the benefits that can be realized from new paradigms

(Agresti, 1986). The conventional approaches are strongly influenced by a reductionist

pattern of problem solving. Conventional approaches follow the goal of developing

systems by achieving sub-goals through a phased-transition prescriptive sequence.

Although it provides a systemic analytical approach to problem solving, its lack of

synthesis is a fundamental weakness. Agresti (1986) mentioned this issue as an

imbalance between analysis and synthesis. He mentioned as an example early

experience of playing a game, even though not following all the rules, is a more

effective route to mastery than continuing to analyze the rules. So even by

incorporating prototyping in different phases of conventional approaches, we are still

fixed in the realm of static representation of specification and design. Conventional

approaches are associated with phased control points and intermediate products through

an analytical process, so they neither acknowledge nor exploit the balance between

analysis and synthesis.

In this respect, prototyping is fundamentally different from the conventional approaches.

It adds the elements of synthesis to the analytical approach to problem solving.

Prototypes are built to be changed, and development is iterative not linear (Angell &

Smithson, 1991). The basic idea of prototyping as a completely independent approach

to software development derives from the fact that it is a working model, so it can

evolve into a complete system. This idea introduced a new concept in information

systems development named an "evolutionary development" approach. This is in

complete antithesis to traditional approaches of information systems development

methods.

2.6 Evolutionary development approach

Evolutionary development is a subset of the prototyping approach, in the sense that

systems are designed to be changed. The main difference between the evolutionary

Chapter two: The evolutionary development approach 5 9

development approach and traditional prototyping is that evolutionary systems evolve

in use instead of experimentation. In the use environment, uncertainty is the result of

the inherent turbulence and dynamism of the environment.

Proponents of the evolutionary development strategy argue that information systems

once installed evolve steadily, invalidating their original requirements (Brittan, 1980;

Naumman & Jenkins, 1982). The purpose of the evolutionary approach is to introduce

the system into an organisation gradually, allowing it to adapt to the inevitable changes

that take place within an organisation as a result of using the system (Rzevski, 1984).

Evolutionary development is by far one of the most powerful ways of coping with

change. This approach requires the system to be designed in such a way that it can

cope with change during and after development. A design practice that does not take

the possibility of change into account can lead to severe problems; this is illustrated by

the following revealing extract from a description of the effect of organisational change

on an existing information system (Alter, 1980).

"... systems were strained badly or died as the result of corporative reorganisation...An

old version of a planning model was abandoned as a result of a reorganisation, only to

have its basic logic restructured years later...The conceptual design problem here is

building systems that are truly flexible..."

In evolutionary prototyping a system grows and evolves gradually (Nosek, 1984). For

this reason the first prototype usually does not implement the whole application.

Instead, enough development is carried out to enable the user to carry out one or more

tasks completely. Once more is known about these tasks and how they may affect

others, more parts of the system are designed and implemented so that a larger section

of the task domain may be covered. This allows a low-risk, continuous and gradual

development while the system is undergoing use.

Evolutionary prototyping starts with gradual development of requirements prototypes

and then allows the prototype to evolve and be adapted in the use environment. At

some point in time the final prototype is eventually transformed into a system.

Chapter two: The evolutionary development approach 6 0

Depending on how well the system design has survived the evolution process the final

prototype may serve as the production version, or a complete redesign might be

necessary to facilitate maintenance. Obviously the availability of appropriate tools is

vital. To cut down the redesign effort and be able to develop large systems, a highly

modular design which can cope with extension and contradiction (Pamas, 1979) will

prove highly effective (Hekmatpour & Ince, 1986).

In the evolutionary environment, although the development process cannot freeze the

turbulent conditions, it still can benefit from the ability of the prototyping approach to

cope with uncertainty and change in requirement analysis. The evolutionary

development approach benefits from prototyping in all stages of development, starting

with a limited definition of the problem while trying to provide an environment which

can continuously improve. Therefore, the approach benefits from the prototyping for

requirements determination at the early stages of the project and then shifts to a stable

change condition to improve prototype system. In this shift it tries continuously to

improve the system specification by introducing better fit prototypes.

Evolutionary development is a continuous improvement environment where prototypes

evolve in use instead of experimentation. As conventional life cycle methods have

mostly benefited from prototyping in the early stages of development, evolutionary

environment by starting from the limited definition of the problem, tries to provide a

continuous improvement environment. Having a stable strategy for the problem

boundaries and pinpointing the target system by denying the feasibility of any final

specification (Angell & Smithson, 1991) is the main contribution of the evolutionary

approach.

The idea behind the evolutionary development rests upon the understanding that it is

not necessary to have an articulated understanding about the real world to be able to

design artifacts. Human beings have the capability to work in the real world using tacit

understanding and by repetition of processes can gain experience and adapt to the

situation. As Floyd (1987) averred "we ought to think of design as redesign" not as a

"one-shot" process. A continuous improvement approach reduces uncertainty by

Chapter two: The evolutionary development approach

demonstrating the growing shape of the new system continuously.

6 1

A continuous improvement feature also reduces uncertainty by demonstrating the

growing shape of the new system. This feature acts as a concrete vehicle for user

involvement (Angell & Smithson, 1991), and users can develop more easily their

conceptual understanding about the problem. However, reliance is still placed on the

solidity of the users’ ideas and any misunderstandings and omissions should be

highlighted and clarified.

The continuous improvement environment in evolutionary development is a viable

strategy for information systems development in companies whose goals are relatively

stable and predictable. But changes in the real world business are dynamic and

sometimes uncontrollable. Those companies which need to compete in their industry

and survive with everchanging and highly turbulent goals cannot totally benefit from

this approach. This condition will be intensified by factors such as ill-defining the

problem domain and mindlessly adopting technological advances. Most companies now

have manifold goals and objectives as their corporate strategy. They are shifting from

the "OR" world of seeking for one of their goals at each time upward to the "AND"

world of having all of them at the same time.

Although the evolutionary development provides a promising approach in a business

change environment, the complexity of large systems and the inherent difficulties with

requirements prototyping imposes limits on evolutionary effort. From a technical

perspective, evolutionary prototyping lacks the controls needed for project management

and for reliable outcome measures. In addition, there is a lack of clear rules

determining when the prototyping process has reached its goals. To put it simply: the

user’s appetite for change could continuously grow and there is no guarantee that the

changes made are worth their costs.

From a social perspective, the high tech nature of evolutionary prototyping is of concern

for two reasons. First, there is the danger that communication and learning are

influenced by the ideas and values underlying the latest technological fashion and not

Chapter two: The evolutionary development approach 62

by genuine social concerns. Second, and more fundamentally, an inescapable limitation

of prototyping is that it treats information systems as technical systems which can be

discontinued without further consequence if deemed deficient. This is fallacious

(Hirschheim, Klein, & Lyytinen, 1995). The next section explains the difficulties

associated with evolutionary development approach when applied in complex and

turbulent business change environment.

2.7 Current difficulties with evolutionary prototyping approach

Some of the problems associated with evolutionary development are rooted in the

difficulties of using requirements prototyping in determining users’ needs. Others,

specifically the management of the evolutionary process, are more specific to the

approach itself. The business change environment escalates the problems of this

approach when applied in large systems, and at the same time an evolutionary approach

would seem to be the only effective option in development of large systems in business

change environment. The aim of this thesis is to investigate the major difficulties in

the evolutionary development approach, in order to enhance it and to enable the

approach to be used more efficiently in practice.

2.7.1 Problems with managing the implementation process

The most important negative side of using evolutionary development is that the

development process is more difficult to manage and control than conventional

approaches. Because of the issue of managing the implementation process in

evolutionary development, sometimes the underlying benefit of using this approach, i.e.

its simplicity, is completely lost where systems are extremely large and complex.

The difficulty of managing evolutionary development projects often stems from the lack

of a prescription as to how much of an organisation’s information requirements to

include in each iteration of the prototype (Alavi, 1984; Andrews, 1983; Dennis, et aL,

1987; Mahmood, 1987; Pliskin & Shoval, 1987) and knowing where to start and where

to go next (Carpenter, 1992). Without a blueprint of how to manage a prototype the

Chapter two: The evolutionary development approach 63

risk of ad hoc activities during the implementation process would be great (Albadvi &

Backhouse, 1994a). As Angell and Smithson (1991) described:

"... evolutionary approach explicitly addresses the problems of uncertainty and change

in requirements analysis. It permits much scope for user involvement by allowing time

for users to learn the evolving system. However, it may suffer through its own inherent

insecurity and uncertainty, in that developers and users cannot know how long the

particular version will survive before it is changed. Even more troublesome is the case

where the lack of planning has meant that there is insufficient flexibility (or upgrade

path) for the system to evolve..."

Project planning is one of the most important, and yet most difficult areas of project

management: the old axiom that "if you can’t plan it, you can’t do it" haunts project

managers (Angell & Smithson, 1991). Any effort towards development of information

systems introduces new practices to the organisations, changes in the way people are

used to do their tasks. In this sense information systems development means inducing

more changes to the business change environment. Therefore, planning the evolutionary

process has two aspects: planning how to manage and cope with an everchanging

environment and how to induce more changes (new information systems) to this

environment. The two sided nature of project planning is one of the most important

obstacles when using evolutionary development approach in large systems. This

obstacle raises the issue of conceptual clarification in development of prototypes.

Conceptual clarification should aim at formulating a theoretical foundation and at

assessing more finely the implications of different versions of prototyping. The

problem of conceptual clarification has led the research to focus more closely on the

other difficulties of evolutionary prototyping approach as discussed in the following

subsections.

2.7.2 Lack of a theoretical foundation for analysis of requirements statements

Using the evolutionary development approach without a model for assessing the

sustainability of the problem formulation can lead to unpredictable dynamic changes.

A prototype has been defined as a model of a system that is yet to be built. However,

Chapter two: The evolutionary development approach 64

defining a prototype does not explain how to go about building one (Maude & Willis,

1991). Providing a model to support development of prototypes is a crucial issue in

using this approach. Apparently developers who use this approach implicitly attempt

to conceptualise the intermediate targets as a model for their work. Such an attempt

tries to explain how to develop a prototype, but obviously never really succeeds. All

that can be realistically done is to explain the short term movements. What developers

need is a strategy that points the way: a model which can provide some guidelines as

to where to start, and where to go next, given the context of organisational goals. The

lack of a support model for planning a prototype is another important shortcoming of

prototyping. Without a clear strategy there is always a risk of being confounded by the

slippery slope of dynamic changes, where insecurity and uncertainty will be the result.

In reality the social nature of information systems, where different groups may have

very different requirements and expectations, means that it is impossible to specify

requirements objectively (Angell & Smithson, 1991). This and the practice of regarding

the machine as central to information causes the neglect of qualitative issues, the natural

result of the excessive emphasis on the technical requirements. Without a support

model with the ability to view the information system as a socio-technical system and

to reveal the fundamental place of people, evolutionary development may lead explicitly

to an implementation-oriented environment. This environment has the perspective of

beginning with the formal system instead of with the context and the purpose of the

information. This process will lead the implementation effort to focus on those system

specifications which are more amenable to software techniques. Because of this

weakness some researchers are advising the use of this method only for small to

medium size systems (Angell & Smithson, 1991; Hekmatpour & Ince, 1986; Land,

1982), where the scope of the problem, number of users and the list of goals and

expectations are reasonably manageable. Without a supportive conceptual model,

prototyping a large scale system through dividing it into subsystems may result in

diverging systems, difficult to integrate later on. The technical-orientation of

prototyping suggests a danger that communication and learning may be biased by

technological advances not by social concerns. A socially constructed conceptual model

can direct the effects of prototyping in the minds of the affected users. One stem

Chapter two: The evolutionary development approach 6 5

institutional safeguard resulted from such a model is that the role of organisational

actors within the informal system should not be forgotten in the enthusiasm for the high

tech gadgetry in prototyping projects. It is important that users gain access to adequate

means to support their design understanding and evaluation of prototypes. The

following subsection addresses this issue in detail.

2.7.3 Portray the requirements together with the prototype

The lack of techniques to view effectively original requirements during prototype

presentation can result in a less than satisfactory evaluation, because of information loss

and misunderstanding. This is another major difficulty with requirements prototyping

employed in the evolutionary development approach (Armour, 1993), which is the

subject of this subsection.

Information loss and a prematurely bounded system representation

The original requirements information from which a prototype is derived may come

from variety of sources and much of it may not be clearly understood by either

prototype developers or individual users. To prototype requirements, the developer

needs to prespecify the requirements into an informal specification (Balzer, T.E.

Cheatham, & Green, 1983). Initially captured requirements information needs to be

refined and organized into a form that prototype developers can use to develop a

prototype. But information is lost in this process. Requirements uncertainty becomes

requirements certainty. This process formalizes or narrows requirements at a very early

stage of the development. It is almost certainly an imperfect transformation. The

requirements prototype development is based on this more specifically stated set of

transformed requirements. During prototype evaluation users may not possess a clear

understanding of, or may have difficulty identifying, how the prototype does not address

needs.

When users are presented with a prototype for evaluation, they view the prototype as

the system, even though the prototype is used as a tool to elicit refined requirements

from them. Scharer (1983) cautions that during requirements prototyping, users must

be careful not to allow a prototype that may look like a final system to preclude

Chapter two: The evolutionary development approach 6 6

consideration of new alternatives or even to alter the basic system approach. Users

must not be cognitively bounded by the prototype representation. The prototype was

probably derived from an imperfect transformation, and the user may not recognise

needs incorrectly transformed. It is the prototype which is presented, not the originally

captured requirements information necessary to discover prototype correctness and

completeness.

Original requirements information is transformed into refined requirements that serve

as input to the requirements prototyping process. The prototype based on this refined

information is presented to the user for evaluation. Users evaluate the prototype that

reflects these refined requirements. If the original requirements were incorrectly

dropped or incorrectly interpreted during the initial refinements process, the user may

not have direct access to the information, and may incorrectly evaluate the prototype.

Information misunderstanding

Information needed to develop the requirements prototype is of necessity in a structured

format and may not be in its original, perhaps domain specific, form. The information

may not be as understandable to the users and therefore may not provide an accurate

representation of needs against which to evaluate the prototype. Davis (1982) found

that information needs elicited or experienced most recently are given more weight by

users than needs discovered or elicited earlier in requirements gathering.

Collected requirements information may be comprised of hundreds or thousands of

documents, collected over a long time frame. Information may not be known or may

be forgotten by the user. Problems with requirements information may be difficult to

determine because the information needed to help determine whether requirements are

incomplete, inconsistent, or ambiguous may be scattered across the multitude of

documents. Psychological studies involving memory have firmly established that recall

in memory tasks is much more difficult than recognition. If prototype evaluation is

performed without reasonably easy access to requirements information, users may have

an incomplete or inaccurate view of need. For users to evaluate accurately a prototype,

they may need access to the original requirements information used by developers to

Chapter two: The evolutionary development approach

generate specific prototype features.

67

Although prototyping is a method to bridge the communication gap between user and

developer, it still is more of a developer language than a user language. The developer

understands software systems and is comfortable with their concepts. A prototype is

a software system which the developer has created from an interpretation of user needs.

Users may not be comfortable or completely understand the software system and

therefore may be unable to determine whether it meets their needs. The prototype may

be a conglomeration of multiple and perhaps competing user needs. A prototype may

have many different users with differing requirements. Users may not comprehend

which functions of the prototype address specific needs or they may misinterpret

prototype features, since they cannot clearly map prototype features to specific needs.

Conversely, developers may not understand requirements information well enough to

reflect it accurately in the prototype. Users and developers do not always share a

common information base. Users view a system from two sub-models: the system itself

and their goals in relation to that system (Woodhead, 1990). Without accurate,

understandable, and complete information supporting the goals for the system, it will

be difficult to relate correctly these needs to the system.

Users may not be able to visualise how modified requirements can impact the system.

Bostrom (1989) found that although a prototyping approach can help the requirements

analysis process, there are still communication problems between users and developers

that are time consuming and frustrating. If users are unable to express needs or

understand how the prototype relates to these needs, the evaluation will result in

incorrect or incomplete requirements specifications.

Finally, we can view requirements prototyping evaluation from the perspective of a

group decision process (Fields, 1991; Kraemer & King, 1988), in which users and

developers brainstorm (Boar, 1984) or discuss ideas on how the prototype can be

modified to meet user needs. During the requirements phase it is important that users

and developers come to a consensus on the requirements used to develop the system

(Charette, 1986). Apart from organisational politics, the information and

Chapter two: The evolutionary development approach 6 8

communication problems described earlier alone may prevent such a consensus from

ever being reached.

The above problems highlight the need for requirements traceability when presenting

prototypes during evaluation sessions. Without the ability to portray original

requirements together with prototypes and efficiently trace back each prototype to its

original requirements, evolving systems may not lead to desirable integrity in the use

environment. Establishing a platform for clear understandings for users and designers

using an appropriate conceptual model would open up new opportunities to implement

some checks and balances against introducing obstacles and biases to rational

communication. This can be done by tying ideas and abstract concepts to concrete

circumstances in the workplace. Designers can support the evaluation and revision of

evolutionary prototypes by tracing them back to their associated conceptual models

which users have previously agreed upon. The ideal is to arrive at an enterprise-wide

conceptual model as a good support environment that facilitates high quality design

understanding.

2.7.4 Lack of an effective technique to assist in the discovery of requirements

features and in prototyping subsections of a large system

It may not be feasible to perform requirements prototyping on all features described in

the entire set of requirements statements in large systems. Determinations of which

requirements or groups of requirements need to be prototyped should be made. A

trade-off occurs between resources and time available to perform prototyping and the

degree of robustness and completeness that can be achieved in the prototype and then

reflected in the requirements specifications. The areas of greatest uncertainty (hence

greatest risk) should have highest priority when the prototyping effort has to be limited

in its scope. To prototype successfully a proposed subsystem, or feature and review it

with users for the purpose of requirements refinements, all the requirements relating to

these features must be collected, organised and analyzed for their complexity and

uncertainty. If a large number of requirements is present, manual classification can be

at best unwieldy and time consuming, and at worst impossible.

Chapter two: The evolutionary development approach 6 9

Simply collecting and grouping requirements poses a significant challenge to the

identification of requirements to prototype. Without a reliable method to select

requirements from a large set and cluster them into a group, the effectiveness of the

identification of requirements criteria to be prototyped is limited. A technique is needed

to identify and cluster together all the requirements presenting similar features, so that

robust prototypes can be developed based on all requirements containing references to

these features. Several methods currently being used for the identification of

requirements with similar features are discussed below (Armour, 1993).

Manual review

Designers or users can manually review the requirements to identify and group those

with specific characteristics. An individual or group of individuals reviews each

requirement and compares it with other requirements to determine whether they belong

together and at the same time whether they possess characteristics that make them

viable candidates for prototyping. When people review or compare large sets of

information, it is likely that they miss critical pieces of information or factors because

humans are unable to perform comparisons of large sets of information. This is

described as inexpert indexing and can lead to classification faults that include (Armour,

1993):

• the clustering of statements around concepts based on incorrect terms;

• the failure to recognize a statement containing a concept which needs to

be clustered;

• and the clustering of a statement that should be ignored.

Additionally, questions also arise from inconsistencies generated because different

individuals are performing the classification. Therefore, for a large requirements set

manual identification and grouping of requirements is not a viable method. We are

forced to look for automated approaches for requirements identification and grouping.

Automated keyword search

An automated search of the requirements set by keyword would produce identification

Chapter two: The evolutionary development approach 7 0

and grouping of requirements based on the requirements containing specific keywords.

A keyword based indexing approach searches a set of text-based documents using

keywords as characteristic indicators of text terms. An automated search will be faster

and more accurate in finding statements in situations that would have been too unwieldy

or time consuming using a manual approach. Many information retrieval systems

employ this form of indexing.

Automated keyword search also has its limitations. At the simplest level, a keyword

search approach is limited by the fact that it identifies and matches requirements

statements based only on exact comparison of each keyword to a word in a requirement

statement. The search will miss information that is related through synonyms or similar

phrases and most important through meanings and the semantics of words. It does not

have the robustness needed to identify statements related by conceptual similarity other

than through a direct word match.

Hypertext search

Creating a hypertext based set of requirement statements provides a search model that

links related requirements together via associative linking (Smith, 1991; Smith, 1993).

A hypertext based requirements document allows users to explore related requirements

by navigating the requirements through the links between statements, however, the

related concepts in each requirement still needs to be identified first, leading to the

limitations described in manual and keyword search approaches.

The inherent limitations of the manual, keyword, and hypertext methods lead to

difficulties in being able to examine thoroughly a requirements set. With large

requirements sets, manual review is not only inefficient, but human cognitive limitations

make it nearly impossible to do properly. Automated techniques, such as keyword

searches, address these issues but are limited to exact pattern match identification. A

hypertext structure provides associative links between related requirements, but there

is still the issue of how the links are generated. Any proposed conceptual modelling

to answer the shortcomings of evolutionary prototyping mentioned earlier needs to have

the capability of clustering together the related requirements and of reducing problem

Chapter two: The evolutionary development approach

complexity.

7 1

2.8 Problems statement and overview of the research approach

While the evolutionary development approach provides a promising development

method in a business change environment, the complexity of large systems and the

inherent difficulties with requirements prototyping imposes limits on evolutionary effort.

The above mentioned constraints place bounds on successful system development. One

difficulty addressed so far is how to support an evolutionary development approach to

trace back evaluation of prototypes based on accurate information, to identify viable

requirement candidates for prototyping and to cluster effectively the actual requirements

for identification. This difficulty explicitly addresses the state complexity problem of

design domains: how to represent the state of a design problem. As described in

subsection 2.3.1 there is another form of complexity, namely process complexity: the

process by which a design representation moves between its states. The complexity of

the process of developing evolutionary systems and of creating a design are yet further

difficulties with an evolutionary development approach which need to be addressed.

Both process and state complexities should be considered simultaneously when

proposing any solution to those difficulties.

A change approach for managing the development of information systems seems to be

a suitable direction to resolve the problem of process complexity. To achieve

acceptance in a change process, continuous interaction among all parties is critical.

Through interaction, characteristics of the object system emerge and become legitimised

through continuous modification. Systems cannot be designed in the usual sense, but

emerge through social interaction. The mechanism of evolutionary learning from

interaction with partial implementations of object system is the way technology

becomes embedded into the social perception and change process. Hence, relaxing the

problem of process complexity requires further support to resolve the problem of state

complexity. As mentioned earlier, state complexity can be tackled by focusing on

conceptual modelling or language modelling. The goal is institutionalising an ideal

speech situation which in turn validates an object system and modes of design and

Chapter two: The evolutionary development approach 7 2

implementation by emphasizing social learning during evolutionary systems

development.

A conceptual modelling method needs to be advanced in order to support evolutionary

development during the requirements prototyping phase. The support model will enable

developers to lay down a development strategy when dealing with large and dynamic

systems in business change environments. A model which pinpoints the way to develop

requirements prototypes is critical in developing a rational prototyping strategy. The

modelling method itself needs to have the following characteristics:

• The modelling method should be able to target the deep analysis of patterns of

behaviour of dynamic system under study. By doing this and by precluding any

procedural analyses which are most likely to be the subject of change, it would be

possible to provide supportive models for evolutionary development with relative

stability. The support model will be a base model for prototyping efforts during

requirements prototyping and also a reference model during evaluation of prototypes.

• Before a prototype is developed, the original requirements information is always

conceptually transformed into a refined form that is used as the specification for the

prototype. The prototype specification is a subset of the original information.

Consequently, the prototype is developed on a limited view of the original requirements.

Users then evaluate the prototype against a set of requirements specifications that may

not only be incomplete and incorrect, but in a form which users may have trouble

comprehending. These factors increase the difficulty of correctly evaluating whether

prototypes address system needs. The prototypes so developed may drive the user to

an incorrect requirements specification, in part owing to incorrect transformations and

lack of understandable requirements information with which to evaluate the prototype.

The modelling method needs to develop reference models as a refined form of

requirements information for evaluation of prototypes. The prototype specifications are

derived from this model and each prototype will be evaluated against the reference

model rather than against its specification. The model needs to be understandable and

modifiable by users and be based on their domain language. The modelling method

Chapter two: The evolutionary development approach 7 3

should provide transparency between requirements statements and working prototypes.

• Requirements at risk are ones that contain characteristics such as ambiguity and

inconsistency. The modelling method needs to address these characteristics and to

highlight any ambiguity and inconsistency. This provides a viable criterion for

identifying requirements for prototyping and targeting requirements with greatest risk

or uncertainty. A failure to identify systematically these requirements characteristics

can result in inherently high risk requirements being left out of the prototyping effort.

• The modelling method needs to be furnished in a way which can effectively group or

cluster requirements based on invariant features of requirements objects. The individual

requirements statements that reflect features to prototype may be scattered throughout

the maze of requirements objects. Difficulties arise when users and designers try to

abstract, group, and analyze statements that describe common features. It then becomes

problematic to find and identify requirements that benefit from a prototyping effort.

With large numbers of requirements, a clustering method can deliver a clustered model

of the design domain. Each cluster of the model is reflecting a prototypeable cluster

of the system. The clustered model should have the capability to be developed in

multi-user multi-analyst environment and to integrate the final system.

2.9 Conclusion

In this chapter the basic features of the design problem have been outlined with an

emphasis on requirements determination problems. Two generic problems of design,

the dual problems of complexity and uncertainty, have been recognised as the most

important hurdles toward final success in large information systems development.

Complexity and uncertainty will be increased in today’s business change environment,

which demands greater amounts of information exchange. We explained that

developers are trying to tackle these problems by introducing more efficient

requirements representation techniques, amongst which requirements prototyping seems

to be the best way to deal with change. The evolutionary development approach was

discussed as an approach to information systems development which has the potential

Chapter two: The evolutionary development approach 7 4

to cope with changes in information requirements. This approach, by using

requirements prototyping in the early stages of development and then by continuously

improving prototypes, has the potential to offer a dynamic systems development suitable

for the business change environment. The principal strengths of prototyping are that

it (Hirschheim, Klein, & Lyytinen, 1995):

1) sustains the motivation of users to participate in system development

thereby providing the most reliable information on requirements

2) overcomes some of the rigidity of the conventional life cycle model

3) allows the determining and validating of system specifications by

conducting experiments

4) supports human interaction, sense-making and the creation of new

meanings.

In section 2.7 we focused on difficulties when using the evolutionary development

approach in large, dynamic and information-based business environments. Therefore,

in order to develop large scale evolutionary information systems, the focus of the

research should be on two issues:

1) creating a method for managing the development process of large

systems which, while inducing change to the environment by developing

new systems, can also cope with existing changes in design environment

2) creating a complementary method that gives designers a conceptual

model which is relatively stable and risk sensitive, and has the facilities of

requirements traceability and requirements clustering.

C H A PTER

A theoretical framework for evolutionary development

Chapter Overview
For many years we bandied about terms like prototyping, rapid application development, evolutionary

development but without having a context for them. A study of related literature provided some insights

into the problems of the evolutionary development approach. Two critiques of the principles of

evolutionary development which underpin this conceptual practice have been discussed. We have argued

that managing the implementation process is problematic in the evolutionary development approach,

especially in regard to the changing business environments. The lack of a supporting conceptual model

as a frame of reference is also another major shortcoming of the approach. The central theme of this

chapter focuses on a proposal for a new theoretical framework for information systems design and

development. The new theoretical framework is based on planned organisational change theory and

semiotic theory in response to these two shortcomings. Section 3.2 begins with the theoretical perspective

of change and persistence. After defining different orders of change, it discusses process theories of

change in relation to information systems development. In section 3.3, Lewin's three-phased change

process model - unfreezing, moving and refreezing - is suggested as a model for managing

implementation process in evolutionary development. Section 3.4 presents the main pillars of semiotic

theory. This theory focuses on the users' own interpretations of what they do. This concept in

requirements analysis can be applied by carefully studying the users' communication during work. The

results of this can be used to design conceptual structures that fit into the language of users. From the

study of language and how it relates to work situations using semiotic theory, requirements analysis

emerges from discerning patterns of behaviour by organisational actors in the ways they behave in their

work situation. The semantic analysis technique, which is the subject of section 3.5, has been advanced

based on these concepts of the application of semiotic theory in requirements analysis. This section also

introduces the semantic agent-based modelling formalism and its graphical representation - ontology chart

- with the aid of a comprehensive example. Synthesis of both theories in one theoretical framework

suggests that semantic analysis technique accords well with features of the unfreezing and refreezing

stages of planned change model. Finally section 3.6 will conclude this chapter which lays down the

Chapter three: A theoretical framework for evolutionary development

theoretical foundation for a new perspective on evolutionary development.

7 6

3.1 Introduction

The enhanced role of telematics - the fusion of computing and telecommunications -

within the competitive strategies of firms heralds the arrival of the location-independent

organisation, in which location will no longer determine planning, control, reporting,

function and hierarchy, making the firm’s information systems resources the real definer

of organisational boundaries. The driving force behind such organisational

developments appears to be the rapidly changing nature of the environment in which

firms are operating, pushing organisations towards new forms of collaboration, both

within and beyond the boundary of the firm. The business environment will therefore

evolve from relative stability to continuous change, requiring consequent changes in

business style and focus. The significance of information systems in this process of

reorganisation lies in its increasing contribution to making viable and effective such

collaboration between geographically dispersed participants. The implications of such

reorganisation in information systems development are profound. Continuously

changing businesses will have very different information needs from those of stable

businesses. These needs will involve information systems in new kinds of activity in

support of the business. These changes may in turn affect the way the system is used

and therefore have implication for systems design. To improve the development of

information systems where functions and information are increasingly distributed, we

need to study new aspects of dynamic information systems development.

The central theme of this chapter constitutes a proposal for a new theoretical framework

for information systems design and development in changing business environment.

Chapter 2 provided some insights into the problems of the evolutionary development

approach. It argued the shortcomings of the approach as:

• The risk of ad-hocracv which is always to the fore when using the prototyping

approach, Therefore there is a need for planning the whole process of development

Chapter three: A theoretical framework for evolutionary development 77

• The lack of a conceptual model as a frame of reference for analysis and design during

the development process

This research proposes, in response to the two shortcomings noted above, a new

theoretical framework based on both planned organisational change theory and semiotic

theory. Adopting a contextualist framework, this research proposes semiotic theory for

exploring the content of change and for continuously respecifying the information needs

in relation to the context of evolutionary development. At the same time, the process

of applying the content of change to that context will be managed by using a planned

organisational change model. The aim is to propose a new perspective to evolutionary

prototyping for dynamic information systems development.

3.2 Organisational change theories

A major deterrent to successful evolutionary system development is change in

requirements and the problem of managing change. However, as discussed in the

chapter 2, the more serious dimension of this problem is essentially behavioral in

nature. This is because the introduction of any information system causes change in

the organisation; i.e. to individuals, to responsibilities, to the socio-political structure.

The purpose of the rest of this section and the next is to focus on the relationship

between organisational change and evolutionary information systems development in

dynamic environments. Towards this end, organisational change theories serve as the

basis for a theoretical framework for analysis and management of this relationship.

Information systems have attained a level of complexity that can transcend departmental

boundaries, allow communication between geographically dispersed individuals, change

roles and responsibilities and even shift the power structure (Krovi, 1993). Developing

information systems creates change conditions for organisations which must move from

one state to another. Any new state of organisational behaviour may require more

changes in the information systems itself. Analyzing the relationship between the

information system development process and change induced in the environment can

help to show what must be done to achieve the transition. Indeed, in some cases the

Chapter three: A theoretical framework for evolutionary development 7 8

justification for introducing the information systems relies on social change taking place

(Szlichcinski, 1983). It is predictable that major social and behavioral changes can stem

from the introduction of new information systems and software systems. Today,

software systems play a more pervasive role in the user’s work. In these circumstances

substantial changes in behaviour patterns occur quite quickly, well within the lifetime

of an installation, as users adapt to a system and learn to exploit its capabilities.

Change in business environment affects the development of information systems. It

follows that development of an information system, itself, will induce changes in the

workplace. Therefore, any attempt toward successful development of evolutionary

systems needs to be planned and managed in order to support both modes of change

satisfactorily. A carefully planned change approach is required for development of

each prototype before it is implemented, installed and examined by users. A search for

relevant support theories leads us to study organisational change theories and to start

with, we begin with a theory of change and persistence.

3.2.1 The theoretical perspective of change and persistence

Paul Waltzlawick et. al. (1974) have proposed a theory of change and persistence using

two abstract and general theories, the theory of Groups and the theory of Logical Types,

drawn from the field of mathematical logic. As they mentioned, even if the use of

these theories is far from satisfying mathematical rigour, they should be taken as an

attempt at exemplification through analogy which will help and clarify the subject.

According to the theory of Groups, a group is composed of members which are all alike

in one common characteristic, while their actual nature is otherwise irrelevant for the

purpose of the theory. The grouping of things (in the widest sense) can be a collection

of numbers, objects, concepts, events, or whatever else one wants to draw together in

such a group, as long as they have that common denominator and as long as the

outcome of any combination of two or more members is itself a member of the group.

The ordering of the world into (complexity intersecting and overlapping) groups

composed of members which all share an important element in common gives structure

to them. While it is obvious that no two things will ever be exactly the alike, this

ordering establishes invariance in the above-mentioned sense, namely that a

Chapter three: A theoretical framework for evolutionary development 1 9

combination of any group members is again itself a member of the group. Thus this

property may allow changes within the group, but makes it impossible for any member

or combination of members to place themselves outside the group. The basic concepts

of this theory provide a framework for thinking about the peculiar interdependence

between persistence and change, while it apparently cannot provide a model for those

types of change which transcend a given frame of reference. This is the idea that

Waltzlawick et. al. (1974) have turned into the theory of Logical Types. This theory,

too, begins with the concept of a collection of things which are united by a specific

characteristic common to all of them. As in Group theory, the components of the

totality are called members, while the totality itself is called class rather than group.

According to this theory whatever involves all of a collection must not be one of the

collection. This theory provides a paramount distinction between member and class and

the fact that a class cannot be a member of itself. While we are constantly faced with

the hierarchies of logical levels, the dangers of level confusions and their puzzling

consequences are ubiquitous. The phenomena of change are no exception. For example

as Bateson points out (1972), the simplest and most familiar form of change is motion,

namely the change of position. But motion can itself be subject to change,i.e., to

acceleration or deceleration, and this is a change of change or metachange of position.

One level higher than the first one. It can be seen that in order to change from position

to motion, a step out of the theoretical framework of position is necessary.

Pual Watzlawick et. a l (1974) found those two theories complementary and they can

equip us with a conceptual framework useful in examining concrete, practical examples

of change. According to this framework, Group theory gives us a framework for

thinking about the kind of change that can occur within a system that itself stays

invariant; but the theory of Logical Types is not concerned with what goes on inside

a class, i.e., between its members, but gives us a frame for considering the relationship

between member and class and the peculiar metamorphism which is in the nature of

shifts from one logical level to the next level up. As they mentioned, if we accept this

basic distinction between the two theories, it follows that there are two different types

of change:

• One that occurs within a given system which itself remains unchanged.

Chapter three: A theoretical framework for evolutionary development

They refer to this kind of change as first-order change.

80

• And one whose occurrence changes the system itself. This kind of change

is referred to as second-order change. This is thus change of change or

metachange.

Therefore, changes in the body of rules or norms governing the structure or internal

order of groups are the subject of second-order change level, where that groups are

invariant only on the first-order change level i.e., on the level of change from one

member to another.

Researchers from different fields have also made a distinction between two types of

change, specifically in the area of organisational studies and management. Although,

these definitions complement each other, there are differences. Most of these studies

have been classified in a sub-area of management known as organisational development.

The fields of psychology, sociology, management, and organisational behaviour have

contributed to the formation of an interdisciplinary approach to handling organisational

adjustment to change. Today organisational development is an evolving field which

emphasizes the importance of the human dimension in the act of introducing and

adapting to change (Desanctis & Courtney, 1983). From that school of thought, Greiner

(1972) has defined evolutionary and revolutionary changes. He named the evolutionary

change as the adjustments necessary for maintaining growth under the same pattern of

management in the organisations, while revolutionary changes are the serious upheavals

and abandonment of past management practices which involves finding a new set of

organisational practices.

The other definition for levels of change in organisational development studies is the

classification of change to Alpha and Gamma changes introduced by Golembiewski et.

al. (1976). In their words, Alpha change involves a variation in the level of some

existential state and Gamma change involves a redefinition or conceptualization. Other

definitions are similar: single loop learning and double loop learning (Argyris & Schon,

1986), equilibrium systems and far from equilibrium systems (Goldstein, 1988),

Chapter three: A theoretical framework for evolutionary development 8 1

incremental change and transformational change (Kindler, 1979), etc. (Krovi, 1993).

3.2.2 Third order change and evolutionary information systems

The two types of change identified by different researchers were introduced, as they

represent two extreme ends of a spectrum; i.e. one end deals with incremental change,

the other implies a radical change (Krovi, 1993). Some researchers have attempted to

define a new type of change as third level change. Golembiewski et. al. (1976) defined

a third level change as Beta change which involves a variation in the level of some

existential state, complicated by the fact that some intervals of the measurement

continuum associated with a constant domain have been recalibrated. However, when

Alpha and Gamma changes indicate the consequences of using the system, Beta change

refers more to the process of attaining a particular level of change. Bartunek and Moch

(1987) also introduced a new order of change to the body of existing literature about

organisational change. They called it third order change which requires the consultant

to play of more a teaching role, training the client system to distinguish among

schemata and develop and implement alternatives. In this type of change, the

instrument used to measure the change has itself undergone change (Krovi, 1993). This

level of change does not fit into the spectrum between first and second order change.

It is a circumstance where a continuous feedback loop operates between the change

agent and the environment to achieving a particular change. Managing these feedback

interactions toward a desired situation is the main target of organisational development

studies.

The three levels of change can be compared through their potential effects on the

environment. In this sense introducing information systems, or specifically computer-

based information systems, may cause different levels of change in the organisations;

hence we can study evolutionary information systems according to their impact on the

environment and the level of change they induce in different activities of the

organisations. This study leads us to classify evolutionary information systems as third

order information systems corresponding to third order change.

First order information systems development provides an incremental change and might

Chapter three: A theoretical framework for evolutionary development 82

create a minor change in organisational processes. The main objective of these systems

can be a change in the level of fine-tuning, fixing problems, making adjustments,

modifying procedures. The driving force behind developing these systems is improving

efficiency or even on an ad hoc request. This type of information systems is not

intended to modify any critical success factor of the organisations and can have low

potential effect on the individuals and also low direct impact on the environment. The

system has no lasting effect on its environment and the environment also has no effect

on the system. In this type of system a fully formulated, stable system can be

engineered to precise requirements. The traditional, highly structured and deterministic

approach to development coincide remarkably well with this situation. It is like

interaction within the members of a group.

In contrast, the second order information systems development might revolutionise the

process used to conduct the substantive business of the organisations. The main

objective of this system is fundamental and large-scale change, a transformation, a

refocus or reorientation. Computerised banking system and the introduction of

Automatic Teller Machines defined new success factors for banks and forever changed

operations in the banking industry. Here the information system has the dominant role

in inducing change and the environment follows the changes to achieving the next

logical type. This type of information system will modify the critical success factors

of organisations and provide high impact on the environment and will affect many

people. It is the situation of inducing change deliberately through the development of

proactive information systems. But sometimes second level changes are caused mainly

by factors which are external to the information system and its environment. In these

circumstances, such as a major reduction in market share, some sort of major crisis and

strategic change will be the drivers behind developing the information system in order

to facilitate the management of the change, or as a reaction to the external factors. We

can classify such changes also as second order information systems, not because of their

potential for inducing the second level of change to the organisations, but due to the

fact that they also become part of the causes of inducing second order changes to the

firm. They don’t have the total role of the change agent, but they are some part of it.

The external factors in the environment provide a continuous positive feedback for

Chapter three: A theoretical framework for evolutionary development 83

major changes to which the information system also need to adjust. From the

information system developer’s point of view these factors play the role of second order

change agent for both the information system and the organisation. Both the

information system and the organisation are in the reactive situation. The external

environment has the dominating role in the relationship between the formal system

development and its associated informal system. Strategic information systems are the

typical examples of this type of second order systems. Second order information

systems are indeed the focus of a subject known as business process re-engineering

(BPR). They are carriers of sweeping change.

Third order information systems development are the systems where the magnitude of

their ability to change is greater than first order information system, yet they neither

affect the critical success factors nor are revolutionary in nature. The need for this type

of systems is also mainly driven by operational efficiency considerations. But the initial

requirements are only relevant for developing the first version of system and during its

operational life the system will need to respecified until some stability occurs in the

relationship between information system and its environment. Third order information

systems are evolutionary in nature. The implementation of this type of evolving

systems are the most important area of using evolutionary approach through

prototyping. As an example, the introduction of electronic mail systems had an

organisation wide impact and affected some employees but did not change the whole

business. Third order information systems are evolving systems with a high interaction

between the system and its environment. While the system involves a change in the

level of some current state, the whole organisational evaluation and expectations

themselves undergo change. The organisational use of the information system evolves

through time while the information system specification and its impacts also evolve.

For example, the organisational use of electronic mail systems has evolved to support

interfirm electronic data exchange and the transaction and coordination costs have been

reduced immensely through this type of connectivity. This in turn, alters the

organisational boundaries and provides new arenas of demand for technology. This

type of information systems will need to be respecified continuously while the

evaluation of their associated impact is recalibrated.

Chapter three: A theoretical framework for evolutionary development 84

Management information systems (MIS) are also another typical example of the third

order information systems. The degree of difficulty associated with realizing the

intended benefits of these systems tends to be directly related to their complexity, which

are comprised of technical and organisational aspects. Generally, technical complexity

is related to the size of system, volume of data flow and system interfaces required.

But organisational issues refer to the dependence of the organisation upon the system,

its integration with other organisational systems, its impact upon the duties and

responsibilities of organisational members, and its impact upon socio-political structures

(Zmud & Cox, 1979). These technical and organisational complexities are rooted in the

interactions among planned information systems, among existing formal and informal

systems and external environment, while understanding the system requirements itself

is the subject of evolving change through the use of the system.

3.2.3 Evolutionary information systems implementation

Using the change approach for information system classification and concentrating on

third order information systems as an emerging demand in information system

development leads us to focusing more on the implementation process itself. The

discussion of information system development as inducing change to the firms can be

expanded to the process of change itself. This in turn will provide a set of guidelines

in order to manage and improve this process.

While it is practically a cliche to state that change in organisations today is a way of

life (Goodstein & Brake, 1991), several authors conclude that introducing a computer-

based information system into an organisation results in profound changes to the social

as well as technical fabric of the organisation (Boland, 1978; Bostrom & Heinen, 1977;

Ginzberg, 1978b; Zmud & Cox, 1979). Ginzberg (1978a) holds the view that it is the

intention behind many information systems projects to change the role behaviours of

organisational members. Boland (1978) has identified the change approach to

information system development as a protocol of implementation in comparison with

a traditional approach. While the traditional approaches place more stress on the

prescriptive implementation stages with a passive role for user involvement, the change

approach shows a greater concern for the beginning and ending stages of the change

Chapter three: A theoretical framework for evolutionary development 8 5

process, i.e., initiation, conversion, and evaluation (Zmud & Cox, 1979) with the active

participation of users. That is, while earlier approaches to implementation focused on

measuring and classifying, the change process approach focuses on managing the

process. It means user and system analyst have a role of joint change agents in order

to discover an appropriate change level through mutual teaching and criticism.

In order for participants to be able or willing to contribute to an implementation

process, they must understand the semantics of ongoing change and how the project will

affect their organisational role during and after implementation. Without such

knowledge, ignorance and uncertainty will lead to resistance to involvement and

eventual disassociation from the information system project (Dickson & Powers, 1973;

Dickson & Simmons, 1970). The system analyst cannot truly assume responsibility for

another person’s behaviour. Responsibility for internalizing required behaviour patterns,

therefore, must lie with the user (Bostrom, 1989; Bostrom & Heinen, 1977). Any

successful change needs an environment in which change will be accepted through the

active involvement of affected organisational members. While many information

systems implementation may radically alter the duties and responsibilities of

organisational members, they require conceptual training that provides an overview of

the future system as well as specific instruction pertaining to each individual’s personal

relationship with the system. These individuals must be informed of their roles in the

conversion effort as well as of what to expect during conversion. The resulting impact

of third order information systems implementation affects both formal and informal

relationships with, and attitudes toward, the organisation (Zmud & Cox, 1979).

The organisational environment is affected through development of evolutionary

information systems as informal systems are gradually formalized and organisational

functions are integrated. If the change process cannot involve responsible agents in

establishing a mutual trust among all participants about their future role so that a free

exchange of ideas become possible, organisational members may not fully understand

why change is occurring - often leading to misconceptions, misuse, and mismanagement

of the future system. These are issues which highlight the importance of management

of the implementation process in evolutionary development. This leads us to focus

Chapter three: A theoretical framework for evolutionary development 8 6

more on change process theories which are the subject of the next section.

3.3 Change process theories

A fundamental taxonomy of change theories includes process theories and theories

about possible levels of change. The former deal with how change can be attained and

the latter with what can be achieved (Krovi, 1993). The previous section looked at the

theory considering different levels of change. This section focuses on process theories

in order to introduce the planned organisational change approach for implementation

management of the third order information systems development.

3.3.1 Change Process theories and implementation of evolutionary information

systems

Implementation is inherently a dynamic phenomenon; the state of a given factor can

change or be changed in the course of the implementation process, and so no snapshot

view can possibly represent the entire process. We explicitly view implementation as

a process, and examine information systems implementation efforts in the context of

dynamic process models.

Ginzberg (1978b) proposed two theoretical bases as the source for dynamic process

models; planned organisational change and the adoption of innovation:

• Planned organisational change

There are two seminal models of implementing planned organisational

change related to the information system development process which were

proposed by Kurt Lewin (1952)/Edgar H. Schein (1961,1972) and Kolb and

Frohman (1970). The Lewin/Schein model suggests that any change effort

can be viewed as including three distinct phases: Unfreezing, Moving,

Refreezing. Each phase is concerned with changes in the balanced of forces

existing in the organisation, and the degree to which they foster change or

resistance to it (Ginzberg, 1978b). Unfreezing means creating the need for

change, Moving is choosing a particular course of action and implementing

Chapter three: A theoretical framework for evolutionary development 87

it. Refreezing entails bringing back the organisation to stability. The Kolb

and Frohman model of the consulting process (Kolb & Frohman, 1970)

considers the interaction between the client and the consultant and sees the

implementation process as consisting of seven stages (Krovi, 1993). This

seven stage elaboration of Lewin/Schein theory (Lewin, 1952; Schein, 1961,

1972) was proposed as a normative model of the implementation process.

Ginzberg (1978b) has compared the two models by matching the

corresponding stages of implementation.

• The innovation process

The innovation process approach consists of extended models of innovation

in organisation which are evolved from the early work in rural sociology

(Wolek, 1975). These models delineate a sequence of steps which are

followed in the process of adopting an innovation. In general, however,

they begin with the recognition that a problem or opportunity exists, and

then move on to developing an awareness of a potential solution, and

eventually reach a trial, then sustained, usage phase for the innovation

(Ginzberg, 1978b).

Although all of the above approaches were derived from separate line of inquiry, the

characterization of the process of change is quite similar in all of them. This type of

process-oriented view to implementing planned change leads us to consider the entire

evolutionary information systems implementation process - from initial inquiry and

change planning to installing and evaluating the changed state - rather than only the

action stage, which is sometimes viewed as synonymous with implementation. Many

of the problems which manifest themselves late in an information systems development

projects actually have their roots in an earlier stage (Ginzberg, 1978b).

3.3.2 Lewin’s change process model

According to an open systems view, organisations - like living creatures - tend to be

homeostatic, or continuously working to maintain a steady state. This helps us

understand why organisations require external impetus to initiate change and, indeed,

Chapter three: A theoretical framework for evolutionary development 88

why that change will be resisted even when it is necessary (Goodstein & Brake, 1991).

Kurt Lewin’s (1952) three-phased model of change - unfreeze, move (or change) and

refreeze - suggests that the first step of any change process is to unfreeze the present

pattern of behaviour as a way of managing resistance to change (Goodstein & Brake,

1991). Whatever the level of change involved, any information systems intervention

is intended to make organisational members address the need for that level of change,

to heighten their awareness of their own behavioral patterns, and to make them more

open to the change process. The first phase of change, entails the disconfirmation of

existing, stable behaviour patterns, establishing a "felt need" for change (Ginzberg,

1978b).

The second step, movement involves making the actual change that will move the

organisation to another level of response (Goodstein & Brake, 1991). This second step

is the action phase of the change effort. This requires the presentation of information

necessary for change and the learning of new attitudes and behaviours which are

necessary parts of the change (Ginzberg, 1978b).

The final stage of the change process, refreezing, involves stabilizing or

institutionalizing the change by establishing systems that make these behavioral patterns

"relatively secure against change", as Lewin (1952) put it. During the refreezing stage,

the organisation may also ensure that the new behaviours have become the operating

norms at work (Goodstein & Brake, 1991). Refreezing entails the integration of new

attitudes and behaviours into persisting patterns and relationships (Ginzberg, 1978b).

It is important to mention that the whole sequence of unfreezing, moving and refreezing

must be seen as an iterative process, and will likely be repeated more than once in any

sizeable change effort, such as the implementation of a large or complex information

system (Ginzberg, 1978b). Zand and Sorensen (1975), in their research on

operationalizing the Lewin’s (1952) theory, suggest that unfreezing is conducive to

moving, and moving would be conducive to refreezing, and all three stages are

positively correlated, as resistance to them will also be positively correlated. The result

Chapter three: A theoretical framework for evolutionary development 8 9

of their research also showed that there was a tendency for poor performance at one

stage to be followed by poor performance at the later stages.

Implementation of information systems in organisational context means moving from

a known present state to a desired future state. Therefore organisations must recognize

that the intervening transition state requires careful management, especially when

organisational change is large and complex (Goodstein & Brake, 1991). To facilitate

this transition state, often characterized by temporarily lowered effectiveness and

disorganisation, system developers must decide at the outset of a project when they are

going to be a change agent and interventionist. To intervene is to enter into an ongoing

work system for the purpose of improving its function (Bostrom & Heinen, 1977).

Being a change agent requires that the system designers really come to understand the

underlying business activities and make sure that the project is going substantially to

set the desired norms and rales within the organisational context. It necessitates users

involvement throughout the entire project, specifically regarding their contribution to

the job of implementation. It needs mutual understanding between users and system

developers.

The semantic analysis technique, derived from semiotic theory, can be useful in

supporting design understanding during the unfreezing and refreezing stages of change.

While requirements prototyping is mainly concerned with the change (movement) stage

of the planned change approach, semantic analysis technique provides an environment

in which change can be accepted through the conceptual training of those organisational

members affected. Open systems thinking, a planned model of managing change, and

the theory of multiple levels of change can be seen as elements of a new perspective

in information systems process management and implementation. The change effort

heavily relied on the understanding about the nature of organisations and changing

them. This leads to the suggestion of semiotic theory as the subject of the next section.

3.4 Semiotic theory

Semiotics, "the science of the life of signs within society" as Saussure (1966) defined

Chapter three: A theoretical framework for evolutionary development 9 0

it, can provide a theoretical framework for analyzing and understanding information

requirements. The common dominator of different kind of signs is that they stand for

something else than themselves. Our world is full of objects that are used as signs:

words, pictures, facial expressions, body postures, films, traffic lights, uniforms, etc.

When a sign occurs, two entities occur: an expression and a content. These two planes

of signs are sometimes called the signifier and the signified.

To give a simple example, tossing a coin on the table may not be a sign. If we just

want to get rid of the coin, then only one act occurs: tossing the coin. However, this

act can be used symbolically to settle a dispute. Then one side of the coin acquires the

content "I win" and the other side "You win", and now two acts occur simultaneously:

the coin is still tossed, but now accompanied by the element "You win". This double

entity is called a sign, or more precisely a sign relation, which is a relation between a

content (the signified) and an expression (the signifier). Both expression and the

content must be present in a sign (Andersen, 1991a).

Semiotics must necessarily view computer systems as sign-vehicles whose main

function is to be perceived and interpreted by some group of people (Andersen, 1991b).

In this context information systems are sign systems, while computer systems are

symbolic tools. Semiosis, the process of sign formation and interpretation, distinguishes

between two sets of characteristics of information systems as sign systems. The first

set comprises the surface structure characteristics of information systems. These

characteristics manifest the representation and form of signs. The second set comprises

the deep structure characteristics of information systems. These characteristics manifest

the meaning of signs and the agent who uses these signs to symbolise an intention.

Signs and their meanings are inextricably linked. More specifically, signs and their

meaning-in-use may be understood in terms of four levels; corresponding to the four

major branches of semiotics (Stamper, 1987): pragmatics and semantics (deep structure

characteristics of signs), syntactics and empirics (surface structure characteristics of

signs). The entire structure presupposes that responsible agents, which might be

individuals, groups, or larger organisations, have commitments, expectations and

relations within social frameworks. These reflect the ability of actors with thoughts to

Chapter three: A theoretical framework for evolutionary development 91

have an effect upon the world (Liebenau & Backhouse, 1990). These four levels of

emergent properties of signs, may be briefly summarised as follows, as they relate to

the information systems context.

At the most basic level, signs may be described in terms of their empirics, i.e. their

physical characteristics, including that of the medium used in their communication. At

that level, attention focuses upon the very limited set of questions about the repeated

use of sign in statistical terms (Stamper, 1987) what has, regrettably, become known

as information theory. In relation to information systems, empirics is essentially

concerned with signs as signals and codes. We can use empirics to analyze signalling,

computing and communication hardware requirements and the actual signals generated

by software instructions at the machine level.

The second level, i.e. syntactics, concerns the formal rules which govern the use of

signs. By formalizing, we provide rigor to the use of language by the constraints of

vocabulary, grammar, and rules which govern them (Liebenau & Backhouse, 1990).

With respect to information systems, this level is concerned with data model and

conceptual schema, operating system software, and programming language

environments.

The third level, i.e. semantics, deals with the issue of meaning, the relationships

between signs and what they purport to represent (Stamper, 1987), i.e. their referent.

As Liebenau and Backhouse (1990) have argued, what is crucially different here from

commonly held notions of meaning is the rejection of the idea of an intrinsic meaning

to a sign, and its replacement by a model which relies upon two agents or groups

interacting in a complex exchange whose effectiveness is tested in the actual behaviour

of the parties involved. With respect to information systems, the semantic level of

signs involves agreeing upon boundaries, identifying individuals, establishing and

maintaining classifications (Stamper, 1987).

The fourth level, i.e. Pragmatics, is concerned with the context of activity, and those

characteristics of people, organisations and acts of communication which affect

Chapter three: A theoretical framework for evolutionary development 92

information (Liebenau and Backhouse, 1990). With respect to information systems, this

level is concerned with cultural context and norms and with the intentional behaviour

of organisational agents in terms of which the meaning of signs-in-use may be

specified.

Both users and designers interpret the information requirements in an effort to

implement an information system, and the clashes between these two kinds of

interpretations and also among users themselves are an interesting topic. In fact, the

main purpose of applying semiotic theory into information systems development is to

contribute to a framework for connecting systems interpretation with system design

(Andersen, 1990). Semiotic theory focuses on the users’ own interpretations of what

they do rather than on methods and tools that pretend to give an objective account of

the work process. The users’ own representations can be investigated by carefully

studying their communications during work. The results of this can be used to design

conceptual structures that fit into the language of its users and to compose powerful

symbolisms. From the study of language and how it relates to work situations,

requirements analysis emerges from discerning patterns of behaviour by organisational

actors in the ways they behave in their work situation and talk about it. In this account,

language is seen as a social phenomenon and is described according to the functions

people use it for in real life. This makes semiotic theory suitable for describing

communication in work situations. In this respect, the semantic aspect of language has

the highest priority in requirements analysis.

The semantic analysis technique (Stamper, Backhouse, & Althaus, 1989), which is the

subject of next subsection, has been developed from the application of semiotic theory

in requirements analysis. This analysis technique respects actual language usage as the

basis of analysis.

Although in semantic analysis, the emphasis is on semantics, a set of fairly explicit

rules in a form of a modelling formalism has also been developed for relating meanings

to observable expressions and language to social structures. This means that semiotic

theory can be used in practical textual and communication act analyses to lift the notion

Chapter three: A theoretical framework for evolutionary development

of conceptual modelling from the syntactic to the semantic level.

93

3.5 Semantic analysis

It has been suggested that information system be considered as a set of, essentially,

arbitrary signs whose emergent properties, i.e. syntactics, semantics and pragmatics, are

intersubjectively negotiated between intentional organisational agents and, as such,

inseparable from the forms of social life which they sustain and in which they are

generated.

Semantic analysis is a technique for specifying the information requirements of an

organisation or business. By defining the business in terms of what actions and

behaviours are required of the persons that comprise it, a robust yet redefined

specification is created which can be used for understanding the organisation and

developing information systems. The technique deals directly with the vexing problem

of differences in meaning and can therefore be used to support the process of

interpreting.

The aim of employing semiotic theory in requirements analysis is to focus on

responsible agents who uses the sign to symbolise an intention. In order to signify and

express their intentions, the responsible agents (parties) involved must have recourse to

signs - explicit mechanisms - which permit the communication of intentions to take

place. It is at this point that we encounter the problem of meaning. The agent who

uses the sign to symbolise an intention must rely upon some social norms in his

working environment to interpret the sign, whether natural language, a gesture or some

symbolic pattern of behaviour (Backhouse, 1990).

Working in a business environment and solving the practical problems of day-to-day

business, responsible agents acquire a set of norms of perception, evaluation, cognition

and behaviour. Language does not enter into all these social norms but into a high

proportion of them, and amongst them are the language norms to which we shall refer

in requirements determination. Revealing the language norms should be a primary

Chapter three: A theoretical framework for evolutionary development 9 4

concern of any requirements analysis effort. The meaning of words depends upon the

contexts established by the actions to be performed. By placing the notion of semantics

in this context, we are able to focus our attention on the correct operational links

between words used to represent requirements and the things they refer to in the world

of actions. In this respect, semiotic theory supports a semantic analysis technique to

accommodate the varying operational meanings of requirements which correspond to

the linguistic norms of different subsets of the user population, who are trying to solve

different problems but are using the same words. In this analysis, we are looking at the

ways in which the requirements are linked operationally to the real world. Responsible

agents and their actions are the key aspects of an operational semantics.

Semantic analysis is a tool which can support analysts trying to represent a multi-

subjective reality and to detail the connections between the signs used in organisational

communication and the behaviour to which they refer in the world of action. The

analysis aims to provide a precise model of the information needs for the organisation,

by expressing in a relatively formal manner what the organisation actually does. Rather

than attempting to capture the data in the organisation, semantic analysis aims at

representing the responsible agents and the range of their possible behaviour and

actions. By specifying the underlying business tasks in this manner, the information

requirements of the organisation can be addressed without prior commitment to any

particular computer data model or business procedures (Backhouse, 1990).

Semantic analysis itself employs a semantic agent-based modelling formalism to any

given problem. The formalism provides a baseline for understanding the meaning of

requirement changes. It gives a conceptual model which can define the information

requirements. Unlike the mechanistic techniques that emphasise fixing and automating

an information system at the cost of neglecting the organisational nature of information,

semantic analysis technique has an organic, fluid and reconfigureable character. It

pinpoints the underlying prime tasks of organisations which are less likely to be the

subject of change. Performing semantic analysis requires that the analyst reconfigure

the domain under study in terms of the semantic primitives in the shape required by the

formalism of semantic agent-based modelling.

Chapter three: A theoretical framework for evolutionary development 9 5

At the simplest level, semantic analysis involves modelling all actions, behaviours and

responsible agents which characterise a given organisation and arranging them in a

sequence of existence dependency. Semantic agent-based modelling provides a dynamic

schema of relatively autonomous semantic units. These semantic units are graphically

represented in the form of a chart, namely the ontology chart. Each semantic unit in

an ontology chart is typically a specific thing in reality. This formalism by

incorporating a theory of meaning into the modelling grammar will make it clear how

the data in a software system relate to the actions to be performed in the business.

3.5.1 Semantic agent-based modelling

Performing semantic analysis entails the application to the problem of the semantic

constraints of a specification tool. Its formalism, semantic agent-based modelling, has

a vocabulary and a grammar of its own represented in a graphical form. The task in

semantic analysis is to take the signs used in discourse in organisation and recast them

within the specification formalism of semantic agent-based modelling. We may work

from textual material, observation or interviews with users. The aim is to produce a

representation of the business where the terms used to describe the organisation are

semantically normalised, that is, subjected to rigorous constraints that ensure no

ambiguity exists. Table 3.1 provides an overview of design constructs derived from

semantic agent-based modelling formalism. The suggested conceptual practice is based

upon two philosophical assumptions (Stamper, Backhouse, & Althaus, 1989):

• there is no reality without an agent, and

• the agent constructs his reality through his actions.

The first assumption says that there is no objective reality. One cannot separate the

information from the people that use it. Information is relative to the one that interprets

this information. Different people may have different views of the world. According

to second assumption, information is not some kind of mystical fluid that can be send

across telecommunication lines or stored in databases. Information is a semiotic sign

that affects the behaviour of the agent taking notice of it (Nauta, 1972).

Chapter three: A theoretical framework for evolutionary development 9 6

Table 3.1 An overview of design constructs in semantic agent-based modelling

Affordance class An affordance class is the basic unit of analysis in our ontological chart.
A real world is made up of affordances. All social and physical
environments afford certain ways of acting or behaving and each
behaviour the environment affords is an affordance. These affordances
are the primitives of semantic analysis. Each affordance is an instance of
a class affordance. We are mainly interested in affordance classes as a
matter of abstracting the problem domain.

Dependency Two affordances are said ontologically dependent, if the existence of one
of these is a necessary precondition for the existence of the other. The
affordance that is a precondition will be called antecedent and the
affordance depending upon its prior existence will be called the
dependent.

Period of existence The antecedent must exist during the whole period of existence of the
dependent, not just during the start or finish of its existence.

Agent An agent is a special type of affordance who is holding responsibility in
the world of actions. Agents are legally, or socially in organisational
terms responsible for any particular portion of real world activities.
According to the philosophy of semantic agent-based modelling there is
no reality without an agent, and the agent constructs his reality through
his actions.

Pseudo-agent Agents are in principle human: a person or a legal individual (legal
person) like a company who can hold responsibility in the legal or social
sense. However, formalism tends to veil responsibility by making it
possible to shift the onus onto a machine. Formalism simply embodies
the value of the formalizer. In this respect machine can be seen as
pseudo-agent which governed by rules developed by a responsible rule-
giver (agent).

Whol e-part A whole-part relationship is also an ontological relationship: a part
cannot exist without the prior existence of a whole.

Generic-specific A generic-specific relationship between different affordances comes from
the assumption of hierarchical groupings and inheritance of properties.
Sometimes, a certain way of behaviour is open to more than one of the
recognised agents.

Universals-particulars Affordances may be universal or particular. The universal affordance
connotes some invariant patterns of behaviour in a domain without
referring to any specific occurrences, whether actual or hypothetical. All
responsible agents (and pseudo-agents) are particulars and we can refer to
them particularly.

Individuation Particulars which can be measured and taken apart from a set, can be
individuated. When recording facts about particular individuals, we use
the notion of individuality which presupposes that we are able to
recognise the uniqueness of each discrete individual.

Identification Particulars are called identifiable, if there are a general form of
measurement, or determination. This measuring system can be very
abstract which can be used for referring to any particular particular.

Sign type Sign type is a semantic affordance which contains a recognisable pattern
or shape regardless of the physical medium in which it may be realised.

Chapter three: A theoretical framework for evolutionary development 97

The meaning of information can provide ontologically expressive semantic agent-based

modelling constructs through using a specific grammar. This grammar which is based

on the design constructs represented in table 3.1 consists of a basic unit of script

namely affordance (Gibson, 1977). For any single agent an invariant pattern of

behaviour is referred to as an affordance. The environment affords the agent this

behaviour. All social and physical environments afford certain ways of acting and

behaving, and these affordances are the primitives of semantic modelling. The

affordances have to be arranged in a manner whereby the dependency of one affordance

upon the prior existence of others is detailed. This ontological dependency gives rise

to the name for one representation of the resulting semantic schema: the ontology

chart. Ontology charts depict the range of affordances possible in any given domain.

Ontology charting based on the semantic agent-based modelling formalism will be

presented in subsection 3.5.3. But before that it is important to describe the key issues

in conducting a semantic analysis and its important characteristics which make the

technique viable in specifying user requirements in business change environment. This

is presented in some detail in the next subsection.

3.5.2 Key issues in semantic analysis

The model of information systems that is proposed in semantic agent-based modelling

is one that demands attention to semantics of the signs used by the participants. The

followings are the key issues in conducting semantic analysis and its formalism

(Backhouse, 1990):

• not inventing a new vocabulary

In using the terms that are normally associated with the work of an

organisation, the analyst maintains the established and natural signification

of the particular vocabulary that has developed in that context. By

introducing alien terms, often dictated by the limitations imposed by

operating systems upon the length of filenames, the analyst increases the

difficulty of communication, and the likelihood of ambiguity.

Chapter three: A theoretical framework for evolutionary development 9 8

• information as a social process

Information is the culmination of the process of communication, where the

participants have successfully achieved the appropriate interpretation of the

signs employed in any discourse. Data are signs in a message or recording

system whose referents are found in the actual organisation. Without a

context and an agent to interpret, information cannot result from data. We

are interested primarily in the content of the messages and records, i.e. in

the substantive concerns of the organisation and how to interpret them.

• subjective context

One model of an organisation yields only a view of that reality; the process

of semantic agent-based modelling may reveal several, possibly conflicting,

views. It may be difficult to agree upon on an objective picture of an

organisation and its activities. Semantic analysis seeks to identify who is

responsible for determining when any of the elements modelled in an

schema actually come into, or go out of, existence. In this way we are

placing responsibility to maintain semantic integrity within the domain

under study.

• responsibility instead of truth

For each affordance in the model of the organisation we will need to know

who is responsible for the realisation of it, who determines the existence.

In this sense we want to pin back the formal part of our model onto those

who have to accept the responsibilities which arise when affordances

become realisations, when the model gives way to realised instances.

Rather than truth as the underlying, but elusive, notion governing the

semantic integrity of what we define, we have instead that of responsibility.

• multiple definitions: negotiation

Close inspection of any large organisation will usually reveal that different

meanings are being attached to terms in common use throughout. One

department will have a different perspective from another on what

Chapter three: A theoretical framework for evolutionary development 9 9

constitutes the precise definition of a given term. When this occurs the

negotiation of meaning can take place. Triggering this type of negotiation

and resolving the ambiguities through finding responsible agent for

realisation of any actions and behaviour is crucial task of a semantic

analyst.

* any model has meta-level assumptions

Any analytical technique rests upon the underlying assumptions from which

it arises. These assumptions, sometimes referred to as the meta-model, are

automatically incorporated into any particular models which we construct

using that technique. The key question here is to what extent do the

underlying assumptions permit a penetrating analysis which can aid

managers in understanding the core nature of their organisations and in

defining the information requirements for any computer data systems they

need.

* substance not procedure

Organisational conventions and business procedures tend to change rapidly,

along with continual development in technology. Any business model

which incorporates procedure into the model will constantly have to be

retouched to cater for new contingencies (hence the software maintenance

backlog). Our objective must be to go beyond the procedural level of

dataflows and functional analysis, and reach down to, and represent the

substantive level of the business operation. In this sense the model of

information requirements remains independent not only of any physical

configuration constraints but also of any data constraints which derive from

current mode of business operations.

* reusable analysis

Where a piece of organisational behaviour has been proven over time to be

effective, it is not surprising that we can expect to reuse it in similar

environments. This can provide a powerful mechanism for tracing back

Chapter three: A theoretical framework for evolutionary development 1 0 0

each piece of software to the semantics of its underlying information

requirement within the application domain which will enable the

achievement of yet higher levels of requirements traceability and software

reuse.

• time

One universal facet of social and organisational life which is repeatedly

either ignored or mishandled by specification techniques is that of time.

Occasionally time is introduced as entity in its own right, as an

attribute/field, along with all other elements that specify the organisational

activity. Rarely is time handled at the meta-model level: modelling

techniques in general cannot represent the dynamics of the schema itself,

even though changes in the data serve to reflect changes in the real world

of the organisation. What is needed is an a priori assumption about

existence: a meta-model which assumes that all phenomena experienced by

knowing agents have a lifespan which is determinable by these agents.

3.5.3 Ontology charting

As said in subsection 3.5.1, semantic analysis technique focuses on linguistic categories

of signs and signifiers. The purpose of this analysis technique applied by the semantic

agent-based modelling formalism is to make an ontology chart of the domain focusing

on semantics and ontological dependencies. Ontology charts are a way of representing

a domain of behaviour, and are usually used to show the results from semantic analysis.

One result of a semantic analysis is that an organisation is represented as a collection

of sets of behaviour, shown graphically. The basic element of each set is a node set

in a network of behaviours. Each node represents a pattern of behaviour which persists

in the organisation, but the position of each pattern is important - what is to left on the

chart is behaviour that must be realised before what is to the right may be

accomplished.

We are imposing semantic constraints which specify the existence of requisites for any

given behaviour upon the representation in a way that closely resembles the logic of the

Chapter three: A theoretical framework for evolutionary development 1 0 1

world of action. In order to achieve or realize certain behaviours, other behaviours

must be realized first This concept of existence constraints is a concept of ontology.

To use the concept schematically gives us ontology charts (Backhouse, 1990).

The ontology chart is based on a very particular kind of relationship that we can

observe in the world around us: the ontological dependency relationship. The

cornerstone of this modelling relation is that two things are ontologically dependent, if

the existence of one of these is a necessary precondition for the existence of the other.

The thing that is a precondition is called the antecedents and the thing depending on

it the dependent. It is important to note the antecedent must exist during the whole

period of existence. Therefore, ontological dependency is not the same as causality

(Thonissen, 1990).

For example each country has different

regions. Region is an affordance in this

association. The sematic agent-based

notation for an ontological association is

a line between affordances. This type

of unary association describes an

ontological link between country and

region. Country is the antecedent of

region, because there is no region of a

country without a country. The country

affords this behaviour of having

different regions. As shown in figure

3.1, it is necessary to arrange the affordances to read from left-to-right according to

their ontological dependencies.

Ontological dependencies can only be either unary or binary association. As another

example, a citizenship can only exist during the period that both country and a person

co-exist. This type of ontological relationship is called joint affordances or binary

association. Country and person are the antecedents of citizenship; and citizenship is

Country

Figure 3.1 Unary association in ontology
chart

Chapter three: A theoretical framework for evolutionary development 1 0 2

their dependent because there is no

citizenship possible without a country

and a person. If the country drowns or

ceases to exist, the citizenship of that

country necessarily stops as well (as

with the establishment and dissolution

of the Soviet Union and the

establishment of the Ukraine, Russia and

so on). And the same for the existence

of a person as a citizen of citizenship

binary association (see figure 3.2).

It is necessary to explain that the

abbreviation of affordance is used in

this thesis instead of affordance class.

The notion of abstraction is at the heart

of definition for affordance classes. An

affordance class is an implicit property

of each affordance. By grouping

affordances into classes, we abstract a

problem. Abstraction gives semantic

agent-based modelling its power and

ability to generalize from few specific

cases to a host of similar cases.

Common semantic links are stored once

per class rather than once per instance. So ontology charts are class diagrams for

describing many possible instances of affordances. We can also have instance diagram

to describe how a particular set of affordances ontologically link to each other. Instance

diagrams are useful for documenting test cases (especially scenarios) and discussing

examples which help to resolve ambiguities. A given class diagram corresponds to an

infinite set of instance diagrams. Figure 3.3 shows an instance diagram of the class

RegionCountry

C itizen sh ip
Perso

Figure 3.2 Binary association in ontology
chart

Count ry#England' B eg io n tS o u th ea s t

C itize n sh ip # E n g lish .

Person* Johi

Figure 3.3 Instance diagram of a class
diagram

Chapter three: A theoretical framework for evolutionary development

diagrams in figures 3.1 and 3.2.

103

Class diagrams in the form of ontology charts describe the general case in modelling

a system. Instance diagrams are used mainly to show examples to help to clarify a

complex class diagram. The distinction between class diagrams and instance diagrams

is in fact artificial; affordance classes and their instances can appear on the same

diagram, but in general it is not useful to mix classes and instances.

In addition to affordance, there are other semantic agent-based modelling constructs

which were represented shortly in table 3.1. In order to begin to illustrate semantic

agent-based modelling grammar and how semantic analysis works, this subsection

introduces an example drawn from the banking system.

An example of automated banking system

The following problem statement for an automated teller machine (ATM) network

shown in figure 3.4 (adapted from: Rumbaugh et. al., 1991, Object-oriented modelling

and design, p. 151) serves as an example throughout the rest of this subsection.

The aim is to represent the concepts of semantic agent-based modelling formalism. It

shows the practicality and usefulness of semantic analysis and provides some guidelines

in developing ontology charts as the results of that analysis. Ontology charts are useful

both for abstract modelling and for designing actual systems. Ontology charts are

concise, easy to understand, and work well in practice. The formalism of semantic

agent-based modelling is illustrated by ontology charts to introduce the notation and

clarify our explanation of concepts in semantic analysis.

Problem statement: Design the software to support a computerized banking system

including both human cashiers and automatic teller machines (ATMs) to be shared by

a consortium of banks. Each bank provides its own computer to maintain its own

accounts and process transactions against them. Cashier stations are owned by

individual banks and communicate directly with their own bank’s computers. Human

cashiers enter account and transaction data. Automatic teller machines communicate

Chapter three: A theoretical framework for evolutionary development 104

a c c o u n t

a c c o u n t

a c c o u n t

ATM

c a s h ie r
s t a t i o n

b a n !
com puter

ATM

bank
com puter

c e n t r a l
com puter

ATM

Figure 3.4 ATM network (example adapted from Rumbaugh et. al.9 1991)

with a central computer which clears transactions with the appropriate banks. An

automatic teller machine accepts a cash card, interacts with the users, communicates

with the central system to carry out the transaction, dispenses cash, and prints

receipts.... (for a complete explanation of the example refer to appendix I)

Recasting the example into the semantic constraints

We can take this domain of activity and beginning to analyze it semantically. The

analysis starts from the collection of relevant material which defines the problem

situation. The above description provides a good starting point for analyzing all actions

in terms of their existential and ontological requirements. Now we need to separate the

Chapter three: A theoretical framework for evolutionary development 1 0 5

semantic units and put them in a list of agents and other affordances. Each affordance

indicates a possible behaviour that is open to an agent. In this context we can identify

a number of legally responsible agents:

- List of agents

We begin by listing candidate agents found in the written description of the problem.

The following list of agents as the most important semantic units can be drawn as the

first result in the study which may be neither completely correct nor complete.

Bank

Consortium of banks

Human cashier

Users

According to the philosophy of semantic agent-based modelling formalism there is no

reality without an agent, and the agent construct his reality through his actions. So the

ontology intimated here is that of a socially created world. The notion of agents as

special type of affordances who are holding responsibility is paramount in semantic

analysis. In analyzing the substantive prime tasks of the business, we need to know

who is legally or socially responsible (in organisational terms) for any particular portion

of business activities.

Representation o f agents

On the ontology chart (the modelling representation of semantic analysis)

the agent is entered as any other affordance except that we indicate it with

an underline so as to distinguish it from all other affordances.

agency structuring

The name of knowing agents should be that in normal usage in the

organisation, but we should avoid of using role names instead of the root

names of different agents. So instead of user or customer, we should have

been more general by saying all persons and all organisations may have

Chapter three: A theoretical framework for evolutionary development 1 0 6

some kinds of relationship with banks. So we refer to legal person instead

of user as the name for responsible agent in our analysis. Legal person

stands for any person or organisation.

- Pseudo-agents

An agent can take responsibility and so in this respect an agent differs from other

affordances. As in every case the notion of holding responsibility is paramount, agents

are in principle human: a person or a legal person like companies. A computer or any

other machine like that, for example, cannot be held responsibility in this legal or social

sense, and therefore will never be a responsible agent. Machine (in any form:

computer, ATM, cashier station,...) affords formal systems. However, formalism tends

to veil responsibility by making it possible to shift the onus onto a machine. Any

formalism simply embodies the values of the formalizer (Liebenau and Backhouse,

1990). ATM is a machine governed by rules developed by a responsible rule-giver.

Behind any machine which acts as a formal system are responsible agents who

diminished their responsibility through applying rules. In this respect machine can be

seen as a pseudo-agent which is restricted by rules instead of responsibility. In our

example we can list pseudo-agents as follows:

Computer (central computer, bank’s computer)

ATM

Cashier station (implies a computer terminal for each cashier)

On the ontology chart the pseudo-agent is entered as any other affordance except that

we indicate it with a double underline so as to distinguish it from all other affordances

and agents.

Not all semantic units are explicit in the problem statement; some are implicit in the

application domain and our general knowledge. Sometimes, we can understand that a

certain way of behaviour is open to more than one of the recognised agents.

Chapter three: A theoretical framework for evolutionary development 1 0 7

Generic-specific relationship

Generic-specific relationship between different affordances comes from the

assumption of hierarchical groupings and inheritance of properties. Specifics

inherit all properties of their generic. Figure 3.5 shows the ontology chart

representation of generic-specific:

— Entry station -

Cashier station
ATM

Legal person —
Person
Company

Figure 3.5 Generic-specific relationship in ontology chart

We can discover inheritance from the bottom-up analysis by searching for

affordances with similar patterns of behaviour and determiners. In our

example ATM and cashier station have the same pattern of behaviour and

function. At the fundamental level, they have common structures of

communication which can be defined for a generic affordance, i.e. Entry

station. They are subclasses of a super-class. This concept broadly resembles

the concept of sets and subsets from mathematical set theory. Now a

marvelous economy of expression is possible here. Generic-specific concept

is also clearly defined in the other modelling formalisms as generalisation

abstraction for sharing similarities among different entities and classes. It is

also sometimes referred to as or-relationship which means a relationship

between an entity and one or more refined versions of it.

Chapter three: A theoretical framework for evolutionary development 1 0 8

- Universals and particulars

When considering the affordances in any domain we need to be able to distinguish

between the universal and the particular affordance. The universal affordance connotes

some invariant pattern of behaviour in a domain without referring to any specific

occurrences, whether actual or hypothetical. All responsible agents are particulars to

whom we can refer to particularly. Most of the other affordances in any model will be

universals. In our example bank, Human cashier, legal person, entry station and

computer are particulars which we can refer to instances of them employing some

naming or coding device. But the notion of ownership of a computer by a bank is an

example of an universal affordance. A particular is always indicated in the ontology

chart by the device of adding a hash mark (#) after it. Where the affordance appears

in the chart without any hash mark, then it signifies a universal, whose instances cannot

be determined by unique identifiers, such as ownership.

Individuation and identification

As we discussed above, particulars are called identifiable, if there is a

general form of measurement, or determination. Determiners serve to

distinguish between instances of a universal affordance using different

criteria, i.e. different forms of measurement. These measuring systems can

be very abstract to be used for picking out any particular particular.

"Name" is a determiner of any legal person. It is also an affordance and

is ontologically dependent on the legal person which permits us to compare

and realise one instance of legal person with the others. A hash mark

behind an affordance indicates that the affordance is a determiner for its

antecedent affordance. Particulars which can be measured and taken apart

from a set can be individuated. When recording facts about particular

individuals, we use the notion of individuality which presupposes that we

are able to recognise the uniqueness of each discrete individual. In the

following figure (figure 3.6), name represents the determiner of the legal

person as an individuated affordance. Agents and pseudo-agents can

usually be individuated by some determiners.

Chapter three: A theoretical framework for evolutionary development 109

#naie

Bank #

tname

Legal person#
Person#
Company#

♦signature

Figure 3.6 Affordance determiners in ontology chart

Real world determiners can help us to refer to the referent of a particular

sign in reality. According to semiosis each sign refers to something in

reality for somebody, so the determination process, employing a system of

norms for measuring and comparing different referents of sign is always

subjective and dependent on the interpretation of agents. A signature is a

formal determiner of a customer for dispensing cash from his account with

the bank, while it is possible that a human cashier can uniquely determine

a permanent customer of the bank without referring to his signature. Here

the cashier applies different set of norms as a measuring procedure to

determine the identification of a customer. So it is not always possible to

model the reality with a complete set of determiners. Modelling the

referent of each sign in reality, without understanding the notion of

interpretation power of different agents, would be incomplete.

The notion of real world determiners of an affordance is also known as

attributes in other formalisms. Attributes can have values for each instance.

Unlike other formalisms with confusion between attributes and objects or

Chapter three: A theoretical framework for evolutionary development 1 1 0

entities, in ontology charting determiners are treated as other affordances

which always have a unary association with an individuated particular. We

should not confuse these real world determiners with internal identifiers

which some implementation media, such as databases, may require to have

a unique identifier, i.e. ID number for a person. Internal identifiers are

purely an implementation convenience and have no meaning in the problem

domain. Explicit identifiers are not required in an ontology chart.

- List of other affordances

In semantic modelling all those elements that constitute the structure of a particular

environment are affordances. Agents are special type of affordances, in that they have

the ability to realise other affordances. In particular they are capable of taking

responsibility for determining the existence of any affordances which are realised. The

analysis so far indicated a complete list of responsible agents and pseudo-agents who

constitute the most important part of semantic analysis. Now we are in the situation

to define a complete set of agents or pseudo-agents for the problem description. These

are the focal part of our analysis. Since these agents realise other affordances the

tendency will be for them to be found on the left hand side of the ontology chart, they

will be able to realise the affordances to the right.

It is necessary to mention that for any domain there will usually be a root agent who

is the source of all the affordances. Depending upon the extensiveness of the analysis,

the root agent might be the business or organisation, the state or society in general.

Ultimately all the realizations are traceable back to this root agent (Backhouse, 1990).

Figure 3.7 represents the result of analysis so far:

As we can see in the following semantic schema, state (or better to say intentional

community) as a root agent is precondition for the existence of all the other affordances.

They are called ontological dependent on state as their antecedent affordance.

Until now we focused on agents as unit affordances. Now we can continue our analysis

with so-called joint affordances: Affordances which can only exist during the period that

Chapter three: A theoretical framework for evolutionary development 1 1 1

— E n try s ta t io n *

C a s h ie r s t a t io n #
ATM#

Bank*

name

C onsortium *State#*

Computer*

♦name

L e g a l p e r s o n * —

Figure 3.7 Root agent, agents and pseudo-agents in ontology chart

its both antecedents co-exist. It is also important to mention that each affordance in

semantic analysis can have no more than two antecedents and if we found an affordance

which we think depends on more than two affordances as its antecedents, we always

can detail our analysis to break that relationship into two or more relationships between

the combination of one or two antecedents. If we forget about human cashiers and the

account and its transaction for a moment to keep this example as simple as possible,

we can find the following verb phrases directly from the problem statement. Some verb

phrases are also implicit in the statement:

Verb phrases:

Bank owns computer

Cashier stations are owned by individual banks

Cashier stations communicate directly with their own bank’s computer

Chapter three: A theoretical framework for evolutionary development 1 1 2

ATMs communicate with a central computer

Implicit verb phrases:

Consortium operates central computer

Consortium owns ATMs (consortium shares ATMs)

Banks are members of consortium (a consortium of banks)

The following ontology chart shows the result of semantic analysis so far. This

ontology chart of the domain presents itself as a semi-lattice-like structure. Because of

the difficulty of representing the complete analysis, it is usual to deal with smaller

subsets at any time which concern more restricted spheres of business activities under

investigation. Each subset is a cluster of the system under study and different clusters

are just naturally connected to each other via common affordances. The clustered

modelling capability of semantic agent-based modelling will be explained later in this

chapter (subsection 3.5.4). As a result of clustered modelling it is possible to gradually

develop an enterprise information model of the entire business.

— E n try s ta tio n ^

ATH# v .
C ashier s ta tio n *

Owns Owns-#name

Bank* I Commun
1cation

C onsortium *

Operates

C o m p u te r

Figure 3.8 First cluster ontology chart of the ATM network example

Chapter three: A theoretical framework for evolutionary development 1 1 3

As shown in figure 3.8, all joint affordances are universal which connotes the invariant

pattern of behaviour in the domain of interacting agents and pseudo-agents, without

referring to any specific occurrence. This usage is similar to that of entity occurrence

in the Entity Relationship modelling or the assumption of association between object

classes in object-oriented modelling.

The ontological dependency relation states that the antecedent precedes the dependent.

The dependent depends upon its antecedent for its very existence - if the antecedent

should cease to exist then the dependent no longer exists. A whole chain of

dependencies can arise with predictable cascade effects should one of the antecedents

cease. Affordances may have either one or two antecedents, and where there are two,

both must exist contemporaneously for the dependent to exist (Backhouse, 1990). So

through these chains of dependency, it is possible to build complex networks. As we

can see in the following simple ontology chart, lines of dependency connect the

dependent affordance with its one or two immediate antecedents. Only the root agent

(the first affordance on the extreme left of the chart) has no antecedents. For most

analyses the line may be drawn at the level of state as the root agent. The graphical

notation we use for describing the dependency networks make use of a strict left to

right order. A term connected to another term to its left, depends on this left term for

its existence.

Roles: modified agents

Often roles arise while a relationship exists, so that during its existence a

special role name applies to either or both of the antecedents; a bank

participating in an ownership relationship has the role name of owner,

whilst a computer as an asset in the same relationship might be referred to

as property. Roles are the special behavioral possibilities for every

particular affordance which is the antecedent to a dependent. The particular

that occupy the role is called role-carrier or modified agent. Not every

relationship we define has specific roles, but when necessary, making use

of role names can be highly expressive and economic. The role is an

invariant way of behaviour of a particular or individual agent which should

Chapter three: A theoretical framework for evolutionary development 1 1 4

not be confused with the role name which is the name that we use to refer

to the role. Role names are subject to change and are useful to modify the

representation of a particular affordance or agent in a particular course of

action. Representation of roles in the ontology chart requires no special

treatment. Where there are relationships in which roles apply, the role

name is written in parentheses along the ontology line that connects the

antecedent to the dependant. The role name applies to the antecedent. The

use of role names provides a more readable ontology chart through

representing modified agents in addition to agents or pseudo-agents. In the

above ontology chart shown in figure 3.8, bank and consortium afford

membership, and each particular bank in this relationship carries a role so-

called member. Member is a modified agent name for bank in that specific

relationship.

Role qualifiers

According to the definition of roles, new ways of behaviour open to a

modified agent as a particular affordance, the modified agent on its turn

may have affordances and also sometimes needs qualifier. Role qualifier

is ontologically dependent on the modified agent and can uniquely qualify

a particular role-carrier. For example, let us suppose that in the above

ontology chart membership of each bank in the consortium can be uniquely

qualified by a membership number as bank code. So bank code is a

qualifier for which its immediate antecedent is member as a role, although

in any case, the ultimate antecedent is, in fact, bank. The qualifier is a

special type of affordance that reduces the effective multiplicity of a role.

Consortium may have many banks as its member, but bank code

distinguishes among different banks every member in the consortium.

Consortium members can be qualified in this way. Role qualifiers improve

semantic accuracy and increase the visibility of navigating paths.

As computer systems are the main storage device for recording and

retrieving data, role qualifiers are the most popular access code for different

Chapter three: A theoretical framework for evolutionary development 1 1 5

agents when performing different roles. In this respect, role qualifiers refers

to a specific record in a storage system instead of something in reality. So

role qualifiers are similar to the functioning of keys in database systems.

As increasingly, this analogy is going to be widely used in our real life, role

qualifier can now uniquely qualify each modified agent in a specific role

(but it is not necessarily able to clearly identify its associate agent, as their

measurement procedure for qualification is restricted to a specific role of

an agent instead of himself. Still the problem of relating any modified

agent to its antecedent agent -role carrier- exists). Role qualifiers and

specifically numerical codes are very popular in reality as technology

surrounds our daily life. Nowadays, every person may carry different roles

with different qualifiers, i.e.; library membership no., employee no., student

no., driving license no., etc. It is important to reiterate that agent

determiners show what is the referent of a sign in reality, but role qualifiers

can only point to the referent of a specific instance of a particular sign in

reality in a specific role and mainly for the purpose of computer

technology. Role qualifiers cannot refer to the general referent of a sign,

but they refer to a particular instance of a class affordance in a specific

role. Name is the determiner of a person, but his employee no. might just

qualify him as an employee of a specific company and may not be useful

in qualifying the same person as a driver or a local library member.

Role qualifiers are always shown with a hash mark behind them. Role

qualifier and its associated modified agent in the ontology chart in an

abridged form are shown together in the parentheses with an undersign

between them as their separator, i.e. (member_#bank code) or

(communicator_#station code). The undersign represents the ontology

dependency of role qualifier to the role.

Ontology chart in figure 3.9 represents a refined first cluster ontology chart for the

problem statement in the example based on the analysis so far:

As we can see in the above chart, station code is qualifier of any particular ATM or

Chapter three: A theoretical framework for evolutionary development 116

— E n try s t a t io n '

ATM# v.
C ash ie r s ta t io n #

Ovns

S ta te

Consortium**

Opera t as Ovns

Figure 3.9 Role names and role qualifiers in ontology chart

cashier station in their communication with computer and bank code is also the qualifier

of any member of the consortium.

Now that we had one cluster of ontology chart, we can focus on the other parts of

problem statement about human cashier, account and etc.

- Whole-part relationship

The concept of generic-specific is also valid for cashier. This specific name represents

a responsible agent who gains his authority from the constitution of the bank where she

or he is employed. This comes from the knowledge of problem domain that bank

employs cashiers and that he is an authorised transaction handler in banking system.

So banks consist of a set of specific posts -generically known as positions- based on

their organisational structure. Cashier is a specific post under the generic affordance

such as position in the bank. Each position may be occupied by different agents who

are responsible for that position and should have employment relationship with bank.

Person with the employment relationship with bank has a role name of employee which

is also qualified by an employee code. Position is not an independent affordance and

Chapter three: A theoretical framework for evolutionary development 1 1 7

has a whole-part relationship with bank. It is a generic affordance as part of a larger

complex agent, banking organisation, which belongs to that certain whole. A part-

whole relationship is also an ontological relationship: a part cannot exist without the

whole. Notation for whole-part dependency in ontology charting is a line as a normal

ontological dependent affordances but with the addition of a large period to represent

the subdivision. So we denote them in the following way (figure 3.10):

P o s it io n #
Cashier#

S ta te

Holds(husan cashier)
Person#

Figure 3.10 Whole-part relationship in ontology chart

Figure 3.10 represents the second cluster ontology chart of the domain under study

which explicitly deals with the meaning of cashier within the context of banking

organisation.

The concept of whole-part dependency is similar to the treatment of aggregation in

other modelling formalisms like object-orientation. An aggregate is made of

components and components are part of the aggregate. An aggregate can be

semantically treated as a whole unit in different purposes, although it is made of several

lesser parts. Whole-part relationship is also sometimes referred as an and-relationship

in different modelling concepts.

Chapter three: A theoretical framework for evolutionary development 1 1 8

- Sign types and communication acts

The other verb phrases directly from problem statement and also some implicit verb

phrases related to them are:

Verb phrases:

Cashier enters transaction for account

ATM accepts cash cards

ATM interacts with user

ATM dispenses cash

ATM prints receipts

Bank computer processes transaction against account

Central computer clears transaction with bank

Implicit verb phrases

Customers have account(s) with the bank

Cash card accesses accounts

Figure 3.11, third cluster of ontology chart, shows that account cannot exist unless

there is a contract between bank and a legal person to comply the rules of governing

that account. In this relationship legal person has the role of customer. For each

separate contract with the bank, customer has an account with the bank. In this

relationship customer has the role of account holder and will be qualified in this role

by an account number.

Analysis of the above verb phrases show that there is a transaction as the result of

interaction between customer and cashier (and then between cashier and cashier station)

which we recognise it as cashier transaction. Also there is another type of transaction

as the result of interaction between user (or better to say cash card holder who might

not necessarily be the customer himself) and ATM which we recognise it as remote

transaction. Transaction is defined as a single integral request for operations on the

accounts of single customer. In order to have a better understanding of the meaning

of transaction, let focus on a specific instance of a transaction in real situation like

withdrawal. The transaction is expressed in the form of requesting for withdrawal

Chapter three: A theoretical framework for evolutionary development 119

C o n tra c t# A ccount*

S ta te *o

L e g a l p er so n *

P erso n #
Company#

Figure 3.11 Ontology chart for an account within the banking system

certain amount of money from the account of an account holder. This begins with a

communication act by a responsible agent. If we are going to analyze this

communication act, first we must consider what the necessary and sufficient conditions

are to determine whether an act of requesting for withdrawal money has to be

performed in a particular uttered request. We can identify a set of propositions which,

taken together, specify that an agent made a request for withdrawal. So each condition

will be necessary condition for the performance of the act of withdrawal and, taken

collectively, the set of conditions will be a sufficient condition for the act to have been

performed. Searle (1986) holds that a collection of some general rules and some

specific rules are needed to take care of those conditions. So here is how we specify

the conditions which constitute the rules for withdrawal money:

General rule 1: Normal input and output conditions obtain

This rule is intended to cover the conditions such as the use of a mutually

intelligible language, that the conditions of communication are not

extraordinary, and that those involved in the communication are prepared

seriously to cope with the kind of request to follow, (for example the

Chapter three: A theoretical framework for evolutionary development 1 2 0

request for withdrawal money is not a request made by an armed band of

robbers)

Specific rules:

These rules mainly deal with substance of the request and its content. They

identify the expectations of the people involved and approve that the request

is genuine. They must also provide the understanding that the uttering of

the request will oblige the customer to stand by his request, so it might be

accompanied by a signatory obligation. These are specific strict rules for

changing the obligations of one agent to another.

General rule 2: seriousness of communication act

The requester intends that the utterance of the request will produce a belief

that all the above conditions obtain by means of the recognition of the

intention to produce that belief, and he intends this recognition to be

achieved by means of the recognition of the request as one conventionally

used to produce such belief. This rule might be regarded as a part of

general rule 1, but it further explains what is meant by the communication

act being of serious intent.

General rule 3: understandable semantical rules of communication

The semantic rules of the dialect between two parties in the communication

act are such that the request is correctly and sincerely uttered if and only

if all the above conditions obtain.

This form of analysis gives us an opportunity to see in great detail how the pragmatic

character of a situation can be understood. We can see how a careful analysis of the

communication act in a conversation can provide us with an understanding of the

intentionality of the participants. Each transaction within the banking system means an

exchange of legal obligations between parties and needs to be considered very carefully.

Specific rules of the communication act must be formalised as well as the general rules.

This gives the banking system a firm basis on which to process the transaction without

Chapter three: A theoretical framework for evolutionary development 1 2 1

ambiguity. In order to formalise these rules which are mainly concerned with the

pragmatic properties of signs, we need to understand semiological (linguistic)

affordances. Semiological affordances are affordances that stand for realisation, and

provide other derived affordances. This gives us the understanding of the contextual

framework within which communication takes place, therefore we can build a firm basis

to approach the semantic properties of signs.

In semantic analysis there are two related kinds of semiological affordances encountered

in communication acts: sign tokens and sign types. A realised instance of a sign is a

sign token, such as a cash card or piece of cheque completed by an account holder,

whereas the pattern of the tokens are types and are realised as abilities to interpret the

token. For information systems analysis we are usually interested in sign types; the

sign tokens are the interest at the empirics level. In performing semantic analysis we

are concerned with discovering the meaning of the signs. To formalise the realisation

of a semiological affordance (a request for withdrawal of money), banking system

requires to apply very restricted interpretation of a complex sign types in a form of a

cash card (plus its security code) or a written request like a completed cheque as sign

token. In this way bank can imply that the account holder realises a sign type that

means he want to withdraw money. He is forced to use specific sign types to

communicate his request firmly and without any ambiguity, and to commit transactions.

Agents need to make special use of sign types when performing communication acts

with bank. When transacting business, frequent use is made of communication acts:

requesting withdrawal, asking for deposit, acknowledging money transfer between

accounts and so on. In every case the agent must use a sign token when effecting the

communication act, where the sign token has its referent as some pattern of behaviour.

Rules o f communication acts

Communication acts have two antecedents: one must be a responsible agent

and the other a sign type. An agent realises a sign type that has a specific

meaning (interpretation). He uses the sign type to communicate and assert

his action. If we wish we may analyze in detail the method of

Chapter three: A theoretical framework for evolutionary development 1 2 2

communicating - the form of the sign token - whether speech, writing or

body language. For semantic analysis it suffices to be able to represent the

meaning of the sign.

Representation o f communication act

Figure 3.12 shows the

general representation of

communication act in

ontology charts. The

general representation of

communication act implies

that communication act has

two antecedents: an agent

who uses a sign when

effecting communication act

and a sign type representing

some pattern of behaviour.

Sign types are ontologically

dependent on the agent to represent his intention. A sign type is

represented within quotation marks and also underlined. Examples of sign

token can be given under the underlined sign type. For example at the high

level "request for money" is a sign type. At the lower level spoken request

at counter or use of cash card at ATM is a sign token.

The following figure (figure 3.13) represents the ontology chart for transaction.

As it shows request is a communication act by legal person which is interpreted by a

pattern of behaviour expressed in a sign type like "transaction sign". "Transaction sign"

uses sign tokens like cash card or cheque. Transaction will be produced as the result

of this communication act in the form of a request and based on its type (cashier

transaction or remote transaction) will be entered in appropriate entry station.

Comorani.cation. a c tAgent»

'sign type"
sign toXen

Figure 3.12 Communication act
representation in ontology chart

Using sign types also enables us to use the notion of times (Albadvi and Lee, 1996).

Chapter three: A theoretical framework for evolutionary development 1 2 3

— E n try s t a t i o n 1

C a sh ie r s t a t io n #
ATM*

S ta te

e n te r e d
on

,#name

— L e g a l p erso n * R egu est*

P erson *
Company* T r a n sa c tio n #

" T ra n sa ctio n sign " C a sh ie r t r a n s .#
Remote t r a n s .#

Figure 3.13 Representation of transaction as communication act

Based on this type of semiological signs, time is not part of the objective reality. We

can distinguish between what exists in the here-and-now and what belongs to the world

of signs. All the other reality, whether past, future, distant or just mere conjecture, has

to be constructed from parts of agent’s present reality. When an agent is able to carry

forward memories from the past to the present, this is similar to a semiological ability.

Sign types can be used to bind together events at different times (Backhouse, 1990).

Authority in communication act

An agent is said to have authority for matters for which he can take

decisions. When we have a complex sign type representing a rule,

realisation of the sign type is an interpretation of rules made by a rule-

maker. Therefore uniform interpretation of a rule like "transaction sign" as

a complex sign type in a communication act must be the responsibility of

an agent as rule-maker. So every sign type must have an authority as a

component to interpret it. In our example bank authorities are rule-makers

for "transaction sign" which is used in the form of sign tokens, i.e. cash

cards, by customers. The representation of authority for sign types in

Chapter three: A theoretical framework for evolutionary development 1 2 4

ontology chart is by means of @ sign after the sign type, followed by the

responsible rule-maker for that sign.

The following figure (figure 3.14) represents the fourth cluster of ontology chart of the

domain under study which also completes our semantic analysis for this problem.

— Entry s ta t io n * —

C a s h ie r s t a t i o n #
ATM#

S ta t e
e n te r e d

on
.♦name

L egal person*

P erson*
Company#

T ransaction#
Cashier trans.#
Remote t r a n s . #

" T ra n s a c t io n sicrn11
Cash card

Cheque

Figure 3.14 The notion of authority in communication act

Implicit features of ontology charts

There are two important implicit feature at every node of an ontology chart. It is

necessary that we mention them here before closing this subsection. They are

recognised as (Backhouse, 1990):

• Start and finish times

The ontology chart shows how affordances depend in their turn upon the

existence of their antecedents; time is a universal parameter measured in

terms of the existence, from start to finish, of any affordance. Surrogate

table is a device to record antecedents of any dependent affordance. In this

table there are also two separate columns for the start date and finish dates

Chapter three: A theoretical framework for evolutionary development 12 5

of each affordance. We will discuss the surrogate table fully in charter 8

of this thesis. Part of the task of the semantic analyst is to attempt to

complete the entries for start dates and finish dates in the surrogate table.

For universals there will be great difficulty in giving start dates, but for

particulars, it is less problematic. Particular persons have their birth dates

and these are their start dates. Where we do not know this information we

are continually confronted by the blank entry that reminds what we must

yet discover. When searching for this information we have the aid of

knowing who is the responsible agent for determining the start and finish

of each affordance. This leads to second feature of ontology charts.

• Agents, responsibility and authority

Realising an affordance must be the responsibility of an agent who has the

authority to determine whether it exists or not In the simplest of cases this

is when the agent uses his judgment to decide. Responsibility is created

when decisions are made. If nothing is decided, there is no responsibility.

An agent is said to have authority for matters for which he can take

decisions. So authority is different from responsibility, the authorised agent

has the freedom to take the decision or to just leave it. Responsibility is

applied authority. Every affordance in ontology chart must have an

authority as a component. This is sometimes (if the analyst thinks it is

necessary) shown by an @ after the affordance followed by the name of the

authorised agent. But it is necessary to have the name of responsible agents

in surrogate tables in separate columns for each affordance. For each of the

affordances that populate the domain of our analysis, we need to know who

takes responsibly for deciding the existence of each affordance. In some

cases there will be rules or norms which govern the process of deciding the

start or finish dates of some instance.

It is possible to transfer authority. Very often in organisations, decision­

making is delegated, because the agent cannot possibly handle all the

decision making on his own. Very likely because of geographical reasons

Chapter three: A theoretical framework for evolutionary development 1 2 6

or of insufficient capacity. When authority is delegated, attempts are made

to make the decision making more uniform across the several subordinate

decision makers. For this purpose, norms can be used. The original

authority makes a norm (a complex rule) and is responsible for the contents

of this norm. But even here the rule will eventually have to be interpreted

by some person or persons. For any particular realised instance there must

have been an agent responsible for interpreting the rule made by rule-

maker. It is possible to have different responsible agents for the start and

for the finish. In the context of our example about bank account, a bank

clerk may have responsibility for the opening of an account whereas closing

an account might be done only by the express permission of the manager

and customer both.

Realisation of instances of each affordance class in ontology chart is described by

norms. Norms are a way for describing the rules about when affordances start and

finish. Starting and finishing, together with responsible agents to realise them, are the

only things that can happen in semantic analysis, but using these two possible events,

very complex norm structures can be built.

3.5.4 Subject area Clustering concept

Subject areas, sometimes called semantic collections, are an important complexity-

reducing concept of semantic analysis. Subjects are particularly important to rapid

development of systems because of strong enhancement they provide for analysis reuse.

Reused ontology charts, when they are well developed and have been implemented in

a powerful CASE (Computer Aided Software Engineering) environment with the

capability of easy modification, make excellent free semantic components for reuse in

new systems.

Reducing complexity through subject clustering

The information model of most real life systems contains hundreds of entities or object

classes. Such models will be very difficult to manage on a computer screen using

CASE tools, because designers will be able to view only a small section of the model

Chapter three: A theoretical framework for evolutionary development 1 2 7

at any one time. Reviewers and users looking at such models will find them

inaccessible and intimidating. There will be difficulties in handling such models from

analysts to users and designers, designers to programmers, and developers to

maintenance programmers.

The structured approaches were, however, very good at managing specification

complexity through hierarchical decomposition of dataflow diagrams. This was both

good news and bad news for rapid prototyping of system clusters. The good news was

that each page of a hierarchical set of dataflow diagrams could be presented in an easily

understandable form on standard notebook size paper. The bad news was that

modifying the hierarchy of pages during prototype iterations was unproductive and was

a configuration management nightmare. Other than the context diagram (dataflow

diagram level zero), where system external interfaces were specified, and primitive level

diagrams, where the actual functionality was specified, the middle levels represented

only an artificial packaging. Dataflow diagram packaging involved complex rules for

balancing, levelling, and partitioning of dataflows and processes, work that had to be

modified when system functionality changed during prototyping. CASE tools are

helpful in reducing the amount of effort required to do this rework, but do not eliminate

it; semantic analysis does.

Subject clustering presents a nice compromise between the inaccessibility of large, flat,

object-oriented information models and the unwieldy, difficult to modify, long-legged

levelling of elaborate dataflow diagram decompositions. A subject area is a collection

of ontologically bounded affordances that all relate to the same general area of the user

work situation. They are semantically related and as a collection convey an integrated

meaning of a substantive subject. Ontology charting can be reviewed one subject at a

time. An analyst working with a CASE tool can work on one subject area at a time.

Small teams of programmers can prototype single subject area incrementally or

concurrently. The printout of a single subject area will probably fit on most desktops.

There are no arbitrary rules (such as seven entities plus or minus two) for the maximum

number of affordances in a subject area as with structured approaches. Subject areas

do not create balancing and partitioning problems for rapid prototypers. Balancing is

Chapter three: A theoretical framework for evolutionary development 12 8

not important in ontology charting, because data does not flow here, it is signified by

rigid signs. Once subject areas have been specified, they tend to be very stable; they

do not go away. New affordances can be added to subject areas in prototype iterations,

and additions never jeopardise the underlying soundness of the ontology chart. But

affordances rarely migrate from one subject cluster to another. This is because subject

areas are defined by the semantics of the affordances and their ontological

dependencies, an entirely different concept from structured process partitioning.

Analysis reuse at the subject level

Whether units of analysis, i.e. entities or objects, which are common to two different

problem domains are a good strategic target for reuse depends on the semantics of their

particular subject areas. In other words, whether two object classes or entities with the

same name are really the same depends on their semantics and connections with other

objects or entities. In semantic analysis each subject area contains a number of

ontologically dependent affordances whose connections to each other are strictly

bounded by existence limitation. They cannot exist without being connected together

and there is no arbitrariness in choosing affordances within each subject area. They are

just bound together as the result of their natural ontological dependency. No other

analyst can have them differently. Therefore, if a problem domain has an entire subject

area in common with an existing problem domain, then all of the existing analysis in

that subject area can be reused. As each subject area is a natural outcome of semantic

analysis for related affordances, there is no artificial clustering and semantic subject

clusters can resolve some of the troublesome issues we currently experience in attaining

high degree of analysis reuse. Use of natural clustering characteristic of semantic

analysis would make for easier comprehension of the analysis reuse target and provide

for the possibility of reusable subject area collections stored in a public repository

systems within an enterprise analysis level. The following figures (figures 3.15, 3.16,

3.17 and 3.18) represent subject areas for the example in previous section. No special

effort needed to define subject areas: they have emerged naturally from the process of

analysis and ontological dependencies of different affordances to the main agents

recognised in the first analysis.

Chapter three: A theoretical framework for evolutionary development 1 2 9

— IJntrjr^jstatiom

ATM#
Cashier s ta t io n #

Owns Owns

S ta t e d

Consortium-

Computers

♦nameLegal p e r so n # —

Person#
Company#

Figure 3.15 Cluster one: Basic communication relationships

— E n try s t a t i o n * —

C a sh ie r s t a t i o n #
ATM#

Bank*

o n so rtiu m #

S tate

Computer#

Holds
(human c a s h ie r)

— Legal person#

Figure 3.16 Cluster two: Cashier representation

Chapter three: A theoretical framework for evolutionary development 1 3 0

— E n try s ta t io n ;

C a sh ie r s t a t i o n #
ATM#

♦ ty p e

C ontract#- A ccount#

C onsortium #

Computer#S ta te
♦name

— L e g a l p e r s o n * —

P erso n #
Company#

Figure 3.17 Cluster three: Account representation

— E n try s t a t io n * —

C a sh ie r s t a t io n *
ATM#

#name
Bank#

C onsortium *S ta te #

Computer# e n te r e d
on

,#name

L eg a l p erso n * R eq u est#
T r a n sa c tio n #

P erso n #
Company# C a sh ie r t r a n s .#

Remote t r a n s .#T r a n sa c t io n s ig n Bank
Cash card

Cheque

Figure 3.18 Cluster four: Transaction sign type

Chapter three: A theoretical framework for evolutionary development 1 3 1

Guidelines for specifying subjects

Analysis reuse at the subject level will be encouraged to the extent that analysts do a

good job of subject clustering. The following are some suggested criteria for subject

clustering. The objectives of the criteria are examined one at a time to discover what

purposes will be served by modelling according to these criteria.

• Considering loose coupling of subject areas

It means minimizing the number of connections between the affordances in

the subject area being defined and all other affordances in the model.

Limiting those connections to the responsible agents in the most left hand

side of the ontology chart.

If affordance classes are mostly connected to other affordances within the

same subject area and rarely connected to affordances in other subject areas

(except root agent and its immediate dependent agency structure), they are

contributing to the semantic definition of the subject area. The whole

subject area will make more sense to a browser to the extent that this is

true. Coupling always reduces reusability. The more tightly coupled a

subject area is to other subject areas within a model, the more difficult it

will be to reuse in a new problem domain. If a subject area has a minimal

coupling through its affordances in other subject areas within a model, there

is a good chance that the entire subject area collection of affordances will

be easy to reuse in other problem domains with similar requirements subject

matters. Loose coupling reduces the ripple effect where modifying one

item may cause defects in others. It also makes system specification easier

to follow and understand. The above example demonstrates a very good

example of loose coupling of subject areas.

* Considering the contribution to the semantic definition of the subject

area

The other dimension of the guideline for minimal coupling between subjects

is that we need to include an affordance in a subject area only when it

Chapter three: A theoretical framework for evolutionary development 1 3 2

makes a contribution to the semantics of the subject area. It is natural to

see that if we have affordances within a subject area that were only

included for ontological convenience, the analyst cannot figure out where

else to put the affordance. This will also make it easy to name the subject

area - the test for violation of this criterion. If analyst has trouble naming

the subject area, it will have a reduced chance of appearing on a browsing

potential reuser’s hit list. It will have a reduced chance of being a good fit

in any other problem subject area.

• Considering analysis for reuse

The analyst needs to identify subject areas that may exist in any other

problem domain. It will not take extra effort to identify those subject areas.

It should be second nature to a good analyst. Subject areas that make very

specific assumptions about a given problem and have very specific

semantics will tend to become isolated in a specific problem domain.

Semantic analysis represented in the ontology chart can have a much longer

life expectancy than other analysis techniques because of the extensibility

and easy modifiability of the chart. Therefore, if the analyst identifies those

common subject areas with a chance for reuse, the life of an ontology chart

will be long enough to be reused again.

It seems to us that in semantic analysis the comprehensibility of a subject area must be

traded off for the elimination of a hierarchical functional decomposition proposed in

other analysis techniques. Hierarchical functional clustering, which is mainly handled

by syntactical analysis of functions within a problem domain, builds a ripple effect into

a system and makes prototype iteration unnecessarily difficult.

3.6 Conclusion

The purpose of this chapter was to suggest a new theoretical framework for

evolutionary development approach based on planned organisational change theory and

semiotic theory. The semantic analysis technique can be harmoniously applied within

Chapter three: A theoretical framework for evolutionary development 1 3 3

the Lewin’s (1952) three-phased model of change process: unfreezing, moving and

refreezing. Semantic analysis is introduced as a technique for specifying the

information requirements which can support the process of determining meaning and

interpretation within the organisational context. Through its formalism - semantic

agent-based modelling - and its graphical representation, ontology charting, the analyst

is able to produce a representation of the business where the terms used to describe the

organisation are semantically normalised, that is, also subjected to rigorous constraints

that ensure no ambiguity exists. By specifying the underlying business tasks in this

manner, the information requirements of the organisation can be addressed in the form

of the invariant patterns of behaviour by responsible agents. It gives a conceptual

model of the business which is consistent and less likely to be subject to change. All

these characteristics suggest that this analysis technique can be useful in unfreezing and

refreezing stages of planned change process.

The semantic analysis technique also has an important complexity reducing concept,

namely a subject area clustering characteristic, which makes the technique easily

applicable to large scale and complex business problems. By emphasising semantic

ambiguities, semantic analysis focuses on those subject areas with greatest uncertainty,

hence greatest risk and which should therefore have priority when the prototyping effort

has to be limited in its scope. Each prototyping effort can be concentrated on a specific

semantic collection of a subject area in an evolutionary development approach. The

semantic collection and grouping of requirements with their consistent ontological

dependency characteristic suggest a major advance in the effective identification of

requirements to prototype.

Semantic analysis facilitates the negotiation of meanings and the mutual understanding

needed for the change process in different stages of implementation, from unfreezing

through refreezing. It requires that different cognitive styles of different responsible

agents mould together a unified frame of reference which will serve as a consistent

perceptual filter through which we can interpret organisational activities and information

requirements. To achieve a unified frame of reference, we need to bridge the semantic

gap between responsible agents. This will ensure that responsible agents are involved

Chapter three: A theoretical framework for evolutionary development 13 4

and that they are needed to form a realistic view about the new system. Therefore

semantic analysis contributes as a medium for conceptual training throughout the

development process, beginning with the unfreezing stage. The unified frame of

reference also gives the users the opportunity to view original requirements during

prototype presentation. This will allow them to portray the requirements together with

prototypes at each iteration of the refreezing stage, which should result in a satisfactory

evaluation of prototypes. This is a major step towards cementing the new system in

place and to institutionalising the change during each cycle of evolutionary

development.

Applying semantic analysis and prototyping techniques within the three-phased planned

change process model will allow the developers to keep the system implementation

process open to feedback about change process, while also heightening user

involvement in the clarification of their roles in relation to the formal system and in

negotiation about the extent of their responsibility.

In this chapter, we proposed that planned organisational change theory and semiotic

theory are suitable for a new theoretical framework for evolutionary information

systems development. The breadth of development activities captured by semantic

analysis and the planned organisational change model and the harmony between them

is encouraging, but it would be unfortunate if such breadth generated feelings of

complacency. There is, after all, a difference between theory and practice. As

suggested in this chapter, within the theory arena, we were able to recognise and tie

together existing knowledge and theories. Both theories seem to be in peculiar position

of complementing each other and offering more together than separately. The

theoretical harmony between semantic analysis and the planned change model and their

common relevance to the shortcomings of evolutionary prototyping is welcome, yet

much more practical guidelines are needed. A stronger grounding is required in both

theories to maximize their contributions, tlie findings of an exploratory case study,

conducted at a large car manufacturer, provide more insights into the problems of the

evolutionary development approach. The case study, the subject of next chapter, will

provide a stronger linkage between theory and practice.

Chapter three: A theoretical framework for evolutionary development 1 3 5

Although the characteristics of semantic analysis technique and the three-phased model

of planned organisational change process seem ideally to respond to the shortcomings

of evolutionary development approach mentioned earlier in this thesis, we still need to

know how to develop a quality evolutionary information system in a business change

environment and how to manage it systematically. Therefore, in order to prevent being

hampered by the ever present dichotomy between theory and practice - between theories

of change and the art of changing - we are required to focus on a methodology to foster

the viability and progress of the proposed theoretical framework for evolutionary

development. This leads us to a proposal for a new development method in

evolutionary approach, the subject of chapter 5.

Exploratory empirical study

Chapter Overview
This chapter presents the findings from a case study which identifies constraints encountered when

implementing an evolutionary prototyping approach in a business change environment. The exploratory

case study investigates the identification of the main difficulties of the evolutionary development approach

in practice and relates them to the proposed theoretical framework presented in the previous chapter. The

case studied is a highly complicated product definition system under development in one of the biggest

car manufacturers in the U.K. The development method used is evolutionary prototyping approach using

object-oriented techniques. Section 4.2 is devoted to a full description of the case study and its findings.

It explains the case study in five subsections. First the background of the autoindustry and the company

will be presented in order to gain a better understanding of magnitude of the problem and complexity

of the environment. Then in subsection 4.2.2 an explanation is offered of mass customisation strategy

compared with other strategies in the industry and how the company is planning to move towards this

strategy. This subsection suggests characteristics of the business change environment and how it affects

the development of a highly complicated information system. This provides the rationale behind the

software system and its development method. Information technology projects in general and the product

definition system in particular - as the focus of this case study- are the subject of subsection 4.2.3. The

subsequent subsection discusses the results and findings of the case study and puts them in the form of

an argumentative description about the shortcomings of the evolutionary approach. Finally subsection

4.2.5 summarises the main problems associated with the evolutionary prototyping approach, and two

critiques of the principles of evolutionary development which underpin this conceptual practice are

developed: the lack of an effective implementation process management system and also the lack of a

"support" model for evolutionary development. Finally on the basis of the findings of the case study and

the theoretical framework presented in chapter 3, the main argument of the research is formulated in the

concluding section of this chapter.

Chapter four: Exploratory empirical study 1 3 7

4.1 Introduction

This chapter focuses on the investigation of information systems design and

development in a changing business environment. It reports the results of a case study

conducted in a large car manufacturer in order to examine the practical adequacy of

evolutionary prototyping approach to development. It establishes the main focus of the

research problem and links it to the theoretical framework presented in the previous

chapter. The objective is to take the research focus from the findings of the case study

through the formulation of concepts to their validation and verification.

The case study, employing participant observation of the development environment and

in-depth interviews with developers, had an exploratory function in order to gain a

better understanding of the key issues related to the evolutionary approach.

4.2 Exploratory case study: Product definition system

This section explains a highly complicated "product definition system" planned in one

of the biggest car manufacturers in the U.K. The most important objective of the

product definition system is to respond to business change triggered by the product

customisation policy adopted by the company. The development method used in

development of this system is the evolutionary prototyping approach using object-

oriented techniques. The size of the company, volume of information requirements,

number of users and complexity of the system, together with the development approach,

make it a very good case for assessing the evolutionary approach in developing

information-intensive systems.

We will explain the case study in five subsections. First the background of the

autoindustry and the company will be presented in order to gain a better understanding

of the magnitude of the problem and complexity of the environment. Then in

subsection 4.2.2 we compare the mass customisation strategy with other strategies in

the industry and discuss how the company is planning to move towards this strategy.

We think that it is necessary to discuss the characteristics of the business change

environment and how it affects the development of a highly complicated information

Chapter four: Exploratory empirical study 1 3 8

system. Section 4.2.3 examines information technology projects and the product

definition system as part of a complete new software system which is the focus of this

study. The subsequent subsection will discuss the results and findings of the case study

and put them in the form of an argumentative description about the shortcomings of the

evolutionary approach. Finally subsection 4.2.5 will summarise the main problems

associated with this approach.

4.2.1 Background

This subsection establishes the broad context of the case in this chapter. The aim is to

provide a better picture of the size of the industry and its associated problems.

Automanufacturing industry

The auto industry is one of the most sophisticated industries in the world linking up

different technologies and design skills. Cars and light trucks manufacturers have the

largest market share. The world’s top 30 manufacturers of cars and light trucks

produced more than 44.7 million units with at least 850,000 million dollars of combined

corporate revenues just for the year 1992. The market breakdown for 1992 was:

U.S. 33.6%

Japan 34.7%

Western Europe 25.4%

Eastern Europe 2.5%

Other Asia 3.8%

As an example for better comparison of the size of the industry, we can see that U.S.

companies built 15.1 million cars and light trucks in America and overseas with

combined corporate revenues of $270 billion as compared with 15.6 million cars and

combined revenues of $247 billion for Japan in 1992 (Fortune International, 1993).

Chapter four: Exploratory empirical study 1 3 9

The UK car industry

There have been enormous changes in the British car industry over the past two

decades: the contraction of the industry in terms of the number of people employed in

the motor industry, the destination of products from domestic market in Britain to a

European market and changes in the technology used to manufacture cars (Financial

Times, 1993).

But perhaps the most dramatic change is the extensive use of information technology

in the industry. All car producers make use of computer networks to link different parts

of the production process. Some people have suggested that technology is responsible

for the radical changes which have occurred over the past 25 years. Technology, and

specifically information technology was, and still is, seen as the most important

component of the regeneration of the UK car industry. Today, the use of computer

integrated manufacturing is seen by many as the driving force in the European quest to

compete with US and Asian countries in their avowed attempt to dominate the European

continent with their products (Computer Weekly, 1992). At the heart of the

preoccupation with technology has been the notion of technology driven industrial

progress, organised around automation and information technology.

The company

The company under study is one of the world’s top 30 manufacturers of cars and light

trucks with an annual turnover of 5 billion pounds, car production of around half a

million cars a year and the prospect of rising profits in the years to come, in spite of

its profits crisis during the recent recession.

The company is a corporate group which is split into two different companies: one for

different types of cars and the other specialised in 4-wheel drive vehicles. For the

purpose of simplifying references to the two components of the company, henceforth

they will be referred in as Cars and 4x4. Currently Cars makes approximately 20,000

cars each week. 4x4 makes 1200 to 1500 cars per week. The net effect of such a

production rate is that every 57 seconds, one car must be completed and delivered by

assembly lines.

Chapter four: Exploratory empirical study 1 4 0

There are two different managerial philosophies and production styles prevailing in Cars

and 4x4. Even their approaches to systems and organisational behaviour have also been

different. Cars was suffering from poor quality and design before this decade, until they

decided to apply the Japanese style of management, design and marketing approach to

their existing procedures. Traditionally, 4x4 has had a good and profitable market

during past decade with one of the best-known marques in its field. They have also

established an efficient marketing network around the world, especially in the United

States.

4.2.2 Company’s corporate policy: toward continuous business change

The company has adopted strategies to change the whole vision of the organisation.

They intentionally planned for extraordinary customer satisfaction in order to drive

toward continuous improvement strategy, and then from there to targeting for a mass

customisation strategy. One particularly useful framework, which describes these

strategies and changes in business environment, is the product-process matrix (see figure

4.1).

As shown in figure 4.1, one dimension describes the extent of changes in the demand

for new products or services- what the firm delivers. These changes may be stable,

meaning slow but permanent, or dynamic, meaning quick and unpredictably turbulent.

The other dimension describes the extent of changes required in the process and

technologies used to produce and deliver the products or services- how the firm does

it. These processes may also be stable or dynamic. The permutations define four

business environments in terms of their change characteristics. Each environment

encourages or even demands a particular strategic focus that is most appropriate for

success. They are called mass production, continuous improvement, innovation and

mass customisation.

The mass production strategy (stable product, stable processes) used to be typical of all

large manufacturing and service companies. It exploited the stable conditions prevailing

in post war economics to produce large volumes of standard products or services at low

cost. A well known example, until recently, would have been General Motors. It is

Chapter four: Exploratory empirical study 1 4 1

T h a t 's possib le?

Customisation I n n o v a t i o n
S t r a t e g yS t r a t e g y

Products
Vhat th e f irm

d e l i v e r s ?

Stable
Production I m p r o v e m e n t

StrategyS t r a t e g y

Dynamic

Processes
Hoir i t d o es i t ?

Figure 4.1 Towards business change environment (adopted from Boynton et
al., 1993)

hard to imagine any business, other than a natural or protected monopoly, pursuing this

strategy today. On the other end of the matrix, the innovation strategy (dynamic

products, dynamic processes) is appropriate when the environment is totally dynamic

and disruptive, so that both product and process changes are needed continuously.

Rapid product change (e.g. introduction of a new hardware system every six month) in

information technology companies is the result of rapid movement between mass

production and innovation strategies. The continuous improvement strategy (stable

products, dynamic processes) has been adopted by most businesses, with varying

degrees of success, and especially in car manufacturing companies. Competitive

Chapter four: Exploratory empirical study 1 4 2

pressure has forced them to respond to customers’ demands for higher quality, lower

costs and shorter cycle times by continuously introducing improvements to their

operating and management processes (The IT management Programme, 1994).

Today, organisations are moving away from the mass market and are focusing instead

on individual customer needs. There is a trend towards mass customisation strategy

(dynamic products, stable but flexible processes). In this strategy companies are no

longer defined by the products they produce, but by the competencies they posses.

Most car manufacturers are moving towards a customisation by assembly strategy that

enables customers to select options from a specification list and receive a customised

car. Information technology is really crucial in delivering a customisation strategy. It

is recognised as a special agent of change and enabler of such a strategy.

Corporate policy

The company has also adopted policies ensuring the success of the customisation

strategy. These policies have the most influence in all corporate activities and prospects

from organisational culture to personnel management and deploying new technologies.

The main pillars of this policy can be expressed in the following terms:

"Job for life"

If the company employee is willing to move and take a new job, where the

company will pay for relocation and retraining, an employee can assume

that he will have a job with the company for the rest of his life.

"Total Quality Management" (TQM)

TQM principles are based upon the thinking that imperfect output is

wasteful to company resources; due to the time it takes to correct

imperfections. Therefore, both Cars and 4x4 components have a "Do it

right the first time" approach to their production management. This policy

also covers all the suppliers of the company.

Chapter four: Exploratory empirical study 1 4 3

"Just In Time" (JIT)

All suppliers and the company itself are committed to delivering everything

perfectly and just in time to warrant the lowest inventory necessary for

company and suppliers. Once this is achieved, both company and the

suppliers will free up millions of pounds annually, otherwise tied into

expensive stock. The JIT approach results in a Vi day of stock at company,

and also in Vi day reserve of stock at the suppliers’ sites.

The significance of the above approach may be seen more clearly, if one

considered that in order to keep a stock of all available options of cars for

each of the car models, the company would have to store 1,000,000 cars,

costing billions of pounds.

"Extraordinary customer satisfaction"

The JIT policy must not have any side effects on quality and more

importantly, on the delivery time of customer’s order. The company’s

mission of extraordinary customer satisfaction comprises the "Efficient

System of Distribution" concept (ESD).

In this JIT/ESD mixed policy, the company aims at a time lapse of just 14

days from order of a car to its delivery. This will keep stock down and

save money. The key issue here is the responsibility of the whole system

for continuously getting better, making no production errors, and reducing

costs. Order processing in a 14 day targeted delivery time is an extremely

important aspect of company’s current strategy and cannot be achieved

without the support of the integrated information technology systems.

The other dimension of extraordinary customer satisfaction policy is in marketing

planning. The competitive market of the autoindustry demands "a customer driven

marketing policy" rather than just focusing on the "quality driven market". The ultimate

effect of this approach is "product customisation" which it means providing as many

options as possible for customers to configure their preferred selection. Product

Chapter four: Exploratory empirical study 1 4 4

customisation entails breaking up the tightly integrated networks that form the backbone

of a mass production policy and creating a loosely-linked collection of autonomous

modules. Each module performs a different task and is perpetually reconfigured in

response to customer demands. Automation, typically, is the key to linking these

modules so that they can come together quickly and efficiently. Product customisation

organisations never know exactly what customers might ask for next. All they can do

is strive to be more prepared to meet the next request To that end, information

technology is crucial in product customisation policy. Technology still automates tasks

where that makes sense. Certainly, technology must augment people’s knowledge and

skills, but product customisation requires that technology must also automate the links

between modules and ensure that the people and the tools necessary to perform them

are brought together instantly. This can be only achieved by information technology.

Communication networks, shared databases that let everyone view the customer

information simultaneously, computer-integrated manufacturing, workflow software, and

tools can automate the links so that a company can summon exactly the right resources

to service a customer’s unique desires and needs (Boynton, Victor, & Pine, 1993; Pine,

Victor, & Boynton, 1993).

Product definition under product customisation policy

In companies with a product customisation strategy, there is no such thing as predefined

products. All they have is collection of options and features which can shape a specific

product based on the specific customer order. A definition of the (final) product just

does not exist. In order to explain the effect of the corporate policy on production

planning and technological change, it is necessary to explain the notion of product

definition in complex manufacturing companies.

Traditionally, manufacturing has been about parts, and the Bill Of Material (BOM)

shows the breakdown of parts for each separate product. BOM is a diagram of the

components of a product, and reflects which parts go into a sub-assembly, as well as

some information about each component, such as the number of a part required for each

unit of product, price, supplier, weight, etc. A traditional BOM for each product would

look something like the figure 4.2.

Chapter four: Exploratory empirical study 145

In this simple approach toward

product definition, we need one

BOM for each type of product.

But because in a car

manufacturing company with

e x t r a o r d i n a r y c u s t o m e r

satisfaction policy in terms of

product customisation, there are

1.000.000 available products

(potential combinations of

features), it is impossible to keep

1.000.000 Bills Of Material. So

the way in which we resolve this

is by defining each product as a combination of features where each feature can have

its own Bill Of Material. Through this procedure, we can reduce the required

information for product definition of effective products by the every possible

combination. Now we just need to have a BOM for each feature.

Figure 4.3 shows the concept.

Here features are subassemblies

of which any combination

defines a product with a generic

name "CAR". Each feature also

has its own BOM. A feature for

any product with the generic

name of "CAR" might be air

conditioning, CD radio, red

metallic paint, 2.3 litre engine,

fuel injection or an electric

sunroof. A more realistic

diagram of the "New Bill Of

Material" configuration should look like the figure 4.4.

PRODUCT

Featire#5 Feature#6 Feature#N

P a r t # 1 P a r t # N

SubPart*1.3

Figure 4.3 New Bill Of Material

P R O D U C T

Part #5 Part# 6 Port#N

SubPart#5.1

Figure 4.2 Traditional Bill Of Material

Chapter four: Exploratory empirical study 146

PRODUCT: 5 0 , DO DxCOLOR-i-SPECIAL REQUIREMENTS

MANUFACTURER

4 0 0
FEATURES

PARTS
3 0 , 0 0 0

Figure 4.4 New Bill Of Material with combination of features and parts

Production policy

The production policy is one of the most important parts of corporate policy which

necessitates supplying better quality products, new options and styles at the right time

for the customer. An extraordinary customer satisfaction policy requires:

• more feature options for each product

• acceptable price for each possible combination of features list

• satisfactory default and standard features in catalogues

So what these objectives really require is that the company becomes a product

customiser. It means the company has to advance continuously its goals of offering

customers a wide range of options and of delivering a made-to-order car within few

days. The company must develop much more flexibility in production planning and

Chapter four: Exploratory empirical study 1 4 7

operations to become capable of handling a large degree of complexity. The net effect

of this policy is the elaboration of an integrated information system for the company

as the main part of an automation plan. The information system must have modular

capabilities, with the potential of reconfiguration and rapid application development.

Flexibility in networks is the other important characteristic of the information systems

in a product customisation policy.

4.2.3 Information Technology and production policy

Information technology for mass production policy has quite different characteristics

when compared with those appropriate for product customisation policy. In a mass

production policy the company needs to have separate infrastructure for each product

and service. Each major product has its own dedicated and integrated applications.

Under this policy, the company needs to build an efficient information technology

system for a horizontal information flow which has been vertically divided according

to different products. But an information technology policy driven by a product

customisation policy requires a completely different approach. A modular capability

with facilities for reconfiguring the information technology services is crucial for an

instant response to each requested customisation. Rapid response, vertical information

flow, and a flexible network for connection the loosely-connected production modules

are the most important aspects of the information technology services in this policy.

Current information technology structure

The company has many development plans in information technology. At present 4x4

has an integrated series of databases on an IBM mainframe, but as a result of major

reorganisations and the sale of several major divisions and subdivisions, systems at the

other division, Cars, have been split off and the whole information technology structure

has suffered immensely. Consequently, Cars now has over 50 different information

technology environments, which the company would like to integrate. Ultimately, all

systems for 4x4 and Cars will have to be integrated as a management policy for better

synergy between the two divisions. At times, it becomes difficult for management in

4x4 to understand completely and to agree with this policy.

Chapter four: Exploratory empirical study 148

Information technology projects

Towards the end of 1989, a comprehensive information technology plan was developed

for the following five years. The main purpose of this plan was to develop an

integrated information system consisting of a new groupwide Bill Of Material

programme and efficient distribution system programme. The Bill Of Material

programme covers the full product specification process from brochure model products

to each individual part. The second programme is intended to develop a better way of

marketing the company products in line with the corporate vision for extraordinary

customer satisfaction. This plan consists of different modules (figure 4.5).

Figure 4.5 IT projects towards achievement of product customisation policy

The main objective behind this system comes from the extraordinary customer

satisfaction policy. The following transaction chart (figure 4.6) and its descriptions

convey the idea.

As it is shown in the following figure, information technology projects consist of four

separate major projects. The product definition system at the centre of the chart has the

main role for message passing and connectivity among different components. The four

components of new information technology system are:

PRODU
DEFIE
SYSTE

'RODUCT CATALOG'
AUTHORIEG
SYSTEM ^ ELECTROEIC

ORDERING
 ̂ SYSTEM^

PIPELIEE
JIT/EDS ,

JIT: Just In Time
E D S 1 Efficient

Distribution System
BOM: Bill Of Material

Chapter four: Exploratory empirical study 149

PRODUCT

CATALOG

AUTHORING

SYSTEM

BROCHURE 6
CREATION
CONTROL

CUSTOMER SIDE
(DEALERS)

ELECTRONIC ORDERING SYSTEM

VEHICLE CONFIGURATOR
VEHICLE ORDERER

DELIVERY
PROMISE

AUTHORIZED
CHANGES FROM
USERS(1 0 0 -2 0 0 0 WORKSTATIONS)

ORDER
DETAILS

PRODUCT DEFINITION SYSTEM

PRODUCTS/FEATURES CHANGE CONTROl]

PRODUCT/FEATURES LIST

TERRITORIAL CONTROL

ME5 5 AGE

UPDATE

NET BOM
FEATURE CONTROL
PARTS CONTROL

SUPPLIER CONTROL

Figure 4.6 Overview of transactions in the new IT system

• Electronic Ordering System: This system will hold and validate a

customer order by verifying that a combination of features is actually a

valid product offering for that particular territory, using information first

produced by the product definition system.

• Product Catalog Authoring System: This system will facilitate the

product configuration for different marketing channels in different countries,

based on technical and territorial conditions and features availability in the

production definition system. This system will give marketing departments

a system to exploit niche markets and customer targeting with minimal

engineering cost. Configuration of the feature content of a product in the

catalog across the funded life time of the vehicle programme is also handled

by this system.

• New Bill Of Material: This system will maintain the new concept of Bill

of Material based on the parts-feature-product (feature combinations)

relationship. The content of each feature and its parts will be supported by

this system.

Chapter four: Exploratory empirical study 1 5 0

• Product definition system: At the heart of the projected total system, this

system is responsible for the evolution of any changes in the features

configuration of a product. It will provide information for authoring any

product catalog after receiving order details and for notifying the new Bill

Of Material system. The actual delivery promise is approved by this

system.

The next subsection discusses the product definition system as the focus of the case

study.

Product definition system

This system is responsible for the evolution of any changes in the features configuration

of a product. This system consists of two major modules; full feature specification

module and product change control module. The following data are stored and updated

by the first module:

• product types, product range (models of cars), feature combination

(product), feature lists, feature status (standard, optional or default)

• conditions of feasible feature combination (a rule-base) regarding technical

issues

• territorial conditions (like right-hand or left-hand driven regulation in

different countries)

• feature availability for marketing requirements and product catalog

authoring system

The second module, the product change control module supports lifetime planning for

each vehicle, from a broad definition of a new product range to discontinuation of a

model and also maintaining any requested change in different levels from introducing

new features to minor modification of a feature. Supporting technical, logistical and

financial authorization for each requested change forms part of the function of this

Chapter four: Exploratory empirical study

system.

1 5 1

The major mission of the product definition system is to enable the evolution of the

product specification throughout the life cycle of a vehicle programme by recording and

disseminating any requested change. These changes can be based on

customer/marketing requirements or product supply support system within the whole

group. This system will also support the information about what features and what

combinations (by territory) could be required to be offered as a model throughout the

life of the vehicle programme. It is expected that the system should be able to deal

with over 1,000,000 requests for change per year for improvements of its products.

Time scales and users

The initially estimated time scale for the whole project had the deadline of end of 1994,

but became infeasible. The ultimate number of users of the target system was to be

approximately 2000 users in the operational environment.

Development approach

The rest of this case study will be focused on the most important module of the

information technology project: the Product Definition module. This module has a core

role in relation to the other modules and due to its coverage and complexity, the

findings on the Product Definition module can be seen as indicative of the overall

characteristics of such software development projects.

In phase I of the Product Definition project, a "Clay Model" was developed. The aim

of this (throw away) prototype, using Ingres windows 4GL as a requirements

prototyping tool, was to show "what the system looks like and does for different

people". This approach was used because of the emergence of fast prototyping for

obtaining the business support needed for running the project. It was intended that after

developing this prototype as an experimental prototype system, developers could plan

the complete working system with the experience of an evolutionary prototyping

approach. Hence the Clay Model is seen as a very high level requirements prototyping

tool. Developers have planned that through this experimental prototyping effort the

Chapter four: Exploratory empirical study 1 5 2

major characteristics of the systems requirements (technical and information

requirements) will be uncovered.

The prototype tried to convey the idea of product customisation and how the users can

define the product changes. The prototype had the capability of representing a feature

list of a sample product with the possibility of choosing different features to configure

a sample order, without any constraint regarding feature availability or combination

feasibility.

The prototype achieved its aim of showing the idea of product customisation and what

it will look like at its very preliminary stage. The Clay Model achieved its goal of

obtaining the business support for running the Product Definition project. Although this

model stimulated the "Business Vision" of product customisation, the working system

of the November 1995 specification, which still is not complete, is far from the

specifications that the Clay Model was designed to capture. There were many hidden

problems in the product customisation concept which have not been addressed by the

Clay Model. In that sense the prototype could not achieve its objective as an analysis

tool to reveal the extent of complexity in the system.

One of the most important outcomes of the prototype as an experimental prototype was

in evaluating the development environment. The prototype tested the speed of relational

database technology for the expected speed during search command among millions of

different combination sets of features and also its cost for such functionality. As a

result the other alternatives were reviewed and an object-oriented approach for database

and programming environment was selected. This environment has been found to be

cheaper and faster. The development approach was planned in different phases (1 to 3),

where each phase consists of different releases (1 to 5) in the form of three to six

month projects for each release.

Although the development environment has been changed, the development approach

remained committed to evolutionary development: "analyze a bit, design a bit, build and

test a bit". So, the system development philosophy is an evolutionary delivery of

Chapter four: Exploratory empirical study 1 5 3

functionality with staged business benefits. There are short focused deliverables every

3 to 6 months, with an evolutionary approach to implementation. For the analysis and

design tool, "Bachman analyst" was chosen. This tool, which is a modelling tool based

on the E-R modelling technique, has been used for documentation of specifications

derived from analysis. The transformation of each entity from this model to the

concepts of Class/Object in the object-orientation technique is conceptually handled by

the development team. One reason for this incompatibility between analysis tool and

development environment is rooted in the lack of an efficient and well-known tool (or

even mature methodology) for object-oriented analysis and design approach at the time

the project began. Developers feel comfortable with this transformation and can

understand the concept of Classes/Objects from each entity in the Bachman model.

Some characteristics of object-orientation, such as inheritance, are still difficult to

convey using this tool.

Roles and responsibilities

The systems development of the project is owned by the "Product Definition" project

manager and its implementation will be owned by the department responsible for

product supply planning. The User Forum is responsible for guiding requirements and

validating the system functionality. The chair is a "user" from the business side, not

from systems. At the time of this study the chair was the "product strategy" unit of

marketing. Additional users also provide inputs and focus to the development as

required.

Each module has a project leader responsible for the day to day running and

administration of the project. The company business analyst, together with one person

from an outsourced information technology company, is responsible for establishing

user requirements and identifying existing and future business practices. Documentation

of the analysis phase is also their responsibility. The system functionality is identified

jointly by both the User Forum and business analysts. The design, system architecture,

software development, test and training are the full responsibility of an outsourced

information technology company. A team of five developers, with one person as team

leader from the outsourced company, is responsible for the development of each module

Chapter four: Exploratory empirical study 1 5 4

according to the requirements specification prepared by the business analysts. Each

developed prototype must be approved by the User Forum and then integrated with the

previously approved modules. The responsibility for integration and change control in

the software system is managed by a team of three highly trained developers from

another outsourced company. Feedback from the User Forum to revise the requirements

is the responsibility of business analysts.

Focus of study

The study focused on two prototyping efforts. First there was the development of the

Clay Model as a high-level requirements prototyping, by interviewing the business

analysts and two developers responsible for developing and justifying the prototype.

Company documents were also reviewed as a good source of analysis in this study.

The second focus was on the evolutionary development project. Most of the findings

come from deep interview sessions with the development team and specifically with the

team leader, a liaison between developers and business analysts. The following figure

shows the main focus of the study.

IT strategy Product strategy Product supply

System Development

User Forum

Project Leader

Change Control Business analysts (Development team
& Integration V .

Focus of Study

Figure 4.7 The focus of case study

Chapter four: Exploratory empirical study 155

4.2.4 Findings

This section explains the findings of case study and explores some ideas about different

aspects of system analysis in terms of specifying user requirements in complex systems.

It will analyze the findings of the study in the context of information requirements

determination and the associated difficulties in business change environment. It then

develops a descriptive argument about each finding in order to achieve a better

understanding of the shortcomings of requirements prototyping in general, and the

evolutionary approach in particular.

Clay Model as a surface representation tool

Psychology divides the human-made tools into two main categories. One category is

called ’’surface representation" and it applies to everything that everybody can

understand of the functionality and character of some phenomenon by seeing it, or

working with it, like a hammer. So how a hammer works and what we can do with it

are clearly understandable from its shape. The hammer is simply a surface

representation of its behaviour and capability of hammering. The second category is

called "deep representation" by which not everyone can understand how to use it or

what are its capabilities, like an Automatic Teller Machine. Everyone who has a bank

account may use it, but how it works and what are the different capabilities and

characters of behaviour are hard to understand by the user, and are intended to be

hidden.

Software products, in this dichotomy, are examples of a deep representation of

themselves to their ordinary users. Software is a very complicated product based on

a formal specification of user requirements. Most of the time, the formal specification

cannot represent the deep explanation of the system under study. In such a situation,

prototyping as a tool for exploring and specifying user requirements is intended to

expose the deep character of user requirements. In other engineering fields, from where

the concept of prototyping has come, prototypes represent the depth of ideas about a

product in a form that analysts can test the pattern of its behaviour in the real world.

This case study has clarified that prototyping is seen as a "Clay Model" of what a very

Chapter four: Exploratory empirical study 156
limited view of the system might look like. It has not been able to explore the main

characteristics of the system under study. Neither the roots of complexity nor the deep

representation features of system specification have been addressed by this prototype.

In fact the role of the prototype was intended to be a "Marketing promotion",

triggering business support of the project. The prototype was not able to reveal the

depth of user ideas about product customisation. It seems that this scenario can be

generalised to most applications of experimental (or throw away)prototypes in software

engineering. The Clay Model was able to provide a benchmark for future development

environment and software platform, but due to the complexity of the system under

study, it could not reveal the depth of system specifications and its functionality. As

a business analyst explained:

"W e inherited the problem of vague understanding of boundaries of the

system and with every step we go forward, the incompleteness of the Clay

Model and its inability to provide guidance as a feasibility study tool to

explore the depth of analysis needed, is becoming clearer."

Matching users’ conceptual model with designers’

There is psychological evidence that users develop and maintain their own conceptual

model of a system in use (Gittins, Winder, & Bez, 1984). This model develops

gradually and enables the user to predict the behaviour of a system on the basis of his

limited knowledge (Norman, 1983). There is general agreement that a good prototype

should allow the user to develop an accurate conceptual model rapidly and easily. But

a serious deficiency of how accurately the users’ conceptual model and the designers’

one can be matched, has remained unresolved.

In the case studied here, business analysts prepare a conceptual model (in a form of an

E-R diagram) by analyzing user requirements and the feedback from the User Forum.

This model is then transformed to a prototype specification by the development team

(Which also has its own conceptual model) in a very unstructured manner. The result

of this process will be a software prototype developed by the development team and

then examined by the User Forum. This is the point where different conceptualisations

Chapter four: Exploratory empirical study 1 5 7

of the requirements clash and designers hope for a better convergence. But when the

system is so big and information intensive and the environment is forever changing, it

is very difficult to reconcile these conceptual models with each other. In the case

studied, the development team was continuously striving to reconcile differences by

undertaking a massive amount of reworking and still they believed that most of the time

they had lost the track of the original requirements. The business analysts tried a

number of times to communicate with the User Forum by means of their E-R model in

order to have one single basis of understanding about the requirements. But the User

Forum always found it too complicated, not comprehensive and impractical. The result

is that the prototypes are always exercised against a set of criteria which are

continuously forming the users’ conceptual model. Even each individual in the User

Forum has his own concepts about the system and there is no standing platform upon

which to unify them. In this situation of conflict, they try to agree upon what the key

"factholders" believe. It is found to be extremely difficult to communicate efficiently

when no single and understandable platform has been found from which to convey ideas

to each other. When the development of a new prototype moves on simultaneously

with the development of the organisation itself, a unique communication platform is

needed to consider the organisation together with the prototypes. As development team

leader explained:

"W e always knew for a large scale system, in order to employ evolutionary

development, you need a supporting model to communicate with users and

validate the original requirements. Without a support model to maintain the

integrity of the whole system, it would be impossible for us to handle the

project. But it seems our selection of E-R model to provide the effective

support we planned for was not a successful one. (26 July 1993)"

Terms of reference

Fundamental to a system design process is a knowledge of task structure and the user’s

knowledge and processing limits (Moran, 1981). This requires study not only of the

task domain, but also of the user. However, these are fundamentally related since user

behaviour can only be examined relative to a particular set of tasks. The first problem

Chapter four: Exploratory empirical study 1 5 8

the user has to overcome is to define his system requirements. It has been observed

(Malhotra, Thomas, Carroll, & Miller, 1980) that this requires the user to access his

memory for sub-goals or solution strategies.

This is extremely difficult as information in the form of user’s knowledge can be

conveniently accessed only according to the way it is stored. The user cannot

anticipate, at the time a concept has to be stored, all the contexts for which it will be

useful. The process of remembering can be assisted by irregular memory clues which

provoke widely different types of information and bring them into focus. Actual use

of a prototype of a system promises to be the best way of generating these clues

(Hekmatpour & Ince, 1986). But this process needs to be managed in an organised and

systematic way, otherwise with each piece of prototype system an increased amount of

information will be produced without our knowing how to categorise it. In the case

studied, the business analysts provide a document called "terms of reference" in order

to classify related information. It classifies each requirement statements and its

reference in the data model under a reference heading. The procedure of assigning and

reassigning the requirements statements to these categories is based on the perception

by the business analyst of those particular requirements. Each requirements category

is then implemented by change control people. Each category demands a particular

prototyping effort. The relationship and integration between categories are maintained

by the data model. The headings for each category have been shaped through time and

sometimes they are difficult for users to understand. Terms like K87 LLFD or BAFC

(which stands for Base & Additional Feature Chart system) are common. This system

of categorisation of requirements is very inconsistent and hard to free of errors. The

business analysts seemed to agree with this criticism, but it works for them. They do

not see an insurmountable problem as long as they themselves are involved with the

interpretation and maintenance of the categorisation process.

Prototyping user experience

Several important psychological issues relate to the development and use of prototyping.

Central to these issues is the value of experience in organisations and the question of

how we can design a prototype to highlight the user’s ideas about requirements through

Chapter four: Exploratory empirical study 1 5 9

access to his experience. Jorgensen (1984) identifies three fundamental aspects of

human cognition:

"The first aspect is experiencing as opposed to being taught factual

knowledge and skills. By far the most of the totality of human’s skills and

knowledge has been acquired by experience. ...Imagine how little sense it

would make to learn about gravity in physics if one had not the experience

of throwing ball? The second aspect is the ability of humans to perceive

and operate at different levels of abstraction... This facilitates understanding

of general relationships between concrete matters. The third aspect is the

familiarity with those fields of life we have experienced as opposed to those

we are only knowledgeable about in terms of descriptions. ... The skill of

bicycle riding is a matter of experience. It takes a lot of trying but

suddenly you have got the knack..."

Jorgensen (1984) maintains that, although knowledge can be formalized in many areas,

humans can operate adequately without having to make this knowledge explicit. He

demonstrates this by a simple example:

"Anyone living in a house with a staircase will know the number of stairs.

That is, if asked, an occupant will most likely say "I don’t know!" but,

nevertheless, inevitably stumble if an extra stair is added on top of the

staircase."

The last two examples highlight the difficulties users face when asked about their

software requirements. Although users are subconsciously aware of their needs,

nevertheless they find it almost impossible to describe them completely. The examples

given above illustrate the difficulties a user may experience when trying to visualize a

system (Hekmatpour & Ince, 1986). This is the direct effect of how the complexity in

systems increases the risk in systems design.

Findings from the case study show that the Clay Model does not address the way that

users behave in visualizing and deciding about any requested changes in the product

Chapter four: Exploratory empirical study 1 6 0

features. Now in designing the working system, it is very difficult (or to some extent

impossible) to formalize all the users’ knowledge in the form of definite rules of

relationships between different combinations of features. In order to handle these

changes the system must be equipped by a very complex rule-based system. As one

member of the development team stated:

"After three years working with the project, now it is clear that the value

of the knowledge and experience of product supply people who validate or

reject different requested changes in features of a product, was treated very

trivially in the first requirements prototyping attempt. They are able to

carefully pinpoint any difficulty or mismatch in combination of different

features, something which is now revealed to be too difficult to be

implemented by computer programs."

This problem is rooted in the inability of requirements prototyping to reveal the depth

of user’s ideas and to weight them appropriately. The requirements prototyping effort

was not able to provide a business picture of the consequences of the total product

customisation policy. It has not enough power to reveal the deep structure explication

of the user’s ideas. At the same time, it is expected that requests for changes in the

configuration of a product based on customer needs would increase at least fourfold,

once the automated system is completed. This means much more complexity even in

comparison to an existing situation of a product supply unit. When users exercise a

prototype, they also bring with them all the experiences they already possess. But when

it comes to the operation with an ordinary user, the weakness of requirements

prototyping in revealing the deep structure of user requirements becomes apparent.

Prototypes were used to specify the future product. They failed to communicate in the

group of users about what work is done at present.

Change control

Those aspects of the system which are deeply rooted in the structure of the application,

tend to be highly connected but to have a low volume of activity, whilst those features

which are less dependent on the principles which govern the organisation of the

Chapter four: Exploratory empirical study 1 6 1

application area, and hence are more readily subject to change, are less connected but

tend to have much higher activity rates.

The subject of change and its control is a very crucial issue in software development

and specifically in any evolutionary approach. In a business change environment with

greater amounts of information exchange, nothing can remain stable and everything can

change at anytime. The following warning appears in every data model produced by

the project team:

"WARNING- This model is being continuously refined. Do not assume

that what you are looking at is the latest version. Contact.... for the latest

version."

It was really surprising when one of the development team explained:

"Sometimes I doubt that even business analysts have a clear picture of

business activities. During the design briefing sessions, it repeatedly

happened that when we ask a question like: How do you want to handle

this part? we see an ad hoc change in the data model in response to our

question!"

It is not easy to separate the deep rooted and invariant aspects of user requirements with

the others which are most likely to be subject to change. The focus of evolutionary

prototyping brings together the conflicts between what the user wants in an

everchanging business environment with what is most amenable to software

development techniques. And in this process, it is expected that designer- a person who

himself is most affected by the dynamic turbulence of the condition- should resolve this

situation.

We need a complete separation of human-oriented design activity and machine-oriented

prototypes using a variety of socio-technical tools. Computer formalisms will remain

fixed in the realm of signs and symbols. In this form, by using computer prototypes

Chapter four: Exploratory empirical study 1 6 2

as the only communication channel between user and analyst, we cannot have a stable

basis on which to analyze the principles or basic pattern of the user’s behaviour. The

descriptive language of analysis, using computer formalisms to demonstrate the user

requirements as a prototype, is unable to reveal the indirect inferences of

communication acts. Even direct inferences are difficult to draw by relating a change

in the content or expressions to its effects.

Semi-formal nature of the systems (Whitley, 1990)

The system under study may range from being simple and sufficiently well-structured

to be clearly defined and understood, to one which has an uncertain nature and a

complex informality. In the real world, formal systems make only a small contribution

in governing organisations. It is not acceptable (or even hardly possible) to formalize

the whole spectrum of actions in an organisation. If anyone should attempt this, in

most cases the informal groups within the organisation will join together to establish

their informal procedures beyond the formal system. This is an example of

"organisational resistance" against the radical innovations held to be against

established interests.

The major difficulty for a systems analyst is to reveal the interrelationship between the

formal and informal parts of a system under study. The semi-formal character of

systems cannot be sustained by rules alone. This is the glue which binds together the

structure of rules of formal parts to the structure of informal norms. The system under

study is comprised of organisational behaviour, of which rule and formality constitute

the explicit parts and without informal assumptions, goals and cooperations, they have

no meaning to hold together those institutions.

The ability to develop a sustainable information system depends upon being able to

determine the boundaries between the formal and informal parts of systems. How the

semi-formal system links these parts together and how the responsibility can take into

account in different courses of action are important issues must be resolved in the

process of development. The implementation process needs to provide settings for the

product’s role and user’s role for the future. The result of an observation by the

Chapter four: Exploratory empirical study 1 6 3

researcher from an evaluation process of a small part of the developed system showed

that during the evaluation of prototypes, each individual who holds an experience

continues to use it and change it as well. An evolutionary prototype implementation

process needs to be viewed as an opening of the learning process. When this issue was

discussed with the development team, they were not ready to admit the problem and

presumed that these issues could be addressed during the final tuning or maintenance

of the system, as a post-implementation problems and not during the implementation

process.

But this could be seen as promising solutions by "gold plating" software based on

over-formalized solutions, instead of adapting to the reality of organisational behaviour.

4.2.5 Summary of findings

We have examined in depth in this case the shortcomings of requirements prototyping

and evolutionary development. The findings of this exploratory case study have shed

more light on the problems of the evolutionary development approach in practice.

Assessing the effectiveness of evolutionary prototyping in information systems

development, we can summarise the important findings of the case study as follows:

- Clay Model as a surface representation tool

In complex systems, requirements prototyping and Clay Model had not the

capability to go deep enough into requirements features and their

complexity.

- Matching users’ conceptual model with designers’

For large scale system development in the evolutionary approach, we need

a supporting model to maintain the integrity of the prototype systems. The

E-R modelling could not provide the required communication platform

between users, analysts and developers.

- Terms of reference

Prototyping generates perspectives which can provoke widely different types

Chapter four: Exploratory empirical study 1 6 4

of information requirements and bring them into focus. Where a large scale

system is concerned, we need to maintain the overall picture of evolving

requirements through a categorisation of requirements which is

understandable by users and developers and also supportive of different

interpretations.

- Prototyping user experience

Prototypes are continuously trying to specify the requirements for the future

system. They cannot effectively communicate to users what work is done

at present The present situation is a combination of organisational rules

and norms which needs to be uncovered and understood before starting the

implementation of any software system.

- Change control

A prototype, as a machine-oriented tool, does not have the ability to

separate the deep rooted and invariant aspects of information requirements

from those which are most amenable to software technology. We need

socio-technical tools in support of human-oriented design activity to deal

with change in user requirements, otherwise designers will be continuously

involved in a series of ad hoc changes in requirements specifications

without knowing what is the next step.

- Semi-formal nature of the systems

An implementation process management system is required to adapt the

new system to the reality of organisational behaviour, otherwise the social

nature of organisational needs might be lost under the shadow of over­

formalised systems, which can result in the failure of the information

system.

A full study of the above problems has led to the identification of the following crucial

difficulties in evolutionary development as two lacunae in the approach:

Chapter four: Exploratory empirical study 1 6 5

1) The risk of ad-hocracy is always to the fore when using the prototyping

approach. In the prototyping approach with a cooperative analysis and

design approach to development, developers must empower the users and

support their ever-changing requirements. Therefore there is a need for

planning the whole process of development, but without a blueprint of how

to manage the process, the risk in development is high. The act of

investigation changes what the users want, while minor assumptions can

become major obstacles. The pendulum of new requests for change swings

back after each step forward of the prototype. Developers need a standing

platform as a basis for adapting the prototype system to the reality of

organisational behaviour.

2) The lack of a support model as a frame of reference for analysis and

design during evolutionary development is another crucial shortcoming of

the approach. What developers need is a dynamic model-driven approach

to development which can model the entire business and its underlying deep

structure, not just the series of snapshots of the business which prototypes

generally offer. They need a model with the ability to provide a consistent

schema and to trace back and validate each prototype against its original

user requirements, when evolutionary development approach is adopted. A

modelling technique is required to develop schemata of underlying business

tasks to support evolutionary development with the ability of schema

evolution. As the system evolves, new views of the requirements are added

by restricting or extending existing data models (or requirements

descriptions), and new prototypes on these views are generated using

existing prototype modules. Therefore, we need a modelling technique

which offers facilities for expansion or modification of existing information

requirements schemata. We need to be able systematically to manage this

evolution of schema changes and handle the change control procedure

through an effective requirements categorisation technique. Such a tight

coupling between prototype and schema offers considerably more scope for

schema evolution through the extension and refinement of existing

Chapter four: Exploratory empirical study 1 6 6

information requirements schemata and the reuse of prototypes. If the

model can explicitly address invariant features and the underlying business

tasks of the system, this will permit the semantics of schema evolution to

be rigidly defined and validated. The case studied here showed the inability

of E-R models to support the above needs.

Because of these weaknesses in evolutionary development some researchers are advising

the use of this method only for small to medium size systems (Angell & Smithson,

1991; Hekmatpour & Ince, 1986; Land, 1982), where the scope of the problem, the

number of users and the list of goals and expectations are reasonably manageable.

Regarding the complexity of business change environment, what developers need is a

strategy that points the way: a model which can provide some guidelines as to where

to start and where to go next, given the context of organisational goals.

This research proposes a new theoretical framework in response to the shortcomings of

the evolutionary prototyping. The planned change model can provide a suitable strategy

for managing the evolutionary process. The iterative sequences of unfreezing, moving

and refreezing align the development project towards the agreed objectives and protect

it from ad hoc design decisions. The semantic analysis technique provides the frame

of reference required during prototype development and evaluation. It has the capability

of clustering requirements into subject areas, hence reducing the complexity of

requirements analysis and of developing modular prototypes in the moving stage of the

planned change model. Because of its support for schema evolution during the

unfreezing stage, developers and users can have access to understandable conceptual

models agreed upon before developing each prototype. Then in the refreezing stage of

planned change model, they can portray each prototype faithfully to its original

conceptual model, incorporating the semantics articulated in requirements.

The findings of the exploratory case study highlights the pitfalls of the evolutionary

development in practice and directs the support of the proposed theoretical framework

in abundance of those deficiencies. This will guide the research to the development

stage of its research approach in proposing a new development method for evolutionary

Chapter four: Exploratory empirical study

prototyping approach, the subject of the next chapter.

1 6 7

4.3 Conclusion

This chapter offered an opportunity to examine, in an argumentative/subjective mode,

the implementation process of evolving information systems. The most important

deficiencies in the evolutionary approach to large scale information systems

development projects were identified and argued against the proposed theoretical

framework. There were two major deficiencies:

• no effective implementation process management model whereas the

proposed framework offers one

• no support model for determining information requirements whereas the

proposed framework offers semantic analysis

It is important to reiterate that there is no golden path for specifying information

requirements and for generating information system specifications automatically.

However, when substantial organisational change through development of information

systems is expected, it is generally suggested that prototyping is an appropriate

approach (Alter & Ginzberg, 1978) since in an organisational context, the prototype

model can provide information on a wider range of issues for any envisaged software

system. The case presented in this chapter discusses the potential pitfalls of the

evolutionary approach in the context of information intensive systems. In the following

chapters a re-engineering of this approach will be introduced in the same context. The

aim is to architect a new perspective on evolutionary development by demonstrating that

organisational change relating to information systems development can be supported by

an appropriate support model, where the model itself is rooted in an essentially

subjective view of the world. While business survives and prospers in the increasingly

turbulent environment, we need information systems development methods to support

organisations in their evolutionary journey. Information systems development must be

prepared to abandon the relative comfort of its traditional role of application

Chapter four: Exploratory empirical study 1 6 8

development. It must set out to experience something different, where the main role

is that of semantic broker and conceptual training coach. The rest of this research will

focus on a response to that inquiry.

CHAPTER

A method for evolutionary development

Chapter overview
This chapter offers the proposed method of the research. Before launching into an explanation of how the

proposed method works, various reviews are undertaken. Having explained the difficulties of the

evolutionary development approach in section 5.2, the theoretical pillars of concepts in the proposed

information system development method are reviewed in following section. Section 5.4 introduces the

overview of the proposed approach in three main levels: organisational, conceptual and technical levels.

It also shows a combination of top-down and bottom-up cycles in the proposed method. Section 5.5

discusses in detail the new perspective to evolutionary development using semantic analysis and

prototyping techniques within the control of a planned change model. Based on the new perspective on

evolutionary development presented in the section 5.5, a new development method is proposed in section

5.6 to formalise the stages and to merge them into a coherent whole. Finally section 5.7 will conclude

the chapter and summarise the main features.

5.1 Introduction

Prototyping has been in common use as a technique for software development projects

for some time. It is primarily a requirements discovery technique, used to help

determine the application functionality, data structure and control characteristics of a

system (Connell & Shafer, 1995). Requirement specifications are explored through

experimental development, demonstration, refinement and iteration. Using prototyping

technique, evolutionary development was differentiated from hacking (developing

conventional software programs without benefit of formal requirements and design

specification), and prespecification (presupposing all detailed requirements and design

specifications before developing any software). Although there are now few arguments

Chapter five: A method for evolutionary development 1 7 0

about the validity of the evolutionary development approach, there are still few

published descriptions of exactly what it means or how to do it in complex, large-scale

systems. We explained the evolutionary approach and its deficiencies in previous

chapters, and proposed a set of new theories and techniques to be able to offer a new

perspective on evolutionary development for complex, large-scale information systems

in business change environment. This chapter will distil all arguments into a coherent

formalism of a new method for dynamic information systems development. Instead of

tacking a thin veneer of prototyping onto the tail end of semantic analysis technique,

we take just the opposite approach. The proven technique of prototyping and the

planned change model along with the semantic agent-based formalism serve as the

framework into which the new development method are placed.

In proposing a new perspective on evolutionary development, the original goal of

evolutionary development is unchanged: accurately reflecting user feedback while

evolving a developing prototype towards high-quality maintainable system that meets

the users’ needs. Only the vehicle used to traverse the path is new. The structured,

procedural, hierarchical, function-oriented development tools and modelling approaches

proposed in different approaches have been replaced by semantic-oriented, model-

driven, change resilient, subject-clustered techniques and modelling approaches. In so

doing, improvements are made, and provide dynamic requirements modelling techniques

that:

• reflect more accurately the socially constructed real world;

• provide an organised way to tackle the problems of uncertainty and risk

in developing information systems;

• reduce long-term system costs by narrowing the focus of each prototyping

effort to a specific subject cluster;

• and probe the semantic sensitivity of each subject area examined, in order

to prototype the subsections of a large system.

In using the proposed approach, developers have a choice: the conservative drudgery

of total prespecification with customer sign-off before implementation, the joyous but

dangerous practice of prototyping without specifications, or a concurrent approach

Chapter five: A method for evolutionary development 1 7 1

undertaking both the requirements and implementation specifications at the same time.

The concurrent approach is more feasible in a business change environment. This is

the researcher’s belief that semantic analysis as a form of explanatory system performed

concurrently with an iterative evolutionary system and applied in three-phased change

model is not just a theory - it really works! This chapter will explain how.

5.2 Review of the research problem

The focus of this research was defined as evolutionary development approach to

information systems development in business change environments. We discussed

evolutionary development as a subset of the prototyping approach, in the sense that

systems are designed to be changed. However evolutionary systems evolve in use and

not in experimentation. In the use environment, uncertainty is the result of the

turbulence and dynamism of the environment, so development can benefit from

prototyping which can address explicitly the problems of uncertainty and change in

requirements determination. The main thrusts in the evolutionary approach are a stable

strategy about the problem boundaries and pinpointing the target system yet denying the

feasibility of any final specification (Angell & Smithson, 1991).

The exploratory study conducted at a large car manufacturer company found two

important shortcomings in the approach: the risk of ad-hocracy when using the

prototyping approach and the lack of a support model as a frame of reference for

analysis and design. There is a need for planning the whole process of development

otherwise the risk of ad-hoc activities will be great.

In short, the problem addressed in this research was how to support the evolutionary

development approach with a model to cluster effectively the requirements for better

determination, to identify viable requirement candidates for prototyping and to trace

back evaluation of prototypes using accurate information. The process of developing

evolutionary systems and managing development were two further difficulties addressed

earlier.

Chapter five: A method for evolutionary development 1 7 2

In order to enable an evolutionary approach to developing large scale systems in a

business change environment the research needs to focus on development of a

complementary method that enables designers to:

1) manage the development process of large systems which can cope both

with existing changes in design environment and changes induced to the

environment by the development of the new system.

2) support evolutionary system with a model which is relatively stable and

risk sensitive and has the facilities of requirements clustering and

requirements traceability.

5.3 Overview of the proposed theoretical framework

We have suggested a theoretical framework based on planned organisational change

theory and semiotic theory in response to the two objectives mentioned above. The aim

is to propose a new method for evolutionary information systems development. In

chapter 3, we proposed that semiotic theory and planned organisational change theory

can be employed to constitute a new theoretical framework for evolutionary information

systems development. The proposed framework provides us with the semantic analysis

technique as analytical tool, prototyping as implementation tool and a three-phased

change process model - unfreezing, moving and refreezing - as a model for management

the implementation process. Semantic analysis will sustain the unfreezing and

refreezing stage of development, while technical prototyping will support the moving

stage. The semantic analysis technique and the planned organisational change model

were considered to be in harmony with each other when employed in an evolutionary

development environment.

It was also argued that semantic analysis through its formalism - sematic agent-based

modelling - gives us a conceptual model of the business in the form of invariant

patterns of behaviour of responsible agents. The model is subjected to rigorous

semantic constraints which ensure no ambiguity exists and it seems to remain consistent

Chapter five: A method for evolutionary development 1 7 3

throughout the development process. Semantic analysis was also held to be equipped

with an important complexity reducing element - the subject area clustering

characteristic - which makes the technique easily applicable in large scale and complex

business problems. The semantic collection and grouping of requirements with a

consistent ontological dependency pose a significant challenge to the effective

identification of requirements to prototype. The semantic constraints require that

different responsible agents with different cognitive styles can recognise themselves in

a unified frame of reference which will serve as a consistent perceptual filter through

which all agents can interpret organisational activities and information requirements.

By achieving a unified frame of reference in this manner, the results of semantic

analysis in the form of its graphical representation - the ontology chart - give the users

the opportunity to view original requirements during prototype presentation, offering

requirements traceability and a way of evaluating prototypes. The above characteristics

of semantic analysis, when embedded into the three-phased model of planned

organisational change process, seem to respond to the shortcomings of evolutionary

development approach. The amalgamation of both theories with the evolutionary

prototyping concept provides the ingredients necessary to form a new development

method.

5.4 Overview of a new method for evolutionary development

The aim of this chapter is to propose a new method for evolutionary development. The

method distinguishes three major levels of abstraction for an information system

development process (Albadvi, 1995a): the organisational level, the conceptual level and

the technical level (figure 5.1). At the organisational level, it is possible to create

incrementally an enterprise information model. This model of semantically related

subject areas results from the natural aggregation of ontology charts created at the

conceptual level. By using the semantic analysis technique to determine more readily

the changes in information requirements, the enterprise information model contains the

picture of the whole business regardless of the current development project. The new

method prescribes the use of semantic analysis from the perspective of semiotic theory

in order to model the enterprise information structure and maintain continuously the

Chapter five: A method for evolutionary development 174

model. This model assists in the discovery of deep structure information requirements

and in clustering subsections of a large system into a set of interrelated subject areas.

At the conceptual level, the new method proposes a semantic agent-based modelling

formalism focusing on semantics and ontological dependencies for each subject area.

The modelling formalism focuses on semantic categories of signs and signifiers. At this

level, a catalogue of semantic schemata of ontologically dependent affordances is

constructed. This catalogue forms a growing pool of ontologically traceable patterns

of behaviour of responsible agents within the workplace. It forms a basis from which

to evaluate prototypes. It also represents a powerful mechanism for tracing back each

prototype to its underlying information requirements during the evolution of new

software system. The underlying information requirements represented in the form of

ontologically dependent affordances (as a required pattern of behaviour expressed in

requirements analysis) can be mapped to the specification of prototype systems

developed at the technical level. This should lead to yet higher level of requirements

traceability and prototype reuse. The third, technical, level is involved in development

of prototypes for each subject area modelled at the conceptual level.

Conceptual lever
S e m a n t i c A g e n t - b a ^ e d S c h e m a '

Technical level
S o f t w a r e p r o t o t y p e s

Figure 5.1 Three levels of abstraction in the proposed method

Chapter five: A method for evolutionary development 1 7 5

The development process using the planned change model provides both a top-down

and a bottom-up cycle to development on three levels. In a top-down cycle, semantic

analysis is employed at the organisational level to investigate the existing norms and

working routines within the work place. It initiates the unfreezing stage of change by

focusing on semantic primitives of information requirements. The results of semantic

analysis will be clustered naturally and represented in the form of ontology charts at the

conceptual level. The conceptual level also contributes to a feed-forward process, the

unfreezing stage, by highlighting the semantic ambiguities and establishing a felt need

for change. The third level in a top-down cycle, the technical level, involves making

the actual change possible. It gears the moving stage into the change process. It

involves development of actual software prototypes which give users the opportunity

to examine the changes expected in the new information system. Evaluation of

prototypes at the technical level initiates a bottom-up cycle in the development process.

The aim of this feedback process is to portray each prototype at the technical level in

the Hght of its original information requirements, represented in the ontology chart at

conceptual level. The bottom-up cycle becomes the refreezing stage of the change

process. The aim is to ensure that the new behaviours can become the operating norms

at work, without any ambiguity. The refreezing process, through continuously

evaluating prototypes and mapping them back to the semantics in the ontology charts,

entails the integration of new attitudes and behaviours into persisting patterns and

relationships. It is in this bottom-up cycle that the responsibility structure and norm

configuration of the new information system need to be clearly understood and

established. The cycles of feedforward and feedback processes may result in the

approval of the prototype system at the technical level and its corresponding ontology

chart at the conceptual level for each subject area. Finally at the conclusion of the

bottom-up cycle, the ontology charts for each subject area are integrated into a complete

picture of the business at the organisational level. This final stage at each cycle of

development requires institutionalising new behavioral patterns by making them

organisational norms. This stage, through accrual of approvals of the change process,

provides us with an incremental creation of an enterprise information model for the

whole business. This concludes the refreezing stage of the change process.

Chapter five: A method for evolutionary development 1 7 6

The proposed perspective intrinsically favours strong participation. It favours a systems

development process that stimulates consensus participation and induces change in

systems of interpretation. Therefore, the assumptions of this perspective do not address

the notion of power. It is necessary to mention here that approval and integration of

ontology charts at the organisational level requires a diagnostic analysis of power within

the organisational structure. We recognise the possible criticism of "naive consensus"

(Habermas, 1984) in the proposed perspective, but regard the detailed addressing of the

power issue outside the scope of our present research.

5.5 A new perspective to evolutionary development

In theory, the activities of analyzing the problem and of creating a solution are clearly

separated. However, in practice there is a gradual move from one activity to another,

with a solution forming before all details of the analysis are complete. This is exactly

the situation in the proposed method.

As in figure 5.2, the

proposed model consists

of three cycles: two inner

cycles incorporated

within an outer cycle.

Two inner cycles are the

vision cycle and the

action cycle. Both inner

cycles have their own

cyclic pattern while both

are part of an outer cycle

called the fusion cycle

(Backhouse & Albadvi, 1995). The new method is based on verifying the vision-action-

fusion cycles shown in figure 5.2. When the feedback stays within the current cycle,

it is represented by the inner loop; when the feedback is to subsequent cycle, it is

represented by the outer loop. The proposed development method sees information

systems development as a continuous process and the three cycles of the development

Unfreezing: esta b lish in g a f e l t
need for change

Moving: the a c tio n phase of
change

f t

€■i ► ACTION CYCLE

B efreezing: S ta b iliz in g th e
change

VISION CYCLE

FUSION CYCLE

Figure 5.2 Three cycles of the proposed development
method

Chapter five: A method for evolutionary development

process have to be followed repeatedly.

177

5.5.1 Vision cycle

In the vision cycle, the analyst deals with problem definition, the elicitation of user

requirements. Realising what are the information needs and revealing the nature of the

problem through a process of semantic analysis is achieved at this cycle. Applying the

semantic agent-based formalism makes it possible to develop an ontology chart of the

focal system under study. The ontology chart acts as an explanatory system in order

to provide explanations about the semantics of requirements and norm relationships

within the workplace. This is indeed a prototype of an explanatory system which

remains to be examined and validated by user groups. The long-term product of this

process is a completed explanatory system - a rich picture of the whole organisational

behaviour and norms. Every explanatory system prototype is involved in a

representation of the problem and is concerned with stating the meanings and properties

of the information requirements precisely and unambiguously.

Every representation of

the problem needs to be

validated: the process of

ensuring that the problem

has been c l e a r l y

understood and modelled.

This is the reason that

this cycle is called vision

cycle. In this cycle, a

process of prototype-

exercise-validate and

revise the explanatory

system is planned (see

figure 5.3). The explanatory prototype system provides a base model of the

organisational behaviour to support agreement about the semantics of requirements. The

vision cycle initiates the unfreezing stage of the change process. It provides a series

E n t e r p r i s e I n f o r m a t i o n n o d e l
S u b j e c t c a t a l o g u e

v a l i d a t i o n

u s e r ' s g r o u p
e x e r c i s e
p r o t o t y p e

r e v i s e
e x p l a n a t o r y

p r o t o t y p e

p r o t o t y p e o f
e x p l a n a t o r y -

s y s t e a

v r o l l a a e l i c i t a t i o n
o £ u s e r

r e q u i r e m e n t s

Figure 5.3 The vision cycle of the proposed development
method

Chapter five: A method for evolutionary development 178
of explanatory prototypes as ontology charts in order to resolve semantic ambiguities

in requirement statements.

The aim of the vision cycle is to provide a unified view of each subject area shared by

users. We apply the semantic analysis technique in this cycle and the result is a set of

explanatory prototype systems that need to be placed in the requirements specifications.

To reach the level of requirements specification, it is necessary that the analyst plans

for an approved explanatory system in the form of a complete and refined ontology

chart for each subject area. A process of prototype-exercise-validate-revise the

explanatory system encourages all responsible agents to seek for consensus where there

exist semantic disagreements before committing to development of any software

prototype system.

The explanatory prototype system provides a platform for more communication and for

the mutual understanding needed for the change process. The different cognitive styles

of different people (including users, analysts, developers) can merge together through

an explanatory system. This will establish semantic equivalence and bridge the

semantic gaps among user groups, so they can all understand the system under

development The vision cycle not only demands a responsible user involvement, but

also requires that users form shared and realistic understandings and expectations about

the system. Exercising the explanatory system and discussing semantic ambiguities

among user groups provides a medium for conceptual training by facilitating the

negotiation of meanings. Every review of ontology charts provides conceptual training

towards assuring that users indeed hold a unified frame of reference about the system

being developed. More time spent in the vision cycle in order to mould a unique frame

of reference would lead to less time, effort and cost in software prototype iterations and

in conventional tuning and maintenance efforts after prototype developments.

5.5.2 Action cycle

While the user exercises the explanatory system of each subject area in vision cycle,

the validated parts of ontology charts of the focal system can be added to the enterprise

information model. The enterprise information model contains the semantic schema of

Chapter five: A method for evolutionary development 1 7 9

the whole organisational behaviours and norms clustered by subject area. Each iteration

of the vision cycle results in more detailed information about requirements

specifications, which as a whole creates the enterprise information model of the

organisation under study. The enterprise information model is a baseline of semantics

for organisational activities. The enterprise information model is the ultimate frame of

reference in organisational norms and rules. As a result, incremental modelling of

enterprise information structure is possible. This possibility is achieved through the

modifiability and extendability of the semantic agent-based modelling formalism. The

enterprise information model is clustered into the subject areas. The subject catalogue

is a directory of all subject areas modelled as part of the enterprise information model.

This catalogue of clustered subjects indicates a name for each subject area which

conveys its contents. It also represents the relationships between areas through their

common affordances. Each subject area consists of one or more ontology charts. The

consistency of the subject catalogue is maintained automatically by the stringency of

semantic constraints applied in ontology charting. It is not possible to assign an

unrelated affordance to a subject area, as it will be prevented ontologically by existing

affordances in that subject area.

At this stage those parts of enterprise information model suitable for automation in the

objective system are identified. We call this cycle the action cycle. The relevant

formal fraction of each subject area in the enterprise information model will be prepared

for software prototyping. The level of automation required for each subject area must

be defined by user groups and examined through software prototyping. In this process,

software prototypes will be developed on the basis of the semantics of user

requirements declared in the form of ontology charts. Ontology charts are already

clustered into subject areas, so the prototype development and change control activities

can be managed separately for each subject area and we may be sure that the semantic

integrity between prototypes is effectively maintained at the enterprise level. The

explanatory systems in the vision cycle which have required more iterations to resolve

ambiguities and to offer a unified ontology chart are the riskier ones. They also

indicate a higher level of risk in development of the actual software prototypes in the

action cycle. The risk of unacceptability of the software prototype increases when its

Chapter five: A method for evolutionary development 180

subject areas seem to be sensitive to different users’ cognitive styles. This provides us

with a viable mechanism to identify candidate subject areas with priority for

prototyping.

Evolutionary prototypes

developed in the action

cycle need to be

validated. In this cycle,

through a cycle of

prototype - exercise

validate - revise, it will

be possible to develop a

solution; a representation

o f t h e s y s t e m

specifications. As shown

in figure 5.4, while users

exercise the evolutionary

software system, the specification of the validated parts of the prototype system can be

amended in line with the system specifications. Each iteration of the action cycle

progresses the development of the target system. But the essence of evolutionary

development denies the feasibility of any final target. Each exercise of software

prototypes by users provides a feedback within the action cycle for an improved

revision of the software prototype system. It also provides a feedback to the vision

cycle requiring changes at the conceptual level. Every revision of the software

prototype also provides a new outlook on the validity of the explanatory prototype

system developed in the vision cycle. Actual software prototypes expand the visionary

focus of user groups and may offer them a new depth on their vision of the business.

This feedback to the vision cycle will foster the characteristics of the new system within

the understanding of the users. It initiates the refreezing cycle of development which

we called the fusion cycle.

E n t e r p r i s e I n f o r m a t i o n n o d e l
S u b j e c t c a t a l o g u e

p r o t o t y p eof

r e v i s e
e x p l a n a t o r y
p r o t o t y p e

f (e v o l u t i o n a r y
s y s t e a

r e v i s e
e v o l u t i o n a r y
p r o t o t y p e

u s e r
e x e r c i s e s

p r o t o t y p e

v a l i d a t i o n

r e p r e s e n t a t i o n
o f s y s t e m

s p e c i f i c a t i o n

Figure 5.4 The action cycle of the proposed development
method

Chapter five: A method for evolutionary development 1 8 1

5.5.3 Fusion cycle

In the proposed method there are two concurrent processes. One is the explanatory

prototyping process during the vision cycle and the other is the evolutionary software

prototyping process during the action cycle. Through the bridge from the vision cycle

to the action cycle, the analyst can develop the enterprise information model. This is

a feedforward link between the results of requirement analysis and the implementation

of software prototypes. The feedforward process stimulates the moving stage of the

change process. The development of software prototypes and multiple revisions in the

evolutionary system tests the action stage of the change process. Every movement

toward a new change condition provides some feedback to the existing patterns of

behaviour expressed and captured during the vision cycle (see figure 5.5).

Every revision of the evolutionary prototype provides some more insight into the

changes required in the explanatory system. Since the semantic schema, the support

model for the explanatory system, of each subject area and the software prototype,

representing the evolutionary system of that subject area, are organically related it is

possible to trace back changes from the evolutionary system to the original requirements

in the explanatory system. Through this feedback process, it will be possible to check

E n t e r p r i s e I n t o n a t i o n n o d e l
S u b j e c t c a t a l o g u e

u s e r ' s g r o u p
e x e r c i s e

p r o t o t y p e

r e v i s e

p r o t o t y p e
> o f
e v o l u t i o n a r y

s y s t e n

e x p l a n a t o r y
p r o t o t y p e

r e v i s e
e v o l u t i o n a r y
p r o t o t y p e

u s e r
e x e r c i s e s

p r o t o t y p e

p r o t o t y p e o f
e x p l a n a t o r y ^

s y s t e n <1

r e p r e s e n t a t i o n
o f s y s t e m

s p e c i f i c a t i o n

v a l i d a t i o n

Figure 5.5 The fusion cycle of the proposed development method

Chapter five: A method for evolutionary development 182

the degree of convergence between problem and solution by seeing how closely the

explanatory system models the observed behaviour of organisational agents. This

feedback process represents the fusion cycle. The cyclic processes of requirements

determination in the vision cycle and specifications improvement in the action cycle are

linked together by the fusion cycle.

We call the first cycle an upstream process or an explanatory process, and the second,

a downstream process or an evolutionary process (see figure 5.6). This new perspective

on evolutionary development targets a certain development environment that makes it

possible to deal explicitly with changes in user requirements. It emphasises that the

semantics of user

requirements need to be

considered with regard

to the meanings of

actions and behaviours.

It aims to provide an

explicit focus on a more

explanatory manner of

working with technical

and organisational issues

of user requirements, by

adopting a collective

learning process. Each

cycle is a learning

process for project members. The explanatory system provides conceptual training for

problem understanding and the evolutionary system provides procedural training for

solution improvement. Results from the explanatory system are delivered to the

evolutionary system. Results are in the form of an enterprise information model which

is catalogued by subject clustering. Both explanatory and evolutionary systems have

their own cyclical processes to improve their outcomes through active user participation.

They also link and converge together via a feedforward and a feedback process. The

feedforward process delivers the results from the explanatory system to the evolutionary

e l i c i t a t i o n
o f u s e r

r a q u i r e a e n t s

c r e a t i o n o f
t a r g r e t s y s t e n

Figure 5.6 Two inter-linked development processes

Chapter five: A method for evolutionary development 183

system. The feedback process reflects the evolutionary system evaluations back to the

explanatory system. All processes continuously enrich the user understanding about the

system under development. There is no predictable end to these cyclic processes until

the adequacy of automated software systems desired by user groups is achieved at a

specific time. The convergency of the approach toward the object system is always

maintained throughout the development process due to involvement of all responsible

agents.

The proposed method examines the wider environment in which the system under study

is located. The holistic approach used in the proposed method attempts to establish the

entire picture of information requirements, placing them into context within the whole

set of organisational norms. It pays more attention to organisational behaviour as a

whole than does the technical prototyping approach, which is concerned with specific

functions being examined.

Figure 5.7 Planned change model of the development method

The main idea is to provide a new perspective on problem solving by a tight coupling

between an explanatory prototyping environment using a semantic agent-based

Chapter five: A method for evolutionary development 1 8 4

modelling on the one side, and an evolutionary development environment using

prototyping on the other. At the same time, the development process will be managed

by using Lewin’s (1952) change process theory, employing the idea of planned

organisational change (figure 5.7).

As mentioned above, the vision-action-fusion cycles are the foundation of dynamic

development management in the proposed perspective to evolutionary development. It

is self-evident that the vision stage, as the point of departure for implementing each

cycle, must be carefully drawn up so that it can serve as a secure foundation for the rest

of the cycles. It is very important that this cycle is properly established and understood

by all participants. Then, if the development starts to deviate from the plan, it is easy

to pinpoint the cause of the deviation and to portray each prototype with its original

requirements.

5.5.4 A new metaphor for information systems development

We argue that since the information systems development field has both social and

technical elements, we need the scientific equivalent of WYSIWIS1; we need to have

a way of knowing that "what you mean is what I mean". Semantic analysis from the

perspective of semiotics provides a way for user and analyst both to find a common

designation of the terms they share in their communication. Users may have problems

with the interpretation, or they may need to build a shared meaning, in either case they

can benefit from a semantic schema as a common referent during the evolution of the

new system. We are proposing a new framework for dynamic systems development,

connecting information systems interpretation with systems design. While the first

cycle is to find a referential base that allows us to develop shared meanings, the second

cycle evaluates it through demonstrating the WYSIWYG2 prototypes (Figure 5.8), the

prototypes which offer the actual representation of the target software system. Both

loops are integrated toward continuous improvement of the enterprise information

model.

'WYSIWIS: What You See Is What I See

WYSIWYG: What You See Is What You Get

Chapter five: A method for evolutionary development 1 8 5

Enterprise Information Model

*Baci

representation
of system

specification
elicitation

of user
requirements

solution

Figure 5.8 Connecting system interpretation to system design

5.6 The proposed development method

Unlike the comprehensive analysis and design methods like SSADM (Structured

Systems Analysis and Design Method), the proposed perspective on evolutionary

development has no need for a large number of different kinds of charts and

specification languages. The ontology charts contain the most stable aspects of the

system. The unification provided by this one chart, we expect, remove most of the

need for elaborate, bureaucratic documentation which plagues many current methods.

The essence of change in the evolutionary approach would not allow bureaucratic

documentation even to be possible. So the resulting documentation in the proposed

perspective on evolutionary development needs to be minimal in volume but stable and

maximally structured as an aid to the understanding of the organisation. The aim of

documenting by ontology charts in a form of enterprise information model and subject

Chapter five: A method for evolutionary development 1 8 6

catalogue is to provide a positive aid to mutual understanding and communication about

any complex collaborative enterprise.

In addition to a new theoretical foundation for evolutionary software prototyping and

based on the new perspective on evolutionary development presented in the previous

section, a development method is also proposed to formalise the stages and to merge

them into a coherent whole. According to the planned change model (Levy, 1986), the

following method can be mapped to the three stages of development process. The

objective of the following method is not to offer step by step prescriptions in analysis

and design. It covers just the most important issues raised in using the proposed

perspective. The proposed perspective offers semantic analysis for elicitation of

information requirements. The ontology charts provide requirement specifications ready

for prototyping. Developers are free to employ their own implementation approach in

software prototyping.

Unfreezing stage (Vision cycle):

• ensure that the need for change exists (Bostrom, 1989; Bostrom & Heinen, 1977)

• open the discussion about the goals of the information systems

• define the scope of the system and its relation to the organisation (Ginzberg, 1981)

These enable one to work systematically from the vaguest problem outlines,

possibly from unstructured interviews with those involved in the problem.

The analyst can start from a short list of the central goals and relate them

to the activities of the business domain. Then through studying the goals

and business activities, the vista of the objective information system can be

uncovered and also assessed for its impacts. This can be done by

discussion with various users of the system who may provide several

different but justifiable perspectives. These discussions might be structured.

The expected output is the definition of a focal system and specifications

of how it begins and ends and what marks its start and finish.

• realign goals of the information system and organisation (Dickson & Simmons, 1970)

• remap the focal system and its collateral systems (Backhouse, 1990)

Chapter five: A method, for evolutionary development 1 8 7

After preliminary skirmish with the problem, enough common terminology

will have been established to enable the central systems of concern to be

identified and described. The analyst can then take that central or focal

system and relate it to the existing infrastructure. The collateral systems are

those that surround the focal system to bring it into existence and give it

any value it may have. Each collateral system can be treated as a new

focal system, so that the analysis process appears to continue, by an endless

recursion. However, the analysis can be terminated when the collateral

systems it generates are ones that analyst and user can delegate to the

existing infrastructure of the surrounding economic and social systems and

to the informal resources of the organisation itself. Focal and collateral

systems are the preliminary definitions of subject areas which will take

shape in the course of analysis.

• employ semantic analysis for the focal system

- generate the candidate affordances

- apply agency structuring

- exercise ontology charting

• prepare explanatory prototype system of the focal system under consideration

These activities explore in depth what the users mean by all the terminology

they have employed in describing their problem domain. They result in a

definition of the ontology of a subject area of the problem domain, a very

stable structure that accounts for what the users perceive to exist in their

world, devoid of information about their organisational behaviour. In order

to generate candidate affordances, the analyst needs to take the texts of

available interviews or descriptions of the problem as raw materials. He

may also add to them relevant documents which the users supply. The

process of agency structuring as explained in chapter 4 is an application of

the semantic analysis technique to the sub-task of determining which agents

(individual and corporate) are involved in the problem domain. It also

includes the analysis of the constitution of the corporate agents. The output

of this process will be a chart of the agents involved, showing which ones

Chapter five: A method for evolutionary development 1 8 8

depend for their existence upon others. Now the analyst can concentrate on

ontology charting, the central technique of semantic analysis. The depth of

the ontological analysis is potentially infinite but it is limited by the extent

to which one wishes to take the description of the organisation.

• decrease the semantic gap (De Brabander & Thiers, 1984) between the use world and

the analysis world

- allow user to exercise the explanatory system

- remove other concerns from user

- allow user to express resistance

• define roles and responsibilities

• analyze the norms and proto-norms embedded within the ontology chart

After preparing an explanatory prototype (in a form of an ontology chart of

the focal system), it is the time for the user to walk through the prototype

and provide feedback about norms governing each part of the ontology

chart and exercise the responsibility structure and role definitions expressed

in the ontology chart. Upon the stable ontological structure of ontology

charts, the analyst will be able to impose information about the rather less

stable structure of organisational norms. The least he can do is to state who

takes responsibility for deciding the existence of each thing. Next he needs

to define what information is relevant to each responsible decision, leaving

the agent to decide how to use it. A proto-norm is simply defined as a

norm where the condition is only specified as a list of relevant information.

The evaluation process is carried out by the person responsible in the light

of this relevant information. The proto-norm will consist of a simple list

of relevant information for each decision parameter like start, finish or

whole existence of an affordance. A normal consequence of this analysis

will be to introduce many more candidate affordances and to integrate them

into the ontological structure. The formal semantic schema and ontological

structure provide inputs to responsibility definition and norm analysis

activities. The result is the specification of a constitutional structure and an

allocation of individual responsibilities. An explanatory system exercised

Chapter five: A method for evolutionary development 1 8 9

by user groups is the best way to find a single frame of reference for

requirements specifications. Now the analyst has to plan for an approval

of the explanatory prototype system of the focal system.

• provide conceptual training (Ginzberg, 1981) and explain definition of roles and

responsibilities to the users (Ginzberg, 1978a; Ginzberg, 1978b)

• seek management commitments (Zmud & Cox, 1979)

• assign user responsibilities (Ginzberg, 1978b)

• seek approval for the ontology chart of the focal system

This step mainly involves validating the ontology chart of the focal system.

The validating process of explanatory system encourages all responsible

agents to seek for consensus in semantic disagreements before committing

to any development of a software prototype system.

• review the subject area clustering catalogue

• assign the validated ontology chart of the focal system to the subject catalogue

• extend the enterprise information model with the validated ontology chart

• seek revision for invalidated parts of the explanatory system

• plan for the software prototype development in the next stage

Movement stage (Action cycle):

• give priority for evolutionary prototyping to the subject areas with most semantic

complexity among user groups

• focus on a subject area ready for evolutionary prototyping

• elicit specifications of explanatory system of the part of subject area suitable for

automation

• develop an implementation model for the prototype system

At this point, we address the implementation of the software prototype

systems. The evolutionary process of software development will allow

developers to start development even though not all parts of the enterprise

information model are complete. The evolutionary process will provide the

users with the opportunity to examine the complex subject areas of the

Chapter five: A method for evolutionary development 1 9 0

enterprise information model and provide more feedback from the real

working version of the object system. The subject catalogue will maintain

the change control and clustering activities in software prototyping and the

relationships among different software modules. The development

environment and implementation approach are inputs to this stage of

development. We believe the semantic agent-based formalism has the

capability to furnish its own design and development techniques which need

to be investigated in any future development of this research. It is also

possible to transform formally the ontology charts to existing design and

implementation modelling techniques, similar to object modelling

representations. These issues and other implementation concerns will be

discussed in chapter 8 of this thesis. The least expectation is that the

enterprise information model in the form of ontologically related semantic

schemata can be seen as a robust, stable and flexible requirements

specification in the most structured manner, which provides viable inputs

to any design and implementation approach.

• implement software prototype system

• provide general training to get rid of computer fear

• provide procedural training (Bostrom & Heinen, 1977) to use the evolutionary

prototype system

• monitor system and user performance and provide ongoing assistance for users

• plan refreezing the set of system specifications in the next stage

Refreezing stage (Fusion cycle):

• set up feedback systems for users input about the evolutionary system

• integrate the prototype to the evolutionary system

• elicit systems specifications from evolutionary system as verified by users

• revise the implementation model of the evolutionary system

• provide feedbacks to explanatory system from findings of revision in evolutionary

system

The unfreezing stage provides valuable feedback to both the evolutionary

Chapter five: A method for evolutionary development 1 9 1

and explanatory systems. With the use of the evolutionary system, the user

can visualise how much each agent depends upon the action or decisions of

others and how much authority is going to transfer to the formal computer

system. The analyst will be able to review these dependencies so that the

agents, for whom the system is being constructed, can understand better

how their actions interrelate. The earlier stages of development will have

created an explanation and representation of an actual system which is now

treated as an object of investigation. The scale of the business activity

specified will be established, the extent to which responsible agents depend

upon the decisions of others will be exposed for further discussions and

more feedback will be mapped back to the enterprise information model to

enrich the whole picture of the substantive business activities. Only the

validated parts of the evolutionary system will be amended to the object

system which will form the final specification of the envisaged information

system and supported by a comprehensive enterprise information model.

• realign goals of information system and organisation (Dickson & Simmons, 1970)

• plan for a new revision to the enterprise information model

The proposed method continuously improves the target system by adopting

the necessary changes required at the conceptual and technical levels and

maintains growth under the overall pattern of evolution at the organisational

level. The above sequence in which the development is carried out is very

flexible. The characteristics of the problem in hand and the priorities of the

users will determine what work to undertake next. We envisage users and

analysts working together to clarify the problem and simultaneously evolve

a prototype. The goal is an organic, incremental development of enterprise

information model which uses the explanatory prototypes supplemented by

re-implementation, on the basis of the evolutionary prototyping approach.

During the unfreezing stage of development, the semantic analysis technique

may be regarded as requirements elicitation tool. It is based on the

assumption that the business is an infinitely complex social system upon

Chapter five: A method for evolutionary development 1 9 2

which we intend to impose some formality, in order to help it perform more

effectively. The scope for analysis, therefore, is never exhausted, but with

the users, the analyst must decide when it has gone far enough. Wherever

the analytical process stops, the results will be expressed formally in a way

that makes explicit where the analysis could have continued. It is as though

the specification is a logical structure encrusted with question-marks. Every

answer just increases the number of question-marks as well as adding

something to the logical structure. The elicitation process never ends but

can always pick up the right thread as business requirements enlarge

(Stamper, Backhouse, & Althaus, 1989).

5.7 Conclusion

This thesis so far offered an opportunity to examine, in an argumentative/subjective

mode, the implementation process of evolving information systems. The most

important deficiencies of the evolutionary approach in large scale information systems

development projects were identified and a new perspective for this approach was

proposed. This perspective attempts to bring together semantic analysis as an analytical

technique and prototyping as a technical platform in a logically linked process. The

process of requirements determination adopted in the proposed perspective is completely

different from the assumptions behind the prototyping approach which mainly focus on

determining how the key processes of the organisation contribute to the intended

performance outcomes and what data they need for effective functioning. The major

objective of analysis in the proposed method is to understand and investigate the

existing basis of interaction and communication, such as the differing horizons of

meaning of various users. The design process focuses on reconstructing user language

to support interaction in order to capture more effectively meanings as conveyed in

ordinary user requirements. The proposed perspective aims at increasing mutual

understanding and the creation of new meanings and through unfreezing and refreezing

stages in evolutionary process facilitates interaction and exchange of information.

The method described in this chapter applies a semantic agent-based formalism to

Chapter five: A method for evolutionary development 1 9 3

support incremental development of the enterprise information model. This model is

the first representation of the target system in a robust and flexible form, clustered into

ontologically related subject areas. Therefore a set of affordances and interconnections

between them may constitute each subject area and its corresponding prototype. As a

result, the software prototype system can be described using a suitable implementation

environment. The description represents a semantic model, and its execution may

exhibit operational semantics. The semantic model allows readers of the model to

understand its semantics very clearly. During the evolution of the target system, the

semantic model is improved repeatedly until it satisfies the user requirements. Then at

each cycle of development, the model is improved toward the total enterprise

information model. The major characteristics of the application of the semantic-model-

based prototyping are the following:

• While requirements are captured in an informal manner, specifications are identified

in a more formal manner.

• There is a semantic model detailing a set of behavioral patterns, free from

commitment to any particular natural language.

• It is useful for project members to view an understandable semantic model so that

they may comprehend the objectives clearly and quickly. The project members include

many persons: users, analysts and designers, programmers and management. Before the

semantic model of the object system is elaborated, each member may have different

understandings, different interpretation of the organisational behaviour. It is important

to elicit the semantics held by each individual member before starting to prototype any

part of the object system.

• Semantic models are easy to modify. Modifications will be made until all participants

are satisfied.

The new method focuses on the importance of language as the principle vehicle through

which the construction of reality is mediated. This viewpoint assigns a strong role to

Chapter five: A method for evolutionary development 1 9 4

language analysis in conceptual modelling. From the linguistic point of view the object

system is not a perception of reality, but the rule system through which communities

interact to make sense of and construct reality. These rules pertain to the ways in

which language is used (semantics and syntax) and which govern the intentions and

effects of language use (pragmatics). Rules which describe the conditions for actions

performed in the social system, are permitted to change. This dynamism is a major

advantage of the proposed method over the static constraints specified by other data

modelling approaches.

The approach to prototyping taken in this research needs to be viewed from a number

of angles, with various analyses and other creative thinking processes to ensure that the

research result as foreseen is relevant and practical. In the next chapter we will address

this issue.

Explanatory empirical study

Chapter Overview
This chapter presents the findings from a case study conducted in one of the "Big Six" management

consultancy companies. It examines the relevance of the semantic agent-based modelling formalism for

high level corporate modelling. Section 2.1 introduces key findings of other researchers' empirical studies

regarding the application of the planned change model to information systems development. These studies

provide more insights into the requirements of the planned change model, specifically during the

unfreezing and refreezing stages of change process. They emphasize setting frames of reference and

bridging the semantic gap between parties involved in design, facilitating conceptual training and

institutionalizing the change and finally the importance of role clarification and responsibility negotiation

as crucial issues in user involvement in the change process. The explanatory case study demonstrates

how the semantic schema supports the above-mentioned requirements and suggests that planned change

model and semantic analysis might be in harmony with each other. This harmony supports the

justification for the use of the planned change theory and semiotic theory as a new theoretical framework

proposed by this thesis for evolutionary prototyping. The case studied is an important part of the

corporate data model and explains the substantive business of the management consultancy. Section 6.2

is devoted to a full description of the case study and its findings. It explains the case study in ten

subsections. After reviewing the background of the company and corporate data modelling project,

agency structuring of the model is introduced in subsection 6.2.1. Each of the nine subsequent

subsections shows the application of terms within the company and provides the semantic schema for the

eight clusters of the case. The findings of each subsection are presented in the form of observations which

show the benefits of semantic modelling for issues like: conceptual training, role clarification and

responsibility negotiation, specifically at the unfreezing and refreezing stages of the implementation

process. Finally section 6.3 not only concludes this chapter but also finalises the whole research approach

designed for this thesis.

Chapter six: Explanatory empirical study 1 9 6

6.1 Introduction

This chapter describes the validation stage of the research method. There are a number

of empirical studies reporting the application of the planned change model to the

information systems development process. During the validation stage of the research

approach, we reviewed these secondary studies to explore the practical adequacy of the

planned change model. The aims are to relate the findings of the explanatory case

study to the requirements of the planned change model and to show the harmony that

exists between support theories in the proposed method.

The Lewin/Schein process theory of change (Lewin, 1952; Schien, 1961,1972) has been

employed in number of empirical studies as the basic model for research on the

implementation process. This planned change model, particularly as elaborated by Kolb

and Frohman (1970), suggests key issues which must be resolved if the change effort

is to succeed. Among these issues are institutionalizing the change during refreezing

stage of development (Zand & Sorenson, 1975; Goodstein & Brake, 1991), setting

frames of reference and bridging semantic gaps through better communication between

users (De Brabander & Thiers, 1984), providing a medium for conceptual training at

an early stage of implementation process (Ginzberg, 1981) and considering role

clarification and responsibility negotiation of different agents involved in the change

process (Bostrom & Heinen, 1977). The results of different researches indicate that the

resolution of these issues is important to the success of information systems

implementation efforts.

The explanatory case study explains the power, practicality and ability of semantic

analysis to respond to the above-mentioned requirements of the planned change model

in coordinating the unfreezing and refreezing stages of the change process. The case

study explains how the semantic agent-based formalism supports the representation of

social and business affairs in the form of a corporate data modelling case. The case

study supports subjectively the justification of the important analysis technique

suggested in the proposed method. It also addresses the issues explored by exploratory

case study, discussed earlier in chapter 4, regarding the shortcomings of evolutionary

prototyping approach in information systems development.

Chapter six: Explanatory empirical study 1 9 7

6.2 Explanatory case study: corporate data model

The proposed method by this thesis suggests a planned change model for managing the

implementation process. The previous section mentioned the important issues in the

application of the model to the evolutionary information systems development. The

analysis of those issues provides insight into the characteristics required from a

semantic tool during the unfreezing and refreezing stages of development The

proposed method in this thesis suggests semantic analysis techniques to be employed

during those stages. The features of this technique discussed earlier in chapter 3 appear

to respond well to the issues mentioned above in previous section. We have also

conducted a case study to provide further justification for the application of semantic

analysis and for its characteristics in considering the shortcomings of evolutionary

prototyping and issues related to the planned change model. This explanatory case

study is the subject of present section.

The subject of the explanatory case study is the corporate data model of one of the

biggest management consultancy firms. The firm is run as a partnership with a

headquarters based in United States, and the UK partnership is part of the international

partnership of the firm. The UK partnership has a corporate data division which

provides consultancy and support for the development of the corporate data model for

large enterprise. In order to have a corporate data model reconciled across the whole

partnership all around the world, the corporate data division of the UK partnership in

1991 started a project to develop such a data model. The project, which is coordinated

by the US headquarters, has the objective of completing a corporate data model for each

partnership in each country and then of merging them all. The focus of this case study

is the corporate data model project of the UK partnership. The project is one of the

first projects of its own and was started five years ago with the direct supervision of the

head of corporate data division as project manager, together with a senior analyst from

that division. The project at the time of study in November 1995 was still ongoing,

despite the fact that both above-mentioned persons responsible for the project are now

handling the project on a part-time basis, owing to the pressure of other consultancy

projects with their clients.

Chapter six: Explanatory empirical study 1 9 8

The corporate data model of the UK partnership was developed using entity-relationship

(ER) modelling. It now consists of tens of different entities with very complex

relationships between them. Understanding the model as a whole is extremely difficult

and without the assistance of the project manager an impossible task. One of the most

important entities within the model is client since the whole organisational resources

and activities of the firm are directed towards its clients. The focus of the case study

has been restricted to this entity and all other entities with direct connections to it. This

restriction resulted in a (sub)model of around forty entities, shown on the next page.

The model is also supported by a comprehensive data dictionary which defines different

entities and clarifies their relationships to each other. The case study employed existing

data analysis documents and in-depth discussions with the senior analyst. The result

of the study was a very comprehensive report, containing the semantic schema

developed on the existing model and the definitions provided in data dictionary. The

report was then presented to the project manager, senior analyst and another person

from the rules and regulation division of the firm. The reaction of different persons to

each part of the report and discussions stimulated by the report are also considered as

part of the study of the case. The explanation of the model is discussed in the

following ten subsections and the findings from each subsection are presented in the

form of observations. The observations support the justification of the semantic agent-

based modelling and its power, effectiveness and practicality in relation to its purpose

as an explanatory prototyping tool in the proposed method of this research.

This section consists of ten subsections. Subsection 6.2.1 introduces the responsible

agents and the other nine subsections correspond to the different clusters of the

semantic schema developed for the case. In each subsection, the original corporate data

model, definitions of related entities and ontology chart of each specific cluster of the

semantic schema will be presented. Dividing the model into eight clusters is the result

of the natural decomposition characteristic of the semantic agent-based modelling and

not of a clustering superimposed for the sake of reducing complexity. Those entities

which are considered semantically appropriate for the ontology chart of each cluster are

highlighted by shadow colour in each subsection.

c o n t a c t

CL.G R O U P

tecToi

^UHC 1
GROUP I

TYPE

CLIENT
SERVCE
PRODUCT

■ c»l«oon»»d by

B U S IN E S S
PARTNER

ACTIVITY ' s j n c r v
SALES

PRODUCT

:ss

C L IE N Tr PROF
SERVCE
PRODUCT

B U S IN E S S
UNIT

IDIVIOUALCLIEN T
JOB

CLIENTCONTRAC1

CLIEN T
ACCOUNT

r PROF
SERVCE
CLIENT

FIRM
MEMBER SALES

CLIENT

■TINORITY-OJ
R n e o b u s in g
SS PARTNER

SUNDRY
SALES

M VO C E

'ARTNER

Chapter six: Explanatory empirical study 2 0 0

6.2.1 Agency structuring

Agents are special types of unit of analysis, as they hold responsibility in the world of

actions. Therefore identification of agents and their names in normal usage in the

organisation is the first task in semantic analysis. It is interesting to know that in the

case studied, we only have two responsible agents. One , obviously, the firm itself as

a partnership and the other a legal person which by definition might be an individual

person or differing types of business units. Any further analysis will follow with the

involvement of one or both agents. A legal person might take number of roles in its

relationship with partnership, as its client with a contract in between or as a staff

member in an employment relationship. To avoiding using the role names, figure 6.1

shows the root names of two responsible agents of the case. It is interesting to see that

there are different entities in the original ER model representing different roles of legal

person, but there is no entity for the representation of the partnership itself.

P a r t n e r s h ip #

S o c ie ty *

— L e g a l P erso n # —
P erson*

r—O r g a n i s a t io n * —

R e g i s t e r e d C o . #

P u b l i c Body*

P a r t n e r s h ip *

Figure 6.1 Agency structuring

Chapter six: Explanatory empirical study 2 0 1

Although a vast amount of responsibility lies with the partnership, the analysis of the

corporate model regards it as container of all entities and not an integral part of the

model.

Observation 1: Semantic analysis technique has the advantage

o f identifying responsible agents for placing responsibility. By

enforcing a subjective view o f the world, it seems impossible to

develop ontology charts without identifying the knowing agents

who construct the reality through their actions.

6.2.2 Firm Member

This subsection provides the first cluster ontology chart of the semantic schema,

concerning the definition of firm member and its different types. The following are

definitions for these names which are simply different roles for a person who has a type

of contractual relationship with the firm. The figure in the next page highlights the

entities involved in this cluster.

Firm Member: An individual who carries out, or has carried out, day to day activities in support of the

business. This category includes Partners, Staff Members, Contractors, Temps & Permanent Temps.

It excludes those where the contract buys the service rather than a person, eg. ancillary and temporary

services such as window cleaning, vending machines attendants.

Partner: A Firm Member who has been elected to the UK partnership. A Partner is jointly liable for

the debts of the firm & can sign legal documents on behalf of the partnership. Classically a Partner is

a participant in partnership profit & loss.

Partnership: A group of people who are party to a partnership agreement.

Figure 6.2 shows how the role name firm member arises when there is a form of

contractual relationship between a person and the partnership. Contractual relationship

as a generic name may have different specifics depending on the type of contract

between the firm and a person. For example as it is shown in figure 6.3, if the contract

is employment then firm member could be more specifically relabelled as staff member,

if the contract between the firm and a person is a form of partnership contract then

it
angagtd

in
b|i

r o l e

N |

BUSINESS
UNIT

p r o v id ta

art ttrvtotd wth

A
V .

" 1 I
1

owm
CLIENT

ACCOUNT

rt owntd by

a c W t y

CLIENT
J O B

[
CLIENT

opantd by

nas optn

r ta p o n s ib t t

justwessĈtAISOfcK

Su
c o n t a c t

E S P O N S lB lE

f C A T lGROUP̂

G R O U P I

a a catagory ol
CLIENT

SERVICE
PROOUCT

B U S IN E S S
P A R T N E R

SUNORV
SALES

PR O O U C T

CL IE N TP R O F
SERVCE
P R O O U C T

DIVIDUAL

GISTEREO
C O M P A N Y

PUBLC
B O D Y

PbHPOKAlE
V ra y

f
ARTNERSMtf

TAX
CLIENT

IN O R IT V -O
E D B U S IN E

S S P A R T N E R

ERSONAL
TAX

CLIENT

1W PROF
r SERVCE

CLIENT

\ - Q

■ T s u n o r y -
santto f SALES

CLIENT
/ a i m

•ng a gn in

Chapter six: Explanatory empirical study 203

the role name for the person will be partner and if it is just a general contract the role

name will be relabelled simply as contractor, etc.

P a r t n e r s h ip # v CLUSTER 1: FIRM MEMBER

C o n t r a c t u a l
R e l a t i o n s h i p #

S O C l B t V * <

S ’ /
Fu l l -T im e Employment#

\ J/ / Permanent Temporary#
Temporary#

\ [g e n e r a l) C on tra c t#\ / P a r t n e r s h ip #
— L eg a l Person# -

P e r s o n # /
r— O r g a n i s a t i o n # —

R e g i s t e r e d Co. #

P u b l i c Body#

P a r t n e r s h i p #

Figure 6.2 Cluster 1: Ontology chart for firm member

CLUSTER 1: FIRM MEMBER
STAFF MEMBER
PARTNER

C o n t r a c t u a l
R e l a t i o n s h i p #

->) ^F ul l -T im e Employment#
/ Permanent Temporary#

Temporary#
\ CG enera l)Contract#

2̂ P a r t n e r s h ip #

Person#< ^^
— O r g a n i s a t i o n # —

R e g i s t e r e d C o . #

P u b l i c Body#

P a r t n e r s h ip *

Figure 6.3 More details about firm member

Chapter six: Explanatory empirical study 2 0 4

Observation 2: The generic-specific relationship and its

handling o f changing role names brings economy o f expression

to the ontology charting. It also provides consistency as the

range o f activities expand. For a new type o f contractual

relationship, we just need to add a new specific to the chart.

Observation 3: One problem with entity modelling is how to

decide where to begin reading the chart, or before that, where

to begin the representation. Reading from left to right, the

ontology charts produced by semantic agent-based formalism

indicate the pattern o f behaviour and actions that needs to be

realised before anything on the right hand side can be brought

into existence.

Observation 4: Ontological dependency in ontology chart can

provide a reliable and durable orientation on which to anchor

the concepts in the semantic representation. I f a person dies,

the termination o f his contractual relationship is automatically

enforced by the semantics o f the ontology chart and the

termination procedure can be automatically triggered by

system.

Observation 5: There is also a time constraint implied by

ontological relationship. Any concept which has a current

realisation can only exist if its antecedents continue to exist.

The responsibility for determining whether the realisation has

ceased, for example when an employment contract has been

terminated, belongs to a responsible agent within the firm who

is the guardian o f that particular signification.

Chapter six: Explanatory empirical study 2 0 5

Observation 2 addresses one of the important issues studied by Bostrom and Heinen

(1977) regarding responsibility and role clarification from a change theory perspective.

They argued that designers can only facilitate individual change through the handling

of the change process, as only the individual himself is capable of changing his own

behaviour. A semantic schema gives the users and developers the opportunity to

discuss and clarify future roles and responsibilities. This aspect of the representation

of roles in semantic schema was one of the most attractive ones for the senior analyst

during our discussions of the case. The distinction between agents and their roles in

different relationships is clearly useful when compared with the treatment of ER

modelling for roles as separate entities.

Observation 3 promotes the readability of the semantic schema. The project manager

and the senior analyst found the representation of the semantic schema bulky and not

economical. But they all agreed that this can be resolved by a computer aided system

in support of the modelling technique. The reward is readability of the ontology charts

by different users, for whom the charts appeared to be supportive and self-explanatory.

The issue of understandability of requirements representation was also discussed in the

exploratory case study reported in chapter 4. The lack of an understandable

communication medium between business analysts and User Forum in general and

inability of ER modelling representation to furnish such a platform for communication,

in particular, were the major findings of that case study. Through clear representation

of the users’ language in the workplace, we will be able to facilitate design

understanding. The concept of time and the question of who decides the temporal

constraints of a current realisation were very difficult to convey during our discussions.

This is mainly because of our preoccupation with the concept that time can be always

kept out of the database structure and has effects just through transactions of the

system.

6.2.3 Business partner

The following figure highlights the entities involved in the definition of business

partner.

Aq
ui

pt
fl

if
lu

a
«t

CONTACT

EECTOI

ADO'UHC
GROUP

TYPE

i t c a f o o n f d by
a r t vtrvrctd w *F

CLIENTB U S IN E S S
UNIT SERVICE

PROOUCT

CLIENT
JOB

CONTRACT CLIENT

r PROF
SERVCE
CLIENT

CLIENT
ACCOUNT

SUNDRY
SALES
CLIENT

SUNORY
SALES

M VO C E

ERSONAL
TAX

CLIENT

'ARTNER

Chapter six: Explanatory empirical study 2 0 7

The definition of entities involved in this cluster based on data dictionary are as

follows:

Individual: A person

Public Body: A non-privately owned or commercial enterprise.

Registered Company: A company that is registered with Companies House.

Business Partner: A legally explicit & named-part of an organisation, or individual, which has engaged

or is a prospect for the engagement of the firm’s services. It is that part of the organisation which

requires to be identified for firm’s operational management.

Client Service Product: A service or product which the Firm proposes or contracts to provide a Client.

Professional Service Product: A service which the Firm provides to a Client which typically consists

of hours plus expenses.

Sundry Sales Product: An item or service offered by the Firm but which is not classed as a

Professional Service Product. A sundry Sales Product is never subject to professional clearances or

other Regulatory Body imposed restrictions. Example include publications, software and public training

courses and conferences.

The distinction between business partner and client as two entities was confused. In

the corporate data model, as shown in the previous page, client is treated as a sub-type

of business partner, itself a super-type. This problem always arises when we consider

role names as real entities and not as based on their root names and the conditions that

represent each specific role. In fact business partner is a legal person who gives

definition for every service product the firm is providing. The range of service products

provided by the firm as a management consultancy can only be realised when a legal

person is recognised as a business partner of the firm’s partnership. This form of

ontological dependency is presented in figure 6.4 marking the second cluster of

semantic schema. In the semantic agent-based formalism the underlying notion is that

the world is not given, but instead is created by the responsible agents who shape and

govern it.

Chapter six: Explanatory empirical study 2 0 8

CLUSTER 2: BUSINESS PARTNERPartnership*

(Client)
S e rv ic e p ro d u c t# ----

P ro f . S e rv ice P roduct#S o c ie ty *

Sundry S a le s p ro d u c t#

— Legal Person# —
Person*

— O rg a n isa t io n # —
Registered Co.#
Public Body*
P a r tn e r s h ip *

Figure 6.4 Cluster 2: Ontology chart for business partner

The pattern of behaviour that analysts seek to capture in an enterprise model embraces

a complete repertoire of organisational activity - what it needs to do to maintain itself

and to prosper. These modelling objects, physical and abstract, are ultimately defined

not by some form of words, although this helps, but by the activities performed to

instantiate them. The precise meaning of business partner, service products or client

will be fashioned by how company behaves towards such creations, and since an

organisation is composed of many responsible sub-parts, many competing significances

will be operating simultaneously and in different periods of time. The formalism used

for capturing these requirements needs to be able to reflect this state of affairs. The

clarification between the meaning of business partner and client was confirmed through

our discussions with project manager and the person from rules and regulation division.

Observation 6: A formalism for representing the information

used by the business needs to be able to account for different

understandings. Naming and meaning are separate although

related ideas. Semantic analysis requires us to record what

meanings were in use and at what period o f time.

Chapter six: Explanatory empirical study 2 0 9

6.2.4 Client

The next page model presents the highlighted entities involved in the definition of

client. The following are complete definitions for those entities from data dictionary:

Business Unit (BU): A time-defined component of the firm which controls resources (including assets).

This currently is viewed as a management unit for which the firm determines the Business Objective, and

for whom the Partners are responsible for the financial reporting and to the relevant Regulator for the

conduct of their professional service. A Business Unit has a stated Business Objective and may have

a M arket Specialisation eg. MCS has Manufacturing Systems & Supply Chain. A Business Unit may

control resource/assets; be a recognised aggregation point of resource/asset (reporting level).

Client: An individual or the legally explicit & named part of an Organisation (or that part which

requires to be identified for firm’s operational management) with which the firm is contracted to provide

services/products.

Contract: A legal agreement between two parties.

The following ontology chart marks the third cluster of semantic schema for client.

P a r t n e r s h i p # — - B u s i n e s s U n i t # v v CLUSTER3: CLIENT

o n t r a c t #

S o c ie ty

— L e g a l P e r s o n * —.
P e r s o n *

— O r g a n i s a t i o n * —I

R e g i s t e r e d C o . #

P u b l i c Body*

P a r t n e r s h i p *

Figure 6.5 Cluster 3: Ontology chart for client

i»
*ng*0*d

in
by

ROLE

GROUP

UHC
GROUP

TYPt

CLIENT
S E R V C E
PROOUCTart Mnncad w»TT

ACTIVITY B U S IN E S S
PARTNER

S U N D R Y
SALES

PROOUCT

r PROF
SERVCE
PROOUCT

I0IVI0UALC L IE N T
J O B

CLIENT
ACCOUNT

FIRM
MEMBER

■ T lN O R IT Y -O
R n e d b u s in g
SS PARTNER

SUNDRY
SALES

W VOCE

'ARTNER

CLIENT

Chapter six: Explanatory empirical study 2 1 1

According to definitions from data dictionary, we can understand that there are different

types of client:

Prof Service Client: A Client who receives a Professional Service Product.

Personal Tax Client: An Individual who is a tax Client of the Firm.

Corporate Tax Client: A client of the Corporate Tax area.

Sundry Sales Client: A customer of one or more firm’s Sundry Product, who at that time was not a

Client of Professional Service products.

By taking into account different types of client, figure 6.6 presents a more detailed

ontology chart of client.

CLUSTER 3: CLIENTB u s i n e s s U n it#P a r t n e r s h ip *

o n t r a c t *

S o c ie ty ’

C l i e n t Type#— L e g a l P e r s o n * —.
P erson*

i— O r g a n i s a t io n # —i

R e g i s t e r e d C o .#

P u b l i c Body*

P a r t n e r s h ip *

r—P r o f . S e r v i c e C l i e n t #

C o rp o ra te Tax C l i e n t #

P e r s o n a l Tax C l i e n t #

Sundry S a l e s C l i e n t *

Figure 6.6 More details about client and client types

Itis interesting to consider that while client has no meaning without having a contract

with business unit as part of the partnership, and while it is clearly represented in the

pevious page ER model that business unit is one party of the contract, there is no

reference to the second party in the contract between client and business unit. It is

Chapter six: Explanatory empirical study 2 1 2

mainly because there are no semantic constraints enforced in ER modelling. This is a

typical problem of all conventional modelling approaches in that they assume the world

to be made up of ready made entities or objects, which merely need to be articulated.

Observation 7: In semantic agent-based formalism, the precise

meaning o f terms like client is fashioned by how the firm

behaves towards such a creation. In this way it seems very

difficult that semantic constraint employed in the formalism

neglects the participants responsible for that creation of

meaning.

Further attention to the next page model and the relationship between client and client

service products shows how two clusters need to relate to each other in order to create

the concept of how client is serviced with (client) service products. Figure 6.7 shows

that relationship.

To be more precise, figure 6.8 shows how different types of client are serviced by

different types of (client) service products. This relationship is exactly where the

relationship between business partner and client becomes clear. Business partner is

responsible for creating the meaning for any form of service product. As soon as

business partner starts to be serviced by the service product under the terms and

conditions of a contract, then he will be also regarded as a client of the firm who is

receiving a (client) service product. Only through semantic scrutiny administered in a

semantic formalism, we can be sure that namings and meanings precisely refer to each

other.

When the contract between firm and client is terminated, the client still can be regarded

as one of the business partners of the firm who was, and still can be, responsible in the

creation of a specific service product. Figure 6.8 and the review of the ontology charts

for the client from figure 6.5 through 6.8 provide more findings from the case study in

the form of the next observations:

i«
tngaptd

in
by

•c 6 n TA (H •
ROtE >-■

* Nad by
W "5u '
V CONTACT

hm 1
ke s p o n s i b l e

P E R S O N

GROUP 1

J C7\
LOCAL

y&CTOR ~xS'
c

3 / ^ ~

A hL_/ \ \ a
\ | \(

GROUP

d « category of
provides d c a lo o o rd ad by

are tervioed withi t p ro v id e d by

B U S IN E S S
P A R T N E R

ACTIVITY

PROOUCT

PRODUCT

DIVIDUALCLIEN T
JOB

G IS T E P E D
C O M P A N Y

^S E R V IC E]
CLIENT j

CLIENT
ACCOUNT

BODY
opened by

it owned by

rA R T N E R S H If
T A X

CLIENT
MEMBER SAL

C L IE N T

NORITY-O
EO BUSINE

SS PARTNER
ARTNER SUNDRY

SALES
N V O C E CLIENT

retponnbiwty

engage* in

Chapter six: Explanatory empirical study 214

P a r t n e r s h i p * B u s i n e s s U n i t * CLUSTER 3: CLIENT

C o n t r a c t *

I s s e v l c e d r l t h
L e g a l P e r s o n *

P e r s o n *

/ / O r g a n i s a t i o n *

E e g i s t e r e d C o . *
CLUSTER 2;P u b l i c B o d y *

P a r t n e r s h i p * BUSINESS PARTN]

Partnership*

S o c i e t y i (C lie n t}
B e r r ie s p roduct*

P r a f S e r v i c e P r a d u c t *

Sundry B ales P roduct*L ega l Parson*

o rg a n isa tio n *
R e g is te re d Co.*

P u b lic Body*
P B T tn O Tf m pT '

Figure 6.7 Connection between client and (client) service products

Chapter six: Explanatory empirical study 2 1 5

P a r t n e r s h i p * B u s i n e s s U n i t * CLUSTER 3: CLIENT

C o n t r a c t *

- C l i e n t T y p e *

i s s e v i c e d w i t h

L e g a l P e r s o n * .

P e r s o n *
P r o f . S e r v i c e C l l e n -

' O r g a n i s a t i o n *
C o r p o r a t e T a r C l i e n t *

P e r s o n a l T a x C l i e n t * A
H e g l s t e r e d C o . *

CLUSTER 2:P u b l i c B o d y *
P a r t n e r s h i p * BUSINESS PiS u n d r y S a l e s C l i e n t *

' a r t n e r s h i p *

S o c i e t y *
(C l l a n ta /

f l e r r l c o p ro d u c t*

P r o f S a r r l c a / P r o d u c t *

Saadry S a la s P roduct*L ig a i P arsoa*

irg a n is a tlo n *
R a y i s t a r a d C o . *

P u b lic Body*
P W m B T S I T F T

Figure 6.8 More details about connection between client and (client) service products

Chapter six: Explanatory empirical study 2 1 6

Observation 8: The natural clustering attribute o f the semantic

agent-based formalism contributes into the economy and

readability o f the ontology chart. It also augments the

robustness o f the model when it comes to the connections

between different clusters.

Observation 9: The semantic connections between two generic

ajfordances from two different clusters can be attributed to the

connections between their specifics.

Observation 10: While adding new entities to an ER model can

result in inconsistency, it seems that addition can hardly

jeopardise the soundness o f a semantic schema.

The natural clustering attribute of the semantic analysis as a complexity reducing

feature responds perfectly to the requirements for prototyping subsections of a large

system discussed earlier in chapter 2 and addressed in chapter 4 which considered the

findings of the exploratory case study. Clustering the system to the related subject

areas will facilitate modular development of prototypes, the traceability of prototypes

to their original requirements and the negotiation of meaning within the context of each

subject. In the next page, there is a model with a highlighted area which shows the

representation of the sundry sales invoice within the corporate data model. Referring

to the definition from data dictionary:

Sundry Sales Invoice: A request for payment relating to the sale of sundry products.

The project manager agreed during our discussions that this entity represents not only

an unimportant task at the operational level which does not need to be addressed at the

corporate level, but also the way it appears in the model shows the inclusion of low

level paperwork into the model. The task of invoicing at the operational level might

be modelled in ontology chart, though not necessarily, as in figure 6.9.

i»
engaged

in
by

eu
CONTACT

* b a d by

E S P O N S e i E

C L A S S f C A T lGROUP

GROUP I

it a caiagory of
pxovyJaj ■ cX aoontad by

a r t w v a d w*Ti PROOUCi t p io w ie d by

B U S IN E S S
P A R T N E R

ACTIVITY

PROOUCT

SERVICE
PROOUCT

DIVIDUALCLIENT
JOB

COMPANY

PUBLIC
I b o d y ICLIENT

A CCO U N T opanad by

ito w n ad b y h a s o p a n

| e ir m |
MEMBER

ARTNERSHI
tam to mmim

CLIENTCLIENT

rw rj NORITY-O
EO BUSINE

SS PARTNER
SUNDRY
SALES

W VO CE
raaponsibM

lasponstolity

angagat in

Chapter six: Explanatory empirical study 2 1 8

P a r t n e r s h i p * B u s i n e s s T J n i t * CLUSTER 3: CLIENT

C o n t r a c t *loc ia ty*

- C l i e n t T y p e *
Legal Person* i s i n v o i c e d f o :

P e r s o n *
P r o f . S e r v i c e C l i e n t

' o r g a n i s a t i o n *
C o r p o r a t e T a r C l i e n t *

H e g i s t e r e d C o . *
P e r s o n a l T a x C l i e n t * CLUSTER 2:P u b l i c B o d y *

P a r t n e r s h i p * BUSINESS PiSundry Sales Client*

P a r t n e r s h i p '

Society’ £ CCllent)
' j Service product#

P r o f S e r v i c e P r o d u c t #

Sundry Sales Product*

irsanlsatlon#
R e g is te re d Co.*

P u b lic Body#
p i .T t g B i r m 'p #

Figure 6.9 Invoicing the sundry sales client

Chapter six: Explanatory empirical study 2 1 9

Observation 11: Since the ontology charts do not incorporate

into the structure o f the representation any normative rules or

paper-handling activities, the effect can be to avoid hostages to

fortune. I f the corporate data model embodies business norms

into its underlying data framework, when company decides to

do things differently there will be a big overhead to pay in

eradicating the now mistaken assumption.

6.2.5 Minority owned business partner

Minority owned business partner is one of the concepts within the corporate data model

under study that project senior analyst had a problem of how this entity should be

represented in ER model. As shown in the next page model, this entity is treated as a

subtype for business partner, which has also relationship to business liaison. The

description of this entity is given as follows:

Minority Owned Business Partner: A party in a Business Liaison with the Firm where firm has an

interest in promoting the business activities, because either directly or indirectly it results in the firm’s

profitability.

The concept of minority owned business partner in the ontology chart is represented in

figure 6.10. This concept is a semantic outcome of the joint realisation of two

concepts: business partnership and minority ownership. Minority ownership of an

organisation by the partnership labels the company as minority owned and as the

minority owned company participates as one of the partnership’s business partners, this

provides the notion of minority owned business partner. Although the way this concept

is represented in the ontology chart seems to be a very straight forward, the fact is that

the treatment of ontological constraints in semantic-agent based formalism indicates the

pattern of behaviour and actions that needs to be realised before other concepts can be

brought to life. This indication as a guiding force helps the analyst to maintain the

semantic integrity of the model and to avoid doubtful representations such as appear in

the next page model, where there is a question mark over the connection between

business partner and minority owned business partner. The project manager agreed on

the clarity of the semantic schema for this representation.

CONTACT

[ifCATiCLjGROUP

AOOIUHC
GROUP

TYPt

CLIENT
SERVCE
PROOUCT

r SUNDRY
SALES

PROOUCT

a c t i v i t y :ss
ITNEI

CLIENT" PROF
SERVCE
PROOUCT

I DIVIDUALCLIEN T
JOB

CLIENTCONTRACT

CLIENT
ACCOUNT SERVCE

CLIENT

SUNORY
SALES
CLIENT

FIRM
MEMBER

’ARTNER SUNORY
SALES

M VO C E

Chapter six: Explanatory empirical study 2 2 1

CLUSTER 4: MINORITY OWNED
BUSINESS PARTNERPartnership#

^Percentage

(Client) ^ ---
Service product# ^Minority

Ownership#
Prof . Service ProdWict#S o c ie t y *

Sundry Sal^s product#

Figure 6.10 Cluster 4: Ontology chart for minority owned business partner

Chapter six: Explanatory empirical study 2 2 2

Observation 12: Ontological dependency and the treatment of

semantic modelling in ontology charting to be readable from

left to right, provides a guiding force for analyst to maintain

the semantic integrity o f concepts. It shows the way that how

realisation o f one concept can lead to the next.

6.2.6 Business liaison

The definition of business liaison in the data dictionary of the corporate data model is

presented as follows:

Business Liaison: A description of firm’s business interest in the relationship with the Business Partner.

As shown on the ontology chart on next page (figure 6.11), a connection between two

clusters creates the notion of business liaison. The treatment of natural clustering again

brings forward a robust and stable semantic schema which automatically places different

concepts in their related cluster and then, when necessary, nicely connects them to each

other to represent the new concepts.

6.2.7 Client job

Client job is part of the (client) service product which services a client Client job

which is described in form of activities is the direct responsibility of partner in his

relationship with the client. The definitions of these entities are given in the data

dictionary as follows:

Client Job: An auditable unit of work performed. Synonyms used in other parts of the Firm include:

engagement, assignment or project(one-off). Time and expenses for a Client Job is recorded as Charge

Account. It records the Business Unit partner and Manager responsible for the Charge Account and

also the firm’s categorisation of the Charge Account.

Activity: A classification of the type of work supplied by the firm.

Service Product Type: A category of professional service or sundry item on offer by the firm. This

equates to the Time Accounting Activity Code.

Chapter six: Explanatory empirical study 2 2 3

CLUSTER 4; MINORITY OWNED
BUSINESS PARTNERP artnersh ip*

* P e rc « n ta g a

S a r n c a pxodu.(

Pro£. S e m e s P roduct’

sundry Salas proi

L a g a l l i • Minority osned
Business Partner*

laglstaxad Co. *
CLUSTER S: BUSINESS LIALPmhllc Body*

B u s in e s s U n it#Partnership# B usiness
Liaison*

Society#

Figure 6.11 Cluster 5: Ontology chart for business liaison

Chapter six: Explanatory empirical study 2 2 4

The next page model highlights the participating entities for this cluster of semantic

schema which is represented as more additions to cluster 2 (business partner) previously

discussed in subsection 6.2.3. Therefore the following ontology chart represented in

figure 6.12 provides more details of cluster 2 for business partner and client job.

CLUSTER 2; BUSINESS PARTNER ft CLIENT JOB

Partnership*

S erv ice P roduct Type*

A ctiv ity R*

(C lie n t)
S ervice product* -2 —C lie n t Job*

Prof. Service Product*

Sundry S ales product*

— Legal Person* -
Person*

i— O rganisation*—I
R eg iste red Co.*
P u b lic Body*
P artn ersh ip *

Figure 6.12 More details about business partner and client job (extension of
cluster 2)

As shown in the above figure, the whole-part relationship in the semantic agent-based

formalism represents a very rigid semantic notion. The corporate data model and even

the description given in data dictionary do not specify whether client job is nothing

other than part of services designed for a client.

Observation 13: Whole-part relationship as an ontological

dependency: a part cannot exist without the whole, provides a

useful mechanism to distinguish dependent concepts. Although

in other modelling formalisms, such as object modelling

technique, we can see a similar concept inform o f aggregation

of components, but it does not convey the ontological

dependency o f components on the aggregate and mainly

conveys the idea of assembling physical things together.

it
tngtgtd

in
by

CONTACT

lESPONSeif
P E R S O N

f f C A T lGROUP

UHC 1
GROUP I

CLIENT
SERVICE
PROOUCT

BUSINESS
PARTNER

■ss ' ' s u n d r y

SALES
PROOUCT

CLIENTB U S IN E S S
UNIT

r PROF
SERVCE
PROOUCT

IDIVIOUAL

CONTRACT

CLIENT
ACCOUNT SERVICE

CLIENT

FIRM
MEMBER

SUNORY
SALES
CLIENT

■TlNORITY-Oj
WNEO BUSING
SS PARTNER

SUNDRY
SALES

W VOCE

Chapter six: Explanatory empirical study 2 2 6

CLUSTER 2: BUSINESS PARTNER A CLIENT JOB,
P artn e rsh ip * B e rn e s Product Type*

Activity R#

(C lien t)
Berries product* - 2 - C lie n t Job*

Pro! Sarrlce Product1Sooiati

Sundry Sales product*

Lqil lariGit

CLUSTER h FIRM MEMBER
STAFF MEMBER

le i le te re d Co.*
' Public Body*
U l t B l l l t t l l *

PARTNER

Partnership*

C ontrac tual
R ela tionsh ip*

.* /T u ll-T ln # Kaslcyaont*
/ Paraanent Tamperary*

/ Taayorary* t

' C 8arrica)C antract* /
P a rtn e r s u p * /

S ocie ty*

ream action*
Registered Co.*

f Public Body*
WRUXIBXyV

Figure 6.13 A complete ontology chart for cluster 2: business partner and client job

Chapter six: Explanatory empirical study 2 2 7

Figure 6.13 in previous page completes the ontology chart of cluster 2 for business

partner and client job by representing the concept of responsibility for partner in the

fulfilment of client job.

6.2.8 Business unit contact role

The model on the next page highlights that part of the corporate data model which is

the subject of this subsection. This subsection models cluster 6 of the semantic schema

as ontology chart for business unit contact role. It mainly focuses on the findings about

the semantic treatment for different type of roles. Before discussing these types of

roles, just a quick look at the dispersed highlighted entities in different corporate data

models represented so far, brings any reader’s attention to the highly scattered

placement of entities within the model.

Observation 14: The pattern o f placement o f entities in the ER

model (and possibly in other modelling formalisms) has no

sense from a semantic viewpoint. It is arbitrary with no

semantic constraints which makes the model very difficult to

read and obtain to achieve understanding about it. In the

semantic agent-based formalism the semantically correct place

for each affordance is determined by its contribution to the

creation o f meaning. In this way better readability, natural

clustering and manageable maintenance may be achieved.

One of the most common defects in the semantic integrity of the corporate data model

studied for this case is the treatment given to roles and relationships. In the semantic

formalism we adopt there are three types of roles recognised which shows the power

of the formalism for role clarification, discussed earlier in previous section:

Roles within relationship

A role can arise within a relationship such as parenthood (mother, child) or

within ownership (property, owner). The important thing is that whatever

is filling a role can also participate in other relationships and hence acquire

f ? C A T lC l ;GROUP

[ECTOI

UHC
GROUP

TYPt

CLIEN T
SERVCE
PROOUCT

r SUNDRY
SALES

PROOUCT

:ss

CLIENT'r PROF
SERVCE
PROOUCT

C LIEN T
JOB

CLIENTCONTRACT

CLIENT
ACCOUNT SERVCE

CLIENT

FIRM
MEMBER SALES

CLIENT

■VTlNORITY-O
&NEDBUSINE
SS PARTNER

’ARTNER SUNDRY
SALES

H V O C E
TAX

CLIENT

Chapter six: Explanatory empirical study 2 2 9

other roles. This is a very powerful and efficient use of language referring

to someone as a divorced bankruptee tells a whole story about a person

very succinctly. But it would be a mistake to record these persons in virtue

solely of their roles. Hence recording a legal person as a client begs the

question of under what circumstances it commences or ceases to be a client.

Roles as part of structure

Other roles include positions within an organisational structure. These are

also referred to as offices, posts or positions. They are part of the

organisational framework and may survive longer than any particular

incumbency. Each organisation consists of a number of positions (roles)

which might be filled by different persons in different periods of time.

There are problems with coping with the changes in organisational structure

as well as with recording which person is filling the position over time.

Roles as attribute

A third possibility is when a person acquire a role as part of his definition.

Pavarotti is a singer and will be referred to in this way even when his

singing career ends.

The first two role types are the most important for business. So far we have had

number of examples for the first type of role, eg. client, business partner, .. In all of

those examples relationships are presented as having paired antecedent principles, and

roles arise during the existence of the relationship, and also cease when the relationship

ceases. Here for business unit contact role we are dealing with the second type of roles

mentioned earlier: roles as positions or offices within the firm’s organisational structure.

It is apparent from the following data dictionary definitions that business unit contact

role is a position within the business unit as part of the partnership.

BU contact role in BU: Describes the participation of the BU Contact in the Business Unit.

Business Unit Contact: A Firm Member who represents the Business Unit in its dealings with an

Organisation. In a client service Business Unit may be a subtype of Firm Member role in Business

Chapter six: Explanatory empirical study

Unit.

2 3 0

Responsible Person: A Firm Member with responsibility for a particular area.

Figure 6.14 represents the ontology chart for business unit contact role as a specific role

within the spectrum of positions in business unit.

CLUSTER & BUSINESS UNIT CONTACT ROLE

Fa r t n e r s h ip #- - B u s in e s s U n i t# i— P o s i t i o n * —
B u s i n e s s U n i t
C o n ta c t R o le *

Figure 6.14 cluster 6: Ontology chart for business unit contact role

The notion of responsibility for communication between a business partner and a

responsible person within the firm comes hand in hand with the notion of incumbency

by the person in a position which is the target of communication by business partner.

So semantically we need to distinguish between a person as incumbent or holder of a

position and the position itself. This detection is naturally handled in semantic analysis

as shown in the semantic schema on the next page (figure 6.15) for this case:

Chapter six: Explanatory empirical study 2 3 1

B artaaxahlp* CLUSTER 1: FIRM MEMB1

S o c i e t y # Coa.tr a c tu a l
B a la tlca sh ip *

/T O ll-T lM Eapioyaaat*

/ P eraaaaa t Temporary*
/ Temporary* j

' (Sorm ica)C oatract* /
P artn ersh ip * /^nliatiDil

/CLUSTER 6
BUSINESS
JIT CONTACT

le j i s t s r e d Co.*
' l a b i l e B o d y * EmEmnpT

ROLE

Bolds

Position.#.Partnership# Business Unit* Communlcatlo:
Yith >/Business unit

Contact Bole*/ CLUSTER 2
BUSINESS

PARTNER

ecu

inr m im i n n e t i

Figure 6.15 More details about business unit contact role

Chapter six: Explanatory empirical study 2 3 2

The discussion so far regarding the roles and relationships and the unique handling of

them in the semantic agent-based formalism leads to observation 15:

Observation 15: The semantic agent-based formalism adopted

in ontology charting handles roles and relationships naturally.

As the figure 6.15 in the previous page demonstrates, a firm member who holds the

position of business unit contact role is labelled as business unit contact or responsible

person. During the discussions with project members, it appears that the both terms:

business unit contact (person) and responsible person are indeed two names for one

thing. Inclusion of these names in different ways, one as sub-type of the other was

mainly because of inability of ER modelling to handle the placement of responsibility

where it seems to be absolutely critical.

Observation 16: Concepts which have the same name do not

carry the same significance throughout the company. Equally

two concepts that have the same meaning may be known by

different names, or aliases. In the end the only way o f knowing

is to look at how these concepts are realised in practice. And

practice may reveal that there are indeed totally different

significations running alongside each other.

The power of ontology charts in forcing participants, especially persons from the law

and regulation division and the project manager, to discuss the meaning of terms was

a significant observation from the presentations of the ontology charts as the results of

our semantic analysis. The discussions stimulated by semantic schema specifically in

some occasions like minority owned business partner or this current cluster about

business unit contact role showed us how the semantic analysis technique can really

trigger the negotiation of meanings where semantic ambiguities are involved.

Observation 17: Semantic modelling technique has the ability

to trigger discussions and to pave the way for conceptual

Chapter six: Explanatory empirical study 2 3 3

training o f participants during the course o f analysis. By

demanding semantic integrity in every aspect o f ontology

charts, there is a driving force for achieving a semantic

consensus on the realisation o f different concepts in practice.

It is interesting to consider the treatment of communication between business partner

and business unit contact role in the semantic schema represented in figure 6.15. In the

original ER model the communication from business partner is directed to business unit

contact as the incumbent of the business unit contact role. But the semantic constraints

of ontology charting avoids such a dependency taking place. In reality the business

partner communicates with the position responsible to him. If on any occasion, even

for a very short period of time, there were nobody to hold the position of business unit

contact role, we cannot expect that the whole communication between the firm and its

business partner collapses. Obviously from the business partner point of view, he

communicates with the position and therefore with whoever is responsible to cover that

post. This concept is demonstrated in the figure 6.15 when connecting cluster 2 to

cluster 6.

Observation 18: The semantic constraints employed in the

semantic analysis technique and the logic o f ontological

dependency prevent imposing any artificial dependency between

different affordances while it appears that ER modelling is

highly susceptible to this weakness o f modelling representation.

6.2.9 Client account

The model in the next page shows how client account is related to other entities in the

original corporate data model. Again the definitions from data dictionary are:

Client Account: A record of the financial relationship between the Firm and a Client. It may comprise

a number of individual Charge Accounts.

Local Sales Sector: A categorisation of Clients at the Charge Account/Client Account level denoting

the market sector to which the Firm/Industry Leader wishes to assign them.

i»
»no»o*d

in
by

CONTACT

GROUP

UHC
GROUP

TYPE

CLIENT
SERVCE
PROOUCT

it c» l« o o m » d by
art Mnnoad w*K"

BUSINESS
PARTNER

r SUNORY
SALES

PROOUCT

ESS

CLIENTr PROF
SERVCE
PROOUCT

B U S IN E S S
UNIT

IDIVIOUAL

CLIENTCONTRACT

SERVCE
CLIENT

FIRM
MEMBER SALES

CLIENT

P e r s o n a l
~ TAX

CLIENT

‘ARTNER SUNDRY
SALES

N V O C E

Chapter six: Explanatory empirical study 2 3 5

Client account is the ontological dependent of the contract between client and business

unit of firm. Charge accounts are also parts of the client account. The following figure

(figure 6.16) shows the ontology chart for this cluster.

CLUSTER 7: CLIENT ACCOUNT

•liocat Sales Sector
0 Industry LeaderP a r tn e r s h ip * — *— B u s in e s s u n i t* '

Charge
Account*

C ontract* C lien t -
Account*

Society*

— Legal Person*—.
Person*

j— nT-̂ -«ni aatlon*—
R egistered Co.*

Figure 6.16 Cluster 7: Ontology chart for client account

During discussions with the project senior analyst , it became apparent that even the

creation of client account is triggered by the realisation of a contract in the firms’

financial division. The dependency of client account on client is also naturally

maintained by the ontological dependency of contract on client. In the original

corporate data model represented in previous page, in order to establish relationship in

database system between client and his client account, the analyst has chosen to define

an artificial relationship as client account opened by client out of necessity, while in

practice no such action takes place by client.

Observation 19: The semantic agent-based formalism maintains

the relationships between affordances as long as semantically

they are relevant. It seems difficult to impose irrelevant

ontological relationships for the sake o f physical database

requirements for example. This aspect o f ontology charting

Chapter six: Explanatory empirical study 2 3 6

might lead to yet higher levels o f modelling consistency,

robustness and opportunity for analysis reuse.

Again, during discussions and also from definitions in the data dictionary, it emerged

that local sales sector is a determiner for client account and the authority for this

determination belongs with industry leader for each sector. The relationship defined as

local sales sector handles business partner is not consistent with the actual practice in

the workplace. This will complete the ontology chart for this cluster, explaining the

whole semantic model for client account.

Observation 20: Each cluster in the semantic schema naturally

shapes itself This will help in software development modularity

and easier maintenance o f software. It seems also to offer the

possibility to design security structures based on natural

clustering o f the model, instead o f artificial assignment of

access codes to users.

6.2.10 Business category

The definition for business category based on data dictionary is as follows:

Business Category: A Business Category denotes which of the Finn’s specialist groups (SIG’s) may

have an interest in a Client or a Charge Account. It may be either an industry sector such as Banking

or Insurance , or a specialist niche such as High-Tech, Pensions or Privatisation.

The above definitions lead to understanding that special interest groups are part of the

firm and business category is a determiner for each group with two specific category:

industrial sector and specialist niche. The relationship between this type of

categorisation of clients of the firm is established through the interests of special

interest groups from business category cluster (cluster 8) to client cluster (cluster 2) as

represented in figure 6.17. The following pages show the original ER model for

business category and the semantic schema for that part. The senior analyst and project

manager mentioned in number of occasions that the natural emergence of the

relationship between clusters is a useful feature in enhancing their understanding.

1*
engaged

in
by

•C($N T A f c l !
o/ m c XL

B U S IN E S S
UNIT

\

C O N T R A C ^

i t ow ned by

FIRM
MEMBER

provide*

a had by

it i category ol

A R T N E R

art serviced with

w r w a

i t c a lto o n to d by

CLIEN T

CLIENT
ACCOUNT opened by

h a t open

ratponsibia

responsibility

r
’ 5u I
c o n t a c t

J —©
GROUP “ I

L J - % .

CLIENT
SERVCE
PROOUCT

SERVCE
C L IE N T

UNORV

CLIEN T

SUNDRY

M VO C E

■ C r p o r a t Fr tayTAX
CLIENT

■ P e r s o n a l r TAX
CLIENT

e s p o n s « l i

CLASS *f CAT

UHC
G R O U P

B U S IN E S S
P A R T N E R

S U N O R Y
SALES

P R O D U C T

]CLIENTPROF

PROOUCT

Dl VIC UAL

REGISTERED
COMPANY

■ P p u b l c
r a o o Y

a engaged n

engages in

ARTNERSH1

D B U S IN E
S S P A R T N E R

Chapter six: Explanatory empirical study 2 3 8

Partnership* Business Unit* CLUSTER 3 : CLIENT

Contract*Society^

Legal Person*.

Person*
^organisation*
Beglstered Co.*

.USTER 8 : BUSINES
CATEGORY /

Public Body*
Partnership*

I n t e r e s t e d i n

Partnership* S p e c ia l I n t e r e s t '
Group (BIG)*

♦B usiness C ategory .

r *I n d u s t r i a l S e c to r
♦ S p e c ia l i s t H iche /

Society*

Figure 6.17 Cluster 8: Ontology chart for business category

Chapter six: Explanatory empirical study 2 3 9

Observation 21: The development o f analysis appears to expand

the understanding o f the whole work practice. With each new

cluster or new relationship between previously defined clusters,

a new dimension o f the corporate activities is unfolded and new

levels o f conceptualisation are captured. In other analysis

approaches like the one employed in the creation o f the

corporate data model for this case, when analysis progresses

the complexity o f the model dramatically increases while

traceability o f previous analyses decreases.

The resulting complicated ER model is a case in point for the above claim. All the

persons involved in this case from the company agreed with this aspect of semantic

analysis. The enhancement of understanding can facilitate the conceptual training of

users and designers during the unfreezing stage of the development process and also

supports the institutionalisation of changes in norms and routine activities of the

organisation. The clear understanding with agreement on semantics of the workplace

language bridges the semantic gap between parties involved in design and sets a unified

frame of reference in unfreezing stage of development process before any commitment

to further change development. This issue is explored from the previous case study

reported in chapter 4 and also studied by proponents of planned change model

mentioned earlier in previous section. The level of discussion, among all the persons

involved in this case about ambiguities demonstrated the power of semantic analysis in

resolving such ambiguities and complexities of design and in supporting the addition

of knowledge. This might be claimed to show support for human interaction and

knowledge transfer in the workplace. This strongly supports the development of design

understanding.

Observation 22: The semantic analysis technique is congruent

with requirements o f unfreezing stage o f change process

discussed earlier in this thesis regarding conceptual training,

role clarification and responsibility negotiation.

Chapter six: Explanatory empirical study 2 4 0

Observation 23: Semantic analysis needs afresh perspective on

to the world under investigation, and hence is difficult to begin,

especially for people who are used to seeing the world as a

complex o f given entities. But once analyst has started the

analysis, it appears to be self-driven. It guides the analyst to

creation o f affordances to capture new concepts existing in

practice. It has intrinsic features o f self-creation and semantic

self-regulation. It is an autopoietic analysis technique.

The problem addressed in the above observation was the most important obstacle in

starting the case and specially working with senior analyst during the development of

semantic schemata. But the reward of completing the case compensated this difficulty

and resulted in a better justification of the technique we applied in our proposal for a

new method in evolutionary information systems development.

6.3 Conclusion

The conclusion of this chapter marks the end of the third stage of the research approach

designed for this thesis. The empirical study discussed in the previous section provided

a set of observations regarding various aspects of the semantic analysis technique. On

a number of occasions, the technique showed its harmony with the needs of the vision

cycle and the fusion cycle of the development method proposed in chapter 5. The

semantic analysis technique, by focusing on the usage of language in the workplace, is

a useful tool for bridging the semantic gap among users. It is shown by the findings

of the explanatory case study that this technique might reduce semantic ambiguities and

possibly lower the cost of negotiation in the unfreezing stage of implementation process.

By highlighting semantic ambiguities, this technique will require responsible agents to

seek for consensus in semantic disagreements before any commitment to development

of prototype systems. These characteristics of semantic analysis accord well with the

requirements of applying the planned change model studied by number of researchers

and introduced as secondary materials in section 6.1.

Chapter six: Explanatory empirical study 2 4 1

One important feature of the semantic analysis technique and its harmony with the

unfreezing stage of the planned change model is the recognition of an alternative

perspective in the inquiry process by which the proposed method collects information

for analysis and design through root meanings and conceptual models (see observations

6, 7, 15, 16, 17, 21 and 22). This focuses on improving the collective understanding

of the problem situation.

The natural clustering feature of the technique also grants the prospects of analysis

reuse and semantic-oriented integrity of user requirements through reducing complexity

in the development of an enterprise information system (see observations 8, 9, 10, 14,

19 and 20). But this feature is also criticized for producing bulky documentation.

The findings of the explanatory case study show that the proposed method is most

closely aligned with the "integrationist" dimension in viewing information systems

development process (for example see observations 1, 12 and 23). It seems to favour

coordination and integration. The search for a consensus during problem formulation

involving multiple perspectives through the use of semantic analysis (and also

prototyping) is clearly integrationist. Yet here can also be an essential weakness. We

can be critical of the method’s failure to reflect on whether it can be misused in

realizing the goals of one group in the organisation at the expense of another. The

method does not attempt to analyze and mitigate potential distortions and

communication barriers while seeking a consensus on the creation of new meanings.

Hence the cognitive basis of the semantic models may be flawed by an undetected bias.

This also leads to ignoring the nature and influence of organisational power and it fails

to be sensitive to the issue whether the new system will strengthen emancipation of all

organisational participants or continued domination.

__________ CH APTER

Conclusions and recommendations

Chapter overview
This is the closing chapter of this thesis. Section 7.1 summarizes the research undertaken in the thesis.

It also reviews the strengths and weaknesses of the proposed method in evolutionary development.

Section 7.2 prefaces four avenues in the future research to extend this thesis.

7.1 Research summary

The research reported in this thesis focuses on planned organisational change and

semiotic theory for use in evolutionary prototyping in information systems development.

It adapts a subjective/argumentative research approach emphasizing socio-technical

interpretation over the entire information systems development process.

In this thesis the basic features of information system design problems have been

outlined as complexity and uncertainty, compounded by change in business

environments. It is claimed that an evolutionary prototyping approach for eliciting user

requirements might improve those difficulties in practice. In this thesis we have

investigated this claim and tried to provide insights into difficulties of evolutionary

development through conceptual and empirical analyses. More specifically, we have

sought to meet the following two major goals:

1) to trace systematically the difficulties in managing evolutionary

prototyping in an information systems development project back to a set of

beliefs about its domain of change; and

Chapter seven: Conclusions and recommendations 2 4 3

2) to point out that evolutionary prototyping approach cannot be reduced to

technological fixes.

The first goal was addressed by demonstrating that a wide range of issues is associated

with managerial and social aspects of evolutionary prototyping. An exploratory case

study, conducted at a large car manufacturer company, led us to perceive the inherent

complexity of social change which is associated with information systems development.

The second goal was addressed by pointing out that there is inherent complexity in the

social condition and business change environment of systems development which

escapes technological solutions; indeed, such complexity is often amplified through such

technological solutions.

A deeper analysis of an evolutionary prototyping approach to information systems has

been presented in terms of the lack of a development management process and the lack

of a socially-based conceptual model to support conceptual training of all users before

commencing any prototype development.

A planned change model consisting of a vision cycle (or unfreezing), an action cycle

(or moving), and a fusion cycle (or unfreezing) was suggested to improve the

management of the evolutionary process. Also, a semantic analysis technique from the

perspective of semiotic theory was advanced to support enhancement and legitimation

of any changes in user requirements during unfreezing and refreezing stages of the

development process. On the basis of the analysis technique, this thesis has proposed

the creation of a new perspective on evolutionary development for eliciting user

requirements and performing design tasks guided by the planned change model.

The proposed perspective is supported by a theoretical framework consisting of planned

organisational change theory and semiotic theory. The theoretical framework highlights

the major difference between the proposed perspective and the prototyping approach in

evolutionary development as a movement away from viewing systems development as

a purely technical process. It is conceived as mostly a social process, grounded in an

explicit theoretical framework which is sensitive to the organisational and broader social

Chapter seven: Conclusions and recommendations 2 4 4

context of information systems development. The planned organisational change theory

takes a process-oriented view to the evolutionary development by concentrating on

"means" to achieve systems objectives. Issues like institutionalizing the change process,

conceptual training of users, role clarification and responsibility negotiation are the main

interests of the theory in managing an evolutionary process. Semiotic theory by

employing semantic analysis technique aims at formalising "ends" in information

systems development through creating a common understanding among users. The

findings of an explanatory case study, reported in chapter 6, demonstrated that the

technique supports the above-mentioned issues and suggested, with certain

qualifications, that the two theories can complement each other in providing a

theoretical framework for evolutionary information systems development. Although the

ultimate validation of the research is not possible to achieve, demonstrating the harmony

between two theories might be taken as an indication of an attempt towards a subjective

justification of the research within its context and assumptions.

On the basis of the proposed perspective, a method as an improved and well-defined

description of a new approach to evolutionary development process is also developed.

The method is documentable through ontology charts. The proposed method covers

systems analysis as the process of collecting, organising, and analyzing user

requirements and system design as the process of conception, generation and formation

of a new information system. So, it mainly focuses on the middle stages of the life

cycle model in information systems development. The main features of the method

which seems to respond to the main difficulties of the evolutionary prototyping

approach outlined in chapter 2 are:

• Clustering of requirements: the semantic analysis technique provides the

constructs necessary for categorising and clustering user requirements

descriptions into different subject areas, so that complexity can be reduced

in performing design tasks.

• Selection of requirements for prototyping: the conceptual modelling

formalism of the semantic analysis suggests criteria for selecting and

Chapter seven: Conclusions and recommendations 2 4 5

rejecting choices for prototyping according to the level of ambiguity for

each subject area under investigation. It offers the designer a control

strategy in the creation of the object system.

• Feedforward process and mutual understanding: The planned change

model suggests as much feedforward process as possible to reduce

complexity and uncertainty. By focusing on language norms of the

workplace, the semantic schema caters for a better mutual understanding to

take place among users. The requirements, captured by the semantic

schemata, can be implemented using the evolutionary prototyping during the

feedforward process.

• Feedback process and requirements traceability: The software

prototypes can be traced back to the original semantic schema. Therefore,

developers are able to use the results of actions to overcome uncertainty in

feedforward paths. This enables solutions to be obtained even when

knowledge of the environment is incomplete.

• Learning process: The conceptual training feature of the unfreezing stage

and feedback process of the refreezing stage in the proposed perspective

facilitate the addition of knowledge. To deal with the uncertainty of the

world, the partnerships of users and designers must be able to adapt.

Design performance can increase as user and designer build mutual

understanding about the problem.

The findings of the explanatory case study, conducted in a management consultancy

company, have shed light on some of the characteristics of the method. An explanation

of the strengths and weaknesses of the proposed method can be drawn from the results

of the explanatory case study and the assumptions behind the support theoretical

framework.

One major strength of the method is that objective for design and use of information

Chapter seven: Conclusions and recommendations 2 4 6

systems is set on eliciting the design purposes and modes of use and on helping all

users to understand and accept them. The assumption behind the method is that various

users are adhering to different perspectives. By centering on the conceptual training of

all users, the method focuses specifically on vehicles and tools to facilitate sense-

making. The method demands a change in the perception of the role of the system

analyst from an expert in prototyping approach to a catalyst who smooths the transition

between evolutionary stages for the information system of which he is a part.

The exploratory case study showed that prototyping approach tends to reify systems

requirements by suppressing their human authorship. The proposed method suggests

that systems requirements and constraints are socially constructed; they change as

perceptions change and perceptions change through continuous social learning and the

evolution of language. The proposed method rejects the idea of validation of prototype

systems by representative participants; i.e. User Forum as explained in the exploratory

case study reported earlier in chapter 4. It adapts the view of consensus participation

which believes any goals or values for information systems development are legitimate

as long as they are consistent with social acceptance of the users. Information systems

is concerned with the creation and sharing of meanings to legitimate social actions.

One important weakness of the proposed method is the complexity and somewhat

overwhelming and opaque vocabulary of the semantic agent-based formalism employed

in the semantic analysis and its bulky documentation. Another major issue which needs

further clarification and elaboration is what are the actual impacts of conceptual models

(explanatory prototypes) developed in the proposed system on behaviours in the

business environment. We need more empirical and practical guidelines as to which

representations are relevant and result in changes in behaviours with various individuals,

or groups in different situations. It is not wise to assume that once the semantic schema

has been agreed upon all problems of different interpretations disappear. The

explanatory case study showed that the method is capable of providing conditions for

increasing mutual understandings, but the question remaining of how convergent these

understandings are to each other and how stable. When time and resources foreclose,

action is taken on the basis of current understanding but not dictated by some formal

Chapter seven: Conclusions and recommendations 2 4 7

specifications. Therefore, communication through an evolutionary process facilitated

by an explanatory prototype system can result in a process of interpretation and

reinterpretation. This, however, is crucial in determining the boundaries of semantic

analysis and in assessing the potential value of the proposed method.

The research approach did take note of institutional barriers to the rationality of

communication and specifically the issue of organisational power, but excluded it from

this study. Relying on "user’s work language", the proposed method presumes that all

users want to communicate. But this assumption seems unrealistic. Improving

communication rationality requires addressing both the improvement of mutual

understanding and the improvement of the conditions which shape the general arena of

communication. Although the method responds to the former issue, it requires more

investigation and completion of its theoretical framework and supporting techniques to

address the later issue.

Finally, we expect that the method proposed here to be of practical value in the

development of evolutionary information systems, but with perhaps a greater focus on

a contingent approach to its utility. We do not expect to see the emergence of any

standard method, but we anticipate the adoption of our method, despite the "backlash"

against information systems development methods. We think that the method proposed

is a signpost for an alternative way of looking at support methods for design

understanding in information systems development in future. However, predicting the

future is always problematical and has a habit of making fools of those who attempt it!

7.2 Recommendations for future research

There are at least four avenues for future research to extend the research of this thesis.

The first possibility is that the future researchers could choose to replicate the validation

stage of the proposed method. Replication could serve to check the findings of the

explanatory empirical study of this research across different organisations. The goal

would be to determine whether the semantic schema could be created from a different

set of organisational subjects. Such replication would require identification and

Chapter seven: Conclusions and recommendations 2 4 8

examination of a relatively large number of organisations. It is also possible to attempt

to validate further the planned change model in order to enhance it to keep pace with

organisations’ changing information requirements. Action research might be appropriate

in this case. It is obviously hoped that this type of research will follow, as the method

is intended for application. That is to say, it is the intention behind this thesis to

suggest a method for information requirements determination that can be used in

practice, especially in medium to large businesses.

Another possibility for future research related to this thesis is to implement a computer

support system for the semantic modelling. By doing so, when the proposed method

is applied to build a subject catalogue of an enterprise information model, a software

prototype of each subject area would be built as a logical by-product. In that manner,

the semantic analysis technique and the method created by this thesis would fuse with

the system prototyping approach. Thereby, the method would improve as a result.

The third avenue for research related to this thesis, and possibly in parallel to the

second avenue mentioned above, is to create an expert system based on the method

proposed in this research. The knowledge pertaining to how the semantic model is

applied for an organisation through semantic analysis could possibly be formalised into

a knowledge-base and a set of rules. An inference engine could then draw upon that

knowledge-base and those rules to execute the method proposed here. The nature of

such a symbiotic partnership of user and designer for performing system design can be

guided by a knowledge-based system which accommodates the method proposed here.

We believe that common information requirements exist because of common factors

which shape organisations. Therefore the fourth possibility for related research in the

future is to explore the isomorphic and homologous aspects of information requirements

that are common to organisations. Given this situation, it follows that those aspects can

be represented in universal semantic models. It is possible that we might be able to

create a library of universal subject catalogues which incorporate the common elements

of enterprise information models in different companies. The robustness of the

semantic schema might allow us to model some universal aspects of organisations and

Chapter seven: Conclusions and recommendations 2 4 9

collect them in a form of a library of subject catalogues. This organisational

knowledge-based library could open the prosect of analysis and design reuse in

information systems development.

References:

Agresti, W. W. (1986). New Paradigms for Software Development. Washington: IEEE
Computer Society Press.

Ahituv, N., & Neumann, S. (1990). Principles of information systems for management
(3rd ed.). Dubuque, Iowa: Wm. C. Brown Publishers.

Alavi, M. (1984). An assessment of the prototyping approach to information systems
development. Communications of the ACM, 26(6), 556-563.

Albadvi, A., & Backhouse, J. (1994). Implementing Business-Wide Applications. In 4th
Annual Business Information Technology Conference(BIT’94). (pp. 108-119).
Manchester, UK: The Manchester Metropolitan University.

Albadvi, A. (1995a). Developing information systems in business change environment.
The British Computer Society, 3rd Annual Conference on Methodologies, 3. North East
Wales Institute, Wrexham, UK: The British Computer Society.

Albadvi, A. (1995b). Engineering semantic traceability in object-oriented design. In K.
Akingbehin & S.Y. Shin (Ed.), 13th Annual International Conference of the Association
of Management, 13(1) (pp. 1-14). Vancouver, British Columbia, Canada: The
Association of Management.

Albadvi, A., & Lee, H. (1996). What time is it? : A semiological analysis. In C. Fidler
(Ed.), 14th Annual International Conference of the Association of Management. 14.
Toronto, Canada: The Association of Management.

Alter, S., & Ginzberg, M. (1978). Managing uncertainty in MIS implementation. Sloan
Management Review. Fall. 23-31.

Alter, S. A. (1980). Decision support svstems-current practice and continuing
challenges. Reading, Mass.: Addison-Wesley.

Andersen, P. B. (1990). A theory of computer semiotics. Cambridge: Press Syndicate
of the University of Cambridge.

Andersen, P. B. (1991a). A semiotic approach to construction and assessment of
computer systems. In H. E. Nissen, H. K. Klein, & R. Hirschheim (Eds.), Information
systems research: Contemporary approaches and emergent tradition. IMP (pp. 465-527).
North Holland: Elsevier Science Publishers B.V.

Andersen, P. B. (1991b). Computer Semiotics. Scandinavian Journal of Information
Systems, 3, 3-30.

Andrews, C. (1983). Prototyping information systems. Journal of Systems Management.
34(9), 16-18.

Angell, I. O., & Smithson, S. (1991). Information Systems Management: Opportunities

References

and Risk. London: The Macmillan Press Ltd.

251

Appleton, D. (1983). Data-driven prototyping. Datamation, November, 259-268.

Argyris, C., & Schon, D. A. (1986). Organisational Learning: A theory of action
perspective. Reading, MA: Addison-Wesley.

Armour, F. J. (1993) A cluster analysis and prototyping approach for the risk
management of software requirements. Ph.D. Thesis, George Mason University.

Avison, D. E., & Fitzgerald, G. (1995).Information Systems Development:
Methodologies, Techniques and Tools. London: McGraw-Hill Book Company

Avison, D. E., & Wood-Harper, A. T. (1990). Multiview: An exploration in information
systems development. Oxford: Blackwell Scientific Publications.

Backhouse, J. (1990) The use of Semantic Analysis in developing of Information
Systems. Ph.D. (London)Thesis, Information Systems Department, London School of
Economics and Political Science.

Backhouse, J., & Albadvi, A. (1994). Managing Business Change: Putting information
systems in perspective. In H. Chang & L. Lu (Ed.), 12th Annual International
Conference of the Association of Management, 12 (pp. 65-70). Dallas, USA: The
Association of Management

Backhouse, J., & Albadvi, A. (1995). A method for dynamic systems development. In
G. Doukidis, B. Galliers, T. Jelassi, H. Kremar, & F. Land (Ed.), 3rd European
Conference on Information Svstems(ECIS ’95). II (pp. 851-863). Athens/Greece: Print
Xpress.

Balzer, R., T.E. Cheatham, J., & Green, C. (1983). Software technology in the 1990’s:
Using a new paradigm. IEEE Computer. November. 39-45.

Bartunek, J. M., & Moch, M. K. (1987). First-order, Second-order, and Third-order
change and organisation development intervention: A cognitive approach. Journal of
Applied Behavioral Science. 23. 483-500.

Bateson, G. (1972). Steps to an Ecology of Mind. New York: Ballantine Books.

Bjomestad, S. (1994). A research programme for object-orientation. European Journal
of Information Systems. 3(1), 13-27.

Boar, B. H. (1984). Application Prototyping: A requirements definition strategy for the
80s. New York: John Wiley and Sons.

Bodker, S., & Gronbaek, K. (1991). Cooperative prototyping: users and designers in
mutual activity. International Journal of Man-Machine Studies. 34, 453-478.

References 252

Boehm, B. W. (1976). Software Engineering. IEEE Transactions on Computers.
December. 1226-41.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice Hall.

Boehm, B. W. (1984). Verifying and Validating software requirements and design
specifications. IEEE Software. Mav(290-303).

Boland, R. J., Jr. (1978). The process and product of system design. Management
science. 24(9), 887-898.

Booch, G. (1991). Object oriented design with applications. Redwood City, CA:
Benjamin/Cummings.

Bostrom, R. P. (1989). Successful application of communication techniques to improve
the Systems Development Process. Information and Management. 16. 279-295.

Bostrom, R. P., & Heinen, J. S. (1977). MIS Problems and Failures: A socio-technical
perspective, part I: the causes. MIS quarterly. _1(3), 17-32.

Boynton, A. C., Victor, B., & Pine, B. J. (1993). New competitive strategies: Challenges
to organisations and information technology. IBM Systems Journal. 32(1).

Brannen, J. (1992). Combining qualitative and quantitative approaches: an overview. In
J. Brannen (Eds.), Mixing Methods: Qualitative and Quantitative Research (pp. 3-37).
Brookfield: Avebury.

Brittan, J. N. G. (1980). Design for a changing environment. The Computer Journal.
23(1), 13-19.

Brooks, F. P. (1975). The Mythical Man-Month. Reading, Mass.: Addison-Wesley.

Brooks, F. P. (1987). "No Silver Bullet: Essence and accidents of software engineering".
IEEE Computer. April. 10-19.

Burgess, R. G. (1982). Multiple strategies in field research. In R. G. Burgess (Eds.),
Field research: A source book and field manual London: George Allen and Unwin.

Burgess, R. G. (1984). In the field: An introduction to field research. London: George
Allen and Unwin.

Bum, J., Galliers, R., & Sauer, C. (1995). IT and the dynamics of organisational
transformation(Panel discussion). In G. Doukidis, B. Galliers, T. Jelassi, H. Kremar, &
F. Land (Ed.), 3rd European Conference on Information Svstems(ECIS ’95). II (pp.
1285-1288). Athens/Greece:

Carey, T. T., & Mason, R. E. A. (1983). Information systems prototyping: Techniques,

References 253

Tools, and Methodologies. INFOR - The Canadian Journal of Operational Research and
Information Processing. August, 177-191.

Carpenter, D. A. (1992) Development of an information requirements determination
methodology: Utilisation of normative analysis from a universal enterprise information
model. Ph.D. Thesis, The University of Nebraska - Lincoln.

Chapman, P., & Talbot, S. (1996). QbiectStore: making Relational databases perform.
Technical Report, Object Design UK.

Charette, R. N. (1986). Software Engineering Environment: Concepts and Technology.
New York: McGraw-Hill.

Checkland, P. (1981). Systems Thinking, Systems Practice. Chichester: John Wiley &
Sons.

Checkland, P., & Scholes, J. (1990). Soft systems methodology in action. Chichester:
John Wiley & Sons.

Child, J. (1988). Organisation: A guide to practice and problems. Harper and Row.

Coad, P., & Yourdon, E. (1990). Object-Oriented Analysis (1st ed.). Englewood Cliffs,
NJ: Prentice-Hall, Inc.

Coad, P., & Yourdon, E. (1991). Object-Oriented Analvsis-OOA (2nd ed.). Englewood
Cliffs, NJ: Prentice-Hall, Inc.

Colter, M. A. (1982). Evolution of the structured methodologies. New York: John Wiley
& Sons.

Computer Weekly (1992). 7 May, 44-45.

Connell, J. L., & Shafer, L. I. (1995). Object-Oriented Rapid Prototyping. Englewood
Cliffs, New Jersey: Prentice-Hall.

Cooper, R. B., & Swanson, E. B. (1979). Management information requirements
assessments - The state of the art. DATABASE, 11(2), 5-16.

Couger, J. D. (1982). Evolution of system development techniques. New York: John
Wiley & Sons.

Cox, B. J. (1990). Planning the Software Industrial Revolution. IEEE Software, 25(3).

Davis, A. M. (1990a). The analysis and specification of systems and software
requirements. In R. H. Thayer & M. Dorfman (Eds.), System and software requirements
engineering Los Alamitos, CA: IEEE Computer Society Press.

Davis, A. M. (1990b). Software Requirements: Analysis & Specification. Englewood

References 254

Cliffs, New Jersey: Prentice Hall.

Davis, G. B. (1982). Strategies for Information Requirements Determination. IBM
Systems Journal. 21(1). 4-30.

Davis, G. B. (1974). Management information systems: Conceptual foundation, structure
and development. New york: McGraw-hill.

Davis, G. B., & Olson, M. H. (1985). Management Information Systems: Conceptual
foundations, structure and development. New York: McGraw-Hill.

De Brabander, B., & Thiers, G. (1984). Successful information system development in
relation to situational factors which affect effective communication between MIS-users
and EDP-specialists. Management science, 30(2), 137-155.

Deamley, P. A., & Mayhew, P. J. (1983). In favour of system prototypes and their
integration into the systems development cycle. The Computer Journal, 26(1), 36-42.

DeMarco, T. (1979). Structured analysis and System Specification. Englewood Cliffs,
New Jersey: Prentice Hall.

Dennis, A. R., Bums, R. N., & Gallupe, R. B. (1987). Phased design: A mixed
methodology for application systems development. DATABASE. 18(4). 31-37.

Denzin, N. (1970). The research act in sociology. London: Butterworth.

Desanctis, G., & Courtney, J. F. (1983). Toward friendly user MIS implementation.
Communication of the ACM, 26(10), 732-738.

Dickson, G. W., & Simmons, J. K. (1970). The behavioral side of MIS. Business
Horizons. August, 59-71.

Dickson, G. W., & Powers, R. F. (1973). MIS project management: Myths, Opinions
and Reality. California Management Review, 15(3). 147-56.

Ding, C., & Mateti, P. (1990). A framework for the automated drawing of data structure
diagrams. IEEE Transactions on Software Engineering, 16(5. May), 543-557.

Drucker, P. (1988). The coming of the new organisation. Harvard Business Review,
Jan-Feb.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3). 219-248.

Ferioli, C., & Migiarese, P. (1995). Opportunities and drawbacks of information
technology in the emerging forms of organisation. In G. Doukidis, B. Galliers, T.
Jelassi, H. Kremar, & F. Land (Ed.), 3rd European Conference on Information
Svstems(ECIS ’95). I (pp. 559-573). Athens/Greece:

References 255

Fichman, R. G., & Kemerer, C. F. (1991). Object-oriented and Conventional analysis
and design methodologies: Comparison and Critique (Working Paper No. CISR WP
No.230. Sloan WP No. 3361). Center for Information Systems Research, Sloan School
of Management, Massachusetts Institute of Technology.

Fields, N. A. (1991) An Evolutionary group decision model for computer supported
cooperative work. Ph.D., George Mason University.

Financial Times (1993). 20 April.

Fitzgerald, G. (1991). Validating new information systems techniques: A retrospective
analysis. In H.-E. Nissen, H. K. Klein, & R. Hirschheim (Ed.), 1FIP TC8/WG 8.2
Working Conference on the Information Systems Research Arena of the 90’s:
Challenges, perceptions, and Alternative Approaches, . Copenhagen, Denmark: Elsevier
science publishers B.V.

Floyd, C. (1984). A systematic look at prototyping. In R. Budde, K. Kuhlenkam, L.
Mathiassen, & H. Zullighoven (Eds.), Approaches to Prototyping (pp. 1-18). Berlin:
Springer-Verlag.

Floyd, C. (1987). Outline of a paradigm change in software engineering. In G. Bjerknes,
P. Ehn, & M. Kyng (Eds.), Computers and Democracy - a Scandinavian challenge
Aldershot: Avebury.

Fortune International (1993). 128(8), October 4.

Freeman, P. (1987). Software Perspective: The system is the message. Reading, Mass.:
Addison-Wesley Publishing Company.

Galbraith, J. R. (1973). Designing Complex Organisation. Reading, Mass.:
Addison-Wesley.

Galbraith, J. R. (1977). Organisation Design. Reading, Mass.: Addison-Wesley.

Galliers, R. D., & Land, F. F. (1987). Choosing appropriate information systems
research methodologies. Communications of ACM, 30(11, November), 900-904.

Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.),
Perceiving, acting and knowing Hillsdake, N.J.: Lawrence Erlbaum Associates.

Giesecke, F. E. (1987). Engineering Graphics (4th ed.). New York: Mac-millan.

Ginzberg, M. J. (1978a). Redesign of managerial tasks: A requisite for successful design
support systems. MIS Quarterly, 2(1), 39-52.

Ginzberg, M. J. (1978b). Steps toward more effective implementation of MS and MIS.
Interfaces. .8(3), 57-63.

References 256

Ginzberg, M. J. (1981). Early diagnosis of MIS implementation failure: Promising
results and unanswered questions. Management Science, 27(4), 459-478.

Gittins, D. T., Winder, R. L., & Bez, H. E. (1984). An icon-driven end-user interface
to UNIX. International journal of Man-Machine Studies, 21. 451-61.

Goldstein, J. (1988). A far from equilibrium approach to resistance to change.
Organisational Dynamics, 17. 16-26.

Golembiewski, R. T., Billingsley, K., & Yeager, S. (1976). Measuring change and
persistence in human affairs: Types of change generated by OD designs. Journal of
Applied Behavioral Science, 12, 133-157.

Goma, H., & Scott, D. B. H. (1981). Prototyping as a tool in specification of user
requirements. In ACM/IEEE 5th International Conference on Software Engineering, San
Diego:

Goma, H. (1983). The impact of Rapid Prototyping on specifying requirements. ACM
Software Engineering Notes, April, 17-28.

Goodstein, L. D., & Brake, W. W. (1991). Creating successful organisational change.
Organisational Dynamics, 19(4), 5-17.

Greiner, L. E. (1972). Evolution and Revolution as organisations grow. Harvard
Business Review. 50(4). 37-46.

Guimaraes, T. (1985). Study of application program development techniques.
Communication of the ACM, 28(5), 500-5.

Habermas, J. (1972). Knowledge and human interest (Shapiro, J., Trans.). London:
Heinemann.

Habermas, J. (1984). The theory of communication action. Volume I: Reason and the
rationalization of society. Boston, MA: Beacon Press.

Hardcastle, A. (1994). Developing an executive framework to assess the suitability of
information systems methodologies for specific information systems projects with a
view to delivering business value. In 4th Annual Business Information Technology
Conference (BIT’94). (pp. 197). Manchester, UK: The Manchester Metropolitan
University.

Harel, D. (1987). A visual formalism for complex systems. Science of Computer
Programming, _8, 231-274.

Hawgood, J. (1982). Evolutionary systems development. Amsterdam: North-Holland.

Hekmatpour, S., & Ince, D. C. (1986). Rapid Software prototyping. Oxford Survey in
Information Technology. 3, 37-76.

References 257

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1995). Information systems development
and data modeling: Conceptual and philosophical foundations. Cambridge: Cambridge
University Press.

Jeffrey, D. R. (1987). Software engineering productivity models for management
information systems development. In Boland & Hirschheim (Eds.), Critical issues in
information systems research New York: John Wiley.

Jorgensen, A. H. (1984). On the psychology of prototyping. In R. Budde, K.
Kuhlenkamp, L. Mathiassen, & H. Zullighoven (Eds.), Approaches to prototyping (pp.
278-89). Berlin: Springer-Verlag.

Khan, B. K. (1985). Requirements specification techniques. Englewood Cliffs: Prentice
Hah.

Kindler, H. S. (1979). Two planning strategies: Incremental change and
Transformational change. Group and Organisational studies. 4, 476-484.

Kolb, D. A., & Frohman, A. L. (1970). An Organisational Development: Approach to
consulting. Sloan Management Review. Fall, 51-65.

Korson, T., & McGregor, J. D. (1990). Understanding object-oriented: A unifying
paradigm. Communication of the ACM, 33(9), 40-60.

Kraemer, K. L., & King, J. L. (1988). Computer-based systems for cooperative work
and group decision making. ACM Computing Surveys, June. 115-146.

Kravshaar, I. M., & Shirland, L. E. (1985). A prototyping method for application
development by end users and information specialists. MIS Quarterly, 9(3), 189-196.

Kristensen, B. B., Madsen, O. L., Moller-Pedersen, B., & Nygaard, K. (1991).
Object-Oriented programming in the BETA programming language (Technical report
No. Department of computer science, University of Aarhus.

Krovi, R. (1993). Identifying the causes of resistance to IS implementation. Information
& Management. 25(North Holland), 327-335.

Lammers, S. (1986). Programmers at Work. MicroSoft Press.

Land, F. F. (1982). Adapting to Changing User Requirements. Information &
Management, 5, 59-75.

Land, F. F. (1984). Critical assessment of software engineering. In D. Ince (Ed.),
UNICOM Seminar on Software Engineering. Stevenage: Peter Peregrinus.

Land, F. F., & Somogyi, E. (1986). Software Engineering: The relationship between a
formal system and its environment. Journal of Information Technology. .1(1), 14-21.

References 258

Lehman, M. M. (1981). The environment of program development and maintenance -
programs, programming and programming support. New York: Computer Society Press.

Levy, A. (1986). Second Order Planned Change: Definition and conceptualization.
Organisational Dynamics. 15(1). 5-20.

Lewin, K. (1952). Group decision and social change. In T. M. Newcomb, E. L. Hartley,
& E. E. Maccobby (Eds.), Readings in Social Psychology New York: Holt, Rinehart &
Winston.

Liebenau, J., & Backhouse, J. (1990). Understanding Information: An Introduction.
London: Macmillan Education LTD.

Lucas, H. C. (1975). Why information systems fail. New York: Columbia University
Press.

Lyytinen, K. (1987). Two views of information modeling. Information and
Management, 12. 9-19.

Mahmood, M. A. (1987). Systems development methods - A comparative investigation.
MIS Quarterly. jT(3), 293-312.

Malhotra, A., Thomas, J. C., Carroll, J. M., & Miller, L. A. (1980). Cognitive processes
in design. International Journal of Man-Machine Studies, 12, 119-40.

Maude, T., & Willis, G. (1991). Rapid Prototyping, the management of software risk.
London: Pitman Publishing.

McMenamin, S., & Palmer, J. (1984). Essential systems analysis. New York: Yourdon
Press.

Meredith, J. (1993). Theory building through conceptual methods. International journal
of operation & production management (IJO), 13(5), 3-11.

Moran, T. P. (1981). The command language grammar: a representation for the user
interface of interactive computer systems. International Journal of Man-Machine
Studies. 15, 3-50.

Mumford, E. (1983). Designing Participatively. Manchester: Manchester Business
School.

Mumford, E. (1996). Systems design: Ethical tools for ethical change. London:
McMillan Press Ltd.

Musa, J. D. (1983). Stimulating Software Engineering progress- A report of the software
engineering planning group. ACM SIGSOFT-Software Engineering Notes. 8(2), 29-54.

References 259

Naumman, J. D., & Jenkins, A. M. (1982). Prototyping: The new paradigm for systems
development. MIS Quarterly, 6(3), 29-44.

Nauta, D. J. (1972). The meaning of information. The Hague: Mouton.

Norman, D. A. (1983). Design rules based on analysis of human error. Communications
of the ACM. 26(4), 254-8.

Nosek, J. T. (1984). Organisation design choices to facilitate evolutionary development
of prototype information systems. In R. Budde, K. Kuhlenkamp, L. Mathiassen, & H.
Zullighoven (Eds.), Approaches to prototyping (pp. 341-355). Berlin: Springer-Verlag.

Palmer, J. D., & Fields, N. A. (1992). An integrated environment for requirements
engineering. IEEE software. May.

Palmer, J. D., & Aiken, P. (1990). Utilizing interactive multimedia to support
knowledge-based development of software requirements. Center of Software Systems
Engineering.

Palmer, J. D. (1988). Impact of requirements uncertainty of software productivity Centre
of software systems engineering.

Pamas, D. L. (1979). Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering. 5(2). 128-137.

Pine, B. J., Victor, B., & Boynton, A. C. (1993). Making mass customization work.
Harvard Business Review. September-October. 108-19.

Pliskin, N., & Shoval, R. (1987). End-user prototyping: Sophisticated users supporting
system development. DATABASE. 18(4). 7-17.

Pressman, R. S. (1987). Software Engineering: A practitioner's approach. New York:
McGraw-Hill.

Riddle, W. E. (1984). Report on the software process workshop. ACM
SIGSOFT-Software Engineering Notes, 9(2), 113-120.

Rieger, F., & Wong-Rieger, D. (1988). Model building in organisational/cross-cultural
research: The need for multiple methods, indices, and cultures. International Studies of
Management & Organisation (ISM), 18(3, Fall), 19-30.

Roberts, N., & Clarke, D. (1989). Organisational Information Concepts and Information
Management. International Journal of Information Management. 9, 25-34.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorenson, W. (1991).
Object-oriented modeling and design. London: Prentice-Hall Intemational(UK) Limited.

Rzevski, G. (1984). Prototypes versus pilot systems: strategies for evolutionary

References 260

information system development. In R. Budde, K. Kuhlenkamp, L. Mathiassen, & H.
Zullighoven (Eds.), Approaches to prototyping (pp. 356-367). Berlin: Springer-Verlag.

Sage, A. P., & Palmer, J. D. (1990). Software Systems Engineering. New York: John
Wiley and Sons.

Saussure, F. d. (1966). Course in general linguistics. New york: McGraw-Hill.

Sayer, A. (1992). Method in Social science: A realist approach (2nd edition ed.).
London: Routledge.

Scharer, L. (1983). The prototyping alternative. I'lT Programming, _1_(1), 34-43.

Schein, E. H. (1961). Management Development as a process of influence. Industrial
management review. 2(2), 59-77.

Schein, E. H. (1972). Professional Education: Some new directions. New York: Me
Graw

Scott Morton, M. S. (1984). The state of the art of research. In F. W. Mcfarian (Eds.),
The information systems research challenge Boston: Harvard Business School Press.

Searle, J. R. (1986). Minds. Brains and Science. Cambridge, Mass: Harvard University
Press.

Smeltzer, L. R. (1993). Relevance is the issue. Journal of Business Communication.
30(4, October), 477-478.

Smith, M. F. (1991). Software Prototyping: Adoption. Practice and Management.
London: McGraw-Hill.

Smith, T. J. (1993). READS: A requirements engineering tool. In IEEE International
Conference on requirements engineering. San Diego.

Sroka, M., & Rader, M. H. (1986). Prototyping increases chances of systems
acceptance. Data Management. March. 12-20.

Stamper, R. K. (1987). Semantic. In Critical issues in information systems research (pp.
43-78). Chichester: John Wiley & Sons.

Stamper, R. K., Backhouse, J., & Althaus, K. (1989). MEASUR- Method for Eliciting,
Analyzing and Specifying User Requirements. In T. W. Olle, A. A. Verrijm-Stuart, &
L. Bhabuta (Eds.), Computerized Assistance During the Information Systems Life Cycle
North Holland.

Suchan, J. (1993). Response to Mohan Limaye: The need for contextually based
research. Journal of Business Communication . 30(4, October), 473-476.

References 261

Szlichcinski, K. P. (1983). Designing for the day after tomorrow: I.The interaction
between communications systems design and social change. Behavior and Information
Technology. 2(3), 253-261.

Taggart, W. M., & Tharp, M. O. (1977). A survey of information requirements analysis
techniques. ACM Computing Surveys. 9(4), 273-290.

Tavolato, P., & Vincena, K. (1984). A prototyping methodology and its tool. In R.
Budde et al. (Eds.), Approaches to Prototyping (pp. 434-445). Berlin: Springer-Verlag.

Taylor, T., & Standish, T. A. (1982). Initial thoughts on Rapid Prototyping Techniques.
ACM Software Engineering Notes. December. 160-166.

The Institute of Electrical and Electronic Engineers Inc. (1984). IEEE Guide to Software
Requirements Specifications (ANSI/IEEE Standard No. #830). IEEE.

The IT management Programme (1994). Managing continuous change (Research report,
Centre for management research.

Thonissen, K. (1990). Semantic Analysis: A study and comparison (Graduation Report,
University of Twente, School of Management studies.

Turner, M. B. (1967). Philosophy and the science of behaviour. New York: Irvington.

Vogel, D. R., & Wetherbe, J. C. (1984). MIS research: A profile of leading journals and
universities. DATABASE. 16(Fall). 3-14.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information
systems analysis and design grammars. Journal of Information Systems. 3, 217-237.

Watzlawick, P., Weakland, J. H., & Fisch, R. (1974). CHANGE:Principles of problem
formulation and problem resolution. New York: W.W.Norton & Company Inc.

Welke, R. (1983). IS/DSS: DBMS Support for information systems development. In C.
Holsapple & A. Whinston (Eds.), Data Base Management: Theory and Application (pp.
195-250). Reidel: Dordrecht.

Wetherbe, J. C. (1982). Systems Development: Heuristic or prototyping?
Computerworld. 16(17), SR14-SR15.

Whitley, E. (1990) Embedding expert systems in semi-formal domains: examining the
boundaries of the knowledge base. PhD, London School of Economics and Political
science.

Williams, D. O. (1990) Developing systems for supporting design understanding. Ph.D.
Thesis, University of Cambridge.

Williamson, O. E. (1979). Transaction-Cost Economics: The Governance of Contractual

References 262

Relations. Journal of Law and Economics.

Winblad, A. L. e. a. (1990). Object-oriented software. Reading, Massachausettes:
Addison, Wesley.

Wolek, F. W. (1975). Implementation and the process of adopting managerial
technology. Interfaces, 5(3), 38-46.

Woodhead, N. (1990). Hypertext and Hypermedia: Theory and Applications.
Wuknskow, England: Sigma Press.

Young, T. (1984). Superior prototyping. Datamation, May, 152-158.

Yourdon, E. (1989). Modem Structured Analysis. Englewood Cliffs, New Jersey:
Yourdon Press.

Zand, D. E., & Sorensen, R. E. (1975). Theory of change and the effective use of
management science. Administrative science quarterly, 20(4), 532-545.

Zmud, R. W., & Cox, J. F. A. (1979). The Implementation process: A change approach.
MIS quarterly. 3(2), 35-43.

Znaniecki, F. (1934). The method of sociology. New York: Farrars and Rinehart.

Appendix I 2 6 3

Appendix I, Automated teller machine example (adapted from: Object-oriented
modelling and design, James Rumbaugh et. al., p. 151)

Problem statement: Design the software to support a computerized banking system including both
human cashiers and automatic teller machines(ATMs) to be shared by a consortium of banks. Each bank
provides its own computer to maintain its own accounts and process transactions against them. Cashier
stations are owned by individual banks and communicate directly with their own bank’s computers.
Human cashiers enter account and transaction data. Automatic teller machines communicate with a
central computer which clears transactions with the appropriate banks. An automatic teller machine
accepts a cash card, interacts with the users, communicates with the central system to carry out the
transaction, dispenses cash, and prints receipts. The system requires appropriate recordkeeping and
security provisions. The system must handle concurrent accesses to the same account correctly. The
banks will provide their own software for their own computers; you are to design the software for the
ATMs and the network. The cost of the shared system will be apportioned to the banks according to the
number of customers with cash cards.

account

account

account

account

cashier
station

bank
computer

ATM

bank
computer

ATM

ATM

ATM NETWORK

Appendix I 2 6 4

Data Dictionary for ATM classes

Account: a single account in a bank against which transaction can be applied. Accounts may be various
types, at least checking or savings. A customer can hold more than one account.

ATM: a station that allows customers to enter their own transactions using cash cards as identification,
The ATM interacts with the customer to gather transaction information, sends the transaction information
to the central computer for validation and processing, and dispenses cash to the user. We assume that
an ATM need not operate independently of the network.

Bank: a financial institution that holds accounts for customers and that issues cash cards authorizing
access to accounts over the ATM network.

Bank computer: the computer owned by a bank that interfaces with the ATM network and the bank’s
own cashier stations. A bank may actually have its own internal network of computers to process
accounts, but we are only concerned with the one that talks to the network.

Cash card: a card assigned to a bank customer that authorize access of accounts using an ATM machine.
Each card contains a bank code and a card number, most likely coded in accordance with national
standards on credit cards and cash cards. The bank code uniquely identifies the bank within the
consortium. The card does not necessarily access all of a customer’s accounts. Each cash card is owned
by a single customer, but multiple copies of it may exist, so the possibility of simultaneous use of the
same card from different machines must be considered.

Cashier: an employee of a bank who is authorized to enter transactions into cashier stations and accept
and dispense cash and checks to customers. Transaction, cash, and checks handled by each cashier must
be logged and properly accounted for.

Cashier station: a station on which cashiers enter transactions for customers. Cashiers dispense and
accept cash and checks; the station prints receipts. The cashier station communicates with the bank
computer to validate and process the transactions.

Central computer: a computer operated by the consortium which dispatches transactions between the
ATMs and the bank computers. The central computer validates bank codes but doesn’t process
transactions directly.

Consortium: an organisation of banks that commissions and operates the ATM network. The network
only handles transactions for banks in the consortium.

Customer: the holder of one or more accounts in a bank. A customer can consist of one or more persons
or corporations; the correspondence is not relevant to this problem. The same person holding an account
at a different bank is considered a different customer.

Transaction: a single integral request for operations on the accounts of a single customer. We only
specified that ATMs must dispense cash, but we should not preclude the possibility of printing checks
or accepting cash or checks. We may also want to provide the flexibility to operate on accounts of
different customers, although it is not required yet. The different operations must balance properly.

Verbs phrases:
Banking network includes cashiers and ATMs
Consortium shares ATMs
Bank provides bank computer
Bank computer maintains accounts
Bank computer processes transaction against account
Bank owns cashier station

Appendix I

Cashier station communicates with bank computer
Cashier enters transaction for account
ATMs communicate with central computer about transaction
Central computer clears transaction with bank
ATM accepts cash card
ATM interacts with users
ATM dispense cash
ATM prints receipts
System handles concurrent access
Banks provide software
Cost apportioned to banks

Implicit verb phrases:
Consortium consists of banks
Bank holds account
Consortium owns central computer
System provides recordkeeping
System provides security
Customers have cash cards

