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Abstract

This thesis is a collection of four essays dealing with issues on the verge of 
macroeconomics and finance. The first two chapters are joint with Bianca De 
Paoli. In the first one, we try to analyze factors causing risk premia to vary 
over time. The second one is an attempt to understand how these factors -  
manifesting themselves through swings in the desire to save for precautionary 
reasons -  affect monetary policy.

We show analytically that in endowment economies, procyclical recession ex­
pectations can ’outweigh’ countercyclical changes in ’risk-aversion’ -  generating 
counterfactual risk-premium behavior. However, allowing shocks or habits to 
be sufficiently persistent, or explicitly accounting for the impact of habits on 
consumption, suffices to generate countercyclical recession risks and risk pre­
mia. We also show that taking note of precautionary saving motives justifies 
an accommodative policy bias in the face of persistent, adverse disturbances. 
Equally, policy should be more restrictive -  i.e. ‘lean against the wind’ -  follow­
ing positive shocks.

Both of these essays rely on approximate solutions to a simple, external habit 
model. In the third chapter, I derive closed form formulae for the model’s 
solution. I then use these formulae to estimate the model and analyze its ability 
to jointly fit consumption growth and asset price data. I find no specification 
capable of simultaneously matching these data and argue that ‘exotic’ shock 
distributions are an unlikely panacea.

In general, however, closed form formulae for asset prices cannot be derived an­
alytically and need to be approximated. The final chapter proposes a method 
of doing exactly that. In contrast to several alternative approaches, the approx­
imating function is not restricted to be a polynomial in state variables. This 
flexibility and efficient use of nested solutions can allow ‘low-order’ formulae to 
exceed the accuracy of higher-order perturbation approximations.
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Introduction

This thesis is a collection of four essays dealing with issues on the verge of 
macroeconomics and finance. The first two chapters are joint with Bianca De 
Paoli. In the first one, we try to analyze factors causing risk premia to vary 
over time. The second one is an attempt to understand how these factors -  
manifesting themselves through swings in the desire to save for precautionary 
reasons -  affect monetary policy.

Both of these essays rely on approximate solutions to a simple, external habit 
model. In the third chapter, I derive closed form formulae for the model’s 
solution. I then use these formulae to estimate the model and analyze its ability 
to jointly fit consumption growth and asset price data. In general, however, 
closed form formulae for asset prices cannot be derived analytically and need to 
be approximated. The final chapter proposes a method of doing exactly that 
and applies it to five popular models.

In the remainder of the introduction I discuss each of the four contributions in 
a bit more detail.

W hy do risk premia vary over tim e? A theoret­
ical investigation under habit formation

In this essay we study the dynamics of risk premia in a model with external habit 
formation and highlight the significance of ’recession predictability’. While un­
der the specification of Campbell and Cochrane (1999) the equity risk premium 
is countercyclical because increases in risk aversion are reinforced by rising reces­
sion risks -  this need not be the case more generally. We show analytically that in 
endowment economies, procyclical recession expectations can ’outweigh’ coun­
tercyclical changes in ’risk-aversion’ -  generating counterfactual risk-premium
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behavior. However, allowing shocks or habits to be sufficiently persistent, or ex­
plicitly accounting for the impact of habits on consumption suffices to generate 
countercyclical recession risks and risk premia.

Cyclical Risk Aversion, Precautionary Saving and 

M onetary Policy

This chapter analyzes the conduct of monetary policy in an environment in 
which cyclical swings in risk appetite affect households’ propensity to save. It 
uses a New-Keynesian model featuring external habit formation to show that 
taking note of precautionary saving motives justifies an accommodative policy 
bias in the face of persistent, adverse disturbances. Equally, policy should be 
more restrictive -  i.e. ‘lean against the wind’ -  following positive shocks. Since 
the size of these ‘risk-adjustments’ is increasing in the degree of macroeconomic 
volatility, ignoring this channel could lead to larger policy errors in turbulent 
periods.

A sset Prices Under Persistent H abits and Arbi­
trary Shocks to  Consum ption Growth

The third essay derives closed-form solutions for the equity price-dividend ra­
tio and equity risk-premium in a model in which agents have difference-form 
external habits. The setup allows for arbitrary shock distributions, correlated 
consumption growth and persistent extensions of the keeping-up and catching- 
up with the Joneses specifications. We use the exact solutions to study the 
ability of alternative estimated models -  including one capturing rare events -  
to simultaneously account for consumption, equity and bond returns in the UK 
and US. We find no specification capable of simultaneously matching these data 
and argue that ‘exotic’ shock distributions are an unlikely panacea.



INTRODUCTION 13

Approxim ating Solutions o f A sset Pricing M od­
els: The Im plicit Function Approach

The final chapter proposes a new method of approximating solutions of asset 
pricing models. It shows how such models can be restricted and solved exactly 
and how these exact formulae can be used to approximate solutions of the orig­
inal, unrestricted problems. It also demonstrates how approximation errors can 
be assessed. In contrast to several alternative approaches, the approximating 
function is not restricted to be a polynomial in state variables. This flexibility 
and efficient use of nested solutions can allow ‘low-order’ formulae to exceed the 
accuracy of higher-order perturbation approximations. The approach is illus­
trated through application to five asset pricing models.



Chapter 1

W hy do risk premia vary over 
tim e? A theoretical investigation  
under habit formation

1.1 Introduction

Existing empirical evidence suggests that risk premia vary countercyclically over 
time (Harvey (1989) and Li (2001) focus on equities; Campbell and Shiller (1991) 
and Cochrane and Piazessi (2005) present evidence for the term premium; Lustig 
and Verdelhan (2007) document strong countercyclicality in the exchange rate 
risk premium). The two most seminal, representative-agent models proposed 
in this context seem to rely on very different mechanisms of accounting for the 
empirical regularities. In Campbell and Cochrane (1999), risk aversion fluctu­
ates countercyclically as agents’ consumption moves relative to a reference habit 
level. In Bansal and Yaron (2004), shifts in premia are driven by predictable 
components in consumption as well as time-varying volatility. In this paper we 
focus on the habit mechanism and show that it also heavily relies on cyclical 
variation in underlying state variables. In particular, it depends on the fact that 
recession risks change predictably over the cycle. 1

While Campbell and Cochrane (2000) have also stressed the role of predictabil­
ity in the context of consumption based asset pricing models, the quantitative

xOur use of the terms ‘recession risks’ and ‘risk aversion’ follows Campbell and Cochrane 
(1999). Both terms are further disambiguated in Section 1.2.
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importance of the recession risk channel has not been studied extensively.2 The 
likely reason is that under the original specification of Campbell and Cochrane 
(1999), slow-moving habits ensure that recession expectations vary countercycli­
cally. Accordingly, the ‘recession risk’ channel reinforces the ‘risk-aversion’ chan­
nel and amplifies countercyclical variation in risk premia. Our first contribution 
is to document that under simpler, but commonly used habit specifications, this 
need not be the case. In particular, we show that in a model with non-persistent 
habits and trend-stationary consumption -  recession risks vary procyclically, 
offsetting the impact of countercyclical risk-aversion and generating procycli­
cal premia. We also demonstrate how increasing the degree of persistence in 
consumption and habits can overturn this result.

The benchmark endowment-economy framework we adopt is that of Lucas’ 
(1978) and Mehra and Prescott’s (1985) asset pricing model. While the par­
simony of our setup keeps the analysis tractable and enables us to prove most 
results analytically, the danger is that misspecifying the process for consumption 
might invalidate the conclusions. To address this point, we verify our findings un­
der a wide range of specifications -  including the standard ‘finance’ assumption 
of i.i.d. consumption growth, persistent consumption growth dynamics (Carroll 
et al., 2008) and allowing for alternative trend specifications (Den Haan, 1995). 
The finding that increasing shock and habit persistence changes the cyclical 
properties of ‘recession risks’ and is more likely to make risk-premia vary coun­
tercyclically survives irrespective of the exact set of underlying assumptions.

Since a slowly time-varying, countercyclical risk premium is key for matching 
asset pricing data (Campbell and Cochrane, 1999, p. 207) any model with pro­
cyclical recession risks might fail along the asset pricing dimension. This finding 
could potentially have important implications for dynamic macroeconomic mod­
els which rely on non-persistent habit specifications (Christiano et al., 2005; 
Smets and Wouters, 2007; Uhlig, 2007) and which are increasingly frequently 
used to address asset pricing questions (Jermann, 1998; De Paoli et al., 2007; 
Hordahl et al., 2008; Rudebusch and Swanson, 2008).3 In the remainder of this 
paper we thus try to clarify risk-premium implications of habit formation in 
production-economy models.

2Collard et al. (2006) examine the implications of consumption predictability in an internal 
habit model where risk aversion is, by construction, constant. Thus, implicitly, the variation 
in equity risk premia in their model is driven entirely by changing recession risks.

3Both Uhlig (2007) and Smets and Wouters (2007) consider consumption-leisure non­
separabilities, which are absent from our setup.
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An important complication which arises in non-endowment economy models is 
that habits -  in addition to affecting the degree of fluctuations in risk aversion 
and recession risks -  also have an endogenous impact on the dynamics of con­
sumption (in particular, they have a well documented role in helping to generate 
hump-shaped consumption impulse responses; see also Fuhrer (2000); Christiano 
et al. (2005); Smets and Wouters (2007)). To avoid obfuscating these different 
channels, we start by proving results analytically in an endowment economy 
setup under the assumption of ‘hump-shaped’ consumption dynamics (proxy for 
the general equilibrium impact of habits). We then verify these results numer­
ically in a fully specified dynamic general equilibrium model. In summary, our 
second contribution is to show that allowing habits to endogenously feed back on 
consumption is likely to make recession risks vary countercyclically regardless 
of the degree of persistence in the habit process. This suggests a potentially 
important role for habit formation in helping to match risk-premium dynamics 
in production-economy models.

Several existing contributions explore issues related to those we analyze. Li 
(2007) documents that premia in the framework of Campbell and Cochrane 
(1999) are not robustly countercyclical - a point similar to the one we make, 
though in a different setup. Den Haan (1995) considers a related set of driving 
processes for consumption, but focuses on their implications for the slope of the 
yield curve. In addition, there are many papers showing how habits in the utility 
help match empirical properties of anything from yield curve dynamics (Wachter, 
2006) to exchange rate risk premia (Verdelhan, 2009), though we are unaware of 
any which explicitly investigate the implications of time-varying recession-risks 
in a general equilibrium context.

In the remainder, we set up the model, present the analytical results and discuss 
the underlying intuition, before summarizing and concluding.

1.2 M odel and N otation

Our analysis proceeds in the simplest possible setup - that of Lucas’ (1978) asset 
pricing model augmented by allowing for external habits.4 Agents, indexed by

4 Several studies argue that disaggregated data offer little empirical support for the external 
habit specification (Dynan, 2000; Chen and Ludvigson, 2009). Despite this, aggregate data 
can still behave as if generated in a representative agent habit model. The study of Gaxleanu 
and Panageas (2008) demonstrates this point clearly.
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t € [0,1] choose consumption C \, investment in riskless bonds B\ and investment 
in risky assets S\ to maximize expected lifetime utility

m ax E
1 ~ P  )

Ci + V /B i + V[Si = B U  + S('_i {V[ +  A )  (1.2)

where X t denotes the external habit, Vt is the time t price of a one-period 
bond, paying a unit of the consumption-good next period and Vtr is the price 
of a perfectly divisible risky asset entitling its owner to the stream of dividends

Dt+ij Dt+ 2 • • -5

The way in which habits X t are defined has important implications for the 
dynamics of asset prices and risk premia. We choose not to adopt the non­
linear specification of Campbell and Cochrane (1999) because the latter hasn’t 
been used in any larger, production economy DSGE models, isn’t particularly 
tractable or tightly parameterized6 and finally -  in contrast to simpler, linear 
specifications -  the rationale for referring to X t as ‘habits’ is not immediately 
clear.

Instead, our approach is to posit that habits are an average of past levels of 
aggregate consumption Ct , with a single parameter (f> G [0 , 1] controlling persis­
tence

X t : = ( l - 0 ) C U  +  0X t_i. (1.3)

By deliberately keeping the setup simple, our results can shed light on the relar 
tive importance of various channels driving the results in Campbell and Cochrane 
(1999) who use an equation like (1.3) as a foundation of their model. Further­
more, when (f> = 0  the specification simplifies to one in which habits are purely a 
function of last period’s aggregate consumption, which has been frequently used 
in the macro literature. Finally, despite the simplicity, the implied coefficient

5 There are a few reasons why we choose the external rather than internal habit specifi­
cation. As noted in Campbell and Cochrane (1999), external habits simplify the analysis by 
eliminating terms in marginal utility by which extra consumption today raises habits tomor­
row. Crucially, even though marginal utility under the two specifications differs, what matters 
for asset prices is the ratio of marginal utilities. As the NBER working paper version of the 
Campbell and Cochrane article suggests -  under linear habits, similar to those we consider 
-  the ratios behave very much alike. Accordingly, we chose to focus on the more tractable, 
external habit setup.

6 Strictly speaking the Campbell and Cochrane (1999) parameterization is ‘infinitely di­
mensional’ as, other coefficients aside, it depends on a whole sensitivity function A(-).
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of risk aversion varies countercyclically, and so we retain crucial features of the 
successful nonlinear specification.7

The standard first order conditions with respect to asset holdings are

R{+1 ■ E( M U i  =1 E, M j+1 R\+l =1 (1.4)

where the stochastic discount factor AtJ, the marginal utihty of consumption k \  
and gross returns on bonds H( and risky assets R rt are given by8

M l+1 :=0 ■ ^  A!m  :=(Ct+l -  h X t+1) - p

. _  1 p r  _ ^ + l  +  A + l

'~v{ ^ +1 VtT '

We then let excess consumption C\ and the surplus ratio S t be defined as

CZ: = Ct - h X t S t := Ct ~  HXt = g .  (1.5)Ct ct

As in Campbell and Cochrane (1999) (p.2 2 0 ), we shall refer to periods with low 
values of the surplus consumption ratio as ‘recessions’ and the term F,t l/S t+ i 
(or St Efl/S't+i) will be used to characterize the ‘fear of recessions’ channel.9

The textbook definition of the equity risk premium rpt is

rpt := Et (log (R[+i)) -  log (flj+ i) =  Etr(r+1 -  r/+1 (1.6)

where lower-case letters denote logs. Notably, our measure of the risk premium 
corresponds to a generic asset held for one period. Thus, since neither the 
length of that period nor the asset payoffs have been specified, the subsequent

7The parsimony of our setup comes at a cost. For example, to ensure that habits never 
exceed consumption and so utility remains well-defined we would need restrictions on the 
support of shocks driving consumption growth. While such conditions are derived in the 
third chapter, in the remainder we ignore the problem and proceed under the assumption of 
normality. Furthermore, unlike Campbell and Cochrane (1999), we have no means of using 
precautionary saving motives to exactly offset the intratemporal substitution effect implying 
that our risk-free rate is going to be volatile. Given that the stated goal of this paper is 
analyzing premium cyclicality rather than exactly matching asset price dynamics, we consider 
the implied detriment in fit a small price to pay for tractability.

8For analytical tractability, we shall restrict attention to a symmetric equilibrium, i.e. we 
assume that individual consumption C l as well as marginal utility AJ and M \ -  the stochastic 
discount factor -  equal their respective aggregate equivalents C t, A* and M t-

9High values correspond to expectations of deteriorating living conditions. In terms of 
interpretation, the mechanism is similar to the one in Kandel and Stambaugh (1990).
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exposition applies to premia on any risky asset.

Finally, we can define the coefficient of relative risk aversion as10

U j p u X t)
v(Cu X t) := —Ct

Uc(Cu X t)

where Uy(-,-) denotes the partial derivative of utility function [/(•, •) with respect 
to y. Since this coefficient measures agents’ willingness to enter pure consump­
tion gambles, given habits fixed at reference level X t, this can be referred to as 
consumption risk aversion. It is easy to show that if the utility function and ex­
ternal habits are as in equations (1.1) - (1.3) then the coefficient of consumption 
risk aversion is countercyclical. 11

1.3 R esults

To analyze the determinants of risk premium dynamics in the model, we can 
derive a second order approximation to the first order conditions. This approx­
imation implies

rpt +  -v a r t rrt+1 «  pcovt(cet+urrt+1). (1.7)

Jensen’s inequality term aside, the risk premium is proportional to excess con­
sumption relative risk aversion p and the conditional covariance of returns rt+i 
with excess consumption ct+ v  Following Li (2001), and under the assumptions 
discussed therein (see Appendix A for a brief discussion), we can apply Stein’s 
lemma and express covt(cf+l,r l+1) as

covt(cet+1,r rt+1) = covt(ct+ urrt+l) E*— . (1 .8 )
&t+1

Mechanically, equation (1.8) demonstrates that agents’ expectations about re­
cessions matter because they affect the covariance of excess consumption and 
returns. Combined with equation (1.7) this shows that if covt (ct+\ , r rt+l)  is time 
invariant, then only changes in these expectations are going to affect risk pre­

10 As noted in Campbell et al. (1997) ” risk aversion may also be measured by the normalized 
curvature of the value function [...] or by the volatility of the stochastic discount factor [...]
While these measures of risk aversion are different from each other in this model, they all
move inversely with S t ”

11Even though risk aversion % and recession risks, as summarized by E t l / S t+ i, are both 
functions of the surplus ratio St, their dynamics and cyclicality can be very different.
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mium cyclicality. 12

Crucially, equation (1.8) can further be rewritten as

1 S
rpt +  -v a r t rrt+1 «  Tjt covt(ct+i,rrt+1) ( L9)

which demonstrates that the risk premium is determined by the coefficient of 
risk aversion rjt, the covariance of consumption and returns as well as the ‘fear 
or recessions’ variable E t ( l / S t+ i) /( I /S t) - which determines whether agents ex­
pect their living conditions to improve or deteriorate next period. Since the 
coefficient of relative risk aversion rjt is countercyclical and the covariance term 
approximately constant therefore the only factor with the potential to distort 
the cyclicality of rpt is the recession expectation term.

In the remainder of this paper we shall therefore study how assumptions made 
about consumption and habits affect the cyclicality of E tSt/St+i. In the first 
subsection we shall implicitly ignore the fact that habits have the potential 
to endogenously affect the dynamics of consumption. In the second part we 
explicitly try and account for such feedbacks and investigate the impact of hump 
shaped consumption responses on the cyclicality of recession expectations (in an 
endowment and production economy).

1.3.1 N o Endogenous Feedback of H abits on Consum p­
tion

In this section we investigate factors driving risk premium cyclicality under dif­
ferent specifications for the endowment process. Following Den Haan (1995), we 
examine the case in which consumption is stationary around a linear trend and 
one in which it is growth-rate stationary (the case of i.i.d. consumption growth is 
nested by both of these specifications). We shall show that if consumption is not 
sufficiently persistent then habits need to adjust slowly, as otherwise procyclical 
changes in recession expectations EtSt/S t+i could more than offset the impact 
of countercyclical risk aversion leading to procyclical risk premium dynamics.

12 Many partial-equilibrium finance papers assume that the covariance of consumption and 
returns is constant. Numerical simulations conducted on our model suggest that fluctuations 
in these covariances are small and for this reason we impose the assumption of time-invariance 
in subsequent propositions.



1.3. RESULTS 21

Trend-Stationary C onsum ption Process

Proposition 1. If the conditional variance of returns vart (rt+i) and their 
conditional covariance with consumption covt(r[+1, c*+i) are constant and log- 
consumption follows

q  =  «o +  K\t +  7 Q _i +  Et et ~  i i . d . ( 0 , a 2), 7  G [0,1] (1-10)

then the derivative of the risk premium rpt with respect to the current shock 
realization can be expressed as13,14

«  EtSrf^C& hO- ~  *)
s= 0

.□ (1.11)

The proof of this and all subsequent propositions can be found in Appendix A. 
Since, in general, the sign of the risk premium is ambiguous, in order to build 
some intuition we now focus on two popular nested specifications -  one in which 
habits fully adjust in a single period and another in which log-consumption is a 
random walk.

Corollary 1. Under the assumptions of Proposition 1, if habits only depend 
on past periods’ consumption ((f> = 0 ) then the premium is procyclical

=  EtS ^ C ^ \h {\  -  7) >  0.D (1.12)

Under the assumptions of Corollary 1 , following an adverse shock, recession 
risks abate and agents expect future conditions to improve (given the AR(1 ) 
nature of the endowment process, consumption is expected to increase while 
habits will unambiguously fall). Since habits adjust fully in a single period, 
excess consumption, which is all agents care about, is expected to increase fol­
lowing the negative shock. Thus, even more risk averse agents will require lower 
compensation for bearing risk and consequently risk premia fall.

13In the absence of output in our simple model, we use consumption as a measure of cycli­
cal stance. Hence if variables positively co-move with consumption - as measured by their 
derivative with respect to shocks to consumption growth et - we say they are procyclical.

14Equality (1.11) holds exactly under the additional assumption that excess consumption 
and risky returns are jointly conditionally log-normal and that consumption is also condition­
ally log-normal. See Appendix A for details.
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On the face of it, the fact that the risk premium is procyclical if <f> — 0 could be 
important as that assumption is frequently used in macro-models. As demon­
strated in the following subsections, however, this conclusion does not survive 
extensions to production economies -  where the internal propagation mechanism 
starts playing a role -  or alternative assumptions about consumption dynamics.

Corollary 2. Under the assumptions of Proposition 1 if log-consumption 
follows a random walk («o =  «i =  0 , 7  =  1 ) and habits are persistent ((f) > 0 ) 
then the risk premium is countercyclical as

=  -Etsr+\cr+\h( 1 < 0.D (1.13)
* S=1

Under the assumptions of Corollary 2, shocks to consumption are permanent 
and habits adjust gradually. In this setting, after adverse shocks -  as expected 
excess consumption falls -  expectations of future conditions deteriorate (reces­
sion risks become larger) leading to an increase in the risk premium. This shows 
that a combination of permanent shocks and persistent habits generates coun­
tercyclically varying risk premia.

Equation (1.11) generalizes this point and shows that a sufficiently persistent 
shock yields countercyclical premium variation. While the effect of increasing 
habit persistence (j) might seem less clear cut, evaluating expression (1 .1 1 ) for 
plausible parameter values suggests that raising <f) has a similar effect.

G row th-Stationary C onsum ption P rocess

The final specification we focus on assumes that log consumption growth is an 
AR(1 ) process.

A q =  k + SAct-i 4- et et ~  Af.i.d.(0,cr2), £ e [ 0 , 1]. (1-14)

This formulation is supported by recent empirical evidence on sticky consump­
tion growth - see e.g. Carroll et al. (2008).

Proposition 2. If the conditional variance of returns var* W+i) and their 
conditional covariance with consumption covt(r[+1, Ct+i) are constant and con­
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sumption follows a stochastic process as in equation (1.14), then

^  = —E(St2+1(l -  0) • J g -  • (tf + (1 + S)  <  0 D (L15)

Under this endowment specification, in contrast to the case of autoregressive 
detrended consumption (see Corollary 1 ), risk premia are countercyclical even 
under a non-persistent habit specification ( 0  =  0 ). 15

1.3.2 A llow ing for E ndogenous Feedback o f H abits on  

C onsum ption

As argued previously, more sophisticated, production-economy general equilib­
rium models are likely to introduce a variety of state-dependencies into con­
sumption’s law of motion. 16 Importantly, Fuhrer (2000) documented that habits 
help generate hump-shaped consumption impulse responses we now inspect the 
‘recession risk’ channel under hump-shaped consumption dynamics.

In what follows we show that -  relative to the specifications of the previous 
subsection -  the perceived risk of recession under hump-shaped consumption 
dynamics is more likely to be countercyclical, amplifying the countercyclical 
risk-aversion channel. So, in a fully general equilibrium setting, habits help 
generate countercyclically varying risk-premia not only because they imply a 
countercyclical risk aversion, but also because they generate countercyclical ‘re­
cession risks’.

To illustrate this point, we first derive analytical results in an endowment econ­
omy in which the exogenous law of motion for consumption implies hump-shaped 
impulse responses. Arguably, this analysis has a partial equilibrium flavor, as 
habit persistence does not map into the shape of the ‘hump’ -  which is controlled 
by different parameters. Accordingly, we conclude by numerically analyzing risk 
premium dynamics in a fully-fledged production economy model. The latter 
confirms that endogenous hump-shaped consumption responses are associated 
with countercyclical risk premium variation, even for non-persistent habits.

15Note that, irrespective of the consumption specification, cyclicality of premia is defined 
as their ‘on-impact’ response to the white-noise disturbance term e.

16Even though the dynamics of aggregate consumption might, particularly given limited 
data, be indistinguishable from that generated by the processes considered above, the asset 
pricing implications of different specifications could very well differ.
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Endowm ent Econom y

To capture the idea that the peak response of consumption is not attained 
immediately after the shock hits (i.e. to model ‘hump-shaped’ consumption 
responses) we now assume that the detrended endowment follows an ARMA(1 ,1 ) 
process17

ct =  « 0 +  « i £  + jct-i + et + 0et-u £t ~  A/’. t .d. (0,<72),  7 G [ 0 , 1]. (1 -16)

Proposition  3. If the conditional variance of returns var* (rt+i) and their 
conditional covariance with consumption covt(r£+1,c*+i) are constant and log- 
consumption follows the specification in equation (1.16) then

drpt
det Ets r ^ c r +\ h ( i  -  4>) Ct - ( y  +  9) X > SCU

8 = 0

(1.17)

In particular, if habits only depend on past periods’ consumption (</> =  0 ) and 
7  -f 9 >  1 then

drpt
det

E tS & C & h C t 1 -  ( 7  + 6) < o .a (1.18)

Equation (1.17) demonstrates that 6 -  the parameter controlling the size of the 
‘hump’ -  can play a similar role to 7  -  i.e. consumption persistence. It suggests 
that models with hump-shaped consumption responses may be able to generate 
countercyclical premia without persistent habits or shocks. In the case of non- 
persistent habits, described in equation (1.18), if 7 +# > 1 then the risk premium 
is unambiguously countercyclical.

Under this specification log-consumption decreases further in the period after 
an adverse shock, following which it converges back to its steady state (i.e. 
it bottoms out in period two). That is, after a bad shock agents expect the 
future to get worse (i.e. recession risks increase) and therefore require a higher 
compensation for bearing risk.

17The results discussed in this section naturally generalize to arbitrary ARMA(1,K) pro­
cesses.
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Figure 1.1: Response of Consumption (Solid Line, LHS) and the Equity Risk 
Premium (dashed line, RHS) to a Productivity Shock in the Model of De Paoli 
et al. (2007)

Production Economy

We now scrutinize the dynamics of the equity risk premium in a production 
economy with real rigidities. In particular, we use the model documented in 
De Paoli et al. (2007).18 The setup features non-persistent habit formation 
(i.e. /i /  0 but (j) =  0) and explicitly models capital and capital adjustment 
costs. While the structural shocks are AR(1) the model’s internal propagation 
mechanism generates a hump-shaped response of consumption to productivity 
shocks -  see also Figure 1.

To compute the response of the equity risk premium to a productivity shock, we 
used a third-order perturbation approximation to  the model’s policy function.19 
Figure 1 confirms tha t in a general equilibrium framework with habit formation

18We use the flexible price version of the model. The calibration is detailed in Table A,
p.40.

19Third order is the lowest which allows for time variation in risk premia. As discussed in 
Schmitt-Grohe and Uribe (2004) — a first-order approximation would imply that premia are
zero at all times, while a second-order approximation would only allow for constant premia. 
The approximation was computed using Dynare++  [www.dynare.org] and Perturbation AIM 
[http://www. ericswanson. us/perturbation, html].

http://www.dynare.org
http://www
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consumption has a sluggish response to the shock, generating countercyclical 
recession risks and thus countercyclical risk premia. This suggests that the 
findings of Proposition 3 also apply to a production-economy model.

1.4 Summary and Conclusions

We have used the simplest possible framework to analyze the determinants of risk 
premium dynamics. We demonstrated that due to changing recession risks, risk 
premia can be procyclical even though the volatility of consumption is constant 
and despite a countercyclically varying risk aversion coefficient. We have also 
documented that persistent habits, shocks or features generating hump shaped 
consumption responses are all likely to make the premium countercyclical.

Fundamentally, the countercyclicality of the premium rests on agents’ belief that 
changes in economic conditions are persistent. In other words, after an adverse 
shock, more risk-averse agents will only require a larger premium on risky assets 
if they don’t expect their future conditions to improve massively. Expressed 
alternatively, our work explicitly explores the role of countercyclical recession 
risks -  a feature that is implicit in Campbell and Cochrane (1999), and similar 
in spirit to the mechanism driving the results in Bansal and Yaron (2004). Our 
results suggest that factors which help match activity data - i.e. allowing for 
consumption habits and persistent shocks - axe also likely to help along the asset 
pricing dimension.

Changes in premia substantially contribute to asset price volatility and so having 
a good understanding of factors driving them is crucial for modeling asset prices. 
Given the increasing frequency with which macroeconomic models are being 
used to address asset pricing puzzles, it is key to clarify how and why changes 
in standard modeling assumptions translate into different dynamics of premia. 
While this study attempts to clarify these issues, further analysis of risk premium 
dynamics could still be undertaken. For example, in production-economy models 
the dynamics of term-premia or the inflation risk premium would depend on 
other aspects of the transmission mechanism. We believe that examining these 
aspects would be of interest.
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l .A  A ppendix

Proof of Proposition 1

Li (2001) demonstrates that under certain distributional assumptions on c*,r[ 
and Ct

rPt =  ~ v a r t (r[+1) +  6 covt (c*+i, r[+1) +  AtS covt (c*+i, r[+1) (1.19)

where Xt = E t(dst+i/dct+i) — Et( l / S t+i) — 1. Repeated use of the definition 
of habits - equation (1.3) - and the endowment specification - equation (1.10) - 
makes it possible to express St as

St+i —
+oo

1 -  (C7e“0+'“ (t+I>+E,+1) 1 h(l
3=0

(1.20)

Thus, computing the derivative of the above expression we have

+oodXt
dCt

= E t -  =  EtS ^ C t-+\h ( l  -  4>) 1 - 7  C f1 x y c t_
d a

3=0

which, can be plugged into the chain rule dXt/det =  dXt/dCt • dCt/dct • dct/det 
to yield

^  «  Ets n \C ;+\ h ( i  -  <j>)
+CX)

s=0
(1.21)
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Proof of Proposition 2

Denoting gross consumption growth by cf := Ct/C t~ 1 and defining x t := X t/Ct 
equations (1.14) and (1.3) can be written as

4+i =  exp(« +  Et+ i )  • (cf)5 (1.22)

x t =  ((1 -  <f>) +  4>xt- 1) • (cf_i)_1. (1.23)

Iterating on (1.23) we can express x t as

+oo *i—1 n +oo s s n

*< =  ( i  - < t > ) I K ^ - i ) ' 1 } =  (1 -  X y j I K ^ - j ) _1 [ (L24)
i = l  J= 0  s= 0  j= 0

which implies that

St+i =  (1 -  hxt+1) =  ^1 -  h( 1 -  0 ) ■  (125)

Similarly as in the case of a deterministic trend in consumption we can now
compute the derivative

dS<m
9 4

where n l= 2 afc =  1• Exploiting equation (1.22) we know that

-  =  -  (c?+0 “2̂  =  s { 4 ^ 4 Y l 0 .26)

= -  (4 +i4 r 2(4 +1 +  4 ^ )  =  - ( i  +  S)i4 +l) - \ 4 ) - 2 (1.27)

and so

dS t+ 1 

3 4

Accordingly

£  =  Ee -  5 t2+1(l -  0)(cf+1) _1 («  +  (! +  <5) • { i f e + w r 1} ) -
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Proof of Proposition 3

Given that

Xt = Et
+00

5=0

-1

- 1 (1.29)

and treating Xt as a function of two variables A(Ct, Ct+i)

= Etsr+\c r +\h (  1 -  <e), ~  =  - E tsr+\c r +\h ( i  -  $  £
t  s= 0

we can apply the chain rule

dXt _  d>H dC± dct dXt dC t+ 1 /  dct+i dct+i dct \
det dCt dct det dCt+\ dct+i \  det dct det )

to obtain that

+00

«  Ets £ c r +\h (  1 -  <t>) Ct — (9 + 7 ) 4>sCt-,
s=0

(1.30)



Chapter 2

Cyclical Risk Aversion, 
Precautionary Saving and 
M onetary Policy

2.1 Introduction

A lot of modern policy analysis is conducted using linear, or linearized, models. 
While these may be able to replicate salient features of macroeconomic dynamics, 
there are important areas where their ability to ‘match data’ is less satisfactory. 
In particular, all linear models are ‘certainty-equivalent’, which implies that co­
efficients of their policy-rules are independent of the level of shock volatility. A 
striking consequence of this fact is that, absent ad-hoc adjustments, expected 
returns on all assets are identical -  i.e. risk-premia are restricted to counter- 
factually equal zero. To the extent that asset prices reflect agents’ attitudes 
towards risk, using models so badly misspecified along this dimension could re­
sult in systematically biased policy recommendations. This paper investigates 
the issue in more depth.

Rather than trying to analyze many aspects of uncertainty, we focus on just 
one -  precautionary savings.1 Given that some studies (Carroll and Samwick, 
1998) estimate that in excess of 40% of all wealth accumulation has to do with

lrThe fact that households save for ‘a rainy day’, also referred to as precautionary or buffer 
stock saving, has long been well recognized and documented (see e.g. Leland (1968), Sandmo 
(1970), Carroll (1992), Kazarosian (1997), Carroll and Samwick (1998) or Ludvigson and 
Michaelides (2001)).
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precautionary motives, incorporating this channel is likely to be important. At 
the same time, focusing on a single aspect of risk makes it easier to establish 
traction with standard New-Keynesian models and allows us to derive our results 
analytically -  retaining some of the linearized framework’s appeal.

Since we are motivated by the benchmark model’s failure to match asset price 
data, we extend the setup by allowing for persistent external habits -  whose ap­
peal in the asset pricing context was demonstrated by Campbell and Cochrane 
(1999). At the same time, we retain standard features such as monopolistic com­
petition and staggered Calvo (1983) price setting. In our framework, external 
habits generate cyclical swings in risk aversion, which translate into fluctuations 
in the desire to save for precautionary reasons. Crucially, to give this channel 
bite, we consider a nonlinear approximation to the consumption-Euler equation 
-  explicitly accounting for a state-dependant precautionary saving motive.2

Incorporating cyclical risk aversion has clear implications for the propagation 
mechanism of shocks and consequently for the appropriate policy response. Con­
sider, for example, the case in which a negative demand disturbance hits the 
economy. Increases in risk aversion and the desire to save for precautionary rear 
sons would likely magnify its negative impact. Consequently, if policy-makers 
ignored these extra ‘precautionary’ effects, then they would under-react to the 
shock. By the same token, low risk aversion and reduced desire to accumu­
late buffer-stock savings associated with economic booms would strengthen the 
case for using policy relatively more aggressively -  subsequently referred to as 
‘leaning against the wind’.

Our first contribution is to characterize conditions under which models with 
habits generate countercyclical variation in the desire to save for precautionary 
reasons. We show that a countercyclical coefficient of risk aversion, which is a 
standard feature of all habit models, might not be sufficient to generate realistic 
dynamics. What is necessary is that the persistence of shocks and habits is 
sufficiently high -  i.e. agents must expect a fall in living conditions to persist in 
order for higher risk aversion to translate into a greater desire to save.3

We then analyze policy implications of such swings in precautionary saving 
motives. We derive expressions for the ‘natural’ rate of interest -  i.e. the one that

2But, as stressed previously, this is the only deviation from linearity which we consider.
3Arguably, since these conditions closely mirror those for risk premium countercyclicality 

derived in De Paoli et al. (2007), our model is likely to inherit the desirable asset pricing 
properties of Campbell and Cochrane (1999).
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would prevail if prices were fully flexible -  both in a linear, ‘certainty-equivalent’ 
setup and in a world in which agents save for precautionary reasons. Since in 
our framework the policy of complete price stability mimics the flexible price 
allocation (Woodford, 2003), therefore, by describing the implications of buffer 
stock savings for the level of the natural rate, we also characterize monetary 
policy consistent with price stability. In a habit model, as shown by Amato and 
Laubach (2004), such a policy is also close to the social optimum, which is why 
we focus on it in the remainder.

We find that properly accounting for swings in risk appetite and the desire 
to save reduces the magnitude of monetary policy responses to productivity 
shocks. Following a positive productivity shock, central bankers striving to 
maintain price stability cut rates to boost demand and prevent falls in the price 
level. However, since a persistent positive productivity shock also reduces agents’ 
desire to save, the cut in rates required to boost demand is smaller -  i.e. the 
intertemporal substitution effect is partially offset by swings in the precautionary 
motive. Conversely, given that a positive demand shock merits interest rate hikes 
-  and since associated falls in precautionary motives exacerbate the increases 
in demand -  policy needs to have a ‘contractionary bias’ during booms, and an 
accommodative slant during downturns, once changes in precautionary motives 
are accounted for.

Our analytical expressions show that the size of the ‘precautionary’ correction 
is increasing in the degree of shock volatility. This has two important implicar 
tions. First, it stresses the dependence of the policy multiplier on underlying 
uncertainty -  i.e. once the impact of uncertainty on agents’ behavior is factored 
in, the output or consumption implications of a 25bp policy cut could be very 
different during a period of ‘great moderation’ than in a financial crisis. Second, 
higher volatility translates into greater ‘precautionary’ corrections -  meaning 
that ignoring the impact of swings in ‘buffer-stock’ motives would tend to lead 
to largest systematic policy mistakes in highly turbulent periods.

The remainder of the paper is structured as follows. In the next section we 
present the model. We also characterize the linearized system of equilibrium 
conditions and the corresponding natural rate of interest. In Section 3, we in­
corporate the precautionary savings channel and analyze its implications for the 
natural rate of interest and thus monetary policy. We then use simulations to 
illustrate our results and inspect their robustness before concluding by summar 
rizing and highlighting possible extensions.
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2.2 M odel

Our model economy is inhabited by a continuum of consumer-producers living 
on the unit interval (and indexed by j  G [0,1]). Agents are assumed to maximize 
expected utility, which is given by

UJ = E f / r ‘ (  _  S f o t t r 1)  (2<1)
{  l ~ p  * + 1  J

where C3t denotes agent j ’s consumption, X t is the level of habits and is a 
preference shock. The second term in the large bracket captures the disutility 
of producing yt(j) units of the differentiated output good given productivity 
denoted by £yit.4

We define the coefficient of relative risk aversion as5

'«■*•> (22>
where surplus consumption St is given by

St ■■= (2.3)

and Uy(',')  denotes the partial derivative of utility function [/(•, •) with respect to 
y. Since this coefficient measures agents’ willingness to enter pure consumption 
gambles, given habits equal to X t, it can be referred to as consumption risk 
aversion. It is easy to show that is countercyclical, when -  as in
Campbell and Cochrane (1999) -  St is used as a measure of cyclical stance.

We assume that habits X t are ‘external’ - i.e. individual agents treat them as
exogenous. We adopt a slow-moving habit specification under which

x t = ( l -  (f>)ct- 1  +  (j)xt- 1  (2.4)

4Given the Calvo price setting specification that we subsequently adopt, households’ pro­
duction income could be different depending on the type of good produced. In the remainder, 
as in Woodford (2003), we assume that there exist competitive financial markets in which 
these risks are efficiently shared.

5As noted in Campbell et al. (1997) ‘risk aversion may also be measured by the normalized 
curvature of the value function [... ] or by the volatility of the stochastic discount factor [. . .  ] 
While these measures of risk aversion are different from each other in this model, they all 
move inversely with St-’
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where (j> controls the persistence of the habit process and small letters denote 
logs. We further assume that both preference and productivity shocks are au­
toregressive processes given by

£d,t+ 1 —')dem̂ d,t “b d̂,t+ 1 Ey,t+ 1 —rfjyrod£y, t “I- ŷ,t+ 1

with £xj  =  log(^X)t) and the disturbances ex>t+i being mean zero i.i.d. random 
variables with variance given by i  G {d, y}.

Aggregate consumption and price indices, Ct and Pt, are defined as

Ct =
_ i ° r j

/  Ct{zy~^ dz Pt = f  p ( z ) 1 
Jo  J IJo

dz

where a > 0 is the elasticity of substitution between the differentiated varieties. 
Conditional on the specification above, we can characterize agents’ intratemporal 
and intertemporal decisions. Optimality implies, respectively

y t U ) = ( m y \ t

1 =  RtEt
,£d ,t+ i(C rf+ i — hXt+i) p

Zd,t(Ct-hXt)-p

Alternatively, we could rewrite the consumption Euler equation as

1 =  RtEtXit+i 

where the stochastic discount factor M t +1 is defined as

ka — a €d,t+i(Ct+i — hXt+i)~pAlt+i =  (J

(2.5)

(2.6)

(2.7)

U t i P t - h X t ) -p (2.8)

Prices axe assumed to follow a partial adjustment rule a la Calvo (1983). Produc­
ers of differentiated goods know the form of their individual demand functions, 
given by (2.5), and maximize profits taking aggregate demand Yt and price level 
Pt as given. In each period, a fraction a  G [0,1) of randomly chosen producers is 
not allowed to change the nominal price of their output. The remaining fraction 
of firms, given by (1 — a), chooses prices optimally by maximizing the expected 
discounted value of profits. The optimal choice of producer j  allowed to reset
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his price at time t can be shown to satisfy

+00

T = t

y tA J )
(apy~T ((7 -1 )

=  0 (2.9)

where yt,r(j) is producer j ’s time t estimate of demand for his good at time T, 
should he be unable to reset his price Pt(j) before period T. It can be proved 
that equation (2.9) implies that the price index evolves according to

(Pt)1-" = aP£7  +  (1 -  a) (pt)— \1—a (2.10)

where we exploit the fact that all producers who reset prices at time t equate 
them to pt. Thus, using the market clearing condition Ct = Yt) we can summarize 
the log-linearized system of equilibrium conditions by6

' rt =  E t(p (1 -  h)-1 (Aym  -  h A x t+i) -  Asd,t+i)
< 7rt =  k  («0 (1 -  h)~l yt -  p (1 -  h)~l hxt -  r)£y,t -  £d,t) +  PEtTrt+i 
k x t = (1 -  (j>)yt-\ + <t>xt- \.

Prom the system above we can derive the equilibrium interest rate consistent 
with price stability (i.e. 7rt =  log(Pt+i/Pt) = 0 for every t) in a linear world

r* =  KiEt(Aeyt+i -  (1 -  h)A£d,t+i -  hAx*+1) (2.11)

where x* is the flexible-price level of habits and where

«o = ( 1  — h)r] + p and =ppnQl .

Note that r* is also the equilibrium interest rate that would prevail if prices were 
perfectly flexible.

Expression (2.11) shows that the interest rate consistent with full price stability 
falls [rises] following a positive supply [demand] shock -  with the magnitude of 
the response, on impact, given by [(1  — h)«i].

6Since in the simple setup we use there is no aggregate saving, therefore we refer to the 
‘precautionary saving motive’ (rather than changes in actual savings). That motive would be 
reflected in the dynamics of market-clearing asset prices -  e.g. the riskless rate.
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2.3 Cyclical Risk Aversion and Precautionary  
Saving

We now consider the minimum departure from a linear model, in which we can 
analyze the impact of cyclical swings in risk aversion and precautionary saving 
motives on economic dynamics. While retaining the linear specification of all 
equations other than the Euler condition (2.7), we exploit the fact that under 
conditional log-normality of M.t the latter becomes7

- r t = E t(mt+1) +  \  vart(mt+i) (2 .1 2 )
Intertemporal substitution effect Precautionary savings effect

where mt+i =  log(Adf+i). Reiterating footnote 6 , our framework abstracts from 
investment and, thus, there are also no savings. Nevertheless, the interest rate 
that clears the bond market is affected by agents’ willingness to save both for 
precautionary and intertemporal smoothing reasons.

While linear models capture the intertemporal substitution effect, they ignore 
the term vart (mt+1). This term summarizes how uncertainty affects inter­
est rates through changes in agents’ willingness to amass precautionary sav­
ings.8 Accordingly, to analyze how the precautionary savings channel affects 
the transmission mechanism of shocks, we need to understand the determinants 
of vart(mt+i). In particular, we would like to evaluate how such precautionary 
savings behave over the cycle. Defining

we can write

vart(mt+i) =  vart{rht+1) +  covt(mt+i, A£d,t+i) +  a2d. (2.14)

Note that absent preference shocks, only the first term would be present in the 
expression above. To analyze the cyclical properties of vart (fht+1), we approxi­

7This equation holds up to second order without any distributional assumptions on the 
stochastic discount factor.

8 There has been some ambiguity as to what exactly precautionary savings are -  see also 
Floden (2008). Our usage of the term is closest to that in Kimball (1990) and implies that, 
absent uncertainty, there would be no precautionary savings, unlike in Huggett and Ospina 
(2001).
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mate it to third order (details can be found in the Appendix)

vart(fht+i) = kI(tj~2o^ +  -  nyey%t -  Kd£d,t +  Kxx t) (2.15)

where

2 h r ] ( h 'y ( l  — <f>) +  « 0 ( t prec/d em +  < P ~ V )Ky/d — O (2.16)Kq

K 2 h { p  +  T))(Ko +  p h ( l  -</>))

«0

Equation (2.15) highlights three channels through which uncertainty affects in­
vestors’ behavior (and through which the policy multiplier would be affected):

•  the overall level of macroeconomic volatility - given by a2 and cr$;

•  investors’ risk aversion p - which in turn determines «i;

•  current and past economic conditions - as summarized by the state variable 
x t and shocks eyjt, and ed,t-

Equation (2.15) demonstrates that as long as investors are risk averse (p > 0 =$■ 
«i > 0) uncertainty affects their consumption decisions. It also illustrates that 
without habit formation (h =  0 ) the strength of the precautionary saving motive 
would not vary over the cycle (kv = Kd = kx = 0 vart(rht+1) is constant). 
Furthermore, inspecting expression (2.16) reveals that

Kprod "t" (f) ^  1 ^  ^j/ ^  0  a n d  rjd&m "I- 0 ^ 1  —t'  K>d ^  0  ( 2 .1 8 )

which means that if shocks affecting economic activity are sufficiently persistent 
and habits adjust slowly, then vart(rht+1) changes countercyclical^. Actually, 
since the other terms in equation (2.14) are either constant or necessarily coun­
tercyclical (as shown in the Appendix), condition (2.18) suffices to guarantee 
countercyclicality of vart(mt+1). Accordingly, investors will increase their will­
ingness to engage in precautionary saving following bad shocks if they expect 
future economic conditions to remain poor (consumption to persistently under­
shoot the habit level).

If, on the other hand, the median expectation is for an improvement in economic 
prospects, then negative shocks might not translate into higher precautionary 
savings -  even if the coefficient of risk aversion given by (2.2) increases. This
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is because if habits are fast moving and consumption recovers quickly, investors 
faced with the bad shock will quickly get used to lower levels of consumption 
while at the same time, the latter quickly recovers. This means that investors 
actually expect consumption to be above their habit level in the future and 
therefore might be less inclined to engage in precautionary savings.9

Note that in this exercise, we are only interested in understanding the determi­
nants of precautionary savings and not in capturing the effect of all the other 
nonlinearities in the model and/or their interplay. For this reason, we only derive 
higher order approximations to the volatility of the stochastic discount factor 
as, in our framework, it is the only term capturing the precautionary channel.10

2.4 Precautionary Saving and M onetary Policy

The implications of precautionary saving for interest rates will, therefore, depend 
on the structural characteristics of the economy. Absent consumption habits, 
with time invariant risk aversion, the presence of uncertainty will affect the aver­
age level of the natural interest rate, but not its business cycle properties. In this 
case, interest rate responses consistent with price stability would not be affected 
by buffer-stock saving motives. In the general case, however, changes in per­
ceived uncertainty (vart(mt+1)) would generate fluctuations in the equilibrium 
interest rate - with ramifications for the conduct of monetary policy.

If the central bank’s goal is to maintain price stability and it uses interest rates 
as an instrument to achieve this goal, then knowing the behavior of the natural 
rate of interest is crucial. In fact, as alluded to in the introduction, policy rates 
that ensure price stability would track the natural rate of interest. So how do 
precautionary savings affect the natural rate and the appropriate policy response 
to shocks?

Equation (2.11) implies that the magnitude of responses of the natural rate to 
a productivity shock in a ‘linear’ world is given by «i. When accounting for 
uncertainty, the size of these responses also depends on the cyclicality of pre­

9As discussed in De Pauli and Zabczyk (2009), similar conditions are necessary to ensure 
that risk premia are countercyclical. The paper highlights the role played by the persistence 
of the consumption surplus ratio.

10That is, we are explicitly dismissing the effects of nonlinearities present in the other 
equilibrium conditions and other higher order terms in the Euler equation, which would affect 
the intertemporal substitution effect.



2.5. QUANTITATIVE ANALYSIS 39

cautionary savings. If shocks and habits are persistent, and thus precautionary 
savings are countercyclical, then the response to shocks is dampened. A nega­
tive productivity shock increases perceived uncertainty, which raises investors’ 
willingness to save and puts downward pressure on interest rates. As a result, 
the equilibrium interest rate that is consistent with stable prices will be lower 
than in a linear economy. Thus, these results suggest that interest rates should 
respond less to supply shocks when precautionary savings are taken into account.

The condition 7 dem + <t> > 1 implies that Kd > 0 and thus also guarantees that 
precautionary savings are countercyclical in the face of preference shocks. So, 
when uncertainty is introduced in a model that features persistent shocks and 
habits, negative preference shocks also lead to higher precautionary savings. In 
other words, incorporating uncertainty magnifies the impact of the shock. As 
a result, the response of the natural rate of interest to such shocks should ex­
ceed the one, when precautionary motives are dismissed. Accordingly, in such 
settings, policymakers striving for price stability should respond more aggres­
sively to demand shocks. This is in contrast to the case of productivity shocks 
analyzed previously.

These results suggest that policy implications of precautionary savings depend 
crucially on the source of the shock hitting the economy. In other words, higher 
precautionary savings can be thought of as introducing an extra negative de­
mand shock - both following negative productivity and preference shocks. Since 
productivity and demand shocks call for opposite interest rate reactions -  at 
least when the policymakers’ aim is to maintain price stability -  therefore, de­
pending on the source of the shock, policy that ignores precautionary savings 
(and hence the extra negative demand shock) will either undershoot or overshoot 
its’ appropriate level.

2.5 Q uantitative Analysis

The model developed so far offered a stylized, qualitative representation of the 
monetary policy transmission mechanism. However, a quantitative illustration 
of differences in policy responses is of independent interest. In this section we 
provide one, stressing two important caveats at the outset:

•  Our model is stylized. For example -  the assumption of price level tar­
geting implies that inflation volatility is, by construction, zero. Since it
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wasn’t clear what weight to put on deviations of simulated moments from 
their data counterparts, we opted to calibrate rather than estimate the 
model. To verify the robustness of our findings, we then conducted a thor­
ough sensitivity analysis -  documenting the implications of varying key 
parameters.

•  While we chose to focus on the habit mechanism, there are alternatives -  
e.g. Epstein-Zin preferences (Epstein and Zin, 1989) -  which could also 
generate swings in precautionary saving motives. While these alternative 
frameworks would likely have similar qualitative implications, the quanti­
tative ones could very well differ.

For our calibration we define one period as a quarter and set (3 = 0.99 to yield 
a 4% steady-state real interest rate. As in Campbell and Cochrane (1999) the 
coefficient of risk aversion p is equal to 2.37 and the degree of habit persistence 
<f> is set to 0.97. Following Canzoneri et al. (2007) we assume a value of 6 for 
the inverse of the elasticity of labor supply 77 and set a  =  0.66 to obtain an 
average length of price contracts of 3 quarters. The elasticity of substitution 
between differentiated goods a  is assumed to take the value of 10 in line with 
Benigno and Woodford (2005). Similar to Juillard et al. (2006) and Banerjee 
and Batini (2003) we calibrate the habit size parameter to h = 0.85. As in Smets 
and Wouters (2003, 2007), the persistence of productivity and preference shocks 
is set to 0.997 and 0.9 respectively, and the variance of productivity shocks is 
3.5 times higher than that of preference shocks. Finally, the overall level of 
shock volatility is calibrated to match the standard deviation of consumption 
growth equal to 0.75% (consistent with official UK Office for National Statistics 
quarterly data for consumption of non-durables and services from 1976 Q1 to 
2007 Q3). These values are all summarized in Table 2.1.

We begin the quantitative part of our investigation by comparing the level of 
the natural rate of interest in a linear world with the one that would prevail if 
the precautionary savings channel was additionally taken into account. In fine 
with the theoretical part, we consistently maintain a linearized version of the 
Phillips curve while alternating between first and third order approximations to 
the Euler equation to switch the precautionary channel off and on respectively.11

11In particular, we compute a third order approximation of the Euler equation using pertur­
bation methods as implemented in Dynare++  and Perturbation AIM. As mentioned previously, 
third order is the lowest which allows us examine changes in the precautionary saving motive.
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Figure 2.1: Natural Rate of Interest Following a Positive Productivity Shock

Figure 2.1 illustrates how the natural rate of interest responds to a positive 
productivity shock. The chart shows tha t the fall in the natural rate is smaller 
once the precautionary saving motive is incorporated. More specifically, once 
the decreased desire to save is taken into account, the magnitude of the change 
in interest rates required to boost demand sufficiently to prevent falls in prices 
is more than halved (from roughly 50bp (annualized) to 15bp on impact). The 
simulation results thus suggest tha t a central bank following an interest rate rule 
should be less aggressive in the face of productivity shocks -  confirming our qual­
itative story and additionally suggesting tha t these effects can be quantitatively 
relevant.

Figure 2.2 demonstrates th a t the analytical results for preference shocks are 
also confirmed in simulation. In particular, the response of the natural rate 
to a negative preference shock is magnified -  agents’ increased desire to save 
exacerbates the initial shock and calls for more accommodative policy -  i.e. 
bigger cuts in rates. But the quantitative impact of the precautionary saving 
effect on the natural rate is smaller than in the case of productivity shocks. We 
now briefly investigate why, inspecting the sensitivity of the reported differences 
to changes in various model parameters.

The first group of parameters we focus on are those controlling the size (Figure 
2.3) and persistence of habits (Figure 2.4). Under the benchmark calibration
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Figure 2.2: Natural Rate of Interest Following a Negative Preference Shock

-  at 0.85 and 0.97 respectively -  these are, arguably, on the high side.12 As 
panels A and B in figures 2.3 and 2.4 show, increasing their values magnifies 
differences between the response of ‘linear’ and ‘precautionary-adjusted’ rates 
to both productivity and demand shocks.13 Panels C and E demonstrate, how­
ever, tha t the mean difference in rates (denoted by the ‘prec’ green line) seems 
to respond much more strongly to changes in the habit size parameter h. No­
tably, comparing the slope of the ‘prec’ line with that showing the mean of 
the (non-annualized) interest rate r, suggests that this is because of falls in the 
‘precautionary’ rate rather than by changes in the ‘linear’ one.

The second group of parameters whose significance we scrutinize, are those con­
trolling the persistence of productivity shocks - 7prod (Figure 2.5) and demand 
shocks idem  (Figure 2.6). Perhaps surprisingly, while they affect the impulse 
responses of the ‘precautionary correction’ to the respective shocks (Panels A 
and B) they have negligible impact on the mean value of the difference between 
‘linear’ and ‘risk-adjusted’ policy rates.

The above conclusions are definitely not true of the risk-aversion/intratemporal 
elasticity of substitution parameter p  (Figure 2.7) or the volatilities of produc­
tivity cry and demand shocks ad (Figures 2.8 and 2.9 respectively). Increasing

12As discussed previously, high habit persistence helps ensure that the precautionary savings 
motive is countercyclical and -  as emphasized by Campbell and Cochrane (1999) and De Paoli 
and Zabczyk (2009) -  helps along the asset pricing dimension.

13Reducing the value of these parameters would thus undoubtedly reduce the quantitative 
relevance of our results. Most likely, however, it would also adversely affect our model’s ability 
to match asset pricing data -  which was our original motivation to study this channel.

46
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their values magnifies differences between ‘linear’ rates and those accounting for 
changes in agents’ desire to save for precautionary reasons -  both in response to 
shocks (panels A and B) and overall means (panels C and E). Again -  these dif­
ferences are mainly driven by changes in the ‘precautionary’ rather than ‘linear’ 
rate. Somewhat strikingly, however, boosting the volatility of demand shocks 
seems to have a much smaller impact than changing the variance of productivity 
shocks. Most likely this reflects differences in the underlying shock persistence -  
suggesting that what is necessary to induce significant changes in the dynamics 
of the policy rate is a simultaneous combination of high shock volatility and high 
persistence.

We conclude the quantitative section by investigating policy errors which a cen­
tral bank would make if it incorrectly ignored changes in the strength of agents’ 
precautionary savings motive when setting interest rates. More specifically, we 
assume that the central bank follows a Taylor rule given by

Tt = rt +  +  07T(yt -  Vt) (2.19)

where r" is the nominal interest rate, y* is the flexible price allocation of out­
put, and r* is the natural rate of interest defined in Equation (2.11) -  i.e. one 
consistent with price stability in a ‘linear’, risk-free world.

Table 2 shows the implications of this policy for inflation and the output gap.14 
We see that whereas the Taylor rule given by Equation 2.19 ensures zero inflation 
and output gap volatility in a linear world -  where the natural rate is driven 
purely by the ‘intertemporal-substitution’ channel -  this is no longer the case 
when uncertainty influences agents’ behavior. More specifically, in that case, the 
wrong policy increases the standard deviation of the output gap and inflation 
by 0.1pp.

While our numerical results suggest that implications of ‘policy mistakes’ are 
quite small, this is partially driven by consumption in our model being very 
insensitive to changes in the interest rate. If we were to reduce the elasticity of 
intertemporal substitution and consider the case of log utility, this sensitivity 
would increase and with it the standard deviation of the output gap and infla­
tion.15 Furthermore, in our calibration the Phillips curve is extremely flat, so

14Note that in this exercise we use a nominal version of the Euler equation, given that the 
central bank is assumed to control the level of the nominal interest rate.

15Epstein-Zin preferences would allow us to illustrate this easily - as we could reduce the 
elasticity of substitution without changing the coefficient of risk aversion.
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even if the Taylor rule produces movements in the output gap, this does not 
translate into a volatile inflation rate (see fifth column of Table 2.2) -  i.e. un­
der a slightly changed calibration these policy errors could become much more 
relevant.

The concluding observation we make is that decreasing the level of uncertainty 
would also lower the size of the inflation and output gap volatility. That is, 
lower uncertainty would decrease the size of policy mistakes. Thus, in these 
settings if central banks have good luck (i.e. they confront a stable economic 
environment), this will also translate into good policy (i.e. low policy mistakes). 
This result, which is consistent with Figure 2.8, is illustrated in column 6 of 
Table 2.2.

2.6 Conclusions

Our results show that, following persistent adverse shocks, policy-makers might, 
be well advised to steer off predictions of linear models and conduct more accom­
modative policy. Equally, when demand and supply conditions are improving, 
taking note of the precautionary saving motives justifies ‘leaning against the 
wind’. Since the size of the precautionary correction is increasing in the degree 
of volatility, mistakenly ignoring this channel would be most costly during highly 
turbulent periods. We believe that formally accounting for stochastic volatility 
and enriching the framework by considering Epstein-Zin preferences would both 
make for interesting extensions.
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2.A A ppendix

The logarithm of the stochastic discount factor is given by

-  k‘ ( <Cmc a " r,l( a S , ) - # ) -  *t+1
=  - p ( log Ct+ 1  -  log Ct +  log S t + 1 -  log St) (2.20)

and so
™>t+i — —p(q+i — Q +  st+i — St).

It thus follows that

vartmt+i =  Et (mt+i -  Etrrii+i)2 =  p2Et ct+i -  EtCt+i) +  (st+i -  EtSt+i)^

=  p2 ^vartCt+i +  2covt(ct+i, st+i) +  var*s+i^ (2.21)

as the conditional expectations of all t-dated variables can be eliminated.

Up to a second order approximation (which is all we need to compute a third- 
order accurate expression for v&Ttm t+i) we get

St+ 1 =  ^ 1  (ct+1 - \ ( l ~  h)~lct+ 1 -  ̂ t+Ct+iXt (1 -  h)~l-  i ( l  -  h)~lxl)  -  log(l -  h)

where we used the fact that the habit at time t + 1  depends only on measurable 
variables and so we denoted x t+i by x t and defined \Pi := h /(  1 — h).

We can now compute a third order approximation to the vaitSt+i and to that of 
covf(ct+i, st+i). From the definition

vartst+i =  ^ v a rt(ct+i -  ^(1 -  h)~lc2t+l +  Ct+ixt(l -  h)_1) (2.22)

where again expectations of all t-dated variables were eliminated. It is easy to
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see that

Yj/2 /  i
varts*+i =  _* f ( l  -  h)2varf(cf+i) +  -vart(c2+1) +  ^vax^Ct+i)

-  (1 -  h)covt{ct+i, c*+1) 4- 22* (1 -  h)vaitct+i ~  x tcovt(ct+i, <*+1)^ • (2.23) 

Similarly

covt(ct+i, st+i) = ^iCovt (ct+i,Ct+1 -  ^(1 -  h)~lc2t+l +  ct+i2ct(l -  /i)_1)

=  tfi(var*ct+i -  i ( l  -  /i)_1covt(ct+i,c 2+1) +  x t{l -  h ) - lvaxtCt+i)- (2.24)

Consider the case in which shocks follow an AR(1) process, i.e.

£y, t+1 'yprod.Ey, t “l~ €y,t-(-1 ^ d , t+ 1 t 4" ^d ,t+ 1*

where ey and ed are independent (cross-sectionally and inter-temporally). As 
shown above, to compute the variance of m t + i  we need expressions for

vaxfc*+i and covt(ct+i, c2+1).

We know that

ct = Vt= (p{ 1 -  ^)-1 4- 77) 1 (p{ 1 -  h)~lhxt- 1 +  ed>t +  r)£y,t) (2.25)

and so

vartct+i =  vart(p(l -  h)~lhxt +  ed)t+i +  7 dcmed,t 4- V^t+i +  rnprod^yjt)

• (p(l -  ft)-1 +  77)"= ^ 2  2 (var«ed,t+i 4- 772vartey)t+i) =  2{a2d +  77V 2) (2.26)

where =  {p{ 1 -  ^ ) _1 4- 77) and where cov*(ed>*+i, ey>t+i) =  0.

By a similar token

C O V ,(c t+ i ,  C^+ 1 ) =  ^ J 3COVt ( ( p ^ l  X ( +  t d , t + l  +  Idem Sd.t  +  ? )% ,(+ 1  +  V lp r o d S y . t ) ,

(p V  1 •Et 4“ £d)t+l "4" r)dem^d,t 4“ 776 ,̂4+1 4“ Tffprod^y,t)  J
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Since the shocks are assumed Gaussian and uncorrelated, we can write

COVt(Cf+i, c?+1) =  2^2 3 ( p  ^ 1  X t  +  n fd e m £ d ,t  +  VIp r o d £ y , t ^  ( ^ d  +  y • ( 2 -2 ? )

Using equalities (2.26) and (2.27) in equation (2.23 ) yields

var*sm  =  ( ^ 2 2{°d +  r f t f )  -  (1  ~  h ) - l 2 $ 2 '3( ^  +  <ryT?2)

• (/Otfi Xt +  Tdem̂ d.t +  rjlprod^t) +  2^ ( l  “  h)-1^ 2(<T̂  +

2 ® i  +  V  a y )  ( ( 1  -  h )  ,  „.T. { , l d e m ,S d ,t  +  T i w o d S y , t ) \  f  ^
=  (I T f t )  j — +  (1  -  ¥a j  (2.28)

where := =  h / ( p +  (1 — h)rj). Similarly, plugging (2.26) and (2.27)

into equation (2.24) and denoting ^ 4  := ^ 1^ 2 2 =  (M l — M ) / ( / 9 +  M l — M ) 2 

we can write down

, x ^4 (o^+T/Vy)
COVt(Q+i,St+i) =  ----- ( l - h ) -----

• ^ 1  -  h + (1  -  p %f3)xt -  ^ 7 demSd,t + rnprod£ytt^ ̂  • (2-29)

We can then use equations (2.26), (2.28) and (2.29) in (2 .2 1 ) to obtain

P  ( ? d ~ ^ ~ W  G 'y )  f  1 ‘I H i ^ p  +  77)  ^  2 h '( 7 d e m ^ d ,t  d" f } ^ f p r o d ^ y , t )  \

Wim!+1 =  (p +  , (i  - h ) f  I 1 +  (P + n d - h ) ) X t ------------ ( p + « i - h ) )  )  ■

Recalling the fact that x t =  oct+i and so, xt =  c*(l — <j>) +  <j>xt we get 

Pt ( ? i  +  n l<*l) / ,  2H fcm 2% Vod
Var‘m,+1 (p +  *j ( l - f t ) )2 V  (p +  iK l- f t ) ) '**  (/> +  7?( l— h)) '̂1

2h(p +  r j ) ( \ -4>)  2  h{p +  ri)<j> \

(/» +  v ( l - h ) )  (/> +  * / ( ! - * ) )  * / '

Recalling the definition of c* - equation (2.25)

c* =  (p (l -  h) _1 +  77) —1 (/o(l -  h)_1/ixt +  edtt +  7ysyit) (2.30)
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and plugging it into the expression derived above yields, after simplifying

  2 h ( ( l - h ) ( p  +  n)(4> — 1) +  (p +  »z(l -  fc)b *m ) _
valim,+1 =  1 1 ------------------------ {p + r , { l - h ) f --------------------- ^

2hr)((l -  h)(p +  r?)(0 -  1) +  (p +  r/(l -  hfliprod)
£y,t{p + r ] { l - h ) y

(p + r } { l - h ) ) 2 (p + r ] ( l - h ) ) r

which is the expression reported in the body of the text.16

, 2h(p +  77)((1 — h)rj +  p(l — h{<j> — 1)))  ̂ p2(a% + r)2t f )
H---------7— :—  rTTo---------------------------------- xt

T he covariance term  covt(ra*+i, A e ^ t + i )

In line with the reasoning of the previous section, we can write

/  a  \  (1 ^ ( 1  —  h . ) ( / 9  H- 7 7 ) ( 1  — <̂ >)
cov((mt+i, Ae^t+i) =  - {p +  r>{1_ h)) ( l  +  {p +  r]( l - h W  e*

h ( l - h ) ( p  + r}){l-<f>)r] +  +  ^  +  - 0 )  “ # ) )  \
(p + n{l-h)Y '£y’t+ (p + v(l-hW '**)'

Note that the coefficients on £y,t and are negative, so the covariance term 
always moves countercyclically. The coefficient multiplying x t is negative when 
p2( l  — <j>) > 770, but given that x t is predetermined, this would not affect the 

countercyclicality of the covariance term.17

16Note that, taking the limit of this expression as rj —► + 0 0  gives

_ _  P2r f  , 2 hp2(l -  (j) -  Jprod)^  , 2 hp2a l  _
vartm t+i -  ^  ^  ey,t +  ^  _  h^ x t .

17Note that, again computing the limit of the coefficients as 77 —> + 0 0  we get

 ̂ a_ \ ( l ( . 2, P2° l \ , hP2(Tv _ , hP2(Tl( l ~ 0 “ 'Tprod) _ ^
rt Et (mt+1 Aedit+i) y 2 (ad+ (1 -  h)2  ̂ {1 -  h)3 ’X ( l ~ h ) 3 ^ ’V '
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater h)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater i|»)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater y_prod)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater y_dem)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater p)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater o_prod)
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Panel A: Impulse response of the difference in natural rates (1st - 3rd) 
following a positive productivity shock (darker lines = greater o_dem)
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Table 2.1: Parameter Values Used in the Quantitative Analysis
Parameter Value Notes:

P 0.99 To yield a 4% steady-state real interest rate
V 6 As in Canzoneri et al. (2007)
P 2.37 Following Campbell and Cochrane (1999)
a 0 .6 6 Length of average price contract 3 quarters
a 10 Following Benigno and Woodford (2005)
h 0.85 Juillard et al. (2006)

and Banerjee and Batini (2003)
<f> 0.97 Following Campbell and Cochrane (1999)
'ydem 0.9 Following Smets and Wouters (2003)
'yprod 0.997 Following Smets and Wouters (2007)
° V ° l 3.5 Following Smets and Wouters (2003)
& Ac 0.75% UK ONS data from 1976 Q1 to 2007 Q3

Table 2.2: Policy Exercise Parameters
Moment Linear Incorporating precationary saving 

model Benchmark p =  1 &« =  0.1 &0 ac=  1.5%
<77T 0 0.1% 0.14% 0.2% 0 .2 %

Gygap 0 0.1% 0.24% 0.1% 0.4%



Chapter 3

A sset Prices Under Persistent 
H abits and Arbitrary Shocks to  
Consum ption Growth

3.1 Introduction

The idea that habits affect human behavior was already present in the writings 
of Smith (1776) (‘customary’ consumption) and Marshall (1898). The notion 
was formalized by Pigou (1903) and resurrected in the works of Duesenberry 
(1949) and more recently Muellbauer (1988), Abel (1990) and Constantinides 
(1990). With time, the original habit concept became referred to as ‘internal’ to 
distinguish it from reference levels in utility ‘external’ to the consumer -  such as 
aggregate consumption in Gali’s (1994) ‘keeping-up-with-the-Joneses’ specifica­
tion. Habits entered utility either in differences (Constantinides, 1990; Heaton, 
1995) or ratios (Abel, 1990). ‘Persistent’ extensions -  in which the entire his­
tory of aggregate consumption determined current habits -  were also considered 
(Campbell and Cochrane, 1999; Abel, 2008). Our first contribution is to provide 
analytical, closed-form solutions for the equity price-dividend ratio and equity 
risk premium in a difference-form, external habit model with persistent habits 
and under arbitrary shocks to auto-correlated consumption growth. 1 We also 
derive restrictions on shock support, which ensure that utility remains well-

1We assume a Constant Relative Risk Aversion (CRRA) utility function. Alessie and 
Lusardi (1997) have shown how to solve the additive model when instantaneous utility is of 
the Constant Absolute Risk Aversion (CARA) form.



3.1. INTRODUCTION 58

defined, and characterize necessary and sufficient conditions for unconditional 
fc-th order moments of the price dividend ratio to be finite.

Habit-based specifications are prevalent, which is our main reason for focusing 
on them. For example, in finance habits have been used to ‘solve’ the equity 
premium puzzle and match expected stock return volatility (Constantinides, 
1990; Campbell and Cochrane, 1999; Tallarini and Zhang, 2005).2 In the foreign 
exchange literature (Verdelhan, 2009; De Paoli and Sondergaard, 2009) habits 
were utilized to address the Fama puzzle and to generate a countercyclical FX 
premium, while Wachter (2006) and Gallmeyer et al. (2009) used them to match 
yield curve properties. Ljungqvist and Uhlig (2000) and Fuhrer (2000) discussed 
the implications of habits for tax and monetary policy and Christiano et al. 
(2005) and Smets and Wouters (2007) showed that they play an important 
role in large scale macroeconomic models.3 Carroll et al. (2000) proposed that 
habits may explain why high growth causes saving, while Polkovnichenko (2007), 
Jaccard (2007) and Uhlig (2007) analyzed the interplay of habits and labor 
market risks.

We proceed within the external difference-form habit framework, which lies at 
the heart of the Campbell and Cochrane (1999) model (inspect, for example, 
Equation (1) p. 208) and which, unlike its multiplicative habit counterparts 
(Carroll, 2 0 0 0 ; Collard et al., 2006; Abel, 2008), generates time-varying risk 
aversion and risk premia. Importantly -  relative to Campbell and Cochrane 
(1999) -  we assume a simpler, linear specification for X t, one which is governed 
by a single parameter (j> controlling habit persistence (see also Equations (3.3) 
and (3.5)). The relative parsimony of our habit setup implies that unbounded 
shocks -  e.g. drawn from the normal distribution -  could drive current con­
sumption below the reference level h X t, pushing utility into regions where it is 
ill-defined.4 This is one reason why we explicitly consider non-Gaussian shock

2 Mehra and Prescott (1985) demonstrated that even standard CRRA utility functions can 
generate realistic equity risk premia if the coefficient of risk aversion is counterfactually high 
(>  10). Since Kocherlakota (1996) shows that Constantinides’ (1990) specification implies 
very high levels of risk aversion and given that Campbell and Cochrane (1999) admit to that 
as well, we thus use inverted commas around the word solve. See also Mehra and Prescott 
(2004) for a good discussion.

3Boldrin et al. (2001) and Uhlig (2007) demonstrate, however, that simply assuming habits 
in a production economy does little to generate plausible asset price dynamics because agents 
have many opportunities of smoothing consumption risks.

4There are at least two ways of ensuring that the representative agents’ utility function 
is always well-defined. One, pursued by Campbell and Cochrane (1999), is to hard-wire 
the constraint that habits can never exceed consumption directly into the definition of Xt.  
The alternative -  which we follow -  is to characterize and impose constraints on the white-
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distributions. Another is to establish contact with the recently resurgent ‘rare 
events’ literature (Rietz, 1988; Barro, 2006; Barro and Ursua, 2008; Barro et al., 
2009), which clearly demonstrated the important quantitative role which non- 
normalities can play.5

The final dimension along which our setup expands on popular alternatives, 
is that it allows for persistence in consumption growth -  nesting the ‘finance’ 
random-walk assumption. We do that for three main reasons. First, a number 
of studies -  see e.g. Carroll et al. (2008) and the references therein -  suggest 
that the growth rate of consumption is, in fact, serially correlated. Second, 
allowing for two sources of persistence makes the model much more likely to 
avoid the pitfalls discussed in Campbell and Cochrane (2000) -  though at the 
cost of a larger state vector. Finally, and related to the previous point, allowing 
for persistence in consumption growth makes the asset pricing problem more 
interesting and harder to solve.

To put our results in perspective, note that following the seminal contribution 
of Lucas (1978) many authors -  e.g. Labadie (1989), Burnside (1998), Tsionas 
(2003) or Bidarkota and McCulloch (2003) -  have analytically characterized the 
behavior of asset prices under different assumptions on the dividend process. 
The introduction of habits led to a renewed interest in closed-form formulae -  
as exemplified by contributions of Carroll (2 0 0 0 ), Collard et al. (2006) or Abel 
(2008). This paper fills a gap in the literature, however, as existing analytical 
work mainly focuses on the ‘ratio’ specification of Abel (1990). The proofs build 
on and extend those in Burnside (1998) and Tsionas (2003). In particular, we 
obtain their results by respectively setting the weight on habits h to zero and re­
stricting shocks to be normal. Notably, we consider persistent extensions of both 
the ‘catching-up’ and ‘keeping-up with the Joneses’ (Gali, 1994) formulations.

The second contribution of this paper is to use the exact, closed-form solutions to 
investigate the ability of the underlying model -  possibly driven by non-normal 
shocks -  to simultaneously match consumption growth, bond return and equity 
return data in the UK and US. Since Campbell and Cochrane (1999) showed

noise process driving consumption such that C* >  hXt  with probability one. We show that 
under the assumption that consumption growth and habits are drawn from their stationary 
distributions, this implies that shocks have to be appropriately bounded from below when 
consumption growth is positively auto-correlated and bounded both from below and above 
when consumption growth is negatively auto-correlated.

5 ‘Gaussianity’ might not be a good assumption also due to cross-sectional violations of the 
Lindeberg-Levy condition often invoked to justify it.
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that their model is capable of doing precisely that -  even under random-walk 
log-consumption -  the rationale for conducting such an exercise might not seem 
particularly clear. We reiterate, however, that our specification is much more 
tightly parameterized than that of Campbell and Cochrane (1999). While this 
parsimony has advantages -  e.g. it allows us to derive the formulae and makes it 
simple to embed such habit processes in standard, easily-solvable DSGE models 
-  it is also associated with costs. One such cost has already been noted -  the 
shock distributions we use have to be bounded from below. Given the importance 
of disasters (Rietz, 1988; Barro, 2006), limiting downside risks this way could 
adversely affect the fit of the model. Furthermore, our habit specification, while 
persistent, is much less ‘nonlinear’ than that of Campbell and Cochrane (1999) 
potentially compromising the models’ ability to generate large average premia. 
Finally, and unlike Campbell and Cochrane (1999), we have no way of ensuring 
that precautionary savings exactly offset ‘intertemporal smoothing’ -  possibly 
generating volatile risk-free rates.6

Since under difference-form external habits, shocks to consumption growth can­
not be normal, we need to take a stand on what alternative distribution to 
assume. We use this as an opportunity to compare the performance of models 
based on several simple, bounded shock distributions. To create a level playing 
field, we impose the assumption that shocks are mean zero and choose distribu­
tions with continuous densities parameterized by a single coefficient.7 Because 
the normal distribution obtains as the limit of sums of i.i.d. random variables 
we chose to scrutinize the performance of normed sums of independent uniform 
shocks (Irwin-Hall distributions, after Irwin (1927) and Hall (1927)) and normed 
sums of independent exponential random variables (gamma distributions). By 
increasing the number of summed components we can thus reduce the ‘distance’ 
from the standard Gaussian benchmark. We also considered two bimodal dis­
tributions -  the quadratic and inverse triangular -  to investigate the impact of 
putting a lot of probability mass in the ‘tails’ of the distribution.

In order to estimate the model we used a two-stage procedure. In the first step 
we estimated coefficients of the consumption growth process using maximum 
likelihood and exploiting the distributional assumptions.8 In the second step we

6Many papers -  including ones allegedly successful at matching data e.g. Boldrin et al. 
(2 0 0 1 ) -  conveniently overlook this aspect.

7In all the cases there is a ‘1- 1 ’ mapping between that coefficient and shock variance.
8Since sequences of consumption growth map 1 -1  into asset prices, it is impossible to 

estimate the entire model by maximum likelihood as the joint distribution of consumption,
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found all four remaining parameters using GMM, choosing the same weighing 
matrix as Boldrin et al. (2001) . 9 The only restrictions we imposed were those 
ensuring that utility is well-defined and guaranteeing that the resulting model 
is stable and generates finite unconditional moments of the price dividend ratio.

Our first finding may appear unsurprising. Trying to use shock distributions 
which differ too much from the Gaussian produces a consumption growth pro­
cess which looks nothing like the data. This may happen when the shocks are 
bimodal, or because their probability mass is distributed either very asymmet­
rically or too ‘uniformly’ around the mean. Accordingly, while such models are 
capable of producing big and volatile risk premia, we believe this is not a par­
ticularly fruitful research avenue. To an extent, these conclusions also apply to 
our estimated proxy of a ‘rare disaster’ specification. However hard we tried, 
and despite the use of several alternative data sets, the estimates always said 
‘no thanks’ (yielding support to the findings of Julliard and Ghosh (2009)).

The shock distributions that yield ML estimates of mean annual consumption 
growth within 20bp of the sample mean are limited to Irwin Hall and gamma 
distributions.10, 11 All the asset pricing models estimated by GMM conditional 
on these consumption specifications (the formulae rely on the Laplace transform 
of the underlying shocks) can match the level of mean bond returns and mean 
equity returns almost exactly (up to lObp). Importantly, however -  and de­
spite too volatile underlying consumption growth -  all of them do not generate 
sufficiently volatile equity returns. They also tend to overshoot bond return 
volatility -  particularly in the models estimated on US data. One finding which 
is of interest, and robust to the exact specification, is that the standard devia­
tion of the equity risk premium is around two orders of magnitude smaller than 
that of excess returns (the means are roughly in line).

The mechanisms which the most successful specifications rely on to fit asset 
pricing data seem sample-specific. In particular, estimates based on UK data 
show very low values of habit size (no greater than 0.25 and typically smaller) 
and small values of habit persistence (<  0.3). To generate the large UK equity

bond returns and equity returns would be singular.
9In particular, we minimized the deviation of predicted mean bond and equity returns, 

weighted by their variances, from sample means.
10To generate sufficient density curvature, however, at least five uniform random variables 

are necessary -  otherwise the estimates of mean consumption growth are poor.
11Notably, these tend to imply a more volatile consumption process than the one found in 

the data, though that volatility seems to converge to the sample average as the number of 
summed random variables increases.
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premium, the models favor the well-trodden path of very high risk aversion -  
greater than ten and typically around 15 -  and high values of f3 -  frequently in 
excess of 1 (Kocherlakota (1996) provides a lucid account of why the combination 
works). A similar combination also works for some of the models estimated on 
US data. There however, two of the models based on gamma distributions work 
better when risk aversion and habit persistence are moderate ( 3 - 9  and 0.44 -
0.49 respectively) and when they are combined with a high weight of habits in 
the utility function (0.5 -  0.7).

To summarize, our results highlight tensions which exist when one tries to simul­
taneously match the properties of consumption growth, bond returns and eq­
uity returns. While the habit specification proposed by Campbell and Cochrane 
(1999) is capable of cutting the umbilical cord linking all three, the same can­
not be achieved with the more parsimonious model which this papers solves in 
closed-form. We document the dimensions in which the model fails and argue 
that more exotic shock distributions are unlikely to solve the problems outlined 
here.

In the remainder, we set up the model, characterize restrictions on the underlying 
shocks, which ensure that the problem is well-defined, and solve it. We come up 
with additional restrictions guaranteeing that the price dividend ratio remains 
finite and that all of its unconditional moments exist. We estimate the model 
using asset pricing formulae derived and subject to the restrictions characterized. 
We present the results of the estimation and conclude.

3.2 The A sset Pricing M odel

We assume there is a single agent who optimally chooses contingency plans for 
consumption C and investment in bonds B and equities S so as to maximize 
the stream of expected discounted utility

, 3 , ,m a x  . ,  ,
Ct, St, Bt 1 — 7

i.t. Ct + P?Bt + I f  St =  St-i { I f  + Dt) + Bt_! (3.2)

where X  stands for the reference ‘habit’ level, which the agent takes as inde­
pendent of her choices -  hence habits are ‘external’, Peq denotes the price of an
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equity share which entitles its owner to the stream of dividends D  while P b is 
the price of a zero-coupon bond paying a unit of consumption in the next period. 
The habit share h lies in [0,1], while the subjective discount factor (5 and the 
coefficient 7  are non-negative. Setting h =  0 reduces equation (3.1) to a time- 
separable, no-habit specification analyzed in Burnside (1998), Bidarkota and 
McCulloch (2003) and Tsionas (2003), while 7  =  1 corresponds to log-utility.

Since we major on the difference-habit specification, it might be worth addressing 
three claims sometimes leveled against it:

•  that it finds little support in disaggregated data (Heien and Durham, 1991; 
Dynan, 2000; Chen and Ludvigson, 2009);

•  that habit-based solutions of asset pricing puzzles rely on implausibly high 
coefficients of risk aversion (inspect also Footnote (2));

•  and that the difference-form specification can easily lead to infinite negar 
tive utility (Carroll, 2000; Uhlig, 2007).

On the first two points, note that Guvenen (2003) and Garleanu and Panageas 
(2008) present heterogenous agent models which do not rely on habit in the 
utility but behave as if aggregate data came from a habit model. Accordingly -  
even if habits are not a feature of micro data -  the mechanism can still provide a 
good description of aggregate dynamics.12 As to the final point, the conditions 
we subsequently derive explicitly rule such problems out.

In what follows, in line with much of the equity premium literature, we specialize 
by assuming that the equity share pays out consumption as dividends (V t: Dt = 
C* ) .13 Furthermore, defining x t to be the continuously compounded growth rate 
of consumption and zt to be the log-ratio of habits to consumption, i.e.

%t+i : = log{Ct+i/Ct),  Zt+i := log(At+i/C*+i) (3-3)

12These models also suggest that there might be no simple mapping from individual agents’ 
coefficients of risk aversion to that of the representative consumer -  and so high risk aversion 
in aggregate might be less damning than previously thought.

13 Defining equities this way eliminates none of the real difficulties inherent in asset pricing. 
Notably, under the standard assumptions that equities are the only assets in non-zero net 
supply (implying B  =  0) and that equity markets clear ( 5 = 1 ) ,  the identity Ct =  D t emerges 
straight from the aggregate budget constraint -  i.e. equation (3.2).
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we shall analyze asset prices under the assumption that x t follows

x t = (1 -  p)p +  px t-1  +  £t (3.4)

where £ is a mean zero, i.i.d. process. 14 As discussed, we focus on the AR(1 ) 
specification because it is typically used in the literature (Burnside, 1998; Col- 
lard et al., 2006), it appears in line with recent empirical estimates (Carroll 
et al., 2008) and nests the most popular alternative of uncorrelated consump­
tion growth (Constantinides, 1990; Campbell and Cochrane, 1999).

To proceed, we need to make some assumptions about the dynamics of habits 
X t. We work under two alternative specifications -  the default of ‘catching-up 
with the Joneses’ (Gali, 1994)

which, in terms of x t and zt , simplifies to

Zt+ 1  =  (1 -  <fi)zt -  Xt + 1 (3.5)

and the alternative of ‘keeping-up with the Joneses’

X t+1 := => zt+1 = (1 -  <f>) (zt -  *t+1) . (3.6)

By setting (f> to one in the default specification (3.5), habits become dependant 
only on last period’s level of consumption (as in Smets and Wouters (2007) or 
Uhlig (2007)).15 For values of <f> different from one, habits are an infinite weighted 
average of past levels of consumption with (1  — (f>) denoting the geometrically 
decaying weight put on past values of consumption

+oo

lo g (* m ) =  < ^ ( 1 -  *)‘ log(Ct_0.
i= 0

14We stress that the assumption of mean zero noise £ is introduced merely to give the 
parameter /z a clear interpretation -  that of mean consumption growth. However, all the 
subsequent formulae remain well-defined if the mean of £ ^  0  and sometimes also if the mean 
of £ does not exist.

15Though in both of these papers utility also depends on leisure -  an extension which we 
don’t analyze.
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3.3 Conditions for W ell-Defined U tility

As discussed in the introduction, one complication related to the difference-form 
habit specification -  stressed (though not addressed) e.g. by Carroll (2000) or 
Uhlig (2007), is that utility can become ill-defined if current consumption falls 
below the reference level h X ,16 Accordingly, the condition which we would like 
to impose is Vt : Ct > h X t . Dividing both sides through by X t and taking 
logs gives an equivalent formulation zt <  — log h. Lemma 1 below is useful, 
because it shows that this condition is equivalent to x t > (f>\ogh. Lemmas 2 
and 3 then characterize conditions on shock support -  for positive and negative 
shock autocorrelation p respectively -  which ensure that consumption growth is 
indeed bounded from below by (j> log h.

Lem m a 1. If [xi, Xh] is invariant for x t , t  G { 0 ,1 ,.. .}  and zi < —Xh/(f>, Zh > 
—Xi/<j> then [zi, Zh] is invariant for Zt, t  G {0 , 1 , . .  . } . 17

P roof o f Lem m a 1 . The proof can be found in the Appendix. □

Lem m a 2. If [&, is invariant for f t, 0 < p < 1 and Xh > p  +  & /( l — p), 
xi < p  +  £ //(l — p) then [xi,Xh] is invariant for (x t).

P roof o f Lem ma 2 . The proof can be found in the Appendix. □

Importantly, Lemma 2 remains true if (h =  +oo when all intervals [xi, + 0 0 ) such 
that xi <  /x +  ̂ / ( l  — p) are invariant for (xt). This imphes that for non-negative 
shock autocorrelation p, a necessary and sufficient condition for x t > (j> log h is 
ft >  (1  — p)(<t>\ogh — pi) -  i.e. shocks need to be bounded from below.

Lem m a 3. If is invariant for p € [—1,0] and

pxt +  (1 -  p)p + £h<Xh  (3.7)

Xh < x t/p  -  (1 -  p)/pp -  i i /p  (3.8)

then xi < (pin +  ii) /{  1 -  p2) +  PL and [x/, x i/p  -  (1  -  p)/pp  -  ii/p] is invariant 
for xt.

16As alluded to, there are two different ways of addressing this problem. The first -  taken 
for example by Campbell and Cochrane (1999) -  is to allow for Gaussian shocks but modify 
the specification of habits to ensure that they can don’t exceed current consumption. The 
second, followed here, is to retain a simple habit specification -  like the one in (3.5) or (3.6) 
-  but restrict the support of the shock process.

17We shall say that [&,&] is invariant for £t , if V£ (E { 0 ,1 , . . .}  : <  £t <  Ch-
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P roof o f Lem m a 3. The proof can be found in the Appendix. □

From Lemma 1, xi > 01og(h/(l — p)) =>• zt <  — log(h/(l — p). Thus, Lemma 3 
implies that the constraint, which the invariant noise has to satisfy is

01og(/i/(l -  p)) <  {pZh +  6 ) / ( 1 -  P2) +  P- (3 -9)

This means that f  j cannot be minus infinity -  as otherwise the inequality would 
not be satisfied -  and, because p <  0 , the upper bound & cannot be plus 
infinity either. In other words, for a negative p the support of the invariant 
noise distribution has to be bounded from below and above.

We can go further, however, and use equation (3) to derive necessary conditions 
which (i and & satisfy. In particular it has to hold that (set £/ and & to zero)

Zi >(1 -  p2)(01og(h/(l -  P)) -  p ), Zh <(1 -  p2)/p  • (01og(/i/(l -  p)) -  p).

To prove convergence of asset pricing formulae we shall sometimes require slightly 
stronger conditions, namely that Ct >  (h /(  1 — 5))Xt where S is an arbitrarily 
small, positive constant. For reference, we thus introduce assumption (A<S) . 18

( A<5): ^
6  >  ( 1  -  p ) { ^ o g ( h / ( l  -  6) )  -  p )  p  >  0

6  >  (1 -  P 2) { < t > l o g { h / ( { l  - p ) (  1 -  6))) - p )

Zh <  (1 -  P2)/P ’ (01og(h /((l -  p )(l -  $))) -  p)

3.4 A sset Prices and the Equity Risk Prem ium

3.4.1 D efin itions

To avoid ambiguities, we begin by defining several important concepts.

D efinition 1. All conditional expectation operators are always taken with 
respect to the natural filtration T  defined as

: s < t ) .  (3.10)

D efinition 2 . Given T t, there will typically be a continuum of processes satisfy­
ing the first order conditions with respect to asset prices. We shall therefore focus

18Assumption (A5) guarantees that ( l  — /iexp(zj)) 7 is bounded from above by 5- 7 .
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on the (unique) fundamental solution which additionally sates the transversality 
conditions. For example in the case of equation (3.14) the fundamental solution 
vt would need to satisfy

^lirn^Ei ^ JJ /?exp((l -  7 )^+*) j  ( l  -  hexp(zt+s))~'YVt+s =a.s. 0. (3.11)

Definition 3. The Laplace transform of random variable £ is defined as19

£<(A) := E exp (—A£).

Since the only source of uncertainty in our model is £, we shall frequently omit 
the subscript where no ambiguity can arise.

Definition 4. Generalized binomial coefficients ( g ) ,a  e R , n  €. J\f equal

( “ ) := n (c* - * + 1)/* .n  > ( 0 ) := l  (3i2)

Note that all generafized binomial coefficients are strictly positive if a  > 0 .

Definition 5. Definition o fr^q and r\ and the risk premium rpt

b _  1 P ?  + Ct
r. = p b  *> p eQ̂ rpt =Etr?+1 -  rbt+1. (3.13)

3.4.2 T he A sset Pricing Equation and its Fundam ental 
Solutions

Defining the equity share’s price -  consumption ratio vt := P fqIC t and exploiting 
Dt = Ct one can show that the first order condition of problem (3.1) -  (3.2) with 
respect to equity share holdings is (see also Footnote 13 for a brief discussion of 
the Dt =  Ct condition)

PC ( 1 - h x t+1/ c t+1 \ f c t+1 \ Ct+i ( P't q+l + Cw \
Ct t p \  1 - hX t/C t )  \  Ct )  Ct Ct+i )

19Note that there is a simple relationship between the moment generating function M(-) 
referred to in Tsionas (2003) or Collard et al. (2006) and the Laplace transform. In particular, 
M {  A) =  £ €(-A ).
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or, using the definitions in (3.3) express it in terms of vt , zt and x t as

Vt =  Et/?( \  -^ fe e x p ^ iO ' 6Xp((1 _  7) Xt+1) ' (Ut+1 +  (3 1 4 )

Theorem  1. Under assumption (AS) and conditional on the dynamics of 
consumption growth and habits -  as specified in equations (3.4) and (3.5) re­
spectively -  the fundamental solution of equation (3.14) is finite i f  and only if

/?exp((l -  < L  (3*15)

When both (AS) and (3.15) hold, the price dividend ratio Vt is given by

+oo +oo , V
vt =  ( l  -  h exp( ^ ) ) 7 ^ 2  ^ 2  di,n exp ( Zt aijTl +  (x t -  p) b^n +  Ci>n J (3.16)

i= l  n=0 '

where

.= fl(l $)'

h J n
6i-n - p ( ( 7 ) ( i - r f

:= /x ((l -  7 )i -  0)‘)

* . * hn ( l - l + n \  T J r L .

Note that for 7  >  1 the argument at which the Laplace transform C is eval­
uated is positive, and so £(•) is well-defined.20 Additionally, 7  > 1 implies 
that all the terms of series (3.16) defining vt are positive and thus, conditional 
on convergence, good estimates of vt can be obtained by truncating sufficiently 
‘far’.

Corollary 1. For </> — 1, equation (3.5) implies that X t = C t-1. In this simpler

20To see this, note that

X - * ) ~ 4 >0  ( 3 - 1 7 )

as (1—0) >  p in which case both the numerator and the denominator are positive or (1—<j>) < p 
in which case both are negative but the fraction remains positive.
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case, formula (3.16) reduces to

+oo +oo
V t

tuu -row /  \
=  (l -  hexp(zt)) 7EE ditn exp f (xt -  p) bitn +  a tn J (3.18)

z = l n—0 ^

where

W,n ■= P ((1  -  7) ^  — p) “  ^  ' )  Ci'" ~  ^  ~  ™)

d ,n := P ' h ^ ~  1+  » )  f [ C  ( ( 7  -  1 ) - ^  +  V - 1)  ■

Corollary 2 . For p = 0 -  i.e. in the case of i.i.d. consumption growth considered 
e.g. in Campbell and Cochrane (1999) -  equation (3.16) simplifies to

+oo +OQ ✓ \
V t  = ( l  -  h exp( ^ ) ) 7  ^ 2  ^ 2  di,n exp I zt ai>n +  Q,n J (3.19)

z = l n = 0  '  '

where

O i,n  : =  n ( l  —  4>)% Cj,n  : =  f t  ( ( 1  -  -y ) i  -  n - — ^ — — )

di,n := p h *  ( 7 _  l +  n )  T Jr  ((7  -  1) +  n ( l  -  W - 1) .
'  /  j = 1

Corollary 3. The price dividend ratio under the contemporaneous /  ‘keeping- 
up with the Joneses’ habit specification (3.6) is given by
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where

î,7z •—n(l <̂>)

k n  :=p ( ( 1  -  -  n (l -

Ci,n := /^ ( l  -  l ) i  -  n{ 1 -  4>)~— ^  ^  ^

** :=̂ " ( 7 " 'n+ ” ) IT ( (7  - + «(1 - * )  ■

The following theorem characterizes conditions under which unconditional mo­
ments of arbitrary powers of the price-dividend ratio exist.

T heorem  2 . Under assumption (AS) and conditional on the dynamics of 
consumption growth and habits -  as specified in equations (3.4) and (3.5) -  the 
unconditional k-th moment of the price-dividend ratio vt exists i f  and only if

/?exp((l - 7 ) / x) £^^— (3-21)

Note that as 7  converges to 1, the left-hand side converges to (3 <  1. Accordingly, 
we can always find a 7  sufficiently close to 1 such that condition (3.15) is satisfied 
and equity share prices are finite.

Theorem  3. Under the assumptions of Theorem 2, the riskless rate of return 
equals

- 7

+ O O  n f  . \  /  \  \  —I

rbt+i= (1  -  hexp(zt))

’ | ^ ^ 1  eXP ”  P)(X* ~  P) +  (Cl." “  |
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while the equity risk premium is given by

exp(/x +  p(xt -  //)) 
(1  -  hexp(zt))i

+oo +oo

{ r +oo +oo /  \  iEE d i tn GXp ( Z t “I" (̂i /̂) “1“ C i , n )
- i= l n=0 '  ' -

TOO -TOO /  \

l ) -!- ^   ̂ ^   ̂^z,n,m* bi,n,m l) 'G X p  f ^  +  p )  6 ,̂71,771 “I"Q,n,m )
n, m=0 z=l ' '

“H (^t p )  1̂,71 ~t“ Cl,n ) ] }  (3 .2 2 )E di-'
£ (  7  +  n)

Ln=0 ' £ ( 7  +  71 -1 )  

with coefficients defined in Theorem 2 and additionally given by

®i,n,m —(1 4*) (®i,n “I”

M Q>i,n,mCi,n,m — Q,ra ( l - ^ )

 ̂  ̂ ui,n,mOi,n,m —  V i.n  ~7Z 7 7
(1  ~  <P)

di,n,m =ditn( )  ( —At)771.

Corollary 4. When consumption growth is i.i.d . (p =  0) and habits are purely 
a function of last period’s consumption (<j> =  1 ), then the equity risk premium 
rpt is given by

rpt =
exp(p)£(—1 )

(1  -  h e x p ( -x t) p
-+oo

+  (1  -  /l)-7+

■j -  E di'nexp(ci-n)
 ̂ Ln=o

£ ( 7  +  n ) £ ( - l )
C( 7  +  n — 1 )

- l

+°° 1 -i^
^ d i )nexp(ciin)( l- /? e x p (p (l - 7 ) )£ (7 -  I ) ) -1  (3.23)
’7 1 = 0  J  '

Notably, the term in the wiggly brackets is a constant. Since (1 — h)~y > 
0 , therefore a sufficient condition for the equity risk premium to be positive 
(though only in the restricted case of p =  0 , <f> =  1 ) is that the inverse of the 
first square bracket is smaller than the inverse of the second one. Given that 
Vn : di,n, exp(ci)T1) > 0 , therefore this condition follows from

V" : CC ( j+ ^ n -  1 )  ̂ -  (1 - / JexP M 1 “  t ) ) £ (T' “  1))"1-

Inspecting expression (3.23) we see that since

- ^ ( 1  -  far* ) - 7  =  - 7 fte“x( l  -  he~x) <7+1> <  0
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therefore, if the term in the wiggly brackets in (3.23) is positive (i.e. if bonds 
axe perceived to be less risky than equities and the level of the premium is 
positive), then a high contemporaneous realization of x t tends to lower both 
the risk premium and the riskless rate of return. Expressed alternatively, under 
these assumptions, both the interest rate which clears the bond market and the 
equity risk premium are countercyclical.21

3.5 Can the M odel Fit the Data?

In this section we use the exact, closed-form solutions derived above to investi­
gate the ability of the underlying external habit specification -  possibly driven 
by non-normal shocks -  to simultaneously match consumption growth, bond re­
turn and equity return data in the UK and US. We shall also study the evolution 
of model-implied equity risk premia.

There are three main reasons why the empirical performance or our model war­
rants inspection -  even though Campbell and Cochrane (1999) argue that their 
specification -  which is closely related to ours -  is capable of satisfactorily fitting 
the data. To begin with, our setup is much more tightly parameterized. One con­
sequence of this is that the shock processes we rely on to drive consumption have 
to be bounded, with unclear implications for fit (we are decreasing ‘downside’ 
risks in consumption growth). Furthermore, we cannot build as much ‘nonlin­
earity’ into our setup, possibly compromising the models’ ability to generate 
large average premia. Finally, and unlike Campbell and Cochrane (1999), we 
have no way of ensuring that precautionary savings exactly offset ‘intertempo­
ral smoothing’ -  which could detriment fit by generating an excessively volatile 
risk-free rate.

The inability to proceed under the standard assumption of Gaussian shocks to 
consumption growth provides an opportunity to document the impact of alter­

21The magnitude of these shifts would likely be very small, however. To understand why, 
recall an alternative, ‘continuously-compounded’ definition of the risk premium

rpt := Et l o g x) -  log(rt+i) . (3.24)

It is clear, that under this definition the term (1 — hexp(zt )) drops out and the risk premium 
becomes a state-invariant constant -  i.e. in particular it is (counterfactually) acyclical. Since 
both premium definitions are first-order equivalent, therefore terms driving changes in the 
premium are, at best, ‘second-order’ (in interest rate changes). For an analysis of factors 
affecting premium cyclicality in external habit models with persistent habits see also De Paoli 
and Zabczyk (2009).
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native distributional assumptions on model fit. We take that opportunity for 
two main reasons. One is to establish contact with the ‘consumption disaster’ 
literature of (Rietz, 1988; Barro, 2006).22 The second is to verify which as­
sumptions work well, and which don’t -  possibly preventing future research in 
unfruitful directions. Fundamentally, most tensions which arise are due to the 
fact that in our setup consumption growth and asset prices are driven by the 
same shock, and so assumptions made about its distribution have implications 
for both.23 To establish which shock distributions to consider we now undertake 
a preliminary data analysis based solely on consumption growth data.

3.5.1 Prelim inary C onsum ption D ata  A nalysis

In this section we scrutinize UK and US consumption growth data. We utilize 
two sources:

1 . The quarterly and annual data set underlying Campbell and Cochrane 
(1999) containing series for: real consumption (non-durable where avail­
able) as well as bond returns and dividends.24

2. The annual data set used in Barro and Ursua (2008) providing consump­
tion (total) and GDP series.25

We use both quarterly and annual consumption growth data to verify whether 
there aren’t any marked differences in the properties of residuals -  i.e. whether 
some shock distributions fit better at particular frequencies.

We begin by documenting differences between the properties of real, annual, 
per-capita consumption growth series derived from the Campbell and Cochrane 
(1999) and Barro and Ursua (2008) data sets -  plotted in Figures 3.1 and 3.2 
for the US and UK respectively (for the sub-sample for which both sets contain

22 For other papers studying the asset pricing implications of different consumption growth 
and/or utility specifications see also Nason (1988), Kandel and Stambaugh (1989), Kandel 
and Stambaugh (1991), Bansal and Yaron (2004), Tsionas (2005) or Barro et al. (2009).

23We are conscious that the properties of dividends and aggregate consumption differ in the 
data and we follow the standard, though internally inconsistent, procedure of estimating the 
model using both (as done e.g. in Collard et al. (2006)). The discussion in Campbell and 
Cochrane (1999) -  who also proceed along these lines -  provides hope that the distortions 
introduced by this procedure might not be quantitatively significant.

24Address: http://dvn.iq.harvard.edu/dvn/dv/jcampbell. Visited: 19 February 2009.
25Address: http://www.economics.harvard.edu/faculty/barro/datajsets_barro. Visited: 14 

June 2009. File: MacroCrisesSincel870_08_0614.xls.

http://dvn.iq.harvard.edu/dvn/dv/jcampbell
http://www.economics.harvard.edu/faculty/barro/datajsets_barro
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Figure 3.1: Comparison of US Annual Consumption Growth Series Used in 
Barro (2006) and Campbell and Cochrane (1999)

values). In particular the correlation coefficient for the respective series equals 
0.84 in the UK, but only 0.66 in the US (it should be one if both accurately mea­
sured the same variable). While part of the low US correlation is attributable to 
differences in the underlying concept measured (total vs non-durable consump­
tion) the key is a different account of developments before 1930 (in particular, 
if we stripped the pre-1930 data out of the sample, the correlation coefficient 
would increase to 0.91).

Interestingly, and with potentially important asset pricing implications, even 
though the means of the annual US series are almost identical at 1.85% the (point 
estimates of) first order autocorrelations of detrended consumption growth ap­
pear very different and equal —16.2% in the data set of Campbell and Cochrane 
and 7% in the data  set constructed by Barro and Ursua.26 While we leave these 
discrepancies largely unexplained, we note tha t restricting the sample to post- 
W W II data reduces these differences, with the corresponding point estimates 
equal to 27.5% and 13.5% respectively. Since in the asset pricing section we 
shall only use post-W W II quarterly data we believe th a t such discrepancies -  
and the potentially deeper factors they may reflect -  are unlikely to have a 
marked impact on our results. Nonetheless, given the documented differences, 
in this section we shall separately plot histograms based on both series.

26Given the lower correlation coefficient of the two US series, we only focus on US data  in 
this paragraph.
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Figure 3.2: Comparison of UK Annual Consumption Growth Series Used in 
Barro (2006) and Campbell and Cochrane (1999)

We predicate the entire subsequent analysis on the assumption tha t consumption 
growth follows

x t =  (1 — p)p +  pxt_ i +  £t (3-25)

where periods correspond to either quarters or years, depending on the data set 
used. To focus on the shape of the distribution of consumption growth shocks -  
in this section only -  we fix p  and p  equal to their method of moments’ estimates 
-  i.e. sample mean and correlation of detrended growth. Figures 3.3 and 3.4 
plot the time series and empirical density estimates based on the residuals from 
specification 3.25 -  at annual and quarterly frequency respectively.27 Inspecting 
the figures, we see tha t despite differences in the properties of consumption 
growth reported above, the empirical densities of residuals appear reasonably in 
line. The histograms are fairly symmetrical, tend to have one dominant mode 
and moderate amount of mass distributed in the tails.

In the remainder of this paper, in large part motivated by Charts 3.3 and 3.4, we 
consider the shock distributions depicted in Figures 3.5 and 3.6, and summarized 
in Table 3.5.1:

• Exponential (Panel A Figure 3.5): has a single dominant mode, no mass 
in the left tail -  potentially useful in quantifying the asset pricing role of 
the left tail;

27The density estimates are simply the smoothed histograms (based on different numbers of 
underlying ‘bins’ -  to minimize the risk of introducing distortions this way) of the residuals, 
rescaled to ensure the density integrates to one.
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Panel A: US Ann. Cons. Growth Residuals 1870 - 2006 (Barro Ursua 2008)
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Figure 3.3: Overview of Annual Residuals and Empirical Distribution Functions; 
Green Triangles/Red Squares denote residuals in excess of 5%/smaller than —5%



3.5. CAN THE MODEL FIT THE DATA? 77

• Quadratic and Inverse Triangular (Panels B and C Figure 3.5): both 
of these are symmetric but bimodal; could provide a very rough proxy for 
the bimodalities in some of the empirical histograms in Figures 3.3 Panel 
F or 3.4 Panel B;

• Uniform  and Triangular (Panels D and E Figure 3.5): the triangular 
could proxy for Panel D in Figure 3.4 while the uniform -  bar the few 
outliers -  captures some features of Panels E/F in Chart 3.3;

•  Irwin Hall (3) and (5) (Panel F, Figure 3.5 and Panel A, Figure 3.6): 
named after Irwin (1927) and Hall (1927) these are distributions of normed 
sums of three and five uniform random variables respectively; they are 
symmetric, bounded and as the number of summed components increase, 
they approach the normal density;

• Gam m a 2 , 5 and 1 0  (Panels B,C and D, Figure 3.6): these are dis­
tributions of normed sums of 2, 5, and 10 exponential random variables; 
they also converge to the normal as the number of summed components 
increases but they are all somewhat skewed to the left (median < mean) 
in line with Panel B in Chart 3.3;

•  Norm al (Panel E, Figure 3.6): while the Gaussian distribution is not 
bounded it is included here for reference;

•  Rare Events D istribution (Panel F, Figure 3.6): inspired by Panel D 
in Charts 3.3 and 3.4 this is a mixture of two Irwin Hall (5) distributions 
with an explicitly modelled thick left tail;

To create a level playing field, we shall subsequently impose the assumption that 
shocks are mean zero. We also note that all of the distributions reported above 
-  with the exception of the ‘Rare Events’ distribution -  are parameterized by 
a single coefficient (which maps 1-1  into variance), so, in a loose sense, none of 
them will have an unfair ‘fit’ advantage at the estimation stage.
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Panel A: US Quart. Cons. Growth Residuals 1946Q2 - 1996Q4 (CC1999) Panel B: Smoothed Histograms of Residuals in Panel A (darker = fewer bins)
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Figure 3.4: Overview of Quarterly Residuals and Empirical Distributions; Green 
Triangles/Red Squares denote residuals in excess of 5%/smaller than —5%
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Panel A: Exponential Distribution Panel B: Quadratic Distribution
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Figure 3.5: Overview of Distributions Analyzed (I)
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Pinel A: Irwin Hall (5) Distribution Panel B: Gamma 2 Distribution
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Figure 3.6: Overview of Distributions Analyzed (II)



Distribution Density Laplace Transform
Exponential 
Quadratic 

Inv. Triangular 
Uniform 

Triangular

Irwin Hall (3)

Irwin Hall (5)

Gamma 2 
Gamma 5 

Gamma 10 
Normal 

Rare Event

A * exp(—Ax)
(3x2)/(2A3) - 1 [_a>a](x)

|x |/A2 -1[_AjA](x)

1/A • 1 [ - A /2, A /2] (x )
(A — M)/A2 • l[_A)A](x)

(3A +  2x)2/ ( 8 A3)- 1[—3/ 2A, - 1/ 2A] ix )
< (3/(4A) — X2/A3) • 1[—1/ 2A, 1/ 2A ](*)

(3A — 2x)2/(8A3)- 1[ 1/2A, 3 /2 A ](* )

(5A +  2x)4/(384A5)* l {_5/2Xt _ 3/ 2a] ( * )  

— ( —55A4 +  20A3x +  120A2x2 +  80Ax3 +  16x4)/(96A5)- 1 [_3/ 2a , - i / 2A](®) 

(115A4 — 120A2x2 +  48x4)/(192A5)- 1[_1/2A) 1/ 2A]( x )  

(55A4 +  20A3x -  120A2x2 +  80Ax3 -  16x4)/(96A5)- 1( 1/2X, 3/2A](®)

( 5 A — 2x)4/(384A5)- 1j 3/2 a , 5 /2 A ]W

xexp(-x/A)/(r(2)A2) l [0,+oo)(^) 
x4 exp(-x/A)/(r(5)A5) l [0t+oo)(x) 

x9 exp(-x/A)/(r(10) A10) l [0i +oo) (x) 
exp(—x/(2A2)) 

ui9ih(5){x  — /*) +  ( !  — u>i)giH(5)(x  +  m / ( l  ~  w i ) )

(1 +  t f  A) - 1

3(exp(At) exp( A t ) ) ( ^  +  2^ )  3(exp(At) +  exp( A t))^p  
exp(—At)(exp(At) — l )  (l — exp(At) + At(l +  exp(At)))/(A2t2) 

(exp(At/2) — exp(—At/2))/(At) 
exp(—At)(exp(At) — l ) 2/(At) 2

(exp(At/2) — exp(—At/2))3 /(At) 3

(exp(At/2) — exp(—At/2))5 /(At) 5

(1 +  At)- 21[_00> |_/A] (t)
(1 +  A t)~51[_00,1 /A ]W  

(1  +  At)-10^ . ^  i/A](t) 
exp(<x2t2/ 2 )

ui  exp(t//)£j/f5 (t, cf\ ) +  (1  -  t i i )  exp(-t f iui/( l  -  u i))£ /ff5 (t, < j|)

Table 3.1: Overview of Distributions Used; Actual Gamma Distributions Were Centered to Ensure the Mean of £ =  0; For 
Reference, the Variances of All These Distributions Equal Respectively: 1/A2, (3A2)/5, A2/2, A2/12,A2/6, A2/3, 5A2/12, 2A2, 5A2, 
10A2, and A2,u ia f +  (1 — itljcrf +  fi2Ui/(l  — u{)
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3.5.2 E stim ating C onsum ption G rowth Param eters

Now that we have narrowed down our choice of distributions for consumption 
growth to twelve, we discuss the details of the estimation process. In total our 
model has seven free parameters. We divide them into ‘consumption growth’ 
parameters: p, p and a 1 and ‘asset pricing’ parameters: 7 , <j), h and j3. To explic­
itly account for the distributional assumptions we estimate these coefficients by 
maximizing the value of the log-likelihood corresponding to the particular shock 
distributions and observed data.

In principle, having chosen the shock distribution, we could try to estimate all of 
these coefficients simultaneously. This runs into ‘singularity’ problems, however. 
As formula (3.16) makes clear, consumption growth x t and the habit/consumption 
ratio zt uniquely pin down the level of any asset price. Accordingly, unless we 
found a combination of parameters such that the observed equity and bond re­
turns were simultaneously functions of observed consumption growth and the 
habit/consumption ratio, the log-likelihood would be minus infinity. Given that 
in each sample we have more than one hundred consumption growth observa­
tions but only seven parameters, the probability of finding a combination of 
coefficients under which the observed paths of equity and bond returns condi­
tional on the observed path of consumption growth were not probability zero 
events would be zero.

To circumvent this issue we follow a two stage procedure. In the first step we use 
maximum likelihood together with our distributional assumptions to estimate p, 
p and cr2. In the second step we find the remaining parameters using GMM as 
done in Boldrin et al. (2001) and using the closed form solutions for asset prices 
derived earlier to compute implied returns. Notably, due to the dependency 
of asset pricing formulae on the Laplace transforms of the underlying shocks 
to growth (and because the second stage of the estimation is conditional on 
the estimated p, p and a 2) the distribution assumed has an impact during both 
stages of estimation.

Since we don’t know the properties of the log-likelihood corresponding to the 
two data sets -  from now on we only rely on quarterly US (1946 Q2  -  1996 Q4) 
and UK (1970 Q3 -  1996 Q3) consumption and asset pricing data underlying 
Campbell and Cochrane (1999) -  to eliminate the possible impact of starting 
conditions and Matlab’s optimizer performance -  for each distribution and each
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Consumption Parameters Asset Price Parameters
Distribution 1* o2 (*1000) Y 4> h P

1 Exponential 0.41% 1.00 2.21
2 Quadratic -4.52% 0.15 2.28 0.37 0.02 0.78

1 3 Inv. Triangular -2.53% 0.15 1.00 3.85 0.72 0.04 0.91
4 Uniform -1.34% 0.15 1.59 1.24 0.27 0.16 0.98
5 Triangular -0.64% 0.49 0.32 3.52 0.58 0.54 0.97
6 IH 3 -0.23% 0.36 0.23 2.83 0.55 0.56 0.98
7 IH 5 0.13% 0.30 0 16 35.97 0.10 0.33 0.85
8 Gamma 2 0.41% 1.00 1.12
9 Gamma 5 0.42% 0.56 0.49 2.78 0.44 0.70 0.99

10 Gamma 10 0.41% 0.39 0.27 8.62 0.49 0.50 1.00
Normal 0.41% 0.23 0.08: 35.00 0.05 0.35 1.05

12 GMM 0.41% 0.23 0^08

Table 3.2: Overview of Final Parameter Estimates -  US Data Set

Consumption Parameters Asset Price Parameters
Distribution o2 (*1000) .  ,V . 9 h P

| l  Exponential 0.52% 0.07 1.99 5.39 0.11 0.26 0.98
2 Quadratic -9.91% 0.26 7.30 0.00 0.90 0.49 1.06

| 3  Inv. Triangular -3.02% 0.26 1.74 0.00 0.21 0.34 1.00
4 Uniform -0.07% 0.07 2.05 0.00 0.52 0.03 0.98

| 5  Triangular 0.18% 0.01 0.31 41.78 0.11 0.03
6 IH 3 0.36% 0.00 0.26 23.77 0.36 0.07 1.00
7 IH 5 0.46% -0.021| 0.23 34.84 0.02 0.06 1 1 '446.
8 Gamma 2 0.52% 0.04 1.05 16.51 0.13 0.09 0.95
9 Gamma 5 0.52% -0.02!| 0.51 10.72 0.09 0.23 1.01

10 Gamma 10 0.52% -0.04 0.36 14.16 0.35 0.17 1.02
11 Normal 0.52% -0.021 0.22 14.09 0.28 0.25 1.03
12 GMM 0.52% -0.02 0.22

Table 3.3: Overview of Final Parameter Estimates -  UK Data Set

data set we used 1 000 000 different (admissible) random starting points.28 The 
final estimated values of parameters (both ‘consumption growth’ and ‘asset pric­
ing’ discussed subsequently) are reported in Table 3.2 for the US and Table 3.3 
for the UK. Charts 3.7 -  3.12 then plot one step ahead consumption growth 
forecasts derived under different distributional assumptions.

Inspecting the first three columns of Tables 3.2 and 3.3 reveals that imposing dis­
tributional assumptions which differ too much from the empirical ones plotted in 
Charts 3.3 -  3.4 -  either because they are too asymmetric (exponential), bimodal 
(quadratic or inverse triangular) or because the probability mass is distributed 
too ‘uniformly’ (uniform) -  produces estimates which are very counterintuitive.

28We also explicitly restricted p  to lie in the ‘stable’ [—1,1] interval, imposed the assump­
tion that the variance is non-negative and additionally imposed the finite k-th order moment 
condition (3.15).
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For example, if one was convinced that the true shocks are uniform then that 
implies ML estimates of mean quarterly consumption growth of -1.34% in the US 
and -0.07% in the UK -  significantly different from the sample means of 0.41% 
and 0.52%. Effectively what is happening, is that mean consumption growth 
persistence p and variance a 2 are chosen so as to make the resulting consump­
tion growth residuals look as close to ’uniform’ (or ’exponential’ or ’quadratic’) 
as possible. As made clear by the table, sometimes that can lead to massive 
differences from classical method of moment estimates. The full absurdity of 
the resulting estimates is perhaps best seen in Charts 3.7 and 3.10 where the 
one step ahead forecasts corresponding to say the quadratic distribution never 
intersect with the actual data (very high values of in-sample root mean square 
errors (RMSE) and very low values of the log-likelihood reported in Table 3.7 
are other manifestations of the same phenomenon) . 29

29There axe other pathologies associated with the ML estimates. For example, one can 
show formally that the ML estimate of p  corresponding to the exponential distribution is 
always equal to one -  irrespective of the data (or more precisely that the first order condition 
associated with the likelihood maximization problem is always satisfied for p =  1; sometimes 
p  =  1 might be outside the range of admissible parameters -  as is the case in the UK sample; 
our estimates of p based on US data and the Gamma 2 distribution also converge to one 
-  though stop marginally short of it due to the imposed stability constraints -  which could 
reflect a similar issue). Clearly, an integrated 7(1) process for consumption growth implies 
that consumption is I (2) and that asset prices explode (which is also why we don’t estimate 
or report ‘asset pricing’ parameters corresponding to these distributions in Table 3.2).



Annualized Risk Premium
Mean SD

Distribution UK US UK US
1 Exponential 9.63% 0.09%
2 Quadratic -23.47% 1.86% 0.00% 0.00%

0.00% 1.10% 0.00% 0.00%
4 Uniform 6.73% 1.11% 0.00% 0.00%

1 5 Triangular 6.89% 2.37% 0.04% 0.02% 1
6 IH 3 7.16% 2.07% 0.04% 0.01%
7 IH 5 8.19% 5.82% 0.05% 0.46%
8 Gamma 2 8.88% 0.06%
9 Gamma 5 9.40% 7.78% 0.10% 0.12% |

10 Gamma 10 9.31% 7.58% 0.09% 0.07%
11 Normal 8.99% 7.29% 0.12% 0.20%

Annualized Excess Returns
Mean SD

Distribution UK US UK US
■  1 Exponential 8.66% 2.68%

2 Quadratic 14.88% 8.07% 2.12% 0.66%
3 Inv. Triangular 13.70% 8.07% 2.12% 0.37%
4 Uniform 8.66% 8.07% 1.64% 0.80%
5TriM«ular 8.66% 8.07% 1.51% 1.27% |
6 IH 3 8.66% 8.08% 4.94% 2.37%
7 IH 5 8.66% 8.06% 4.83% 14.48%
8 Gamma 2 8.66% 1.85%
9 Gamma 5 8.66% 8.08% 6.18% 2.10% |

10 Gamma 10 8.66% 8.08% 8.60% 2.84%
11 Normal 8.66% 8.09% 10.61% 9.55%
12 Data 8.66% 8.00% 12.07% 7.66%

Annualized Real Bond Returns
Mean SD

Distribution UK 1 us UK US
1.21% 0.73%

2 Quadratic 1.19% -0.38% 0.00% 0.60%
| 3  Inv. Triangular 1.09% -0.38% 0.00% 0.36% |

4 Uniform 1.21% -0.39% 0.00% 0.12%
5 Triangular 1.21% -0.39% 0.82% 1.33%
6 IH 3 1.21% -0.40% 1.31% 0.84%
7IHS 1.21% -0.33% 1.06% 11.21%
8 Gamma 2 1.21% 0.94%

| 9 Gamma 5 1.21% -0.40% 1.04% 2.29%
10 Gamma 10 1.21% -0.40% 2.84% 2.70%
11 Normal 1.21% -0.35% 3.36% 8.83% |
12 Data 1.21% -0.40% 1.21% 0.86%

Annualized Equity Returns
Mean SD

Distribution UK US UK US
1 Exponential 9.87% 3.22%
2 Quadratic 16.08% 7.69% 2.12% 0.66%
3 Inv. Triangular 14.80% 7.69% 2.12% 0.63%
4 Uniform 9.87% 7.69% 1.64% 0.91%

■  5 Triangular 9.87% 7.68% 2.16% 2.00% |
6 IH 3 9.87% 7.68% 4.13% 2.76%

■  7IH5 9.87% 7.73% 3.81% 11.32% 1
8 Gamma 2 9.87% 2.56%

■ ■ ■ ■ ■ ■ ■ ■ 9.87% 7.68% 5.57% 3.82% |
10 Gamma 10 9.87% 7.67% 6.54% 3.86%
11 Normal 9.87% 7.74% 8.56% 9.28%
12 Data 9.87% 7.60% 11.89% 7.75%

Summary Statistics of Consumption Fit
RMSE Likelihood

Distribution UK US UK US
1 Exponential 0.15 0.16 219.37 415.40
2 Quadratic 0.81 0.61 193.52 479.49
3 inv. Triangular 0.31 0.38 203.67 501.57
4 Uniform 0.16 0.25 264.76 539.60
S Triangular 0.15 0.15 285.14 583.43
6 IH 3 0.15 0.14 287.92 610.94
7 IH 5 0.15 0.13 289.85 639.16
8 Gamma 2 0.15 0.16 245.22 482.15
9 Gamma 5 0.15 0.13 268.52 556.03

10 Gamma 10 0.15 0.13 278.30 600.84
11 Normal 0.15 0.12 291.37 671.88
12 GMM 0.15 0.12 - -

Annualized Real Consumption Growth
MEAN SD

Distribution UK US UK US
2.07% 1.86% 4.62%

2 Quadratic -28.96% -15.15% 8.83% 4.83%
3 Inv. Triangular -8.47% -8.34% 4.19% 3.19%
4 Uniform [ -0.11% -4.30% 4.53% 4.04%

■ ■ ■ ■ 0.75% •0.38% 1.77% 2.04%
6 IH 3 | 1.46% 0.09% 1.62% 1.63%
7 IH 5 1.84% 0.92% 1.52% 1.32%
8 Gamma 2 I 2.06% 1.86% 3.23%
9 Gamma 5 | 2.06% 1.77% 2.26% 2.68%

10 Gamma 10 2.06% 1.73% 1.89% 1.78%
P b  Normal 2.06% 1.70% 1.47% 0.89% |

12 Data 2.04% 1.83% 1.49% 0.77%

Table 3.4: Estimated Model Properties -  by Distribution of Shock Driving Consumption Growth
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In light of the above, assuming exponential, quadratic, inverse triangular or 
uniform distributions is unlikely to constitute a fruitful avenue, as the underlying 
consumption process would be very hard to defend. We stress also, that while 
such models may be capable of generating large and volatile risk premia, these 
will, at least in part, reflect unrealistically large consumption growth volatility, 
as the associated consumption growth variance exceeds the GMM estimate by 
more than an order of magnitude (stacking the odds in these models’ favor). 
So, while for completeness (and where available), we report the asset pricing 
properties of these specifications, we do not discuss them in any great detail.

While some of the other distributional assumptions for shocks suffered from re­
lated types of issues -  the triangular and Irwin Hall 3 distributions being border­
line cases -  at least the associated variance estimates were not massively out of 
line, making it instructive to scrutinize these models’ asset pricing performance.

Clearly, however, of the underlying shock distributions considered, the normal 
assumption seems to work best for consumption growth -  as summarized by the 
highest likelihood values (see also Table 3.4) in both the US and UK sample. 
While a Gaussian consumption growth driving process is hard to square with 
the external habit assumption, our results suggest that in terms of obtaining 
the best fit to consumption growth data, the chosen replacement should be 
unimodal and should not be too asymmetric. Finite normed sums of either 
uniform or exponential random variables seem like good alternatives as they are 
bounded and display reasonable properties. Importantly -  and reflecting these 
conclusions -  one probably needs to consider normed sums of at least five to ten 
such variables as fit tends to improve in the number of summed components.
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Figure 3.7: One Step Ahead UK Consumption Growth Forecasts (I)
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Figure 3.9: One Step Ahead UK Consumption Growth Forecasts (III)
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Figure 3.10: One Step Ahead US Consumption Growth Forecasts (I)
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Figure 3.11: One Step Ahead US Consumption Growth Forecasts (II)
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Figure 3.12: One Step Ahead US Consumption Growth Forecasts (III)
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3.5.3 W hat C onsum ption D isasters?

Initially the purpose of this study was to investigate the interplay of habits 
are ‘rare event’ /  ‘consumption disaster’ type mechanisms and to document the 
extent to which moderate amounts of ‘tail-risks’ in consumption growth allow 
one to reduce the role played by habits (while still retaining desirable asset 
pricing properties). Unfortunately, the fact that our analysis was data-driven 
made such an exercise impossible. In short, despite the use of several alternative 
data sets (we tried both the quarterly and annual data sets including those 
underlying Barro and Ursua (2008)) and alternative ways of trying to account 
for ‘rare events’ the estimates always converged to a ‘no-disaster’ consumption 
growth specification.

For example, while it is very difficult to embed elaborate mechanisms like those 
considered in Barro (2006) or Barro et al. (2009) in our framework, one way in 
which we could try to account for disasters is by means of a (bounded) shock 
distribution like that in Figure 3.6, Panel F. There, shocks are assumed to come 
from a mixture of two IH {5) distributions -  with most of the probability mass 
in a large, fairly central hump, and the remainder in a small tail hump -  mean to 
reflect ‘normal’ and ‘disaster’ periods respectively. Clearly, if the weight put on 
the tail is a free parameter that specification nests the simple IH(5) one. For all 
the data sets considered, ML estimates conditional on this distribution robustly 
returned a weight on the small hump of zero.30

Hence, taken at face value, our results in this section yield support to those of 
Julliard and Ghosh (2009) and make it clear why a complex Bayesian framework, 
and rather heroic cross-country priors (Barro et al., 2009) are necessary to find 
evidence of ‘rare events’ in actual data.

3.5.4 E stim ating A sset Pricing Param eters

Conditional on the estimates of p, p and a2 we now estimated values of (7 , <f), h 
and /?). In particular, denoting time-series of actual bond and equity returns 
by r6, req and those implied by the model conditional on the actual time-series 
of consumption growth (the whole path matters when habits are persistent) 
by rb('y,(f),h, (3',x) and req(j ,  </>, h, (3\ x) we followed Boldrin et al. (2001) and

30This could reflect the fact that the data are fairly symmetric and the bimodal ‘rare event’ 
distribution is not -  something we have not pursued further.
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minimized

min M (7 ,</>,M) • (vAR([r6,rej]))~l • M (7 ><A,M)'

where

M (7 , <j), h, /?) =  [E(r6 -  r6(7 , 0, h, /?; x )) , E(re<? -  re<7(7 , 0, /t,/?; x))]

and where the hatted expectation operator and variance simply denote their 
empirical equivalents. In short, we seek for (7 , (j>, h and /?) which ensure that 
our models match the mean level of excess returns and penalize deviations by 
taking into account differences in the variances of bond and equity returns (i.e. 
deviations in bond returns are penalized more heavily).

To compute bond and equity returns corresponding to (7 , (f>, h, (3) we used the 
exact formulae derived in previous sections -  i.e. those characterized in Theorem 
1 and Theorem 3. Two issues arose. The first one was how to compute the (log) 
habit /  consumption ratio. Here we simply assumed that at the start of the 
sample zt is at the steady state and allowed five periods of data (which were 
subsequently truncated) for zt to converge to its ‘true’ level. The second issue 
was how to truncate the nested infinite sums reported in Theorems 1 and 3. 
The problem we faced was that the convergence criteria might depend on both 
the distribution used, sample data and the unknown parameters which we were 
trying to find. We experimented with many different cut-off criteria -  inspecting 
the speed accuracy trade-off before settling on a rule-of-thumb that work well for 
all the distributions considered -  i.e. to compute each equity return, we summed 
1 500 000 terms (i = 3000, n  =  500 in the asset pricing formulae presented) . 31 

Again, given the unknown properties of the minimized function and Matlab’s 
optimizer we randomly choose 500 000 starting points for each distribution and 
sample.

The estimated values of coefficients found using this procedure are reported in 
Tables 3.2 and 3.3 for the US and UK respectively. The corresponding properties 
of model implied bond prices, equity prices and risk premia (based on simulated 
samples of 5 000 000 points) can be found in Table 3.4 and the respective series 
implied by various distributions and sets of estimated parameters are plotted

31 The only restrictions we imposed were those ensuring that utility is well-defined and 
guaranteeing that the resulting model is stable and generates finite unconditional moments of 
the price dividend ratio.
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in Figures 3.13 -  3.24 in the Appendix. Tables 3.5 -  3.9 also in the Appendix 
zoom in on asset pricing moments, while Figures 3.25 -  3.37 compare the joint 
distributions of equity returns and consumption growth implied by the model 
to that found in the data.

Inspecting these results, we see that all the asset pricing models estimated con­
ditional on plausible consumption growth processes can match the level of mean 
bond returns and mean equity returns almost exactly (up to lObp). Importantly, 
however -  and despite too volatile underlying consumption growth -  all of them 
do not generate sufficiently volatile equity returns and tend to undershoot bond 
return volatility -  particularly in the models estimated on US data.32 One find­
ing which is of interest, and robust to the exact specification, is that the standard 
deviation of the equity risk premium is around two orders of magnitude smaller 
than that of excess returns (the means are roughly in line).

The mechanisms which the most successful specifications rely on to fit asset 
pricing data seem sample-specific. In particular, estimates based on UK data 
show very low values of habit size (no-greater than 0.25 and typically smaller) 
and small values of habit persistence (< 0.3). To generate the large UK equity 
premium, the models favor the well-trodden path of very high risk aversion -  
greater than ten and typically around 15 -  and high values of /? -  frequently in 
excess of 1 (Kocherlakota (1996) provides a lucid account of why the combination 
works). A similar combination also works for some of the models estimated on 
US data. There however, two of the models based on gamma distributions work 
better when risk aversion and habit persistence are moderate ( 3 - 9  and 0.44 -
0.49 respectively) and when they are combined with a high weight of habits in 
the utility function (0.5 -  0.7).

Summing all this information up: while the equity premium puzzle can be ac­
counted for within this framework, this is often accomplished by relying on high 
risk aversion and high values of the discount factor (3. The very high values of 
habit size /  persistence crucial for the story of Campbell and Cochrane (1999) to 
work, do not seem to endogenously emerge from the estimation process -  most 
likely due to the excessive risk-free rate volatility they would imply. In fact, 
our estimates point to the tension between matching equity return volatility -  
which our models typically undershoot, despite consumption growth volatility

32The model implied Sharpe ratios were below those found in the data while at the same 
time, price dividend ratios were more volatile. In sample, higher values of distribution skew 
were associated with higher Sharpe ratio volatility.
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often in excess of that in the data -  and matching bond return volatility which 
they frequently overshoot.

3.6 Conclusions

In this paper we derive closed-form solutions for the equity price-dividend ra­
tio and equity risk-premium in a model in which agents have difference-form 
external habits. The setup allows for arbitrary shock distributions, correlated 
consumption growth and nests extensions of the keeping-up and catching-up 
with the Joneses specifications. We use the exact solutions to study the ability 
of alternative estimated models -  including one capturing rare events -  to si­
multaneously account for consumption, equity and bond returns in the UK and 
US.

Our results highlight tensions which exist when one tries to simultaneously 
match the properties of consumption growth, bond returns and equity returns. 
While the habit specification proposed by Campbell and Cochrane (1999) is ca­
pable of cutting the umbilical-cord finking all three, the same cannot be achieved 
with the more parsimonious model which this papers solves in closed-form. We 
document the dimensions in which the model fails and argue that more exotic 
shock distributions are unlikely to solve the problems outlined here. However, 
explicitly accounting for differences between consumption and dividends would 
provide for an interesting extension and could potentially help tackle some of 
the problems highlighted here.
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3.A A ppendix

Proof o f Lem ma 1. Assume that z t G [zi,Zh], then Zt+i =  (1 — <j>)zt — Xt+i < 
(1 -  <j))zh -  xi and z t+1 > (1 -  <f>)zi -  x h. But

(1 -  (f>)zh -  xi < z h, (1 -  <j>)zi -  x h <zi (3.26)

and therefore zi < zt+1 < Zh as required. To show that both inequalities in 
(3.26) hold, note that

(1 -  <f))zh -  xi <  zh <& -  <j)Zh <  xi O  zh >

(1 -  (f>)zi -  Xh >  Zl &  -  <j>Zl >  Xh zi <

P roof o f Lem ma 2. If x t G [x/,x/J, then

Xt+l <pXh  +  (1 -  p )p  +  (hi X t+ 1 > p x t +  (1 -  p)fJL +  ( t .

But p x h + ( l - p ) / i  + ( h < x h & x h >fjL + ( h/{  1 -  p) and pxt +  (1 -  p) p +  (i >
x i & x i  <  p  +  ( i / ( l  - p ) .  ■
Proof o f Lemma 3. Combining equations (3.7) -  (3.8) and simplifying gives 
the desired inequality: xi < (p(h +  £z)/(l — p2) +  P>- To prove that [xi,xi/p — 
(1  — p)/pp — (i/p] is invariant for X*, note that if xi < Xt < Xh then xt+i = 
pxt + { 1 -  p)p +  ( t+i < pXh +  (1 -  p)p + (h < %h by assumption. Similarly, we 
show that Xt+i > xi if x t G [x/, x^], which completes the proof. ■

Proof o f Theorem  1. Iterating forward on equation (3.14) -  i.e. substituting 
in for vt+i which satisfies a similar equation, we obtain

• e x p ( ( l  -  7 ) x i+ 1 )  • E t + i ( | _ ^ ^ p | ^ | )  • e x p ( ( l  -  7 )  * 1+ 2 ) (1  +  U t+2 ) )  

+Et/?2( \  -^ fe e x p ^ f ) ’e x p ^ 1 “  'l' ) ( a:*+1 + I i + 2) ) ( 1 +  Vt+2)

XJ

Xh.
<!>



3.A. APPENDIX 94

where we have relied on the fact that for any random variable Y

“ p t a - T )  * » .)

- { ? ■  (V -w ;;1)" • -  ’>*•«> ■ >’} I*-27)

and then used the law of iterated expectations to replace ’E tE‘t + i Y  =  E tY . We 
can repeat this procedure and, invoking the transversality condition, write

- - 2  )
%— X J  —  1

+oo i
= ( l  -  hexp(zt))7 ^ E t/ f  ( l  -  hexp ( ^ + i ) ) “ 7 • exp((l -  7 ) ^ 2^ ) .  (3.28)

i—l j—1

We first investigate when the infinite series in (3.28) converges. Since x  satis­
fies (3.4) therefore, as in Burnside (1998), we can express x t+s in terms of the 
‘primitive’ shocks £ and the t —measurable variable x t as

%t+s ~  P  =  6 + s  +  P€t+s- 1 +  • • • +  PS 1 6 + 1  +  P9 (Xt ~  P)

which implies that

/ \ p { \  — /?*)2 ^ X t+j = l f l +  (xt -

+  (1 -  r t_1 (6 + i(l — pl) +  6 +2 (1  -  p%~1) +  . . .  +  6 +»(1 — P))- (3.29) 

Plugging this into equation (3.28) we obtain that

vt = (1  -  hexp(z*))7 ^ / f  exp^(l - 7 ) • (ip +  (xt -  p)

• Et(l -  hexp(zw ))"7exp^|^— ^ |( 6 + i(l -  p x) +  • • • + 6 +i(l ~  P)^j- 

Observe that

3 6 :  1 <  (1 — h exp(zt+i) ) - 7  <  6~7, i = 0 ,1 ,2 , . . .  (3.30)

where the first inequality is trivially true and the second holds as a consequence
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of assumption (A£). Accordingly, denoting

JC(xu zt) := (1  -  /iexp(zi))7 ^  / f  exp^(l - 7 ) • (i/x +  (xt -

E t e x p ( & + i ( l  — P%) +  • • • +  £ t+ i(  1 — . (3.31)

we can exploit the observation that all terms in the infinite sum in (3.31) are 
non-negative and then use (3.30) to write

JC(xt, zt) < v t < 6  7 • JC(xti zt). (3.32)

Since all £*+/s are identically distributed and independent of T t , we can replace 
the conditional expectation operator in (3.31) with the unconditional one and 
then substitute in for the Laplace transform of £, £(•)

£ { x t, z t) = (1  - / ie x p (z t))7 - ^  £*exp^(l - 7 ) • (ip +  (x t -  p)

. (3.33)

Inequality (3.32) is important. It shows that vt is finite if and only if JC(xt, zt) is 
finite. Accordingly, to establish when vt is finite it suffices to focus on JC(xt iZt). 
To verify when (3.33) converges, we can use the ratio test. Denoting the term 
in the square brackets by Wi we have that

lim
i—»-+oo

Wi+1
Wi =  i 1™ L/? e x p ( ( 1 -  7) [a* +  (* -  ^)p,+1] ) £ ( |^ _  -  Ps+1) )

=  /3exp((l -  7 ) P)£ ( ^ _ p | )

where we exploited the fact that p < 1 =>• p% —► 0. Thus, directly from the ratio 
test, fC(xt}zt) -  and accordingly also vt -  is finite if

/ 3 e x p ( ( l - 7 ) ^ ) £ ( | l — 1 | ) < 1

and it is infinite when the expression is greater than one.
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L im iting Case

Since the test is inconclusive when /?exp((l — 7 )/x) £ ( ( 7  — 1)/(1 — p)) = 1, we 
now analyze this case separately. First, rewrite JC(xt, Zt) as

AZ(xu zt) =  (1 -  /iexp ( ^ ) ) 7 • j/?exp((l -  7 ) • p) • C |

exp
£(M) J

• (3-34)

Given that /3exp((l — 7 ) fj) £ ( { 7  — 1)/(1 — p)) =  1, therefore 

£ ( * t ,  zt) =  (1  -  hexp(zt))1 • Y  [ ^ P ^ 1 “  7 )  (xt ~ p) ^

( 3 - 3 5 )

Since lim^+oo { l - j ) ( x t - p ) p ( l - p i) / ( l - p )  =  ( l - ' y ) { x t - p ) p / ( l - p )  therefore, 
to show that JC(xt, zt) is infinite, it is enough to show that

To show that the sum (3.36) diverges it suffices to demonstrate that its elements 
converge to a constant b > 0. To show that, we can use the fact that if Vj : 
0  <  cij < 1 then n £ u  ( l — cij) is convergent and strictly positive if and only if
YLj=i aj < + °° . To apply this fact to (3.36) define aj as

and note that since the denominator £ ( ( 7  — ! ) / ( !  — p)) is a constant
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Given that the Laplace transform is differentiable the mean value theorem im­
plies that 3£j G [ ( 7  — 1)(1 — fP)/( 1 — p), ( 7  — 1)/(1 — p)\ such that

<
( 7 - 1 )

H

Accordingly

(7 -1 )
( i - * o

=  lA O l (1 - r f (1  — p)

+OO

E
j =1 ( 1-P)

( 7 - 1 )  +“
(1 ~P) E l £ / ^ ) l  ■ 1(1 _ ^)  “  l| ^ P '  1(7-1)1 • |“““ £'(&)|-

j=i 3-

Since ( 7  — 1 ) ( 1  — pj )/{ 1 — p) is increasing in j  and equals ( 7  — 1) for j  =  1 , 
therefore maxj>i £'(£,•) <  maxAe[(7 _i), (7_i)/(i_p)] |^'(A) | . Accordingly

<+00=*§l£ ((H)(1" - c  ((wl) < + 0 0 .

But £'(^) =  —E(exp(—A£) • £) and VA > 0 ,3A G (0, A) : exp(—A£) • £ =  
exp(—(A — A)£) • exp(—A£) • £. Given assumption (A<5), 3 k  > 0 : exp(—A£) • 
£ <  k  and so exp(—A£) • £ < k  ■ exp(—(A — A)£) => |E(exp(—A£) • £)| <  
k  • £ (A — A). Continuity of the Laplace transform £  therefore implies that for 
any bounded set A  : maxAe^/^^) < «maxAe^maxA€(0,A) ~  A) <  +00 -
where the last inequality follows from (A£) which implies that £ is bounded
from below and so £(•) is finite for positive arguments. Hence maxAe.A |£'(A)| < 
+00 =» d j  = p • | ( 7  -  1 )| • maxAê  |£'(A)| <  +00 =* II^uC1 “  a j )  = b >

0 => E S n j = i  {£■ ( M ( l  -  P*)) / £  ( { £ } ) }  =  + ° °  «(**.**) <  + ~  if
and only if /?exp((l — 7 ) p) • £ ( ( 7  — 1 ) / (1  — p)) < 1 .

Having found necessary and sufficient conditions under which formula (3.28) 
converges, we now transform its right-hand side to derive an expression for 
the price dividend ratio vt only in terms of the state variables x t, zt , model 
parameters and the Laplace transform of shocks to consumption growth £. To 
proceed, we shall use the following relationship
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where generalized binomial coefficients are given in Definition 4 and where the 
right-hand side converges for hexp(zt+i) < 1. Clearly, assumption (A£) => 
hexp(zt+i) <  1 and so under (AS) equation (3.37) is always satisfied (and all 
series converge under condition (3.15)). Accordingly, plugging (3.37) back into 
(3.28) we have that

+oo +oo /  \  i

vt = ( l - h e x p ( z t) y ^ 2 E t P l ^ 2  ( 7  I ( - ^ exP (* i+ 0 )e x p ( ( l-7 )X ^ + j)
i= l  n=0 \  71 / j= 1

+00 +oo /  _  \  *
=  ( l - h e x p ( z t ) y ^ 2 ^ 2 p i( - h ) n I 7  I Et exp(n^+< +  (1 - 7 ) 5 ^art+j).

i= l n=0 \  77 J j= 1

Plugging equation (3.29) into the expression for vt gives

+oo +oo /  _  \  r /  (
Vt =  ( l - h e x p ( zt ) y ^ 2 ^ 2 ( 3 l( - h ) n I IE* exp( (1 -  7 W ip

i= l  n=0 \  77 J

+  (xt — p) ^  ^  +  (1  -  p)~x (6 + i(l — pl) +  . . .  +  &+i(l -  p ) ) |  + n z t+i ^ | .

Since equation (3.5) implies that zt+i =  (1  — (/>)zt+i- 1 — x t+i therefore

i—i

zt+i = -  -  4>)’x,+i s  +  (1  -  W z t .  (3.38)
s=0

To express 2 * =q(1 — (f>)sx t+i-s in terms of the underlying shocks, we can plug 
in for x t+i and write the sum as

(1  — <j>)l~l (p +  p (xt — //) +  6 +1) +

(1  — {j>y~2 (p + p2 (xt — p) + p 6 +1 +  6 +2) +

(1 — <t>)1 3 (p +  p3 (xt — p) +  p2 &+1 +  P & +2 +  6 +3) +

(1 — (f>) (p +  p l 1 (xt — p )  +  p% 2£t+1 +  P% 3& +2 +  . . .  +  €t+i-1) +

(p +  p% (xt — p) +  pl Ift+1 +  pX 2£t+ 2 +  • • • + ^ 6 +7-1  +  fi+i) •
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Summing terms up, we can compute the coefficients on f i , ( x t — p), £*+i,. . . ,  £ t+ i

p: (l +  (1 -  0) + .

(z« -  P )  : p*(l+ + .. 
P

.+

6+1 : i- i ( i  + (1 -<^) +
P

.+

6+2 • p i - 2(1 + (1 -  4>) +

p
.+

i - (1-4)* I it ,i

1 -  (1  -  ^Vp*
pt- 1

/, ^ i - 2  , (1  _  ( f f - 1/pi- 1

-  (1 -  <j>)/p

P ■ n h  +  ( 1 ~ ^  1 ~  (1 ~  ^ ) V P 2 ,
? ' + *_1 '  ̂ 1 -  (1  -  P

and 1 for £t+i, so that after simplifying, we obtain

^ ( 1  4 ) x W - . - H  ^  +{x t »)p p _  ^  ^  + 6 + 1

p*- 1  — (1  — 0 V- 1  p2 — (1  — 0 ) 2

+ ^ + 2 P - ( i - 0 ) +  • • • + 6 + < - 1 P - ( i - 0 ) +  6+<- (3-39)

Accordingly, since nzt+i =  - n ^ ( l  -  <f>)sx t+i- a 4 - n (l -  0)^*, we can plug 
(3.39) into the expression for vt

+00 +00 /  \  r /  /
,x„ / - 7  \ ^  X I Ifl

-t-QO j-oo /   \ r /  s
vt = ( l-Z ie x p ^ ) 7 ^ ^ / ^ - ^ 71 7 ) Et expf (1 - 7 ) ^

i = l  n = 0  \  71 /  L '  ^

+  ~  p) ^  _  pj +  (1  ~  P)~l (6 + l(l -  p%) +  . . . +  6 +i(l “  P)) |

_ i - ( i - 0 )* Ay _ ( i _ 0 )i _  ^ - ( 1 - 0 )*
Tip 1 Ti\Xt P)P / 1 1 \ n£t+i

0  p  -  (1 -  </>) p -  (1 -  0)
P*_1 — (1 — 0)*-1 P2 — (1 — 0)2

”  n&+2--------- Fi— ^ —  +  • • • -  nft+»-i------^— t t -  -  n£t+i +  n (l -  0)*^P — (1 — 0 ) p - ( l - 0) )
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to yield after ordering and simplifying

vt= (  1 -  /iexp(zf))7^ ^ / ? z( - / i )nf  J  | e t e x p ^ |( l  -  7 )i -  n -— ^  ^  |
i= ln = 0

+ (1 -  P{)

~ pi ' )  j . „ pi 14- n
P) }+  €t+i- 1

• { ( J -  + n \ - {1p J J  } + -  7 ) - « } + »( i  -  * y * )

Since £ is an i.i.d. process, therefore

* i \ i i
E t exp( ^  Xj • Zt+j ) =  n  E exP(A; 0  =  n C ( ~ xi) (3-40)

j=l j = 1 j —1

where £ is a random variable drawn from the common distribution of all £’s, \ j  
are arbitrary constants. Note also that

- 7  |  =  hn{ ^ ( - 7 -  ! +  !)(—7 - 2  +  1). .  . ( - 7 - n + 1 )
\  n I

=  h„ (7  -  1 +  1 )(7 -  1 +_2) _ . ( 7  r  1_+ n ) = h J  7 - l  +  n \  (3  M )
n\ \ n  I

Accordingly, exploiting both these identities we finally get

+00 +00

Vt =  (1 -  h e x p ( z t ) y ' % 2 J 2
i= l n—Q

7  — 1 +  n
n

exp^n(l -  <f>)lzt +

+  /i

7 ) t r ^ ) + n : i - ? - + }
( l -p>)  , _ ( i - < W - p >-ff-nl

- 0 - W J

which exactly matches formula (3.16) and so completes the proof. ■

P roof o f Corollaries 1, 2  and 3. To prove corollaries 2 and 3 simply plug 
in </> = 1 and p =  0 respectively into formula (3.16). To prove corollary 3, note 
that under the alternative /  ‘contemporaneous’ specification X t+i =  Cf+lX]~^
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implies that zt+1 =  (1  — <j>){zt — x t+1) which in turn yields

i—1

Z t + i  — (1 0)(̂ t+t—1 X t + i )  — (1 $ )  ^ (̂l 4 * )  X t + i — a (1 ( f> )  Z t '

Exploiting the above relationship, rather than equation (3.38), and following the 
steps in the proof of Theorem 2 gives the final formula. ■

P roof o f Theorem  2. If (3.15) is violated, then the price dividend ratio 
diverges and so in particular all its unconditional moments are ill defined. This 
proves the ‘only if’ part of the theorem. To show that under (3.15) unconditional 
fc-th order moments of vt exist, note that equation (3.32) implies that

vt < 5- 7  • fC(xt, zt) (3.42)

where equation (3.33) implies that JC(xt,zt) can be expressed as

+oo

)C(xu Zt) = ( l  -  /iexp(zt ) ) 7  - 5 > ( * t)
2 = 1

Si(x) :=  

Accordingly

? exp ( ( 1  -  7) • (in + (x — n)P(11_p))))'IIc((TT^ 1 - ̂))

\  /  h ik
=» Eu? <

where the constant i? := (1 — hexp(zf))7/^7. From the generalized Schwarz 
inequality we know that

E s fl (xt) . . .  sik (xt) <  (E s *  (xt) ) 1 . . .  (Es£ ( i t) ) 1

and so, applying this inequality, we have that

( +OO 1 \  ^
£ ( E S* ( i t) ) * l

t = l  /
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where we have relied on the fact that (Es .̂(a;*)) * are identically distributed 
random variables and replaced their product by the fc-th power of its element. 
Accordingly

+00

X ( Es‘ (x t) ) k < + 0 0  =)► Evf < + 0 0 . (3.43)
4=1

To complete the proof, we shall now show that the infinite sum on the left-hand 
side converges under assumption (3.15). To do that, note that

(E ^ (i())  *=/?*■ exp((l -  7 ) i/i) • I I C( ( |^ _  *j(l -  p’ij

Eexp(fc • (1  -  7 ) • (x, -  n) ■ . (3.44)

First we need to check that (Esf(a:4) ) k is finite. Iterating on equation (3.4) we 
know that if lim i_ > + o o /0 l ( x t _ i  — fi) = a.s 0  then33

+00

(3.45)
4=0

Since are i.i.d. mean zero and bounded from below (by assumption A5), 
therefore E |(a| =  m < + 0 0  and so34

+00 +00 +00

E E  1̂ 6 -il =  E  < +°° =*• E  <  + 00 (3-46)
4=0 4=0 P 4=0

i.e. Xt—fJL is a well-defined random variable, and crucially - one which is bounded 
from below. The latter implies that x  — /z’s Laplace transform is well-defined 
for all positive arguments, yielding

Eexp^fc • (1 -  7 ) • {xt ~  fj) • =  £ x - » ( k ( 7  -  i )p ( 1 Pl) 
(1  ~ p ) ) < + 0 0 .

Having shown that the terms of the infinite series (EsJ (x*)) l^k 8X6 finite,
we can now apply the ratio test to determine when the series itself converges.

33This condition obviously holds when x  are drawn from a stationary distribution.
34Extending the proof to  the case of £ with finite, bu t non-zero mean is straightforward. 

Notably, the proof can also be extended to the case of shocks £ s.t E£ =  +00 though extra 
conditions are then necessary to ensure th a t x t — fi is still well-defined.
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From equation (3.44) we obtain

0  a t p ( ( l  _  ^ | l'l - 1’" ' )lim -  1-
t->+oo (E s^ r C f))1/* i—*+oo

(!_p) )

r  Zl. n-p) ) J
=  fj ■ exp((l — j)f j) ■ C( ( | y 3 ~ | )  (3-47)

where in the last equality we have exploited the continuity of the Laplace trans­
form Accordingly, when

P ■ exP ((l -  t)m) • A  ( (1 _ ^ | )  < 1

then the ratio test is conclusive and converges. By virtue of
equation (3.43) this ensures that Ev* < +oo and so concludes the proof. ■

P roof o f Theorem  3. Let Pj> denote the price of a zero-coupon bond and 
let r\+l = 1/P^ be the gross rate of return on bonds held over [t, t +  1]. Then, 
directly from the first order conditions

p 6 . E j , f i - W w / c « r / ' a +. r  .
F ‘ - E l / 5 (  1 -  hXt/Ct  )  ■ { - c r )  *

rt+i =  ( l  -  hexp(zt))~7 • [ e (/3(1 -  h exp(z,+1))“?exp ( - 7 z t+i)j .

Using (3.37) to express ( l  — hexp(zt+i)) 7 as the infinite sum and plugging in 
for zt+1 from equation (3.3) we obtain

rt+f=
+oo - 1

( l  -  hexp(zt))y-5~' P (~ hT  ( I E f exp(n(l — <j>)zt — ( 7  +  n) X1+1)
n=o \  n  )

We can then use equation (3.4) to express x t+i in terms of x t and finally obtain

r(+i =  (! -  ftexp(^t ) ) " 7  • ̂ P(-h)n ■ (  J  V £ ( 7  +  n)

• exp (n ( l  -  <f>)zt -  p( 7  +  n){xt - p . ) -  p ( j  +  n ) )  )
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- 7

+ o o  w  , X /  \  % - 1

or, in terms of the symbols defined in Theorem 2 

r ?+1 =  ( l “  hexp(zt))

* t) exp ( fll- ^  +  (&1-n “  P)(x * ~  P) +  (Cl>" ~  A4) )  |

with (7 —l) +  r c> 0  implying that both Laplace transforms are well-defined. 

Similarly, the realized rate of return on equity over [£, i +  1] is given by

eq Pt+ 1 +  Ct+l Pt+ 1 +  Ct+ 1 Ct+1 Ct 1 +  Uf+i . .
rt+i = -------5 ------ = ------p;---------- p- =  —   exp(i(+i).

■n w +i w  “t vt

Accordingly

E*rt+i =  ^ r^ E tex p ^ + i) +  Etvt+iexp(a;t+i)).

Of course, from equation (3.4), E* exp(xf+i) =  exp((l — p )p  +  p x t ) • £ ( —1) - i.e. 
a necessary condition for the risk premium to be well-defined is £ ( —1 ) < + 0 0 . 
We can then compute Etut+i exp(x*+i). From (3.16) and (3.37) we find that

+00

vt+i exp(x4+i) =  [ ^ 2 { - h ) m ( ^  j  exp(m ^+i)j
xm=0

( X X  difn exp ( zt+ 1 ai>n +  (xt+i -  p) (bijn +  1 ) +  (ci,n +  p) J )
i = 1 71=0 '  '  /

Using the fact that z t+ 1 =  (1 — 4>)zt — Xt+i we obtain

+00 +00 +00-l - o o  - t - 0 0  T O O  I    \  /

Vt + 1  exp(xt+i) =  V )  V ' Y ' f - M "1 I I • di,n exp( z*(l -  0) (a ^  +  m)
V m /  ^

“b (*̂ t+l AO (pi,n  “b 1 (ai,n “b Wl)) “b ( ^ 7,71 "b /^(l (&z,n “b ^ ) ) ) ^

and so, since (3.4) implies that x t+i — p = p (xt — p) +  £t+u we can f^en compute
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the conditional expectation of vt+ i exp(rE*+i) as

{ +00 +00 +00

E X E
t= l n=0 m=0

di,n,m ‘ GXp ^2^ Q>itn,m d" P {Xt p) “I- 1) "P (Ci,n,m “I" AO^ ' ^i,n,m l )  ^

where

n  .

~ ( l  0 )  (^i,n “I” ^ 0  ^i,n,m ~  ̂ i,n (1- 0)
  P a i,n,m  j   r /  \  /  L \ m

C i , n , m  — C i , n  ^  ^  a i,n,m  — 772'  /  \  •

One question to answer is: when does the formula above converge - i.e. when is 
E|ut+i exp(xf+i)| < + 00?  Note that for 1 < p, q < +00 we get from the Holder 
inequality that

E*vt+i exp(zt+i) < (Etvtp+1) ? • (Et exp(q • X t + i ) ) (3.48)

Since, under the conditions derived earlier Ei>p+1 < +00 for arbitrary p >  1 , 
therefore to prove finiteness it suffices to show that there exists q > 1 such 
that Eexp(qa:t+i) < 1- We show the latter for the exponential distribution 
with parameter A. Note that similar proofs for other distributions could also be 
formulated.

E (exp(q(px +  /z(l — p) + 0 ) )  < + °°  ^  Eexp(q£) < +00 (3.49)

but

/
+00  ̂ p+ 00

exp(qx — X(x — — ))dx ~  J  exp((q — X)x)dx <  +00

and so the integral is finite as long as q < A. Of course, we can always find 
1 > q < A as long as A > 1 - i.e. the proof follows for all A > !□ .
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Combining all these bits of information

rpt = E t r ^  -  rt6+1 =  vt exp(xm ) +  E tvt+i exp(xt+i)) -  r\bt+ 1

expQu +  p(xt ~  p)) 
(1  - h e x p ( z t) p

+00 + 00

{ r +oo +oo /  \  -I

X X  ditn exp I z t  ai<n +  (x t -  p) +  c*)Tl J
- i= l n—0 '  ' -

-1 -00  -1 -00  / N

l ) -!- ^   ̂ ^   ̂ * ^ (  l )  *6Xp ( AO î,n,m "PCi,n,m )
n,m—0 i= l ' '

£(7 +  n) (  , , ,  \r1-| _
Z ^ rfl>n7v^T^TXrp^exp^ ai,7i +  (x t - p ) bl,n +  Ci,n 1 I ■£(7 +  n  -  1)

Notably under the alternative habit specification z t+ 1 =  (1 — (f>){zt — x t+i) we 
get

+00 +00 +00

Vt+i e x p (x i+ i)  =  x x x h o ’
m = 0 i = l  n = 0

■7
m

ditn exp ^■2?t(l 0 )  (® i,n +  m )

+  (xt+i -  //) +  (1 -  (1 -  0)(ai,n +  m ))) -f (ci,„ +  ax(1 -  (1 -  0)(oi,„ +  m )) )^

and so, since (3.4) implies that x t+ i ~ p  =  p ( x t — p) +  £t+i, we can then compute 
the conditional expectation of 1^+1 exp(x*+i) as

{ +00 +00 +00

X X X
i—1 n—0 771—0

di,n,m ' GXp Q>i,n,m P  (*£f p )  (pi,n,m “I" 1) “1“ (Ci,n,m AO^ ’ ^i,n,m l )  ^

where

Q>i,n,m —(1  0 )  (®i,n “I- ?7l)

Ci,n,m =  Q,n



3.A. APPENDIX 107

Combining all these bits of information

rpt = E tr lq+l -  rbt+1 = vt 1 (E* exp(x*+i) +  E tvt+i exp(rrm )) -  rb
t + 1

exp(// +  p(xt ~  //)) 
(1  -  hexp(zt))')f

+ 00 +00

{r +oo +QO /  \  -EE d i , n exp I  z t  a ^ n + (x t  -  p )  b i> n + J
- 7 = 1  n = 0  '  '  -

-1-00 -t-OO /  \

I ) -!- ^   ̂ ^   ̂ î,TO,m * £  ( 7̂,n,77i l )  ' GXp f Zt &iyn,m P  (pCt AO bi,n, m  "t" Ci, n,m )
771,71=0 i = l  '

c ( 1 + n) (  . , t M -1 ! _
> , “i,7i£ ^ 7  +  n _  ^  exp^ztai>n +  [xt -  fi) 6i,„ +  ci>nJ  j j .  ■

i—1

P roof o f Corollary 5. If p =  0 and <f> =  1 then 

fli.Ti : = 0  Ci,„ :=/x((l -  7 ) 1  -  n)

b i , n  :=0 d i , n  :=/W (7_1n+n) • £((7 - 1) + n) • (£(7 - 1))
furthermore

^ 7 ,7 7 ,7 7 7  ----0 ^7,77,777 -------  ^ 7 ,7 7  ----  0

Q , 77,777 =  Q ,7 7  d j j 7 l ) m  =  ^ 7,77 (  77^  ) (  '

Plugging this into the formula for the risk premium yields 

rp* =  exp(p) • (1  -  hexp(zt) ) - 7  ' { “  [ X j ! 1.) exp(Cl’n)

-+ 00  + 00  1  —1 r  +00 +00 1  n

^ V A n e x p f a , )  • £ ( - 1 ) +  (1  - /Q~7 £ ( - l )  • ^  dj,n exp(cj|Tt) I
- 7 = 1  77=0 -I I- 7= 1  77=0 J  '

where we have used (3.37) to express X)m=o( ~m! ) ( —̂ )m as (1 — ft) 7. Simpli­
fying, we get

rpt = exp(p) • (1  -  hexp(zt ) ) _ 7  • £ ( - l )  • j(l -  ft) - 7

r+ 0 0  +00 -1 —i r+ 0 0

+ ^ ^ < „ e x p ( c , in )  -  ^  d i , n e x p ( Cl , — —  >

- 7 = 1  77=0 -* *-77=0 '  ) 1 J
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Exploiting the respective definitions

+00 +00 s  -rot) s  \  i  %

X]X d i 'n exp(̂.«) = \  X (̂  ~ ^W1 - 7 ))) \
z = l n = 0  ^ i= 0

• {X̂" ( 7 _ Jj+ " ) ' -!) + «)■ exp(/i(l - 7) - ̂ • n) j

= ( l - P -  £(7 -  1) • exp(p(l -  7 ))) ■ Xd l -n exP(ci.») (3 5°)
'  '  n = 0

we finally arrive at

rpt =
exp(/x) • £ ( - 1 )

* \  ~  X rfl’nexp(Cl*n)
 ̂ Ln=o

£ ( 7  +  n ) £ ( - l ) - 1

(1 — ftexpCzj))') 1 L Ŝ 1-"~ £(7 + n - l )  J

+ (1 -  h y  +  (1 -  P  • £(7 -  1) • exp(/i(l -  7))) ^di,„exp(ci,„)l j.l
Ln=0 J '



Ex (annual) oX*100 Erb (annual) SR(Req-Rb)*100 E(Req - Rb) (annual) o(Req-Rb)*100 oP/D
Distribution UK US UK US UK us UK US UK US UK US UK US

1 Exponential 2.17% - 4.58 2.88% - 0.14 - 11.25% - 19.97 - 5.81 ■ ■
2 Quadratic -39.73% -18.32% 8.75 4.92 1.47% -0.43% -0.07 0.01 -3.15% 0.19% 10.98 5.60 0.31 0.18

3 Inv. Triangular -11.75% -8.56% 4.32 2.94 1.09% ■ ■ 0.02 0.10 0.37% 0.67% 5.60 1.74 0.46 0.33
4 Uniform -1.83% -5.91% 5.46 4.13 1.29% 0.77% 0.06 -0.01 1.65% -0.22% 7.42 6.15 2.47 1.13

5 Triangular 3.12% 2.29% 1.50 1.78 -2.32% -0.41% 0.45 0.40 12.78% 4.91% 7.16 3.10 5.69 3.65
6I H3 1.50% -0.88% 1.60 1.63 1.77% -0.38% 0.02 0.01 0.61% 0.05% 7.33 2.41 26.54 9.10

7I H5 1.90% 0.39% 1.51 1.31 1.87% 0.64% 0.08 0.00 8.26% 0.02% 24.76 2.70 19.48 41.46 |
8 Gamma 2 2.32% - 3.28 - 4.93% - 0.12 - 9.83% - 20.57 - 9.79 -

9 Gamma 5 1.97% 1.82% 2.29 2.74 2.18% 1.54% 0.15 0.09 9.88% 0.61% 17.04 1.65 7.54 13.29
10 Gamma 10 2.25% 1.46% 1.85

r-i 1.95% 1.82% 0.14 0.01 5.58% 0.09% 9.75 4.24 6.98 80.71

11 Normal 2.23% 1.72% 1.52 0.89 -0.06% 0.95% 0.11 a n 10.53% 6.53% 24.47 14.63 11.91 25.50
12 Data 2.07% 1.64% 1.47 0.89 1.00% -0.78% 0.19 0.25 8.92% 7.62% 11.97 7.67 4.88 6.85

Table 3.5: Means and Standard Deviations of Simulated and Historical Data

o
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ACF P /D
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2 Y | 3 Y 5Y 7Y
1 Exponential 0.45 0.19 0.09 0.03 0.02 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Quadratic 0.26 0.05 0.02 0.00 0.02 -0.01 -0.01 0.16 0.02 0.00 -0.03 0.02 0.03 -0.01
3 Inv. Triangular 0.23 0.05 0.01 -0.01 0.02 -0.01 -0.01 0.13 0.02 0.05 0.01 -0.01 -0.02 0.02
4 Uniform 0.30 0.08 0.02 0.01 0.00 0.01 0.02 0.20 0.07 0.01 0.06 -0.01 -0.01 0.00

■  5 Triangular 0.84 0.70 | 0.49 0.26 0.15 0.06 -0.01 0.53 0.30 0.08 0.03 0.05 -0.08 -0.02
6 IH 3 0.04 -0.01 -0.02 -0.01 0.01 0.02 0.01 0.41 0.15 0.02 0.02 0.00 -0.03 0.00
7IH 5 0.19 0.04 | 0.00 0.00 -0.05 -0.01 -0.01 0.52 0.23 0.00 -0.06 -0.01 - 0.05 0.03
8 Gamma 2 0.68 0.45 0.21 0.02 0.00 0.01 -0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00

|  9 Gamma 5 0.58 0.38 | 0.15 0.00 -0.01 -0.06 0.00 0.58 0.32 0.13 0.04 0.01 0.01 -0.02
10 Gamma 10 0.52 0.30 0.11 -0.02 -0.01 0.01 0.02 0.55 0.26 0.03 0.02 0.05 -0.03 -0.02
11 Normal 0.00 -0.02 | 0.00 0.01 -0.01 0.00 -0.01 0.69 0.40 0.11 -0.03 -0.03 0.01 0.00' |
12 Data 0.92 0.83 0.68 0.49 0.29 0.25 0.15 0.95 0.89 0.77 0.63 0.62 0.38 0.10

ACF (Reg - Rb)
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2Y 3Y 5Y 7Y
1 Exponential -0.09 -0.07 0.05 0.01 0.01 -0.02 -0.02 - - - - - ■ M
2 Quadratic 0.01 -0.01 0.02 0.01 0.03 0.00 -0.01 0.01 0.00 0.01 -0.03 0.03 0.03 -0.01

|  3 Inv. Triangular - 0.02 0.01 0.02 -0.01 0.02 -0.01 -0.02 0.38 0.05 0.05 0.01 0.00 -0.02 0.02
4 Uniform 0.01 -0.01 0.01 0.02 0.00 0.01 0.02 -0.09 0.02 0.01 0.06 0.00 -0.01 -0.01

■  5 Triangular -0.01 1 -0.05 -0.03 -0.01 -0.04 0.04 0.00 0.00 0.05 -0.01 0.01 0.02 -0.04 0.00
6 IH 3 -0.31 -0.01 -0.01 -0.01 0.02 0.01 0.01 0.02 -0.02 -0.01 0.02 0.01 -0.02 0.02
7 IH 5 -0.30 -0.06 0.00 -0.01 -0.05 0.02 0.00 0.02 -0.04 -0.04 -0.03 0.00 -0.05 0.02 |
8 Gamma 2 -0.05 -0.07 -0.01 -0.01 -0.02 -0.02 -0.02 - - - - - - -

9 Gamma 5 -0.14 || - 0.03 -0.02 -0.01 0.01 -0.02 0.00 0.37 0.19 0.09 0.03 0.01 0.00 -0.01
10 Gamma 10 -0.19 -0.09 0.01 -0.03 0.00 0.01 0.01 0.02 -0.03 -0.04 -0.01 0.02 -0.01 0.00
11 Normal -0.38 | -0.02 0.00 0.00 -0.02 -0.01 0.01 0.05 -0.09 -0.05 -0.02 0.01 0.00 0.00 1
12 Data 0.07 -0.07 -0.18 0.05 -0.10 0.03 0.15 0.09 -0.09 -0.04 -0.04 -0.01 -0.08 -0.06

Table 3.6: Autocorrelations of Simulated and Historical Data (I)
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lA C F ( R e q - R b )
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2Y 3Y
5Y 11 7Y

1 Exponential -0.09 -0.16 -0.15 -0.16 -0.15 -0.13 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Quadratic 0.01 -0.01 -0.01 -0.02 0.00 -0.03 -0.11 0.01 0.01 -0.02 -0.06 -0.07 -0.02 0.00

|  3 Inv. Triangular -0.02 -0.02 -0.04 -0.06 -0.07 -0.09 -0.10 h h i 0.42 0.47 0.59 0.58 0.51 0.44
4 Uniform 0.01 0.00 0.00 0.05 0.01 0.02 0.00 -0.09 -0.07 -0.09 -0.05 -0.03 -0.09 -0.11

|  5 Triangular -0.01 -0.06 -0.09 -0.19 -0.19 -0.14 -0.19 0.00 0.05 0.03 0.04 0.12 0.06 -0.04 |
6 IH 3 -0.31 -0.32 -0.35 -0.35 -0.35 -0.33 -0.35 0.02 0.00 -0.02 -0.03 -0.05 -0.10 -0.10

|  7IH 5 -0.30 -0.36 -0.37 -0.37 -0.39 -0.38 -0.38 -0.02 -0.08 -0.18 -0.17 -0.25 -0.25 |
8 Gamma 2 -0.05 -0.13 -0.16 -0.22 -0.26 -0.24 -0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 Gamma 5 -0.14 -0.17 -0.20 -0.22 -0.25 -0.25 -0.30 0.37 0.55 0.76 0.93 0.98 0.97 0.96

10 Gamma 10 -0.19 -0.28 -0.32 -0.41 -0.38 -0.39 -0.37 0.02 -0.01 -0.09 -0.10 -0.01 -0.07 -0.02
| l l  Normal -0.38 -0.40 -0.39 -0.36 -0.38 -0.38 -0.40 0.05 -0.05 -0.16 -0.22 -0.25 -0.27 -0.28 |

12 Data 0.07 0.00 -0.20 -0.29 -0.49 -0.54 -0.30 0.09 0.00 -0.08 -0.38 -0.29 0.05 -0.05

ACF|Reg|
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2Y 3Y 5Y 7Y
1 Exponential -0.20 -0.13 0.04 0.01 0.01 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Quadratic 0.01 -0.01 0.02 0.01 0.03 0.00 -0.01 0.01 0.00 0.01 -0.03 0.03 0.03 -0.01

|  3 Inv. Triangular -0.02 0.01 0.02 -0.01 0.02 -0.01 0.30 0.04 0.05 0.01 -0.01 -0.02 0.02 |
4 Uniform 0.01 -0.01 0.01 0.02 0.00 0.01 0.02 -0.12 0.02 0.01 0.05 0.00 -0.01 -0.01
5 Triangular -0.06 - 0.09 -0.05 -0.02 -0.05 0.04 -0.01 0.04 -0.01 0.01 0.02 -0.04 0.00
6 IH 3 -0.43 -0.01 0.00 -0.01 0.02 0.01 0.01 0.02 -0.02 -0.01 0.02 0.01 -0.02 0.02
7 IH 5 -0.39 -0.07 0.00 -0.02 -0.05 0.02 0.00 -0.06 -0.09 -0.05 -0.02 0.00 -0.04 0.02
8 Gamma 2 -0.13 -0.13 -0.03 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 Gamma 5 -0.23 -0.08 - 0.05 -0.02 0.02 -0.02 0.00 0.46 0.24 0.11 0.03 0.01 0.01 -0.01

10 Gamma 10 -0.26 -0.11 0.00 -0.03 0.00 0.00 0.01 -0.06 -0.08 -0.05 -0.02 0.01 -0.01 0.00
| l l  Normal -0.48 - 0.02 0.00 0.00 -0.02 -0.01 0.01 -0.05 -0.17 -0.08 -0.02 0.01 0.00 0.00 I

12 Data 0.09 -0.05 -0.18 0.05 -0.10 0.01 0.14 0.12 -0.08 -0.02 -0.03 -0.03 -0.07 -0.06

Table 3.7: Autocorrelations of Simulated and Historical Data (II)
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C C F (P /P , R eg  - Rb)
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2V 3Y 5Y 7Y
1 Exponential 0.38 0.15 0.07 0.02 0.01 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
2 Quadratic 0.25 0.05 0.02 0.00 0.03 -0.01 -0.01 0.15 0.02 0.00 -0.03 0.03 0.03 -0.01
3 Inv. Triangular 0.22 0.06 0.01 -0.01 0.01 0.00 -0.13 -0.01 -0.05 0.00 0.01 0.02 | -0.02
4 Uniform 0.29 0.08 0.01 0.02 0.00 0.02 0.01 0.19 0.07 0.00 0.05 0.00 -0.01 0.00

|  S Triangular | 0.41 0.34 0.25 0.10 0.05 0.04 -0.01 0.44 0.26 0.06 0.01 0.04 - 0.05 | -0.01
6 IH 3 0.04 0.00 -0.02 -0.01 0.01 0.02 0.01 0.38 0.14 0.02 0.02 0.00 -0.02 0.00

|  7 IH 5 0.16 0.03 0.01 0.00 -0.04 0.00 ■ ■ 1 0.46 0.22 0.02 -0.04 0.00 -0.04 0.02
8 Gamma 2 0.45 0.28 0.15 0.02 -0.01 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 Gamma 5 | 0.38 0.25 0.10 0.01 -0.01 -0.01 -0.01 0.56 0.31 0.12 0.04 0.01 0.01 -0.01 I

10 Gamma 10 0.32 0.17 0.08 -0.02 0.00 0.00 0.01 0.48 0.24 0.03 0.00 0.04 -0.03 0.00
| l l  Normal 1 0.01 -0.02 0.00 0.01 -0.01 0.00 0.00 0.53 0.32 0.10 0.00 - 0.01 0.01 1 -0.01

12 Data 0.11 0.06 0.05 0.06 -0.01 0.00 0.04 0.10 0.08 0.05 -0.05 -0.05 0.09 0.09

CCF(Req - Rb, |Req-Rb|)
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2Y 3Y 5Y 7Y
^ ^ ■ o n e n t i a l -0.06 -0.06 0.02 0.02 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 Quadratic -0.02 0.01 -0.01 0.00 0.00 0.01 -0.03 -0.04 -0.01 0.00 -0.02 0.01 0.04 0.00
|  3 Inv. Triangular 0.01 -0.04 0.02 0.01 -0.03 -0.02 -0.02 0.06 0.02 0.01 -0.01 0.01 -0.02 0.00

4 Uniform -0.03 -0.01 -0.01 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.03 -0.02 -0.01 -0.03
|  5 Triangular -0.01 - 0.02 0.02 -0.01 -0.03 0.03 0.01 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.01

6 IH 3 0.13 0.02 0.00 0.01 -0.01 -0.01 -0.04 0.01 -0.02 0.01 0.01 -0.01 0.00 -0.01
|  7 IH5 0.06 0.04 0.01 -0.03 0.01 0.01 -0.04 0.02 0.01 ■0.02 -0.01 0.03 -0.01 0.00

8 Gamma 2 0.00 -0.03 0.00 -0.03 0.01 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
|  9 Gamma 5 -0.08 -0.03 0.00 -0.02 0.01 -0.01 -0.03 0.16 0.07 0.04 0.03 0.01 -0.01 0.01

10 Gamma 10 0.05 -0.01 0.00 -0.04 0.02 -0.01 0.01 0.03 -0.01 -0.02 0.00 0.01 0.00 -0.01
11 Normal -0.02 -0.04 -0.01 0.01 0.01 0.01 0.01 0.07 0.03 0.00 0.00 -0.01 0.00 -0.02
12 Data 0.03 0.15 0.09 0.12 0.03 0.03 0.04 0.18 0.16 -0.01 -0.10 -0.01 0.03 -0.15

Table 3.8: Cross-Correlations of Simulated and Historical Data (I)
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CC F(P/D , | R eg  - R b |)
UK US

Distribution IQ 2Q 4Q 2Y 3Y 5Y 7Y IQ 2Q 4Q 2Y 3Y 5 Y  j
1 Exponential 0.32 0.13 0.05 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Quadratic -0.07 -0.01 0.00 0.00 0.00 0.01 -0.03 -0.04 -0.02 0.00 -0.02 0.00 0.04 -0.01

|  3 Inv. Triangular 0.01 -0.03 0.02 0.01 -0.04 -0.02 -0.02 -0.02 -0.02 -0.01 0.02 -0.01 0.02 j1 -0.01 1
4 Uniform 0.01 0.00 -0.01 0.00 0.00 0.03 -0.01 -0.02 0.00 0.01 0.03 -0.02 -0.02 -0.02
5 Triangular -0.01 -0.01 | 0.02 0.01 -0.01 0.02 -0.01 0.10 0.05 0.00 0.00 -0.01 - 0.03 1 -0.01
6 IH 3 -0.02 0.01 0.01 0.01 -0.01 0.00 -0.02 0.02 -0.01 0.00 0.02 -0.02 -0.01 0.01

|  7 I H5 0.00 0.04 | 0.02 -0.01 0.02 0.00 -0.03 -0.01 -0.03 -0.02 0.03 - 0.03 | -0.02
8 Gamma 2 0.15 0.08 0.04 0.00 -0.01 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 Gamma 5 0.20 0.11 I 0.06 0.00 -0.02 0.00 -0.02 0.21 0.11 0.05 0.03 0.01 -0.02 j 0.00 1

10 Gamma 10 0.04 0.01 0.00 -0.01 -0.01 0.02 0.00 0.10 0.04 -0.01 0.01 0.02 -0.01 0.00
| l l  Normal 0.01 -0.04 | -0.02 ]I 0.01 0.02 -0.01 0.01 -0.06 -0.03 -0.02 -0.01 0.00 -0.01 | 0.00

12 Data -0.18 -0.16 -0.14 -0.06 -0.14 -0.21 -0.24 -0.05 -0.02 -0.01 -0.03 -0.08 0.00 -0.13

CCF(Req - Rb, Ac(t+i))
UK US

Distribution i=-2 i=-l i=0 i=l i=2 i=-2 i=-l i=0 i=l 1=2 1
1 Exponential 0.00 0.06 0.92 -0.28 -0.16 0.00 0.00 0.00 0.00 0.00 I
2 Quadratic 0.05 0.25 0.97 0.00 -0.02 0.02 0.15 0.99 0.01 0.00

(  3 Inv. Triangular 0.06 0.22 0.97 -0.02 0.00 0.01 0.13 0.98 0.31 0.04 |
4 Uniform 0.08 0.29 0.96 0.00 -0.01 0.07 0.15 0.96 -0.11 0.01
5 Triangular || -0.02 0.02 0.96 -0.12 -0.14 0.25 0.42 0.87 0.01 0.03 |
6 IH 3 0.02 0.03 0.82 -0.50 -0.03 0.11 0.35 0.93 0.00 -0.03
7 IH 5 I 0.00 -0.03 0.81 -0.58 -0.12 0.08 0.28 0.91 -0.11 -0.12 |
8 Gamma 2 -0.02 0.03 0.90 -0.22 -0.19 0.00 0.00 0.00 0.00 0.00
9 Gamma 5 0.01 -0.06 0.93 -0.32 -0.14 0.31 0.57 0.99 0.46 0.25 |

10 Gamma 10 -0.02 -0.06 0.88 -0.32 -0.15 0.14 0.33 0.86 -0.12 -0.12
| 11 Normal -0.02 0.01 0.75 -0.66 -0.01 0.04 0.20 0.80 -0.26 -0.31 |

12 Data 0.19 0.09 0.08 -0.09 -0.03 0.07 0.26 0.32 0.02 -0.03

Table 3.9: Cross-Correlations of Simulated and Historical Data (II)
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Figure 3.13: Actual vs Model Implied UK Bond Returns (I)
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Figure 3.14: Actual vs Model Implied UK Equity Returns (I)
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Figure 3.15: Model Implied UK Risk Premia (I)
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Figure 3.16: Actual vs Model Implied UK Bond Returns (II)
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Figure 3.17: Actual vs Model Implied UK Equity Returns (II)
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Figure 3.19: Actual vs Model Implied US Bond Returns (I)
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Figure 3.20: Actual vs Model Implied US Equity Returns (I)
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Figure 3.21: Model Implied US Equity Risk Premia (I)
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Figure 3.22: Actual vs Model Implied US Bond Returns (II)
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Figure 3.23: Actual vs Model Implied US Equity Returns (II)
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Figure 3.24: Model Implied US Equity Risk Premia (II)
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Figure 3.25: Scatter Plot of UK Consumption Growth and Equity Returns: 
Data (red) vs D ata Simulated From a Model W ith Triangular Shocks (blue)
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Figure 3.26: Scatter Plot of UK Consumption Growth and Equity Returns: 
Data (red) vs D ata Simulated From a Model W ith ‘Irwin Hall 3’ Shocks (blue)
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Figure 3.27: Scatter Plot of UK Consumption Growth and Equity Returns:
Data (red) vs Data Simulated From a Model With ‘Irwin Hall 5’ Shocks (blue)
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Figure 3.28: Scatter Plot of UK Consumption Growth and Equity Returns: 
D ata (red) vs D ata Simulated From a Model W ith Gamma 2 Shocks (blue)
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Figure 3.29: Scatter Plot of UK Consumption Growth and Equity Returns: 
D ata (red) vs D ata Simulated From a Model W ith Gamma 5 Shocks (blue)
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Figure 3.30: Scatter Plot of UK Consumption Growth and Equity Returns:
Data (red) vs Data Simulated From a Model With Gamma 10 Shocks (blue)



3.A. APPENDIX 120

E
I!oc
.f
S'

____________________ QCQ/-7 J/U 

-t r— n// b %
♦
C era /

•
JJ7D

3 S 9 6

-25% -15% -59<|5̂ K  5%

Consumption Growth

15% 25%

Figure 3.31: Scatter Plot of UK Consumption Growth and Equity Returns: 
D ata (red) vs D ata Simulated From a Model W ith Normal Shocks (blue)
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Figure 3.32: Scatter Plot of US Consumption Growth and Equity Returns: Data 
(red) vs D ata Simulated From a Model W ith Triangular Shocks (blue)
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Figure 3.34: Scatter Plot of US Consumption Growth and Equity Returns: Data 
(red) vs D ata Simulated From a Model W ith ‘Irwin Hall (5)’ Shocks (blue)
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Figure 3.35: Scatter Plot of US Consumption Growth and Equity Returns: Data 
(red) vs D ata Simulated From a Model W ith Gamma 5 Shocks (blue)
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Figure 3.36: Scatter Plot of US Consumption Growth and Equity Returns: Data
(red) vs Data Simulated From a Model With Gamma 10 Shocks (blue)



Equ
ity 

Re
tur

ns

3.A. APPENDIX 122

95%

- 25%  - 15%

75%

55%

- 5% 15%  25%

Figure 3.37: Scatter Plot of US Consumption Growth and Equity Returns: D ata 
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Chapter 4

A pproxim ating Solutions of 
A sset Pricing Models: The 
Im plicit Function Approach

4.1 Introduction

Conditions under which consumption-based asset pricing models can be solved 
in ‘closed-form’ are relatively restrictive.1 Absent exact solutions, functions 
mapping state variables into asset prices need to be approximated. For simpler 
models one can use grid-search (e.g. Campbell and Cochrane (1999)) or exploit 
distributional assumptions -  e.g. that of log-normality (as done in Campbell and 
Shiller (1988) or Bansal and Yaron (2004)). Other alternatives include finite- 
difference (Tauchen and Hussey, 1991) and projection methods (Judd, 1998, 
Ch. 1 1 ) as well as ‘local’, perturbation (Judd, 1998, Ch. 13, 14) or complex 
analysis approaches (Calin et al., 2005).2 The main contribution of this paper 
is to add an extra method to the list above and demonstrate its applicability by 
approximating solutions of five popular asset pricing models.

1Lucas (1978); Mehra and Prescott (1985); Abel (1990, 2008) have shown how to solve 
such models when state variables are temporally independent or drawn from simple Markov 
chains. The independence assumption has been generalized by assuming AR(1) dynamics -  as 
in Labadie (1989), Burnside (1998), Bidarkota and McCulloch (2003), Tsionas (2003), Collard 
et al. (2006) or chapter 3.

2 Perturbation and complex-analysis methods pin down coefficients of the Taylor series 
approximation to the unknown solution. Clearly, Taylor series approximations can be ‘global’ 
-  that is converge to the true function everywhere, as the order of approximation increases -  
as long as the approximated function is analytic.



4.1. INTRODUCTION 124

Having precise and tractable estimates of the mapping between state variables 
and asset prices is clearly important as it can further our understanding of asset 
price dynamics. What is perhaps less clear, particularly given the large number 
of existent methods, is whether any new one is truly necessary. To address this 
point, we now highlight how our approach works, position it within the literature 
and clarify what ‘extra’ it brings to the table.

To illustrate the underlying idea, consider the simplest real business cycle frame­
work. Under log-utility and full capital depreciation the solution can be charac­
terized analytically. We show that once the model is re-expressed as a fixed-point 
problem in Banach spaces, the implicit function theorem can be invoked to ap­
proximate the solution for general coefficients of risk aversion and depreciation 
‘around’ that corresponding to log-utility and full-depreciation. The approxi­
mation would be a polynomial in parameters measuring risk aversion and de­
preciation but the polynomial coefficients would be nonlinear functions of state 
variables and other parameters.

First, note that the procedure we advocate fits exactly into the ‘perturbation’ 
framework as we ‘formulate a general problem, find a particular case that has a 
known solution, and then use that particular case and its solution as a starting 
point for computing approximate solutions to nearby problems’ (Judd, 1998, 
p.447). Three important features distinguish our approach from ‘textbook’ per­
turbation methods. In particular:

1 . approximations are not restricted to be polynomials in state variables;3

2 . we do not approximate around solutions of deterministic sub-models;

3. we use the fixed-point formulation to find parameter restrictions ensuring 
solution uniqueness and show how to use the Lipschitz constant of that 
representation to put bounds on approximation errors.

The benefits of the first two are clear: by moving away from the determinis­
tic steady-state and relying on nonlinear approximations, even parsimonious, 
low-order approximations can capture the effect of uncertainty -  something par­
ticularly relevant in an asset pricing context. We stress that the same is not true

3The method proposed here can be seen as ’dual’ to ‘standard’ perturbations. In the ‘text­
book’ case, the resulting approximation is a polynomial in state variables and the coefficients 
of that polynomial are nonlinear functions of model parameters. In our approach, the approx­
imation is a polynomial in a subset of model parameters, with the coefficients being nonlinear 
functions of state variables and remaining coefficients.
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of standard perturbation approximations. As discussed in Schmitt-Grohe and 
Uribe (2004), there, up to second-order, risk only has an impact on the constant 
of the approximate policy rule. Expressed alternatively, if one is interested in 
changes over time in risk-premia, then a third-order approximation is the lowest 
at which these are not zero ‘by construction’. Even with only two state vari­
ables, a third order polynomial has ten distinct coefficients, making it difficult 
to glean economic insights.

Other important problems with ‘standard’ perturbation methods have been em­
phasized in Den Haan and De Wind (2009). The authors note, in particular, 
that ‘outside the radius of convergence higher-order Taylor series approximations 
behave extremely badly’. This is an important drawback as it is often not clear 
whether the entire probability-mass of the ‘true’ ergodic distribution lies within 
that radius.4 Furthermore, Den Haan and De Wind (2009) also stress that even 
within the radius of convergence, polynomial approximations can display ‘wild 
swings in numerical solutions’.

Since our proposed approximations are not restricted to be polynomials in state 
variables, they are likely to be less susceptible to some of these criticisms.5 More 
generally, however, in light of questionable performance of finite-order pertur­
bation approximations, the issue of assessing approximation accuracy becomes 
of paramount importance. In this context, an advantage of the approach advo­
cated here is that the Lipschitz constant of the related fixed-point representation 
makes it possible to put bounds directly on the errors of the policy function ap­
proximation (as opposed to the indirect, ‘Euler-equation’ approach to solution 
accuracy proposed by Santos (2000) ) . 6

4In general, ‘standard’ perturbation approximations are only valid locally, i.e. in the vicin­
ity of the deterministic steady state. Since in asset pricing applications the mean and median 
of simulated series can differ markedly from their deterministic steady-state counterparts, it is 
not even clear whether they lie in the radius of convergence and /  or are representative of the 
actual mean/median. Partially addressing that point, Juillard and Kamenik (2005) propose 
(and implement in Dynare+ + ) a method of approximating solutions around what they refer 
to as the ‘stochastic steady state’. While the latter typically won’t equal the mean of the 
ergodic distribution it could lie ‘closer’ to it than the standard, deterministic steady state.

5Further to footnote 3, our approximations are not immune to these criticisms as they 
are polynomials in selected model parameters. Hence, their performance outside the radius 
of convergence for these parameters could also be poor. Conditional on these parameters 
lying within the convergence radius, however, approximations are unlikely to display such 
instabilities as they are arbitrary, nonlinear functions of state-variables.

6Formulas for Taylor series approximation errors always depend on values of derivatives 
in some neighborhood of the approximation point. While standard perturbation methods can 
be used to compute derivatives of an arbitrarily high order in the deterministic steady state, 
they are usually mute about values of derivatives away from it.
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We stress that while the focus in this paper is on asset pricing applications, the 
framework, as presented here, can be directly applied to any model with known 
state variable dynamics. In particular, no extra distributional assumptions on 
the dynamics of the stochastic discount factor (SDF) or about joint conditional 
distributions of the SDF and endogenous returns are necessary.7 A potential 
constraint, however, is that one has to be able to solve a nested problem exactly. 
To prove that this constraint is unlikely to bind, we demonstrate how generic 
problems can be restricted and solved and how these solutions can be used to 
approximate those of ‘unrestricted’ problems.

We apply the general principles to five popular asset pricing models. In par­
ticular, we approximate the function mapping state variables into the equity- 
price/consumption ratio in the models of Abel (1990), Campbell and Cochrane 
(1999), Bansal and Yaron (2004) and under two simple difference-form habit 
specifications related to those used in Uhlig (2004) and Smets and Wouters 
(2007). To restrict attention, we assume -  in line with much of the equity pre­
mium literature (cf. Kocherlakota (1996); Mehra and Prescott (2004)) -  that 
equities entitle their owner to a stream of consumption. Our choice of models 
was motivated both by popularity and the fact that between them, they allow 
for nonlinear habits, catching and keeping-up with the Joneses’, recursive util­
ity and long-run growth risks. Importantly, in some of the models we consider 
the state variable is multi-dimensional, showing that our methods can easily be 
applied in such settings as well.

The remainder of this paper is structured as follows. First, we present the theo­
retical underpinnings. We briefly discuss how the asset pricing equation can be 
recast as a fixed point problem and how the contraction mapping theorem can 
be used to characterize sufficient conditions for the existence of solutions. We 
then show how the implicit function theorem can be exploited to find Taylor 
series approximations around known solutions of nested problems and how the 
Lipschitz constant can be used to provide upper bounds on approximation er­
rors. In the following section we apply these methods to the models listed above, 
briefly comparing their accuracy to exact solutions (where available) and stan­
dard perturbation approximations. We conclude by summarizing and discussing 
possible extensions. Most of the proofs can be found in the appendix.

7In fact, it is fairly straightforward to compare solutions corresponding to different distri­
butions of underlying shocks.
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4.2 The Theoretical Underpinnings

4.2.1 R ecasting th e  A sset Pricing Equation as a F ixed  

Point Problem

The problem we consider is that of solving for the price Pt of an equity share. 
To simplify, and in line with much of the literature, we assume that equities pay 
the stream of consumption C* as dividends -  though we note that the meth­
ods presented could easily be applied to price other assets as well. From the 
fundamental asset pricing equation, we know that

Pt = Ef A4t+i (Pt+i + CWi) (4-1)

where M.t+i is the stochastic discount factor. Letting vt be the price to con­
sumption ratio, i.e. vt = Pt/Ct, equation (4.1) can be expressed in terms of 
stationary variables as8

vt =  E( M t+1 Pt+1. + Ct+1 = E, M +1 C?+ 1 K +1 +  1) (4.2)

where C f denotes gross consumption growth. Let the state vector x  take values
in V  C R dl and let the parameter vector A be an element of A £ R d2. The exact 
definitions of both these vectors will depend on the specific model considered. 
We seek a solution

vt = g (X t, A) (4.3)

where g \T> x  A —> XA Accordingly, #(•, •) has to satisfy

V< : g(X t, A) =  Et M t+l Cf+1 (g(X t+u A) +  l) (4.4)

where X t : Q —> V  is the state process.9 We further assume that the state 
process is Markov, i.e. that it’s dynamics is described by

Xt+1 := F (X t,A,6 +i) (4.5)

8In models with stationary consumption - e.g. that of Lucas (1 9 7 8 )  - we could directly 
approximate the function mapping states into prices (rather than into Pt/Ct) .

9Though we do not explicitly stress the dependance in this equation, the dynamics of M. 
and C  shall typically depend on A.



4.2. THE THEORETICAL UNDERPINNINGS 128

where & : —► E C are i.i.d. shocks and where F : V  x  A x E —►
is a known function. To proceed, let Q be a closed subset of a Banach space 
of functions on V  with norm || ■ | | . 10 To simplify the algebra we first rewrite 
equation (4.4) as

G{x) = U (x,V (G , A)(z), A) (4.6)

where U : P x 2 ) x A - » D, G and the operator V  : Q —*• Q is defined as

V {G ,\){x ) =  E(G(F(x, A,?))). (4.7)

Here G(-) is a new unknown function, which is introduced for convenience, to 
simplify the fixed-point representation of the original problem. The exact defi­
nition of G(-) will depend on the problem in question. We deliberately refrain 
from putting any restrictions on the functional form of U (•,•,•) to make the 
current exposition applicable to the widest possible range of models. In gen­
eral, U will be a known, possibly nonlinear function and it will uniquely map 
G(x, A) into the solution g(x, A). Notably, defining the operator Z  : Q x  A —► Q 
as Z (G ,X )(x) := U (x,V (G , A)(x), A), equation (4.6) can be written as a fixed 
point problem in Q

G = Z{G, A). (4.8)

As mentioned in the introduction, specification (4.8) has three main advantages 
over the original equation (4.2).

1. The contraction mapping principle can be used to establish sufficient con­
ditions for the existence of a solution, which will be unique in Q.

2. It will frequently be easy to characterize parameter restrictions under 
which equation (4.8) can be solved exactly. Letting Ai denote ‘restricted’ 
elements of the parameter vector A, the implicit function theorem can then 
be applied to compute Taylor series approximations of G(-, •)

_  ~*~°° ( \    \  \ i  p d  _

G (x , {Ai, A_i}) =  G(x, {Ai, A_i}) +  — 1 1 ■ {^> ^ -i})

where A =  {Ai, A_i} with Ai, A_i possibly multi-dimensional vectors such 
that Ai G A1, A_i G A- 1  and A1 x A- 1  =  A. 11 Notably, coefficients of the

10In practice, the choice of Q and the definition of the norm 11 • 11 will depend on the model 
considered.

n To simplify notation, we assume -  without loss of generality -  that Ai is one-dimensional.
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Taylor series expansion -  i.e. {dl /  d \\)G (x , A)|A=̂ xlf a_i} ~~ can nonlinear 
functions of x .12

3. Finally, estimates of Z ’s norm in Q can be used to derive bounds on the 
Taylor series approximation errors: | G(x, {Ai, A_i}) — G (x , {Ai, A_i})|.

Further to points (1) and (3), sufficient conditions for the existence of solutions 
to equation (4.8) as well as bounds on the norms of derivatives, can be obtained 
by applying the implicit function theorem to the operator Z  : Q —> Q. For 
completeness, we restate the theorem here in a form tailored to subsequent 
applications.

A ssum ption A I. There exists a  G (0,1) such that

VGi, G2 e G ,  A G A : IIZ (G U A) -  Z (G 2, A)|| <  a  • ||G?i -  G2\|. (4.9)

Theorem  3. Im plicit Function Theorem  Under Assumption A l  equation 
(4-8) has a unique solution in Q (Contraction Principle). We shall denote that 
solution by (3(A), A G A . 13 Furthermore:

•  i f  Z  is continuous in A (for any G G Q) then (3(A) is also continuous;

•  i f  Z  is differentiable with respect to G and A then (3(A) is differentiable 
and

—  II- 
<9A,I;

if Z  is twice differentiable with respect to G and A, then (3(A) is also twice 
differentiable with respect to A and

d2G ( d Z , - i ( d2Z  n d2Z  dG d2Z  dG dG  ,
dX2 ( ) ~   ̂ d G ’ ’ d \ 2 +  dGdX ' dX +  dG2’ dX ’ d x ’’ ’

d2G
d \ 2w"s (rb)

d2Z  d2Z  . dG.. ,,d2Z  dG  
dX2 II + ' 11 d X 11 + 9G2 ' 11 d X 1

|2

12As mentioned previously, exact solutions of nested problems -  i.e. the G(x,  (Ai, A _i}) 
are important and serve as the zeroth order approximation. Since in many cases this nested 
solution is that of a stochastic, rather than deterministic model therefore -  and unlike low- 
order perturbation approximations -  it will not satisfy certainty equivalence.

13See also Stokey, N. L. and Lucas, R. E. with Prescott (1989), Ch. 17, pp. 501 - 542 for a 
discussion of contraction mapping theorem applications.
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where all the derivatives of Z  are evaluated at (G(A),A). Similar types of 
estimates can also be derived for higher order derivatives.

P roof o f Theorem  3. For a general formulation and proof of the Implicit 
Function Theorem see also (Dieudonne, 1960, p.265, (10.2.1)). □

The Taylor series formula makes it clear that bounds on the norm of derivar 
tives of function G can be directly used to assess the error of the Taylor series 
approximation.14 Theorem 4 makes that link explicit.

A ssum ption  A 2. D ifferentiability G is continuously differentiable n  +  1 

times in the ball I  := {{Ai,A_i} : |{Ai, A_i} — {Ai, A_i}| <  r} C  A1 x A-1 .

Theorem  4. Taylor Series Expansion Under Assumption A2, for all 
{Ai, A_i} G I

||C({Ai, A-!}) -  £  lAl A-i})l|
3 = 0  “ A 1

J A i - A ! | n+1 . . ( f +1G , ...
g  ,v  _sup (41°)(n + lj !  |i/—{Ai,A_i}|<r d \ 1

P roof o f Theorem  4. For a general formulation and proof of the Taylor 
formula see also (Dieudonne, 1960, p. 186, (8.14.2)). □

While Theorem 3 gives formulae for derivatives of Q it does not specify how to 
find the operator ( /  — (d /dG )Z )~ 1. In practice, solving for (I — (d /dG )Z )~ l 
is often the most difficult part of the approximation process. 15 The subsequent 
theorems -  which form the main analytical contribution of this paper -  char­
acterize conditions under which the implicit relationship satisfied by G can be 
exploited to solve for (d /d \{)G ({ \i, A_i}), j  G {0 ,...} . Armed with these, one 
can write formulae for the first order Taylor series approximation to G (\)  around 
the nested solution G(Xq) solely in terms of known functions U(-, •, •) and F(-, •). 
General formulae for higher order derivatives could be computed analogously.16

14 Crucially, the Lipschitz constant can be used to bind values of the solution function 
derivatives for arbitrary model parameters (i.e. not only for the restricted coefficients).

15Expressed alternatively, the implicit function theorem reduces the problem of finding 
derivatives (d? /d \ i )G(x ,  A) to that of solving a nonlinear equation in function spaces. We 
shall characterize conditions under which the latter can be done in closed-form.

16And we provide formulae for fifth order approximations in one of the examples.
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A ssum ption A 3. Sufficient Param eter R estrictions There exists Ai G A1 

such that F evaluated at Ai becomes independent of x  i. e. that

\/x:  F (z,{A i,A _i},£) =  F0 (A_i,f).

Theorem  5. Benchm ark Solution Under Assumptions A I and AS the unique 
solution Go to the fixed point equation

G - Z ( G ,  {Ai, A_x})

is given by
G0(x, A_0 =  U(x, \P(A_i), {Ai, A_i}) 

where ^(A_i) is a solution to

*(A_i) =  EU(F0 (A_1,f ) ,* (A _ 1),{A 1,A_i}).

(4.11)

(4.12)

P roof o f Theorem  5. The proof can be found in the Appendix. □

Theorem  6 . First Order Derivative Under assumptions A l  and AS the first 
order derivative o f G('y *) with respect to Ai evaluated at Ai equals

! £ ( * , { * ! ,  A-:}) =  J5L (x,«(A _,),{X l l A_1}) + g ( x ,® ( A _ 1),{X 1,A_1})

E
fiW -

(i,{A 1,A .1} ,e ) - 5 - 2 (F0(A_1,?),A_i) +*(A _i)o \  I D ' S /  noX\ ox

where the constant «(A_i) is given by

(4.13)

k(A—i)  e= (1 - E ( a / a x 2)U(Fo(A_1,f ) ,» (A _ 1),{A 1>A_1})) '•

• E { ^ ( F 0 (A_1,D ,»(A _1),{A1, A_j})+ ^ (F o ( A _ 1 ,D,®(A_1),{A1, A_j})

+  E AG(Fo(A_1,0,{Ai,A_1})-^-F(F„(A_1,f),{A1,A.1} , d }

and where the expectation of £, distributed identically as is denoted by E. 

P roof o f Theorem  6 . The proof can be found in the Appendix. □
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Corollary 3. It follows directly from Theorems 5 and 6 that the first order 
Taylor series approximation to function G(-, •) is given by

where formulae for G q(x , A_i) and ( d / d \ i ) ( x ,  {Ai, A_i}) are given in equations 
(4.11) and (4.13).

4.3 Applications

4.3 .1  A  Difference-Form  External H abit M odel

We first apply the techniques described above to approximate solutions of a 
difference-form external habit model. Initially we focus on the case in which 
habits are purely a function of last period’s consumption before demonstrating 
how the approach can be applied when habits are more persistent. Since this is 
the first model we discuss, the exposition shall be more detailed and shall refer 
to the theoretical section more frequently that those accompanying subsequent 
models.

We assume a representative agent model in which instantaneous utility satisfies

(Ct - h C t.  i )1-^ - 1

where 7  >  1 and h G [0,1). Notably, for h  = 0 this utility specification is 
identical to the ones considered by Lucas (1978) or Mehra and Prescott (1985). 
The equity share’s fundamental asset pricing equation, which is a first order 
condition of the related utility maximization problem, can then be written as17

_Pt -hCtVCtY1 ct+l fp t+1 + ct+1\  
Vt~ c r Et0 \ ( c ^ w z m )  ~ct \  c t+1 )

= £ x p ( - 4 ) ) - ^  exp(^ l} ^ +! +  1) (415)

where cf+1 := log(Ct+i/Ct) denotes continuously compounded consumption 
growth. We proceed under the assumption that consumption growth follows

17Note that habits are considered exogenous when deriving the first order conditions,
hence the name ‘external habit model’.
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an AR(1 ) process

(4 f  1 - v ) =  p {4  ~  P) +  6 +i (4*16)

where 0  <  p < 1 and £ is an i.i.d. sequence.

F ixed point representation

Since equation (4.15) shows that c9 is the only state variable, therefore in terms 
of the previous section’s notation we have x := {c5} and X t := cf. Accordingly, 
letting A := {p, p, 7 , /?, /1} be the parameter vector, equation (4.16) defines the 
function F such that Xt+i =  F(AT*, A, ft+i). In particular

F (x , A, £) := (1 — Ai) A2 +  Ai x  +  £ (4-17)

where A& denotes the A;-th coordinate of vector A. To transform equation (4.15) 
into fixed-point form (4.8) define

H(pc, A) := A4 (exp(x) — As) -A3 • exp(x) and W(x,  A) := (1  — A5 exp(—x))_A3.

In light of the definition (4.3), equation (4.15) can immediately be rewritten as

g(Xt, A) =  W - l (Xt, A) ■ E( [H(Xt+1, A) • (1 +  g{Xt+l, A ))].

Adding one to both sides and multiplying by H ( X t, A), the fixed point form 
becomes

G ( x , A) =  H ( x , A) +  I { x , A) • E <?(F(x, A, 0  , A) (4.18)

where the functions (7(-, •) and /(-,*) are defined as

G ( x , A) := H {x , A) • (1 +  g {x , A)), I(x,  A) :=H(x,  A) • W ~ \x ,  A). (4.19)

Accordingly, in terms of the notation introduced in equations (4.6) and (4.8)

U (x , 2 , A) :=H (x , A) +  J (x , A) • s (4.20)

Z(G,  A)(x) :=U(x,P(G ,A)(x),A) (4.21)

with V(G,  A)(x) =  E((7(F(x, A, ^))) and equation (4.15) reduced to G = Z{G,  A).
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R estrictions on shock support

Before proceeding, we need to ensure that C* > hCt~ 1 ^  cf > log(h) and 
so the utility remains well-defined. The following proposition characterizes the 
necessary and sufficient conditions.

Proposition 4. Invariance o f cf. I f  cf follows (4-17), cf G (cf,c^) and 
Zt+ie(Zi,£h) then c?t+1e  (01,4) <=> & =  (1 — p)(c? — //), i G {i, h}.

P roof of Proposition  4. See the Appendix. □

Accordingly, cf >  log(h) if and only if the support of £ is a subset of ( ( 1  — 
p)(\og(h) — / /) ,+  oo) which we shall subsequently assume.

E xistence and uniqueness o f solutions

We now use the contraction mapping principle -  as outlined in Theorem 3 -  to 
characterize sufficient conditions for (4.18) to have a unique solution.

Proposition 5. Under the assumptions of Proposition 4, the fixed point 
equivalent of equation (4-15) i.e. G =  Z ( G , \ )  has a unique solution in Q i f 18

exp((l -  7 ) ‘ ((1 ~  p)p +  ap)) • A (7 “  !) <  Z?-1 (4-22)

where £$ denotes £ ’s Laplace transform -  i.e. C$(u) =  Eexp(—u£) -  and a is 
the lower bound of log consumption growth’s (cP) support.

Proof o f Proposition  5. See the Appendix. □

Benchmark solutions

To find a benchmark solution recall that F ( x , {p, /x, 7 , (3, h} , £) := (1  — p) p  +  
px +  £. Accordingly F(-, •, •) becomes independent of x  -  which is the condition 
underlying assumption A3 -  when p = 0. In terms of previous notation Ai =

18Since 7  >  1 and p G [0,1], therefore this condition implies that

E t exp((l - 7 )cf+1) =  E t exp((l — 7 ) • ( ( 1  -  p) p  +  cfp +  &+i))

< E ex p ((l — 7 ) • ( ( l - p ) f i  +  ap +  £)) <  / T 1.
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p, Ai =  0 and A_i =  {p, 7 , /?, h). The following Proposition can thus be seen 
as an application of Theorem 5 to the simple habit model and characterizes the 
nested solution corresponding to p =  0 .

Proposition  6. Under the assumptions of Proposition 4 and 5, when p in 
(4-17) *5 set to zero -  i.e. when x  := p 4 - £ -  then the unique solution of 
equation (4-15) is given by

S ( I ’ {0 ’A-1} ) =  i - e ^ ( ^ , { o ; a . 1} ) ¥ (m +  « , { o ,a .1}) • (4-23)

Equation (4-23) is equivalent to Pt/Ct =  ft(A_i) • (Ct — h C t - i f1 /C *- 7  where 
k(A_i) := E (l//?  -  exp((p +  £) • (1  -  7 ) ) ) _1 ■ Eexp((p +  £) • (1  -  7 )) • ( l  -  
h ex p (-(/i +  £ )))-7 .19

P roof o f Proposition  6. See the Appendix. □

Proposition 6 serves to illustrate an important point. Substituting in for /(•, •) 
and H ( •,•) from (4.19) into equation (4.23) and simplifying, we can write the 
zeroth order approximation as

W , 7,/?,/>}) =  (1 -  heM~x)r 1 • (4'24)

Since H(x,  A) and I(x ,  A) are nonlinear functions of x, therefore changes in the 
volatility of £ are typically going to affect E H (p  4 - £, {0, A_i}) and E /(p  +  
£, {0, A_i}). This shows that our zeroth order approximation is not certainty- 
equivalent as the implied policy function can change in response to changes 
in distributional properties of shocks. This is in stark contrast to standard 
perturbation methods (Schmitt-Grohe and Uribe, 2004) where even the first 
order approximation is certainty-equivalent - i.e. it is totally unsuitable for the 
analysis of asset price dynamics.

Furthermore, we know that even at second order changes in shock volatility only 
affect the constant of the ‘standard’ perturbation approximation. In order for 
‘risk’ to have an impact on the slope of gk(x , A) one needs to go to third-order or 
higher. This is important as, arguably, it is precisely why researchers interested

19Some of the coefficients in equation (4.23) as well as those listed in Table 1, equal expected 
values of functions of £. Since the distribution of £ and all the functions are known (the 
functions equal or /(•,•) or their derivatives) therefore these constants can easily be
evaluated, for example using Monte-Carlo methods.
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in time-variation in risk premia (or any other variable which reflects ‘risk’) are 
forced to derive third order polynomial approximations to the policy function. 
Equation (4.24) shows, however, that in contrast to ‘standard’ perturbations, 
changes in shock volatility will affect the slope of our zeroth-order approxima­
tion. Hence even our lowest order approximations do not inherit the undesirable 
properties of ‘standard’ perturbations and can be better suited for asset pricing 
applications.

Approximations around benchmark solutions

We now show how to find an approximation of the solution corresponding to 
p ^  0 - i.e. how to use g ( x , {0, A_i}) to approximate g(x, {p, A_i}).

Proposition 7. Under the assumptions of Proposition 4 and 5, the (fifth order’ 
approximation g5(:r, A) to g(x,{p, A_i}) ’around’ g (x ,{0, A_i}) is

g5(x, {p, /x, 7 , /?, /i}) =  (1 -  hexp(—x ) ) 7 • +  P (^i,i(® ~ P )  + ^2,1)

o2
+ ~2 (^ 1,2 (x ~ p ) 2̂ ~ U2,2 {x—p)+  C/3,2)

+  ̂ j- {U\${x—/x)3+  U2,3 {x—/i)2+  C/3,3 (2?—A*)+ ̂ 4,3)

(C/i,4(x—/x)4+  C/2)4(x-/x)3+  UzA{ x - p ) 2+UAA(x -p )+  C/5)4)

(CC1,5 (2? /x)3-|- U2,b(x—p)A+ Uz,b{x-p)3-\-U4i,h{x—p)2+ U ^ { x —p)-\-UQ^

where CH =  E H(p, -I- £, {0, A_i}), C7 =  E J(/x +  £, {0, A_i}) and the coefficients 
Uij are defined in Table 1 and can easily be computed.

Proof of Proposition 7. See the Appendix. □

Proposition 7 shows that g5(x, A) is a fifth-order polynomial in the parameter p. 
It also demonstrates that the approximation is not a polynomial in the state- 
variable x, as the latter enters via products of (1  — h e x p ( -x ) )1 and (x — p)k. 
Both of these reflect general properties of our approximate formulae -  i.e. x  
will typically enter nonlinearly and the approximation will be a polynomial in 
parameters which needed to be restricted to find a ‘nested’ solution (in this case 
p had to be set to zero).20

20What is not a general property of the method, however, is that x  enters as a product of



Uij i =  1 » =  2 2 =  3

3 = 1 

3 =  2 
3 = 3
j  = 4  

j  =  5

^ ( i ) + £G£Z(i) 

CH(2) + C GCJ(2) 

CW(3)+ (J GCI (3)

c nW + C GCxW
c ni5)+ c Gc x(5)

See below for general formula 
2{{CX +  CXW ) U I A + C X{UU2,1) 

3((2CJ(1) + C xW ) U h l  + C xWU2,i)  

4((3 Cz<2) + Cz^)C /i, i +  Cz (3)tf2, i )  

5((4CZ(3) +  Cx^ ) U h i +  Cx^ U 2i i)

See below for general formula 
3((2CZ* +  Cx^ 2)U!,2 +  (Cz +  CxM ) U 2>2 +  ^ 1/ 3 ,2 )

6((2CZ +  4CX^  +  CxWt2)Uit2 +  (2CJ(1) +  Cz ^ ) C / 2,2 +  Cx^ U 3i2) 
10((6CẐ ) +  6CẐ  +  Cz(3)«2)f/1>2 +  (3CZ<2) +  CXW ) U 2>2 +  Cz (3)f/3)2)

2 =  4

j  =  4 
j  =  5

4((3CI«2 +  C2™43) ^  +  (2C24 + C 2 ™ 4 2 ) ^  +  (C2 +  C 2 ^ 4 ) ^  +  C I ( 1 ) t / 4 , 3 )

10((6(C24 +  C2« 42) +  C 2 <2 >4 3 ) ! 7 i , 3  +  (2C2 +  -IC2™4 +  C2 <2>42)£/2,3 +  (2C2' +  Cx^ ) U 3t3 +  CX^ U ^ )

i =  5

j =  5 5((4C143 +  CX^ ) U 1A +  (3CX?  +  CX^ ) U 2A +  (2C24 +  C2™42) ^ *  +  (C2  +  Cx^ ) U i t t  +  C2(l>£/M )

And where Vi > 1 : Ui+ij := (C ^U ^ i  +  Cx^ % ^U2)i + . . .  +  Cx^U^i)/(l — Cx) and the other constants referred to above are given by:

Cw=EW( ^ + 0 Cw(1)=EW/ ( / / + 0 CW(2)=Eft"(/i+f) Cw(3)=Eft(3)(/i+£) Cw(4)=E?f(4)(/i+ 0 ch w =e h W(h+o

Cz =EZ(//+f) Cz(1)=EJ'(/2+0 Cz(2)=EJ"(/2+£) Cz(3)=EI(3)(/x+^) cz(4)= e j (4)(^+o Cj (5)=EX(5)(/2+4)
Cz*=EJ(//+Of Cz(1)€=ET(/i+ )̂C cz(2)^=e j "(//+o ^ Cj (3)^=EJ(3)(/x+04 Cz(4)£=ET(4)(/z+ 0 £ -

Cz*2=EJ(//+f)£ 2 Cz(1)̂ 2=EJ/(/x+0^2 Cz(2)*2=EZ"(/x+ 0 £ 2 Cz(3K2=EJ(3)(/2+^)^2 - -

Cz£3=EJ(/i+ £ ) £ 3 CZ(i)£3=EX'(/z+£)f3 Cz(2* 3=EJ"(/2+0£3 - — -

Cz£4=EJ(/i+ £ ) £ 4 Cj (1)̂ 4=EJ/(/2+0^4 - - - -

Cz£5= E I ( / /+ £ ) £ 5 - - - - CG = Cw/(1 -  Cx )

Table 1. Coefficients of Perturbation Approximations to the Price Dividend Ratio Function in the difference-form External Habit Model.
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D eriving Expressions for Error Bounds

We shall now demonstrate how bounds can be put on the approximation error 
by estimating the relevant norms appearing in the theoretical section. To fix 
attention, we asses how closely the zeroth order formula approximates the true 
solution. Errors of higher order approximations can be computed analogously.

Proposition 8 . Under the assumptions of Proposition 4 and 5, letting 
A =  {Ai, A_i} with Ai =  {p},A_i =  { //,7 ,/?, h}, bounds on the error made 
approximating G (x , {Ai, A_i}) by G{x , {0, A_i}) are given by

|| G (; { p ,  p ,  7 , /?, h } )  -  G (;  {0, p ,  7 , /?, M )l | 1_7

where Ka := (supx>a \x — p\ exp((l — 7 )#)), a is the lower bound of the shock 
support and the Lipschitz constant a  is given by a  =  (3 exp((l — 7 ) • ((1 — p)p + 
ap))C^(7  — 1 ) where C$ is the Laplace transform o f £ ’s distribution.

P roof o f Proposition 8 . See the Appendix. □

A Com parison o f Approxim ate Policy Functions

We conclude the discussion of the simple, difference-form external habit model by 
comparing the approximate policy functions found using our proposed approach 
to those obtained using ‘standard’ perturbation methods as well as the exact 
solution derived in chapter 3. We stress that since the charts reported here are 
specific to the underlying calibration, they are simply meant to give an idea 
of how the approximations compare and are not necessarily indicative of the 
superiority of one method over another.

a nonlinear function and a polynomial. Courtesy of the exact solutions to this model derived 
in Corollary 1 of Chapter 3, we know that this simply reflects the form of the true solution. 
In particular, given that the Taylor expansion to exp(ai) =  x %/ i \  and in light of the exact 
formula

+ 0 0  + 0 0  / \
vt =  ( l  -  h e x p (-x t ) )  7£ E  d i ,n  exp f (xt -  p )  b i,n  +  Ci,„ J (4.25)

i=l n=0  ̂ '
where bi>n := p ^ (1  — 7 ) — npt _ 1  j , the form of the approximation should come as no
surprise (see also Chapter 3 for definitions of c*(n and d i >n).
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Figure 4.1: Approximate Policy Functions Derived Using Standard Perturbation 
Methods by Approximation Order (0 - 5) - Case of the Difference-Form External 
Habit Model

To fix attention we let /? equal 0.99, set the coefficient 7  to 2.37 (Campbell and 
Cochrane, 1999), use an h of 0.85 (Juillard et al., 2006) and fix coefficients for 
mean quarterly consumption growth p  and consumption growth persistence p 

equal to their GMM estimates of 0.41% and 0.23 respectively (based on quar­
terly US data 1946 Ql -  1996 Q4, the same sample period and series used in 
Campbell and Cochrane (1999)). Policy function approximations derived using 
standard perturbation methods are plotted in Figure 4.1, those obtained using 
the approach proposed here (see also Proposition 7) are presented in Figure 4.2, 
while Figure 4.3 shows a ‘side-by-side’ comparison.

In light of the fact that ‘standard’ perturbation approximations returned by 
dynare++  implicitly assume normally distributed shocks, therefore -  to make 
the resulting approximations comparable -  we assumed that f  is a Gaussian 
white-noise process.21,22 In line with the previous parametrization we set the 
standard deviation of log-consumption growth equal to the GMM estimate of
0.87% (this coincided with the value of the gaussian-ML estimate). Finally, 
given that dynare++  returns the perturbation approximation as a function of 
cf_x and we also needed to transform the resulting polynomial into one, which

21For more information on dynare++ see also http://www.cepremap.cnrs.fr/dynare.
22Notably, this assumption is incompatible with the conditions derived in Proposition (4) 

-  as the normal distribution is not bounded from below. While this means that C* is not 
guaranteed to stay above hCt-i, and limits the ‘economic’ interpretation of the resulting 
formulae, we can still formally compare the resulting approximating functions.

http://www.cepremap.cnrs.fr/dynare
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Figure 4.2: Approximate Policy Functions Derived Using the Implicit Function 
Approach by Approximation Order (0 - 5) - Case of the Difference-Form External 
Habit Model

was purely a function of cf. We used standard Mat lab optimization routines to 
find the required coefficients.

Inspecting figures 4.1 -  4.3 reveals that, for a wide range of values of log- 
consumption growth -  ranging from -24% to 96% in annualized terms -  3rd 
(and higher) order approximations derived using both methods are virtually in­
distinguishable from the exact solution. The same is no longer true of lower 
order approximations, where differences in performance are clearly visible. In 
particular, even the first order approximation found using the Banach /  ‘implicit 
theorem’ approach does a very good job of matching the policy function -  easily 
exceeding the accuracy of second order perturbation approximations for high 
values of log-consumption growth. We take this as suggestive evidence that if 
one is interested in a parsimonious and accurate characterization of the policy 
function then the ’implicit theorem’ method advocated here has the potential 
to deliver.

4.3.2 A Persistent Habit Extension

We now consider an extension of the previous model in which habits display 
some persistence -  i.e. depend not only on last period’s consumption but also
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Panel A: Oth Order Approximations vs Exact
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Panel B: 1st Order Approximations vs Exact
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plicit Function Approach (Banach, red-dashed line) -  Case of the Difference- 
Form External Habit Model
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on consumption two periods ago. Let

(ct -  h(( i -  0) ct_!+ </»c(_2))1-7 - 1
V{Cu Ct-uCt- 2) = 1 - 7

where 7  > 1 and h, (j> E [0,1). Clearly, if (f) = 0 we recover the previous 
specification. The equity share’s fundamental asset pricing equation can be 
written as23

P t  +  c m  / p t + i +  C t + i \  

1 C t  ^ { { C t - h t t l - f l C t - x  +  W t ^ y C t J  C t  V C t +1  )

_  .7  0 (exP(4+i) -  M (! -<!>) + 4>exp(-c?)))~7 exP ( c ? + i ) ^
=  E (/5  (1  — h((l  — 0 )exp(—c?) +  0 exp(—c? — c?_1)))_">' ^  +  ^  (427)

and again we proceed under the assumption that c? follows (4.16).

Fixed point representation

Inspecting (4.27) we see that the state variable x  is now two dimensional and 
depends on both current and past consumption growth, i.e. X t+i = (c?+1,cf). 
Accordingly

X t+1 =  F(Xt,A ,6 +i) (4.28)

where the parameter vector is given by A := {p, /i, 7 , (3, h, </>} and F is implicitly 
defined in equation (4.16) as F ( x , \ , £ )  := {F i(ic ,A ,f),F 2 (a:,A,£)} =  {(1 — 
Ai) A2 +  Airci +  £, xi}  and Xi denotes the i-th coordinate of vector x.

To transform equation (4.27) into fixed-point form (4.8) define

H ( x , A) := A4 (exp(xi) -  A5((l -  A6) +  A6 exp(-aj2) ) ) _A3 exp(xi)

W ( x , A) := (1  -  A5((l -  A6) exp (-x i) -I- A6 exp (-£ i -  x2)))~A3.

Letting p(-, •) map the state into asset prices equation (4.27) becomes

g(X t, A) =  W ~ l (X t, A) • E( [H(Xt+u A)(l +  g(X t+1, A ))].

23We use the fact that

%r - jgjrr ■■ ■ %r *•••*<»>■ « »
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Adding one to both sides, multiplying by H (X t, A) and defining

G ( x , A) := H (x , A) • (1 +  g ( x , A)), I { x , A) := H (x , A) • W ~ \ x , A) (4.29)

we arrive at the fixed-point form equivalent of equation (4.27)

G ( x , A) =  H ( x , A) +  I ( x , A) • E G (F (x , A, ( ) , A) (4.30)

or in terms of the general notation introduced in equations (4.6) and (4.8)

U(a; , z ,  A) := H (x , A) +  I ( x , A) • z  (4.31)

Z(G,  A)(x) :=U(s, V(G, \){x), X) (4.32)

with V (G , A)(x) =  E(G?(F(x, A, £))) and equation (4.27) reduced to G = Z(G, A). 
Notably, the only change -  relative to the previous example -  is in the definitions 
of H(', •) and /(•, •) in equation (4.31).

R estrictions on shock support

As in the previous example, before proceeding, we first need to characterize 
conditions which ensure that Ct >  h ( ( l—</>) Ct- \ Jr(j)Ct-2 ) and so utility remains 
well-defined.

Proposition 9. Invariance o f cf. / /c f  follows (4-lV> cf > cf and

cfe  |log(fc(l -  <f>)-\Jh ^  + /i0 ),log(h (l -  0 ) + ^ -  ^

then c?+1 > cf «=► exp(6 ) >  /i((l -  0 ) +  ^exp(-cf)) ex p (-/i(l -  p) -  ptf). 
Accordingly, cf >  /i((l — (j>) +  0exp(—cf)) i f  and only if  the support of £ is a 
subset of (log(/i((l -  <f>) +  0 exp(—cf)) exp(-/x(l -  p) -  /ocf)), +  oo).

P roof o f Proposition  9. See the Appendix. □

As in the previous example, in the remainder of this section we assume that the 
initial conditions and shock support satisfy the restrictions above.
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E xistence and uniqueness o f solutions

Having rewritten equation (4.27) in fixed point form, we can now use the con­
traction mapping principle -  as outlined in Theorem 3 -  to characterize sufficient 
conditions for G =  Z{G, A) to have a unique solution in Q.

Proposition  10. Under the assumptions of Proposition 9, the fixed point 
equivalent of equation (4.27), i.e. G = Z ( G , \ )  has a unique solution in Q if

exp((l -  7 ) • ((1 -  p)p  +  cp)) • A (7  -  1) < /?_1 (4-33)

where C denotes f  ’s Laplace transform and c is the lower bound of cP’s support. 

P roof o f P roposition  10. See the Appendix. □

Benchm ark solutions

Inspecting the definition of function F(x , A, £) reveals that there is no param­
eter constellation under which F becomes independent of x.24 Despite that, it 
is straightforward to generalize the problem -  in the true spirit of perturbs 
tion methods -  in order to ensure that such restrictions can be introduced. In 
particular, we can introduce a new parameter k such that

F i({xi, x 2} , K  p , p, 7 , /3, h, <j>} , f) =  (1 -  p) p  +  Kpxi +  f  (4.34)

F2({xi, x 2}  , {k, p, p , 7 , /?, h, (j)} , 0  =n xi. (4.35)

24Even though setting p =  0 in the original problem does not make F(-, •, •) independent 
of x -  which is the condition underlying Assumption A3 -  we can still find a corresponding 
‘nested’ solution. While Proposition 11  gives the formula, it is not straightforward to use it 
to derive higher order approximations.

P rop osition  11. Under the assumptions of Proposition 4 and 5, when p is set to zero and 
so x  := p  +  £, then the unique solution of equation (4-27) is given by

_  i rr> \  ^  _  p V ( x i )  +  Kgg({x \ ,X 2 }, {0, A_ 1 }) . \ . 1 / •
( 1  -  h{( 1 -  0 )exp(—£ 1 ) +  0 e x p (-x i -  x 2))j

where U(y) := Eexp(x)(exp(x) — h(( 1 — <f>) +  0exp (— y ) ) ) - 7  and the constant k9 is given by 
Kg := [E exp ((l — 7 ) x) • (3U(x)/ ( l//3  — E ex p ((l — 7 ) x ) ) ] . This implies that

/3E exp(x)(exp(x) -  h({ 1 -  0) +  <f)Ct- i / C t ))-'i +  k9
1 *' ( l - h a i - ^ c ^ / c t + ^ c t V C i ))1

P ro o f o f  P ro p o sitio n  11. See the Appendix. □.
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Clearly, enriching the model in this fashion affects the definition of the parameter 
vector A, which now becomes A =  {«, p, p, 7 , (3, h, 0}. Crucially, however, setting 
Ai =  k = 1 recovers the original transition function, while setting k = 0  implies 
that F(-, •, •) becomes independent of x. Accordingly, we can use Theorem 5 
to find a solution for « =  0 , which can then be used to construct approximate 
solutions corresponding to arbitrary n. Setting « =  1 in these formulae will 
yield approximations to the solution of the original problem (the one without 
the artificially introduced parameter k).

Proposition  12. Under the assumptions of Proposition 4 and 5, when k in 
(4-34) ~ (4-35) is set to zero, then the unique solution of equation (4-27) is

G(x, {0, A_i}) := H ( x , {0, A_x}) +  I ( x , {0, A_x})tf (A_x)

where \I/(A_i) equals

(1 -  E /({(1  -  p ) n + £ ,0 } , {0, A_!} ) ) - l ■ E tf({ ( l -  p ) +  f ,0 } , {0, A.!}).

P roof o f Proposition 12. The proof follows directly from Theorem 5. □  

Corollary 4. It follows from Proposition 12 that

g{x , {0, A_i}) := / ( * ,  {0, A- i } ) / H ( x , {0, A_!» • «(A_!) (4.36)

and so, after simplifying, we obtain

Pt/Ct = \P(A_i) • (1  -  fcexp(—cf ) ) 7

where ^(A_i) =  (1/0 -  E exp ((l -  7 ) ( ( 1  -  p)p, +  f l ) ) " 1 • E {exp((l -  7 ) 

• ( ( l-p )M  +  0 ) ' ( l - & e x p ( - ( l  - p ) p - 0 )~7}-

Notably, even though the state-variable is two dimensional, the nested solu­
tion only depends on cf -  mirroring properties of the dynare++ perturbation 
approximation (transformed to eliminate -  as done previously).

A pproxim ations around benchm ark solutions

Inspecting equation (4.30) reveals that even though the asset pricing equation 
(4.27) is more complicated than (4.15) and even though the dimensionality of
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the state variable x  is different, the corresponding fixed point equations can in 
both cases be written as

G (x , A) =  H ( x , A) +  I ( x , A) • E G(F (x , A ,£ ) , A)

where, as stressed previously, the definitions of functions H ( x , A), I ( x , A) and 
F(x, A,£) are different (in particular, F is now given by (4.34) -  (4.35), and A 
is correspondingly expanded). That observation implies that approximations to 
solutions expressed in terms of functions H { x , A) and I ( x , A) are going to be 
identical -  of which Proposition 12 and Corollary 4 axe particular examples.25 

Accordingly, to obtain a fifth order approximation to g(x, {Ai, A_i}) -  which 
would now be a fifth order polynomial in k -  we would simply need to adapt the 
derivations behind Proposition 7. Due to space constraints, we do not report 
the formulae or the modified derivations.

4.3 .3  T he M odel of A bel (1990)

We now consider an extension of the catching up with the Joneses habit model 
discussed in Abel (1990).26 Abel (1990) assumes that instantaneous utility is 
given by27

U(ct, vt) := ^ Y 3 ^ — where W := (c?_i • C l lP Y

and 7 , 77, D  >  0  are constants, c* is the agent’s own consumption level and Ct is 
aggregate per capita consumption, both in period t. Abel demonstrates (direct
implication of his equation (8 )) that the price dividend ratio satisfies

F  q ^ t + i / d c t + i  f  C ' t + A  / -  x / .  o 7 \
*  =  Et/? E t dUt/dc t ' { - C T )  ■(1  +  Vt+l) (4'3?)

where Ut = X)£o f&Ufa+jiVt+j) and where his equation (5) states that

25Note, in particular, the formula for the nested solution g{x, {0, A _ i } )  in terms of functions 
H { •, •),/(•, •) and W ( •, •) is identical in equations (4.23) and (4.36).

26It is an extension because we allow for a more general consumption growth specification, 
which nests the i.i.d. assumption of the original model.

27To ensure that parameters retain their meaning throughout this paper, our notation de­
viates somewhat from that of the original paper.
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Denoting c? := \og(Ct/C t- i)  and assuming that in equilibrium c* =  Ct yields 

^ Ct = ^exp(c?(l -  7 )77) -  (3r)D exp(cf+1(l -  7 ))^ • c f  _T?)(1_7). (4.38)

where we have used the fact that ut = CjLp Accordingly (4.37) becomes

e x p ((l  -  7)cf+ 1) - /? 7 ? P ex p ((l -  t ) ( c?+ 2  +  (1 -  r j ) 4 + i ) )  

[exp ((l -  7 )7?c?) -  /3r)DEt e x p ((l  -  7)c?+i)] [l + 17+ 1] “ '

As before (e.g. equation (4.16)) we assume that consumption growth follows

(c?+1 “  p)  = p(ct -  t*) + 6 + 1  (4.40)

where 0  < p < 1 and £ is an i.i.d. sequence.

Fixed point representation

Plugging in for cf+2 from (4.40), equation (4.39) can be rewritten as

F f l exP((1 - 7 K +i)-/? T ;O C ex p ((l-7 )(l-» ?  +  P)c?+i ) / 1 x 
V t ~ E t P  ^ ( ( T - 7 h 4 i - ^ « p ( ( i - 7W -) ---------------------- ( 1  +  v t + l )  ( 4 - 4 1 )

where £ is a constant equal to £ := E exp ((l — 7 ) ( ( 1  — p)p +  £ ) ) . 28 This suggests
that the state variable x  is one dimensional with X t =  cf.

To express equation (4.41) in fixed point form we can add one to both sides 
and then multiply by the numerator lagged one period i.e. exp((l — 7 )cf) — 
(3rjD(exp((l — 7 ) ( 1  — 77 +  p)cf). Exploiting the fact that the denominator is T t 
measurable the fixed point form of equation (4.41) becomes

G(x, A) =  H(x, A) +  I(x ,  A) EG(F(s, A, £), A) (4.42)

where A is defined as A := {p, (3, D,r), 7 , p, £}, and -  similarly as in previous
examples

G ( x , A) := H { x , A) • (1  +  g ( x , A))

28Where we have applied the law of iterated expectations and expressed E tR H S  =  
E tE t+ iR H S  and then exploited the fact that everything on the RHS, with the exception of 
£t+2 , is Ft+i  measurable. Combining that with the fact that £t+ 2  is independent of T t \  1 and 
therefore E t+i exp((l — 7 )^ + 2 ) =  E t exp((l — 7 )^ + 1) and both are equal to E ex p ((l — 7 )^) 
i.e. a constant we obtain (4.41).
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where the transition equation is given by F(x ,{p,fl,D ,ri, :=  (1  -
p) fi +  px +  £ and the functions H (x , A) and I(x,  A)) are defined as

H(x, A) :=/?exp((l -  7 ) ( 1  -  77 +  p)z)-(exp((l -  7)(77 -  p)x) -  (3r)D() (4.43)

I ( x , \ )  :=/?exp((l — 7 ) ( 1  — t})x). (4.44)

R estrictions on shock support

Before proceeding, we need to ensure that marginal utility remains positive 
and the utility maximization problem is well-defined. The following proposition 
characterizes necessary and sufficient conditions for this to be the case.

Proposition 13. Invariance of c? and positive marginal utility. Assume
<4 follows (4.17), <4 e  (cf, <40 and ( t+i € (&,£/,) where =  (1  -  p)(cf - p ) , i e

Under these conditions, marginal utility remains positive ifc[,c?h are such
that

i t  f i d  w d - ^ . * - / > ) + a 4 i  v > p  , 4  45,
*’ h \  [m a x {(l-p )c f ,c f(? ;-p )+ C } ,c f]  r) < p. 

where the constant C =  —[(1  — p)p +  \og(/3rj D)/(1  — 7 )].

P roof o f Proposition 13 See the Appendix. □

E xistence and uniqueness o f solutions

We can now use the contraction mapping principle -  as outlined in Theorem 3 
-  to characterize sufficient conditions for (4.41) to have a solution.

Proposition 14. Under the assumptions of Proposition 13, the fixed point 
equivalent of equation (4-41), i-e. G = Z(G,  A) has a unique solution in Q if

exp((l -  7 ) • ( ( 1  -  p)p + ( p -  77)/^)) • Cz{7  -  1 ) < /T 1

where i f r j> p ,  = 0  i f  rj = p and nv = c?min i f  tj < p and where
denotes £ ’s Laplace transform.

Proof of Proposition 14. See the Appendix. □
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Benchm ark solutions

To find a benchmark solution recall that F (x , {p, /?, D, 77, 
p) /A + px  + £. Accordingly F(-, •, •) becomes independent of x  -  which is the con­
dition underlying Theorem 5 -  when p =  0 .29 Proposition (15) -  an application 
of Theorem 5 -  gives the formula for the nested solution corresponding to p =  0.

Proposition 15. Under the assumptions of Proposition 13 and 14, when p in 
(4 -4 0 ) is set to zero then the unique solution of equation (4-15) is

5(1 ’ {° ’A- l}) = ------------------ 1 - E / 0 .  +  *, {0 ,A_i})------------------

which, after plugging in for the functions /(•, •) and H (‘, •) implies that

g {x ,{  0, A_i})

=  E /?exp((l — 7 ) ( 1  — rj){p +  £)) (exp((l — 7 )77(74 +  £)) -  Pr}D() 
(exp((l — 'y)rjx) -  PrjD() • ( l  -  E /3exp((l -  7 ) ( 1  -  Tj)(p. +  0 ) ) ’

Proof o f Proposition 15. See the Appendix. □

Approxim ations around benchm ark solutions

As before, the form of the fixed point equation (4.42) is identical as in the case of 
the two previous models. The key difference, however, is that H(x, {p, (3, D, 77, 7 , p, £}) 
now depends on p -  i.e. the parameter around which approximations are de­
rived. This implies that the generic, approximate formulae for g(x, {Ai, A_i}) 
will no longer match those in the previous two models. The following theorem 
formalizes this observation.

Proposition 16. Under the assumptions of Proposition 13 and 14, the formula 
for the ‘second order ’ approximation to g(x , {p, A_i }) around g(x , {0, A_i }) is

29In terms of previous notation Ai =  p, Ai =  0 and A_i =  {p , j , /3 ,  h}.
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given by

92fa { p ,P ,  D,77,7,/z,C}) =  ( e x p ( ( l - 7 )172;) -  Pr)D()~l

• ^  _  £! + P (Vl.l{x -  n) 4- V2,i)+  y  (Vi)2(2;-//)2+  V2>2(x - / j,)+ V3y2

+  H(x,  {0, A_x}) (PHp(s, {0, A_x}) +  p2/2  • #„,(*, {0, A_x}))

whereCH := E if(//4-£, {0, A_i}), C1 := E /(/z+£, {0, A_i}) arcdVi,! =  U\yi ,V iy2 = 
U\y2 with V2yi =  C/2,1 4 - E H p(p, 4- £, {0, A_i})/(1 — C1), V2y2 = U2y2 4- 2EHpx(fi 4- 
£, {0, A_i}), V3)2 =  C/3,2 4- E H pp(p 4- f, {0, A_i})/(1 -  C1) and formulae for all 
the Uitj given in Table 1.

P roof o f Proposition 16. See the Appendix. □

Formulae for approximations of order higher than 2 can be computed analogously 
but are not listed here due to space constraints.

A Com parison o f A pproxim ate Policy Functions

As in the case of the previous model we can compare the resulting approxima­
tions to the corresponding ‘standard’ perturbation ones given by dynare++. For 
the purpose of the exercise we calibrate the parameters as follows: (3 =  0.99, 
D  =  0.75, 77 =  0.5, 7  =  2.37 with the coefficients governing the consumption 
growth process unchanged from those in the simple habit model. The charts 
display a similar pattern to that in the previous model - i.e. they are virtually 
indistinguishable from order 3 upwards, and the ’implicit function’ approxima­
tions seem to stabilize faster. The two types of approximations do not converge 
even at higher order, which could reflect the fact that values of states or param­
eters he outside the radius of approximation convergence.

4.3 .4  T he M odel o f C am pbell and Cochrane (1999)

In the model of Campbell and Cochrane (1999) instantaneous utility is given by
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Figure 4.4: Approximate Policy Functions Derived Using Standard Perturbation 
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and, as in the simple habit model, the equity price-dividend ratio follows

>■ < - >

Campbell and Cochrane (1999) posit that st := log(l — X t/C t) follows

St+1 =  s +  k(0 (st -  s) +  A(sf)(Q+i - C t - g ) )  (4.47)

where «, <f>, g and s are parameters, lowercase letters indicate logs and the sen­
sitivity function A(s) is defined as30

A(s) := (S ’ 1 V 1 - 2 ( s - s )  -  l )  • X{s: s<»„„} (s) (4.48)

where smax is a constant equal to s + 1 /2  • (1 — S 2) and x  is the indicator function, 
i.e. Xa (x ) equals 1 if x  £ A  and zero otherwise. Campbell and Cochrane (1999) 
close the model by assuming i.i.d. consumption growth dynamics, i.e. that

ct+i — Ct — g +  £t+1

where £ is a white-noise process. We shall further posit that £ is bounded from 
below and above. This easily implies that there exist numbers a <  0 < b such 
that the set T> =  [a, b] is invariant for the state process s t .

Fixed point representation

Inspecting the equations above we see that the parameter vector equals A =  
{«, 7 , /?, s, 0 , g, Smax} and the fundamental asset pricing equation becomes

vt = (3 exp ((l -  7 )g +  7(1 -  k</>) (st -  s))

• E t exp(((l -  7 ) -  7 /cA(st))£t+i) (vt+i +  1).

Adding one to both sides gives us the fixed point form

g(x, A) =  1 +  f{x ,  A) • Eh(x, £, A) • g{F(x, A, £), A) (4.49)

30Note that we slightly modifying the original notation in Campbell and Cochrane (1999). 
In particular, we use the tilde to distinguish the constant g from function g(-), we replace 
the function A(-) with A(-) to avoid confusion with the parameter vector A and we extend the 
original specification by introducing a parameter k - which shall help us find ‘nested’ solutions.
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where g ( x , A ):= 1 +  v ( x , A) and

/(z ,  A) :=P exp((l -  7 )g +  7 ( 1  -  K<f>) (x -  §)) 

h(x, A ,f):=  exp(((l — 7 ) — j k A(x )){)

F(x, A, £) :=s +  k((/> ( x  — s) +  A(z) £).

To clarify, the fixed point problem (4.49) can be considered in the space of 
all bounded functions on T> with the sup norm (i.e. | | g r | |  =  supxGX> |<7(r)|).
Under the assumptions of bounded shock support it is then not difficult to show 
that the transformation g = Z(g) is Lipschitz and the corresponding Lipschitz 
constant a  can be characterized analytically. Further analysis proceeds under 
the assumption that a  G (0,1) which implies that the fixed-point problem (4.49) 
has a well-defined solution g(-, A) -  unique in Q .

Benchm ark solutions

The important thing to note is that by setting « to one we exactly recover 
the original problem in Campbell and Cochrane (1999), while letting k = 0  

eliminates the dependance of the term under the expectation operator on the 
state st - i.e. by Theorem 5 we can hope to solve the problem exactly.

Proposition 17. The nested solution of equation (4-49) corresponding to 
k = 0  is given by

g(x, {0, A _!» =  1 +  / ( * ’ 1°; * t1 »  ' {0’ * - l}) , (4.50)
1 -  0 ■ exp((l -  7 ) 9) ■ E exp((l -  7 )

P roof o f Proposition  17. See the Appendix. □

A pproxim ations around benchm ark solutions

We now show how to find an approximation of the solution corresponding to 
k 0 - i.e. how to use g ( x , {0, A_i}) to approximate g(x, {«, A_i}).

Proposition 18. The ’first order’ approximation to g(x, {«, A_i}) ’around’
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g(x, {0, A_i}) is given by

g{x, A) -  1 «  (g(x, {0 , A_i}) -  l)  4- ngK(x, {0 , A_i}) =  exp(7 (z -  s)) • (3

e x P ( ( l — 7 )^) •Eexp((l —7 ) f) ^1 —/?-exp((l—7 ) g) -E ex p ((l- 7 ) £) -  Kj<f>(x -  s)

, »/ \ -pi £ ( n _  n ■ A (s)/A (x )-/? ex p ((l- 7  )g)
7  x  6XP( 7  ( l  — /?exp((l — 7 )^)Eexp((l — 7 ) {)) /  '

P roof o f Proposition 18. See the Appendix. □

4.3 .5  T he M odel o f Bansal and Yaron (2004)

We conclude by approximating the solution to the model of Bansal and Yaron 
(2004). Under their specification, utility is defined recursively as in Epstein and 
Zin (1989, 1991) and the SDF equals

M +1 := /?9 ( ^ )  "* (4-51)

where Pt denotes the price of an equity share and (3,0, if) are parameters.31 

Accordingly, the fundamental asset pricing equation for the equity share is

t f  =  E, ( a  ( ^ g i ) ( *’ (1 +  .* « ) )  . (4.52)

The key difference between equation (4.52) and the asset pricing equations we 
have considered previously is that the expression under the expectation operator 
is not linear in vt+\. Bansal and Yaron (2004) further assume

c?+1 =\i +  nzt +  crtT]t+i (4 -53)

zt+i =Kpzt +  (f>e^te t+ 1 (4.54)

°t+i =<j2 +  Kiyi(at -  <r2) +  <7wWt+i) (4.55)

where et+i,r}t+i,wt+i ~  i-i.d. and are mean zero and bounded and zt is a ‘small 
persistent predictable component’ of consumption growth.32 Notably, as before,

31We use a notation consistent with Bansal and Yaron (2004) with the exception of replacing 
6 by and x t by zt .

32 Again, the assumption of bounded -  rather than normal -  shocks is introduced for technical 
convenience.
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we have introduced an extra constant k > 0  such that when k = 1 we recover the 
original specification of Bansal and Yaron (2004) (i.e. this model nests theirs). 
Under the assumption that , p €  (0,1) and k  G [0,1] it is not difficult to show 
that the set T> =  [—ai,6i] x [—02,62] x [—03,63] is invariant for the dynamics 
(4.53) - (4.55) for sufficiently large positive numbers 0 ^,6* where i G {1,2,3}.

Fixed point representation

As the equations above suggest, the state-variable x  is now equal to x t = 
{cf, zt , of}, the shock process is three dimensional as well and given by =  
{77*, e*, wt} and we can define the parameter vector A as A := {«, ip, 9, p, p, <f>e, a2, 

/?}. The transition function F(-, •, •) then is

^ F i ( x , \ ^ A 4  +  X 1X 2 +  y/X3^1  ^

F ( * , A , 0  = F 2( x ,
II A1A5372 +  XQy/X3^2

^ F 3( x , / ^  A 7  +  A i  (Ag(aJ3 —  A 7 )  - 1-  A s^ a )  /

while letting g(x, A) denote the solution, the fundamental asset pricing equation 
can be rewritten as

jOt.A)*3 = E ( A 1o (ex p (( l - l /A 2)F i ( i ,A , f l ) ) (H -9(F(i1A,$),A))) 3.

Raising both sides to the power I / A 3 , adding one and then multiplying by 
Aioexp((l — l / \ 2 )xi) and raising both sides to the power A3 yields

G(x, A) =  A^exp(A3(l -  1/A2)*i) ( l  +  (E G fF fi.A .O A ))1'*1)* ’ (4.57)

where
G(x, A) := (Aio(exp((l -  1 /A2 )a;i)) ( l  +  g(x, A) ) ) * 3 . (4.58)

We have thus rewritten equation (4.52) as G =  Z ( G , \ )  where Z(G,X)(x)  := 
U(a;,P(G?, A)(a;), A) with V(G, A)(x)=E(Gf(F(x, A,£))) and U(a;,z, A) given by

U(x, z, A) := A^ exp(A3(l -  1/A2)zi) ( l  +  *1/A3) A3.

Under the assumption of bounded shock support if A , B  are constants such 
that 0 < A  <  A^exp(A3 (l — 1 /A2)zi) <  B  then G(x, A) > A. Further, the 
function h(z) := ( l  H- J2r1/,A3) A3 is Lipschitz on [A, + 0 0 ) with constant C  being
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the supremum of \h'(z)\, i.e.

C  =  sup
z>A

1 +  z i/a3 \ ^ - 1

Since the shocks are assumed bounded, therefore one can always apply the fixed 
point theorem in the space of bounded functions on T> with supremum norm 

. To calculate the Lipschitz constant of Z  we can use the observations above

\Z(Gi) (x) -  Z (G 2)(x) | =  |Ajgexp(A3(l -  1 /A2 ) n ) ( l  + V{GU \ ) { x f ^ ) X3 

-  A^exp(A3(l -  1/A2) i i ) ( l  + 'P(G2, A ) ( x ) 1 / > 3 ) A 3 | < |A^exp(A3(l -  1 /A2)x i)| 

• C ■ |7>(Gi -  G2)(x)| <  |Ajg exp(A3(l -  1 /A2) n ) |  • C  • HG, -  G2||.

ciated with the transformation V  equals one. Accordingly \\Z(Gi) — 2 (G 2)|| <  
supxeP | Aio exp (A3 (1 — 1 /A2)xi) | • C • | |Gi — G2| | where C  is defined above. Thus, 
Z  will be a contraction if |AiQexp(A3 (l — 1/A2)# i)| • C < 1 i.e. for example, 
for sufficiently small values of A10. Assuming this condition is satisfied we can 
proceed to inspect approximations to the unique solution.

Benchm ark solutions

To find a benchmark solution recall that equation (4.56) implies that F(-, •, •) 
becomes independent of x -  which is the condition underlying assumption A3 
-  when At =  0 .33 Theorem 5 thus implies that we can characterize a solution of 
equation (4.52) when « =  0. Proposition 19 gives the formula.34

3 3Accordingly Ai =  « ,Ai =  0 and A_i =  {\l),9,n,p,<l)e,o2 ,(Tw,v \ , f i } .
34Alternatively, letting k — 1 and setting p, V\ and aw equal to zero we would obtain

where z t ~  Defining fi(x ,X)  := /?exp(a:((l — ^ ))) and noting that
EtG(xt+ i , z t+ 1 ) =  E G(p +  z t +  07), <j)e<Te) := F(zt ) the fixed point equation becomes

To fully characterize the solution we need to find F(y) =  E G(p  +  y +  or), <f>e(re). Plugging in 
(x i ,x 2) =  (p +  y 4 - or), <f>e(re) and taking expectations we find that

where the latter inequality follows from the fact that the Lipschitz constant asso-

X t+ 1 =  P  +  Zt +  <TT)t + l (4.59)

G (xi,X 2 ) =  Ti0{x 1) • ( l  +  (E G (p +  X2 +  07),<l>e<Te))*)e. (4.60)
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Proposition 19. Under the assumptions of Proposition 4 and 5, when Ai 
(corresponding to k) in equation (4-56) is set to zero then

/?(Eexp(0(1 -  l/t/>)(fJL + (rii)))1/4>

1 -/? (E ex p (0 (l -  l/^C/x +  ^ i ) ) ) 1̂

i.e. the price dividend ratio under these parameter restrictions is constant. 

P roof o f Proposition 19. See the Appendix. □

Approxim ations around benchm ark solutions

We now show how to find a perturbation approximation of the solution corre­
sponding to k ^  0  - i.e. how to use g ( x , {0, A_i}) to approximate g(x , {«, A_i}).

Proposition 2 0 . Under the assumptions of Proposition 4 and 5, the ’first 
order’ approximation to g(x , {«, A_i}) around g(x , {0, A_i}) is given by

,  (1 +  «(I/(A_1)1^ - i ) / ( i  +  • (t(s, A.Q +  ^ A - Q ) ) ^  _  1

1 - A10(Eexp(A3(l - 1/A2)(A4 + v̂6)))VAa
where the constant k is given by

k := E/30 exp((/i +  ar})(0 -  ^ ) )  • ( l  +  {F{4>ea e ) Y ) 6. (4.62)

To find k we can evaluate (4.61) at y =  <j>eae and plug the RHS into (4.62)

k =  E(30 exp((/x +  <rg){Q -  ^ ))  • ( l  +  (/c • exp((0e<re)(0 -  ^ ) ) ) 5)*-

Denoting the solution of this nonlinear equation by k* (we do not analyze the existence and 
uniqueness of k* here) we could write

G (x i , x 2) =  (36 - e x p (x i(0 -  ^ ) )  • (1 +  («•)* • exp(x2(l -  ^)))®

=► 9 (x i ,x 2) =  («*)* • exp(x2( l -  ^ ) )  (4.63)

which given that Vt =  g(xt, Zt) finally implies that equity share prices evolve according to

Pt =  Ct - («•)* • exp(zt (l -  i ) )  (4.64)

i.e. they are only a function of current consumption levels and the predictable consumption 
growth component Zt. Again, however, as in the case of the external habit model with persis­
tent habits, it is challenging to construct approximations around this solution, which is why 
we continue with the more restricted solution of proposition 19.
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where the functions i(x, A_i) and #(A_i) are given by

= x2A3 (1  -  1/A2)A^ • exp(A3(l -  1/A2)a;i)

• ( l  -  A10(Eexp(A3(l -  1/A2)(A4 +  ^  ;

t>(A_0 =  i^(A_i) 1/A3_1 • e ( g ( { A 4 +  V ^ f i ,  A ev ^ fe , A7} ,{0 , A_!»

• t({A4 +  ^6\/A7?2] A7}, A_i)^ ;

and i/(A_i) =  A^ ( l  +  (i/(A -i))1/A3)  Eexp(A3(l -  1/A2)(A4 +  \/A7{i)). 

P roof o f Proposition  20. See the Appendix. □

4.4 Conclusions

This paper proposed a new method of approximating solutions of models with 
known endogenous state-variable dynamics. Focusing on asset pricing models, 
it re-expressed the Euler equation as a fixed-point problem in Banach spaces. 
This was key to finding solutions of nested problems, which were then used to 
approximate the full solution. It was shown that even low-order approximations 
were not ‘certainty equivalent’ and that the zeroth order approximation could 
allow for time-variation in risk premia. Arguably -  by allowing the approxi­
mation to be an arbitrary, nonlinear function of the state -  the method made 
the approximations more parsimonious while retaining high precision. The par 
per also clarified how to use the Lipschitz constant to provide upper bounds 
on the resulting approximation errors. Generalizing the methodology to models 
in which the dynamics of state variables is not known and a more thorough 
investigation of its accuracy and asymptotic properties would both make for 
worthwhile extensions.
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4.A A ppendix

P roof o f Theorem  5. The fixed point equation (4.6) corresponding to A =  
{Ai, A_i} can be written as

G(x, {Ai, A_i}) =  U(x, EG(F(x, {Ax, A_a} , () , { \ u  A .J ) , {Ai, A_i}) (4.65)

given the respective definitions of Go and F0 this can be rewritten as

Gq(x , A_i) =  U(x, EGo(Fo(A_i, £), A_i), {Ai, A -i}).

Since U(«, •, •) is a known function, therefore to fully characterize Go(-, •) it suf­
fices to find >P(A_i) := E(7o(Fo(A_i,£), A_i). Because G o (t)  satisfies

G0 (x, A_i) =  U(x, »(A _0, {A,, A_j})

therefore, plugging in x  =  F0 (A_i,£), taking expectations of both sides and
exploiting the definition of ^(A_i) this becomes

¥(A _0 =  EU(F0 (A _,,O ,«r(A-1),{A 1,A_1}). (4.66)

Accordingly, if we find ^(A_i) which solves (4.66) then the solution of equation 
(4.65) will be given by

G0(x, A_0 =  U (x ,» (A_j), {Ai, A_!}) (4.67)

as posited in Theorem 5. ■

P roof o f Theorem  6 . The fixed point equation is

G(x, {Au A_i}) =  U(x, EG(F(x, {Au A _ i} ,0 , {Au A_i}), {Ax, A .,} ). (4.68)

Differentiating this with respect to Ai we obtain

9 G(x, {Ai,A_r}) =  ^ -U (x ,E G (F (x , {Alt A_i},0 ,  {Ai,A_i}),{A1; A_x})
3Ai v , l  " ~‘J' 9Ai 

+  ^ ( x >EG(F(x,{Ai,A_1} >0 .{ A 1>A_,}),{A1,A_1}) E ^ .( x ,{ A 1,A_1} , 0

BC BC
^■(F(x, {Alf A _ iU ), {Ai, A_r}) +  E ^ ( F ( x ,  {Ai, A -r U ), {Ai, A_J)
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where <9U/<9x2 denotes the partial derivative of U with respect to the second 
variable. Evaluating this at A =  {Ai, A_i} then yields

Jg(x, {Xl A_!» = !£(*, ®(A_0, {X,, A_,» + g (x , ®(A_1), {X1; A-i})

•E
_ AC ~ riC1 -■ (*, {Xi, A_!}, 0  -5- (F0(A_!, 0, {Xi, A_!})+3^- (Fo(A_!, {), {Xi, A_1})& V  S x K dXl

where we have used the definition of ^ ( A _ i )  =  E C r o ( F o ( A _ i , f ) ,  A _ i ) .  Plugging 
in x  =  F o ( A _ i , £ )  and taking expectations of both sides yields a linear equation 
which can be solved for E ( d / < 9 A i ) G ( F o ( A _ i , £ ) ,  { A i ,  A _ i } )

E ^ ( F 0 ( A _ l , D , { X 1 , A _ l } ) =  f l - E ^ ( F 0 ( A _ 1 , C ) , « ' ( A _ 1 ) , { A 1 > A _ 1 } ) ' )  

■ E { S ( F o ( A - 1 . D . * ( A - i ) . { X 1 . A - i } )  +  g ( F ° ( A _ i 1{ ) ) ® ( A _ i ) l { X l l A _ l } )  

• e ( ^ (Fo(A-i , | ), {Ai ,A. i }^ ) ~ ( F o(A_1, « , {A1>A-1}) ) } .

Exploiting the fact that Go(x, A _ i )  := G(x, { A i ,  A _ i } )  yields

A C  -  FiC1
^ ■ ( F o ( A _ 1 , ^ ) , { A 1 , A _ 1 } )  =  ( F o ( A _ i , f ) ,  A _ i )

which completes the proof. ■

P roof o f Proposition  4. Since cf+1 =  pc? +  (1  — p)p +  f t+i, therefore p > 

0A  > <?,& > 6  => c?+1 > pcf +  ( l -/£>)/*+&. Butpc? +  ( l - p ) /z + 6  >  cf > 
(W X cf-A O - Similarly, p > 0,c? < c£,& < & c?+1 <  (1 — But

+  +  ̂  < < * * » & <  (1 -p)(c?h - f j ) .  Note, c f ,4  G R U {-o o ,+ o o } .B

P roof of Proposition 5. Let ^ be a Banach space with norm || • || whose 
elements are functions G : [a, -foo) —► M and let Q be a closed subset of Q such 
that G G Q if and only if G G Q and G : [a, +oo) —> R+. Let the norm on Q be 
defined as

| | G | |  := supexp(—Sx) ■ |G(x)| < +oo (4.69)
x>a

where a is a constant greater that log(h) and S is a positive constant yet to 
be determined. We shall demonstrate that condition (4.22) guarantees that the 
operator Z  : Q —> Q defined in equation (4.21) is Lipschitz with a Lipschitz 
constant smaller than one. By Assumption AI and Theorem 3 this shall imply
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that there exists a solution, unique in Q, to the fixed point equation G = Z(G,  A) 
and so also to the corresponding equation (4.15).

To ensure that Z  : Q ^  Q, we first check whether H  G Q. Recalling the 
definition of H  we have that

||/ / | | =  sup/? (l — /iexp(—x)) 7 • exp((l — 7  — 6 ) • x) (4.70)
x>a

and so the necessary conditions for \\H\\ <  + 0 0  =>• H  G Q are a > log(fi) and 
5 > 1 — 7 . We now derive expressions for Z ’s Lipschitz constant35

\\Z(G)\\ < \\I -V(G)\ \ = /?supexp(x(l -  7  -  <S))EG( ( 1  - p ) p  +  px +  f)
x>a

< (3\\G\\ supexp(x(l -  7  -  6 ))Eexp (6 ( ( 1  -  p)fi + px + () )
x>a

=  \\G\\ ■ (3 • exp(6 (l -  p)p) - E e x p ( 6 Z) supexp (x(l -  7  -  5(1 -  p))) .
x>a

We thus see that Z  is Lipschitz with constant a  given by36

a = {3 - exp(6 (l — p)p) ’ Eexp(££) • supexp (x(l — 7  — £(1 — p))) .
x>a

Setting S equal to (1 — 7 ) and assuming 7  >  1 the Lipschitz constant becomes

at = P exp((l -  7 ) • ( ( 1  -  p)p +  ap)) • E exp ((l -  7 )^) (4.71)

where 7  >  1 implied supx>a exp (xp (1  — 7 )) =  exp (a p (1 — 7 ) ) . 37 Accordingly,
for this choice of 5, the operator Z  is a contraction mapping, and by Theorem 
3 there exists a unique solution of equation (4.15) if and only if

a  < 1 44* E exp ((l -  7 ) • ((1 -  p)p +  ap +  {)) < /?_1. (4.72)

35Where the inequality between the first and second lines follows from 

||G|| := supexp(—6x) G(x) => Vy >  a : ||G|| >  exp(-Sy) G(y )x>o
=► Vy >  a : G(y) <  exp(*y)||G|| =► EG(C) <  ||G||Eexp(tfC)

where  ̂ is an arbitrary random variable with support C (a, + 0 0 ).
3 60 f  course, a  is only then a Lipschitz constant if it is finite. Since in this, and all subsequent 

examples, we characterize sufficient conditions for a  <  1 , which clearly implies a  <  + 0 0 , 
therefore we do not separately check finiteness.

37As discussed above, our choice of S implies that | |i if || < + 0 0  as required.
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To conclude we note that for p =  0 equation (4.72) becomes

E exp ((l — 7 ) • (/x +  0 )  =  E exp ((l — 7 ) • 2 ) < i  (4.73)

which can be shown directly to be both a sufficient but also necessary condition 
for a well-defined solution. ■

P roof o f Proposition 6 . The fixed point equation (4.18) corresponding to 
parameter vector Ai x A_i =  {0, /x, 7 , /3, h} (i.e. one in which p = 0) is

G (x, {0 , A_i}) =  H ( x , {0 , A_i}) +  / ( x , {0 , A_t}) • E G(n + f , {0 , A .,}) (4.74)

Since //(-, •) and /(•, •) are known functions, therefore to find G(x, {0, A_i}) all we 
need is the constant EG(/x+£, {0, A_i}). To back it out, we can plug in x =  /x+£, 
take expectations of both sides of (4.74) and solve for EG(p -I- £, {0, A_i}) =  
(1  — E /(/x +  £, {0, A_i} ) ) - 1  • EH(fi +  f, {0, A_i}). Plugging this constant back 
into equation (4.74), defining x  := /x +  £ and using equation (4.19) to back out 
the value of g(x, {0, A_i}) we finally obtain

S(x, {0, A-j}) =  (H(x, {0, A.JJJ-'GCx, {0, A_i}) -  1 =  ^ " ‘(x, {0, A_,})

• (1  -  E W - \ x ,  {0, A_i}) H(x,  {0, \^ } ) )~ > E H (x ,  {0, A_!}).H

P roof o f Proposition 7. First note that after plugging in for F(-, •, •) equation 
(4.18) becomes

G{x , y) =  H ( x , y) +  / ( x , y) • E G({ 1 -  yx)y2 +  yxx +  f , y , 0  , y) (4.75) 

where from the proof of Proposition 6  it follows that38

G(x, {0, y}) =  / ( x , {0, y}) +  H { x , {0, y}) (4.76)

and equation (4.19) can be used to express <?(x,y) in terms of G (x ,y). Straight

38Definition of all the constants, denoted by C can be found in Table 1.
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from (4.75), letting Ai =  {/?}, A_i =  {p, 7 , /?, h} and A =  Ai x A_i - we get

9G£A) = /(Xj A) E ^ G ( ( l - p V  + px + ^,A)(x _  ^

| d G ((l-p )/x  +  px +  g,A)  ̂ ( 4  ?,7)

Equation (4.76) implies

8 G(x, {0, A_!» _  dH(x,  {0, A_i}) +  a/(x, {0, A_!}) CH
dx dx ' dx 1 —C1

which can be plugged back into equation (4.77) evaluated at {0, A_i} to yield

,  ,(* , ( o ,» . , ) )  e
dp \  dp

+
dH(p  +  £, {0, A_i}) +  d l ( p +  £, {0, A_i}) CH

dx dx 1 - C 1
* -  /*)) (4.78)

The terms in the square brackets do not depend on x and consist entirely of 
derivatives of known functions //(•, •), /(•, •). Accordingly, defining39

+  O.A.,}) , %  +  f,{0 ,A -,} )  CH \
Ul-1 : = E (  ak +  dk 1 = 0 )

we can rewrite equation (4.78) as

f lg fc fo A -x } )
dp

=  /(x ,{  0 ,A _!})E
dG{p +  £, {0, A_i})

dp
. (4.79)

We can solve for the value of the constant Ui$ := E (d /dp )G (p  +  £, {0, A_i}) 
by plugging in x =  p  +  £ and taking expectation of both sides of (4.79)

t7a,i =  E(/(M +  S,{0,A_1} ) - ( l7 i , i f  +  J72,i))  =>t/2,i =  t f i , i ( l - C 7) ^

Plugging this back into equation (4.79) we finally obtain 

dG(x, {0, A_i})
dp

=  /(x,{0,A _!}) C/1,0 +  C/1,1 - (x — p) (4.80)

39Where no ambiguity can arise, to cut on notation, we shall not stress the dependence of 
U\ti on A_i and simply write U\y\ rather than A_i).
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which, given that from equation (4.19) g(x,y)  =  H  1(x,y)Gf(x,y) — 1 immedi­
ately implies that the first order approximation to g(x, A) is given by

g \ x ,  A) =  (1  -  h e x p (-z ) ) 7 +  P • (^2,1 +  E/1,1 • (x -  .

Proceeding as above, to compute the second order approximation to g(x, A) we 
need to find (d2 /dp 2 )G(x,{0,A_i}). From (4.75), this equals

, nd2 G(p + (, {0, A_j}), N _ d 2G(p + (,  {0 , A_i» 
+  2  d x d p  {X M)+ d p d p

Again straight from equation (4.76) it follows that

d2G(* ^ A~l}) = H*(x, {0. A_i}) + /"(x, {0,

(4.81)

(4.82)

where H"  and I"  denote derivatives with respect to x. Further, from (4.80)

8 2 G(* ^ A~l})=:/'(x,{0 , A-r})(Uh i { x - p )  + Uuo) + /(x,{0, A_,}) (4.83)

To compute E(d 2 /dp 2 )G(p, + £ ,{ 0 ,A_i}) first plug in (4.82) and (4.83) back 
into (4.81), then plug in x =  p  +  £ and take expectations. This implies

E a 2G(/r +  e ,{ 0 ,A -!} ) =  E / ^  +  ^  ^  A
dp dp

iH "  , n l "  C HCH + C 1
1 - c 1

+ 2
4 d p d p )

Denoting the constants in the square brackets by Ui t 2 and U2,2 respectively and 
letting 1/ 3,2 := E {d2 /{dpdp)) G(p +  £, {0, A_i}) we can solve for U^,2

U3, 2 =  (1 -  C7) ' lE/(/r +  O K 2^2 +  Uv £ )  = U^ C^ + ^ C‘( (4 .8 4 )

where, for reference

U U2 =CH" + C I”^ f  U 2 , 2  = 2  ((C/(1K + C') t/i, 1 + e,(1>[/2, r). (4.85)
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Accordingly, we have found all the terms entering (4.81) and so can use the for­
mula for (d2 /(dpdp))  G(x, {0, A_i}) to write down an expression for the second 
order approximation to ^(x, {0, A_i})

g2 (x, A) =  g1 (x , \ )  + ( l - h  exp(-x ) ) 7 • — U2 , 0 +  (x — g)2U 2 ,1 +  (x — n) t/ 2,2

Higher order derivatives /  approximations can be computed analogously though 
the algebra is messier and so we skip them to save on space. Details are available 
upon request. ■

P roof o f Proposition  8 . We know from Theorem 4 that

l|G!U>.A -1} ) -G ({ 0 ,A _ 1})|| <  |p - 0 |  sup II^ M II- (4-86)
| i / - { 0 , A _ i } | < r  U P

Straight from (4.75) we get 

and Theorem 3 further imphes that

l l^ ll  <r ^H/(x,A) ■ |X- ^ - E ( 9G((1- ^ +pX + g’A))  ||

< ^ £ 1 1  /(x, A) • |x -  • ( ^ ( ( l - p ) M  +  px +  g,A))  H

dG= p sup exp(-Sx)  |x -  (i| exp((l -  7 )x) 11— ((1 -  p)fi +  px +  f , A)11
x>a OX

</3 ^sup |x -  /x| exp((l -  7 )x)^ | | ^ | | .

To compute the norm of (d/dx ) G we differentiate formula (4.18) and obtain

£ ( * ,  A) =  +  (1 -  7 )P(G(x, A)) +  7 > (g (x , A)) (4.88)

and so

,.dG

1

—  I 
dx 1

+  ( l - 7 )||P(G (p))|| <
1 — a

af t  IT

i i f t r i i + d - ^ i w i . (4.89)
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We can then use the definition of H (x, A) to write

H ( x , A) =/? e^ (x), ,  ^ ( x ,A )  =H(x
v  ̂ (exp(x) -  h p  dx v v

which implies that

’ ^  exp(x) — h )

Mtxii * / exP(x) /3 exp(x(l — 5))llffll =  /?sup « p ( - x t f ) (exp(x)_ fc)T =  P ^ a ( e M x ) _ h p

- 0  sup exp(x(l — S — 7 )) ( l - ^ y )  <  P • « p (« ( l  -  * -  7 »  ( l " ^ )

and
I — I 

dx s ™ 5 e ( ‘ - ; 5 w ^ ) 5 1 ™ -

Plugging all the estimates above into formula (4.86) we obtain

A_!}) — Gf({0,A_!})|| < p  sup IIttM II < p - p - 1 1 ^

1 +  (1 -  7)
1 — a iihiisup |x -  d  exp((l -  t ) x )  ) <  Ka •

x>o /  1 O!

5 *'■K* • ( r b )  • I1 “ 7“ ] 'exp(a (1 " 5 “ 7)) • )

where Ka := (supx>a |x — p\ exp((l — 7 )x)). Setting S =  (1 — 7 ) and plugging in 
for a  from equation (4.71) completes the proof. ■

P roof o f Proposition 9. To ensure that the support of cf is invariant - i.e. if 
cf_x > cf => cf > cf we first observe that exp(cf) > h ((l — <f>) +  0exp(—cf)) >  
exp(cf) is an inequality which can be solved for cf

cf G |log(/i(l -  <f>)-)Jh  ^  +  /t0),log(h(l -  (j>)+)Jh  ^ ~ —  +  h<f>)j .

Dividing both sides by Ct~ 1 >  0 we obtain exp(cf) > h ((l — (j>) +  0exp(—cf^ )). 
Letting cf be the infimum of x ’s support and plugging in for cf =  /x(l -  p)  +  
pcf_x +  a sufficient condition for the original inequality to hold is

exp(/x(l -  p) +  p 4 - i  +  6 ) >  ^((1 -  <f>) +  </>exp(—cf))

=* exp(&) > /i((l -  <j>) +  0exp(—cf)) exp(-/z(l -  p) -  pcf) (4.90)
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where the latter inequality holds if and only if p > 0  (which we assume). ■

P roof o f Proposition 10. Let Q be a Banach space with norm || • || whose 
elements are functions G : [c, +oo ) 2 —» R such that G G Q if and only if

||G|| := sup exp(—$1X1 -  £2x2) • |G(xi,x2)| < +oo (4.91)
( x i ,X 2 )e [c ,+ O C > )2

where c is a constant greater than cf and 8 1 , 8 2  are positive constants yet to be 
determined. Further, let Q be a closed subset of Q whose elements are functions 
G : [c, -poo) 2 —> R+. We shall demonstrate that condition (4.33) guarantees that 
the operator Z  : Q —► Q defined in equation (4.32) is Lipschitz with a Lipschitz 
constant smaller than one. By Assumption AI and Theorem 3 this shall imply 
that there exists a solution, unique in Q, to the fixed point equation G =  Z(G,  A) 
and so also to the corresponding equation (4.27).

As in the previous example, to ensure that Z  : Q —► Q, we first check whether 
H  G Q. Recalling the definition of H  we have that

\ \H\\=  sup 0(1 -  h(( l  -  ^ )exp(-x i) +  <£exp(-xi -  x2) ) ) - 7
X l,X 2 > C

• exp((l -  7  -  £1) xi) • exp( - 8 2  x2)

which implies that ||/ f  || < + 0 0  £1 >  1 — 7 , 82 > O.40 To derive an expression
for the Lipschitz constant of operator Z  note that the triangle inequality implies

40We use the fact that for xi,X2 >  c the first line in the definition of | |i / | |  is bounded.
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that \\Z{G)\\ < \\H\\ + \\I -V(G)\\ < \ \I-P(G)\\  and so41 

\ \Z (G ) \ \< P  sup exp(xi(l — 7  — ^i) — <J2 x2)|EG!((l — p)p +  pxi +  f ,x i) |
(xi,x2)e[c,+oo)2

</3\\G\\ sup e x p ( x i ( l - < y 2 x2)E ex p (tfi((l-/o )^  +  /QXi+ f) +  <y2xi)
(xi,x2)e[c,+oo)2

=  \ \G\\■ /3 ■ exp(8 i ( l  -  p)fi) -E exp(^ if)

• sup exp (xi ( l  -  7  -  £ i(l -  p) +  <S2) ~  x2£2) •
(xi,x2)e[c,+oo)2

We thus see that the Lipschitz constant is given by 

a  = /?exp(5i(l -  p)fi)C^(-Si) sup exp (x i( l -  7  -  £ i(l -  p) +  S2) -  x252) .
( x i ,x 2 ) 6 [ c , + o o ) 2

where £$(•) is the Laplace transform corresponding to random variable £. For 
Z  to be a contraction we set {£i, £2} =  {1 — 7 ,0}. The corresponding a  is

a  = 0  exp((l -  7 ) ( 1  -  p)p +  (1 -  7 )pc) • £ ^ ( 7  -  1). (4.92)

Accordingly, for this choice of 6 , the operator Z  is a contraction mapping and
the price dividend ratio g(-) is a well-defined function of the state if

a <1<$  exp((l -  7 ) ( 1  -  p)p +  (1 -  7 )pc) • 7  -  1) < (3~l . ■  (4.93)

P roof o f Proposition 1 1 . The fixed point equation (4.30) corresponding to 
parameter vector Ai x A_i =  {0, p, 7 , /?, h, <j>} (i.e. one in which p =  0) is

G (x , {0, A_x}) =  H ( x , {0, A_x}) +  / ( x , {0, A_i}) • E G({p  +  { ,x2} , {0, A_x})

Since H (•, •) and /(•, •) are known functions, therefore to find G(x, {0, A_i}) all 
we need is the function uc{y) := EG({p  +  £, y}, {0, A_i}). To do that, we can

41Where, the inequality between the first and second lines follows from

||G|| := sup exp(-<Sxi -  <Sx2) |G(xi, x2)|(xi,x2)e[c,+oo)2
=^V(yi,2/2) e  [c,+oo)2 : ||G|| >  exp(-<hj/i -  2̂2/2 ) \G(y i ,y2)\

=>V(yi,y2) € [c, -hoo)2 : \G(y i ,y2)\ <  exp(6yi  +  <5y2)||G||

=^E|G((1 - p ) p  +  px 1 +  £ ,x i) | <  ||G|| -Eexp(<5i((l -  p)p +  pxx +  £) +  <52xi)

where we set y\  =  (1 — p)p  +  px 1 +  £ >  c and y2 — x2 >  c.
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plug in x =  {/i +  £, y} and take expectations of both sides to obtain

uG(y) = E + £, y}, {0, A_i}) + EI(x,  {0, A_i})uG(a:)

where (slightly abusing notation) we have exploited the fact that /({x i,x 2}, A) 
does not depend on x2. Denoting

uH{y) :=EH({fi  +  f , y}, {0, A_i}) /c :=EI(x,  {0, A_i})ug (x) (4.94)

and plugging in uG{p +  £) = uh(i* + Q + * (definition of uG(-) evaluated at x) 
into the definition of « yields and equation which can be solved for «. Using the 
solution k  = E(I(x) uh{x ) ) / ( 1  — E/(# )) in the definition of G(*, •) gives

<?({xi,x2}, {0, A_i}) =  H(x  i,x 2) +  /(xi)uif(xi) +  /(x x
( 1 - E  I{x))

where we have omitted the dependence of all the functions other than G on 
{0, A_i}. the function un(y)  was defined in (4.94) above. Plugging in the defi­
nitions of H  and I  allows us to back out g(x, {0, A_i}) as

s ( { x i , X 2 } , { 0 ,  A _ i } )  =  , - - - - - - - - - - - - - f i v f -
(1  -  h({ 1 -  (p) exp(-xi) -I- <^exp(-xi -  x2)))

where U(y) := E exp(x)(exp(x) — h((l — <fi) +  <£exp(—y) ) ) - 7  and the constant k9 

is given by k9 := [E exp((l — 7 ) x) • /?U(x)/ (l//3 — E exp ((l — 7 ) x ) ) ] . Given 
vt = 9 (c*, 4 - \ )  this implies Pt = Ct • 0 (log(Ct/C t_i),log(Ct_i/C7t_2))

p  = c  PEexp(a;)(exp(x) -  /t((l -  0) +  <pCt- 1/C t))-'y +  k 9

where x = fi -I- £. This concludes the proof. ■

P roof o f Proposition  13 Recalling equation(4.38) we know that

^  > 0 &  exp(c?(l -  7 )77) > p 7} D  exp(((l -  p)p +  p c +  f t) • (1 -  7 )) 

where we have plugged in for cf+1 from equation (4.17). Taking logs

c? • (1 -  7 ) • 77 >  log(pi]D)  • (((1 -  p)p + p<%+ £t+i) • (1 -  7)) 

where \og(p-rj-D) < 0 as the product of /?, 77 and D  is smaller than 1. Proceeding
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under th e assum ption th a t 7  >  1 (if 7  =  1 the inequality is tr iv ially  satisfied), 

th is can be rew ritten as

6+1 > < 4 ( v - p ) + c

where the constant C = — [(1 — p)p +  log(/? 77 D) / ( 1  — 7 )] is negative. If 77 > p, 
this implies that £*+i >  cf (77 — p) +  C, which combined with Proposition (4) 
implies £ G [max{(l — p)cf,cf(77 — p) +  C},cf]. Alternatively, if 77 <  p then 
£ G [max{(l — p)cf, cf(77 — /?) +  C}, c^].42 This will imply that marginal utility 
is always positive, and by Proposition (4), that the support of cf =  [cf, ĉ ] is 
time-invariant. ■

P roof o f Proposition 14. Let Q be a Banach space with norm || • || whose 
elements are functions G : [cf, cf] —► R s.t. G G Q if

\\G\\ :=  sup ex p (—6 x) • G(x) <  + 0 0 . (4.95)
X€[cf,c®]

where 6 is a positive constant whose value is yet to  be determ ined. Let Q be a 

closed  subset o f Q w hose elem ents are functions G : [cf, cf] —► R + . A s before, we 

shall dem onstrate th a t the operator Z(G)(x)  :=  H ( x , A )+ /(x , A) E  G(F((x), A, £), A) 
on Q is L ipschitz w ith  a constant smaller th an  one.

Before proceeding, we first need to  verify th a t Z  : Q —> Q and in particular th at 

H  G £ . Straight from th e definition

\\H || := sup /? (ex p ([(l -  7 ) -  S\x) -  p 2r)D(exp([(l -  7 )(1  - r j - p ) -  5]x).
xe[cf,cj[]

If both cf and cf are finite then for any choice of 6 , | | i / | | <  + 0 0 . From Footnote
42, if 77 >  p th en  c f ^  + 0 0  and a sufficient condition for | \H\ \ <  + 0 0  is 5 <  1—7.

B y th e sam e token, if 77 <  p then  cf ^  —00 and then  a sufficient condition  for

11l f | |  <  + 0 0  is 8 >  1 — 7 . If 7} =  p then  a sufficient condition  is S =  1 — 7 . Our

choice o f S shall ensure th at these restrictions are satisfied.

4 2 0 ne implication of this fact is that when 77 >  p, cf ^  + 0 0  while when 77 <  p, cf ^  —0 0  i.e. 
if 77 7̂  p  then the set of admissible x  is always bounded from one side.



4.A. APPENDIX 172

43To prove that Z  is Lipschitz note 

\ \Z(G)\\<(3  sup exp(x((l ~ 7 ) ( 1  - r j )  -<S))EG ( ( 1  - p ) p  + px + ()
xG[cf,c^]

<P\\G\\ sup exp(x((l — 7 ) ( 1  — rj) — 5))Eexp (6 ( ( 1  — p)p -f px +  £))
x€[cf,cj[]

=  \ \G \ \ (3exp(6{l-p)n)Eexp( 6 £)sup exp (x ( ( l - ^ f ) ( l - r ) ) - 8 ( l - p ) ) ) .
xG[cf,c®]

Accordingly, Z 1 s Lipschitz constant A is given by

A =  /? • exp(£(l — p)p) • Eexp(d£) • sup exp (x((l -  7 ) ( 1  -  rj) -  6(1 -  p))) .
xe[cf,c£]

Setting 5 equal to (1 — 7 ) the Lipschitz constant becomes44

P exp((l -  7 ) • ((1 -  p)/x +  <4ln(p -  ??))) • C( (7  -  1) V < P

Transforming A < 1 gives the required condition and completes the proof.

P roof o f Propositions 15 and 16. The proofs are conceptually identical to 
those of Propositions 6  and 7 respectively and so are skipped to save space. ■

P roof o f Proposition  17. To find a benchmark solution set k equal to zero. 
Equation (4.49) then becomes

g(x, {0, A _ , } )  =  1  +  /(x , {0, A _ i } )  • g(s, {0, A_,}) • E h(x, {, {0, A .,}) (4.96)

where Efo(x,£, {0, A_i}) is known. To compute the value of g(s, {0, A_i}) plug 
in x =  s to obtain

£(s,{0,A _i}) =  ( l - / ? e x p ( ( l - 7  )g) • E exp((l -  7 ) £)) -1

43Where the inequality between the first and second lines follows from 

||G|| := sup exp(-<5x)G(x) Vy <E [cf,cj] : ||G|| >  exp{ -6y)G (y )
xG[cf,c®]

=* Vy € [cf,cj] : G(y) <  exp(<Sy)||G|| =* EG(C) <  ||G||Eexp(<SC)

where £ is an arbitrary random variable with support C [cf, c^].
440ur choice of <5 implies that ||H || is always finite, as required. If 77 =  p one can use the 

first formula with c^ax =  0 .
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and so

9 (x, {0, A_i}) =  1 +  /(X’ {° ’ ^ -l}) • Ê (Xf^ -{° ’ ^ i}) ■  (4.97)
1 -  (3 • exp((l -  7 ) g) • E exp((l -  7 ) £)

P roof o f Proposition 18. Differentiating equation (4.49) with respect to k 
yields

9 k(*, A) =  f K(x, A) • E/i(x, f , A) • $f(F(x, A, £), A) +  /(x , A) ■ E[>iK(x, f , A)

• s (F(x, A, 0» A) +  /i(x, £, A) • (^x(F(x, A, 0 ,  A) • FB(x, A, f ) +  0 «(F(x, A, 0 ,  A))]

which evaluated at {0, A_i} becomes

gK(x, {0, A_i}) =  -7 0 (x  -  s)/(x , {0, A_i}) • E exp ((l -  7 ) f) • g(st {0, A_i})

+  /(x , {0 , A_i}) • E exp ((l -  7 ) 0  • [ M 5> {°> A-i})

• ((f> (x -  s) +  A(x) f) +  ^ (s , {0, A_i})) -  7  • A(x) • f  • g(s, {0 , A_i})]. (4.98)

Prom equation (4.50)

a (x 10 \  ] )  — f (x fO \  i {0,  A_i}) +  E/ix(x, {0, A—i})Sx(x, {0 , a_i}) -  /(x , {0 , a . , } ) — - - - ((1 — j s ) . Eexp((1 -  7) u  

and so

rn , u  _  /?exp((l -  7 )g) • E exp((l -  7 ) • g)
9 x S ’ ' - 1 7  1 — /3 . exp((l — 7 ) 3 ) • E exp((l — 7 ) £)

Accordingly, plugging in x =  s into equation (4.98) we obtain

9 k{s, {0, A_i}) =  f ( s , { 0,A_i}) -E exp ((l - 7 ) f )  • [(^x(s, {0, A_i})

• A(s) f  +  gK(s, {0 , A_i})) -  7  • A(s) • f  ■ g(s, {0 , A _i})]. (4.99)

which is a linear equation for gK(s, {0, A_i}), the solution of which is given by

gK(s, {0, A_i}) =  A(s) • [&(*, {0, A_x}) -  7  • g(s, {0 , A_x})]

exp((1 -  7 )g) • E f  • exp((l -  7 )$)
(1 -  /?exp((l  -  7 ) g )  • E e x p ( ( l  -  7) { ))  '
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Plugging in for gx and g we arrive at

Sn \ \ \  A ^ e x p ( ( l - 7 ) § ) - E { - e x p ( ( l - 7 ){ )
9 k(s, {0, A_i}) =  —7  • A(s)-

(1  -  /?exp((l -  7 )g) • E exp((l -  7 ) ( ) ) '  

which can be plugged back into equation (4.98) and simplified to obtain

9 k(*> {0, A_i}) =  -  exp( 7  (x -  s))(3exp((l -  7 )£)E exp((l -  7 ) f ) ' ^70(* -  s)

, w\ n ■ A (s)/A (x)-/?exp ((l~ 7 )g) ^
7  exp 7  [ ( 1  _  /d exp((l — 7 )<j)Eexp((l — 7 ) {)) /  *

Combining all this together implies that a first order approximation to g(x, A) 
around g(x, {0, A_i}) is given by

#(x, A) -  1  «  (#(x, {0, A_i}) -  l)  +  KgK(x, {0, A_i}) =  exp(7 (x -  s))  • 0  

exp((l —7 )fif)-Eexp((l —7 ) f) ^ l - /? - e x p ( ( l - 7 ) £ ) -E e x p ( ( l- 7 )

P roof o f Proposition 19. Evaluating equation (4.56) at Ai =  k = 0 yields 

F(x, {0, A_i},£) =  {A4 +  A6 V̂ A7 2̂ , A7 }

and so equation (4.57) corresponding to Ai =  p = 0 becomes

G(x, {0, A_i}) =  Aig exp(A3(l -  1 /A2)xi)

• ( 1  +  (EG({A4 +  y/Xrti,  AflV^fo, A7}, {0, A -i}))1̂ 3) ^  .

Accordingly, the only unknown in the above equation is the expectation term, 
which is a function of A_i. To compute that function, we can plug in x =  
{A4 +  \/A?fi) A6 V/A762 , A7} and take expectations. Defining ^(A_i) =  EG({A4 +  
\/A7£ij A6 \/A7 2̂ ) A7}, {0, A_i}) we then obtain

=  A[jS ( l  +  (i/fA-O)1^ ) * 3 Eexp(A3(l -  1/A2)(A4 +  V 'M O ). 

Raising both sides to the power I/A3 yields a linear equation for (^(A -i))1̂ 3.
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We can solve this equation, back out ^(A_i)

Â o (Eexp(A3(l -  1/A2)(A4 +  V M i)))

( l  -  A10 (Eexp(A3(l -  1/A2)(A4 +  V % ) ) ) 1A3)
A3 '

and finally plug in for the known function to obtain a closed-form formula
for G{x, {0, A_i})

G(x, {0, A_i}) =  Ajo exp(A3(l -  1/A2)xi)

• ( l  -  A10(Eexp(A3(l -  1 /A2)(A4 +  V ^ i ) ) ) 1^ ) ’ * 3 (4.100)

Since

9 (x, A) =  , G,(X’A)1/^  - 1  (4.101)Ai0 (exp((l -  1 /A2)xi))

therefore

, . x, A10(Eexp(A3(l -  1 /A2)(A4 +  y ^ i ) ) ) 1/A3

' 1 -  Aio(Eexp(A3(l -  1/A2)(A4 +  V R i ) ) ) 1'"3'

P roof o f Proposition 20. Equation (4.57) yields 

G(x,{K,A_1}) =  A}§exp(A3 ( l - l / A 2)x1)(l+ (E G (F (x ,{« ,A -1} ,0 ,A ) ) 1/A3) A3 

and so

G*(x, {k, A _!» =  — -------C(X’ {K’A-l} )------— (EG(F(x,A,?),A ) ) 1A ^ 1
1+(EG (F(x, {k, A_i},£), A))

• E ( ^ ( F ( x ,  {«, A_4}, 0 ,  A) J ( x ,  {«, A_!},i)  + ^ ( F ( x ,  {«, A_i},{), A)) . 

From equation (4.100) we obtain

Gx(x, {0, A_4}) =  I  A3(l  -  1/A2)Aiq exp(A3(l -  1 /A2)xx)

• ( l  -  A10(Eexp(A3(l -  1/A2)(A4 +  n /M i ) ) ) 17*3) ’ * 3 ,0 ,o )

while
F«(X, {0, A_i},£) =  | x 2, A5X2, Ag(x3 — A7) 4- A3£ 3 j .
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Defining i(x, A_i) := E(Gx(F(x, {0, A_i},£), {0, A_i}) • FK(x, {0, A _ i} ,0 )) we 
can take the scalar product of both these vectors to immediately obtain

t(x, A_i) =  x2A3(1 -  1/A2)A}§ • exp(A3(l -  1/A2)xi)

• ( l  -  A10(Eexp(A3(l -  1/A2)(A4 +  v ^ i ) ) ) 17"3) ’ ^  •

We thus know that GK(x, {0, A_i}) satisfies

GK(x} {0, A_i}) =  G(x, {0, A_i}) •

• (t(x, A_i) +  EGk({A4 -I- ^6 \/A 7 2̂ j A7}, {0, A_i})^ .

As previously, plugging in x =  {A4 +  A6a/A7£2, A7}, defining tf(A_i) :=
EGf/t({A4 +  \/A7^i, Xey/^7^2 , A7}, {0, A_i}) and taking expectations we obtain

t f ( A - i )  =  E G ( { A 4  +  V ^ f i . A a V ^ f e ,  A 7 } , { 0 ,  A _ x } )  •

• ^({A 4 +  Xey /x j^ ,  A7}, A_i) +  #(A_i)^

which again is a linear equation in #(A_i) and so can easily be solved to yield

tf(A-i) =  ^ A - i ) 1^ - 1 . e ( g ( { A 4 +  V a76 , A sv/M j, At}, {0, A_i}) 

■ t ( { A 4  +  V M x ,  A6\ZA7?2i A 7 } ,  A _i)J. (4.102)

Accordingly, we have computed all the terms in the expression for the first 
derivative of the unknown function GK(x, {0, A_i})

G»(x,{0IA_1}) =  G (x,{0 ,A_i}) • • ( ‘M - i )  +  tf(A _o).

and can use this expression to write down a formula for the first-order Taylor 
series approximation to G(x, A)

G(x, A) «  G(x, {0, A_i}) +  k • Gk(x, {0, A_i})

=  £ ( x> {0, A_i}) ^1 +  i)VA3 ‘ ^ -i) +  (4.103)
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and by extension also

1 +  s(x,A ) =  (G (x,A )1/A3) • (A io(exp((l -  1/A2)x i)))

G (x ,{ 0 ,A _ 1} ) ^ 3  /  y ( A - Q ^  ,  A 1' *

A10(exp((l  -  l /A 2)Xl)) I  +  l-H/(A_0 ‘/». ( ( ’ - l) +  ( - 1 ” )

( l  +  i t M A - O ^ - 'J /a  +  K A -i)1̂ ) -  (t(x, A_x) +  z?(A_ 1) ) ) 1/A3

1 — A io(E exp (A 3(l  — 1/A2)(A4 +  a/ V ^ i ) ) ) 1/A3
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Conclusions

To conclude, we reiterate the main messages from each of the four essays.

In the first chapter, we used the simplest possible framework to analyze the 
determinants of risk premium dynamics. We demonstrated that due to chang­
ing recession risks, risk premia can be procyclical even though the volatility of 
consumption is constant and despite a countercyclically varying risk aversion 
coefficient. We have also documented that persistent habits, shocks or features 
generating hump shaped consumption responses are all likely to make the pre­
mium countercyclical.

Fundamentally, the countercyclicality of the premium in our model, rests on 
agents’ belief that changes in economic conditions are persistent. In other words, 
after an adverse shock, more risk-averse agents will only require a larger pre­
mium on risky assets if they don’t expect their future conditions to improve 
massively. Thus, expressed alternatively, our work explicitly explores the role 
of countercyclical recession risks -  a feature that is implicit in Campbell and 
Cochrane (1999), and similar in spirit to the mechanism driving the results in 
Bansal and Yaron (2004). Our results suggest that factors which help match 
activity data - i.e. allowing for consumption habits and persistent shocks - are 
also likely to help along the asset pricing dimension.

Changes in premia substantially contribute to asset price volatility and so hav­
ing a good understanding of factors driving them is crucial for modeling asset 
prices. Given the increasing frequency with which macroeconomic models are 
being used to address asset pricing puzzles, it is key to clarify how and why 
changes in standard modeling assumptions translate into different dynamics of 
premia. While our study attempted to clarify these issues, further analysis of 
risk premium dynamics could still be undertaken. For example, in production- 
economy models the dynamics of term-premia or the inflation risk premium 
would depend on other aspects of the transmission mechanism. We believe that
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examining these aspects would be of interest.

Our results in the second essay show that, following persistent adverse shocks, 
policy-makers might be well advised to steer off predictions of linear models 
and conduct more accommodative policy. Equally, when demand and supply 
conditions are improving, taking note of the precautionary saving motives jus­
tifies ‘leaning against the wind’. Since the size of the precautionary correction 
is increasing in the degree of volatility, mistakenly ignoring this channel would 
be most costly during highly turbulent periods. We believe that formally ac­
counting for stochastic volatility and enriching the framework by considering 
Epstein-Zin preferences would both make for interesting extensions.

In the third chapter I derive closed-form solutions for the equity price-dividend 
ratio and equity risk-premium in a model in which agents have difference-form 
external habits. The setup allows for arbitrary shock distributions, correlated 
consumption growth and nests extensions of the keeping-up and catching-up 
with the Joneses specifications. I then use the exact solutions to study the 
ability of alternative estimated models -  including one capturing rare events -  
to simultaneously account for consumption, equity and bond returns in the UK 
and US.

My results highlight tensions which exist when one tries to simultaneously match 
the properties of consumption growth, bond returns and equity returns. While 
the habit specification proposed by Campbell and Cochrane (1999) is capable 
of cutting the umbilical-cord linking all three, the same cannot be achieved 
with the more parsimonious model which this papers solves in closed-form. We 
document the dimensions in which the model fails and argue that more exotic 
shock distributions are unlikely to solve the underlying problems. However, 
explicitly accounting for differences between consumption and dividends would 
provide for an interesting extension and could potentially help tackle some of 
them.

In the final essay I propose a new method of approximating solutions of mod­
els with known endogenous state-variable dynamics. Focusing on asset pricing 
models, I show how to re-express the Euler equation as a fixed-point problem in 
Banach spaces. This is key to finding solutions of nested problems, which are 
then used to approximate the full solution. I show that even low-order approxi­
mations are not ‘certainty equivalent’ and that the zeroth order approximation 
could allow for time-variation in risk premia. Arguably -  by allowing the approx­
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imation to be an arbitrary, nonlinear function of the state -  the method makes 
the approximations more parsimonious while retaining high precision. The par 

per also clarifies how to use the Lipschitz constant to provide upper bounds on 
the resulting approximation errors. I believe that generalizing the method to 
frameworks in which the dynamics of state variables is not known as well as 
a more thorough investigation of its accuracy and asymptotic properties would 
both make for worthwhile extensions.
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