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Abstract

We present sampling-based methodologies for the estim ation of structural time 

series in the presence of outliers and structural shifts. We start by considering a 

simple structural model: a local level model, in the presence of outliers and level 

shifts. The existence of shocks is accounted for by including a product of inter­

vention variables in the measurement and transition equations. These factors are 

composed of the product of an indicator variable and a param eter for the magnitude 

of the intervention variable, defining the size of the shocks. The Gibbs sampler is the 

Markov chain Monte Carlo method used for estim ating the intervention model. Our 

contribution is in the use of a uniform prior distribution for the size of intervention 

variables. We show th a t this choice provides advantages over the usual multinomial 

and normal prior assumptions. The methodology is extended to a basic structural 

model. Using this model formulation, we consider 4 types of shocks: outliers, level, 

slope and seasonal shifts. The use of simulation based methods for this range of 

different breaks in structural models is not dealt with in the existing literature. 

By using the Gibbs sampler, we simultaneously estim ate all the hyperparameters, 

detect the position of the shocks and estimate their size. Finally, we consider the 

local level model in the presence of outliers and level shifts for the case where one of 

the hyperparam eters is equal to  zero. In this situation, simulation based methods 

usually assume a multinomial prior distribution for the size of the intervention vari­

ables. We use a uniform prior, and present a two stages sampling scheme. In this 

two stage process the Gibbs sampler is first run on an auxiliary d a ta  set which has 

the same shocks as the original data  set. For all the methods presented, performance 

is assessed by Monte Carlo studies and empirical applications to  real da ta  sets.
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Chapter 1 

Introduction

A tim e series is a sequence of observations recorded over time. In general, the obser­

vations are serially correlated. The purpose of modeling tim e series is to  determine 

the structure th a t best explains this correlation, and use it to  forecast the future 

behaviour of the series.

For state  space models, the observations evolve over tim e as a linear function of 

a state  variable. The state  variable is often latent. S tate space models are widely 

used after the Kalman filter was proposed in Kalman (1960). These models present 

a high degree of flexibility in the type of dynamics they can model. For example, 

any linear time series process has a state  space representation.

Structural models are a class of unobserved components models. They decompose 

the tim e series in the sum of several unobserved effects, commonly irregular, trend, 

seasonal or cyclical effects. Structural models fit naturally  into the state  space 

framework. In Harvey (1989), an extensive study of the properties and algorithms 

for structural tim e series is presented. The basic structural model is defined as 

consigning irregular, trend and seasonal components.

Shocks, aberrant observations, extreme values, unexpected observations; these 

are some of the descriptive term s often associated with outliers. An extensive study 

of their characterization and implications for the estim ation of a statistical model 

is given in B arnett and Lewis (1984). The implication of shocks in tim e series data 

is dependent on the way the shocks are included in the dynamics of the model. An 

outlier is the result of a shock th a t affects one single observation. A shock with a
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more persistent effect results in a structural shift. One of the first characterizations 

of shocks in time series models is given in Fox (1972).

Bayesian methods for estim ating time series models, are based on the statistical 

properties of the posterior samples of the param eters of the model. The semi­

nal work of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) draws 

attention to the potential statistical applications of these m ethods and lay the 

foundations for Markov chain Monte Carlo techniques. As access to  computers 

is widespread and more powerful machines are available, the popularity of Bayesian 

techniques has increased. Bayesian methodologies in tim e series are well established 

and have accumulated a large literature. One of the more frequently used tools is the 

Metropolis-Hastings algorithm (Hastings, 1970). The Gibbs sampler, Geman and 

Geman (1984), which can be viewed as a composition of several Metropolis-Hastings 

steps, is the technique we shall focus our attention on.

The aim of this work is to derive and implement sampling-based m ethods for the 

estim ation of structural tim e series, in the presence of outliers and structural shifts. 

Our contribution has three main components:

•  the prior distribution for the size of the shocks variable use of a flat uninfor­

mative distribution.

•  a Bayesian methodology for the estim ation of a basic structural model (BSM), 

in the presence of outliers, level shifts, slope shifts and seasonal shifts.

•  a Bayesian method for the detection of outliers and level shifts, for a local 

level model, when one of the hyperparam eters is equal to  zero, assuming a 

continuous prior distribution for the size of the shocks variables.

McCulloch and Tsay (1994) describe a m ethod for detection of outliers and struc­

tu ral shifts in time series models. Gerlach, Carter, and Kohn (2000) focus on ap­

plication of the Gibbs sampler to  diagnostics on state  space models. The prior 

assumptions commonly used, for the size of the shocks variables are multinomial 

distributions and Gaussian distributions. The main advantage of using a flat distri­

bution is th a t it requires less prior knowledge about the characteristics of the shocks
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th a t might be present in the data. W hen assuming a m ultinom ial prior, we have 

to  define a priori the set of values from which to sample the size of the shocks. 

Assuming a normal distribution, the prior mean and variance are set a priori. We 

show th a t the posterior samples obtained for the size of the shocks variables, present 

some undesirable sensitivity to the choice of the distribution param eters, namely to 

the choice of the variance. Assuming a flat prior distribution, the param eters u and 

v for a U [u, v] have to be set a priori. We show, by means of a sensitivity study, 

th a t the posterior samples present less sensitivity to the choice of these parameters, 

than  to  the choice of the normal distribution param eters. Therefore, by assuming 

a uniform distribution we obtain an estim ation m ethod th a t is less dependent on 

prior assumptions than the existent methodologies.

Generalizing the m ethod we propose for detecting outliers and level shifts, we 

present a Bayesian algorithm for detection of outliers and structural shifts, for the 

basic structural model. The BSM defines the dynamics of a tim e series as the sum of 

several components: an irregular, trend and seasonal component. We consider the 

case of a trend with a stochastic slope component. Given this decomposition of the 

tim e series, two main types of shocks might occur: outliers and structural shifts. The 

structural shifts can be of three types: level, slope and seasonal shift. We formulate 

a model allowing for these four type of shocks. Using the Gibbs sampler, we estimate 

the hyperparam eters and simultaneously detect the position and estim ate the size 

of shocks in the data. An additional innovation is th a t we assume a uninformative 

uniform prior for the size of all the type of shocks considered. The choice of this prior 

distribution has the aim of making the process of detection and characterization of 

the shocks has independent as possible, from prior knowledge of the behaviour of 

the tim e series data.

The methods we have so far described, are valid if none of the hyperparam eters, 

for the equations through which shocks affect the data, is equal to  zero. Consider 

the case of the local level model where outliers and level shifts might be present. If 

either of the two hyperparam eters is equal to zero, the m ethods we have proposed 

imply sampling from a degenerate normal distribution when sampling from the size 

of the shocks full conditional distribution. The case of one of the hyperparam eters
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being equal to zero is often overlooked in the literature. Gerlach, Carter, and Kohn 

(2000), deal with this case, bu t they assume a discrete prior distribution for the 

intervention variables. As we have argued before, this assumption is restrictive and 

demands a considerable prior knowledge of the da ta  set.

To overcome the problem posed by having one of the hyperparam eters equal to 

zero in the uniform prior case, we propose a two stage sampling scheme. In the 

first stage we apply the Gibbs sampler to an auxiliary data  set. This data  set is 

constructed in such a way th a t it has the same shocks as the original d a ta  set. It is 

modeled as a local level model, bu t with both  hyperparem eters different from zero. 

It is used to  detect the shocks, th a t affect the observations through the equation 

with the null hyperparam eter. In the second stage, we run a second Gibbs sampler 

to detect the other type of shocks and estim ate the non null hyperparam eter.

The results presented for the empirical applications and Monte Carlo studies are 

obtained using Ox (Doornik, 1999). The Ox package SsfPack, (Koopman, Shephard, 

and Doornik, 1999), for estim ation of state space models, was also used extensively. 

The results obtained using maximum likelihood, which are reported for comparison 

with the results we obtain by using our Bayesian approach, were generated using the 

structural time series package STAMP (Koopman, Harvey, Doornik, and Shephard, 

2000).

We briefly describe the structure th a t this work follows, by giving a summary 

of the main topics covered in each chapter. In C hapter 2, we present a review 

of the results available in the literature concerning the two main aspect of our 

work: Bayesian methods and state  space models. We present some of the main 

definitions and results needed to  apply Markov chain Monte Carlo methods. From 

this class of methods we will use the Gibbs sampler. We describe this algorithm 

and conditions th a t ensure its convergence. Next, we present the formulation of 

state  space models. The Kalm an filter and smoother, and a simulation smoother 

are explained. To illustrate the application of the Gibbs sampler for the estimation 

of state  space models, we present the results obtained by applying the sampler to 

an artificial da ta  set generated from a local level model. Furthermore, we perform 

an analysis of sensitivity to  assess the effect, of the choice of the param eters of the
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prior distributions of the hyperparameters, on the param eters estim ated.

In C hapter 3 we study the detection of outliers and level shifts, for the local 

level model, using the Gibbs sampler. We assume th a t both  hyperparam eters are 

different from zero. The model is formulated for the detection of shocks by including 

intervention variables for the presence of outliers and level shifts. For each type of 

shock this amounts to defining two intervention variables: an indicator variable for 

the presence of a shock, and a size of shock variable. The innovation in the method 

we propose is th a t the size of the shock is assumed to  have a flat prior distribution. 

W hen assuming a flat distribution, the boundaries of a bounded uniform distribution 

have to  be set a priori. To compare the performance of the sampler when assuming 

a flat prior with a normal prior for the size of the shocks variable, we perform an 

analysis of sensitivity to the choice of the param eters of the normal and uniform 

distributions. We show th a t using the flat prior, the estim ation results are less 

sensitive to  the choice of the prior distribution param eters. Having established the 

benefits of the uninformative prior, a sampling algorithm  is proposed for estim ating 

a local level model, in the presence of outliers and level shifts. A Monte Carlo study 

is presented, for assessing the performance of the sampler. The artificial da ta  sets 

are generated from a local level model, where two outliers and two level shifts are 

input. To illustrate the application of the m ethod to a  real da ta  set, we consider the 

data  composed of the coal consumption in the UK, from the first quarter of 1960 to 

the fourth quarter of 1986.

In C hapter 4 we consider a more general model formulation; the basic structural 

model. The tim e series is decomposed as the sum of an irregular, trend and seasonal 

components. The trend component has a stochastic slope. The seasonal component 

is a formulated through dummy variables. A Gibbs sampler is presented. From 

running the sampler we obtain posterior samples, th a t allow us to estim ate the 

four hyperparam eters, detect the position of the outliers and structural shifts, and 

estim ate their sizes. The uninformative uniform distribution is chosen as prior 

distribution for the size of the four type of shocks th a t might be present in the data  

being modeled: outliers, level shifts, slope shifts and seasonal shifts. We assume th a t 

the hyperparam eters, for equations where intervention variables are included, are
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different from zero. Our contribution, is th a t we present a m ethod for simultaneously 

estim ate the hyperparam eters and detect any type of shock, for a basic structural 

model. Furthermore, with the uniform prior assumptions the shock detection is 

done w ithout requiring an extensive prior analysis of the data. The results from a 

Monte Carlo study are presented. The d a ta  are generated from a basic structural 

model. All the four type of shocks are input to each d a ta  set: an outlier, a level 

shift, a slope shift and a seasonal shift. Our methodology is applied to the real 

d a ta  set of the number of marriages in the UK, from the first quarter of 1958 to the 

fourth quarter of 1984.

In C hapter 5, we consider the problem of estim ating a local level model, when 

outliers and level shifts are present in the data, and one of the hyperparam eters is 

equal to  zero. Our aim is to be able to keep the assumption of a prior uniform for 

the size of the shocks, given th a t we have established the advantages of using this 

distribution in the previous chapters. To do so, we present a sampling scheme made 

up of two stages. These stages depend on which hyperparam eter is equal to zero. 

W hen the irregular hyperparam eter is equal to zero, we generate an auxiliary data  

set, which has the same outliers has the original da ta  set, follows a local level model, 

bu t has an irregular variance different from zero. The sampling scheme described 

in C hapter 3, is applied to the auxiliary data  set, and we detect the position and 

estim ate the size of the outliers. Inputting this information, in a second stage, the 

sampling scheme is run, for the original da ta  set, w ithout sampling from the variables 

related to  the detection of the outliers. In this way, we overcome the problem of 

detecting the outliers when the irregular hyperparam eter is equal to  zero. From the 

second stage we obtain posterior samples th a t will allow us to  estim ate the level 

variance, detect the level shifts and estim ate their sizes. We propose an analogous 

m ethod for the case when the level variance is equal to  zero. To detect the level 

shifts, given th a t the level variance is equal to zero, we generate an artificial da ta  set, 

th a t has the same level shifts as the original data, bu t has a level hyperparam eter 

different from zero. The sampling scheme from C hapter 3 is run for this auxiliary 

d a ta  set, to  detect and characterize the level shifts. Having detected this type of 

shocks, their position and estim ated sizes are input, and the sampling scheme is
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run, for the original da ta  set. It delivers an estim ate for the irregular variance, 

the position of the outliers and estimates of their sizes. The performance of the 

sampling schemes proposed is analyzed by two Monte Carlo studies, for each of 

the hyperparam eters equal to  zero. As an empirical application, when the irregular 

variance is equal to zero, we model the real da ta  set of m onthly quotes of bonds 

issued by the Greek government, from August 1916 to  June 1930. The volume of 

the Nile d a ta  set, from 1871 to 1970, is used as an empirical application, for the 

case when the level variance is equal to zero.

In C hapter 6, conclusions are drawn on the methodologies we have proposed 

and the results obtained. Some considerations are made on possible future lines of 

research using the approaches proposed.
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Chapter 2

Simulation methods for state 
space models

2.1 Introduction

A broad literature is available on classical methods for estim ating param etric time 

series models, from ARMA models, (Box and Jenkins, 1970) to  state  space models 

(SSM), (Harvey, 1989). The aim of this chapter is to  review Bayesian methodologies 

for estim ating tim e series which fit in the space state  modeling framework.

The basic difference between Bayesian and classical approaches for param etric 

inference is th a t Bayesian methods make no distinction between observations Y  

and param eters 9, in th a t they consider all of them  random  variables. Param etric 

inference is based on the posterior distribution P (9 \Y ).  Means, quantiles, confidence 

intervals or any other statistical properties for 9 are obtained from samples of th a t 

posterior. In most cases the posterior distribution is not available in a closed form; 

the methodology used to  overcome this problem is w hat distinguishes the m ajority 

of Bayesian methods.

The im pact of the param eters on the observable Y  is measured by the likelihood 

function P (Y \9).  Information, if any, on the param eters distribution previous to 

the observation of Y  is summarized in the prior distribution P(9). Using Bayes’ 

theorem we have the following expression th a t relates these three distributions:

p(e)P(Y\e)
JP (0 )P (Y \0 )d 0 ' ( ' 1

As f  P (9)P(Y\9)d9  integrates out the dependence on the param eters, expression
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(2.1) states th a t the posterior distribution P{0\Y)  is proportional to  the product of 

the likelihood P (Y \6 ), and the prior distribution P(0):

P(9\Y)  oc P(9)P(Y \6).

Markov chain Monte Carlo (MCMC) methods rely on constructing a process 

which is Markovian and has as its limiting distribution the posterior distribution. 

MCMC m ethods are distinguished by the way in which these processes are con­

structed. W hen applying this methodology to tim e series, Y  will be a set of time 

series d a ta  {Y i , . . . ,  Yt } and 9 the set of param eters in the model, together with any 

missing observations.

In section 2.2 the main Markov chain notations will be presented, together with 

results th a t are the basis for MCMC methods. The characterization of these methods 

will be done with special reference to the M etropolis-Hasting algorithm  and the 

Gibbs sampler. Comments are made on problems arising in the use of the general 

MCMC framework.

The main objective of the results presented for MCMC methods is their applica­

tion to  SSM. These models are introduced in section 2.3, together with examples, 

and algorithms.

For simplicity, we consider the estim ation of SSM, in the context of the Gibbs 

sampler, divided in two steps: sampling from the full conditional of the state vector 

and sampling from the full conditional of the param eters. To sample from the full 

conditional of the states we use a simulation smoother algorithm, and this method is 

explained for a general SSM. The methodology for sampling from the full conditional 

of the param eters is presented for an unobserved components model (UCM).

The estim ation of SSM using the Gibbs sampler is exemplified for an artificial 

da ta  set, generated from a local level (random walk plus noise) model. A Monte 

Carlo experiment is conducted to study the sensitivity of the posterior samples of 

the hyperparam eters to the prior distributions param eters.
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2.2 Markov chain M onte Carlo m ethods

2.2.1 Definitions and ergodic results

A sequence of random  variables . . . ,  X ^ \  . . .  is a Markov chain (X ^  if

the distribution of given all the previous states of the chain . . .  , X ®

depends only on X ® .  For any t,

P  ( a (‘+1) G A |A (0), X (1), . . . ,  X (t)) = P  (A (m ) G A |A (t)) ,

for any given A  G B  (S'), the set of all the subsets of S, the state  space where the 

chain is defined. Typically A is a subset of 9ft*. The transition kernel P (x ,A )  of a 

Markov chain is defined as:

P ( x ,  A )  =  P  { x (,+1) €  A \ X <*> =  i }  . (2.2)

We are interested only in time homogeneous Markov chains and for th a t reason 

P ( x , A)  in (2.2) is independent of t.

The nth-iterate  of (2.2) is

P n (x,  A )  =  P  { x (n) 6 = X } ,

and P "(-|x ) the conditional distribution of given the initial state  of the chain 

X ^  =  x.

A distribution ir is an invariant distribution for a Markov chain if:

»(A) =  /  P(x, A)n(x)dx,

for all measurable sets A. Under certain general conditions, which are stated later, 

an invariant distribution 7r is also an equilibrium  distribution, th a t is, for 7r-almost 

x 1:

lim P n (x ,A )  — >7r(A),n-Aoo v \

In other words, under some conditions, if we run the chain for long enough, the 

distribution of the states converges to the invariant distribution independently of 

the initial state  distribution.

JThe set where the condition does not hold has null measure.
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Suppose we want to estimate E n (g):

E* (9) =  J  g{x)ir{x)dx , (2.3)

where #(•) is a real-valued function. If we construct a Markov chain ( X ^ )  th a t 

converges to  the target distribution 7r(-), the sample analogue to  the expectation in 

(2.3) is:

=  =  (2-4)
iV i= 1

In order to  be able to use Markov chains so th a t (2.4) converges to  the expected value

in (2.3) several questions must be addressed. In particular, we require conditions 
%

th a t insure convergence of the chain to a unique lim it distribution, and a method

to construct the desired chain. We start by presenting some general definitions and

results for Markov chains. Afterwards we explain some of the m ethods available for 

constructing those chains, which are a subset of the available MCMC techniques.

Let P  be the transition kernel of a Markov chain, defined in a  finite cr-algebra 

(S ,B (S ) ) .  Given a cr-finite measure 7r, P  is it-irreducible if, independently of the 

initial state  X ^ ° \  the probability of achieving any m easurable set A  G B ( S ), with 

7t(A) > 0, in a finite number of steps is positive; th a t is, for each x  G S  there exists 

an n  such th a t P n(x, A) > 0.

An 7r-irreducible chain is called recurrent  if it will visit A  an infinite number of 

times: for any measurable set A  with 7r(A) >  0,

P ( X G A  infinitely often| =  x) >  0 for all x,

P ( X ^  G A  infinitely often| =  x) =  1 for 7r-almost x.

If P ( X ^  G A  infinitely often | =  x) =  1, for all x , the chain is called

Harris recurrent.

A  recurrent 7r-irreducible chain is positive recurrent if there is a finite invariant 

measure for P. Otherwise the chain is null recurrent.

An 7r-irreducible chain is said to be aperiodic if it can not oscillate between 

measurable non-empty sets in periodic movements. Otherwise it is called periodic
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and there exists n > 2 and a sequence of non-empty sets {Ao, A i , . . . ,  A n- 1 } in B (S )  

such th a t for all i =  0 , . . . ,  n  — 1 and all x  E Af.

P ( x , Aj )  =  1, for j  = i +  1 (mod n).

MCMC methods rely on constructing Markov chains where the invariant distri­

bution coincides with the target distribution 7r. If the chain is irreducible, positive 

recurrent and aperiodic the next theorem, in Tierney (1994), implies th a t 7r is also 

the equilibrium distribution:

T h e o re m  2.2 .1  Suppose P  is tt-irreducible and ir is an invariant distribution for  

P. Then P  is positive recurrent and n is the unique invariant distribution of P . I f  

P  is also aperiodic then, for  tt-almost x,

\\Pn{ x , . ) -7 r \ \T V ^  0. (2.5)

I f  P  is Harris recurrent, then the convergence occurs for  all x.

The Total Variation distance || • | |tv  is defined, for any bounded measure <̂> on 

(S, B(S)), as

Ŵ Wt v  =  sup <i>{A)- inf 6(A)
AeB(S) AeB(S)

By defining a kernel with invariant distribution 7r, such th a t it is irreducible, 

positive recurrent and aperiodic, after a long enough run of the chain, states from 

the equilibrium distribution 7r will be generated, independently from the starting 

state. The question of how long should the chain be run for is related to the rate of 

convergence of (2.5) and will be addressed later. In order to  present results concern­

ing the asym ptotic properties of the estim ator in (2.4) we s ta rt by presenting some 

definitions of ergodicity. A Markov chain is called ergodic if it is Harris recurrent 

and aperiodic. A stronger form of ergodicity, is uniform ergodicity. A Markov chain 

is uniformly ergodic if there exists a constant M  > 0 and 0 <  r  <  1 such that:

sup IIP n(x, •) -  7r||rv <  M r 71, 
xex

Uniform ergodicity is a sufficient condition for establishing the central lim it result 

in the next theorem (Tierney 1994):
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T h e o re m  2 .2 . 2  Suppose (X ® ) is uniformly ergodic with equilibrium distribution 

7r and suppose g is a real valued function and E 7r(g2) <  oo. Then there exists a real 

number a(g) such that the distribution of

V N ( 9n  -  E„(g))

converges in distribution to a normal distribution with mean 0  and variance cr(g)2 

for any initial distribution.

By construction, if is a random sample obtained from a stationary Markov

chain, after convergence is achieved, all the X ®  will have the same distribution, but 

they are not independent. And although th a t does not affect the ergodic result in 

Theorem 2.2.2, it will have implications in obtaining a consistent estim ator of the 

variance <r(g)2, the MCMC variance of the posterior sample mean. From the time 

series literature a method to  obtain a consistent estim ate of the variance for a 

correlated sample is by using a smoothed estim ate of the periodogram at frequency 

0, with an appropriate choice of a lag window, see for example Brockwell and Davis 

(1991).

Suppose we are interested in estim ating E v (g) where g G L 2 2, using a simulated 

sample . . . ,  from a Markov chain, which has reached equilibrium, by the 

sample mean gn  using the formula in (2.4). For estim ating the variance of gjq we 

use a Parzen window iu(*), defined as in Priestley (1981), in the following way:

var (gN) = j j (2 .6)

where

The bandwidth is chosen according to the size of the sample being considered and 

its correlation structure . The weights of the Parzen window are defined as:

w(x) =
1  — 6 |z | 2 +  6 |z |3, |rc| <  | ,
2 ( 1  -  |x |)3, \  < |ar| <  1 ,
0 , otherwise.\ 7

JLet (fl ,F,p)  be a measurable space, g G Lp C F, p  6 [1, +oo] if f Q \g\pdp <  oo.
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In Geyer (1992) several other methods for consistent estim ation of the MCMC vari­

ance are discussed.

The relative numerical efficiency, Geweke (1989), is defined as the ratio between 

the lag window estim ator of the variance and the estim ate of the variance if assuming 

an independent sample. This quantity is a measure of the speed of the mixing of 

the chain.

In the next section we see how the previous results can be applied when consid­

ering Markov chains constructed using the M etropolis-Hastings algorithm  and the 

Gibbs sampler.

2.2.2 M etropolis-Hastings algorithm

The Metropolis-Hastings algorithm was proposed by Hastings (1970). Suppose we 

are interested in sampling from a target distribution 7 r (-) , and th a t is easy to sample 

from a proposal distribution q(x\y), known up to a normalizing constant. A Markov 

chain is constructed by using as generator density q ( y \ x ^ ) t where x®  is the present 

state  of the chain. Let Y  ~  q{y\x^ ) .  The new state  of the chain will be given by:

with r(x)  =  fa {x ,y )q (y \x )d y .

In order to ensure th a t the target distribution 7r is also the invariant distribution 

of the chain, a minimal condition is imposed:

Y, with probability a { x ^ \ Y )  
x ^ \  with probability 1 — a ( x ^ \  Y), (2.7)

where

mm

The transition kernel of the chain constructed in this way is given by:

P(y\x) = a { x , y)q(y\x) +  (1 -  r(x)) Sx (y)

U  supp q{-\x) D supp 7r =  <S,
x6  su p p  7T

as it is stated  in the next theorem (Robert and Casella 1999):
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T h e o re m  2.2 .3  For every conditional distribution q, whose support includes S , ir 

is an invariant distribution of the chain produced by (2.7).

The following result, in Roberts and Tweedie (1996), gives sufficient conditions for 

irreducibility and aperiodicity of the Markov chain obtained through the Metropolis- 

Hastings algorithm (assuming S  is connected):

T h e o re m  2 .2 .4  Assume  7r is bounded and positive on every compact set of its sup­

port S .  I f  there exist positive numbers e and 5 such that

q(y\x) > e i f  \x -  y\ < 6,

then the Metropolis-Hastings Markov chain (x® '}  is n-irreducible and aperiodic. 

Moreover, any nonempty compact set is a small set.

Using Theorem 2 .2 .1 , the two previous theorems provide sufficient conditions for the 

M etropolis-Hastings chain to  converge to  a unique lim it distribution, th a t coincides 

with the target distribution 7T.

The next theorem (see Robert and Casella, 1999 for proof), states conditions th a t 

ensure convergence of the posterior sample mean estim ator.

T h e o re m  2 .2 .5  Suppose that for the Metropolis-Hasting Markov chain ( x ^ ) ,  we

have that q{y\x) > 0 for  every (x ,y )  € E  <S x S  (sufficient condition for  being irre­

ducible).

I f  g E L 1, then

lim gN = E n (g)
Tv— > 0 0

for  7r-almost everywhere.

These results do not provide any information regarding the rate  of convergence of 

the chain. T hat is an im portant aspect as the chain may remain in the same state 

for a long time. The proportion of time t for which X (t+1) =  X W is defined as the 

rejection rate.

Several MCMC algorithms are classified as being of the Metropolis-Hastings type. 

Examples include the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
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Teller, and Teller, 1953), where q (X \Y )  = q ( Y |X ), and the Gibbs sampler (Ge­

nian and Geman, 1984, Gelfand and Smith, 1990) where the proposal distribution 

coincides with the full conditional distribution.

2.2.3 Gibbs sampler

Suppose th a t X  ~  7r(-), is composed of several blocks X  =  ( X i , . . .  , X P) , p > 2. 

Additionally suppose th a t it is possible to sample from all the full conditional dis­

tributions 7u (X i\X - i) ,  where X_* = ( X i , . . .  , X j _ i , X i+i , .. . ,X P), for % =  1 , . . .  ,p. 

Let X® =  ( x f +1\  . . .  , X ^ ^ X ^ ,  • • ’X ^ y  The Gibbs sampling constructs a 

Markov chain via the following algorithm. Given the present state  of the chain X ®  

it will move, with probability one, to the state X ^t+1\  sequentially generated by:

X |t+1) ~  TTi (XilXi1?) , i =  l , . . . , p .

This algorithm generates a Markov chain with transition kernel:
p

P(y\x)  =  n »  (jfckj. j  > *.Vj, j  < i)
i= 1

It is easy to check th a t the updating of each component can be done by application 

of the Metropolis-Hastings algorithm. Consider the updating of the component 

i, x f \  Let 7T-i (•) be the distribution for the vector X_j. A candidate Y* for the 

updating of X® will be accepted with probability:

a Y v W v W n  . (AYuX^lMXhX^)  \

=  m i n ( l ,  1 )  =  1 .

=  min I 1

In conclusion, the Gibbs sampler is obtained by composing several Metropolis- 

Hastings algorithms, with acceptance rates uniformly equal to  one and such th a t 

for each of those algorithms the proposal distributions are the full conditional dis­

tributions.

By construction the chain obtained with the Gibbs sampler has 7r as an invariant 

distribution (see Chan, 1993). The several sub-chains obtained, by sampling from
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the full conditional distributions are not irreducible and so we can not use the result 

in Theorem 2.2.1. In general to ensure th a t the chain is 7r-irreducible and aperiodic 

is sufficient that:

,K i(Xi\X-i) >  0 , for all i and X , (2 .8 )

as is proved in Geman and Geman (1984) and Chan (1993). Under very mild

conditions (Roberts and Smith, 1994), namely the condition in (2.8) the following 

convergence and ergodic results hold:

Convergence in distribution: As t  —>• oo

( x ^ ,  x ' ( ) . . . ,  x< ‘>) 4  7T (X u  x 2 . . . ,  X„)

and hence for each i =  1 , . . .  ,p

( X ^ )  4  7Tj (Xi)

Geometric rate of convergence:

Using the Total Variation norm || • \\tvi  ( X i \ x ! p  . . .  , X ^  converges to the true

distribution in a geometric rate of convergence in t.

Ergodic theorem: For any measurable function T  of ( X i , X 2 . . . ,  X p) whose expec­

ta tion  exists,

J im  ~  g  T  ( X ? \  X<‘>. . . ,  XW)  “4 -  E„(T).

2.2.4 Some practical issues

The Gibbs sampler is an example of an MCMC algorithm  in, a t least, a bidimen- 

sional space. In fact in most of the practical applications of MCMC methods the 

interest lies in features of multivariate random variables. A sample from the chain 

obtained after reaching equilibrium, will not be independent and the existence of 

correlation poses more serious problems when we are interested in samples from dif­

ferent random variables, which might also be correlated among themselves. Several 

techniques can be used for variance reduction, which reduces the length of the run 

of the chain, after convergence is achieved, for a desired level of accuracy of the
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estimates. For example, the use of antithetic variables, Green and Han (1992), or 

blocking schemes where the variables are sampled in blocks. In Liu, Wong, and 

Kong (1994) it is showed tha t, for the Gibbs sampler, grouping random variables 

can result in more efficient sampling schemes.

Another question concerning these methods is how to assess the convergence 

of the chain and for how long should it be run (the determ ination of the burn-in 

period), before we s ta rt storing results. Some theoretic results are available on the 

rates of convergence and provide lower bounds for the burn in period. In Roberts 

and Sahu (1997) bounds for the rate of convergence of the Gibbs sampler, when 

the target distribution is Gaussian, are derived. However these bounds are usually 

difficult to obtain and depend on the target distribution.

In practice, detection of convergence can be done by analyzing the simulated 

chain. Techniques include inspection of the path  simulated, analysis of the correla­

tion structure, which should present a rapid convergence towards zero. These are 

not exact methods of assessing convergence, and might be misleading in some cases. 

However, they present the advantage of being easily implemented. In Brooks and 

Gelman (1998) a classification of the different m ethods of assessing convergence is 

given, together with a review of the different methodologies.

2.3 State space models

Many tim e series models can be represented in state  space form. This formulation 

is quite unrestricted and it allows for the inclusion of unobservable effects such as 

level, trend, seasonality or cycles. It also allow us to  model latent variables, such 

as the volatility of a financial asset. The general formulation of SSM considers a 

A-dimensional tim e series, y* =  (y\ , . . . ,  y ^ ) '  which is related to  the ra-dimensional 

state space vector a t = ( a j , . . .  , a™)** through the measurement equation:

and the state  space vector evolution is determined by the transition equation:

y« — Ct +  Z*at +  G*u*, (2.9)

&t+ 1  — d* +  T  tcx-t + (2 .10)
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for t  =  1 , . . .  , T.

The innovations process can be assumed to  have any distribution. As we are inter­

ested in the case of Gaussian SSM, we assume that:

u , ~  N I D  (o, a % )  . (2.11)

The matrices Z t (N  x m ) , T t (m  x ra), G t (N  x  r), and H* (m  x r) are determin­

istic, but not necessarily constant over time. The param eters responsible for the 

stochastic movements of the state variables are called hyperparameters. W ith the 

formulation above, they correspond to cr2 and any non zero element in the matrices 

G t and H f. For the above model to be completely specified we have to impose an 

initial condition:

a ! ~ 7 V ( a i , P i) ,  (2 .1 2 )

together with a i  being uncorrelated with the innovation vector u t , E ( o t i ,u t) = 0 , 

for t  =  1 , . . .  ,T.

We will focus our attention on the unidimensional tim e series case (N  =  1 ), for which 

we will s tart by presenting two examples of models th a t have the representation 

defined by (2.9) to (2 .1 2 ): a stationary AR(p) model and unobserved component 

model. Suppose we have a stationary AR(p) model:

Ut ^lVt—i • • • 4*pUt—p ~  £ti

where all the solutions of c/)(z) =  l  — fa z  — . . .  — (f)pzp =  0  are outside the unit circle,

and the innovations are independent and identically distributed with et ~  A^O, cr2), 

for t  =  1 , . . . ,  T. This model is a SSM defined by:

&t = (yt, • ■ • ? yt—p+i) ?

Zt =  (1,0,  -. . , 0 ) ,

0 i 02 03 0p
1 0 0 . . .  0

T t = 0 1 0 . . .  0

1 0
Gt — 0,
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H t =  [1 ---0]',

c t =  0, 

dt = [0...0]',

Ut ~  N ( 0, a 2).

Another type of models th a t has an SSM representation are the unobserved com­

ponent models. For this class of models, y t is decomposed as the sum of several 

effects, most commonly the sum of irregular, trend, cyclical and seasonal compo­

nents. A example of UCM is the basic structural model (BSM) defined as:

Ut = Ut +  I t  +  £t, £ t ~ N (  0 , of),
IH+1 =  IH +  Pt +  Vt, Vt ~  N ( 0, a 2), /9 1 «\
A + i =  Pt +  Ct, C t ~ N {  0 ,a c2),
E f=o7t+i-t =  wt, u t ~ N ( 0, a l ) ,

where we have considered a trend component /xt , a dummy seasonal component 7 *, 

w ith seasonal periodicity of s, and an irregular component et . The trend component 

has a stochastic slope component f t . The different disturbances are taken to be 

m utually uncorrelated, and normally distributed. For simplicity we consider s =  4, 

which corresponds to quarterly data. The vectors for the SSM representation are 

then:

ott =  ( / i t ,A ,7t ,7t-i>7t-2)#,

0i-HIIN

1 0 0 ) ,
'  1 1 0 0 0

0 1 0 0 0
T t = 0 0 - 1 - 1 - 1

0 0 1 0 0
_ 0 0 0 1 0

G t =  [<Te 0 0 0],
' 0 t7jj 0 0

0 0 0
H t = 0 0 0 CTu ?

0 0 0 0
0 0 0 0

c t =  0,
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ut ~  N I D ( 0 , 14).

Basic structural models have the property th a t the components of the state space 

vector have diffuse initial conditions, c*i ~  N(0,  /cl) with /c —> 0 0 . In this particular 

case:

~  N(0, /c/), (2.14)

f t  -  N(0, /c/), (2.15)

7 i -  iV(0,/c/), t =  - 1 ,0 ,1 .  (2.16)

For models in SSM several algorithms have been developed of which the best known 

is the Kalman filter. Originally from the engineering literature, (Kalman, 1960) the 

potential statistical applications were put forward in works such as Jazwinski (1970) 

and Harvey (1989). The Kalman filter is a recursive process th a t gives the optimal 

linear estim ate of the state  space vector a t given all the information available at

time t  — 1, which we represent by a* =  E ( a t |Yt_i). Suppose we have a* and its

variance-covariance m atrix P f. Then, when observation y t is available, the one 

step-ahead prediction of the state vector and its variance are obtained using the

equations th a t define the Kalman filter:

v t =  y t - c t - Z ta t , (2.17)

F* =  ZtPtZ't +  GtG't, (2.18)

K t =  (TtPtZ 't +  H tG ^ F t-1, (2.19)

&t+ 1 =  f t  +  T ta t +  KtVt, (2.20)

P t+ i =  T tP t (Tt — K tZ t)' +  Hf (H t — K tGt ) / . (2.21)

S tarting with initial conditions a i and P i ,  given by (2 .1 2 ), these equations will 

output: a f =  JS7(at|Yt_i) and P t = E  [ ( a t -  a t) ( a t ~  at)'] for t =  2 , . . .  ,T.  The 

Kalm an gain K t represents the decrease in the error variance from the information 

contained in y t . The one-step ahead prediction error is given by v t =  y t—E  (yt[Yt_x) 

and var (vt) =  Ft.

For a Gaussian SSM, a.t is the minimum mean square error estim ator (MMSE) 

of the state  space vector given all the information available until t — 1 (assuming
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the param eters of the model are known). In the non-Gaussian framework, at is the 

MMSE in the class of linear estimators (MMSLE).

W hen considering nonstationary tim e series models, for example the model de­

fined in (2.13), the initial condition in (2.12) is diffuse, th a t is the initial state has 

an arbitrarily high variance-covariance m atrix. This reflects a non-informative prior 

knowledge on the state  vector. De Jong (1991) and Koopman (1997) provide an an­

alytical treatm ent of this question. Another way of dealing with the diffuse initial 

conditions in the state vector is by defining:

P i  =  P* +  fcPoo,

where P* is a symmetric m x m  m atrix, P ^  is a diagonal m x m  m atrix  with ones and 

zeros on the diagonal and k is taken big enough to  reflect the diffuse distribution of 

some of the components of ot\. This is the approach taken in Koopman, Shephard, 

and Doornik (1999) with k — 1 0 7. As an example of the later approach, for an 

unobserved components model with trend and stochastic slope we have P* =  0 and

Poo =  I 2.

In the framework of estimation of SSM by maximum likelihood, the one-step 

ahead prediction error and its variance-covariance m atrix  can be used to obtain 

recursive expressions of the scores and using an optim ization algorithm  estim ate the 

param eters of the model. An example of this can be found in Harvey (1989).

Smoothing algorithms have the purpose of prediction a t tim e t  given information 

available after t. Such algorithms have been proposed in Anderson and Moore 

(1979), Ansley and Kohn (1985), De Jong (1988) and Koopman (1993). They are 

composed of a set of backward recursions th a t take as input the output from the 

Kalman filter defined in (2.17) to (2 .2 1 ). We present the disturbance smoother in 

Koopman (1993).

S tarting with =  0  and =  0, for t  = T  — 1 , . . . ,  1  the backward recursions

are given by:

et =  F(_1v( -  Kjrt, (2.22)

Dt =  F,-1 + K'(N ,K tl (2.23)

r ,.! =  ZJF^Vt +  L'rt, (2.24)
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N t_! =  Z j F r ^ t  +  L jN tLt, (2.25)

Lt =  T t - K tZt, (2.26)

where vt, K t and Ft are stored after running the Kalman filter. From the smooth­

ing algorithm we get the smoothed predictions of the innovation process, and the

correspondent variance-covariance m atrix :

E(  ut|Yr ) =  G'(e, +  H'(r(, 

var (ut|Yr ) =  a2 (Ir -  G't (DtGt -  K'(N (H() -  H't (NtHt -  N tKtGt) ) .

The disturbance smoother is used in Koopman and Shephard (1992) to obtain the 

exact scores for SSM, and estim ate the hyperparam eters by maximum likelihood.

W hen working with UCM, the disturbance smoother can be used to  obtain the 

auxiliary residuals, Harvey and Koopman (1992). These are smoothed estimates of 

the components disturbances and are used as diagnostic tools for the detection of 

shocks not accounted for by the model. In Durbin and Koopman (2001) is discussed 

the use of auxiliary residuals for diagnostic checking for a general state  space model. 

For the BSM in (2.13) the auxiliary residuals are given by

i t  =  E (s t \Y )  =  <j2et , (2.27)

Vt =  E { n t \ Y ) = a 2rl, (2.28)

Ct = E{<:t \Y) = c 2v2, (2.29)

tut = E (w t\Y )  = a y t , (2.30)

with variances

(2.31)

a j = var ( i t) =  a* D t, (2.32)

<4 =  va rWt) =  (2.33)

(C«) =  <7c4 n ?’2’ (2-34)

var (wt) = a l  N?’3, (2.35)

(2.36)

37



where rj is the z-th component of the vector r t and N j’z is the z-th diagonal compo­

nent of the m atrix N t , for i =  1,2,3.

The auxiliary residuals are standardized before use for diagnostics purpose, as the 

estim ated variances a t the beginning and end of the sample are different from the 

variances a t the middle of the sample. If the model is well specified they should be 

normally distributed, although they are serially correlated (Harvey and Koopman, 

1992). The normality of these processes is the basis for the diagnostic tools proposed 

in Harvey and Koopman (1992), by plotting them  to detect outstanding values, and 

using normality tests, corrected for the existence of correlation. In Harvey and 

Koopman (1992), when analyzing the plots of the standardized auxiliary residuals, 

values in absolute value greater than 2  are indication of outliers or structural shifts. 

This is approximately the critical value for a two side individual test, for a size of 

0.05. The detection of outliers or structural shifts by inspection of outlying values 

for the standardized auxiliary residuals is a simultaneous test problem. In Penzer 

(2 0 0 1 ) critical values are derived for simultaneous testing, when the statistics are 

independent and identically distributed. For example, if the individual statistic 

is distributed as a standard normal, for simultaneous test the significance of 1 0 0  

statistics, the critical value is 3.28, for a one side test of size 0.05. The critical 

value for performing a one side test for a single statistic  is 1.64, for a test of size 

0.05. In Penzer (2001) several simulation studies are conducted to  evaluate the 

im pact in the position of the critical values of the existence of correlation in the 

statistics. The conclusion is tha t, even in the presence of correlation, in many 

cases the statistics can be treated as independent. In these cases the critical values 

obtained assuming independence, provide an accurate estim ate of the critical values 

obtained by simulation of the correlated statistics. From the tables in Penzer (2001), 

using the critical values, obtained under independence assumption, the critical value 

for a two side test of size 0.05 for the significance of the standardized auxiliary 

residuals, for a sample of size T  =  100, is approximately 3.5.
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2.4 MCMC m ethods for state space models

Suppose we have a SSM like the one defined by equations (2.9) to  (2 .1 2 ), and let 

be the vector of all unknown param eters in the model, and a  =  ( a i , . . .  , a r ) -  

We are interested in sampling from / ( a ,  \F |y ), the joint posterior distribution of 

the state  vector and parameters. Sampling from th a t posterior will enable us to 

estim ate using a similar expression to  (2.4), and to  make inference about the 

statistical properties of the state space vector, which we recall is very often a latent 

variable. Using the Gibbs sampler, and defining X  =  ( a ,  \&), we construct a chain 

th a t converges to the target joint posterior by iteratively sampling:

a  ~  f ( a \ ' f ' , Y ) ,

*  -  / ( ¥ | a , y ) .

We begin by presenting a method for sampling from the conditional distributions 

As the composition of ^  depends essentially on the model in consider­

ation, the m ethod for sampling from its full conditional will be illustrated for the 

basic structural model.

2.4.1 Simulating from /(a |\l> ,y )

W hen using Gibbs sampler for sampling from the states full conditional distribution 

two sampling strategies can be used: single-state and m ulti-state Gibbs sampler. 

A single-state sampling scheme was proposed in Carlin, Poison, and Stoffer (1992). 

For each draw of /(a l^ F , Y )  we sequentially sample from / ( a t | a \ (, \F, T ), where 

a.\t =  ( a i , . . . ,  ott-1 , ctt+i, .. •, oltj ) for t  =  1 , . . . ,  T.  This scheme has the drawback 

th a t the samples for the states will be highly correlated, which implies a slower 

convergence of the chain to its equilibrium distribution. A lternatively a m ulti-state 

approach can be used. An example of this technique is given in C arter and Kohn 

(1994) and Fruhwirth-Schnatter (1994). Given th a t

/ ( a | ¥ ,  Y )  = f ( a T| , Y ) f ( a T. 1 | a r , * ,  Y ) . . .  / ( a 0\ a u  Y ) ,

and th a t each conditional distribution on the right hand side is Gaussian, the draws 

from f ( a \ 'S ' ,Y ) ,  are obtained by running all the subdraws.

39



The simulation smooother, was proposed in De Jong and Shephard (1995), and 

it is the m ethod we will use for sampling from the sta tes’ full conditional distribu­

tion. Instead of simulating directly from the full conditional of the states, it draws 

from the full conditional of the innovations, and from there, using the fact tha t 

the states are a linear combination of the innovations, obtains the desired samples 

from the states’ full conditional distribution. The advantage of this m ethod is tha t 

we sample from a multivariate distribution of uncorrelated variables, the innova­

tion processes, and therefore increase the speed of convergence of the chain to its 

equilibrium distribution.

Let S* be a selection m atrix , which defines the subset of the vector of innovations 

we wish to sample from,

Vt =  s *u t- (2.37)

For example, if S t =  H* we sample from the joint full conditional of the transition 

equation innovations, which allow us to get draws from f(o t\ '& ,Y ).  We assume, for 

simplicity of exposition, th a t ct =  d* =  0 , for all t.

The simulation smoother starts by running the Kalman filter once and storing the 

quantities v t, Ft, K* for t  = 1 , 2 , . . . ,  T, present on equations (2.17) to (2.19) . Then, 

setting rT = 0 (N  x 1) and Ur  =  0 (N  x N ),  and defining Lt =  T t — K*Z*, J t =
= 1 , . . ., T , the following recursions are run for t =

C t =  St ( i  — GjF^Gt — JjUtJj) SJ, (2.38)

£t ~  N  (0, a2Ct) , (2.39)

Vt =  s , (g jf^ z , +  , (2.40)

rt- i =  Z jF t - S  +  Ljrt -  V[Ct-1e(, (2.41)

u ,_ , =  Z JF - 'Z , +  +  v j c r ' v , . (2.42)

From the output of this recursive process we are interested in storing:

Vt = S* (GqFt lv t + Jjr*) + et,

for t  =  0 , 1 , . . . ,  T  (for which Go =  0 is set), as they are a sample from /  (77^ ,  y) 

The proof of this statem ent can be found in De Jong and Shephard (1995).
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The above expressions are simpler when we consider the case of S* =  H*. Suppose 

for th a t case th a t H tGJ =  0 ( uncorrelated measurement and transition innovations), 

and define Q t> apart from the factor cr2, the variance-covariance m atrix for the 

transition innovations, Q t — H JH f. In this case equations (2.38) and (2.40) are 

replaced by:

Ct =  n t - O t U t f i t ,  (2.43)

V, = n tUtLt. (2.44)

In order to  obtain a  rsj / ( a l 'S '.y ) ,  we run the recursion:

ott+i =  T ta t +  rjt , 

for t  =  1 , . . . ,  T, using the initial condition a i  =  a i.

2.4.2 Simulating from /(4>|Y ,a) for the BSM

Consider the basic structural model, defined by equations in (2.13), for a general 

seasonal period s. As we have seen before the state  space vector is composed by

OLt =  { ji t iP u lu  • • • 57t-(s-i)) » with initial conditions as in equations (2.14), (2.15)

and 7 * ~  iV(0, kI) ,  i =  — s +  3 , . . . ,  0,1. The set of unknown param eters of the 

model is given by the vector of hyperparam eters =  ( ° e iav ab au) ' Let x  =  

( x i , . . .  , x T), for x  = / / ,£,  7 .

Sampling from / ( ^ |y ,  a )  is done by sampling from the full conditional for each of 

the hyperparam eters. Given the assumption of uncorrelation between the different 

components this is achieved by sampling:

~  (2-45)

^  ~  (2-46)

c l  ~  f { a cl^)> (2-47)

al  ~  (2-48)

(2.49)

For each of the hyperparam eters we assume an inverse gam m a prior:

~  7 G ( | , | ) ,  (2.50)
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C3

(2.51)

’ 2 ) ’a \  ~  IG

■i ~  1 0

(2.52)

with Cj, Si >  0 for i =  1 , . . . ,  4.

The reason for this choice is the conjugacy property for this distribution, as it is 

stated  in next lemma.

L e m m a  2.4.1 Suppose that o2 ~  IG  (§, f ) ,  where c and s are known. Additionally, 

assume that u i , . . . , u n are independent and identically distributed as a N(0, a 2). 

Then:

a)

a 2\ui, . . . , u n ~ I G
2 ’

/

b) I f  the process a i , . . . ,  a n is defined recursively by a t+1 =  at +  w*, with diffuse 

initial conditions a i  ~  N (0 , « / ) ,  k —>■ oo, we have that:

(

a 2 |a i , . . . , a n ~ I G

n - l  \
i , E  «? +  an  — 1 4- c *

\ /

P r o o f  : We shall proof only the second part, as the proof of the first one is similar. 

We have that:

f  (a2 | a i , . . . , a „ )  oc /  ( a i , . . . ,  a n |cr2) /  ( a 2)

a  /  ( a 2 , • • • , a n |a:i,<72) /  (a:i|cr2) /  ( a 2)  

a  / ( a 2 , . . . , a n | a i , a 2 ) / ( a 2) ,

where we have used th a t the distribution of a i  does not depend on a 2. On the other 

hand,
n

f  (a 2, . . . ,  a n |a i , a 2)  =  J J  /  (a* | <**_!, a 2)
i—2
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= n
i=2 L 
n—1= n

1 (  (Oii &i—l)exp —v

i=  1

\ /2 ,kg2

1

2 a 2

V27TC7"
exp

2 cr2

Using the prior assumption of an inverse gamma for a 2 we have th a t

log (/(cr2)) oc -  lo g r  ( 0  -  |  log |  logCT2 -  a 2 >  0 .

Therefore we get:

log ( /  ( o 'V i ,  • • •, <*n)) =  const -  -  log a 2 -

71-1
52 Ui c  I 22 i= l C -f- Z

2<j 2 2
71—1

log a 2 -
2 <t2

 ̂ n  — 1 +  c +  2  2 i= 1
=  c o n s t-----------   log a --------

Z u l  + s

2  a 2

Consequently:

<721ai . . . , a n ~ I G

(  U~ l  o \

c +  n  -  1 i t i  *

V /

Using Lemma 2.4.1 (a) it is straightforward to sample from the full conditional 

distribution in (2.45). We have th a t yt — fit — I t  = Zt are independent and identically 

distributed with distribution N  (0, cr2), for t =  1 , . . . ,  T. Hence we have that:

/  T(  ( \2 , N
Ci +  T  +  5i

2 ’

\

(2.53)

By Lemma 2.4.1 (b) we obtain the distributions in expressions from (2.46) and 

(2.47), respectively:

T—1

a 2 |/z ,/3  ~  IG

(j21/3 -  7G

^ C2 _l_ 7" _  1 ( /^ + i  ~  V t — A )2 +

\

/ C3 +  t _ i  g  (A+i -  A ) 2 +  5 3 ^

V /
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By a similar derivation used to obtain the result 2.4.1 (b), the distribution in (2.48) 

is given by

' Ci +  T  _  (8 _  i )  fc£ i ( 7 m  +  7* +  . . •  +  7 (- (« -2 ))2 +
IG

\ )
After convergence is achieved, if we continue the Gibbs sampler scheme, we ob­

ta in  N  samples from the joint posterior (/x ,/3 ,7 , of, cr ,̂ c^, c r j |y ) , which are used 

to estim ate the different param eters of the model, and obtain their statistical prop­

erties.

2.4.3 Numerical examples

To illustrate the application of the Gibbs sampler for estim ating SSM, we consider 

an artificial data  set, of size T  = 100, generated from a local level model,

Vt =  +  £t ~  N  (0,  e r f) ,
Qf(+i = a t + t]t , r)t ~  N  (0, o f )  , (2.54)

with a 2 =  cr* =  1 .

The Gibbs sampler is run for 2000 iterations, with the first 1000 discarded. The 

prior assumptions for the hyperparam eters are as in expressions (2.50) and (2.51), 

with all the prior param eters set equal to 5. The state  space variable is assumed to 

have a diffuse prior a \ ~  N  (0, k) with k —> 0 0 . In Table 2.1, we present the results 

obtained.

Table 2 .1 : Summary of output from posterior samples for hyperparam eters, for a 
local level model.

The values reported are the mean, 2.5th and 97.5th percentile of the posterior samples, and the 
standard deviation of the sample mean estimates (SD estimated with a bandwidth of 100 for the 
Parzen window). Based on 2,000 Gibbs draws, discarding the first 1,000.

Prior Posterior sample
Mean SD Mean SD Q o.025 Q o.975

*2 1.67 2.36 0.946 0.0290 0.544 1.506
1.67 2.36 1.297 0.0303 0.764 1.976
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The estim ated value for o 2e is closer to the true value of the param eter, than 

If estim ating this model by maximum likelihood, the hyperparam eters are estimated 

w ith values <3f =  0.914 and <5̂  =  1.302. We note th a t the hyperparam eter o^ is also 

overestimated, and th a t the results obtained by the Gibbs sampler algorithm are 

closer to  the true ones.

The convergence of the chain to  the target distribution is fast, as it can be 

concluded from the plots of the path  simulated, in Figure 2.1 (a) and (b), where 

the samples of the burn in period are included. In Figure 2.1 (c) and (d) we plot

Figure 2.1: P lot of simulated paths (a)-(b), and autocorrelation functions for pos­
terior samples (c)-(d), for o \  and cr ,̂ for a local level model.

(c) 0 300 600 900 1200 1500 1800 (d) 0 300 600 900 1200 1500 1800

0.5

0.0 0.0

-0.5 -0.5

0 4020 60 80 100 0 100

the autocorrelation functions for the 1,000 iterations recorded. The autocorrelation 

functions have a very rapid convergence towards zero which corroborates th a t after 

the burn in period the chain has converged to the target distribution.

To assess the sensitivity of the estimates obtained to the param eters set a priori 

for the inverse gamma distributions, we conduct a Monte Carlo experiment. Using 

the model defined by equations in (2.54), with a\  =  =  1, 1,000 artificial data

sets, of size T  =  100, are generated. For each data  set, the Gibbs sampler is run
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with s i =  1 ,3,5,  for C\ =  C2 =  S2 =  5, and s<i — 1 ,3 ,5 , for Ci =  Si =  =  5. The

results obtained are summarized in Table 2.2 and 2.3

Figure 2.2: Box-plots of posterior sample means of hyperparam eters, across 1,000 
sim ulated replications, for prior param eters {si =  1 ,3 ,5 , C\ =  C2 =  52 =  5} and 
{ 5 2  =  1 ,3 ,5 , Ci =  C2 =  Si =  5}, for a local level model.

oc\i

s1=5 s1=3 s1=1 s2=5 s2=3 s2=1

CT,*

In average, across the simulated replications, the more accurate estimates for the 

hyperparam eters are obtained by taking Si =  S2 =  5, presenting also the smaller 

standard  deviations across the replications. Comparing the sensitivity of the pos­

terior samples to the values set for the prior distributions, we can see th a t the 

hyperparam eters present a similar sensitivity to the changes in the correspondent 

prior param eter. This can be seen also in Figure 2.2.

The value of, for example, the prior param eter Si will also affect the estimate 

obtained for of, as if the variability of the measurement equation is not appropri­

ately taken in account by the estim ate of of, it will be partially included in the 

estim ate obtained for of. This effect is related to  the existence of correlation be­

tween the posterior samples of the hyperparam eters. The use of less appropriate
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Table 2 .2 : Summary of output from posterior sample means for hyperparameters, 
across 1,000 simulated replications, for prior param eter Si =  1,3,5 and C\ =  C2 =  
s 2 =  5, for a local level model.

Prior Posterior sample mean
Sl Mean SD Mean SD Q o.025 Q o.975
5 1.67 2.36 0.982 0.218 0.617 1.474
3 1 1.41 0.898 0.233 0.521 1.420
1 0.33 0.47 0.758 0.277 0.295 1.363
5 1.67 2.36 1.080 0.268 0.634 1.665
3 1.67 2.36 1.150 0.300 0.649 1.805
1 1.67 2.36 1.319 0.398 0.679 2.142

The values reported are the mean, standard deviation and 2.5th and 97.5th percentile for the 
samples of posterior sample means obtained across 1,000 simulated replication. Based on 10,000 
Gibbs draws, discarding the first 5,000.

Table 2.3: Summary of output from posterior sample means for hyperparameters, 
across 1,000 simulated replications, for prior param eter s 2 =  1,3,5 and C\ =  c2 =  
si =  5, for a local level model.

Prior Posterior sample mean
«2 Mean SD Mean SD Q o.025 Q o.975
5 1.67 2.36 0.982 0.218 0.617 1.474
3 1.67 2.36 1.023 0.232 0.639 1.546
1 1.67 2.36 1.078 0.254 0.667 1.650
5 1.67 2.36 1.080 0.268 0.634 1.665

< 3 1 1.41 0.988 0.280 0.525 1.603
1 0.33 0.47 0.882 0.299 0.374 1.531

The values reported are the mean, standard deviation and 2.5th and 97.5th percentile for the 
samples of posterior sample means obtained across 1,000 simulated replication. Based on 10,000 
Gibbs draws, discarding the first 5,000.
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prior param eters can imply th a t the chain will take longer to converge to the target 

distribution, which is reflected on higher values for the autocorrelation functions 

of posterior samples, or empirical posterior distribution presenting a high degree of 

asymmetry. Hence, the analysis of the distribution of the samples obtained after 

the burn in period is a useful tool for setting the values of the prior distributions 

param eters efficiently.

Several other numerical examples are presented. The purpose is to assess the 

im pact of the choice of variables as the number of iterations of the sampler, or the 

ratio  on the properties of the posterior samples. In the examples presented

the true value of is fixed to one. The true value of is taken equal to 0.1 and 

0.01. The number of iterations considered are 2,000, 200,000 and 2,000,000. Half 

of the iterations are discarded as being burn-in-period. In Table 2.4 we present a 

summary of the statistical properties of the posterior samples obtained.

Table 2.4: Summary of output from posterior sample of hyperparam eters, for 1,000, 
100,000 and 1,000,000 runs of the Gibbs sampler , for true param eters a \  =  1 , 
a* =  0 .1 , 0 .0 1 .

Iterations Mean SD Q  0.025 Q o.975
1 , 0 0 0 0.966 0.00475 0.723 1.280

1 0 0 , 0 0 0 0.960 0.000590 0.723 1.270
ct* =  0 . 0 1 1 ,0 0 0 , 0 0 0 0.961 0.000188 0.723 1.272

1 , 0 0 0 0.00961 0.000861 0.00338 0.0217
1 0 0 , 0 0 0 0.0108 0.000167 0.00353 0.0295

1 ,0 0 0 , 0 0 0 0.0108 5.574E-05 0.00351 0.0295
1 , 0 0 0 0.976 0.00998 0.678 1.337

1 0 0 , 0 0 0 0.968 0.00134 0.682 1.337
1 ,0 0 0 , 0 0 0 0.968 0.000433 0.683 1.335

1 , 0 0 0 0.118 0.00802 0.0486 0.241
=  o . i < 1 0 0 , 0 0 0 0.124 0.00106 0.0489 0.269

1 ,0 0 0 , 0 0 0 0.124 0.000339 0.0489 0.272

The values reported are the mean, 2.5th and 97.5th percentile of the posterior samples, and the 
standard deviation of the sample mean estimates (SD estimated using a Parzen window). Based 
on n  Gibbs draws, discarding the first for n =  2,000, 200,000 and 2,000,000.

The posterior mean of the hyperparam eters exhibits a low sensitivity to the num­

ber of iterations used. This lack of sensitivity is also present in the values of the
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percentiles.

To analyze what the effect of the number of iterations on the posterior samples 

correlation structure, in Figures 2.3 and 2.4, we plot the autocorrelation functions 

until lag 1 0 0 , for of =  0 .0 1 , 0 .1 , and for the different number of iterations used.

Figure 2.3: Autocorrelation functions for posterior samples of the hyperparam eters 
for a local level model, with true param eters of =  1 , of =  0 .0 1 , for 1 , 0 0 0  (a)-(b),
1000,000 (c)-(d) and 1,000,000 (e)-(f) runs of the Gibbs sampler.
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Comparing the autocorrelations structure across number of iterations used, we 

can see th a t there is no discernible difference between using 1 0 0 , 0 0 0  and 1 ,0 0 0 ,0 0 0 . 

The posterior samples obtained when using 1,000 iterations present a slower conver­

gence to  zero. However, even for this number of iterations the rate  of convergence 

of the autocorrelation functions toward zero suggests th a t this number of iterations 

is sufficient.

The behaviour of the correlation structure across true value for of is dependent 

on the ratio  o f /o f . The lower th a t ratio, the slower is the convergence of the auto­

correlations functions for of, when compared with the behaviour of these functions 

for the posterior samples of of. From Figure 2.1 (c) and (d), when the ratio is equal

o
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Figure 2.4: Autocorrelation functions for posterior samples of the hyperparam eters 
for a local level model, with true param eters a \  =  1 , =  0 .1 , for 1 , 0 0 0  (a)-(b),
1 0 0 0 , 0 0 0  (c)-(d) and 1,000,000 (e)-(f) runs of the Gibbs sampler.
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to  one, we observe th a t the autocorrelation functions present a similar converge to­

ward zero, for the posterior samples of the two hyperparam eters. In contrast, when 

the ratio is 0 . 1  or 0 .0 1 , the autocorrelations for the posterior samples of present 

a much slower converge to zero, than the posterior samples for a\.  This difference 

on the rate of convergence of the autocorrelations increases w ith the decrease of the 

ratio  of the true values of the hyperparameters.

2.5 Conclusions

We have presented a brief review of the theory and results for Markov chain Monte 

Carlo methods. The basic notations were introduced with the purpose of presenting 

results th a t justify the use of this methodology for param etric estimation. We 

restricted our attention to the Metropolis-Hastings and Gibbs sampler, as in what 

follows we will be using the later.

The type of models we will be considering are SSM. They were defined, together

(b) 
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with some examples of times series models th a t can be w ritten using this formulation. 

The Kalman filter and smoother, and a simulation smoother were described as they 

will play a im portant role in the methodologies used in the forthcoming chapters.

The application of the Gibbs sampler to SSM models was exemplified, by esti­

m ating a local level model. Some aspects of the estim ation process were considered, 

namely empirical ways of assessing th a t the chain has converged, the effect of the 

choice of the prior distribution param eters and of the number of runs of the Gibbs 

sampler.
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Chapter 3

MCMC methods for shocks 
detection

3.1 Introduction

Shocks which have not been accounted for in a model can result in misspecification 

and bias in the param eter estimates. In Fox (1972) a detailed study is conducted 

on the effect of two types of outliers on the param eters estimates. This is one 

of the first references to  methods of dealing with outliers in the context of tim e 

series observations. The two types of outliers considered are: additive outlier (AO), 

when the shock occurring a t time t  only affects the observation in th a t period of 

time; innovative outlier (1 0 ), when a shock at tim e t  will affect not only the t-th  

observation but also subsequent ones. Detection of these effects is done by likelihood 

ratio  test. Tsay (1988) extends this framework considering four type of interventions 

for univariate time series. In addition to AO and 10, level changes and tem porary 

level changes are considered, with a non-Bayesian approach to  detection. One of 

the first Bayesian methods for detecting AO and 10, in autoregressive models is 

given by Abraham  and Box (1979). The main difference between the Bayesian and 

non-Bayesian modeling approach is th a t the former considers the outliers as part of 

the model formulation whereas the later considers a null model without intervention 

on which the outliers detection methods are based. The purpose of this chapter is 

to  present a Bayesian method for shocks detection in the context of state space 

models. Our approach uses more general prior assumptions than  those used in
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existing methods. We s ta rt by presenting the formulation of state  space models in 

the presence of interventions and a brief description of non-Bayesian methodologies 

available. A review of some Bayesian techniques for this type of problem is also 

given. The m ethod we have developed is presented, and its correctness established. 

Finally, some empirical applications are given, for simulated and real data, and 

conclusions are draw.

3.2 Interventions in state space models

Consider the usual state space models formulation for a univariate tim e series yt for 

t  =  1 , . . .  ,T,  given by the measurement and transition equations:

Vt — Ct +  Z t & t  +  G t U t ,  (3.1)

&t+1 =  d* +  T  tOtt +  HtUt, (3-2)

where the state  vector a t is of dimension m, u* ~  N I D  (0, a 2I r ), H G ' =  0 and with 

initial conditions ol\ ~  AT(ai, P i) .  We consider these type of models in the presence 

of different types of interventions. Following the notation in De Jong and Penzer 

(1998) the intervention model is formulated as:

Vt =  Ct +  X tS +  Z^a:* +  GfU*, (3-3)

ott+i =  d* +  W fJ -f T^a:* +  Htii*, (3-4)

The shock design matrices X t ( 1  x 1 ) and W* (m x 1 ) determine the nature and 

location of the intervention, whereas 6 (1 x 1 ) determines its magnitude. Let JD  be 

the effect the intervention has in the observations. ( D i , . . . ,  D t ) is the intervention 

signature.

In De Jong and Penzer (1998), a simple intervention is defined as an intervention 

th a t is generated by taking the shock design matrices equal to  zero except a t the 

instant where the intervention occurs. We have a simple additive outlier a t instant 

«, with magnitude S when:



The shock occurs a t one single point in tim e t  — i and affects the observations only 

a t its origin i, as it is added directly to the measurement equation. Its signature is 

represented in 3.1 (a).

An innovative outlier, with origin i , occurs when a shock is added to  the transition 

equation. Its im pact on the states vector, and consequently on the observations, is 

not instantaneous. For simplicity of exposition we will consider m  = 1, in the 

following examples of innovative interventions.

Consider a d a ta  set {yt}J=i generated by a stationary autoregressive model {\(fi\ < 

1 ) of order one, to which a simple shock of magnitude 8 with origin i is applied. 

The formulation for the intervention model is the following:

Vt =  &t 

Qtt+l =  + (f)Ott + H tUt ,

with

Adding the shock to  the transition equation has an exponential decaying additive 

effect 5, t  =  i +  1 , . . . ,  as consequence of | 0 |<  1 (see Figure 3.1 (b)).

If we consider structural models, instant shocks to  one of the component equations 

will result in a perm anent shift. Consider as an example the local level model, where 

a shock of magnitude 8 is added to the equation defining the dynamics of the level 

component. The resulting level shift of m agnitude 8, is a consequence of the non- 

stationarity  of the transition equation (see Figure 3.1 (c)).For this model, a shock 

to  the level component is modeled as:

Vt = Ht + Gtut, 

fit+i =  W t8  +  fit +  H tUt,

with the intervention defined as in (3.5).

As a last example consider a structural model composed only of a quarterly 

dummy seasonal component, and with a simple shock to  the seasonal component,
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Figure 3.1: Shocks in state space models: simple additive outlier (a); innovative 
outlier in stationary AR(1) (b); level shift (c); seasonal shift (d).
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with origin i, and magnitude S. The intervention model is

Vt =  I t ,
s—1

T  7t+i-* =  +  HtUti
i= 0

with defined as in (3.5). The seasonal element, corresponding to  t =  % +  1, will 

have a perm anent shift of $. The following seasonal elements adjust to this shift. 

Hence, the result of the shock is a perm anent shift in the seasonal pattern  (see 

Figure 3.1 (d)).

3.3 Non-Bayesian shock diagnosis

Classical m ethods for estim ating models with interventions rely on estim ating the 

null model, of no intervention and then analyzing the intervention model:

In terven tion  model =  N ull model +  In terventions .

The main criticism made to these types of approaches is th a t an initial estimation 

process will produce biased results as, when shocks are present, this methodology is 

based on a first stage with a misspecified model.

Several non-Bayesian methods have been proposed for detection and evaluation of 

the effect of interventions in time series. The benchmark contribution on non- 

Bayesian detection of interventions is the work in Fox (1972), with the study of 

additive and innovative outliers, drops the assumptions th a t the observations were 

independent and identical distributed, opting instead for an autoregressive structure 

for the data. In Fox’s paper, detection of interventions is done by using likelihood 

ratios, comparing the null model and the model with interventions. In the context 

of a more general model, ARMA(p, q), Chen and Liu (1993) propose a method 

for simultaneous estim ation of the model param eters and possible interventions, 

by an iterative process. Iteratively, the estim ation of a model, with a set of known 

interventions (initialized as empty) is done, followed by the updated detection of the 

previous set of interventions. This process is repeated until no new interventions 

are found. The drawback of this method is th a t the step of interventions detection
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is based on the residuals of the previously fitted model, which might not account 

for all the interventions and therefore induces bias in the param eters estimated.

Atkinson, Koopman, and Shephard (1997) and De Jong and Penzer (1998) present 

m ethods which use state  space models. Atkinson, Koopman, and Shephard (1997) 

focus on structural models, and the detection of outliers and structural changes. 

The methodology presented is based on the change of the scores when considering 

the null model and the model with interventions. In De Jong and Penzer (1998) a 

m ethod for detecting shocks for a general SSM is proposed. Through a recursive 

algorithm, which uses the output from one run of the Kalm an filter and smoother, 

the smoothations vector and its covariance matrices are obtained. These quantities 

are the base of diagnostics tools for detecting the different type of shocks

3.4 Bayesian shock diagnosis

Bayesian methods for detection of shocks have been well reported in the literature. 

Earlier work focused on linear regression models, for example Box and Tiao (1968). 

Time series Bayesian methods were initially applied for autoregressive models, in 

Abraham  and Box (1979). Bayesian methods for diagnosing shocks are characterized 

by considering shocks as a feature of the model, through the inclusion of intervention 

variables. The objective is to sample from the joint posterior distribution of the 

param eters and interventions variables.

We initially consider a very simple SSM, namely a local level model, to illustrate 

a Bayesian approach for estim ating intervention tim e series models. We assume the 

existence of only one type of intervention, an additive outlier, with origin a t t = i 

and magnitude 6 , directly affecting the observations { y t } J = v

The presence of an outlier can be included in the model in an additive way, 

through a location parameter; alternatively the presence of the shock can be ac­

counted for by defining the distribution of the error in the measurement equation 

as a mixture of normals, which is achieved by the inclusion of a  scale param eter.

We start by considering the use of a jum p in the measurement equation, which
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is done by introducing the variable K  =  ( K i , . . . ,  K t ) , defined as:

which is directly included in the measurement equation:

yt — OLt +  K t +  €t, (3.7)

a t+i = a t + r)u (3.8)

where:

et ~  iV(0,or?), (3.9)

T)t ~  (3.10)

for t  =  1 , . . . ,  T  and

au ~  A"(0, ac) , « —> oo. (3-11)

A Bernoulli prior is assumed for K t . Its prior is defined, for t  =  1 , . . .  , T  as:

/=»■
If the variable A* is different from zero, its value 6 defines the size of the shock at 

th a t instant in time.

An alternative way of accounting for the existence of an outlier is a contamina­

tion model formulation. The distribution assumed for the measurement innovation 

process is:

e, ~  N  (0, K t f )  , (3.12)

where:

H * .  i z m
with K  > 1 and a value such th a t the change in the variance accounts for the shock 

size. If for an instant t  K t =  K ,  the measurement innovation is distributed as a
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normal with an higher variance than a

The intervention model using a mixture of distributions is formulated as:

Ut =  &t +  K tet , (3-14)

a t+i = a t + rju (3.15)

and the conditions given by expressions (3.9) to (3.11).

The prior distribution for the scale param eter is a Bernoulli distribution:

P (Kt = j )  =  [  , p’ {  = f
 ̂ ’ \  1 - P ,  3 =  1-

For simplicity we are assuming p  fixed a priori, an assumption we will drop later. 

The value of S, or K ,  is assumed to be prior knowledge. Let a  = (a i , . . . ,  ax)- 

Using a Bayesian approach we sample from the posterior /  ( a , of, K |y ), and 

the estimation of the hyperparam eters is done including the possibility of shocks 

to  the observable variable {yt}J= v  The posterior distribution of the intervention 

variable is used to decide whether shocks are present or not. For each t  we look 

a t P ( K t =  $ |F ) for the additive formulation and P ( K t = K \Y )  for the mixture of 

distributions. Our decision about the presence of a shock a t tim e t' depends on the

proportion of times K t> was sampled different from zero, for the additive case, or

different from one, for the mixture formulation.

The choice between the inclusion of K t in an additive or multiplicative way is not 

straightforward, and it is directly related to the sampling scheme used for estim ating 

the model, as well as with the prior knowledge assumed about the data.

Using the additive formulation allows for more general specifications for the in­

tervention prior, namely the use of continuous priors. Additionally, given the clas­

sification we are using for the different type of interventions, inclusion as location 

param eter is preferred; we will see later th a t the m agnitude of the shock can be as­

sumed to have a more general distribution. This allows us to make inference about 

the magnitude, based on samples from its posterior distribution. Furthermore, the 

additive formulation perm its the definition of more general models. For example, 

suppose we formulate a model with a non-normal distribution for the measurement 

innovation process, which can be approximated by a m ixture of normals (Carlin,
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Poison, and Stoffer, 1992, Shephard, 1994). If in addition we want to  include inter­

vention variables, this is not feasible using a mixture of normal distributions, as tha t 

device is already being used to approximate the innovations process distribution.

Intervention variables are included as a location param eter by McCulloch and 

Tsay (1993), in the context of ARMA models, where a normal prior is used for 

detecting additive outliers and level shifts (considering these two situations sepa­

rately). In Chib, Nardari, and Shephard (2002), in the context of volatility models, 

a normal distribution is assumed as a prior distribution for a variable th a t approx­

imates the magnitude of an intervention in the mean process. Examples of the 

use of m ixture distributions for modeling interventions are found in B arnett, Kohn, 

and Sheather (1997), for ARMA models, and C arter and Kohn (1996) for a general 

SSM. In both these papers a discrete prior is used for the scale param eter. This 

type of formulation, has the drawback of restricting the choice for the m agnitude of 

the interventions to a set of values th a t is chosen a priori. It has the advantage of 

yielding a discrete posterior for the intervention variable.

In w hat follows the formulation of intervention models is done using a location 

param eter, th a t is an intervention variable th a t affects the observations or the state 

space vector in an additive way.

3.4.1 Gibbs sampling assuming a discrete prior for Kt

The Gibbs sampler is the MCMC method we use for estim ating the parameters 

of SSM with interventions. Two type of interventions are considered: outliers and 

shifts in the transition equation. As before, for simplicity of exposition, the methods 

are applied to a local level model.

Let {yt}J=i be an univariate time series, which is modeled according to a state 

space model, with an univariate state vector {at}J= i> where the possibility of the 

existence of shocks is taken in account, by the use of the intervention vector K  =  

(K i, K 2), where K* =  (K itU . . . ,  K itT), for i =  1,2:

Vt =  &t +  K i , t  +  (3.16)

& t +i =  , t  +  (3-17)
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Initially we consider the coefficients in H t and Gt (represented by 0) to be known 

and we focus on the properties of the joint posterior distribution / ( a ,  K |  Y ,0 ) ,  

where a  =  (aq , . . . ,  ay). We assume th a t H'tGt =  0, rank  (H t) ^  0, rank  (G f) ^  0, 

together w ith the diffuse initial conditions for the state  vector given in expression 

(3.11).

The intervention variables K ^s and K jft are assumed to  be a priori independent

for every s  ̂  t  and i , j  = 1,2. For each of the components of the intervention

variables we assume a Bernoulli prior distribution:

_  f 0, with probability l - p i  , *
l,t I  ki, with probability pi , \ ' )

for i =  1,2, with ki and 0 < pi < 1 chosen a priori. This assum ption implies th a t if 

there is an intervention in one of the equations defining the state  space model, its 

size is restricted to  the value defined by the prior distribution.

For now, the param eters Pi and ki of the prior distribution of K ^ t are specified 

according to  each particular case. We will see later th a t the prior probability of 

having an intervention is easily included in the param eters to be sampled.

In order to sample from ( a ,  K | Y, 0) the Gibbs sampler is used. Suppose we start 

the sampler with a set of initial values and, after i iterations the current

state  of the vector is ( a ^ ,  Then for iteration i+ 1 , K^l+1^  is obtained

through the updating sampling scheme:

a (i+1) ~  / ( a | y ; 0 , K (i>); (3.19)

K<i+1> ~  /  ( K |  Y, 9, a (i+1))  . (3.20)

After convergence is achieved, this allows us to sample from the target posterior 

for ( a ,  K ) :

( a , K ) ~ / ( a , K | y , 0 ) .

For simplicity, in the next derivations we omit the conditioning param eter vector

0. Conditional on the intervention variables, equations (3.16) and (3.17) define a 

Gaussian state  space model. Thus sampling from (3.19) is done in the same way
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as in C hapter 2, using a simulation smoother (De Jong and Shephard, 1995). We 

focus our attention in sampling from (3.20). We start by noticing that:

/  (K| Y, a) = f ( K 1, K 2\ Y , a )  = f ( K 1\ Y , a ) f ( K 2\ Y , a ) l l  (3.21) 

=  f [ f ( K lit\ Y , a ) f ( K v \Y ,a ) .  (3.22)
t= 1

The assumption of prior independence between the different types of intervention 

implies the factorization in (3.21). On the other hand, given the assumption of 

serial independence for the intervention variables we obtain factorization in (3.22). 

Furthermore, given the tem poral dynamics of the model, we have th a t expression 

(3.22) can be w ritten as:

H  /  (Ki , t \  Vt, at) /  ( K 2,t\ Ot+i, OLt) . (3.23)
t=i

A similar factorization to (3.23) is used in Shephard (1993). Expression (3.23) 

is obtained by the independence assumptions on K  and the formulation of the 

measurement and transition equations and does not depend on the specific prior 

distribution assumed for th a t variable. Therefore sampling from the full conditional 

of the intervention variables is done by sampling from

f { K u \ V t , c t t ) ,  (3.24)

/  ( ^ 2 ,d <*t+1> a t) , (3.25)

for t  =  1, . . .  ,T.

For K i / s  distribution in (3.24) we have that:

yt, a t) <x f  (y t \a u K i , t ) f ( K i^ \a t )  (3.26)

=  f ( y t \ a t, K ljt) f ( K ht) .  (3.27)

W ith the assumption of a discrete prior for K i >t, its full conditional distribution

is also discrete. To sample from this distribution, the right hand side of expression 

(3.27) has to  be evaluated for the different values of K i jt defined a priori  The 

likelihood function in (3.27) is a normal density:

yt \ a u K 1̂ N ( a t + K hUG tG't) .
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Having the values of this likelihood for the current state  vector and for the different 

values th a t K i )t assumes, together with its prior probabilities, we get the posterior 

probabilities of Ki jt, up to  a constant factor, and from th a t its posterior distribution.

Doing the same type of derivation for intervention K 2/ s  distribution in (3.25) 

we get:

/  {^2,t\ ®t+l, a t) OC /  (c*t+l3 a t\ K 2,t) f  {^2,t)

=  /  (at+1| a t, K 2tt) f  (K 2,t) f  (at| K 2Jt) (3.28)

a  /  (ai+i | a t, K 2>t) f  (K2,t) . (3.29)

The intervention variable AT2)t affects the state  space vector in the following period,

which justifies the passage from expressions (3.28) to  (3.29). The one step-ahead 

state  prediction is normally distributed as:

at+i| a t, K2yt ~  N (at +  K 2)t, HtHi)

Evaluating this density for each value of K 2tt, together w ith its prior probabilities 

we obtain the full conditional probabilities for the intervention variable K 2j.

After convergence is achieved, we have samples from the posterior distribution 

( a , K | T ) .  The posterior samples from the interventions are used to establish the 

existence and location of shocks. To illustrate how this is accomplished, suppose we 

have a sample of size N  of draws from the posterior distribution of the intervention 

variable for the presence of an outlier, for i =  1 , . . . ,  N.  Let pijt be the

posterior probability of having an outlier a t any instant t , obtained, for a posterior 

sample of size N,  as the proportion of times K\ it was sampled with a value different 

from zero. The position of the outliers is established by analyzing the values of the 

posterior probabilities of having a shock, over time.

There are two distinct approaches to determining the location of the shocks. We 

may set a threshold for the value of the posterior probability of a shock, for example

0.5. Any point with posterior probability greater than  this value is classified as 

the location of a shock. An alternative is the use of informative plots to identify 

outlying values for the posterior probability. In McCulloch and Tsay (1994), the 

posterior probabilities are plotted and the shocks are identified as the observations
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w ith outstanding values for th a t variable. Using this procedure, for the detection of 

level shifts, several points are identified as level shifts, with posterior probabilities 

ranging from 0.40 to  0.55, as they are outstanding values when compared with the 

posterior probabilities for the remaining observations. Examples of this informative 

plots approach are found in Ray and Tsay (2001) for the detection of change points 

to a long memory param eter, where change points are detected with posterior prob­

ability ranging from 0.40 to 0.77. In So (1999), for the detection of outliers, seven 

observations are classified as possible shocks, with posterior probabilities with values 

greater than  0.15. The other decision method is classifying as shocks observations 

such th a t the correspondent posterior probability has a value greater than c, for 

a certain 0 <  c <  1. In Justel, Pena, and Tsay (2001), the threshold value c is 

taken to  be 0.5, for detection of patches of outliers in autoregressive models. Using 

a threshold value for determining the position of the shocks has the advantage of 

being an autom atic procedure. It is the natural procedure to  use when doing Monte 

Carlo studies. In th a t case is not feasible to inspect the set of posterior probabili­

ties for all the simulated data  sets. W hen working with real da ta  set the threshold 

m ethod can also be used. However, it should be complemented with the analysis of 

the posterior probabilities set, as a whole. Using only the inspection of this set of 

probabilities for the detection of outlying values might induce in an over fitting of 

the data, and the detection of too many shocks. Using only a threshold value does 

not take in account the specific behaviour of the da ta  set in study. Therefore, in 

empirical applications, the procedure of detecting the position of the shocks should 

be a compromise between an informative and an autom atic method.

In the sampling scheme described above the intervention variables are sampled 

conditioned on the observations and the state space vector. This approach is used in 

Shephard (1994), where outliers are dealt with by the use of either a ^-distribution 

for the innovation processes or by a mixture of normals. In Gerlach, Carter, and 

Kohn (2000), a different scheme is used, where the interventions, included as scale 

param eters, are sampled conditional on the observations instead of the observations 

and the states. Although this approach is more efficient, as the interventions are 

conditioned on fewer variables, (Liu, Wong, and Kong, 1994) the resulting poste­
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rior distribution is tractable only in the case of discrete priors for the intervention 

variables. The lim itations of this approach are discussed in the next section.

3.5 Generalizing the interventions prior distribu­
tion

In the previous section we described how to sample from the posterior distribution 

of the intervention variables, when a Bernoulli prior distribution is assumed. This 

distribution can be easily generalized to a m ultinom ial distribution. However, this 

approach demands a considerable amount of prior information to  define the set of 

values the shocks can take, together with its probabilities.

To overcome this problem, we assume a continuous prior distribution for the size 

of the intervention variables. Consider as before a local level model, formulated 

for allowing the detection of outliers. The additive intervention term  in the mea­

surement equation is now composed by two factors, k i it and p i jt, the first one the 

m agnitude of the shock and the second one an indicator variable for the existence

of a shock at th a t point in time. W ith these definitions the corresponding SSM is

formulated as:

Vt = &t + ki,tPi,t +  £t, (3.30)

&t+ 1 =  &t +  rft- (3.31)

A possible choice for the prior distribution of the outlier size &i)t is a normal distri­

bution:

ki,t ~  N(p,cr2) (3.32)

This prior is used, with p  =  0 in McCulloch and Tsay (1993) for detection of 

additive outliers, and in Justel, Pena, and Tsay (2001), for the detection of patches 

of outliers, both for autoregressive models. In Chib, Nardari, and Shephard (2002), 

for a stochastic volatility model with jum ps in the mean equation, the jum p is 

assumed to follow a normal distribution (—0.5<52, <52) w ith 8 sampled together 

with the other param eters of the model. We consider p  and cr2 as set a priori
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The indicator variable p i)t prior is a Bernoulli distribution

Piit ~  Bernoulli(qi) (3.33)

The probability qi is sampled together with the other variables. We assume a 

beta prior for qim.

qi ~  B eta(a i,b i) ,  (3.34)

where ai and b\ are set a priori, and their values are function of the prior expecta­

tions of number of shocks. This prior assumption for the prior probability of a shock 

is commonly used in the literature (McCulloch and Tsay, 1993 and Chib, Nardari, 

and Shephard, 2002, for example).

The prior assumption for the state vector is given in expression (3.11). The

variances of the model are a priori distributed as inverse gammas, as assumed in

C hapter 2, for the SSM without intervention variables,

Using this setup, and defining k i =  (k i^ , . . . ,  fci.r), and p i =  (pi,i, • • • >Pi,r), we 

are interested in sampling from the posterior distribution:

( a , a ^ , a ^ , k u p u qi\Y )  ,

which, using the Gibbs sampler, is done by sequentially sampling from the condi­

tional distributions:

OL rsj (3.35)

(3.36)

rsj /  ( * » (3.37)

k i rsj /  ( k i | K , a ,  erf, p i ) (3.38)

P i / ( p i | i , . “ , o f > k 1, ? 1) (3.39)

Qi / ( ? i | P i ) - (3.40)
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Conditionally on the intervention term  the measurement equation is still Gaussian 

and, therefore, draws from (3.35) are obtained as in C hapter 2, using a simulation 

smoother (De Jong and Shephard, 1995).

The conditional distributions in (3.36) and (3.37) are derived using Lemma 2.4.1, 

and are inverse gamma distributions, respectively:

/ c-i +  T  si +  Y,tLi {Vt — Oit — k i ftpi,t)2\a e | y , a , k i , p i  ~  IG

and

CT2|a  „  IQ  -~2 +- £(=1 ~  ^

To sample from the intervention variable distribution in (3.38) we assume tha t 

the occurrence of an outlier does not depend of past or future shocks, th a t is, k \ it 

and k i jS are independent for every t ^  s, which implies:

T

f  (k ilT ,a,<r2,pi) =  (3-41)
t=i

Let a 2) be the N  (fj,, <7 2) corresponding density evaluated a t x. For every

t  = l , . . . , T

f  (k h t\yt , a u a*,pitt) oc /  (yt \at , &M, <7*,pi>t) f  {k1}t)

=  I n  {ytWt +  ki,tPi,t, °e) I n  cr2) . (3.42)

If p i)t =  0 the posterior for fc1>t is proportional to  its norm al prior, and for t  =

1 , . . . ,  T  we draw:

ki,t\yu ®t, Pi,t ~  N  (/z, a2) .

If p i>t =  1 the product of normal densities in (3.42) is given by:

1
exp (yt — (a* +  k i , t ) )2 1 (&i,i — m)2

L 2 <^ J l/27T(T2 yp 2 a 2

Conditional on (yt ,OLt ,<j2) the product in (3.42) is proportional to

exp
k j t  ~  2 +  j?) +  ^r) k i jt

2 (^ + ^)
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Thus, for the case of p ^ t =  1, sampling from the posterior distribution in (3.38) is 

achieved by sampling from a normal distribution

i V ( ^ V * 2) ,  (3.43)

where:

P* =  [{Vt ~  OLt) (Te 2 +  p a  2] .

Using a similar argument to the one used for the size of intervention variable, we 

have th a t the conditional distribution for the indicator variable, in ( 3 . 3 9 ) ,  can be 

w ritten as:

T
f  ( p i | y ,  a ,  a 2 , k i , ^ )  =  Y [ f  ( p i , t \ y t , o t t , c r e , k i tt , q i )  ( 3 . 4 4 )

t=  i

Thus, sampling from the full conditional distribution of p i}t is done by sampling 

for t  =  1 . . . ,T  from the distributions on the righthand side of ( 3 . 4 4 ) .  Given the 

prior Bernoulli assumption for p u , the full conditional is a Bernoulli. To obtain the 

probabilities of this distribution, we note that:

/  (p i , t \y t><Xu(7e>k i , t>Qi)  «  /  f  ( p i , t \ q i )

This implies th a t the probabilities for the full conditional Bernoulli distribution are 

obtained by the following expressions:

P  (pi,t =  i\yu at ,  cf\, K t ,  Qi) I n  (yt\at +  k U h p  (V u  =  *), (3.45)

for i =  0,1, where

P  {Pi,t = i) = iqi +  (1 -  i ) ( l  -  qi).

Sampling from the conditional distribution of qi, in ( 3 . 4 0 ) ,  given the prior 

B e ta (a 0,a i) ,  is done by using a standard result on the conjugate property of the 

beta and Bernoulli distributions (DeGroot, 1 9 7 0 ) .
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T h e o re m  3.5.1 Suppose that X i , . . . , X n is a random sample from a Bernoulli 

distribution with an unknown parameter q. Suppose also that the prior distribution 

of q is a beta distribution with parameters a and b such that a >  0 and b > 0. Then 

the posterior distribution of q when X{ = Xi {i =  1 , . . . ,  n) is a beta distribution with 

parameters a +  J2i=i x i b + n  — £ ”=1 X{.

Using this result we get tha t

/  t  t  \

2 i |p i  ~  Beta  ai +  +  t “  2 Pi.*) >
\  t=l t=l /

th a t is, we draw from the full conditional of qi by sampling from

Beta  (ai +  n \ , &i +  n o ) , (3.46)

where n\  the number of indicators sampled equal to one and no =  T  — rt\.

3.5.1 Uninform ative prior for the intervention magnitude

The Gaussian prior assumption in (3.38) has some drawbacks. Suppose th a t after i 

iterations of the Gibbs sampler, and for a certain t *, we have =  0. Additionally,

assume th a t for the true data  generating process there is an outlier a t t *. In next 

iteration we are interested in sampling an absolute value for large enough for 

the indicator variable P i ^  to be next sampled with value one. As we are assuming 

a normal prior N  (p, a 2) for the size k i ft, either we take p  different from zero or set 

a high value for cr2. If these parameters are fixed a priori, setting a value non zero 

for p  requires some previous information about the data. An alternative is fixing 

it equal to zero, as it is done in McCulloch and Tsay (1993) and McCulloch and 

Tsay (1994). However, it is not desirable th a t the prior distribution is concentrated 

around zero. In this, case we have to set a 2 large enough to  model outlying points. 

Finally we note tha t, when working with a real da ta  set, there might not be enough 

prior information for a reasonable choice of the prior normal distribution parameters.

To provide an example of the sensitivity of the estim ates of the intervention 

variables to  the choice of the param eters of the prior distribution for the size variable,
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we conduct a small Monte Carlo study. We simulate 100 da ta  sets of size T  =  100, 

from the local level model in equations (3.30) to  (3.31). The variances are set to 

o 2 =  2 and a 2 =  1. A shock is introduced a t t  = 25 with size 10, to  produce an 

outlier. The mean param eter fi is fixed to the value zero. For each simulated data 

set, we run 2000 Gibbs iteration, discarding the first 1000, for different values of 

the normal prior variance: a 2 =  10,20,50,100,200,500. The results obtained are 

summarized in Table 3.1

Table 3.1: Summary of output from posterior sample means, for the local level 
model with intervention variables in the measurement equation, across 100 simulated 
replications, for the normal prior param eter a 2 =  10,20,50,100,200,500.

Truth a 2 10 20 50 100 200 500

&1,25 10 Mean
SD

7.805
1.400

8.741
1.511

9.634
1.358

9.721
1.536

9.542
1.602

10.115
1.850

Pi,25 1 Mean
SD

0.953
0.140

0.974
0.078

0.953
0.140

0.980
0.0781

0.955
0.147

0.965
0.118

<?e 2 Mean
SD

1.919
0.358

1.940
0.360

1.963
0.334

1.948
0.359

1.897
0.368

1.969
0.346

av 1 Mean
SD

1.136
0.290

1.057
0.280

1.097
0.266

1.104
0.286

1.111
0.360

1.143
0.320

The values reported are the mean and standard deviation of the posterior mean estimates across 
100 samples, for different values of the variance of the normal prior distribution for the size of 
intervention variable. Based on 2,000 Gibbs draws, discarding the first 1,000.

We can see th a t for a variance with values of 10 or 20, the size of the outlier 

is underestim ated. For the values considered for a 2 over 50, the mean values of 

the estim ates obtained across the replications are close to the true value. The 

posterior sample averages, obtained across the simulated replications, for the other 

param eters are not so sensitive to the different choices of the normal prior variance. 

The sensitivity, to the different values of a 2, of the size of outlier estim ated across 

the 100 simulated replications can be seen from the box-plots in Figure 3.2.

From all the values for the prior param eter the one w ith the best overall estima­

tion results is a 2 =  100. W hen using real data  there is not enough prior information 

to  decide which value of the intervention m agnitude variance param eter will yield 

the best results. From the previous experience we conclude th a t in th a t case the
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Figure 3.2: Box-plots of posterior mean size of outlier, across 100 simulated repli­
cations, for normal prior param eter a 2 =  10,20,50,100,200,500, for a local level 
model.
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wiser choice is to  take a 2 =  M ,  for a high value of M .  In the lim it this corresponds 

to having a diffuse prior, uninformative about the prior behaviour of k i)t. An al­

ternative is sampling \i and a 2, in the Gibbs sampling process. In Chib, Nardari, 

and Shephard (2 0 0 2 ), fi and a 2 are defined as function of a param eter S, which 

is sampled together with the other param eters of the model. The sampling from 

the full conditional of 6 is done by a Metropolis-Hasting algorithm. This procedure 

adds more complexity to the sampling algorithm, particularly if there is not enough 

prior information to establish a functional relation between n  and a 2, and we have 

to sample from both param eters posterior separately.

Given the above considerations, we propose a simpler approach; assuming an 

uninformative prior for the magnitude of intervention variable:

k ltt ocl ,  f =  l , . . . , T .  (3.47)

A description of sampling from the size of intervention full conditional when 

assuming the flat prior in (3.47) follows. The factorization in (3.41), holds indepen­

dently of the prior distributional assumption for kx, and it implies th a t sampling
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from the full conditional for this variable is done by sampling from the conditional 

distributions for k i>t, for t  =  1 , . . .  , T. W ith the flat prior assumption we have th a t

/  (ki,t\yu a t , v 2e>Pi,t) fN(yt\oit +  k htp ht , a*), (3.48)

for t  =  1 , . . .  , T.

Using the normal density definition and the fact th a t we are conditioning on 

everything except k \ ^  expression (3.48) can be expressed as:

k i,tPi,t -  2 (y t  -  £*f) h f P u (3.49)

If p i}t =  1, to sample from the size of the intervention full conditional we sample 

from a normal distribution

/  <*U =  1) ~  fN  (K t\y t  -  OLU &e) ■ (3-50)

The full conditional distribution in (3.50), reflects the uninformative character of 

the prior distribution for the size of intervention variable. If the indicator variable 

has value one, to update the size variable, no prior information is incorporated in 

the full conditional distribution. We note tha t, although the prior distribution for 

the size of intervention variable is improper, when p i)t =  1  the full conditional for 

the size of intervention a t th a t instant is a proper posterior.

W h en p i)t =  0, the full conditional distribution in expression (3.49) is proportional 

to  a constant, and therefore has an improper distribution .

/  (k ht\yt , a u <J2£,pi,t =  0) a  1. (3.51)

To overcome the problem of sampling from the full conditional in this case, we ap­

proxim ate the flat distribution in (3.51) by a flat uniform distribution on a bounded 

range of definition:

/  {hAyuOLUa 2e,p ht =  0) ~C/[ui , i>i ] ,  (3.52)

with u\ < 0 <  v\. The choice of these param eters reflects the prior knowledge of 

what should be the range of the size of the shocks for the d a ta  set, and does not
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require an intensive prior analysis of the data. For example, setting 

Ui =  min {yt : t  = 1 , . . . ,  T }  — max {yt : t =  1 , . . . ,  T }  and

Vi =  max {yt : t  =  1 , . . . ,  T }  — min {yt : t =  1 , . . . ,  T}, does not require much knowl­

edge on the data  set in analysis and, as we will see later, does not present the 

problems th a t arise for the normal prior.

The approximation in (3.52) has a negligible effect on the posterior distribution 

obtained for the size of the intervention variable. Consider an instant t  = t'. Suppose 

there is not an outlier a t t = t', and th a t the current value for the indicator variable 

is Pi,t' =  0. The size variable is updated by sampling from the uniform ranging from 

u\ to  v\. As long as the value sampled is not approximately zero, when updating 

the indicator variable, it will be updated as p iy  =  0. Therefore k i}t'Pi,tf = 0 and 

for th a t iteration the size of intervention variable will not contribute to the average 

size of intervention for t  =  t'. Consider now th a t there is an outlier a t t  = t' and 

th a t the current value for the indicator variable is p i jt> = 0 .  By limiting the range 

from which to  update the value of the intervention variable, we are increasing the 

probability of sampling a value of k ^ t> close to the true value of the shock, and 

therefore increasing the probability th a t in the next updating of the intervention 

variable it will be sampled as p iit> =  1. Finally we notice th a t, when obtaining the 

posterior mean of the size of a shock, the product k i )tpi,t is averaged over all the 

iterations where p itt was sampled with value one. Consequently the m ajor impact of 

the choice of the bounded uniform will be for those instances with a high posterior 

mean for the indicator of intervention variable. We show later in a sensitivity study, 

th a t the choice of the uniform boundaries does not affect the posterior samples of 

the intervention variables in these cases.

The assumption of an improper prior for a size of a shock has also been considered 

in A braham  and Box (1979) and Franses, Hoek, and Paap (1997). In Abraham  and 

Box (1979) in the context of the detection of outliers for autoregressive models. 

In this paper the posterior distributions are derived analytically. A flat prior is 

assumed for the size of an outlier, occurring a t any instant in time. The assumption 

of a flat prior, implies an approximation in the posterior distribution obtained for 

some of the parameters, since the flat prior is improper. In Franses, Hoek, and Paap
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(1997), a flat prior is used for the size of a seasonal structural break, in the context 

of autoregressive models. The structural shift is assumed to  occur only once in time, 

and the size of the shift is sampled conditioned on th a t shift having occurred. The 

full conditional distribution for the size of the seasonal shift is a normal distribution, 

and it corresponds to  the normal full conditional from which we sample when the 

indicator variable is equal to one.

An alternative approach could have been taken: assumption of a uniform prior on 

a bounded range for the size of intervention variables, instead of the improper prior 

in (3.51). In this case, the full conditional to  sample from, when p \ it =  1 would be 

a truncated normal, with the prior uniform bounds defining the truncating points. 

The requirements of prior information about the data  would be increased, to insure 

th a t the truncated normal would be wide enough to  include the true sizes of the 

shocks. We have concluded tha t, when assuming a bounded uniform prior wide 

enough, the results obtained are very similar to the results we get when assuming 

an im proper flat prior.

Sampling from the conditional densities of p i and qi is done using expressions in 

(3.45) and (3.46), as these expressions do not depend on the prior assumption for 

the m agnitude variable.

We propose a Gibbs sampling scheme, using the priors given by expressions (3.47), 

(3.33), (3.34), inverse gamma priors for the hyperparam eters, a 2 ~  IG  4^) and 

a 2 ~  IG  and the normal diffuse assumption for aq. S tarting from a vector

of initial values cr^°\ <j^°\ suppose th a t after i iterations we

have the sampled vector a 2̂ \  cf2̂ l\  k ^ ,  p ^ ,  Then on iteration i +  1  we 

sample from the full conditional distributions using the following sampling scheme:

Sampling scheme 3.1:

1. Draw from aJ*+1) \Yt a 2̂ , a 2̂ , k ^ , p ^ , using the simulation smoother (De Jong 

and Shephard, 1995);



(  S2+ y 'r_1 ( q(*+1)—a(i+1)̂
3 a 2(z+i) |a (z+i) „  IG  ca±T = it Lt=i \  ;+l * /

4. For t  =  1 , . . . ,  T, if =  1 , then:

k u l)\yu a f +1), °e{i+1)’Pil ~ N ( y t -  oit+1\  tf2(i+1)) ;

Otherwise:

M 7 1}|yuOi[t+1\ a ^ i+1\ p ^ t ~  U[uu vi]\

5. For t  — 1 , . . . ,  T, draw P i ^ \ y t ,  c^*+1\  op? 1+1\  from the discrete two

points distribution, with probabilities given by:

p  ( p ^ 11 =  l|y* , <*(’+1)> <Te(<+1), M ? 1)> q['})  «  I n  (3/(|0(’+1) +  M ? 1)> (7?W) q ^ \

P  (pi’; 11 =  0|pt, al*+1>, ct|(h1), k § x), l̂’1) a  J N (|/t|at(,+1>, (1 -  g{°);

6. g[!+l) |p(i‘+1> ~  B eta  (ax +  £ f=1 Px̂ , bx +  T -  Ef= x P i?1*) •

If of 7^ 0 the later scheme defines an irreducible and an aperiodic Markov chain. 

In this case, independently from the initial conditions, we can reach any point of 

the sample space with positive probability ( see §2.2.3, equation (2.8)) The case of 

a 2 =  0 will be dealt with in Chapter 5.

Comparative sensitivity analysis between the normal and uniform prior 
assumptions

To establish whether by using a flat prior for the size of the intervention variable, 

there is an improvement of the results obtained for the analysis of sensitivity with 

a normal prior, we conduct a similar Monte Carlo study, now assuming a uniform 

prior. We use the same 100 simulated data  sets. The different values used for the 

param eters of the approximating bounded uniform distribution U [ui,vi], are such 

th a t the two first moments of this distribution correspond to  the moments of the 

normal prior N  (/i, a 2), with \i =  0, and

a 2 =  10,20,50,100,200,500. (3.53)

Let X  ~  U [^1 , Vi], Then, E[X]  =  v 1^ 1X1 and var [X] =  . Comparing these

expressions with p  =  0 and a 2 we obtain tha t, given a normal distribution N  (0, cr2),
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the correspondent uniform distribution U[ui,vi], with the same two moments, ver­

ifies U\ =  —Vi and v\ =  \/3cr2.

Using the values in (3.53) we get as values for the upper boundary of the uniform 

distribution: v\ =  5.5,7.7,12.2,17.3,24.5,38.7. A summary of the Monte Carlo 

experiment output is given in Table 3.2.

Table 3.2: Summary of output from posterior sample means, for the local level 
model with intervention variables in the measurement equation, across 100 sim­
ulated replications, for the approximating uniform distribution param eters vi =  
5.5,7.7,12.2,17.3,24.5,38.7 and u\ — — v\.

Truth Vi 5.5 7.7 12.2 17.3 24.5 38.7

kl,25 10 Mean 9.834 9.844 9.854 9.851 9.863 9.870
SD 1.833 1.836 1.819 1.815 1.833 1.814

Pi,25 i Mean 0.979 0.979 0.971 0.959 0.950 0.938l
SD 0.071 0.071 0.102 0.125 0.136 0.164

2 Mean
SD

1.815
0.352

1.837
0.343

1.899
0.359

1.929
0.370

1.952
0.385

1.971
0.379

-  2 i Mean 1.076 1.091 1.094 1.096 1.095 1.095
■n i

SD 0.268 0.266 0.278 0.277 0.284 0.269

The values reported are the mean and standard deviation of the posterior mean estimates across 
100 samples, for different values of the parameters of the uniform prior for the size of intervention. 
Based on 2,000 Gibbs draws, discarding the first 1,000.

The mean estimates of the size of the outlier, across the replications, are much less 

sensitive to  the change of the uniform param eters, when compared with the results 

obtained using the normal distribution, presenting mean values estim ates very close 

to the true value. The remaining param eters also present a small sensitivity to 

the choice of the uniform prior parameters. Comparatively to  the results in Table

3.1, the level component hyperparam eter, presents less sensitivity to  the choice of 

the uniform prior param eters than to the choice of the normal prior variance. The 

average estimates of this hyperparam eter, obtained using the uniform prior, present 

overall values closer to  the true one. The irregular component hyperparam eter 

presents a slightly higher sensitivity to the choice of the uniform param eters than 

to  the choice of the normal variance. Still, using the uniform prior, the posterior 

sample means for this hyperparam eter are on average accurate estim ates of the true
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value. In Figure 3.3 we plot the box-plots for the estim ates of the size variable, 

across the simulated replications, and for the different values of param eters of the 

approxim ating uniform prior distribution.

Figure 3.3: Box-plot of posterior mean size of outlier, across 100 simulated repli­
cations, for approximating uniform prior param eter V\ =5.5, 7.7, 12.2, 17.3, 24.5, 
38.7, for a local level model.
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The insensitivity of the m agnitude estimates to prior assumptions using a uni­

form distribution are clear from Figure 3.3. The estimates, across the simulated 

replications, obtained using this prior are overall better than  the ones obtained us­

ing the normal prior. Only for the higher value of a 2 considered, a 2 =  500, we 

obtain an average estim ate closer to the true value of the size of the outlier, when 

using the normal prior. Comparing with the average estim ate of the magnitude, 

for the correspondent choice of parameters for the approxim ating uniform prior, 

we conclude tha t, even in this case, the accuracy of the average estimates, for the 

two prior distributions, is very similar. The use of a flat prior for the size variable 

presents evident advantages. The param eters’ choice for the bounded uniform ap­

proxim ation does not have a significant impact on the posterior samples obtained 

for this variable.
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3.5.2 D etection  of outliers and level shifts w ith an uninfor­
m ative prior for the shocks m agnitude

We consider the local level model, allowing for the presence of outliers and level 

shifts, and present a Gibbs sampler algorithm using the uninformative prior for the 

shocks magnitude proposed in §3.5.1. The model is specified as:

There is a level shift a t t  =  t* of size k2jt*-i if P2,t*-i =  1? and in a similar way we 

have an outlier a t t  = t l of size hi#  if p i#  =  1.

We assume the usual conditions of independence between the measurement and 

transition  noise processes, together with the distribution assumptions in (3.9) and 

(3.10), and the diffuse initial condition for the sta te  space vector given in (3.11). 

For the remaining param eters of the model the prior distributions assumed are:

The param eters ci, C2 , Si, s2, a2, &i, b2 are set a priori  We assume th a t the

occurrence of a shock is independent across equations and for different instances 

in time. W ith these assumptions the derivation of the posterior distribution for 

the variables k i, p i and q\ is identical to th a t given in §3.5.1. In a similar way, 

we obtain the expressions for sampling from the full conditionals for the variables 

k 2 =  ( fa .i , . . . ,  k 2,T ) ,  P 2 =  (P2 ,i, • • • , P 2 , t )  and q2.

Ut — &t +  hi,tPi,t +  

®t+i =  Oit +  k 2,tP2,t +  Vt-

(3.54)

(3.55)

k u  oc l ,fo r  t =  1 , . . .  ,T,

k2)t oc l , for  t  =  1 , . . .  ,T,

p^t ~  Bernoulli(qi), for t  =  1 , . . . ,  T,

P2,t ~  Bernoulli(q2) , for t =  1 , . . . ,  T,

qi ~  B e ta (a i ,b i ) ,

q2 ~  Beta  (a2, b2) .
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For the variable representing the size of a level shift we have that:

T

f  (k 2|y, a ,  a 2, a 2, k i, P i, p 2, qi, Q2 )  =  II  /  ( k 2 , t\a t + u  <*t, •
t= 1

On the other hand,

/  (fc2|t | a t+ i ,  a t , a * , P 2 , t)  °c I n  (ot t+ i \ o t t +  h , t P 2 ,u • (3 -56 )

Hence if the actual value of p2}t is one we update the value of k2yt by sampling from 

the normal distribution

^2,t|®t+ij &tj Gf))P2,t ~  N  (c*e+i — a t ,cr^j .

Otherwise, k2)t is updated by sampling from the uniform distribution U [u2, v2]. This 

uniform distribution is an approximation of the improper full conditional of k2)t- The 

param eters u2, v2 are set a priori

The updating of the indicator variable p2}t is done by noting that:

T
f  (p 2\ Y , a , a 2,<j2, k u k 2, p u qu q2) =  II  /  (p2 , t K + i > < * t » .

t= 1

Consequently, p2)t is sampled from a Bernoulli distribution w ith probabilities ob­

tained through:

P  (p2|t =  l\a t+1, a t , a 2, fc2|t, q2) oc f N (a t+i\at +  lk2>t, a f j  P  {p2)t = I ) ,

for I =  0,1, where P  (p2}t = 1) = q2. We set p2yT =  0 corresponding to  having no 

level shift a t tim e T  + 1 , th a t is, no level shifts outside the tim e range considered for 

the observations. Hence, the updating of the size and indicator variables, for level 

shifts, is done for t  =  1 , . . . ,  T  — 1.

W ith the beta prior assumption for g2, this variable full conditional distribution 

is also a beta distribution, given by

/  T  T
q2 |p 2 ~  Beta  I a2 +  ^ p 2,u h  +  T  -  ^ p 2,t 

\  t=1 t= 1

We now propose a Gibbs sampler scheme for estim ation of SSM in the presence 

of outliers and level shifts.
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Starting from a vector of initial values

o W , o f  >,k<°>,k<0),P ^ , P? \ « 0)) , 

suppose th a t after i iterations we have the sampled vector

( a « , o ™ , k ? \ k « , p W  pW, # , # )  .

Then on iteration i +  1 we sample from the full conditional distributions using the 

following sampling scheme:

Sampling scheme 3.2

1. Draw from a ^ +1  ̂\Y, <^(‘), ki*\ \  Pi*), p£ \  using the simulation smoother

(De Jong and Shephard, 1995);

f
Cl +T  

2 5

(  so+'Y7'-1 fa<i+1)- a (<+1)-* (i)i»(i) Y
3. ~  IG  E,=1 I w

4. For t  =  1 , . . . ,  T, if =  1, then:

^ l)\yu0^t+l\ ^ l\ P i \  ~ N ( y t -  a[l+1\ a ^ i+1^  ;

Otherwise:

^ i t l ) \ y u a t + l\<j l {i+1\ p i \  ~  u [ u u v i\-

5. For t  = 1 , . . . ,  T  — 1, if p^\ =  1, then:

k ( * + 1 ) | r v ( * + 1 ) r v ( i + 1 ) ^ ( t + l )  „ ( 0  ^  a t  ( n , ( i + 1 )  _  r v ( i + 1 )  r r 2 ^ 1 ) ^  •K2,t \a t+l »a t }P2,t ~  iV \ a t+l a t r\ J i

Otherwise:

fc2 ? 1)|“ (++l1), “ l‘+1). ^ (i+1),P2,( ~  U[U2,V2\,

6. For t  =  1 , . . . ,  T,  draw P i j^ \Y ,  a l’,+1\  cr'f t+l\  q[^ from the discrete two 

points distribution, with probabilities given by:

p  (p i7 1) =  ! |Vt, a((,+1). < (̂i+1), M ?1*. 9is)) ^  / If (ptla t*+1) +  cr?(<+1)) g^ ,

P  ( P i 7 1) =  % (>  “ t*+1). cr^i+1\  k ^ ,  g j ° )  oc f N (p t |c4 ‘+ l) , CT̂ (i+1))  (1 -  # ) ;
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crete two points distribution, with probabilities given by:

P  (ip<‘+1) =  l l a g r ^ ,  4 i+1\  a f +1>, k ^ \  # )  oc

f N +1)) # ,

P  (p<’+l) =  0 |o & l\ a t l\ ^ (i+1)- # )  oc

/ ^ K +11V S i+1), ^ (i+1)) ( 1 - # ) ;

8. «ii+1)|p (ii+1) ~  B eta  (a, + E t i P ^ ' K  h + T -  E t i P ^ ) -

9. 92+1)|P2+1) ~  Beta  («2 +  +  T  -  E U p^ ) -

This sampling scheme converges to the target posterior distribution as long as 

cj\  ^  0 and a* ^  0. The case of one of these variances being equal to  zero is dealt 

with in C hapter 5.

3.5.3 A M onte Carlo study

In w hat follows we conduct a Monte Carlo experiment for assessing the performance 

of sampling scheme 3.2. We simulate artificial d a ta  sets of size T  =  100, using as 

d a ta  generating process:

Ut =  &t  +  k i , tP i , t  +

® t + 1 =  & t  +  k 2 , t P 2 , t  +  T ] t ,

with <j \  =  a* =  1. Two type of shocks are introduced in the data; outliers a t time 

t  =  20 and t  =  50 with sizes &i>2o =  7 and ki^o — —6; level shifts a t tim e t  = 40 and 

t  =  75 with sizes ^2,39 =  7 and ft2)74 =  — 7. This process is repeated 10000 times. In 

Figure 3.4, we plot one of the artificial data  sets used.

Sampling scheme 3.2 is used to estimate the param eters of each da ta  set. The 

Gibbs sampler is run for 10,000 iterations, with the first 5,000 discarded. The prior 

distributions used are:

~  I G  ( ^ )  > for x  =  e> 

kitt oc 1, for t =  1 , . . .  ,T;

Qi rN"/ Beta  (2,100), for i =  1,2.
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Figure 3.4: Artificial da ta  set generated from a local level model, w ith T=100, with 
outliers a t tim e t  — 20 and t  =  50, of size 7 and -6, and level shifts at time t  — 40 
and t  =  75 of size 7 and -7.
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The approxim ating uniform distributions are taken as C/ [—10,10]. In Table 3.3 

we present a summary of the output obtained for the posterior samples of the 

param eters across the 10,000 replications of this simulation experiment.

The mean posterior probability of having an outlier or a level shift, in the in­

stances where they were input to the simulate da ta  sets, presents an average value, 

across the simulate replications, above 0.75, presenting higher values in the case of 

the outliers. The average posterior mean of the size of the shocks is also accurate 

and close to  the their true values. The estim ated values for the hyperpameters agree 

in average with their true values, which is also a consequence of the fact th a t the 

shocks are correctly accounted for in the model. Taking as threshold value 0.5, for 

the detection of a shock, we can observe th a t in more than  78% of the simulated 

replications, each shock is correctly detected. Analyzing the values for the median 

of the posterior mean samples we can see th a t this central measure presents, for the 

m ajority of the param eters, values closer to the true ones.

In Figure 3.5, we plot the box-plots of the samples, obtained over the 10,000 

replications, for the posterior mean of the indicator variables, for the instances 

where their true value is one.
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Figure 3.5: Box-plot of posterior sample means of probability of outliers (a)-(b) and 
level shifts (c)-(d), across 10,000 simulated replications, for a local level model.
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Figure 3.6: Histograms (a)-(b) and and box-plots (c)-(d) of posterior sample means 
of hyperparameters, across 10,000 replications, for a local level model.
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Table 3.3: Summary of output from posterior sample averages, across 10,000 simu­
lated replications, for a local level model.

Truth
Mean

Posterior mean sample 
Median SD Q 0.025 Q 0.975 > 0.5

*2 1 0.964 0.936 0.227 0.599 1.483 -
1 1.134 1.075 0.345 0.631 1.956 -

Pi,20 1 0.891 0.992 0.208 0.193 1 0.924

O utlier &1,20 7 6.978 6.999 2.767 4.227 9.778 -
Pi,50 1 0.770 0.917 0.293 0.0538 1 0.806
&1,50 -6 -6.091 -5.990 2.808 -8.755 -3.485 -
P2,39 1 0.750 0.883 0.296 0.0518 1 0.790

Level shift &2,39 7 6.868 6.965 3.755 3.762 9.939 -
P2.74 1 0.758 0.889 0.290 0.0588 1 0.801
&2,74 -7 -6.954 -7.000 3.122 -9.976 -3.883 -

Ql 0.02 0.0242 0.0243 0.0033 0.0175 0.0311 -

Q2 0.02 0.0249 0.0251 0.0056 0.0141 0.0374 -

The values reported axe the mean, standard deviation, 2.5th and 97.5th percentiles of the posterior 
mean estimates across 10,000 samples. “ >  0.5” is the proportion of times the shocks were correctly 
detected, for a threshold of 0.5, across the 10,000 samples. Based on 10000 Gibbs draws, discarding 
the first 5,000.

For all the four shocks in the da ta  sets, the first quartile is greater than the 

threshold of 0.5. For the outlier a t t  =  20 the estimates for the indicator variable 

are less spread, whereas for the remaining shocks the distributions are similar.

In Figure 3.6, we plot the histogram and box- plots of the posterior sample means 

obtained for and across the simulated replications. We note th a t the sample 

of posterior means for is slightly right skewed, and has a distribution more spread 

than the one for a*. This is related to the fact, th a t in average, the posterior sample 

mean for the indicator variables is higher for the outliers than  for the level shifts 

present in the d a ta  sets.

In summary, the results obtained indicate th a t sampling scheme 3.2 works effi­

ciently, and overall the param eters of the model are estim ated satisfactorily.
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3.5.4 Stationary model: AR (1) plus noise

To illustrate the performance of the m ethod proposed for detection of shocks for a 

stationary time series model, we present a numerical application for the AR(1) plus 

noise model. An artificial da ta  set, of size T  =  100 is generated from the model:

Ut — &t +  +  £*)

&t+ 1 =  f a t  +  +^2,iP2,t +  Vt,

with (j> =  0.5 and o \  =  cr% =  1. An outlier was input a t t  =  50, and a shock to 

the transition equation at t  = 50, with sizes —7 and 7, respectively. The purpose 

of this numerical illustration is to assess how the stationary nature of the model 

affects the performance of the methodology in term s of shocks diagnostics. For this 

reason, sampling of the autoregressive param eter is not performed, and it is taken 

as equal to  its true value. W ith this assumption adapting sampling scheme 3.2 for 

the stationary model is straightforward. The Gibbs sampler was run for 200,000 

iterations w ith the first 100,000 discarded. In Figure 3.7 we present the posterior 

sample averages of the intervention variables. The true location of the shocks is 

detected, w ith both type of shocks being detected with posterior mean probabilities 

above 0.7. The posterior averages of the intervention variables for the instances 

where shocks are detected are:

Pi,so =  0.774 =  —6.215,
p2,7A =  0.770 &2,74 =  6.084,

A summary of the properties of the posterior samples obtained for the hyperparam ­

eters is presented in Table 3.4. We can see th a t the posterior sample mean estimates 

for both hyperparam eters present values close to the true ones.

Further study of the hyperparam eters posterior samples properties is be done by 

analyzing the plots in Figure 3.8. From Figure 3.8 (a) we see th a t the hyperpa­

rameters present a negative correlation. The cross-correlations have a rapid rate of 

converge towards zero, as it can be observed from Figure 3.8 (b). The autocorrela­

tions of the posterior sample of the transition equation hyperparam eter, presents a 

slighter slower rate of convergence to zero, as it is seen in Figure 3.8 (c) and (d).
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Figure 3.7: Plots of posterior means of indicator and size of intervention variables 
for outliers (a)-(b) and level shifts (c)-(d), for AR(1) plus noise model.
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Figure 3.8: Scatter plot of posterior samples for (of,crjj) (a), cross correlations (b), 
autocorrelation functions (c)-(d) for posterior samples of hyperparameters until lag 
100, for AR(1) plus noise model.



Table 3.4: Summary of output from posterior sample means of hyperparameters,
for artificial da ta  set from AR(1) plus noise model.

Truth
Mean

Posterior mean sample 
Median SD Q 0.025 Q o.975

1 1.117 1.088 0.00645 0.508 1.898
1 0.956 0.892 0.00776 0.396 1.869

The values reported are the mean, median, 2.5th and 97.5th percentile of the posterior samples, 
and the standard deviation of the sample mean estimates (SD estimated with a bandwidth of 5,000 
for the Parzen window). Based on 200,000 Gibbs draws, discarding the first 100,000.

The results obtained for the application of the sampling scheme proposed allow 

us to conclude th a t the method proposed performs satisfactorily when applied to 

this stationary model.

3.5.5 Empirical application: coal consum ption data set

We illustrate the detection of outliers and level shifts using the m ethod in §3.5.2 

and apply it to the logarithm of the quarterly coal consumption in the UK, from 

1960 quarter 1 to 1986 quarter 4 (note Harvey (1989) uses the data  set up to 

1983Q4) in to ta l 108 observations. This data  set is presented in Figure 3.9. In an

Figure 3.9: Quarterly coal consumption (logarithm), in the UK, from 1960 quarter 
1 to 1986 quarter 4.
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initial analysis of the data, we can see th a t there is a seasonal pattern , as well as a

trend, w ith a slope component. Also there seems to be some shocks to  the data. We

started  by fitting an unobserved component model with trend, with stochastic slope, 

and quarterly seasonal dummy component. Our results showed th a t the slope and 

seasonal variances were approximately zero. Hence the model we estim ated, allowing 

for the presence of outliers and level shifts is formulated as:

Vt =  A4* +  7* +  ki,tPi,t +

P t+ l — P t  +  P t  +  & 2 , t P 2 , t  +  Vt>

Pt+ i  =  P t,

7 t+ i  =  ~ l t  ~  7 t - i  —  l t - 2 -

Although sampling scheme 3.2 was presented for the case where there is only a level 

component, it is easily extended to this case as the additional components are non­

stochastic, and therefore do not imply any additional param eter estimation. The

type of shocks considered are outliers and level shifts.

The prior distributions used are:

A rsj Hi 0.05\ 
2 )

A rsj Hi 0.01\ 
2 ;

î,t oc 1, for i =  1,2

Qi r s j B eta  (8,100);

02 B eta  (2,100).

The param eters Ui and Vi are taken to be -0.5 and 0.5, respectively, for i =  1,2.

The Gibbs sampler was run for 100,000 iterations, w ith the first 50,000 discarded. 

W ith less runs the results obtained do not differ substantially from the ones we 

present. However, as the algorithm with this number of iterations took only 157 

seconds to  run, we have opted for this high number of iterations. The Ox program 

implemented is presented in Appendix A.

Figure 3.10 is a plot of the posterior sample mean of probability of an outlier 

and a level shift, and the posterior sample average size of a shock. There are
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Figure 3.10: Plots of posterior means of indicator and size of intervention variables 
for outliers (a)-(b) and level shifts (c)-(d), for the coal d a ta  set, from 1960Q1 to 
1986Q4.
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seven points with outlying mean posterior probability of being an outlier. For all 

these observations the posterior probability presents a value greater than 0.5. and 

are therefore classified as outliers. No level shift is detected. The highest posterior 

probability obtained for this type of shock occurs in 1974Q4, with a posterior average 

probability of 0.04, and would correspond to  a level shift in 1975Q1. An outlier is 

detected in 1975Q1, with a mean posterior probability of 0.94.

The average size of a shock is obtained as the weighted average of the posterior 

sample of the size variable, the weights being the indicator variable. This amounts 

to  including for the calculation of the mean size, only the sampled values for which 

the corresponding indicator variable is non zero. Using this m ethod of calculation 

for estim ating the size variable, the ergodic result for the Gibbs sampler in §2.2.3 

still holds. If convergence has been achieved, we are using a subset of draws from 

the posterior distribution of this variable to  calculate the size estim ate. In Table 

3.5, the shock detection results are reported.

In Atkinson, Koopman, and Shephard (1997), for the subset of observations until 

1983Q4, using a non-Bayesian method, two outliers and a level shift are identified. 

The outliers in 1969 quarters 1 and 3 and the level shift in 1974Q4. The level 

shift corresponds to  the the peak we noted in Figure 3.10, with an average posterior 

probability of 0.04. To consider the possibility of the existence of a level shift a t tha t 

point, th a t is being masked by the outlier detected in 1975Q1 (observation 61), we 

run the sampler with the restriction of p i>6i =  0. The results obtained point in the 

direction of a level shift a t th a t instant, but with a posterior probability much lower 

than the value reported in Table 3.5 for the presence of an outlier in observation 

61. Overall, we conclude there is a stronger evidence of an outlier in 1975Q1, than 

a level shift a t 1974Q4. The results presented a t the end of this empirical study 

support these findings. Finally, we note th a t Atkinson, Koopman, and Shephard 

(1997) mention the possibility of outliers around 1975Q1. In Table 3.6 we summarize 

the results obtained for the hyperparam ters and prior probabilities of shocks.

Although the posterior samples, for any of the param eters of the model, are not 

uncorrelated, if convergence as been achieved, the autocorrelation function should 

quickly converge towards zero (see §2.2.4). In Figure 3.11 we plot the autocorrelation
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Table 3.5: Posterior average probability and size of outliers detected for the coal 
da ta  set, from 1960Q1 to 1984Q4.

Posterior sample mean
Year-Quarter 1969-1 1969-3 1972-1 1975-1 1984-3 1984-4 1986-3

^ Probability 
Outlier J 

Size
0.815
0.342

0.550 0.623 0.940 
-0.295 -0.294 -0.395

0.995
-0.458

0.999
-0.498

0.881
0.362

The values reported are the posterior mean of the probability and size of the shocks detected, 
using a threshold of 0.5 for the indicator variable. Based on 100,000 Gibbs draws, discarding the 
first 50,000.

Table 3.6: Summary of output from posterior samples of the hyperparam eters, and 
prior probabilities of an outlier and a level shift, for the coal d a ta  set, from 1960Q1 
to 1984Q4.

Prior Posterior sample
Mean SD Mean SD Q 0.025 Q o.975
0.017 0.024 0.00723 3.6e-05 0.00441 0.01113

0.0033 0.0047 0.00191 2.2e-05 0.00085 0.00384
Qi 0.074 0.025 0.0862 2.4e-04 0.0461 0.1370
Q2 0.0196 0.014 0.0067 1.6e-04 0.0002 0.0245

The values reported are the mean, 2.5th and 97.5th percentile of the posterior samples, and the 
standard deviation of the sample mean estimates (SD estimated with a bandwidth of 5,000 for the 
Parzen window). Based on 100,000 Gibbs draws, discarding the first 50,000.
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functions for a 2 and a 2 until lag 500. For both  param eters, the behaviour of the

Figure 3.11: Autocorrelation functions for posterior samples for a 2 and a 2, for 50 
lags, for the coal da ta  set, from 1960Q1 to 1986Q4.
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autocorrelation functions does not contradict the assumption of having achieved 

convergence to the posterior distribution.

A more detailed study of the statistical properties of the posterior samples of the 

size of intervention variables is now presented. The next figures are based on the full 

posterior samples of the size of an outlier, for the instances where this type of shock 

was detected. In Figure 3.12 the scatter plots of the size of outliers are presented. 

From these plots there is no apparent relation between the sizes of shocks, for the 

different instances in time, across the iterations recorded.

In Figure 3.13, we present the autocorrelation functions for the size of the outliers 

detected. It is visible th a t the convergence towards zero is much slower for those 

instances where the posterior probability of having a shock is higher.

As means of checking the quality of the model fitted, we use the methodology
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Figure 3.12: Scatter plots of posterior samples for size of intervention variables of 
outliers detected, for the coal data set, from 1960Q1 to 1986Q4.
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Figure 3.13: Autocorrelation functions for posterior samples for size of intervention 
variables of outliers detected , for 500 lags, for the coal data set, from 1960Q1 to 
1986Q4.
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presented in Harvey and Koopman (1992), and discussed in more detail in §2.3. It 

is based on the analysis of the innovations and auxiliary residuals. The innovations 

are the one step-ahead prediction error, and are obtained from running the Kalman 

filter (see §2.3, equations (2.17) to (2.21)):

V, = E ^ Y t - r ) ,

Ft =  var (vt)

If the model is well specified they should be uncorrelated and normally distributed.

The auxiliary residuals are useful to detect features of the data, such as outliers 

and structural shifts, that the original model did not account for. They are smoothed 

estimates of the disturbances of the unobserved components. For a BSM, we can 

obtain the auxiliary residuals corresponding to the irregular, level, slope and seasonal 

components. They are obtained from running the Kalman filter and smoother. For
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the level component the auxiliary residual is:

% =  E{r,t \Y).

Using the outliers detected, with the estim ated sizes, as reported in Table 3.5, and 

the estim ated hyperparam eters in Table 3.6, we run the Kalm an filter and smoother 

and obtain the standardized innovations, and irregular and level standardized aux­

iliary residuals: vt/ \ /F t , et/crit and 77/cr^, for t = 1 , . . .  ,T  (see §2.3).

Figure 3.14: Descriptive plots of standardized innovations, for the coal data  set, 
from 1960Q1 to 1986Q4.
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In Figure 3.14 we present plots for the standardized innovations. The standard­

ized innovations present absolute values less than  2 .6 , so there is no outstanding 

value. This observation is corroborated from the inspection of the plot and box-plot 

for this series, in Figure 3.14 (a) and (b), respectively. From analysis of the plots in 

Figure 3.14 (c) and (d), there is no indication of departure from the hypothesis th a t 

the standardized innovations are distributed as a standard normal and present no 

serial correlation. In summary, from the analysis of the standardized innovations, 

there is no indication of misspecification of the model or undetected shocks.
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Figure 3.15: Plots (a)-(b) and box-plots (c)-(d) of standardized auxiliary residuals, 
for the coal d a ta  set, from 1960Q1 to 1986Q4.
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In Figure 3.15 we present plots for the standardized auxiliary residuals. The 

analysis of these residuals is done with the purpose of detecting shocks th a t were 

unaccounted for, and were not identified through the analysis of the standardized 

innovations. Following the exposition in §2.3, standardized auxiliary residuals in ab­

solute value greater than  3.5, would indicate the presence of shocks unaccounted by 

the model. The standardized auxiliary residuals for the irregular and level compo­

nent present absolute values bellow 2.5, which indicates th a t all the shocks present 

in the d a ta  set were corrected detected in term s of their position and estim ated size.

3.6 Conclusions

We propose a Gibbs sampler algorithm for estim ation of SSM in the presence of 

outliers and level shifts, where the prior for the intervention size variable is an unin­

formative flat distribution. This assumption is less restrictive than  other continuous 

priors in the literature. To use the uninformative prior, the param eters of an approx­
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im ating bounded uniform have to  be defined a priori. We show th a t the posterior 

samples of the variables of the model present a low sensitivity to  their choice. On 

the other hand, it does not have the constrains of considering a discrete prior, where 

the set of values of the intervention variable size have to  be chosen a priori. The 

Gibbs sampler presented converges to the target distribution as long as both the 

measurement and transition variances are different from zero. This restriction is 

often overlooked in the literature and we shall deal with it in C hapter 5.

Several numerical illustrations are given, in order to  describe and assess the ef­

ficiency of the method. The flat and normal prior assumptions were compared, in 

term s of the sensitivity of the estimates to the choice of the prior parameters. The 

results obtained show th a t the param eter estimates are much less sensitive to the 

choice of the uniform distribution. In particular, the variable representing the size 

of an outlier, presents very consistent estimates across different values for the pa­

ram eters of the uniform prior. This represents a key advantage of the use of a flat 

prior in relation to  a normal prior.

The sampler we propose for detection of outliers and level shifts was applied in 

a Monte Carlo study, where we considered artificial da ta  sets w ith two outliers and 

two level shifts. The average estimates of the hyperparam eters, obtained across the 

simulated replications, give accurate estimates of the their true values. The shocks 

input to  the d a ta  were detected in most replications, with estim ated sizes in average 

very close to the true ones. The application of the sampler is also exemplified for 

shocks diagnostics in the context of stationary models, namely an AR(1) plus noise 

model.

Finally, the methodology proposed was applied to a real d a ta  set, consisting of 

the logarithm  of quarterly coal consumption in the UK (in millions) from 1960Q1 to 

1986Q4. A BSM was fit, with non-stochastic slope and dummy seasonal component, 

allowing for the existence of outliers and level shifts. Seven outliers were identified 

and no level shift. We conclude th a t the model fit the da ta  satisfactory, and the 

shocks were correctly identified.
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Chapter 4 

Estimation of unobserved 
component models in the presence 
of outliers and structural shifts

4.1 Introduction

Unobserved component models (UCM), (Harvey, 1989) are a special case of state 

space models. The tem poral dynamics of the time series are described as the sum of 

different effects (components) with stochastic or deterministic evolution over time. 

The basic structural model (BSM), is an unobserved component model with irreg­

ular, trend and dummy seasonal component, formulated as:

Vt =  +  7t +  £t ,
Vt+i  =  Vt  +  Pt +  Vt, x
P t+ i  =  A  +  C t ,

Ef=o7t+i-i =  Uu

with the innovation processes defined as Gaussian white noise, and the assumption 

of independence between the different components.

We consider two types of shocks to the tim e series process {yt}J=i; outliers and 

structural shifts. An outlier a t t* is generated by a shock to the irregular component 

equation at th a t point in time, affecting only observation yt*. A structural shift at 

i , is generated by a shock to any of the components level, slope or seasonal, and it 

will affect the observed series for all instances t > t* +  l ,  as a consequence of the non- 

stationarity  of these equations. Shocks to the observations which are not accounted
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for in the original model will result in biased estimates of the model variances.

In C hapter 3 several works on the detection of shocks using the state  space model 

framework, were cited. Examples of methods for detecting outliers and structural 

shifts in the specific context of the BSM, using non-Bayesian techniques, are Atkin­

son, Koopman, and Shephard (1997) and Penzer (1998), for the detection of seasonal 

shifts. In a Bayesian context, for BSM, in West and Harrison (1997), the shocks 

to the d a ta  are included in the model by feed-forward intervention. Anticipating 

an abnormal event a t instant t*, the model specifications for th a t point in time is 

changed. Several ways of changing the model specification for the instant when 

an abnorm al event is expected are proposed. Examples are, inclusion of an inter­

vention variable, with a normal prior distribution and param eters set by the user; 

modification of the prior specifications of the model. An example of a method for 

modeling seasonal shifts, is presented in Franses, Hoek, and Paap (1997), for unit 

roots processes and using a non-stochastic dummy seasonal component.

We propose a Bayesian method for estim ating the BSM, with the inclusion of 

intervention variables, to account for the presence of general transition shocks in 

the data. This method is a generalization of the methodology presented in Chapter 

3, where intervention models were consider for the detection of outliers and level 

shifts.

Our main contribution is the introduction of a continuous distribution for the 

m agnitude of the intervention variables; namely a uniform distribution. Addition­

ally, we consider a BSM with interventions on all the components, estim ated using 

the Gibbs sampler, which to our knowledge has not been considered in the literature. 

By running the Gibbs sampler, we obtain posterior samples for the hyperparam eters 

and intervention variables. We obtain estimates for the four hyperparam eters and 

simultaneously detect the position and estim ate the m agnitude of the outliers and 

structural shift th a t might be present in the data.

We s ta rt by describing the formulation of the intervention model, the set of 

param eters to  be estim ated, and their prior distributions. Next we derive the Gibbs 

sampler scheme used for sampling from the posterior distribution of the parameters. 

To establish the effectiveness of the method we present two numerical illustrations.
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Firstly, a Monte Carlo experiment. The data  sets are generated from a BSM; the 

four types of shocks are added to the data: outlier, level, slope and seasonal shifts. 

Secondly, the methodology proposed is applied to a real da ta  set: the quarterly 

figures of marriages in the UK, from 1958 quarter 1 to  1982 quarter 4.

4.2 Unobserved components m odel w ith interven­
tion variables

Following the formulation in Chapter 3, we include interventions in the model for­

m ulated by equations (4.1), through an additive term  ki)tPi,t, for t = l , . . . ,T ,  and 

i =  1 ,2 ,3 ,4 , corresponding to the irregular, level, slope and seasonal component 

equations, respectively.

Vt =  P t  +  I t  +  k i jP i , t  +  £ t  (4.2)

Pt+i =  Pt +  Pt +  k2}tP2,t +  Pt (4.3)

Pt+ i  =  Pt  +  k s ttP3,t +  Ct (4-4)
s - l

X ^ 7 t+ i - i  =  &4>tp 4>t +  w*, (4 -5)
i=0

with diffuse initial conditions:

0*i, P i,  7i, ■ • •, T-s+s)' ~  N (0, l a) , k  -> 0 0  . (4.6)

The noise processes are mutually independent and normal distributed. For all t,

Ct ~  N ( 0, cr|) ,

Tit ~

Ct ~  N  (0 , (T^) ,

Wt ~  N  ( 0, ■

There is a shock to component i a t instant t *, w ith size A;^*, if =  1. If i = 1 

and =  1, the shock is an outlier; it has a direct and instant im pact on yt . For 

i =  2 ,3 ,4 , a shock to any of the components implies a structural shift. Consider for 

example i = 4. There is a seasonal shift at t* +  1 of size fc4)t* if p4>t* =  1. The term
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P4,t*k4,t* implies a shift in the seasonal component a t tim e t* +  1, which will persist 

for all the following t  and will affect yt , for t > t* +  1.

Some notation is necessary a t this point to  simplify the explanation of the 

methodology th a t follows. Let x t represent any of the time indexed variables in 

the model and define x  =  ( z i , . . . ,  x t )• W ith this notation we define:

a  =  (* * ,0 .7 ) '. (4-7)

k  =  (k i,k 2 ,k 3 ,k 4) ',  (4.8)

P  =  ( P l , P 2 , P 3 , P 4 ) ' -  (4-9)

Using a Bayesian approach, our aim is to sample from the joint posterior distribution 

of the variables in expressions (4.7) to (4.9). The priors are chosen using an approach 

very similar to  th a t given in Chapter 3. The prior assumptions for the level, slope 

and seasonal state  variables are defined by the diffuse initial conditions in (4.6). For 

the hyperpam eters, we assume an inverse gamma prior distribution:

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

The size of intervention variables are assumed to be a priori m utually and serially 

independent with a flat prior distributions. For t  =  1 , . . . ,  T  and i =  1 , . . . ,  4

kift oc 1. (4.15)

The indicator variables are also assumed to be a priori m utually and serially inde­

pendent, distributed according to a prior Bernoulli distribution. For t = 1 , . . .  , T  

and i =  1 , . . .  ,4

pijt ~  B ernoulli (qi) , (4-16)

w ith gi = P  \piit =  1].

-  IG  |
( !■

Sl
2

av -  IG  |
( !■

£ 2

aC -  IG  If C3 
 ̂2 ’

£ 3

° i -  IG  I
fc 4
K 2 ’

£ 4
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The prior probabilities of having any of the different type of interventions are 

sampled together with the other param eters of the model. The prior assumptions 

for this set of variables are:

qi ~  B e ta (a i ,b i) , (4.17)

for i = 1 , . . . ,  4.

For the vector of param eters not time dependent, the hyperparam eters and prior 

probabilities, we use the following notation:

2 ( 2 2 2 2 \  a  =

Q =  (?1, 02, 03,04) •

We assume th a t intervention variables, for different components, are independent 

between them. W ith the previous assumptions and definitions, the estim ation of 

the intervention model will be accomplished via a Bayesian m ethod, by obtaining 

samples from the posterior distribution:

/ ( a , c j 2, k , p , g | r ) ,  (4.18)

given the prior assumptions in expressions (4.6) and (4.10) to  (4.17), for the set of a

priori fixed param eters {c*, s*, Ui, Vi, az-, &*, for i =  1,2,3,4}.  We use the Gibbs sam­

pler to  draw from the target posterior distribution. Iteratively draws are obtained 

from the full conditional distributions:

a ~  / ( a | K , a 2, k , p , g ) , (4.19)

<72 ~  f  ( v 2\y ,o i ,k ,p ,q )  , (4.20)

k ~  / ( k | y ,a ,< 7 2, p , g )  , (4.21)

P ~  /  (p |  V, a ,  a 2, k, q) , (4.22)

9 ~  f  (q\y,oc,<j2, k , p ) , (4.23)

(4.24)

After convergence is achieved this algorithm will generate samples from the dis­

tribution in (4.18). The method for sampling from the several full conditionals is
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a generalization of the techniques presented in C hapter 3. Conditional on the in­

tervention variables, the state space model defined by equations (4.2) to (4.5) is 

Gaussian. Sampling from the full conditional distribution of the states in (4.19) is 

done using the simulation smoother in De Jong and Shephard (1995).

The full conditional distributions for the variance param eters are inverse gammas, 

a result obtained by applying Lemma 2.4.1. For example, consider the seasonal 

component variance,

/ ( a ^ |V ',a ,k ,p ,g )  =  /

«  /  ( 7 l k 4 >  P 4 ) /  (<??,) . (4.25)

On the other hand the first conditional density on the right hand side of (4.25), 

satisfies
T

f  k 4> P 4 ) oc JJ /  (7 t |7 t- i>  •• • > l t - a + u  *1) /  (^5) •
t=s

Using the same type of derivation used in Lemma 2.4.1 , we obtain

(  T 2 \
r 1 54 +  E  ( i t  ~  ’ * * “  7 t-S  +  l  “  fc4 .t- lP 4 .t - l)

(a2|7 ,k4,p4) ~ / G      (4.26)

I /
As for the intervention variables, size, indicator, and probability of intervention, 

we describe how to sample from their full conditional for the case of the seasonal 

component. Given th a t the prior assumptions for the interventions in different 

components are of the same nature, the remaining full conditional distributions are 

obtained in a similar way. We start by noticing th a t, given the m utual independence 

of the noise processes, and the m utual prior independence between the different type 

of interventions, we have

/  ( k 4 |y ,  a ,  or2, k i ,  k 2, k 3, p ,  <7)  =  /  ( k 4 |7 , cr?,, P 4 , q±) .

On the other hand, the size of the seasonal shifts are m utually independent. This 

property together with the dynamics of the seasonal component equation implies 

th a t
T

f  ( k 4 |7 5 P 4 , q*) =  n /  (* 4,t|7 t+ i. 7 t, • • •, lt-a+2, , < ^ ,P 4,t) . (4.27)
t= 1
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Therefore, sampling from the full conditional of k 4 is done by sampling, for t =

1 , . . .  , T  from the distributions on the right hand side of expression (4.27). W ith 

the flat prior assumption for k4yt, for t =  s — 1 , . . . ,  T  — 1, the full prior conditional 

becomes

/  (fc4>t|7t+l, I t ,  - • • , l t - s + 2 ,  OC

/  (7 t+ i|7 t, • • • , l t - s + 2 ,  k4,uP4,t) • (4.28)

If p^t =  1, then,

h , t \ l t + i , l t ,  ■ • • , l t - s + 2 , o i , P A , t  ~  N  ( j t+1 -  7 f -  . . .  -  i t- s+ 2 , ° i )  •

If pA t =  0, the full conditional for the size variable is an im proper flat distribution. 

Following the exposed in Chapter 3, sampling from the full conditional for k4yt is 

achieved by approximating the improper prior by a bounded uniform distribution.

I t ,  - - - ,  l t - s + 2 , ~  U  [u4, v A]

W ith the range of seasonal components simulated available a t each iteration of 

the sampler, 7 * for t  =  1 , . . . , T ,  the expression in (4.28), can be evaluated only 

f o r t  =  s — 1 , . . . , T —1. We assume th a t there is not enough information prior to 

t  = s — 1, to  detect seasonal shifts. Therefore, we rule out those type of interventions 

by setting the corresponding indicators to zero. At the other extreme p4 jr ,  indicates 

whether there is a seasonal shift a t instant T  +  1, which is outside our range of 

observations. For this reason, it is set fixed to zero.

Using a similar argument, for the full conditional distribution of p 4, we have tha t

T

f  (P4|7, ° l ,  k 4> 9 4 ) =  I I  f  (P ^ th + i, I t, - • •, lt-s+ 2, <?l, k4it, 9 4 ) • (4.29)
t= 1

On the other hand, for each of the densities on the right hand side of expression 

(4.29), we have

/  (P4,t|7t+i, I t , - - - ,  l t - s + 2 ,  crl, fc4,t, 9 4 )  oc 

/  (7t+i|7t» • • • > l t - s + 2 ,  o*,  k4,t,P4,t, Qa)  f  ( P 4 , t M  ■ (4-30)
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Given the prior Bernoulli assumed for the indicator variables, for t =  s — 1 , . . . ,  T  — 1 

the distributions on the left hand side of expression (4.30), are also going to be 

Bernoulli distributions with probabilities given by:

P  [p4|t =  1] OC f N (jt+ l\lt +  ■ . . +  lt-s+2 +  k4,U <%) 94,

P  \p4)t =  0] OC f N (7 4 +1 17i +  . . .  +  l t - s+2 ]  (?l) (1 -  9 4 ) •

For the prior probability of having a seasonal shift, q4 we have

/  {q4\Yt a ,  a 2, k, p , qu q2, 9 3 ) oc /  (94|p 4) ,

and therefore we sample from a beta distribution

/  T  T
q4\p4 ~  B eta  I a4 +  ^ p 4,u h  +  T  -  ^ p 4,t 

\  t- 1 t= 1

We now present the Gibbs sampler scheme used from sampling from the joint pos­

terior distribution of the parameters.

Sampling scheme 4-1 Suppose we have run i iterations of the Gibbs sampler, 

initialized with the vector (p i, f t ,  7 3 - s , . . . ,  7 1 , k ^ ,  p(°), qW 'j. After i iterations

the current vector is ( a ^ , c r 2(,), k ^ , p ^ ,  q ^ .  Then, on iteration i +  1 the sampled 

vector is updated according to  the following scheme :

1. Sample a ^ +1^ | y , c r^ , kW, pW, g^  using the simulation smoother in De Jong 

and Shephard (1995).

2. Sample a 2^+1^|y, a^*+1^,kW,pW,gW by drawing from the distributions: 

w ith Si =  £  (Vt ~  /4 '+1) -  7t‘+1) -t=l v J

< rf+1V (i+1),/3(i+1),k ii),P ^ ) ~  IG  ( C2- - - | - — , ^ j ^ )  ,

w ith s2 =  -  /4‘+1) -  A(,+1) -  fe2*iP2*l)2;

a 2(i+i) |0(Hi)) k« p «  „  I G ^  + T - \ s_2 + s1 y
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with s3 =  x: (A++11} -  P t+1) -  k ^ p ^ Y ;

„  j a ^  + T - s  + l  s t + h )

with 5 4 =  £  ( 7 m 1} ~  ~  7t-*+2 ~  ^ I p S ) 2-t=S —1

3. Sample k ^ +1^|y, a ^ +1\  cr2(l+1\  pW, q® by drawing from the distributions:

3.1 For t  =  1 , . . . ,  T , if p i \  =  1 then

~ N ( v t - /4 i+1) - 7 i'+1\ ° f (<+1)) ;

If Pijt =  0 then

kitl)\yt,lti+l\ l t l+l\°]i%+1\pil ~u\u  x , U j ] .

3.2 For t  =  1 , . . . ,  T  — 1, if P2 ,( =  1 then

^ I ) l / 4 + 1 1 ) , / 4 i + 1 ) .  A ( i + 1 ) , ^ ( i + 1 ) , p g  ~  i v  ( ^ S 11  -  / 4 < + 1 )  -  A ( i + V f + 1 ) ) ;
If p j j  =  0 then

4 7 1)|/4 + i1)> / 4 '+1)> A(‘+1)> ^ ('+1).P 2,t ~  U  [“ 2 , «2] •

3.3 For t =  1 , . . . ,  T  — 1, if pjj’t =  1 then

4 + l , IA(S 1), A(i+1), ~  ^  ( a (; +11) -  A(i+1), <̂ c2(i+1)) ;

If ply =  0 then

l/$ S 1), A(i+1), ^ 2(i+l), ~  U  [«3, v»] .

3.4 For t  = s — 2 , . . . ,  X — 1, if pjj'j =  1 then

W , 7 t * +1)i . • •, 7 & S 2 , 0 ? h 1 ).p S  ~

If p4 j  =  0 then

M‘(’1)l7(++i1,>7('+1), • • • . 7 i - t + 2 . ^ (i+1)>P4,( ~  U [u4,u 4] •
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4. Sample p(l+1)|Y, a ^ +1\  a 2̂ t+1\  k(*+1), by drawing each P ^ l\  for each t , for

j  =  1 , . . . ,  4, from a Bernoulli distribution with probabilities defined by:

4.1 For t  =  1 , . . . ,  T  and I =  0,1

P [ P ^  oc

fN  ( y t | / 4 i+ I) +  7t*+1) +  o f +1>) ( i q ?  +  ( l  -  0(1  -  # ) ) ;

4.2 For t  = 1 , . . . ,  T  — 1 and I =  0,1

p  [ p i ? 0  =  z |/4 ? 11)) j4 <+1), A(i+1), ^ (i+1), C 1), # ]  oc 

Ar ( ^ S 1V f +1) +  A(<+1) + < i+1)) ( z #  +  (1 -  0(1 -  # ) ) ;

4.3 For t  = 1 , . . . ,  T  — 1 and I = 0,1

p  H r = A(i+i>, * r +i), . 4 ° ]  oc

fN  i+1))  ( z #  +  (1 -  Z)(1 -  # ) )  ;

4.4 For t  = s — 1 , . . . , T  — 1 and Z =  0,1

i 3 [pS?1} =  ZI7&1’, • • •, oc

S n  (7 m 1)l7t(i+1) +  • • • +  7 ^ 2  +  Z 4 +1);« ? W )) ( ' #  +  (1 -  Z)(l -  # ) )  ;

5. For j  =  1 ,2 ,3 ,4  sample ?j'+1'|p(*+1* from the b e ta  distributions:

?j!+1)|P i+1) ~  B eta  (a j + X > £ (+1)>bi  + T  ~  £ p * +1)') •
V t= 1 4=1 /

By the convergence results in §2.2.3, the Gibbs sampler scheme define by sam­

pling scheme 4-1 is irreducible and aperiodic, and converges to the target posterior 

distribution, if all the hyperparam eters are different from zero. After convergence 

is achieved, the sample means of the posterior samples for each of the param eters 

of the model, provide consistent estimates of the true parameters.

Establishing the existence of shocks to the observed variables is done through the 

posterior samples of the size and indicator variables. As an illustration, consider
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the detection of seasonal shifts. Take a sample, of dimension N  from the posterior 

distribution of the seasonal indicator variable, obtained after convergence is achieved 

r ’ anc* corresponding sample mean, p4)t =  for t =

1 , . . . ,  T. Using a threshold method there is a seasonal shift a t instant t* if p4,t*-i > 

c, where c is a benchmark proportion for the detection of a structure shift across 

the replications, after convergence is achieved. The value of c is chosen empirically 

and following the discussion in §3.4.1, is often chosen as 0.5.

Having established the existence of a seasonal shift at instant t* we are interested 

in estim ating the size of th a t shift, by considering the sample } . The

estim ation of the size is obtained by a weighted average of this sample, taking as
t  / «\ \ j“ ...

weights the correspondent sample of the indicator {P4 ,t* _ i.} ' * :

4,r_1 “  V *  { ]

4.3 A M onte Carlo study

In order to  assess the performance of the sampling scheme described above we 

perform a Monte Carlo experiment. Using as the da ta  generating process the BSM 

defined by equations (4.2) to (4.5), we obtained 5000 d a ta  sets of size T  =  100. The 

true hyperparam eters used for generating the da ta  sets are: cr̂  = = cr* = cr̂  =

0.1. An outlier is introduced at t =  20 w ith m agnitude 3; a level shift a t instant

t =  50 w ith magnitude -5; a slope shift at t  =  70 w ith m agnitude -3; a seasonal shift 

a t instant t  =  60 with magnitude 3. An example of the data  set generated by the 

model w ith these param eters is in Figure 4.1.

For each d a ta  set, the Gibbs sampler defined in sampling scheme 4-1 is run 

with a burn in period of 5000 iterations, and the following 5000 sampled values are 

recorded. The following prior distributions are used:

al  ~  I G { b ^ i )  for x  =  ,̂77,
kij  oc 1 for i =  1,2,3,4,  t  =  1 , . . .  ,T ,
qi ~  B eta  (2 ,100) for i =  1,2,3,4.

The param eters for the approximating uniform distributions are Ui =  —3, Vi = 3,

for z =  1,3,4 and U2 =  —5, v2 =  5.
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Figure 4.1: Artificial da ta  set generated from BSM with outlier, level, slope and 
seasonal shifts.
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In Table 4.1 we present a summary of the estim ates of the hyperparam eters across 

the 5000 simulated replications.

The hyperparam eters for all the components with exception of the irregular, 

present a sample mean across the values estim ated close to the true value of 0 .1 . 

For g\  we get an empirical 95% confidence interval th a t does not include the true 

value of the param eter. In Figure 4.2 we present the histograms and box-plots for 

the posterior mean of the hyperparam eters estim ated across the replications. The 

empirical distributions for the trend, slope and seasonal hyperparam eters estimated, 

across the simulated replications, present similar shapes. They are slightly right 

skewed, and present a comparable degree of dispersion. The sample of estimates 

for the irregular hyperparam eter, is also somewhat right skewed, but comparatively 

less dispersed. In Table 4.2, we present a  summary of the results obtained for 

the intervention variables: indicator of the presence of shock pi}t and size of shock 

kitt, across the 5,000 simulations. We focus on these estim ates for the instances 

where a shock exists. Given the model formulation, a component shift should be 

detected through the intervention variables for the instant before its effect is felt. 

For example, given th a t there is a seasonal shift a t t  =  70, the indicator of its 

presence is £>4 ^ 9  and ^4 ^ 9  its size.
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Table 4.1: Summary of output from posterior sample means of hyperparameters,
across 5,000 simulated replications, for BSM.

Truth Posterior mean sample
Mean Median SD Q  0 .0 2 5 Q o .975

0.10 0.0605 0.0592 0.00823 0.0478 0.0801
0.10 0.1230 0.118 0.0279 0.0839 0.1903
0.10 0.0970 0.0937 0.0242 0.0597 0.1539
0.10 0.0997 0.0971 0.0235 0.0621 0.1535

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior 
mean estimates across 5,000 samples. Based on 10,000 Gibbs draws, discarding the first 5,000.

Figure 4.2: Histograms (a)-(d) and box-plots (e)-(f) of posterior mean estimates of 
hyperparameters, across 5,000 simulated replications, for BSM.
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Table 4.2: Summary of output from posterior sample means for intervention variables, across 5,000 simulated replications,
for BSM.

Truth Posterior sample mean
Indicator p^t Size of shock k^t

t Mean Median SD Q o.025 Q o.975 > 0.5 Mean Median SD Qi Qz
Outlier 20 3 0.697 0.849 0.340 0.0134 1 0.718 2.898 2.951 0.973 0.888 4.349
Level s. 49 -5 0.803 1.000 0.328 0.0046 1 0.816 --4.522 -4.859 2.089 -6.738 0.391
Slope s. 69 -3 0.747 0.876 0.296 0.0482 1 0.788 --2.952 -2.976 1.140 -4.273 -1.425
Seas. s. 59 3 0.949 1.000 0.143 0.452 1 0.970 2.998 3.001 0.527 1.987 4.018

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior mean estimate across 5,000 samples. “>  0.5” 
is the proportion of times the shock was correctly detected, for a threshold of 0.5, across the 5,000 samples. Based on 10,000 Gibbs draws, 
discarding the first 5,000.



For all the type of shocks the average, across the simulated replications, of the 

posterior sample mean probability of correctly detected shock, presents values above 

50%, which we take as a threshold value for considering there is a shock. Comparing 

the different type of shifts, the seasonal shift is detected more often, with a percent­

age very close to 100%. The average percentage of detection of the outlier presents 

the smallest value. All types of shocks, are correctly detected more than 70% of the 

time, when we use a critical value of 0.5 for detection .

The mean values of the estimated shocks magnitude across the simulations, are 

for all shocks very close to the true ones. The distribution of the posterior mean of 

the shocks size, for the 5,000 replications is plotted in Figure 4.3. We can see that

Figure 4.3: Histogram and box-plot of estimates of magnitude of outlier (a)-(b), 
level shift (c)-(d), slope shift (e)-(f), seasonal shift (g)-(h), across 5,000 simulated 
replications, for BSM.
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the seasonal shift presents the least dispersed distribution, approxim ately symmetric 

around the true value of the m agnitude of the shift. For the level shift, we can see 

th a t for a subset of the simulated replications, the size of the shift is distributed 

around zero. Excluding this minority of cases, the simulated replications of the 

posterior m agnitude are approximately symmetrically distributed around the true 

value.

Together with the param eters given above, the prior probability of a shock was 

also sampled. The following values are the average of the posterior means across 

the replications, for each of the four different types of shocks:

qi =  0.0219, q2 = 0.0207, q3 = 0.0242, qA =  0.0208.

From this Monte Carlo experiment we conclude th a t the m ethod we have pro­

posed performs satisfactorily. W ithout much prior knowledge of the behaviour of 

the data, the shocks present in the simulated da ta  sets were detected in the m ajor­

ity of the replications and the shock magnitude estim ated in an accurate way. As 

a consequence of correctly accounting for the shocks, the hyperparam eters of the 

model were also correctly estimated. The irregular hyperparam eter is an exception, 

presenting in average an underestim ated value. This is a problem inherent to the 

form ulation of the model. Given the amount of param eters to  be estim ated, the 

results are satisfactory.

4.4 Empirical application: marriages data set

Sampling scheme 4-1 is applied to modeling the da ta  set consisting of the quar­

terly  number of marriages (in thousands) in the UK from the first quarter of 1958 

(1958Q1) to  the fourth quarter of 1984 (1984Q4), in a to ta l of 100 observations. 

The d a ta  is plotted in Figure 4.4. This data  set has been previously analyzed in 

W est and Harrison (1997) and Penzer (1998), for the subset of observations between 

1965Q1 and 1970Q4.

We started  by fitting a BSM, with s =  4, with intervention variables for all the 

components, given by equations (4.2) to (4.5). From this initial analysis we have
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Figure 4.4: Quarterly number of marriages in the UK from 1958Q1 to 1984Q4
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concluded there are no outliers or slope shifts in the d a ta  and so we reduced the 

intervention variables to level and seasonal. The model we are fitting is then:

Vt =  V t +  l t  +  £t

fJ't+l =  f^t +  Pt +  & 2 , t P 2 , t  +  Vt

Pt+1 =  Pt  +  Ct
3

i=0

We use a particular case of sampling scheme 4-1, by taking the intervention variables 

corresponding to  outliers and slope shifts to be zero and not running steps 3.1, 3.3, 

4-1 and 4’$'

As prior distributions we use:

*2 IG  I(5  0.0001 \ 
I 2 ’ 2 /  ’

IG  I( 5 5\ 
12’ 2) ’

IG  I(5 0 .0 A  
12’ 2 / ’

IG  If 5 50^ 
1,2’ 2 J ’

k i,t oc 1, S’ II i°

Qi B eta  (2,100), for i =  2,4.
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For the uniform approximation of the flat prior, when the indicator variable is 

equal to zero, we use:

k2,t ~  U [—10,10],
*4,t -  U [ - 40,20].

The Gibbs sampler defined by sampling scheme 4-1 is run for 100,000 iterations, 

from which the first 50,000 are discard. We start the analysis of the results obtained 

by considering the intervention variables. The plots (a) and (c) in Figure 4.5 are 

obtained by averaging the values of the indicator variable, for each £, across the 

draws from the sampler. They give the posterior detected proportion in each point 

in time. For the indicator of a level shift we have a peak in 1973Q1, with a mean 

posterior value of 0.60. Taking the threshold of 0.5 this is indicative of a level shift 

in 1973Q2. For the indicator of a seasonal shift we have two outstanding values 

in 1961Q4 and 1968Q4. They correspond to average values above 0.5. In fact for 

1968Q4, in every recorded draw a seasonal shift is detected. Therefore, two seasonal 

shifts are detected, a t 1962Q1 and 1969Q1. Having established the existence and 

position of the shocks, we turn  our attention to their size, by analyzing plots (b) 

and (d) in Figure 4.5. These plots are obtained as the weighted averages given by 

expression (4.31). We have a downward level shift a t 1973Q2, an upward seasonal 

shift a t 1962Q1, followed by a downward seasonal shift a t 1969Q1. A summary of 

the detected shocks and their sizes is given in Table 4.3.

The hyperparam eters estimated, and some descriptive statistics of the posterior 

samples are given in Table 4.4. In Figure 4.6, the empirical distributions of these 

samples are plotted. The empirical distribution of the posterior sample of crj is 

approximately symmetric in relation to its estim ated value of 10.796, whereas the 

distribution for is slightly right skewed. The empirical distributions of a \ and 

are concentrated close to zero. Although they present very small values when 

compared with the values of the two other variances, given the the posterior standard 

errors, in Table 4.4, they are statistical significant a t 5%.

In Figure 4.7, we plot the autocorrelation functions up to lag 1,000. We can see 

th a t there is a rapid convergence towards zero, confirming th a t convergence have 

been achieved after the burn in period used. We note th a t we have used a large
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Figure 4.5: Plots of posterior means of indicator and size of intervention variables 
for level shifts (a)-(b) and seasonal shifts (c)-(d), for the marriages data  set from 
1958Q1 to 1984Q4.
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Table 4.3: Summary of output from posterior sample of interventions variables for 
structural shifts detected for the marriages d a ta  set, from 1958Q1 to 1984Q4.

Posterior sample
Shift t  (year-q) ki,t P u
Level 1973-1 -9.26 0.60

Seasonal 1961-4 15.21 0.79
1968-4 -38.30 1

The values reported are the weighted mean of the size of intervention and the mean of the indicator 
of intervention, of posterior samples, for t corresponding to shocks detected. Based on 100,000 
Gibbs draws, discarding the first 50,000.
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Table 4.4: Summary of output from posterior sample of hyperparameters, for the
marriages data set, from 1958Q1 to 1984Q4.

Posterior sample A A A A
Mean 0.0157 1.777 0.00384 10.796

SD 0.00094 0.0326 0.00021 0.0288

The values reported are the mean of the posterior sample and standard deviation of estimates (SD 
estimated with a bandwidth of 5,000 for the Parzen window) of the hyperparameters. Based on 
100,000 Gibbs draws, discarding the first 50,000.

Figure 4.6: Histograms (a)-(d) and box-plots (e)-(f) of posterior samples of hyper­
parameters, for the marriages data set, from 1958Q1 to 1984Q4.
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value for the burn-in-period, to ensure th a t convergence had been achieved. Smaller 

burn in periods produced similar results. As it was not com putational expensive to 

use a  burn in period of 50,000 iterations, we have opted for this value.

Figure 4.7: Autocorrelation functions for the posterior samples of hyperparam eters, 
for 1,000 lags, for the marriages data  set, from 1958Q1 to  1984Q4.
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In Figure 4.8 we present scatter plots for the posterior samples of the hyperpa­

rameters. The variables th a t seem to present an higher degree of correlation are the 

level and seasonal variance. This finding is confirmed by the values obtained for the 

variance-covariance m atrix for the hyperparam eters posterior samples, presented in 

Table 4.5. The covariance between the posterior samples for the level and seasonal 

variances, presents the higher absolute value for the covariances, corresponding to 

a negative correlation between these two variables.

The mean values of the posterior samples of the prior probabilities of a struc­

tural shift are q2 =  0.025 and q4 =  0.022, respectively for the level and seasonal 

shifts. These param eters estimates do not reflect accurately the proportion of shifts
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Figure 4.8: Scatter plots of the posterior samples of hyperparameters, for the mar­
riages data set, from 1958Q1 to 1984Q4.
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Table 4.5: Variance-covariance matrix of posterior samples of hyperparameters, for 
the marriages data set, from 1958Q1 to 1984Q4.

0.00156 0.000347 -2.45E-06 0.00131
0.000347 0.600 -0.000288 -0.174

-2.45E-06 -0.000288 2.20E-05 -9.63E-05
0.00131 -0.174 -9.63E-05 4.851

var.eps

var.omega
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detected in the data. For any individual draw the indicator variable may have the 

value one for observations other than those corresponding to  the location of the 

shocks. Therefore, we do not necessarily obtain q^>  q2, in spite of having detected 

more seasonal shifts than  level shifts.

In Figure 4.9, we plot the standardized innovations. This set is obtained by run­

ning the Kalm an filter, inputting the estimates of the hyperparam eters and location 

of structural shifts previously reported (in §2.3 these diagnostic tools are described). 

If the model fits the data  well, the standardized innovations should be a standard

Figure 4.9: Descriptive plots of standardized innovations, for the marriages data  
set, from 1958Q1 to 1984Q4.
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Gaussian white noise. From the plots in Figure 4.9 we can see th a t they behave 

approximately as expected.

The standardized auxiliary residuals, obtained from running the disturbance 

smoother, are a more powerful diagnostic tool, to detect the existence of shocks 

not accounted for by the model fitted. They are plotted in Figure 4.10. We can
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Figure 4.10: Plots of standardized auxiliary residuals, for marriages da ta  set, from 
1958Q1 to  1984Q4.
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observe th a t for any of the standardized auxiliary residuals the values plotted are in 

general between -2 and 2, or present values very close to  these boundaries. For the 

irregular standardized auxiliary residuals there is an outstanding value a t 1971 Q l, 

of approximately -2.7. If the series of auxiliary residuals was independent, for test­

ing simultaneously the significance of these series, the critical value for a test of size

0.05 would be approximately 3.5 (see Penzer, 2001 and discussion in §2.3). Given 

th a t, for any of the series of residuals, the values are in absolute value inferior to 

2.8, we conclude th a t all the shocks in the d a ta  are correctly accounted for,

As mentioned before, this da ta  set, for the sub-period of 1965Q1 to 1970Q4, as 

been analyzed in West and Harrison (1997) and Penzer (1998). In both  papers a 

seasonal shift as been considered in 1969Q1. W hen comparing our method with 

the one in Penzer (1998), we conclude th a t it has the advantage of performing the 

estim ation of the hyperparam eters and detection of the shocks simultaneously, in an
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autom atic way, not requiring much prior information about the d a ta  set in study.

4.5 Conclusions

We have proposed a Gibbs sampler for detecting the existence of outliers, level, slope 

and seasonal shifts, simultaneously with the estim ation of the hyperparam ters, for 

the basic structural model. The detection of shocks is accomplished by the inclusion 

of two intervention variables, for each of the equations of the model, for the location 

and size of the shocks. Using a flat distribution for the prior of the shocks magnitude 

does not require much prior information about the behaviour of the data. Therefore 

it has the advantage of allowing greater autom ation of the process of estimation of 

the intervention model.

The Monte Carlo study we have conducted shows th a t the m ethod works ef­

ficiently when applied to data  sets with outliers and the three different types of 

structural shifts. W hen applying the methodology to a real d a ta  set we conclude 

th a t the methodology allow us to estim ate the model in a satisfactory way. The 

requirement of little prior information is clearly an advantage in modeling real series.
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Chapter 5

Detection of outliers and level 
shifts in unobserved component 
models with a null noise variance

5.1 Introduction

C hapter 3 presents a method for estim ating the hyperparam eters of a state space 

model in the presence of outliers and level shifts. The model is formulated as:

Vt =  &t +  ki,tPi,t +  £t> (5.1)

&t+1 =  &t +  &2,tP2,t +  Vt- (5.2)

The noise processes are assumed to be normally distributed:

et ~  N (0, a f j  , (5.3)

tit ~  N ( 0 , ^ ) ,  (5.4)

(5.5)

for all t  =  1 , . . .  ,T.

From the algorithm given in sampling scheme 3.2, it is clear th a t the method 

proposed will be degenerate if one of the hyperparam ters is null. To see how th a t 

might happen suppose we know, a priori, th a t cr̂  =  0 and ^  0. If for a certain

iteration i, p ^ t is sampled as one, then on iteration i -f 1 we sample the magnitude

k i j 1̂  from a degenerate normal distribution with zero variance. This problem is

also present in the scheme proposed in Chib, Nardari, and Shephard (2002), and is
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referred to in Gerlach, Carter, and Kohn (2000) as being a consequence of sampling 

the magnitude conditioning on the states.

Sampling the magnitude conditioning only on the observations is, in fact, a more 

efficient procedure, as we are conditioning on fewer variables; see Liu, Wong, and 

Kong (1994). However it is not a feasible approach when we assume a continuous 

prior for the magnitude. In Gerlach, Carter, and Kohn (2000) a m ethod is presented 

for sampling the magnitude of the shocks w ithout conditioning on the state vari­

ables. Consider a time series process {yt}J=n with locally constant level component 

where the existence of a level shift a t tim e t  is accounted for through a scale 

param eter K tl for t  =  1 , . . . ,  T. The state  space model formulation is:

Vt — Ht + £*>

fit+i =  fit + K tr]t ,

with the noise processes distributed as in (5.3) and (5.4). The level changes are 

modeled using a mixture of Gaussian distributions for K tr]t . There is not a change 

in the level of the series a t t+ 1 , with a prior probability of p , if K t =  0. W ith a prior 

probability of 1 — p, K t =  k, with k set a priori to a value big enough to account 

for a level shift a t time t +  1. More generally K t is assumed to  have a multinomial 

prior distribution. Sampling from its posterior is based on the relation:

p ( K t \Y) o c p (K t \K st t) P (y t \y1’t- \ K l ’t) p ( y t+l’T \y1’t , K l'T)  , (5.6)

where y 1̂  =  (yi t . . . ,  yj) and =  (K {, . . . ,  Kj).  Gerlach, Carter, and Kohn (2000) 

present an efficient way of evaluating these probabilities. Expression (5.6) is eval­

uated for the finite set of values of the prior m ultinom ial for K t . This approach 

is feasible given the assumption of a discrete prior distribution for the magnitude 

of a shock K t . The drawback of a multinomial prior assumption is th a t we have 

to define a priori a reasonable set of values for the m agnitude of the shocks. This 

is quite restrictive and demands considerable prior knowledge of the tim e series in 

question.

W ith one of the noise variances equal to zero, a problem arises with the simulation 

smoother (De Jong and Shephard, 1995) which we have used for sampling from the
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full conditional of the states vector. This m ethod involves inverting a variance- 

covariance m atrix  th a t will be singular if any of the individual variances is equal to 

zero.

To overcome these difficulties, in §5.2 we describe an alternative simulation 

smoother, pu t forward by Durbin and Koopman (2002), and its use for modeling 

interventions. This method overcomes the question of sampling from the states full 

conditional, when one of the variances is set equal to  zero. They formulate a model 

w ithout intervention variables. Therefore, the question of sampling from the inter­

ventions full conditionals is not tackled by their methodology. The m ethod presented 

in Durbin and Koopman (2002) is a simulation smoother m ethod, different from the 

simulation smoother in De Jong and Shephard (1995), in the techniques used for 

obtaining the states posterior samples. It was not the m ethod used throughout the 

entire thesis as it has only recently been published.

Our main contribution is a method for sampling from the intervention variables 

full conditionals, when o \  =  0, cr% ^  0, and cr% =  0, of ^  0, assuming a continuous 

prior distribution for the size of intervention variables.

We propose a sampling scheme run in two stages. A first stage works on an 

auxiliary data  set. This auxiliary data  is constructed in such a way th a t it follows 

a local level model, with both hyperparam eters different from zero. In the case of

=  0, this da ta  set is constructed so th a t the position and location of the outliers 

are the same as for the original data  set. The purpose of this auxiliary da ta  set is to 

obtain posterior samples of the intervention variables for the presence of an outlier, 

and the prior probability of an outlier param eter. W hen cr% =  0, the auxiliary data 

set constructed so th a t the level shifts in the original d a ta  are preserved in terms 

of their location and size. We obtain posterior samples for the variables related to 

the presence of level shifts, by estim ating a local level model with interventions for 

the auxiliary data  set. On a second stage, the original d a ta  set used for estimation 

and we obtain posterior samples for the remaining variables of the model. These 

posterior samples are obtained by running a second Gibbs sampler. The shocks 

detected on the first stage, are input as dummy variables with fixed positions and 

sizes.
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We describe this two stage m ethod, considering separately the cases of o \ — 0 and 

a^ =  0. In §5.3, we explain the sampling scheme when the irregular hyperparam eter 

is equal to  zero. Two numerical examples are presented. Firstly, a Monte carlo 

study. The methodology is applied for 5000 artificial d a ta  sets, generated from a 

local level model, with =  0, and where an outlier and a level shift are input. 

Secondly, we perform an empirical application of our methodology, to a real data  

set. The da ta  considered consists of monthly quotes of bonds issued by the Greek 

government, from August 1916 to  June 1930 (Christodoulaki and Penzer, 2002). 

§5.4 has the same structure. We present a sampling scheme for the case when the 

level hyperparam eter is zero. The effectiveness of the m ethod proposed is assessed 

by a Monte Carlo study. Finally, an empirical application is done using the flow of 

the Nile a t Aswan data  set, from 1871 to  1970 (Cobb, 1978).

In §5.5, an overall analysis of the methodologies proposed and results obtained 

is done.

The m ethod we propose requires less prior information about the type of shocks 

present in the data, than the m ethod presented in Gerlach, Carter, and Kohn (2000). 

For each of the stages of our sampling scheme, a Gibbs sampler similar to  the one in 

sampling scheme 3.2 is run. The prior distribution assumed for the size of shocks is a 

flat distribution. As we have discussed in Chapter 3, the sensitivity of the estimates 

of the shocks sizes to the choice of the prior’s param eters is small. The method 

we propose, implies an a priori choice of a variance param eter, when generating 

the auxiliary da ta  set. An analysis of sensitivity of the m ethod to  the choice of this 

param eter is conducted in §5.3.1 for the a£ = 0 case and in §5.4.1 for the av =  0 case. 

From this analysis we conclude th a t, even when th a t choice is not optimal, the results 

obtained for the size of the shocks detected using the auxiliary d a ta  set provide a 

good indicator of the true size of the shocks. Suppose we have chosen a variance for 

generating the auxiliary data  set th a t masks the shocks present in the data, In th a t 

case, the posterior probability of having a shock will be underestim ated. However, 

the posterior mean size of the shock, is accurately estim ated. This estim ate gives an 

indication on how much the variance param eter should be shrunk, in order not to 

mask the presence of the shocks. Thus, the auxiliary d a ta  set is generated without
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requiring much prior knowledge about the size of the shocks present in the data  set.

W hen using a multinomial distribution, as in Gerlach, Carter, and Kohn (2000), 

the values from which to sample the size of the shocks have to been chosen a priori. 

This choice implies a considerable prior knowledge about the magnitude of the 

shocks present in the data. This set of values have a direct implication on the 

posterior probability of having a shock at a certain instance. Additionally, the 

estim ate of the size of shocks detected is predetermined by the prior definition of 

the multinomial distribution.

5.2 Sampling from the state space variable full 
conditional distribution

W hen using the simulation smoother (De Jong and Shephard, 1995) the variance - 

covariance m atrix C*, defined in (2.38), has to  be inverted, for evaluating expression 

(2.41). As noted in De Jong and Shephard (1995), a necessary condition for C* to 

be non-singular is th a t the rows of the choice m atrix  St, in (2.37), th a t defines

which of the noise processes we are interested in sampling from, do not span the

row space of (G*, H*). If we consider the model defined by equations (5.1) and (5.2), 

with univariate observations and state space vector, the case of one of the variances 

equal to  zero is ruled out when using this simulation m ethod.

Recently, a new method for sampling from the states full conditional has been 

proposed by Durbin and Koopman (2002). Following their notation suppose we 

have a state  space model

Vt =  Zfa t  +  £f, (5.7)

OLt + 1 =  T t a t +  R trjt , (5.8)

with et ~  N  (0, G f) and rjt ~  N  (0, H t), for t =  1, . . . ,  T. For simplicity of exposition 

we consider univariate observations {yt}J=i- The state  vector ctt is m  x 1 and we 

take K t = Ip, for t  =  1 , . . . ,  T , where p is the dimension of the vector column r]t . 

The matrices Z t, T*, G*, and H t are assumed to be known, for all t. Note th a t the 

difference between this formulation and the one we have been using is the fact th a t
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the constant term s are not present in either equations. We will see later how they 

can be included. Let e  =  ( e i , . . . ,  €t ) , rj =  {Vv  • • • Vfr) an<̂  a  =  (a i> • • • > a T)- Our 

aim is to sample from the full conditional,

a ~ P ( a | y ) {Z(, T t, G t lH t}f=1) ,  (5.9)

given the prior a i  ~  ( a i , P i ) .  Given the assumption th a t the coefficient matrices 

are known, expression (5.9) can be simplified to

a ~ P ( a \ Y ) .  (5.10)

Sampling from (5.10) is accomplished by simulating from the full conditional of 

the noise processes,

( e , t j ) ~ P ( e , » 7 | y ) ,  (5.11)

followed by a recursive process for sampling from the full conditional distribution of 

the states.

Let u =  (ei, tj[, . . . ,  £ ti tJ t)1’ As we are working in the context of linear Gaussian 

state  space models,

u|K -  P  (u|y) =  f N (E  (u |y ) , var (u|K)). (5.12)

We are then interested in getting the quantities

u = ^ (u |y ) ,  (5.13)

W  =  v a r ( u | y ) .  (5.14)

Obtaining the quantity in expression (5.13) is done by applying the Kalman filter

and smoother to  the model in (5.1) and (5.2), using the recursions in (2.17) to  (2.21),

and (2.22) to (2.26), respectively.

The m ethod in Durbin and Koopman (2002) for obtaining the quantity in (5.14) 

relies on the following result, which can be found, together with proof, in Andersen 

(1984), pp. 37:
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T h e o re m  5.2.1 Let the components of X  be divided into two groups composing 

the sub-vectors and X ^ .  Suppose the mean o fX ., /z is similarly divided into 

pLM and and suppose the covariance matrix S  of X  is divided into S n ,  E 1 2 , 

E 2 2 , the covariance matrices of X^1̂  of X ^) and X.(2\  and o f X.(2\  respectively. 

Then i f  the distribution of X  is normal, the conditional distribution of X ^) given 

X.W  =  x^2) is normal with mean / z ^  +  E 1 2E 221 ( x ^  — and covariance matrix 

S n  — S i2 S 221S2i.

Using the notation of Theorem 5.2.1 let X .^  =  u  and X^2̂  =  Y .  We have th a t 

Y  =  (2/1 , . . .  ,2/r) is distributed as a multivariate normal, and u  is unconditional 

distributed also as a multivariate normal. By Theorem 5.2.1 v a r(u |T )  =  W  does 

not depend on Y . The draws from the full conditional u |Y  ~  N ( u, W ) are then 

obtained by adding a draw from N  (0, W ), independent of Y ,  to  the mean correction 

term  u  =  -E (u |T ).

5.2.1 Sampling from N (0, W)

Let u + be a draw from the unconditional distribution of the noise process:

u + ~ i V ( 0 , f t ) ,  (5.15)

where f t  =  diag (Gi ,  H i , . . . ,  G t ,  H t) .  Using equations (5.1) and (5.2) and replac­

ing u  by u + we recursively generate Y +, using as initial value for the state  vector a  1 

a draw from its prior distribution. The case of diffuse initial conditions is considered 

later.

Applying the Kalman filter and smoother for the state  space model with Y  re­

placed by Y + we obtain :

u + = E ( u +\Y +) .  (5.16)

It can be shown that:

u+ — u + ~ 7 V ( 0 , W )  (5.17)

To get the result in (5.17) we start by showing th a t E ( u + — u +) =  0.

E  (u+  -  u +) =  Ey+ [ £  (u + -  u+ | y +)]

=  Ey+ (0) =  0,
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where we have used expression (5.16). On the other hand

var (u + — u +) =  E Y+ [var (u + — u + |y +)] .

From Theorem 5.2.1 var (u+ |T +) does not depend on the conditioning variable and 

we get

var (u + — u +) =  Ey+ (W )

=  W ,

which concludes the derivation of the distribution in (5.17) , which can also be 

w ritten as

u + — u + ~  N  (0, var (u |T )) (5.18)

5.2.2 Sampling from N  (E (u|Y"), v a r  (u|F))

Suppose we have sampled u + — u + from a normal distribution as in (5.17), using 

the m ethod described in the previous section, and th a t we have also u  =  2£(u |y ). 

Then if we define

u  =  u  +  u + — u + , (5.19)

it will have a posterior distribution given by

u |y  =  (u  +  u + — u +) \Y  ~  N  (u, W ) , (5.20)

and therefore u  is a draw from the posterior in (5.12).

To show the correctness of the method described we have to  show that:

E ( u | T )  =  u, (5.21)

and

var (u |T ) =  W . (5.22)

Starting by expression (5.21):

E(u\Y)  =  E ( u  +  u+ - u + | r )

=  £ [ £ ( u | y ) | K ]  +  £ ( u + - u + | K ) ,  ( 5 . 2 3 )
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and using th a t u + — u + is independent from Y  together w ith the expected value of 

the distribution in (5.17) we get th a t (5.23) can be w ritten as:

vector aq , distributed as in (5.24). In Durbin and Koopman (2002) is proved tha t 

ol\ can be taken as any vector, including a vector of zeros, as long as an exact diffuse 

Kalman filter and smoother is used afterwards (see Koopman, 1997).

5.2.3 Generalization for including intervention variables

The formulation presented in Durbin and Koopman (2002) for the simulation smoother, 

can be generalized to include the intervention term s k \jp i,t  and in the model

defined by equations (5.1) and (5.2). Let

which proves (5.21). As for the conditional variance in (5.22):

var (u |F )  =  E  [(u — u)' (u  — u) |K]

W

where we have used the fact th a t the distribution of u + — u + is independent from 

Y  and given by (5.17).

The case of diffuse initial conditions for the state  space vector is discussed in 

Durbin and Koopman (2002). Suppose th a t

OLi rsj N  (a i, /c l), with k —»• oo. (5.24)

To obtain Y +, recursively from equations (5.7) and (5.8) we need an initial state

(5.25)

(5.26)

for t  =  1 , . . . ,  T. We are interested in sampling from



where k f =  ( k ^ , . . . ,  k i>r) and p* =  (p<,i,. . . ,  p ifr ) ,  for i =  1,2.

Hence with the definitions in (5.25) and (5.26), sampling from the full conditional 

in (5.27) is equivalent to sample from the posterior distribution of the state space 

vector (a |K ), for the following SSM,

and v  =  (mi,  r i i , . . . ,  rrvn n r , )'• The SSM in (5.28) and (5.29) is equivalent to:

The posterior distribution of innovation vector v  is Gaussian with parameters:

E ( y \ Y )  = E { u \ Y )  + (cu du . . . , o r , , d r ) ' ,  

var (v |y )  =  var ( u | K ) .

The arguments used for obtaining the sample from the posterior of the innovation 

processes in (5.7) and (5.8) still hold. We have th a t v \ Y  ~  iV(v, W ), where, 

v  =  E ( v \ Y )  is obtained from running the exact diffuse Kalm an filter and smoother

Vt — Ct + & t +

Oit+i = dt + a t -\- rjt

(5.28)

(5.29)

given th a t all the param eters of the model are known. 

Define

mt = Ct - f  et. 

n t = dt + r)t

(5.30)

(5.31)

0it+ 1 — °Lt +  Tit

yt =  a t +  m t (5.32)

(5.33)

with the innovations distributed a priori as:

for t  — 1 , . . . ,  T , and the diffuse initial condition:

a \  ~  iV (0, k) , k, —y oo. (5.34)
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(Koopman, 1997); using the result in Theorem 5.2.1, var (v |K ) =  W  is independent 

of Y ,  and is obtained as in §5.2.1.

Next we explain in more detail how to sample from the full conditional of the 

innovations for the model in (5.28) and (5.29). We assume th a t all the parameters 

of the model are known. The state space variable is diffuse.

A draw v  ~  v \Y  is obtained in the following way.

1. Draw v + ~  P  (v), by sampling, for t  = 1 , . . . ,  N

v(+ ~  n  (fi t , n ) ,

with

Mi =  (ct? dt) ,

£1 =  diag

2. S tarting with a i  =  0, use equations (5.32), (5.33) and v + to generate K+;

3. Run the exact diffuse Kalman filter and smoother for Y  and Y +, for the model 

defined by (5.32) and (5.33). Prom the output of the sm oother algorithm we 

obtain:

v  = E{v\Y),  

v+ =  ^ ( v | y +)

A draw from u  ~  u \Y  is then obtained as

u  =  v  +  v + -  v + -  (ci, d i , . . . ,  cr , dT) ' . (5.35)

Note th a t the step a t which a m atrix had to be inverted was in the Kalman filter, 

for the variance of vt = E (£ t \Yt), Ft . Consequently the case o \  =  0 or = 0 can 

be handled by this simulation smoother without any modification.

In order to  obtain a draw from the full conditional of the states for the original 

model, in equations (5.1) and (5.2), we use the posterior draw from the innovation 

vector in (5.35). S tarting with an initial value a i,  draw from the distribution in
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(5.34), we use equations (5.1) and (5.2) and recursively generate a draw from the 

states full conditional ol\Y , ki, k 2 , p i, P 2 - The simulation sm oother in Durbin

and Koopman (2002) gives a m ethod for sampling from the states full conditional, 

even when one of the hyperparam eters is equal to  zero, but it does not consider 

the issue of sampling from the intervention variables full conditionals. To solve the 

question of sampling from the intervention variables in this case, we propose a new 

sampling scheme in §5.3 and §5.4.

5.3 D etection of outliers and level shifts when

Suppose th a t a \  =  0. The method used in C hapter 3 to derive the full conditional 

distribution of the intervention variables for the presence of outliers relies on having 

noise in the measurement equation, which does not happen when o \ =  0. In this 

case we propose an alternative method for detecting the presence of this type of 

shock. The model we are considering is defined by

yt =  OLt +  k 1>tpi,u (5.36)

&t+ 1 =  &t +  &2,tP2,t +  T)t, (5.37)

with

77 -  N ( 0 , a f ) ,  (5.38)

ai  ~  N  (0, k) , with k —> oo, (5.39)

The prior assumptions for the variables we are sampling are:

A  ~  7 g ( | - I ) ;  (5-40)

kitt oc 1, for i = 1,2, t  =  1 , . . .  ,T;  (5.41)

Piit ~  B ernoulli (qi) , for i =  1,2, t  =  1 , . . . ,  T; (5.42)

qi ~  B eta(a ,i,b i), for i = 1,2. (5.43)

We propose a two stages algorithm for detecting the presence of outliers and level 

shifts. The first stage is based on running the Gibbs sampler for an artificial da ta
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set, for which the irregular variance is different from zero. The posterior samples 

of the param eters of the model for this artificial da ta  set allow us to detect and 

characterize the outliers in the data. W ith the outliers detected, the Gibbs sampler 

is run in a second stage, for the original da ta  set, to obtain posterior samples for 

the intervention variables for level shifts and the transition equation variance.

Prom the first stage we obtain posterior samples for the set of random  variables 

related to  the detection of outliers, namely ( k i , p i , < / i ) .  The auxiliary data  set 

{tit\t= i  is constructed in a such a way th a t it follows a local level model, with both 

hyperparam eters different from zero. Hence, to  detect the shocks present, namely 

the outliers, we use sampling scheme 3.2. From the posterior samples obtained from 

running the Gibbs sampler for {tit}J=i, we focus our attention on the intervention 

variables for the presence of outliers. As this auxiliary d a ta  set is constructed in 

such a way th a t the position and size of outliers of the original da ta  set are the 

same, running this first Gibbs sampler enable us to detect and characterize the set 

of outliers present in {yt}J=i- Using this information we run a second Gibbs sampler, 

as defined in sampling scheme 3.2, not sampling from the intervention variables for 

the presence of outliers. These variables are fixed and set to values th a t reflect the 

set of outliers detected in the first stage. W ith this second run of the sampler, we 

obtain posterior samples for the remaining variables, (ct, a*, k 2 , P 2 , # 2 ) -

Suppose we have a da ta  set {yt}J=i th a t follows the model defined by equations

(5.36) and (5.37). We construct an auxiliary data  set {tit}J=i, by adding an innova­

tion process to the data  set in study:

yt = yt + £u (5.44)

for t  =  1 , . . .  ,T ,  where

et ~ N ( 0 , < r l ) ,  (5.45)

are independent and identically distributed for t  = 1 , . . . ,  T.  From its construction 

in (5.44) and the model formulation for yt in (5.36) and (5.37), the auxiliary data  

set follows also a local level model:

tit =  &t +  ki,tPi,t +  £t, (5.46)

&t+ 1 =  ott +  &2,tP2,t +  Vt, ( 5 - 4 7 )
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with a non-zero variance for the measurement equation innovations. The original 

da ta  set is replaced by {yt}J=i, and of =  0 by erf. All the other variables of the 

model remain unchanged. The model defined by equations (5.46) and (5.47) fits in 

the framework of sampling scheme 3.2. The choice of the perturbation i t: namely 

of its variance, should be so th a t if any outliers are present in the initial data  set, 

their position and size is preserved by adding the noise et .

Suppose there is an outlier at instant i , of size k l t >. Assume for simplicity of 

explanation th a t all the parameters of the model are known a priori with excep­

tion of the outlier position. We sample the indicator variables for the presence of 

outliers using the auxiliary model defined by equations (5.46) and (5.47). The full 

conditional distribution of the indicator variable for the presence of an outlier a t i  

is a Bernoulli distribution with probabilities given by:

(5.48)

oc exp
2 <7? Qu

and

p {Pi,t‘ =  «  } n  {yt'\a t',a } )  (1 -  qi) ,

(W  -  a t '? 1

(5.49)

oc exp
2cr?

Given the construction of the auxiliary data  set as in (5.44), the probabilities in 

expressions (5.48) and (5.49) are proportional to

2~]

(5.50)exp
(yt, -  OLt> -  k l t> +£~t>)

2 crl Qu

and

exp
~ \21

{Vt1 ~ a t' + ^ )
2 <7f (1 -  Qi) , (5.51)

respectively.

Given th a t there is an outlier a t the instant considered, the value of yt> — a t 

should be significantly different from zero. Hence, the value of erf should be such th a t
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i t ,  which is measured by erf. On the other hand, we do not allow erf —> 0. For too 

small values of erf the Gaussian distributions in (5.48) and (5.49) become degenerate. 

In practice, the choice of the disturbance variance does not require much prior 

knowledge of the data. For example running the Gibbs sampler for estim ating the 

model w ithout interventions can provide information on the disturbance to be used. 

We will go back to the this issue later, when we present an analysis of sensitivity 

for the choice of <jf.

We consider now th a t we know the position of the outlier, a t t  =  t ' , and therefore 

we take p l t > = 1 .  We assume th a t all the param eters of the model are known with 

the exception of k l t >. We sample from the full conditional distribution of the size 

of the outlier using the auxiliary model. Using the results we have used for deriving 

sampling scheme 3.2 , given th a t p l t> =  1, a draw from the full conditional of the 

outlier size is obtained by sampling from:

(*%(' f o . . ct!> Pi ,{ =  l )  ~  N  (%' -  <V. a f)  • (5-52)

As when sampling from the indicator variable, the perturbation variance should 

be chosen so th a t the distribution in (5.52) is not too spread, and there is a high 

probability of sampling values close to E ^ y t> — a t>\yt>,at' }p l t> =  1 ,erfJ =  k l t >. On 

the other hand, it should be big enough to avoid sampling from a degenerate normal 

distribution.

We now present an algorithm for estim ating the model defined by equation (5.36) 

and (5.37). The transition innovations are normally distributed as in (5.38), and the 

state  space variable has a diffuse initial condition as in (5.39). The prior distributions 

are presented in expressions (5.40) to (5.43), and

* i ~ / C ? ( f , f ) .  (5.53)

The param eters of the prior distribution are set a priori, together with the pertur­

bation variance of.
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Sampling scheme 5.1:

Stage 1 Run sampling scheme 3.2 , for the model:

tit =  a t +  k ittPi,t +

&t+1 =  &t +  &2,tP2,i +  Wt,

where yt =  and £t ~  N  (0, erf) are serially uncorrelated and identically 

distributed, for t  =  1 , . . .  , T. O btain posterior samples for k i, p i, and qi. 

From the posterior samples of the indicator variables for the presence of an 

outlier, obtain the set { t i , . . . ,  tm} of the location of the outliers. From the 

posterior sample of the variables for the size of outliers, obtain the size of 

the outliers detected • • •,

Stage 2 Run sampling scheme 3.2 for the model:

Vt =  ott +  k i)tpi,t,

&t+1 =  Oit +  &2,tP2,t +

w ithout sampling from the full conditional of o f , k i ,  P i and q\. The 

measurement variance is set equal to zero; the indicator variables for the 

presence of an outlier are set equal to zero for all t  ^  For

t  G { t i , . . .  , t m} , p iit =  1. The size of outlier variables are set equal to 

the sizes obtained in stage one, for £ =  £j, for i =  1 , . . . ,  m  and set to zero 

otherwise.

In summary, in the first stage we establish if outliers are present, their location 

and size, by using the posterior samples of the intervention variables for the presence 

of outliers. This is accomplished by running the Gibbs sampler for an auxiliary data  

set. From this run we record the posterior samples for the variables k i , p i  and q\. 

In the second stage, having detected the outliers, the Gibbs sampler is run for the 

original da ta  set, with the position of outliers and sizes as input; we obtain posterior 

samples for the variables <7̂ , k 2, P 2 and q^.
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5.3.1 Sensitivity analysis to the choice o f cr|

A Monte Carlo study is performed to assess the im pact of the choice of the vari­

ance param eter erf in (5.45), used to generate the auxiliary da ta  set {y}J=i, as in 

expression (5.44). Sampling scheme 5.1 is used to model the artificial da ta  sets 

generated from the model in equations (5.36) and (5.37), with dimension T  =  100. 

The transition equation variance is set to erf =  1 . An outlier is input a t t  =  50 with 

size k i$o =  —5. At instant t  = 75, a level shift is input w ith size ^2,74 =  5. For

obtaining the auxiliary data  set, and run the first stage of sampling scheme 5.1, we

use four different values for the perturbation variance:

of =  0.25,0.5,1,2. (5.54)

The prior distributions’ param eters used, including for the approxim ating bounded 

uniform, are:

Ci =  5, Ui =  —5, vi =  5, ai =  1, 6 1  =  100,

c2 =  5 , 5 2  =  5, u2 =  —5 , ^ 2  =  5 , 0 2  =  1 , 6 2  =  100,

and 5 i =  1 ,2 .5 ,5 ,7 , respectively for the values in (5.54).

In Table 5.1, we present a summary of the properties of the posterior samples 

obtained for the variables related to the detection of outliers, which compose the 

relevant output from stage one.

The value th a t implies an higher percentage of detection of the outlier, is erf =  0.5, 

with the shock being detected in 84% of the simulated d a ta  sets. For erf =  2, only in 

34% of the replications an outlier was detected a t t = 50. This result is not surprising 

given th a t in this case the model being estim ated has an irregular standard deviation 

of approximately 1.4. The outlier to be detected is only, in absolute value, 3.5 times 

this standard deviation. This is the reason for a lower num ber of detections of the 

shock. In contrast, for example when erf =  0.5, the absolute value of the size of the 

outlier is 7 times the irregular standard deviation. The percentage of detection of 

an outlier is decreasing with the increase of the value of erf, exception made to the 

change from a f =  0.25 to erf =  0.5. For the size of the outlier, the value th a t gives 

in average more accurate estimates is erf =  0.5. Also for this value, the variability
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Table 5.1: Summary of outpu t from posterior sample averages, across 500 simulated replications, obtained from application
of stage 1 of sampling scheme 5.1 , for erf =  0 .25,0.5,1,2.

Og Posterior sample mean
h ,50 Pi,50 Qi

Mean SD Qo.025 Qo.975 Mean SD Q o.025 Q o.975 > 0.5 Mean SD Qo.025 Q o.975
0.25 -4.86 1.26 -7.31 -2.21 0.73 0.31 0.040 1 0.76 0.024 0.004 0.016 0.034

0.5 -4.98 1.12 -7.16 -2.62 0.80 0.28 0.061 1 0.84 0.023 0.005 0.016 0.033
1 -4.96 1.31 -7.47 -2.32 0.62 0.33 0.028 0.999 0.64 0.022 0.003 0.016 0.029
2 -4.71 1.86 -8.19 -1.12 0.38 0.33 0.012 0.994 0.34 0.022 0.004 0.016 0.032

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior mean estimate across 500 simulated samples. 
“> 0.5” is the proportion of times the shock was correctly detected, for a threshold of 0.5, across the 500 simulated samples. Based on 10,000 
Gibbs draws, discarding the first 5,000.



of the estim ates across the replications is smaller. An im portant point to note is 

th a t, although the choice of the perturbation variance affects the number of times 

the outlier is detected, the sensitivity of the size estim ated is much smaller. This 

feature can be used to make a more efficient choice of the value of e r f . For example, 

in this case, by analyzing the results obtained for the choice of erf =  2, we have an 

indication th a t, if there is an outlier a t t = 50, its size should be approximately 

-5. W ith this information, the choice of a lower value for the variance is indicated. 

Therefore, we would run again the first stage of sampling scheme 5.1, using a lower 

value for the variance used for generating the auxiliary d a ta  set. In summary, if the 

initial choice of the variance erf is not optimal, by analyzing the posterior samples 

for the size of an outlier, a better choice of this value can be done. In this case, 

this will imply only one additional step in sampling scheme 5.1, corresponding to 

running one more time stage one.

Figure 5.1: Box-plots of posterior sample means of size of outlier, across 500 simu­
lated replications, for erf =  0.25,0.5,1,2.
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also be observed from the box-plots in Figure 5.1. From these plots we can see th a t 

the median of the sizes estim ated does not present a high level of sensitivity to the 

different values of cr| used. The variability of the estimates, across the replications, 

is more sensitive to  the choice of this parameter.

The results presented in Table 5.2, are obtained by running the second stage of 

sampling scheme 5.1. The results reported correspond to  simulated data  sets for 

which the outlier was detected in the first stage. Suppose we have a da ta  set, and 

th a t for certain values of erf, the posterior sample mean of the indicator variable 

P i)5o has a value greater than  0.5. Then, the sampling algorithm  in stage two is run 

for this d a ta  set, inputting the sizes of outlier estim ated for those values of <jf. As

Table 5.2: Summary of output for posterior sample averages, across simulated 
replications, obtained from application of stage 2 of sampling scheme 5.1, for

=  0 .25,0.5,1,2.

<7? Posterior sample mean

Mean
&2,74

SD Q o.025 Q o.975 Mean SD
P2.74

Q o.025 Q o.975 > 0.5
0.25 5.10 0.98 3.23 6 .8 6 0.94 0.15 0.44 1 0.97

0.5 5.06 0.98 3.20 6.85 0.93 0.16 0.42 1 0.97
1 5.11 0.96 3.27 6 .8 6 0.94 0.14 0.54 1 0.98
2 4.92 0.94 3.28 6.61 0.92 0.17 0.34 1 0.95

Mean SD
%

Q o.025 Q o.975 Mean
Q2

SD Q o.025 Q o.975
0.25 0.955 0.13 0.72 1.22 0.022 0.0028 0.017 0.028 -

0.5 0.968 0.13 0.73 1.24 0.022 0.0028 0.017 0.028 -

1 0.973 0.14 0.72 1.24 0.022 0.0027 0.018 0.027 -

2 0.996 0.14 0.74 1.30 0.023 0.0042 0.017 0.035 -

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior 
mean estimate across 500 simulated samples. “> 0.5” is the proportion of times the shock was 
correctly detected, for a threshold of 0.5, across the simulated samples where an outlier was detected 
at t =  50. Based on 10,000 Gibbs draws, discarding the first 5,000.

it might be expected these param eter estimates present very little  sensitivity to the 

choice of the variance of. This result is expected for two reasons. Firstly, we are 

inputting the estimates of the size of outlier estim ated in the first stage only for 

those cases where the posterior mean probability of having an outlier a t t  =  50 is
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superior to  0.5. Secondly, as it was noticed previously, in average the estim ate of 

the size of the outlier presents values very close to  the true  one, for all values of <rf 

considered.

Prom this analysis we conclude th a t although the choice of erf affects the detection 

of outliers on the first stage, this effect is small regarding the estim ated size of the 

outlier . The choice of the perturbation variance is mainly function of the size of 

the outliers present in the data. In this way, even when there is not enough prior 

inform ation for making a suitable choice of this param eter, the results obtained by 

running the first stage of sampling scheme 5.1, can be used for choosing a more 

appropriate value for of, and rerun stage one of sampling scheme 5.1 if necessary.

5.3.2 A M onte Carlo study

To illustrate the application of sampling scheme 5.1 and its properties we present 

the results obtained with a Monte Carlo study. We generate 5000 simulated data  

sets, of size T  =  100, from the model defined by equations (5.36) and (5.37). An 

outlier and a level shift are input to the data, a t instances t  =  50 and t =  75,

respectively. The sizes of the shocks are —5, for the outlier, and 5 for the level

shift. The true  value of the transition equation variance is cr̂  =  1. In each of the 

stages of sampling scheme 5.1, the Gibbs sampler is run for 10000 iterations with 

the first 5000 discarded. For generating the auxiliary d a ta  sets, we set the variance 

param eter to  <jf =  0.5. The param eters for the prior distributions in (5.40) to (5.43) 

and (5.53) are set to the following values:

Ci =  5, si =  2.5, ai =  1, bi =  100,

c2 =  s2 = 5, a2 = l ,b 2 =  100.

The param eters for the bounded uniform distributions, used when the indicator 

variable has value one are u\ =  —5, V\ = 5, u2 =  —5, v2 =  5.

In Table 5.3, we present a summary of the results obtained from running the first 

Gibbs sampler. We present a summary of the results of all the posterior samples 

obtained when applying sampling scheme 5.1 . As was explained previously, from 

stage 1 we are interested only on the variables related to  the detection of outliers.
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We present the results for the remaining variables only for comparison with the 

results we obtain for these variables on the second stage.

Table 5.3: Summary of output from posterior samples averages, across 5,000 simu­
lated replications, for a local level model with — 0.

Truth Posterior sample mean
Mean Median SD Q o .025 Q o .975 ^  0.5

1 0.995 0.980 0.210 0.631 1.452 -
0.5 0.498 0.480 0.118 0.318 0.770 -

Pi, 50 1 0.796 0.921 0.268 0.089 1 0.844

Stage 1 &1,50
P2,74

-5 -4.989 -4.989 1.155 -7.273 -2.826 _

1 0.616 0.719 0.336 0.027 1 0.634
&2,74 5 4.946 4.917 2.856 2.250 7.544 -

Ql 0.01 0.022 0.022 0.003 0.016 0.029 -

Q2 0.01 0.022 0.022 0.004 0.016 0.032 -

P2.74

1 0.991 0.984 0.139 0.737 1.282 -

Stage 2
1 0.913 0.993 0.185 0.263 1 0.942

&2,74 5 4.976 4.980 1.009 3.022 6.924 -

Q2 0.01 0.021 0.021 0.003 0.016 0.028 -

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior 
mean estimate across 5000 simulated samples. “> 0.5” is the proportion of times the shock was 
correctly detected, for a threshold of 0.5. The results referring to stage 2, correspond to the 
simulated data sets for which an outlier was detected at t  =  50. Based on 10,000 Gibbs draws, 
discarding the first 5,000.

For 84% of the simulated data  sets, the posterior probability of having an outlier 

a t £ =  50, is higher than  0.5, and therefore the position of the outlier was correctly 

estimated. The size estim ated for th a t shock, is on average, very close to the true 

one. The average value estim ated for the irregular param eter of the auxiliary data 

set is not relevant to  the original model estimation. However we note th a t it presents 

a very accurate value of 0.498, for a true value of 0.5.

The second stage is run for the subset of simulated d a ta  sets for which an outlier 

was detected at t  =  50, which amount to 4220 simulated replications. In this stage, 

the variables for the detection of th a t type of shocks are not sampled. The size of 

the outlier is set to  the value estim ated when running the sampler for the auxiliary 

d a ta  set. For this reason, it would be meaningless to  run stage 2 for the data  sets
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where an outlier was not detected, as the results obtained for stage two would be 

biased by the non identification of the outlier.

The ra te  of detection of the level shift presents an higher value than  for the 

detection of outliers. In around 94% of the cases, the level shift was detected. The 

average estim ated value for the size of the level shift gives a very accurate estim ate 

of this param eter.

The results for the posterior sample of the intervention variables for the presence 

of a level shift obtained when running stage one are not used, for fitting the model. 

We make a brief comparison of the results obtained for these variables in stage 1 

and stage 2. The average size of a level shift is quite similar in both stage. However, 

the posterior probability of detecting a level shift a t t  =  75, presents higher values 

for stage 2. This implies th a t by using the posterior samples from stage 2, we obtain 

better results in term s of the number of times the level shift input a t th a t instant 

is detected.

To conclude this analysis in Figure 5.2, we present some plots to characterize 

the d istribution of the posterior average of the size of the shocks, obtained for 

the sim ulated data  sets. Both type of shocks present a very symmetric empirical 

distribution, around the param eter’s true value. In term s of dispersion, the size of 

an outlier is slightly more dispersed. T hat is confirmed by the values of the standard 

deviations, of 1.16 and 1.01, for the outliers and level shifts, respectively.

5.3.3 Empirical application: bonds data set

Figure 5.3 shows the closing prices of bonds issued by the Greek government in 

1910. They were traded on the London Stock Exchange, from August 1916 to June 

1930, making a to tal of 167 observations. The observations presented correspond 

to a percentage of the par value quoted monthly a t the London Stock Exchange. 

This d a ta  set is used by Christodoulaki and Penzer (2002), where a more detailed 

overview can be found. In Christodoulaki and Penzer (2002), an analysis of this 

da ta  set is done with the main purpose of identifying possible shocks to the data  

set. We shall compare our results with those obtained in th a t study.

Given th a t the data  is monthly, the model we estim ate includes a seasonal com-
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Figure 5.2: Histograms, and box-plots of estimates of size of outlier (a)-(b) and level 
shift (c)-(d), across 5,000 simulated replications, for a local level model with o \ =  0. 
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ponent. We start by estimating an unobserved component model with irregular, 

level and seasonal component. When estimating this model without including in­

tervention variables, we obtain that the irregular variance is estimated as zero. On 

the other hand, the analysis of the innovations and auxiliary residuals indicate the 

possible existence of outliers and level shifts. Given this initial analysis, the model 

we estimate is defined by:

Vt = IM + 'Yt + ki,tPitu (5.55)

fit+i = fit +  k2,tP2,t +  Vt, (5.56)

S 7 h-i- i =  (5-57)
i = 0

with

T)t ~  N  (0, £7̂ ) , 
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Figure 5.3: Monthly quotes of Greek Government bonds from August 1916 to  June 
1930.
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u t ~  N  (o, a£) ,

for t  — 1 , . . .  , T.

Following the algorithm described in sampling scheme 5.1, we construct an auxil­

iary d a ta  set {yt}J=i- We run the Gibbs sampler for {yt}J=i, for obtaining posterior 

samples for the variables for the presence of outliers. The auxiliary da ta  set is 

obtained as in expression (5.44). From an initial inspection of the data  we would 

expect the presence of an outlier in the year 1923. If we take the difference of two 

consecutive observations for th a t year, we get as maximum absolute difference the 

value 7. We take this value as a rough approximation of w hat would be the size 

of an outlier, if present in th a t period. This gives an indication of the dimensions 

of the variance crf to  be used. We take crf =  0.5. If in fact there is an outlier of 

size approximately 7 present in the data  set, its size is 10 times the standard devia­

tion of the irregular component, for the auxiliary da ta  set, and should be correctly 

detected.
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The model we estim ate in this first stage is defined as:

Vt =  Vt +  k i , tP i , t  +  £ t ,

V t + i  =  Vt  +  k2,tP2,t +  Pu
s—1

7 t + i - i  =  u t-
i= 0

The prior distributions are defined as in expressions (5.40) to (5.43), (5.53), and

and for the approximating bounded uniform distributions u\ =  —5, =  5 ,u2 =

—10, V2 =  10. The Gibbs sampler defined in sampling scheme 3.2  is applied, with 

an additional step for sampling from the seasonal component variance full condi­

tional distribution. The sampler is run for 100,000 iterations, w ith the first 50,000

tion variables, for the presence of outliers.

Prom this stage we are interested in detecting the position and size of outliers. 

We have two outstanding values for the posterior mean probability of an outlier, 

a t 1919-12 and 1923-3, with mean posterior probability of an outlier of 0.35 and

0.44, respectively. In 1919-12, the posterior mean size of a shock has a meaningless 

value of -0.37; the relatively high value of the posterior probability, when compared 

with the rest of the sample, is related to  the possible occurrence of a level shift 

in the previous instant, as we will see when analyzing the results obtained for the 

second stage of the estimation. At 1923-3, the correspondent posterior mean size 

of an outlier presents a value of 5.77. Using a threshold of 0.5 to  detect a shock at 

a certain instant if the mean posterior probability of having a shock is superior to 

th a t value, we would not detect any outlier. Following the arguments presented in 

§3.4.1, it is advantage to analyze the posterior means of probability of shocks for

The values for the prior distributions param eters are set to:

ci =  5, si =  2, ai = 1, bi =  100,

C2 =  c3 =  5 , 5 2  =  2 0 , s 3 =  0 .0 1 , a 2 =  4 , 6 2  =  1 0 0 . (5.58)

discarded. In Figure 5.4 we plot the mean of the posterior samples for the interven-
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Figure 5.4: Plots of posterior means of indicator (a) and size (b) of an outlier, for 
bonds d a ta  set, from 1916-8 to 1930-6.
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the sample as a whole. From th a t we conclude tha t, given its outstanding value and 

proximity to  the boundary value of 0.5, there is an outlier of size 5.77 in March of 

1923.

Having detected and characterized the outliers present in the data, we run the 

second stage of sampling scheme 5.1, to obtain the posterior samples of the remain­

ing param eters of the model defined by equations (5.55) to  (5.57). This amounts 

to running the Gibbs sampler to obtain posterior samples of the level and seasonal 

variances, intervention variables for the presence of level shifts, and the prior prob­

ability #2 - The prior distributions param eters are set to  the values in (5.58). The 

Gibbs sampler is run for 100,000 iterations, discarding the first 50,000. In Figure 

5.5, we present the posterior mean of the interventions variables for the presence of 

a level shift.

There are four outlying observations, with posterior mean probability of being a 

level shift superior to  0.5, corresponding to level shifts in 1919-12, 1922-2, 1922-11 

and 1923-2. In Table 5.4 we summarize the results for the instances where shocks 

were detected. The samples used to obtain the statistics presented in Table 5.4, for 

the size of the shocks, are sub samples of the posterior sample obtained for those 

variables. They correspond to those iterations of the Gibbs sampler in which the 

correspondent indicator variable was sampled with value one. The outlier posterior
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Figure 5.5: Plots of posterior means of indicator (a) and size (b) of level shift, for
bonds da ta  set, from 1916-8 to 1930-6.
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sample presents the higher standard deviation as well as less symmetry. These ob­

servations are confirmed by inspection of the plots for these posterior samples, in 

Figures 5.6 and 5.7. Comparing the posterior distributions of the size of the level 

shifts detected, they all present an approximately symmetrical empirical distribu­

tion.

In Table 5.5 we summarize the properties of the posterior samples of the hyper­

param eters and the prior probabilities qi and <72• Note th a t the posterior sample 

for the prior probability of an outlier was obtained when running the first Gibbs 

sampler in sampling scheme 5.1.

For comparison purpose, in Table 5.6 we present the results obtained by maxi­

mum likelihood, given the position of the shocks. These are the results presented in 

Christodoulaki and Penzer (2002). In Christodoulaki and Penzer (2 0 0 2 ), the posi­

tion of the shocks is established by estim ating the model w ithout interventions and 

using its estim ation output to localize the shocks (see De Jong and Penzer, 1998). 

Comparing the results in Tables 5.4 and 5.5 with the ones in Table 5.6 we can see 

th a t the results obtained are very similar. Our m ethod has the advantage of being 

based on the estim ation of the hyperparam eters arid shocks together.

To check the adequacy of our estimates in Figures 5.8 and 5.9, we present plots 

for the standardized innovations and standardized auxiliary residuals, respectively.
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Table 5.4: Summary of output from posterior samples of intervention variables for
outliers and level shifts detected, for the bonds data  set, from 1916-8 to 1930-6.

Posterior sample
Shock Year-month Mean Median SD Q o.025 Q o.975 Pi,t

Outlier 1923-3 5.771 5.241 4.02e-03 2.136 16.053 0.443
1919-12 -5.968 -5.985 8.03e-05 -9.304 -2.525 0.722

Level shift 1922-2 7.013 7.023 4.98e-05 3.552 10.414 0.928
1922-11 -7.987 -7.985 4.62e-05 -11.441 -4.518 0.990

1923-2 7.044 7.065 5.76e-05 3.564 10.413 0.929

The values reported are the mean, median, 2.5th and 97.5th percentile of subsets of the posterior 
samples, and the standard deviation of the sample mean estimates (SD estimated with a bandwidth 
of 5,000 for the Parzen window) for the sizes of the shocks detected. The subsets of the posterior 
samples correspond to iterations where the indicator variable was sampled with value one. 
is the posterior sample mean of the indicator variable. Based on 100,000 Gibbs draws, discarding 
the first 50,000.

From the plots in Figure 5.8, we see th a t the standardized innovations present a 

behaviour th a t indicates they are independently generated from a standard normal 

distribution. The non existence of outstanding values for the standardized auxiliary 

residuals implies th a t all the shocks existent in the d a ta  set were correctly accounted 

for. In conclusion, the model satisfactorily fits the data, in w hat concerns the 

hyperparam eters estim ated and the shocks detected.

5.4 D etection of outliers and level shifts when

We consider now the problem of estim ating a local level model, where outliers and

level shifts might be present, when the transition equation variance is equal to zero,

&* =  0. The SSM formulation is the following:

Vt =  &t +  ki,tPi,t +  eti (5.59)

&t+i =  &t +  fe.tP2.tj (5.60)

with

e t ~  N  (0, o f) , 
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Figure 5.6: Histogram and box-plot of posterior sample for size of outlier detected
in 1923-3, for the bonds data set, from 1916-8 to 1930-6.
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Table 5.5: Summary of output from posterior samples of the hyperparameters, and 
prior probabilities of an outlier and a level shift, for the bonds data set, from 1916-8 
to 1930-6.

Prior Posterior sample
Mean SD Mean SD Q 0 .0 2 5 Q o .975

°n 6.67 9.43 2.868 0.00605 2.146 3.797
4 0.0033 0.0047 0.003062 1.17e-04 7.81e-04 0.0106
Qi 0.0099 0.0098 0.0168 8.27e-04 7.15e-04 0.0493
Q2 0.038 0.019 0.0433 1.61e-04 0.0171 0.0778

T h e  v a l u e s  r e p o r t e d  a r e  t h e  m e a n ,  2 . 5 t h  a n d  9 7 . 5 t h  p e r c e n t i l e  o f  t h e  p o s t e r i o r  s a m p l e s ,  a n d  t h e  
s t a n d a r d  d e v i a t i o n  o f  t h e  s a m p l e  m e a n  e s t i m a t e s  ( S D  e s t i m a t e d  w i t h  a  b a n d w i d t h  o f  5 , 0 0 0  f o r  t h e  
P a r z e n  w i n d o w ) .  B a s e d  o n  1 0 0 , 0 0 0  G i b b s  d r a w s ,  d i s c a r d i n g  t h e  f i r s t  5 0 , 0 0 0 .
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Figure 5.7: Histograms and box-plots of posterior samples for size of level shifts 
detected in 1919-12 (a)-(b), 1922-2 (c)-(d), 1922-11 (e)-(f) and 1923-2 (g)-(h), for 
the bonds data set, from 1916-8 to 1930-6.
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Figure 5.8: Descriptive plots of standardized innovations, for bonds da ta  set, from 
1916-8 to 1930-6.
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Figure 5.9: Plots (a)-(b) and box-plots (c)-(d) of standardized auxiliary residuals, 
for bonds data  set, from 1916-8 to 1930-6.
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Table 5.6: Estim ation results by maximum likelihood, given the position of the 
shocks, for the bonds d a ta  set, from 1916-8 to 1930-6.

rr 2 rr 2 n 2 Outlier Level shift
a e 1923-3 1919-12 1922-2 1922-11 1923-2

0.0000 2.915 0.00316 5.641 -6.065 7.062 -7.944 7.09
[0.0000] [1.0000] [0.0011] (4.473) (-3.413) (3.970) (-4 .480) (3.990)

The values in [ ] are the q-ratios for the hyperparameters estimated; the values in ( ) are the 
^-ratios for the size of shocks estimated.

for t  — 1 , . . . ,  T.

A m otivation for considering this type of models is the well known flow of the 

Nile d a ta  set (Cobb, 1978). This da ta  set is modeled by a local level model. It 

has been established by several studies th a t it presents a level shift (see references 

in §5.4.3). W hen this shock is correctly detected, the transition equation variance 

becomes statistically null. Hence, it fits in the formulation defined by equations 

(5.59) and (5.60). We shall consider this da ta  set as an empirical application of the 

method we propose.

The methodology we propose follows the same philosophy as the methodology 

used for sampling scheme 5.1. We estim ate this model in two stages. In a first 

stage, we run the Gibbs sampler for an auxiliary da ta  set {y* }J-i, to  establish the 

location and size of level shifts possibly present in the original da ta  set {yt}J=v The 

auxiliary d a ta  set is constructed in such a way th a t it has the same level shifts, in 

terms of their location and size, as the original d a ta  set. It follows a local level model 

with the transition variance different from zero. The aim of using this auxiliary 

data set it to identify the level shifts, their position and size. Having identified and 

characterized these shocks, the original model is estim ated using a second run of the 

Gibbs sampler; from this second run, we obtain posterior samples for the remaining 

random variables of the model.

Next we derive the process to obtain {yt}J=1. Let,

7/(* ~  j V ( o , < 4 ) ,  (5.62)

for t  =  0 , . . . ,  T  — 1, be a process of serially uncorrelated random  variables. The
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auxiliary da ta  set is obtained in the following manner:

yt* =  % +  ! > ,* ,  (5-63)
i=0

for t  =  1 , . . .  , T  — 1.

If in equations (5.59) and (5.60) we add to  both hand sides o Vi and X)!=o Vi> 

respectively, we obtain,

+ = °‘t + J 2 r) i +  +  s t , (5.64)
i = 0 i=0

a<+i +  £  Vt = °‘t + J 2 rl i+  *2,(P2,(- (5.65)
i=0 i=0

Define

a t = a t + Y l r ,l  (5.66)
i=0

W ith  definitions in expressions (5.63) and (5.66), equations (5.64) and (5.65) are 

rew ritten as:

Ut = a t +  ki,tPi,t +  £t, (5.67)

^ + 1  =  <xt + k 2 ,tP2 ,t + Tlt- (5.68)

Hence, we obtain a local level model, defined by equations (5.67) and (5.68). The 

intervention variables in this model are the same as in the original model. The 

choice of the noise process r f ,  more specifically of its variance, is such th a t it does

not mask the level shifts th a t might exist in the original da ta  set.

To assess the im pact of the value chosen for cr^., we next analyze the full condi­

tional distributions used in the first stage, to draw the intervention variables for the 

presence of level shifts.

Consider the model defined by equations (5.67) and (5.67). Suppose there is a 

level shift at t — i  of size k 2 t>, and th a t the hyperparam eters of the model are 

known. To draw from the full conditional distribution for the indicator variable of 

a level shift at t  = £ , we draw from a Bernoulli distribution with probabilities given
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by:

p (P2,t' = 1la f + i . a ?.<7?-.*2,t'.92) oc f N (oc}+1\a', + k2j , o*.) q2, (5.69)

oc exp
2 a\. 92,

and

p {pt,t' = 0 la t * + i , a t * , ^ - , fc2 , ( ' ’ 9 2)  OC / JV(a*,+1| a J , ( 7 ; | , ) ( l - g j ) ,  (5.70)

( “ ? + l -  a ’t ' ) :oc exp
2(7 .̂ (1 -  92),

Using the definition of the state variables a£ in (5.66), the probabilities for the 

presence of a level shift in expressions (5.69) and (5.70), are proportional to

exp

21

? 2 ,

and

exp (<v+i -  at' + vt)
21

2(7 .̂ (! -  92),

respectively. The argument for the choice of the perturbation variance is similar 

to the one used when detecting outliers, in §5.3. If there is a  level shift in t' the 

value of a t'+i — Oit> should be significantly different from zero. The choice of cr̂ * 

should be such th a t the value a t'+i — Oit> +  rj*, has a low probability under a normal 

distribution N  (0 , 0 ^*)- On the other hand it should not be too small in order to 

avoid th a t the full posterior distribution becomes degenerated. As in §5.3, the choice 

of the perturbation variance can be done by a previous analysis of the data  set in 

study, and does not require an extensive a priori knowledge of the data.

We describe now how to sample from the full conditional distribution of the size 

of a level shift variable. We assume th a t all the param eters of the model are known, 

including the position of the level shift at t  =  t ' . Hence we have p2 tt =  1. The shock 

size is drawn from the distribution,

( V K - ’ a t '+ i’ a t ' ’P2,t' = l ) ~ N  ( a j +1 -  a*,,<7jj.) .
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From expression (5.71) we conclude th a t the choice of cr** should be such th a t avoids

degeneracy of the normal distribution in expression (5.71). On the other hand, it

should not imply a too high degree of dispersion, so th a t the values sampled for the 

level shift size are likely to  be close to E  [a t'+l ~  Q? 'K - ’Q? +!’“ ('] =  k2,t'- We n0W 
present a sampling scheme for estim ating the model defined by equations (5.59) 

and (5.60), with the measurement innovation distributed as in (5.61). The prior 

distributions assumed for the param eters of the model are defined in expressions 

(5.41) to  (5.43), together with

° * ~ IG{ ¥ i ) ’ (5-72)

^  ~ I G  (??) • (5-73)
Sampling scheme 5.2:

Stage 1 Run sampling scheme 3.2, for the model:

Vt ~  a t +  ki,tPi,t +  £t,

°H+\ =  +  htP2,t +  Vh

where y\ = yt +  £ -ij V* and rsj N  are serially uncorrelated and

identically distributed, for t  =  0 , . . . ,  T  — 1. From the posterior samples of 

indicator variables for the presence of a level shift, obtain the set { t \ , . . . ,  t r} 

of the location of level shifts detected. From the posterior sample of the 

variables for the size of level shifts, obtain the size of the level shifts previ­

ously detected [k 2,t^ • • • >

Stage 2 Run sampling scheme 3.2 for the model:

Vt =  oit + hijPi,t +
r

&t+1 =  &t +  &2,tP2,t)

w ithout sampling from the full conditionals of k 2 and p 2. The transition 

variance is set equal to zero; the indicator variables for the presence of a level 

shift are set equal to  zero for all t  ^  { t i , . . . ,  tr}. For t  G { t i , . . . ,  tr} , p2,t =

1. The size of level shift variables are set equal to  the sizes previously 

obtained, for t  = U, for i =  1 , . . . ,  r and set to  zero otherwise.
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By running the Gibbs sampler in stage 1 , we identify the level shifts present in the 

data, by considering the posterior distributions of the intervention variables for the 

presence of level shifts. These posterior samples are obtained for the auxiliary model. 

By construction, the auxiliary data  set has the same level shifts as the original data  

set, in term s of their location and size. Prom stage 1 we obtain posterior samples 

for k 2, P 2 , and q2. Having obtained the set of instances where level shifts occur and 

their sizes, the Gibbs sampler is run once more, applied to the original model and 

da ta  set. I t delivers the posterior samples for the measurement equation variance 

and the variables related to the presence of an outlier, namely <7g , k i , p i ,  and q\.

5.4.1 Sensitivity analysis to the choice of cr̂

We conduct a  Monte Carlo experiment, for 500 simulated d a ta  sets, with size T  = 

100, from the model defined by equations (5.59) and (5.60). The variance of the 

irregular noise in expression (5.61), is set to one. For each d a ta  set an outlier of size 

—5, and a level shift of size 5, are input, a t instances t  =  50 and t =  75, respectively.

For each of the simulated data  sets, stage one of sampling scheme 5.2, is run. 

Four different values for the variance cr̂ * in expression (5.62), are considered, for 

generating the auxiliary data  set, using equation (5.63):

o*. =0.25,0.5,1 ,2 .

From stage one, we obtain posterior samples for the size and probability of having 

a level shift a t t  =  75. Using a threshold of 0.5, the level shift is detected for part 

of the generated samples, and for each of these, for certain values of . For this

generated samples, stage 2 is run, fixing the size of the level shift, a t t  = 75, to the

weighted mean of the posterior sample of k2 ,74 obtained in the previous stage. In 

stage 2 , we obtain posterior samples for the variables related to  the detection of an 

outlier and the measurement equation variance.

The prior assumptions are defined in expressions (5.41) to  (5.43), and (5.72) to

(5.73). The prior distribution param eters are set to  the values

ci =  5, si =  5, ai =  1, 6 1  =  100, 

c2 =  5, a2 =  1 ,6 2 =  100,
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For the approxim ating bounded uniform distribution we take u\ =  —5, v\ = 5, U2 = 

—5,V2 =  5. The prior parameters for the prior distribution of the auxiliary noise in

(5.73) are set to

£>2 =  1,2.5,5,7,

for cr̂ * =  0.25,0.5,1,2, respectively. The Gibbs samplers in stage one and two, are 

run for 10,000 iterations, discarding the first 5,000.

We s ta rt by presenting in Table 5.7, a summary of the properties of the posterior 

samples obtained from stage 1. The value for <7 *̂ th a t presents best results is 

cr .̂ =  0.25. For this value, we obtain the higher percentage of detection of the level 

shift. For cr .̂ =  2, in only 27% of the cases, a level shift is detected at t = 75. In this 

case, we are trying to detect a shock of size 5 to an equation w ith a hyperparam eter 

of 2. The im pact of the shock is not so evident given the dimension of the noise 

variance, and for th a t reason is not detected as often as for the other values of 

considered. On average, the posterior mean for the size of the shock, does not 

exhibit much sensitivity to the choice of the perturbation variance. The standard 

deviation of this estimate across the simulated replications, presents some sensitivity, 

increasing w ith the increase of the perturbation variance.

In Figure 5.10, we plot the posterior sample means of the size of a level shift at 

t  = 75, across the simulated replications, for the values of cr̂ * used. The median of 

the sizes estim ated, is quite stable, in the same way we have observed for the mean. 

This lack of sensitivity of these central measures can be used for choosing the value 

of . The choice of this param eter can be tuned according to  the values obtained 

for the weighted average of the posterior sample of the size of a level shift, for those 

instances where the posterior probability of such an event is higher.

Taking the generated data  sets for which a level shift is detected in stage 1, we 

run the second stage of sampling scheme 5.2. The size of the level shift is fixed to the 

estim ate obtained in the first stage, accordingly to the value of <r̂ * used. In Table 

5.8, we present a summary of the posterior samples obtained in this stage. The 

values of <7 *̂ th a t imply more accurate estimates in average, are for cr .̂ =  0.25,0.5. 

For these values the percentage of outliers detected a t t  =  50 presents its higher
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Table 5.7: Summary of output from posterior sample averages, across 500 simulated replications, obtained from application
of stage 1 of sampling scheme 5.2, for cr ,̂ =  0 .25,0.5,1,2.

Posterior sample mean

&2,74 P2,74 Q2
Mean SD Q o.025 Q o.975 Mean SD Q o.025 Q o.975 > 0.5 Mean SD Q o.025 Q o.975

0.25 4.88 1.18 2.45 6.99 0.76 0.30 0.04 1 0.80 0.022 0.0040 0.016 0.031
0.5 4.89 1.30 2.15 7.16 0.70 0.32 0.03 1 0.73 0.023 0.0044 0.016 0.032

1 4.90 1.54 1.74 7.81 0.50 0.36 0.02 0.999 0.50 0.023 0.0045 0.017 0.032
2 4.75 1.97 1.01 8.58 0.32 0.31 0.01 0.965 0.27 0.024 0.0050 0.018 0.036

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior mean estimate across 500 simulated samples. 
“> 0.5” is the proportion of times the shock was correctly detected, for a threshold of 0.5, across the 500 simulated samples. Based on 10,000 
Gibbs draws, discarding the first 5,000.



Figure 5.10: Box-plot of posterior samples mean of size of level shift, across 500
simulated replications, for =  0.25,0.5,1,2.
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values. Comparing the sensitivity of the results obtained in the second stage, to the 

choice of to the results in Table 5.2, for the sensitivity to  the choice of erf, we 

conclude th a t the first ones are more affected by the choice of the perturbation. The 

justification for this is related to  the nature of the shock. A level shift happening at 

t  has impact on all the following observations. If in stage one a level shift is detected 

a t a certain instant t, its estim ate is input for running stage 2. The size of the level 

shift estim ated defines the change in the level component of the model for all the 

following instances.

From the results obtained for this analysis, we conclude th a t the size of level 

shift variable presents a satisfactory lack of sensitivity to  the choice of crjj*. This 

feature can be used to make an adequate choice of this param eter, w ithout much 

prior knowledge of the data  set being fit. W ith a sensible choice of the perturbation 

variance, the estim ation results obtained are on average satisfactory.
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Table 5.8: Summary of output from posterior sample averages, across simulated 
replications, obtained from application of stage 2 of sampling scheme 5.1, for cr̂ * =  
0 .25,0.5,1,2.

77* Posterior sample mean

Mean
h

SD
,50

Q o.025 Qo.975 Mean SD
Pi,50 

Q o.025 Q o.975 > 0.5
0.25 -4.90 1.08 -6.84 -2.86 0.849 0.25 0.13 1 0.870

0.5 -4.84 1.05 -6.84 -2.88 0.825 0.27 0.08 1 0.857
1 -4.60 1.07 -6.75 -2.65 0.725 0.33 0.03 1 0.770
2 -4.10 1.13 -6.30 -2.07 0.495 0.38 0.02 0.9999 0.471

Mean
0

SD

.2
e
Q 0.025 Q o.975 Mean

Qi
SD Q o.025 Q o.975

0.25 1.123 0.271 0.790 1.844 0.022 0.0027 0.016 0.027 -

0.5 1.190 0.394 0.803 2.358 0.022 0.0029 0.016 0.028 -
1 1.397 0.614 0.804 3.423 0.021 0.0030 0.015 0.027 -

2 1.992 1.181 0.831 4.282 0.021 0.0033 0.016 0.028 -

The values reported are the mean, standard deviation, 2.5th and 97.5th percentile of the posterior 
mean estimate across 500 simulated samples. “> 0.5” is the proportion of times the shock was 
correctly detected, for a threshold of 0.5, across the simulated samples where a level shift was 
detected at t  =  75. Based on 10,000 Gibbs draws, discarding the first 5,000.

5.4.2 A M onte Carlo study

We conduct a Monte Carlo study, where we generate 5,000 simulated data  sets, 

of size T  =  100, using the model defined by equations (5.59) and (5.60). The 

measurement equation noise, is generated from a normal distribution as in (5.61), 

with of =  1. To assess the performance of sampling scheme 5.2, an outlier and 

a level shift are input to the data  set. An outlier a t instant t  =  50, of size —5. 

A level shift a t t  =  75 with size 5. For each data  set, we run the first stage of 

sampling scheme 5.2, for 10,000 iterations, discarding the first 5,000. To generate 

the auxiliary data  set, the perturbation variance is set to  o =  0.25. From this stage 

we are interested in storing the posterior samples for the variables related with the 

detection of level shifts, k 2, p 2 and q-1. A level shift is detected a t t  — 75, if the 

posterior mean of p 2 ,74 is greater than  0.5. In this case, the estim ate of the size of 

the level shift, is the posterior sample weighted average of &2j7 4 . This value is input 

for the second stage of sampling scheme 5.2. For those d a ta  sets, where a level shift
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is detected at t  =  75 we run the second stage of sampling scheme 5.2. We run 10,000 

iterations discarding the first 5,000. From this stage, we obtain posterior samples for 

the remaining variables, o f , k i , p i  and qi. The prior distributions assumed are the 

ones defined in expressions (5.41) to (5.43), and (5.72) to  (5.73). The parameters 

for these distributions are set to the following values:

ci — si = 5, ai =  1, bi =  100, 

c2 =  5, s2 =  1, a2 =  1, b2 =  100.

The boundaries for the approximating uniform distributions are U\ =  u2 =  — 5, v\ =  

v2 =  5.

In Table 5.9, we present a summary of the statistical properties of all the posterior 

samples obtained in the two stages composing the sampling scheme. As in the §5.3.2, 

some of the results presented in Table 5.9, are not used for obtaining estimates of 

the param eters of the model, and are presented merely for comparison purpose.

The level shift is detected for 76% of the simulated d a ta  sets. The average value 

of the estim ated size of a level shift a t t =  75, is close to  the true size of the 

shock: an average estim ated value of 4.9, given a true value of 5. The variance of 

the perturbation added to  the transition equation presents on average an accurate 

estim ate of its true value of 0.25.

The variables of the measurement equation are on average more accurately esti­

m ated in the second stage, which is in fact the stage where we obtain their posterior 

samples.

The outlier a t t  =  50 is detected in 87% of the cases, for which the second stage 

was run. The mean of the size of the outlier obtained across the simulated data  

sets, presents an average value of —4.9, and therefore an accurate estimate of its 

true value of —5. The measurement equation variance is on average estim ated with 

a value close to the true one.

In Figure 5.11, we present some plots of the posterior distributions of the sizes 

of the two shocks input to  the simulated data  sets. The empirical distributions 

presented correspond to the posterior means of the size of a level shift at t — 75 

and an outlier a t t — 50. For the level shift, these values are the estim ates of the
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Table 5.9: Summary of output from posterior samples averages, across 5,000 simu­
lated replications, for a local level model with =  0.

Truth Posterior sample mean
Mean Median SD Q 0.025 Qo.975 >  0.5

a e
1 1.423 1.405 0.262 0.954 1.986 -

0.25 0.259 0.243 0.083 0.148 0.470 -

Pi, 50 1 0.601 0.686 0.346 0.024 1 0.610

Stage 1 kl,50 -5 -4.781 -4.899 2.707 -7.602 -2.141 -

P2,7A 1 0.735 0.892 0.318 0.037 1 0.756
&2,74 5 4.860 4.894 1.304 2.229 7.192 -

Ql 0.01 0.023 0.023 0.004 0.016 0.033 -

Q2 0.01 0.023 0.022 0.004 0.016 0.031 -

a e 1 1.131 1.063 0.308 0.767 1.981 -

Stage 2 P i,50 1 0.850 0.985 0.256 0.111 1 0.873
&1,50 -5 -4.888 -4.925 1.065 -6.901 -2.818 -

Ql 0.01 0.022 0.021 0.002913 0.016091 0.028 -

The values reported axe the mean, standard deviation, 2.5th and 97.5th percentile of the posterior 
mean estimate across 5,000 simulated samples. “>  0.5” is the proportion of times the shock was 
correctly detected, for a threshold of 0.5. The results referring to stage 2, correspond to the 
simulated data sets for which a level shift was detected at i =  75. Based on 10,000 Gibbs draws, 
discarding the first 5,000.

size of the shock, obtained across the 5,000 simulated d a ta  sets. For the outlier, 

across the simulated data  sets where the level shift was detected on the first stage, 

in a to ta l of 3,780 simulated data  sets. For the size of the outlier, the estimates are 

approxim ately symmetrically distributed around its true value of —5. The size of 

the level shift presents an higher level of dispersion. However, if we dismiss some of 

the estimates on the left hand side of the empirical distribution, which are negligible, 

the estimates are approximately symmetrically distributed around its true value.

In summary, this Monte Carlo study shows th a t the results obtained across the 

5,000 sim ulated samples are satisfactory. Sampling scheme 5.2 delivers posterior 

samples for the variables of the model which allow us to  detect on the m ajority of 

the cases the correct position of the level shift and outlier input to  the data. The 

size of these shocks and the variance a1 are on average accurately estimated.
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Figure 5.11: Histograms and box-plots of estimates of size of level shift (a)-(b) and
outlier (c)-(d), across 5,000 simulated replications, for local level model with =  0.
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5.4.3 Empirical application: N ile data set

Figure 5.12 shows measurements of annual volume of discharges (in 108 m3), from 

the river Nile to Aswan, from 1871 to 1970, in a to ta l of 100 annual observations. 

This da ta  is analyzed in Cobb (1978), where the da ta  set is presented. The study 

presented in th a t paper concerns the detection of changing points in the data. An­

other change point analysis of the Nile da ta  is presented in Carlstein (1988). In 

these two papers, a change point is detected in 1898. In Balke (1993) an ARMA 

model is adjusted to the Nile data, with a level shift detected in 1899. In the frame­

work of unobserved component models, Atkinson, Koopman, and Shephard (1997) 

and De Jong and Penzer (1998), analyze this da ta  set, for the detection of outliers 

and level shifts. The model fitted is a local level model. Both these papers use a 

frequentist approach and agree in detecting a level shift in 1899. W hen including
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this shock in the model, the level variance becomes statistically  null.

We fit a local level, with intervention variables for the presence of outliers and

level shifts, setting the level variance to zero:

Vt =  fJ't +  ( 5 -7 4 )

H t+ i =  V t +  k 2,tP2,t, (5.75)

with €t ~  N  (0, of), for T  =  1 , . . . ,  100.

Figure 5.12: Annual volume of the river Nile a t Aswan, between 1871 and 1970.
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By inspection of the plot in Figure 5.12, there seems to  be a change in the level of 

the series between 1890 and 1900. Analyzing the values of the observations during 

th a t decade we can see they range between 774 and 1,260. Given these values, we 

choose to set of* =  20.

The prior distributions assumed for applying sampling scheme 5.2 are defined 

in expressions (5.41) to  (5.43) and (5.72) to (5.73). The param eters for these prior 

distributions are chosen with the values:

Ci =  5, si =  25000, ai =  2, bi =  100, 

c2 =  5, s2 =  60, a2 =  2, b2 =  100.
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The param eters for the bounded uniform are chosen to be u\ =  —350, V\ =  350, u2 = 

—250, v2 =  250. In each stage the Gibbs sampler is run for 100,000 discarding the 

first 50,000. In Figure 5.13, we plot the posterior samples mean of the intervention 

variables, for the presence of level shifts and outliers.

Figure 5.13: Plots of posterior means of intervention variables for the presence of a 
level shift (a)-(b), and for the presence of an outlier (c)-(d), for the Nile da ta  set, 
from 1871 to 1970.
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The posterior samples for the variables p2jt and k2>t are obtained by running the 

Gibbs sampler for the auxiliary data. This auxiliary d a ta  set is obtained as in 

expression (5.63), with <7 *̂ =  20. The values plotted in Figure 5.13 (a) are the mean 

of the posterior samples of the indicator variable for the presence of a level shift, 

for any t  =  1 , . . . ,  100. We observe tha t, for the observation corresponding to the 

year 1898, the indicator variable is sampled with value one, for all the iterations 

stored from the Gibbs sampler. This corresponds to a posterior mean probability of 

having a level shift in 1899 equal to  one. For any of the other instances, the mean
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posterior probabilities of having a level shift are meaningless when compared with 

the threshold of 0.5. In Figure 5.13 (b), we have the weighted mean of the posterior 

samples of the size of a level shift. Given th a t, a level shift was detected only for 

t  =  1899 we are interested in the value of &2 , t - i5 for t corresponding to the year 

1899. At 1899 we estim ate a downward level shift of size —272.22.

Having detected the level shift present in the da ta  and its size, we input this 

information for running the second stage of sampling scheme 5.2. The posterior 

samples for the probability of having an outlier are plot in Figure 5.13 (c). We 

observe th a t using the threshold of 0.5, one outlier is detected in 1913. From the 

weighted posterior samples of the size of this type of shock, plotted in Figure 5.13

(d), we have th a t its size is estim ated with value —373.21.

Using an informative approach (see discussion in §3.4.1) we detect three other 

years w ith outstanding value for the mean posterior probability of an outlier, in 

the years 1877,1888, and 1964. Although the posterior mean probabilities present 

values below 0.5, with values 0.37,0.42, and 0.45, respectively, we choose to  classify 

these observations has outliers. We consider tha t, these values, compared with the 

mean probabilities for the instances where an outlier is not detected, give a clear 

indication of the occurrence of an outlier.

In Table 5.10 we summarize the properties of the posterior samples of the variables 

of interess. We have detected one downward level shift in 1899 and an negative 

outlier in 1913, which agrees with the results obtained in Atkinson, Koopman, and 

Shephard (1997) and De Jong and Penzer (1998). The outlier detected in 1877 

has also been reported in De Jong and Penzer (1998). In Atkinson, Koopman, and 

Shephard (1997), the outlier in 1888 is also detected. We detect an outlier in 1964, 

which, to  our knowledge, as not been reported in the literature.

To compare our results with the ones obtained using a different approach, we 

present is Table 5.11, the results obtained by maximum likelihood. The position of 

the shocks is input, according to the shocks to have detected.

For all of the shocks we have detected, their estim ated sizes by maximum likeli­

hood are statistically  significant. The values presented in Table 5.11, for the sizes 

of the shocks are similar to the ones we have obtained. The ^-ratios for the size of
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Table 5.10: Summary of output from posterior samples, for the Nile da ta  set, from 1871 to  1970.

Prior Posterior sample
Mean SD Mean Median SD Q o.025 Q o.975 Pi,t
8333 11785 13376.25 13193.0 28.76 9146.19 18688.23 -

Qi 0.02 0.014 0.061 0.058 2.47e-04 0.024 0.11 -

Q2 0.02 0.014 0.019 0.016 7.91e-04 0.0038 0.045 -
Level shift 1899 0 144 -272.22 -263.21 8.25 -402.87 -189.10 1

1877 0 202 -275.42 -279.93 0.57 -471.71 -66.53 0.37

Outlier 1888 0 202 -289.82 -293.56 0.72 -489.97 -76.37 0.42
1913 0 202 -373.21 -375.16 0.46 -588.24 -140.50 0.73
1964 0 202 298.28 301.21 0.42 83.38 501.73 0.45

The values reported are the mean, median, 2.5th and 97.5th percentile of the posterior samples, and the standard deviation of the sample 
mean estimates (SD estimated with a bandwidth of 5,000 for the Paxzen window) for o f, q1: q2 and the sizes of the shocks detected. is
the posterior sample mean of the indicator variable. Based on 100,000 Gibbs draws, discarding the first 50,000.



Table 5.11: Estim ation results by maximum likelihood, given the position of the 
shocks, for the Nile da ta  set, from 1871 to 1970.

O*
Level shift 

1899 1877
O utlier

1888 1913 1964
12301

[1.0000]
0.0000

[0.0000]
-269.16

(-10.567)
-307.19

(-2.7179)
-321.19 -395.03 

(-2.8418) (-3 .5365)
318.97

(2.8556)

The values in [ ] are the q-ratios for the hyperparameters estimated; the values in ( ) are the 
t-ratios for the size of shocks estimated.

the outliers, present the same order of significance, as the mean posterior probabil­

ities of the occurrence of an outlier. For example, the outlier with an higher mean 

posterior probability was detected in 1913. For this year, we obtain the estimate 

of the size, by maximum likelihood, with the higher £-ratio. The year of 1964, an 

outlier not detected in Atkinson, Koopman, and Shephard (1997) or De Jong and 

Penzer (1998), presents the second higher posterior mean probability and £-ratio.

We can notice th a t the estim ate for the irregular component variance is lower 

when estim ated by maximum likelihood. One explanation for this difference is th a t 

the value obtained by the Gibbs sampler, is the mean of the posterior samples 

obtained for th a t variable. Some of the values composing this posterior sample 

correspond to iterations where not all the indicator variables for the presence of an 

outlier, for the shocks detected, are sampled with value one.

In Figure 5.14, we plot the empirical densities of the posterior samples for the 

sizes of the shocks detected. The level shift presents a slightly higher asymmetry, 

mainly due to  a fatter left tail. It implies a posterior sample mean lower than the 

posterior sample median. In fact, we notice th a t the posterior mean presents a value 

closer to  the estim ate of the size of the level shift obtained by maximum likelihood. 

For this shock the degree of dispersion is less than  for the posterior sizes of the 

outliers. However, in Table 5.10, the value for the standard  deviation of the sizes 

of the shocks estim ated presents an higher value for the level shift detected. This 

feature is due to  the standard deviation being estim ated using a Parzen window. 

The posterior sample for the size of the level shift in 1899 presents an autocorrelation 

function with a slower convergence towards zero, than  the posterior samples for the
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Figure 5.14: Histograms and box-plots of posterior samples for size of level shift 
detected in 1899 (a)-(b) and outliers detected in 1877 (c)-(d), 1888 (e)-(f), 1913 
(g)-(h) and 1964(i)-(j), for the Nile data  set, from 1871 to  1970.
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outliers detected.

To check the adequacy of the model fitted in Figures 5.15 and 5.16 we present 

plots for the standardized innovations and standardized auxiliary residuals, respec­

tively.

The standardized innovations present a behaviour th a t does not indicate the pres­

ence of serial correlation, or departure from the normal distribution. The inspection 

of the plots for the standardized auxiliary residuals leads to  the conclusion th a t no 

shock has not been accounted for, and the ones we have detected were estimated 

with the correct size.

5.5 Conclusions

We have presented two sampling schemes for estim ating local level models, in the 

presence of outliers and level shifts, when one of the hyperparam eters is equal to zero. 

By proposing sampling schemes, with a first stage based on sampling from posterior 

distributions for an auxiliary data  set, we can assume a continuous uniform prior 

distribution for the size of the shocks. This uniform assumption is chosen with the 

aim of detecting and estim ating the size of the shocks w ith as few prior knowledge 

of the data  set as possible.

For generating the auxiliary da ta  sets, it is necessary to choose a variance pa­

rameter. By the analysis of sensitivity presented for the choice of these parameters, 

we conclude th a t it does not imply much assumptions about the characteristics of 

the shocks th a t might exist.

The satisfactory performance of the sampling schemes we have proposed has been 

established by two Monte Carlo studies. As empirical applications we have applied 

our methodology to two data  sets. The results obtained and their comparison with 

results in previous works confirms the suitable behaviour of our methodology.
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Figure 5.15: Descriptive plots of standardized innovations, for the Nile da ta  set,
from 1871 to 1970.
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Figure 5.16: Plots (a)-(b) and box-plots (c)-(d) of standardized auxiliary residuals,
for the Nile da ta  set, from 1871 to 1970.
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Chapter 6 

Conclusions

The aim of this work is to present a general methodology for the estimation of 

structural models, when shocks, namely outliers and structural shifts, are present 

in the time series data. A Bayesian approach was chosen, because it allows the joint 

estim ation of the hyperparam eters and the detection of the shocks’ position and 

size. The Gibbs sampler is the sampling method we use. The detection of shocks is 

accomplished by introducing a pair of variables, for each type of shock; an indicator 

variable, for the presence of a shock at an instant in tim e and a magnitude variable, 

defining the size of the shock.

Throughout this work, we have considered a flat prior distribution for the size of 

intervention variable. This prior has not been considered in the literature. It was 

chosen with the objective of making the estim ation process as autom atic and free 

from prior knowledge of the data, as possible. Assuming a flat prior distribution, two 

param eters have to be chosen a priori: the lower and upper bounds of an approxi­

m ating bounded uniform distribution. We have showed, by numerical illustrations, 

th a t the shocks detected, namely their size, present a low sensitivity to the choice of 

these parameters. Hence, even when there is insufficient prior information to make 

this choice in the most efficient manner, the shocks are detected satisfactorily.

The advantage of the method we have proposed, when compared to  other m ethod­

ologies is evident. Frequentist approaches have the drawback of not providing a 

m ethod to simultaneously estim ate the hyperparam eters and diagnose the shocks. 

W ithin Bayesian methodologies, the usual prior assumptions for the intervention
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variable are either a multinomial or a normal distribution. W hen using a discrete 

prior distribution, the values of possible sizes of the shock are set a priori This 

requires considerable prior knowledge of the data  behaviour. In addition, it pre­

vents the use of information within the data  to define the size of the shocks. Using 

a normal prior, the mean and variance param eters have to be chosen a priori We 

have showed, in §3.5, th a t the posterior samples of the size of intervention variable 

present an undesirable sensitivity to the choice of this d istribution’s parameters. 

From the Monte Carlo study conducted in §3.5, we have concluded tha t, in the 

absence of relevant prior information about the size of the shocks, the variance pa­

ram eter should be set to a high value. In the limit this corresponds to using an 

uninformative prior distribution.

In Chapters 3 and 4, we propose sampling schemes for the estim ation of structural 

models, in the presence of shocks. We start by considering a local level model, 

in the presence of outliers and level shifts. This formulation was generalized in 

Chapter 4, where we proposed a method for estim ating a basic structural model, 

in the presence of outliers, and three possible types of structural shifts: level, slope 

and seasonal shifts. Our main contribution is the assumption of a flat uniform 

prior distribution for the size of intervention variables. Additionally, the Bayesian 

techniques of Chapter 4 for estim ation of a BSM, allowing for the presence of shocks 

to any of the model’s components, do not appear elsewhere in the literature. The 

Monte Carlo studies presented show th a t our methods perform well, when applied 

to  artificial da ta  sets. In particular the shocks input to  the simulated da ta  sets have 

a high proportion of detection, and their sizes are on average accurately estimated. 

The coal da ta  set considered in Chapter 3, has been previously studied in Atkinson, 

Koopman, and Shephard (1997), for the subset of observations until 1983Q4, using 

a frequentist approach for shock detection. In Atkinson, Koopman, and Shephard 

(1997), outliers are detected in 1969Q1 and 1969Q3, and a level shift in 1975Q1. 

For the sub-sample until 1983Q4, we have detected the two outliers but, an outlier 

in 1975Q1, instead of the level shift reported in Atkinson, Koopman, and Shephard 

(1997). From further investigation of the data, we concluded th a t a level shift would 

in fact be detected at th a t point, if a restriction of not having an outlier a t 1975Q1 is
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imposed. However, the posterior mean probability of having an outlier a t 1975Q1, 

presented an higher value, than the corresponding posterior mean probability of 

having a level shift in 1975Q1. We concluded th a t there is stronger evidence of 

an outlier a t th a t point in time than  a level shift. Moreover, Atkinson, Koopman, 

and Shephard (1997) mention th a t there might be an outlier in 1975Q1. In the 

sub-sample from 1984Q1 to 1984Q4, we detect two other outliers. As an empirical 

application of the detection of shocks for the BSM, we model the quarterly number 

of marriages in the UK, from 1958Q1 to 1984Q4. For the period of 1965Q1 to 

1970Q4, this da ta  set was analyzed in West and Harrison (1997) and Penzer (1998). 

This da ta  set is modeled using a BSM, with determ inistic slope. We establish the 

existence of two seasonal shifts; an upward seasonal shift in 1962Q1, and a downward 

seasonal shift in 1969Q1, which agrees with the findings in West and Harrison (1997) 

and Penzer (1998). For the period of 1971Q1 to  1984Q4, we detect a downward level 

shift in 1973Q2. The results we obtained in these empirical applications are overall 

in agreement with results from using different methodologies. The advantage of our 

m ethod is th a t our results were obtained with one run of the Gibbs sampler, which 

delivered posterior samples for all the variables of the model.

In Chapter 5, we consider the problem of applying the Gibbs sampler for detection 

of shocks, for the local level model formulation, when one of the hyperparam eters is 

equal to zero. Following our approach of developing a m ethod th a t does not require 

substantial prior information, we kept the previous formulation of the intervention 

model, as well as the prior assumption of a flat distribution for the size of intervention 

variable. The problem with the sampling schemes presented in Chapters 3 and 4 

is th a t, they will not converge, if we are sampling from intervention variables in 

equations with a null variance noise. We solved this problem by proposing a two 

stages sampling scheme. In the first stage, we run the Gibbs sampler for an auxiliary 

da ta  set, following a local level model, with both hyperparam eters different from 

zero, bu t with the same shocks as the original da ta  set. In this way we obtain 

posterior samples for the interventions variables th a t are included in the model, in 

an equation with a null hyperparam ater. From these posterior samples we detect 

the position and size of the correspondent shocks. In the second stage, the shocks
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estim ated in the first stage are input in the model, and a second Gibb sampler 

is run, for the original da ta  set, for estim ating the non null hyperparam eter and 

detection of the other type of shocks. Unlike existing methods our approach assumes 

a continuous prior distribution for the size of intervention variable for the particular 

case of one of the hyperparam eters being equal to  zero. In Gerlach, Carter, and 

Kohn (2000) the detection of shocks for a state  space formulation, allowing for null 

hyperparam eters, is considered. The draw back of the m ethod in Gerlach, Carter, 

and Kohn (2000), is the assumption of a discrete prior distribution for the size of 

intervention variable, which as we have argued before, demands a considerable prior 

knowledge of the data.

The sampling schemes we derive in C hapter 5, are based on a first stage, where 

an auxiliary data  set is generated, for detecting one of the type of shocks. To 

generate this auxiliary data  set, a variance param eter has to  be chosen. We presented 

the results from an analysis of sensitivity of the shocks detected to  the choice of 

this param eter. From the results obtained we conclude th a t the auxiliary data  set 

can be generated in an efficient way, without extensive prior analysis of the data. 

Two other Monte Carlo studies were performed. In the first Monte Carlo study 

the artificial da ta  sets are generated from a local level model, with the irregular 

variance equal to  zero. In the second experiment, the generating process used was 

local level model with the level variance equal to zero. For both experiments, an 

outlier and a level shift were added to the data. The results we have obtained 

and presented show th a t our methods produce good overall results. The shocks are 

detected for a high percentage of the simulated replications, w ith accurate estimates 

for their size. As an empirical application of the detection of outliers and level 

shifts, when the irregular variance is equal to zero, we consider the monthly quotes 

of bonds issued by the Greek government, and transacted in the London Stock 

Exchange, from August 1916 to June 1930. We fit a unobserved component model, 

w ith level and seasonal component, and null irregular variance. The method we 

propose for the case of a null irregular variance was used including, a t stage two, an 

additional step for sampling from the full conditional for the seasonal component. 

We detected one outlier and four level shifts. Their positions and sizes agree with
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the results obtained in Christodoulaki and Penzer (2002) where this da ta  set was 

analyzed using a frequentist technique. The m ethod in Christodoulaki and Penzer 

(2002) for detection of shocks, is based on the output from running the model 

without interventions. After the position of the shocks is established the model 

is re-estimated, including dummy variables for the shocks detected, and their size 

is estim ated by maximum likelihood. The estimates for the size of the shocks we 

obtain using a Bayesian approach, are very similar to the ones obtained by maximum 

likelihood given the position of the shocks. W ith our methodology, the shocks are 

detected by obtaining posterior samples for intervention models. We simultaneously 

obtain estimates for the hyperparam eters, detect the position and estim ate the size 

of the shocks. For the method in Christodoulaki and Penzer (2002) the position of 

the shocks are obtained on the basis of the null model output.

As a last empirical application, we applied our m ethod for the detection of outliers 

and level shifts when the level variance is equal to  zero, to the da ta  set consisting 

of the annual volume of the Nile a t Aswan, from 1871 to  1970. This da ta  set 

has been the subject of several works on change-points detection and detection of 

shocks to state  space models. Most of these studies agree in detecting a level shift 

in 1899. W hen this shift is accounted for in the model, the level hyperparam eter 

become statistically null. Applying our methodology, we detected a level shift at 

th a t instant. This level shift was detected with a posterior sample probability of 

occurrence of 1. Additionally, we have established the presence of four outliers. The 

outliers we have detected in 1877, 1888 and 1913 have been reported in other studies. 

We detected also the presence of an outlier in 1964. The outlier detected with a 

highest posterior mean of occurrence is in 1913; the outlier detected with a second 

highest posterior mean probability of occurrence is in 1964. This outlier has not, to 

our knowledge, been reported before. For comparison purpose we have estim ated 

the intervention model by maximum likelihood, inputting dummy variables for the 

instances where we have detected shocks. If we order the outliers according to  the 

statistical significance of the estim ated sizes using maximum likelihod, it agrees with 

the order we obtain by ordering them  according to  the posterior mean probabilities 

of occurrence of an outlier.
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Several extensions can be done to the methodologies we have developed in this 

work. For example, the formulation of a seasonal shift. We defined a seasonal shift 

has being generated by a shock to the seasonal component a t one instant in time. 

For some time series, this is not the correct formulation. In Penzer (2002), several 

other formulations are presented, together with examples of real d a ta  where they 

occur. It would be interesting to extend the methodology presented in Chapter 4, for 

alternative formulations of seasonal shocks. The methodology presented in Chapter 

5, for the detection of outliers and level shifts, for the local level model, when one of 

the hyperparmeters is equal to zero, can be extended to a basic structural model. We 

considered the local level model for simplicity, but it should be straightforward to 

consider a more general formulation; a BSM in the presence of shocks to  components 

with a null hyperparam eter. Finally, we have have restricted the scope of this work 

to  Gaussian state  space models. In Chib, Nardari, and Shephard (2002), a Gibbs 

sampler is presented for estimation of a non-Gaussian state  space model, allowing 

for shocks in the measurement equation; the model being a stochastic volatility 

model with jum ps in the mean equation. A possible extension of our methodology 

would be for this type of financial models, or to more general state  space processes.
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Appendix A

Ox implementation of the Gibbs 
sampler for empirical application 
in §3.5.5
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/* Gibbs sampler for sampling hyperparameters and interventions variables 
for the Coal consumption data set in section 3.5.5 */

#include <oxstd.h>
#include <oxfloat.h>
#include <packages/ssfpack/ssfpack.h>
#include <oxprob.h>

const decl slnputFile = "ofuCOALl.in7";

/*declaration o f functions */
VarSampler(const m);
AmplitudeSampler(const m);
IndicatorSampler(const m); 
probSampler(const m);

static decl mY,mStates,mResiduals,Amplitude,
Indicator,IndicProb,prob,v_p;

/♦matrices for State Space model*/ 
static decl Phi,Sigma,Omega;

/♦initializations and constants input*/
static decl IrregVar=l;
static decl LevelVar=l;
static decl SeasVar=0;
static decl SlopeVar=0;
const decl crep=50000;
const decl bum=50000;
const decl Irregdegreel=5;
const decl Irregdegree2=0.05;
static decl Leveldegreel=5;
static decl Leveldegree2=0.01;
const decl a0=<8;2>;
const decl b0=<100;100>;
const decl LowUnif=<-0.5;-0.5>;
const decl UppUnif=<0.5;0.5>;

/♦state space model formulation*/ 
static decl mStsm;

/♦vectors for residuals sampling*/
static decl mKF,mWgt,mGamma,md,residstate,residY;
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/♦seasonal period ♦/ 
static decl c_s=4;

main()
{

decl time=timer(); 
mY=loadmat(sInputFile)[][0]1; /♦loads data set^/

decl m=columns(mY); 
decl v_LevelVar=zeros(l,crep+burn); 
decl v_IrregVar=zeros(l,crep+bum); 
decl v_Amplitude=zeros(2,m); 
decl Percentage= zeros(2,m);

/♦Data dimension^/ 
/♦Level var ♦/
/♦Irreg var*/ 

/♦posterior magnitude^/ 
/♦posterior probability

/♦Initialization^/
mResiduals=zeros(4,m);
Amplitude=zeros(2,m);
Indicator= zeros(2,m);
IndicProb=zeros(4,m);
prob=<0.01;0.01>;
v_p=zeros(2,l);

/♦construction o f state space structure^/
decl mStsm=(<CMP_LE VEL>~sqrt(Level V ar)~<0,0>) | 

(<CMP_SLOPE>~sqrt(SlopeVar)~<0,0>)| 
(<CMP_SEAS_DUMMY>~sqrt(SeasV ar[0] [0])~c_s~0)| 
(<CMP_IRREG>~sqrt(IrregV ar)~<0,0>); 

GetSsfStsm(mStsm,&Phi, &Omega,&Sigma);
/♦Prints input parameters^/

print(,f\n","sample dim=",m,"\n","bum=",bum,"\n","rep=",crep,
"\n","initial irregvar=",IrregVar,
"\n", "initial levelvar=",LevelVar, 
"\n","Seasvar=",SeasVar,"\n","Slopevar=",SlopeVar,
"\n", "Prior parameters",
"\n","Irreg Var degreel degree2" ,
"\n",Irregdegree 1 ~Irregdegree2,
"\n","Level Var degreel degree2" ,
"\n",Leveldegree 1 ~Leveldegree2,
"\n","Prob beta prior a b" ,"\n",aO~bO,
"\n","Uniform Prior Low Upper" ,"\n",LowUnif~UppUnif);

decl i,aux;;
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for(i=0;i<crep+bum;-H-i)
{

/*sampling Irregular and Level variances*/ 
aux=V arSampler(m);
Omega[0] [0]=aux[0] [0];
Omega[5] [5]=aux[0] [ 1 ];

/*sampling intervention's magnitude*/
Amplitude=AmplitudeSampler(m); 

/* sampling intervention's indicator*/ 
IndicatorSampler(m);

/*sampling p o f intervention*/ 
probSampler(m);

/*stores the sampled values for variances*/
v_LevelVar[] [i]=Omega[0] [0]; 
v_IrregVar[][i]=Omega[5][5];

/* if after bum in period updates percentage and magnitudes stored*/ 
if(i>=bum)
{
Percentage[0] []=(Percentage[0] []+ (lndicator[0] []. !=0)); 
Percentage[ 1 ] []=(Percentage[ 1 ] []+ (Indicatorf 1 ] []. !=0)); 
v_Amplitude=(v_Amplitude+Amplitude.*Indicator); 
v_p=v_pH-prob;

}
}

/*Gibbs sampler iterations ended here*/
/*formatting output variables*/ 

decl 1;
for(l=0;l<m;-H-l)
{

if(Percentage[0] [1]=0)
{

v_Amplitude[0] [1]=0;
>
else
{

v_Amplitude[0] [1]= 
v_Amplitude[0] [1]/Percentage[0] [1];

}
if(Percentage[ 1 ] [1]=0)
{



v_Amplitude[ 1 ] [1]=0;
}
else
{

v_Amplitude[ 1 ] [l]=v_Amplitude[ 1 ] [1]/Percentage[ 1 ] [1];
>

}
/* posterior probabilities o f shocks*/

Percentage=Percentage./crep;
/* averaged estimates o f variances*/

Omega[0] [0]=meanr(v_LevelV ar[] [bum:]);
Omega[5] [5]=meanr(v_IrregVar[] [bum:]);

/* posterior p for indicator variables*/ 
v_p=v_p/crep;

/♦saves some data output*/
savemat("Inter.in7,,,(Percentage|v_Amplitude),); 
savemat("Var.in7",(v_LevelVar[][bum:]|v_IrregVar[][bum:])'); 

/♦prints output*/
print(\n","IrregVariance",Omega[5][5], 
"\n","LevelVariance",Omega[0][0]); 
print("\n","time elapsed", (timer()-time)/100," sec.");

/♦end o f main*/
}

VarSampler(const m)
{
/* Gamma chooses the disturbances to sample from*/ 

mGamma=diag(< 1 >~zeros( 1 ,c_s)~0);
mKF=KalmanFil(m Y,Phi,Omega,Sigma,zeros(c_s+2,1),o , o  

, 1 |constant(-1 ,c_s, 1 )|0,(Amplitude[] [] .*Indicator[] [])); 
mWgt=SimSmoWgt(mGamma,mKF,Phi,Omega,
Sigma,zeros(c_s+2,1 ) , o , o ,  1 |constant(-1 ,c_s, 1 )|0,
(Amplitude[] [] .*Indicator[] []));

/* Draws from the disturbances o f level equation*/
residstate=SimSmoDraw(mGamma,rann( 1 ,m),mWgt,mKF,Phi,
O m ega,S igm a,zeros(c_s+2,l),o ,o  ,
1 |constant(-1 ,c_s, 1 )|0,(Amplitude[] []. *Indicator[] []));

/♦mStates: recursion that given the simulated residuals obtains the states 
and signals (last row)*/
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mStates=SsfRecursion(residstate[][],Phi,Omega,<>,zeros(c_s+2,l),< 
> , o ,  1 |constant(-1 ,c_s, 1 )|0,(Amplitude[] []. *Indicator[] [])~(0|0)); 
mResiduals[0] []=residstate[0] [ 1:]; /^transition residuals*/
mResiduals[3][]=mY-mStates[5][l :];/*measurement residuals*/

mStates=mStates[ :2] [ :m-1 ];
md=mResiduals;
md=md*md';

/♦returns samples from inverse gamma posterior distributions */ 
return (l/rangamma(l,l,(Leveldegreel+m- 
l/2,(Leveldegree2+md[0] [0])/2))~
(l/rangamma( 1,1 ,(Irregdegree 1 +m)/2,(Irregdegree2+md[3] [3])/2));

}

AmplitudeSampler(const m)
{

decl ampliY, ampliStates;
ampliY=(rann(l,m).*sqrt(Omega[5][5])+mResiduals[3][]+ 
Amplitude[0] []. *lndicator[0] []).*lndicator[0] []+
((ranu( 1 ,m)* (UppUnif[0] []-LowUnif[0] [])+ 
constant(LowUniftO],l,m)).*(constant(l,1 ,m) -lndicator[0][]));

amphStates=(rann(l,m).*sqrt(Omega[0][0])+mResiduals[0][]+ 
Amplitude [ 1 ] []. *Indicator[ 1 ] []). *Indicator[ 1 ] []+((ranu( 1 ,m) 
*(UppUnif{ 1 ] [] -LowUnif[ 1 ] [])+constant(LowUnif[ 1 ] [], 1 ,m))
. * (constant( 1,1 ,m)-Indicator[ 1 ] [])); 
return ampliY|ampliStates;

}

IndicatorSampler(const m)
{

decl u;

IndicProb[0][]=densn((mY-mStates[0][]-mStates[2][])/
(sqrt(Omega[5][5])))*(l-prob[0][]);
IndicProbf 1 ] []=densn((mY-mStates[0] []-mStates[2] [] 
-Amplitude[0] [])/(sqrt(Omega[5] [5])))*prob[0] [];
IndicProb[: 1 ] []=IndicProb[: 1 ] [] ,/(sumc(IndicProb[: 1 ] [])); 
u=ranu(l,m);
Indicator[0][]=ones(l,m).*(u.>(IndicProb[0][]));
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IndicProb[2] []=(densn((mStates[0] [ 1 :]-mStates[0] [:m-2]- 
mStatesf 1 ] [ :m-2]) /(sqrt(Omega[0] [0])))*( 1 -prob[ 1 ] []))~1; 
IndicProb[3][]=(densn(((mStates[0][l:]-mStates[0][:m-2]- 
mStates[l][:m-2])
-Amplitude[ 1 ] [ :m-2])/(sqrt(Omega[0] [O])))*prob[ 1 ] [])~0;

IndicProb[2:] []=IndicProb[2:] [] ./(sumc(IndicProb[2:][])); 
u=ranu(l,m);
Indicator[ 1 ] []=(ones( 1 ,m)). * (u.>(IndicProb [2] []));
}

probSampler(const m)
{

declnl,nO;
nl=sumr(lndicator[0] []); 
nO=m-nl;
prob[0]=ranbeta(l, 1 ,a0[0]+nl ,b0[0]+n0);

n l =suinr(Indicator[ 1 ] []); 
nO=m-nl;
probf 1 ]=ranbeta( 1,1 ,a0[ 1 ]+nl ,b0[ 1 ]+n0);
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