
London School of Economics and Political Science

Network Effects in Mass Communication -  
n Analysis of Information Diffusion in Markets

PhD thesis 

by

M a r k  L u d w ig

London, 2008



UMI Number: U613378

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U613378
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



T W $ e s
£

toraryo» Mr)»cai

i ' i



Meinen Eltern



Acknowledgements

During the adventures of this thesis, my supervisor Dr John Howard was a constant source of thought- 
provoking suggestions, patience, and advice. In many ways, this thesis would not exist without his 
support and encouragement, and I would like to express my deep gratitude for all his help.

Prof Peter Abell introduced me to the sociological side of network research, which led to the 
evolutionary simulation model presented in this thesis. He also had the generosity to take the time and 
read the thesis, gave me many important comments, and always discussed matters in an encouraging 
and inspiring way. I am very grateful for his support and the interest that he showed in my research.

Prof Daniel Read reminded me that scientific modelling should be done with a comprehensive 
understanding of people’s behaviour. He helped to shape this thesis in many enlightening meetings.

Prof Robert East and Prof Kathy Hammond generously provided me with their survey data on 
recommendation behaviour in consumer networks. They also brought my attention to several practical 
issues in consumer research.

Many thanks go to Dr Barbara Fasolo who greatly introduced me to research in behavioural decision 
making and is always full of energy and ideas.

I am indebted to Prof Graham Brightwell for invaluable feedback on various simulation models 
described in this thesis.

Prof Gautam Appa and Prof Paul Williams helped me in the operational research seminars at LSE to 
clarify my thoughts and organize my research.

Dr Susan Powell was central in keeping intact my computing infrastructure and my good mood.

I had the pleasure to frequently have lunch with James Gibb and embark on many entertaining 
conversations with him.

Prof Frank Schweitzer encouraged me to apply models from physics to practical management 
problems, and later motivated me to submit an article on networks to a physics journal.

It is difficult to express how much I owe Sharon Attia for many stimulating conversations, culinary 
adventures, and good times.

Last but not least this thesis could not have been written without the support from my colleagues and 
friends in the Operational Research Group and at LSE: Mara Airoldi, Nikos Argyris, Kai Becker, Jan 
Duesing, Ioanna Katranzi, Dr Alec Morton, Brenda Mowlam, Melody Ni, Dr Katerina Papadaki, 
Kostas Papalamprou, Srini Parthasarathy, Keith Postler, Dr Alan Pryor, Jenny Robinson, and Dr Peter 
Sozou. Thanks a lot!

3



Abstract
In this thesis we investigate the diffusion of information like news, announcements, and commercials 
in social networks. Such information propagates through a mix of mass communication and inter
personal communication. For example, people who watch a TV spot about a new car will discuss it 
with their friends. Both communication methods influence the awareness, preferences, and opinions 
that people display towards certain topics, products, and services.
The effects of mass and inter-personal communication on the diffusion process have been studied 
intensively in several areas, for example, in sociology, economics, social psychology, political science, 
and marketing. Most of these studies highlight the role of inter-personal relation structures, that is, the 
network of social ties, in the diffusion process. However, a concise diffusion model that quantifies the 
effects of social networks and helps to improve mass communication towards structured populations is 
still in demand. Our purpose is first to analyse the drivers of social networks, then to model the 
diffusion of information on social networks, and finally to quantify the network effects on the 
diffusion process.
We describe and construct social networks as graphs and present anthropological, psychological, and 
random factors that shape them. Based on one of these factors, structural balancing, we propose an 
evolutionary model of social networks, suggesting that the structure of social networks can change 
dramatically over time.
For modelling diffusion processes on social networks, we follow a two-step procedure. We first 
combine three different generation methods, the generalised random graph, the small-world model, 
and a third method (random graph with a given assortment structure) to design realistic networks. 
Then we simulate the propagation of information on these networks. As the computer requirements for 
such simulations can be expensive, we introduce an efficient computer algorithm that is widely 
applicable to complex diffusion studies in markets, organisations, and societies.
One result of the simulations is a robust closed-form approximation to the diffusion’s trajectory in 
networks. Such an approximation allows marketing and PR managers to predict aggregate market 
outcomes such as the popularity of a commercial through surveys prior to the launch of a promotional 
campaign.
The simulations also indicate the impact of the network’s structure on the diffusion. To measure the 
network effects on the propagation of information, we run regression analyses with the communication 
intensity and the different network features as explanatory variables. These network features are the 
degree distribution, the transitivity (clustering), degree correlation, and the average path length. The 
regressions show, above all, that network effects are conditional on the intensity of mass 
communication: the less intensive mass communication, the more important become network effects. 
For mass communication typical in marketing and PR, the network structure can have a strong impact 
on the diffusion process. The regressions quantify the respective contribution of each network feature 
on the diffusion process over time. Our findings confirm and partly reconcile contradictionary results 
of comparable studies in epidemics and sociology. Finally, our analysis allows us to prioritise different 
network effects. This can be useful in various situations, for example, when estimating a diffusion 
process with incomplete network data.
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Chapter 1

Introduction

Diffusion models play a prominent role in marketing and mass communication. For example, they 

serve to forecast sales, to determine the optimal number and use of samples, and to estimate pirate 

sales and license infringements (Mahajan, et al. [104]). They also provide the theoretical framework 

through which campaigns, commercials, and news can be evaluated (Myers [122]).

Diffusion models usually rely on the observation that information such as news, concepts, and 

innovations propagate through interpersonal contacts and communication. A standard assumption of 

diffusion models is that people interact randomly with each other (see, e.g., Bass [13] and Mahajan 

and Peterson [105]). This premise, however, omits social, technological, and geographical structures 

that might constrain people’s interactions. Such structures -often modelled as “social networks”-  can 

have a profound impact on the diffusion of information in a population (Rogers [143]). For example, 

Valente [164] finds empirical evidence that the structure of social ties is an important factor for the 

adoption time of innovations such as new drugs or farming practices. Bell and Song [16] observe that 

people’s decision to adopt a new internet service is influenced by interactions with other people who 

live in the same postal code area. Yang and Allenby [175] present empirical data suggesting that a 

person’s choice of car is affected by the car brands chosen by his local and social neighbours (defined 

by the post code, respectively, the age group, household income, ethnic affiliation and education). 

Huberman and Adamic [82] investigate the diffusion of email attachments on university servers and 

show that the community structure among students strongly influences the propagation of online 

messages. Given the importance of interpersonal interactions in the diffusion of products and news 

(Golder and Tellis [71], Voss [168]), it seems desirable to integrate network effects into diffusion 

models used in marketing and mass communication (Iacobucci and Hopkins [84]).

While network-based diffusion models are still rare in marketing (exceptions are, for example, 

Goldenberg, et al. [67] and Goldenberg, et al. [68]), they have gained considerable currency in several 

other fields. The main goal of these models is normative results about diffusion flows in networks. For 

example, Yamaguchi [174] shows that the information flow in networks depends on the distribution of 

degrees (links per node) in the network. Pastor-Satorras and Vespignani [136] and Boguna and Pastor- 

Satorras [24] discover that a standard result of epidemiology, the existence of a threshold level for 

epidemic outbreaks, does not hold if the epidemic takes place along certain network structures. 

Newman [127] finds that clustering, that is, the prevalence of triangle relationships, affects the number 

of infections in an epidemic and lowers the epidemic threshold in networks. Valente [165] shows in
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simulations that people’s adoption behaviour is considerably different in random and structured social 

networks. These normative results are further proof that network structure significantly influences the 

diffusion process.

However, most of these network-based diffusion models are relatively difficult to apply in the 

context of marketing and mass communication. These difficulties are as follows:

a) Network-based diffusion models typically describe the stratification of the population using 

vectors or matrices. This usually makes the models too complex to have closed-form solutions so that 

they are mostly analysed through hazard-rate approaches and numeric simulations. Most marketing 

practitioners, in contrast, might prefer analytic formulae and rules of thumb.

b) Because of their matrix structure, some network-based diffusion models require substantial 

computing power to simulate the diffusion process in large populations. Therefore, only small 

networks are usually considered. For example, the network size in Yamaguchi [174] and Buskens and 

Yamaguchi [32] is N  = 7 and N  < 100 in Valente [165]. These networks are too small to represent 

real-life populations.

c) Especially in sociology and social psychology, network-based diffusion models specify 

several types of network links, for example, directed links, links of different strength, etc. These 

specifications are almost impossible to determine in a marketing survey.

d) The theoretical debate about which particular network measures affect the diffusion of 

information is far from settled. Different strands of science have developed their own repertoire of 

network measures. For example, measure like structural equivalence, betweeness, closeness, “number 

o f bridges” that are popular in sociology are in juxtaposition to measures like degree distribution, 

degree correlation, clustering, and average path length in epidemics and physics. Some concepts 

more or less overlap, but it is still open which set of concepts applies best to diffusion analysis.

e) The effects of an information source outside the population, for example, a marketing 

campaign, are rarely incorporated in the model.

f) Many existing network-based diffusion models do not permit the generation of a diffusion 

trajectory. These models rather present insights on the final outbreak size of an epidemic or the mean 

arrival time of information. Marketing professionals and PR experts, however, are interested in the 

diffusion process over time.

In summary, several empirical and simulation studies suggest that network effects should be 

considered in marketing diffusion models. Yet, only a few network-based diffusion models have been 

proposed in marketing, and a look at existing models shows us why: it has been unclear which features 

of social networks are relevant for diffusion processes in marketing and PR and it has been difficult to 

construct a concise, yet sufficiently accurate, network-based diffusion model for marketing purposes. 

The objective of this thesis is thus to investigate how the structure of social networks affects diffusion 

processes in the marketing context and accordingly to design a network-based diffusion model for 

marketing and PR.
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1.1 Research questions

If empirical data on diffusion processes and the underlying network structure was readily available, we 

could apply a classical research plan to achieve the objective of the thesis. We could describe and 

measure the structure of the networks, regress the outcome of the diffusion process (for example, the 

spread of a certain innovation at a given time) over the network’s characteristics, and finally attempt to 

include the most influential network features in a diffusion model (see Valente [164] as an example of 

this strategy). This approach might work out in the future when empirical data becomes available in 

sufficient quantities. Up to now, however, this is not the case. Only a small number of empirical 

studies has been completed where data on the diffusion as well as on the underlying network was 

recorded (the study in Valente [164], for example, is based on just three different diffusion processes). 

In fact, we can usually observe only certain parts of the diffusion process and the corresponding social 

network. Nevertheless, what is observable on social networks and diffusion processes should be used 

to improve our understanding and predictions of market outcomes.

The thesis thus rests on a research plan that is slightly different to the strategy outlined above. 

Instead of relying entirely on real-world observations, we use a mix of empirical and simulated data to 

develop a network-based diffusion model for practitioners. The simulated data comes into play in two 

ways. On the one hand, we simulate social networks (in addition to those we observe) so that we have 

a comprehensive collection of networks at hand for our diffusion studies. Put differently, we 

complement the empirical data on social networks with simulated network data. On the other hand, we 

simulate diffusion processes on the previously created collection of networks in order to obtain a wide 

sample of diffusion processes. Then we go on as outlined in the classical approach above by running 

regression analyses with network features as explanatory variables and by defining a diffusion model 

that includes the most important aspects of the network’s structure.

Certainly, this approach is debatable on epistemic grounds. For example, it can be argued that the 

simulated data might have little to do with the real world, or that modelling unobservable phenomena 

could be futile from a scientific (and practical) point of view as we cannot test (and calibrate) the 

models with real-world data. These arguments can be countered in several ways, for example, by 

pointing out that the simulated data can help us to shape our thinking about complex phenomena and 

thus support finding the right model parameters. Furthermore, it can be argued that empirical data 

might not be sufficient to discover the actual reasons of a phenomenon (that is, the available sample is 

too small), so that a combination of empirical and simulated data might offer a more comprehensive 

view on reality. What also speak for partly replacing empirical data with simulated data are the many 

areas in sciences and technology where this route has been successfully taken for a long time. For 

instance, laboratory experiments in natural sciences, by and large, generate data of simulated realities 

that might be unobservable otherwise. Taken together, it seems to be fruitful to jointly use empirical 

and simulated data for our endeavour as long as the research’s results are ultimately put to a test in the 

real world. We thus follow a three-tier research program in this thesis (see FIG. 1.1).
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What is the structure of 
social networks and how 
can they be constructed?

What are the effects of 
network features on 

the diffusion process?

How can the diffusion o f 
information on networks 

be simulated?

How should practitioners consider the structure o f social 
networks when predicting aggregate market outcomes?

FIG. 1.1: Research questions

First we need to empirically describe social networks. Such descriptions exist, for instance, in 

anthropology, sociology, social psychology, geography and natural sciences. It is thus necessary to 

translate these multidisciplinary results into a common terminology o f social networks and detect 

typical network patterns across a wide range of samples. This includes an analysis of the evolution of 

social networks as network features might change over time.

Empirical data on temporal changes in inter-personal networks is relatively scarce as it is often 

impractical, if not impossible to observe such developments for an entire network. This can be 

expected to change as more and more interactions between people are documented electronically (on 

the Internet, on mobile phone accounts and so on), yet we did not have such data for this study. 

Nevertheless, in order to get an idea, how network feature might develop over time we use a well- 

known concept from sociology called “structural balance” to model the evolution of social networks. 

This model is used only to generate hypotheses on the evolution of social networks and is not applied 

later for simulating diffusion processes.

All the empirical analyses inform us which features determine social networks. The question is 

then how to construct a rich sample of social networks containing all these traits. The answer to this is 

far from resolved in the literature. Although there is a plethora of construction methods for networks 

(see for example, Newman [128]), it has been difficult to reproduce accurately all observed features of 

social networks in one model. Therefore, one important task in this thesis is to show how we can 

combine different construction methods in order to have a realistic sample of networks for our 

diffusion study.

The second essential research issue of the thesis is to create a simulation model of diffusion 

processes on networks. This has been a standard task for small networks with a high level of detail or 

for large networks with a low level of detail. Simulating diffusions on large, yet detailed, networks, 

however, can be technically demanding. This is further complicated if the diffusion process is not only 

driven through interpersonal interactions, but also through marketing and PR activities outside the 

network. The thesis presents such a comprehensive simulation model which -thanks to its efficient
 i:— ----- 1— i---------------«■;-------------------



a research methodology that derives individual network effects. Moreover, as these effects can change 

at different stages of the diffusion process, we have to measure them repeatedly during the simulation. 

In order to achieve this, we set up a regression model whose independent variables are the individual 

network characteristics. Then we define milestones in the propagation process and re-run the same 

regression model at each milestone. The outputs of the regression model allow us to quantify and 

prioritize the network effects for different phases of the diffusion process.

The three basic research questions feed into the general goal of this thesis, that is, clarifying how a 

marketing or PR manager should take into account the structure of social networks when forecasting 

aggregate market outcomes. As such, the practitioner will find suggestions for empirical surveys as 

well as approaches to estimate the diffusion over time. The thesis provides an understanding of how 

social networks contribute to diffusion processes and how one can improve market predictions through 

knowledge on the market’s social network structure. For example, the research helps to predict better 

the success of campaigns that are strongly driven by recommendations (for example, drugs, movies, 

educational programs) or that do not address a target group directly (for example, illiterate people, 

children, addicts). Moreover, the proposed methodology allows us to quantify the spread of words, or 

even concepts, in a structured population. This might be of interest for trend spotters in marketing, 

linguists, social psychologists, and intelligence agencies.

1.2 Overview

The structure of the thesis is summarized in FIG. 1.2. Chapter 2 presents existing methods of 

incorporating social networks in diffusion models in marketing. For each approach, we describe one or 

two examples and compare them to other models through the hazard rate function. This taxonomy 

shows that none of the presented approaches reflects the structure of social networks or the network- 

based diffusion process in an exact and efficient way.

Chapter 3 first introduces a terminology that is based on graph theory and helps to describe 

consistently empirical network data across different areas of science. We then classify social networks 

and identify the type that is most relevant for marketing purposes. The chapter concludes with a 

profile of each type of social network and a summary of the characteristics of social networks.

Chapter 4 presents different construction methods through which social networks can be 

modelled. Each of these construction methods produces networks whose graph-theoretical structure 

can be closely approximated. We show how to derive these approximations and clarify to what extent 

the presented construction method reproduces social networks. This in turn guides us when we 

combine the different methods to compile a set of realistic networks.

Chapter 5 is also about modelling social networks, but is a deviation from the main research plan. 

Here we introduce an evolutionary model that sheds more light on the dynamics of social networks 

and produces hypotheses for empirical tests. Although the model is not required for the main research 

plan, it provides interesting intuition about potential changes in social networks.
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Chapter 6 outlines new methods how to simulate marketing-driven diffusion processes efficiently 

in heterogeneous populations and networks. The presented methods include an embedded Markov 

chain and an “event-queuing model” for both of which we describe in detail the simulation procedure 

and an example application. The embedded Markov chain model is applied in a case study of a 

company which has to decide between two different marketing campaigns. The event-queuing 

approach is used to describe the diffusion process of political news in an electorate o f a two-party 

system. The first application is a ready-to-use tool for the marketing practitioner to get a quick 

estimate o f a campaign’s outcome. The second application reveals several interesting insights about 

how the structure of social networks can affect the prevalence of opinions in society.

In chapter 7, we apply the event-queuing model to simulate diffusion processes on a large 

selection o f networks. We create these networks by applying the construction procedures detailed in 

chapter 4. The resulting sample of diffusion data is regressed over the network characteristics that 

were earmarked as typical for social networks in chapter 3. Based on our estimation of network 

effects, we check out aggregate market data o f historic diffusion processes to see for which 

innovations network effects are likely to have played an important role. The chapter ends with several 

suggestions on how marketing and PR professionals can use the insights gained in the simulation 

studies to improve their assessment of future campaigns.

Chapter 8 concludes with a summary of the main findings, potential applications for marketing 

and PR practitioners, and an outlook on future research.

Introduction (1)

Estimating network effects in diffusion processes (7)

Summary and Outlook (8)

Profile of social 
networks (3)

Network-based 
diffusion models

Existing models 
in marketing (2)

New modelling 
approaches(6)

Network
modelling

Structure of 
social 

networks (4)

Deviation: 
Evolution of 

social 
networks (5)

FIG. 1.2: Overview (number o f  chapter in parentheses)

14



Chapter 2

Reviewing the role of social networks in marketing 
diffusion models

The aim of this thesis is to analyse the impact of social networks on diffusion processes in markets and 

to integrate the results in a marketing diffusion model. To this end, we require two types of diffusion 

models. On the one hand, we have to set up a simulation model that mimics propagation processes on 

a wide range of different network structures. One the other hand, we need a framework that we can use 

to create a concise network-based diffusion model for the practitioner. Naturally, a starting point for 

both modelling tasks is to check out how existing diffusion models in marketing take into account 

social networks. This chapter is thus pivotal for the thesis as it introduces the terminology of diffusion 

models and presents common techniques for modelling diffusion processes in marketing.

The diffusion of new products, customs, and news takes time, and the cumulative number of 

adopters at each point of time very often follows an S-shaped (sigmoid) curve. The sociologist Gabriel
' T n r A r *  ^  m  ^  :  -  ^   ~ r  —  - - -    - - __ _______ 1 - - x ~  / ~ T  I .   1



Since Tarde’s publication in 1890, diffusion process and their underlying mechanism have been 

intensively investigated in marketing (see, for example, Mahajan and Peterson [105], Mahajan, et al. 

[100], Mahajan, et al. [103]). Marketing researchers tried first to track the empirical diffusion data 

with pre-specified distribution functions such as the cumulative normal, Gompertz and logistic 

distribution function (see FIG. 2.1), as all of these generate the desired sigmoid curve.

However, any unimodal distribution has an S-shape when cumulated so that it is usually 

impossible to decide which function best reflects the observed diffusion process (Mahajan and 

Peterson [105], p. 10). It thus has been necessary to generate diffusion models with explicit 

assumptions for analysing the propagation level of news and innovations in markets.

Marketing diffusion models indicate the proportion of adopters among a population of potential 

adopters as a mathematical function of time that has passed since the introduction of a new product, 

practice or insight. The goal of diffusion models is to describe the number of additional adopters in a 

given period of time. This allows us to forecast sales and future demand of innovations, and to find out 

what lies at the root of more refined diffusion phenomena such as temporary slow-downs of demand. 

Most marketing diffusion models were inspired by innovation theory (Rogers [143]), epidemiology 

(see Bartlett [12] and Daley and Gani [40]), sociology and economics. The diffusion models in these 

fields rely on at least five general mechanisms (Young [176]), that are transferable to marketing:

• Inertia: Consumers, upon receiving new information, postpone their actions out of inertia; 

they choose to wait before they can replace a product or change a practice. For example, a 

person might have to drive his car another year before he can afford to buy a new one.

• Contagion: Consumers take on an innovation after they are informed about it by people who 

have already adopted. This logic is probably the most common rationale behind marketing 

diffusion models (Mahajan, et al. [100]).

• Conformity: Consumers acquire a product or new practice only if a certain number of people 

in their social environment have done so. For instance, people might ask a number of their 

friends which computer software they use before they decide on their purchase.

• Social learning: Consumers adopt an innovation only if  a certain number of randomly 

observed adopters prove to them the benefits of the new offer. Here we might think, for 

example, of people who check out the number of guests in a new restaurant before they decide 

where to eat (Bikhchandani, et al. [23]).

• Moving equilibrium: Consumers’ readiness to adopt a new product increases as the total 

number of adopters in the market goes up. As with contagion, conformity and social learning, 

the adoption behaviour depends on the number of prior adopters. Here, however, the consumer 

learns about the market propagation through mass media (news on music top ten, box office 

sales for movies, etc).

These explanations can be classified in terms of the underlying intensity of inter-personal

communication. Inter-personal communication denotes the transmission of information between
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individual consumers in the market. The information encompasses all types of marketing and sales 

messages, news, corporate announcements, details about products and services of a company, and any 

other information that a company releases to its stakeholders. The types of transmissions are direct 

dialogues (word-of-mouth), off-line written correspondence (that is, text messages on mobile phones, 

fax, letters, etc.), online correspondence (email, referrals on websites, both often dubbed “word-of- 

mouse”), and visual contacts (for example, seeing people going to a restaurant).

Inter-personal communication is especially prominent when contagion, conformity, and social 

learning are at work in the diffusion process, while inertia and moving equilibrium almost entirely 

involve the adopter himself (that is, his preferences, constitution and so on) or non-personal 

communication. The relative importance of these explanations has not yet been determined for 

marketing diffusion processes. However, it has been estimated that up to 80% of all purchases are 

affected by inter-personal communication (Voss [168]).

The aim of this thesis is now to investigate the impact of one particular aspect of inter-personal 

communication on the diffusion process in markets: the structure o f  communication channels between 

people. As these communication channels run along the social ties between people, that is, the social 

network of consumers, we analyse the effect of social networks on the propagation of innovations and 

news. This chapter sets the stage for this endeavour as we check how existing marketing diffusion 

models incorporate social networks between consumers.

The chapter starts with an introduction of the basic marketing diffusion model, before we discuss 

three approaches that incorporate certain aspects of social networks into marketing diffusion models.

2.1 The basic diffusion model in marketing (Bass model)

Although many other diffusion models have been proposed before and after Frank Bass’ seminal paper 

was published in 1969, the “Bass model” can be regarded as the classical approach to diffusion 

modelling in marketing (Bass [13], Mahajan, et al. [100]). Thanks to its parsimonious mathematical 

form and good empirical track record, it is still one of the most popular diffusion models amongst 

researchers and marketing professionals. Originally conceived as a model of first purchase (that is, 

innovation diffusion or market penetration), the Bass model can be applied to information diffusion in 

general, that is, to the propagation of news, practices, and awareness in a population (see, for example, 

Bailey [6], Bartholomew [11], Valente [163]). According to this broad interpretation of the model, 

people adopt a piece of information -instead of a product- through inter-personal and non-personal 

communication. In this thesis the Bass model will serve us as a benchmark and reference point for our 

diffusion studies. The following paragraphs present the elements and assumptions of this model.

Consider a population of N  people who are potentially interested in a given innovation, news, or 

any other diffusible item. In marketing, such a set of people is usually referred to as target group, 

target market, or simply “the market”. People of the target group can be either non-adopters or 

adopters -  other types of people, for example, non-adopters who think about becoming an adopter, are
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not taken separately into account. We here apply the terminology of non-adopters vs. adopters for all 

types of diffusion process so that, for example, someone who becomes informed about news 

represents an “adopter” in the same way as someone who purchases a new product. Moreover, we 

assume that N  is constant over time.

The market of size N  thus contains S(t) non-adopters and I(t) adopters at time t so that we 

have S(t) + I(t) = N  throughout the diffusion process. People are initially non-adopters, but later 

become adopters either through marketing activities (external communication) or through inter

personal communication. The external and inter-personal communication are also referred to as 

external and internal “influence”, thus the Bass model is sometimes called a “mixed-influence” model 

(Mahajan and Peterson [105], Valente [165]).

The number of people who become adopters through external communication at time t (or during 

time step t) is aS(t) = a [ N - I ( t ) ] ,  where a  is the constant marketing transmission rate (or external 

transmission rate) per person. In marketing, the expression <xS(/)is also called the “reach” (of a 

campaign) for a given time unit (a week, a months, etc). The marketing transmission rate can express 

the effects of mass media, but also the influence of a company’s sales force and other sources of 

information that are external to the target group.

The number of people who become adopters through inter-personal communication at time t is 

proportional to the constant internal transmission rate f3Bass per couple, the number of non-adopters 

S(t), and the proportion of adopters i(t) = I ( t ) /N  in the population. This is based on the assumption 

that everybody in the market

• communicates with everybody else (= S(t)i(t)) and

• influences others with the same intensity throughout the diffusion process (= constant J3Bass). 

This then leads to the following differential equation for the number of new adopters d l (t)/dt  at time

with cr. and jdBass being measured in the same time unit. Through integration of formula (2.1), Bass 

obtained a closed-from solution for the distribution of the cumulative number of adopters l{t)

t (Bass [13])

d̂ }- = a [ N - l ( t ) \ + [  N  - 1 (/)] = [ a + P BJ ( t ) ] [ N -  I ( t ) \ ,
d t  _______ x _______   .a ._________

(2 .1)

External
communication

Inter-personal
communication

(2.2)
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where 7(0) is the number of adopters when the diffusion process begins. Another way to look at this 

formula, is to interpret i(t) = I(t)/ N  as the probability that someone has become an adopter by time 

t (Bass [13]). If 7(0) = 0, the previous formula can be transformed to

.(/) = l - e x p [ - ( a r  + (3Bass) t ]
1 + Pb̂_  exp [ -  (or + p Bass) / ] ’

(2.3)

indicating the development of the probability /'(/)over time. FIG. 2.2 depicts i(t) and its first 

derivative for the combinations {a,/3Bass) = {(0.06,0.9),(0.03,0.6),(0.01,0.5)}. The graphs of /(/) are 

very close to the logistic curve, while the graphs of di(t)/dt are unimodal, start at a value i(0) = a , 

and are the more skewed to the right the higher fiBass is.

di{t)
dt

0.3

0.6
'(/)

0.4
0.2

0.2

0.0

0.1 . . . .  a  = 0.06,fiB(lss = 0.9
  a  = 0 . 0 3 , =  0.6

  a = O.O],0Bass=O.S

0.0
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t
15 20

FIG. 2.2: The probability i(t) that a non-adopter has become an adopter by time t 
(inset) and the changes of this probability di(t)/dt over time for the three 
combinations (a, j3Bass) = {(0.06,0.9), (0.03,0.6), (0.01,0.5)}.

For the practitioner, the trajectory of di(t)/dt and d l(t)/d t is probably the most interesting aspect of 

the model as it corresponds to the discrete time notation of the sales curve (of the unit sales of first

time purchases, that is, change of market penetration). A marketing manager, for example, can equate 

the time unit dt with a year. Then equation (2.1) suggests that the number dl(t)/d t = Al, of next 

year’s new adopters (that is, the number of cars, iPods, etc sold next year) can be regressed on the 

cumulative number of adopters until today, 7,_, :

~ bo + + b2It_],

with 60,6,and b2 being estimates for a N ,f iBoss -  a  and ~PBasj N  (Bass [13]).

(2.4)
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Using the regression equation (2.4), Bass (and many others) tested the model with empirical 

market penetration data (for example, Bass [13], Bass, et al. [14], Lilien, et al. [96]; for a cautious 

note, see Van den Bulte and Lilien [166]).

2000

Room Air 
Conditioners1500

dl(t)
dt
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Bass
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Colour TV Clothes

dryer
6000

1000
4000

5002000
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FIG. 2.3 : Annual number of first-time purchases dl(t)/dt of room air conditioners, colour TV sets, and clothes 
dryers and the fitted Bass model with transmission rates
(<*»Pboss ) = {(0.093,0.3798), (0.°°49,06440),(°.°134,03317)}; the time t indicates the number of years after 
the innovation’s launch (sales data and fitted curves cited from Bass, et al. [14]).

The overall results of these studies show that the prediction power of the model is reasonably good 

and that the model is easy to calibrate, given its handy mathematical form. For example, Bass, et al. 

[14] were able to closely fit the model to cumulative number of first-time purchases o f room air 

conditioners, colour TV, and clothes dryer with transmission rates (see FIG. 2.3).

However, the good performance of the Bass model for certain products comes with some 

drawbacks. Foremost, there is the practical problem that the model requires sufficient data of the 

cumulative number of adopters for estimating its parameters. Such data is notably lacking prior to a 

product launch when predicting future sales is especially of interest. In addition, the Bass model rests 

on several limiting assumptions:

• Market size: The number of potential adopters stays constant during the diffusion process. 

Yet, the market might increase or decrease over time, for example, if the company that 

launches a product decides to change the target group.

* Non-adopters vs. adopters: According to the Bass model, people pass through two stages 

during the diffusion process. However, several sub-stages might be involved in the adoption 

process. For example, buying a product can be conceptualised as a sequence of six stages that 

can last for some seconds up to several months or years (Rogers [143], p. 162):

-  Ignorance: Being unaware of an offer

-  Awareness: Becoming aware about a product and the needs for which it is designed

-  Persuasion: Developing an attitude towards a product

-  Decision: Pursuing actions to adopt or reject a product

-  Application: Using and becoming experienced with a product

-  Confirmation: Continuing or discarding the application according to own experience, 

feedback from others, and new alternatives.



The Bass model only applies to the market penetration -  number of first purchases, not sales- 

of a product and off-on information (being aware of the news or not, adopting a new 

behaviour or not, etc).

• Constant transmission rates: The rates a  and tQ are assumed to be time-invariant during the 

entire propagation process. Any variation of marketing activities (for example, price changes; 

increasing or decreasing advertising frequencies) and inter-personal communication (for 

example, people’s increasing frequency of passing on news) are excluded from the model.

• No competition: The Bass model only deals with one product (or issue) and disregards 

replacements such as a competitor’s product or rivalling news.

• Omission of decision variables: People are assumed to react to external and inter-personal 

communication only. Although both sources of information can encompass many other factors 

such as the perceived risk of adopting the new product, the Bass model does not explicitly 

specify other variables that could affect people’s adoption behaviour.

• Homogeneous population: It is assumed in the Bass model that there are no differences 

between people in the market (apart from being either adopter or non-adopter). That can be an 

overly strong simplification, for example, when different groups of market participants yield 

different inter-personal communication between each other.

• Random mixing between people: According to the Bass model, everyone in the population is 

able to communicate with everyone else and does so in exactly the same frequency and 

intensity. Hence, the aforementioned diffusion mechanisms contagion, conformity, social 

learning, and moving equilibrium become largely interchangeable and can be jointly 

expressed by the rate j3 and the proportion of adopters i(t).

These assumptions are partly relaxed in extended versions of the Bass model and other marketing 

diffusion models of which some are presented in subsequent parts of this chapter.

When comparing these models to the Bass model, it is helpful to formulate the Bass model as a 

hazard rate model. To do so, let us define the hazard rate as the probability per time unit that an event 

(such as a person adopting a new product) happens in period (t, t + dt) under the condition that the 

event has not yet occurred (Taylor and Karlin [159], p. 29, Cox and Oakes [39]). Then the hazard rate 

function h(t) indicates the hazard rates over time and has the form

M0 = BmP r(r fa ( ,’< + * ) | r * , ) = ^ L  (2.5)
3/-»° dt 1 —F(t)

where T is the time when the event takes place, / (t) is the probability density function for the random 

variable t, and F(t) is the cumulative probability function of / ( / ) .  The expression 1 - F (0  

accordingly is the probability that the event has not yet occurred at t. In the context of the Bass model,
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we have F{t) = i(t) and / ( / )  = di(t)/dt (see (2.1)) so that we get the following hazard rate function 

(Bass [13])

WO
*(O = r J^  = a  + 0Bassi(O- (2-6)l - z ( 0

Replacing i(t) in equation (2.6) with the result in (2.3), we can state the hazard rate function of the 

Bass model in terms of a ,p ,  and t :

*«) = — »-----------------  (2.7)
1 + ̂ e x p  \_-(a +PBass)i\

This hazard rate function of the Bass model is easily transferred to other frameworks to which we turn 

in the next section. In addition, we can use hazard rate functions like this to simulate diffusion 

processes for which analytic solutions for i(t) are not available. Through this framework, we are not 

only able to fit diffusion models to market data, but also to experiment with complex assumption, such 

as a non-random social structure of inter-personal communication.

Finally, it is interesting to compare the hazard rate functions in formula (2.6) and (2.7). Both 

result in the same trajectory /(/) of the Bass model, however, the former refers to inter-personal

communication (that is, PBaJ(t)),  while the latter does not. Instead, the hazard rate function in (2.7) is 

independent of i(t) and includes the two parameters a  + fiBass and -^fS that can have any specification

and are not necessarily related to information transmission. The formulation in (2.7) thus can be seen 

as a hazard rate function of a diffusion process where people differ by their inertia to adopt something 

new. This has the interesting implication that one can derive the Bass model by simultaneously 

dropping the assumption of inter-personal communication and consumer homogeneity (Bemmaor 

[17]).

Summing up, we find that the lean mathematical formulation of the Bass model is based on a set 

of restrictive assumptions. In particular, people are either assumed to mingle with each other in a 

random and equal way so that their social network structure is not taken into account. Or alternatively, 

consumers are assumed to have different adoption times per se and do not affect each other in the 

diffusion process. Among other things, this carries the implicit assumption that the diffusion 

mechanisms inertia, contagion, conformity, social learning, and moving equilibrium largely overlap.

2.2 Approaches to specify social networks in marketing diffusion models

When we say that people in a population mix randomly with each other, we implicitly assume that the 

mixing is complete and homogeneous, regardless of people’s preferences, social standing, etc. In a 

network, this is equivalent to assuming that everyone maintains an undirected (= symmetric) link to 

everyone else in the network (see FIG. 2.4a). However, there are many differences between
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individuals’ number of acquaintances, weighting and reciprocity of contacts: links between individuals 

can be directed (= asymmetric), grouped, and o f different strength (see FIG. 2.4b).

FIG. 2.4 a) Random/complete/homogeneous mixing with undirected links.
FIG. 2.4 b) Heterogeneous mixing with directed links.

A heterogeneous mixing structure, of course, often results from the fact that some people are more 

influential than others. Take, for example, two types of mixing patterns that are commonly considered 

to have a high impact on the preferences and behaviour of their social environment: opinion leaders 

and weak ties.

Opinion leaders act as multipliers of a message or a behaviour as well as a role model for others 

(Lazarsfeld, et al. [95], Merton [112], Berelson, et al. [19], Coleman, et al. [36] and Marsh and Lee 

[109]). They have achieved their status thanks to the values they embody, the competence they have in 

a subject, and/or the large number of people they know (Katz [87]). In network terms, opinion leaders 

represent nodes that have much more links than the average node (see FIG. 2.5).

FIG. 2.5: A network with an opinion leader and a network with a weak tie connecting two 
groups that are otherwise separated.

A weak tie is a social contact between two people who have (hardly) any other acquaintance in 

common (Granovetter [72]). In the most extreme case, a weak tie connects two individuals who belong 

to otherwise totally separated groups (see FIG. 2.5). For example, weak ties might represent the small 

number o f social links between a group of opera enthusiasts and a band of football fans. According to 

a widely accepted, albeit hardly tested (Valente [164], p. 50), hypothesis by Granovetter [72], weak 

ties play a crucial part in carrying information between communities. In this view, weak ties affect the 

diffusion process in three different ways: they make different subgroups aware of new products, they 

lower the group pressure to conform, and they decrease the social support for traditional applications 

(Granovetter [72]).
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To incorporate such heterogeneity of social interaction into diffusion models, we can identify at 

least three different approaches in the marketing literature: heterogeneity factors, segmentation, and 

cellular automata.

2.2.1 Heterogeneity factors

The common way to introduce social structure into a marketing diffusion model is to vary the inter

personal transmission rate P  across the population and over time. Traditionally, authors of marketing 

diffusion models have done so by introducing a heterogeneity factor into the hazard rate function (see, 

for example, Mahajan, et al. [101] for an overview). Such a heterogeneity factor can be a rate of 

change multiplied by J3i(t) or a random number repeatedly drawn from a specified probability 

distribution. What results from the former approach is sometimes referred to as an aggregate level 

diffusion model because the model applies to the aggregate o f all adopters. The latter approach leads to 

a model that might be called an attribute-distribution diffusion model because, to a certain extent, it 

replicates the variety among people.

A typical aggregate level diffusion model with a heterogeneity factor is the so-called non-uniform 

influence (NUI-) model by Easingwood, et al. [49]. In this model the term J3i(t) of the Bass model is

replaced by j3i(t)S with the constant heterogeneity factor S  > 0. The resulting hazard rate function has 

the form

h(t) = a  + p F (t)s  = a  + /3i(t)s , (2.8)

which is identical with the Bass model for S  = 1 (see FIG. 2.6). The transmission rates a  and /? are 

defined as in the Bass model.
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FIG. 2.6: The distributions / ( / )  = di{t)/dt and F(t) = i(t) as well as the trajectory of the term fii(t)s~] for the 
NUI-model according to Easingwood, et al. [49] with (a, fi,S) ={(0.01,0.5,1),(0.01,0.2,0.6),(0.01,0.6,1.4)}.

If S  = 1, we obtain the Bass model. If 8 < 1, p d f f *_I steadily decreases and asymptotically approaches p. The 

peak in the distribution di(t)/dl occurs later than in the Bass case If 8 > I, Pi(t) steadily increases and 
converges to p  so that the peak in the distribution di(t)/dt is earlier than in the Bass model.

It is now interesting to check out the impact that the average adopter has on its neighbourhood 

according to the NUI-model. We obtain the average adopter’s social impact by dividing the factor 

Pi{t)S with the proportion of adopters in the population, resulting in pi(t)s /i(t) =Pi{t)s If <£<1,
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the term Pi(t)s 1 steadily decreases over time and converges to the value p.  Here the model mimics a 

situation where early adopters have a strong social impact. For example, this could imply a social 

structure where early adopters tend to be opinion leaders and have many connections to others. With

8  = 1, the term Pi(t)s~] is constant at P, and we have the standard Bass-case. If 8  > 1, there is a 

steady increase of the term j8i{t)s~l during the diffusion process, before levelling off at p. The 

interpretation for this is that early adopters have less impact on others than later adopters. As shown in 

FIG. 2.6, such a model allows us to generate a wide variety of diffusion trajectories. Especially, we 

can postpone the peak in the distribution / ( / )  = di(t)/dt by increasing S.

The NUI-model’s appeal is certainly its mathematical simplicity and flexibility when fitted to 

empirical data. However, it is a benchmark model that does not provide us with any insights on how 

social networks affect the diffusion process. Moreover, the NUI-model does not allow us to apply 

more complex variations of p , such as different transmission rates in the population at a given time. 

Other aggregate-level diffusion models might encompass more complex patterns of /?, yet they also 

do not incorporate different transmission rates between people. To do so, we can choose attribute- 

distribution diffusion models instead.

Attribute-distribution models consider the variation of one or a few consumer attributes across the 

entire population. If more than one consumer attribute is used, the model also indicates the correlation 

between them. Typical attributes are consumers’ degree of risk aversion (see, e.g., Chatteijee and 

Eliashberg [33]), consumers’ product utility (see, e.g., Lattin and Roberts [94]), and consumers’ inter

purchase time (see, e.g., Fader, et al. [55]). Most of these models are solved in simulations where for 

each time step a value is randomly drawn from the attribute’s distribution and compared to a 

threshold. If the drawn value exceeds the threshold, the number of adopters goes up by one. For such 

simulations, it is common practice to apply a modified Poisson process, the proportional hazard rate 

model (Cox [38]). In the proportional hazard rate model, the hazard rate hit) consists of three

elements, a baseline hazard rate h0(t) that usually follows a Poisson process, a factor Y(COV)  that 

describes how covariates COV (such as marketing measures) affect h0 (t) over time, and the 

heterogeneity factor <E> that describes how differences between individuals influences the hazard rate. 

(Roberts and Lattin [141], p.209):

M f|T fO) = V0-T(COK).<|>. (2.9)

For the heterogeneity factor O, it is common to draw a random value from a distribution that can be 

constant or varying during the diffusion process (Fader, et al. [55], Jain and Vilcassim [85]). In an 

attribute-distribution model, we can thus mimic the effects of the population’s social network by 

defining how the underlying distribution of the heterogeneity factor O depends on the proportion 

i(t) of  adopters in the population. For instance, we can define change points for certain thresholds of
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/(Oat which the underlying distribution changes from, say a lognormal distribution to a normal 

distribution with given parameters. Such changes would reflect a situation where early adopters are 

tied to different parts in the social network than late adopters. For simplicity, we can define a  and f  

as in the Bass model and have, for example, the following hazard rate function

h(t) = oc + /?$>(/(/)), (2.10)

where O(/(0) is a potentially time-varying distribution defined as a function of /(/). This type of 

model can replicate any network-based diffusion process provided, of course, that we know 

sufficiently well the distribution O(/(0)for any value of /(/). So as in the case of the aggregate level 

diffusion model, we can only model the diffusion process if we have already an idea how the network 

effects shape the diffusion. For an explorative simulation study of network effects in diffusion process, 

we need a different modelling technique.

2.2.2 Segmentation

Another option to model social structure in a diffusion model is to divide the population into segments 

and to specify the inter-personal communication within each segment and between each pair of 

segments. This type of diffusion model also runs under the name stratification model and has been a 

standard approach in epidemiological modelling for a long time (Bailey [5], Daley and Gani [40]). 

More recently, this approach has been proposed in sociology (for example, by Morris [121], p. 37) for 

describing the interaction between different groups. In marketing, the same modelling technique has 

been frequently applied, but rather for modelling the actual flow of people from one group to the other 

(for instance, the switching behaviour of consumers in oligopolies). The number of different inter

group flows can be large in marketing so that these models are usually called multi-flow models. In 

multi-flow models, an interaction between different consumer groups might be assumed, yet 

differences in the frequency of inter-personal communication and heterogeneities in the social 

structure are usually not considered (see, for example, Urban [162] for an early multi-flow model in 

marketing; Dodson and Muller [45], Mahajan, et al. [102], Tapiero [157]). A proper example of a 

stratification model in marketing was provided by Kalish, et al. [86] and Midgley, et al. [113].

Kalish, et al. [86] investigate different strategies for an international product launch. To this end they 

divide the number of potential consumers into a domestic and a foreign market. As in the Bass model, 

people are affected by constant external and inter-personal transmission rates and are either adopters 

or non-adopters. Here, in contrast, the number of new adopters in each market depends on the local 

marketing activities and the cumulative number of adopters in both markets. Although the authors 

only speak of two markets, one can easily add more markets to the model and interpret each market as 

a consumer segment. For example, we can divide the population into different groups j  = 1,2,3,..., for 

example, by spatial, cultural, socio-economic, behavioural criteria. Then one respectively determines

26



the internal transmission rate for a member of group j  to pass on information to a member of 

group j '.It is not specified which individual members of the respective groups interact with each 

other. Thus for a transmission from a sender in group j  to a recipient in group j \any  sender and 

receiver in the respective group can randomly be chosen. We exclude competition effects to keep 

things simple (although they are included in the paper by Kalish, et al. [86]). In that way we obtain a 

hazard rate function that can be perceived as a combination of several Bass models:

where 7y,(/)are the number of non-adopter and adopters in group j  and j '  at time /, and is the 

external transmission rate for group j .  Note that does not have to be symmetric and can

we divide it by the number of people in group j .  O f course, the model by Kalish, et al. [86] and the 

extension we added here include only the differences of inter-personal communication between groups 

but not the intricate structure o f a social network. A step towards this goal was taken by Midgley, et al.

(2 . 11)

potentially indicate directed links. The transmission rate /? - becomes comparable to the Bass model if



inter-personal communication. The inter-personal communication here follows a random pattern 

within each company and a structured pattern along the inter-company links outside the company. The 

authors then calculate the hazard rate function for the additional number of units sold (that is, the 

number of new adopters in the industry) through

* (0  =  5 > y ( ' )  = £  * y , + £ / V y / / ( 0  , (2.12)
j  j  \  a

with c(jt being the external transmission rate for company j  at time t, P g  being the constant internal 

transmission rate between company j  and / ,  and eg  indicating if there is a link {eg  = 1) or not 

{eg = 0). Of course, we have eg  = 1 in case of intra-company communication (that is, if  j  = j') . 

Again, the internal transmission rates f ig  can vary, might be asymmetric, and become similar to 

Pboss If we divide it by the size of group j .  Midgley, et al. [113] find that asymmetric communication 

links {fig  *  Pj>j) lead to a relative slower take-off, but earlier completion of the diffusion process.

The reverse results occur if the internal transmission rates within each segment are higher than the 

inter-segmental links. Moreover, their simulations show that the diffusion becomes faster the more 

bridges they introduce. As with the Bass model, an increase in the external transmission rates results in 

a faster diffusion process. Finally, they show that one can speed up the diffusion process if the 

companies linking up with other segments have a high external transmission rate a jt .

This modelling approach is capable of incorporating a wide range of social structures into a marketing 

diffusion model. The study comprises the concept of weak ties (inter-segment links) and opinion 

leaders (through a high a jt), and delivers clear evidence that the social network can strongly affect

the diffusion process in a population. However, the applied industry structure is only a special case of 

a social network that does not necessarily apply to other populations, especially consumer markets. 

Particularly, it would be of interest to simulate the actual network between people, not only the 

structure between organizations. Last but not least, the simulation technique does not necessarily 

iterate one adoption after the other but can yield several adoptions per time step, leading to 

inaccuracies in the simulation. In chapter 6, we will introduce a comparable segmentation model that 

tackles these issues.

2.2.3 Cellular automata

In cellular automata models each customer is assigned to a field on a “chessboard” or any other 

network structure, replicating differences in each consumer’s social environment (see, e.g., 

Goldenberg, et al. [69], Goldenberg, et al. [67] for applications of cellular automata in marketing). An 

individual consumer’s probability to adopt a product goes up as the number of adopters on 

neighbouring fields increases. The adoption can be bound to a threshold number of adopting
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neighbours. Furthermore, each field on the “chessboard” can be randomly or systematically connected 

to other fields so that, for example, the impact of neighbouring and distant fields can differ.

Goldenberg, et al. [67] use a cellular automata diffusion model to simulate the diffusion process in 

discrete time on a chessboard grid in which each consumer is placed on the comer of a square. 

Additionally random links are established between all consumers so that each consumer not only 

maintains links with his immediate four neighbours but also with some consumers elsewhere. A 

person may adopt a product by the external transmission rate a. Alternatively, he may become an 

adopter either through internal-personal communication at rate /?, that relates to each of the links 

between him and the four neighbours; or through a second internal-personal communication rate /?2 

that is attached to each of the randomly introduced links. Inter-personal communication takes place 

from the adopters to the non-adopters. The authors then calculate the hazard rate probability h.(t) that

a consumer j  adopts the product at time t as follows

= (2.13)

where I c!ose{t) and l f r(t) are the number of adopters in the immediate neighbourhood and randomly 

linked environment, of customer j  at time t. The hazard rate h(t) is the sum across all individual 

hazard rates /*.(f).The internal-personal communication at rates /?, and /?2 are of the same order of

magnitude as PBass in the Bass model.

Simulations with the model by Goldenberg, et al. [67] indicate that the random links introduced to 

the “chessboard” have a significant effect on the diffusion process. Furthermore, the simulations 

highlight that the effect of external communication decreases relative to inter-personal communication 

over time. The results also reveal that the impact of the random links decreases in comparison to the 

other links if rate a  of external communication is increased.

This example shows that cellular automata models are able to incorporate any network structure into a 

marketing diffusion model. The formulation of the model is straightforward and can be efficiently 

computed. Yet, in the described model and other applications of cellular automata, one often finds that 

the network structure does not closely mirror networks in the real world. Furthermore, the cited 

models are commonly in discrete time. Last, but not least, cellular automata models usually do not 

treat the dyadic interactions between people in a strictly sequential way. For example, a group of 

people might be modelled to adopt a product in one time step so that effects o f the social network 

during the time step are neglected. These drawbacks, however, can be removed, as will be shown in 

chapter 6.
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2.3 Model summary

Taken together, heterogeneity factors, segmentation models, and cellular automata are all capable of 

describing information diffusion in a stratified or networked population to some degree. Using 

heterogeneity factors, one can, for example, define a distribution of inter-communication times that 

equate the distribution of in the network. In segmentation models, one defines groups and the

inter- and intra-group transmission rates to simulate diffusion process in a social structure. A cellular 

automata model can be based on a matrix of links (instead of a grid), where each link symbolises a 

transmission rate from one person to another so that the link matrix represents the network of

social ties. However, each approach has some drawbacks if  we wish to simulate the diffusion exactly 

and efficiently. By exact simulations, we mean that the diffusion trajectory is given in real-time units, 

that the distribution of the diffusion trajectory is correctly described, and that the network structure is 

sufficiently well replicated. By efficient simulations, we mean that the simulation is sufficiently fast 

even while accommodating large and heterogeneous populations.

Models with heterogeneity factors are fast to simulate and can be a correct representation of the 

diffusion over time if we know the distribution of inter-transmission times across the population. In 

marketing, these distributions are usually gamma (or simply exponential) and might change over time 

at defined switch points (see, e.g., Gupta [75]). But the problem is that inter-transmission times in 

heterogeneous networks can be expected to be very different from the standard distributions. 

Furthermore, the distributions of inter-transmission times change steadily, potentially after each 

information transmission in the population, and the changes can be different for each individual. Of 

course, for few strata and relatively homogeneous populations, that might be an acceptable error. If we 

are interested in network-based diffusion processes, however, these models are overly inaccurate.

Segmentation diffusion models in marketing are usually simulated through differential equations 

and standard Markov processes (see, e.g., Roberts and Lattin [141] for an overview). These simulation 

types are fast and exact enough, as long as the described population is hardly stratified. However, if 

one intends to simulate many components or detailed networks, the required computer capacities 

quickly become prohibitively high. Even more important than that, the simulations usually do not 

correctly reproduce the actual sequence of inter-transmission times as more than one transmission can 

take place in one simulation step. The intricate effects of network structure are thus not modelled 

correctly.

Cellular automata can comprise all stratifications and network details of people’s interactions. 

That potential, however, has not been fully exploited in marketing publications where the applied 

networks (for example, in the models by Goldenberg, et al. [67]) usually do not replicate the structure 

of social networks. More realistic networks in cellular automata-based diffusion models have been 

proposed in the physics literature (see, for example, Stauffer [152], Sznajd-Weron [156]). These 

models, however, lack a clear application to marketing. Moreover, the cited publications on cellular

30



automata neither reproduce the diffusion trajectory in actual time units nor the actual distribution of 

inter-communication times in the population. Last, but not least, cellular automata usually specify a 

threshold for individuals to change behaviour, opinions, etc. depending on the state of the 

neighbouring persons. Such thresholds are very difficult to calibrate with real-life data and might not 

even exist in many diffusion processes.

Thus none of the discussed marketing diffusion models replicate the heterogeneity of inter

personal communication in an exact and efficient way. Simulation models with heterogeneity factors 

or segmentation are only fast and accurate for relatively homogeneous populations. Simulations with 

the presented cellular automata are fast and accommodate all types of stratification but do not 

represent the individual dyadic transmissions and the entire diffusion process in actual time units. 

What is thus needed to better simulate network-based diffusion models diffusion process is to further 

develop these three approaches. For the segmentation approach, we need to introduce a structure of 

segments that tracks the actual network more closely. The cellular automata approach requires a 

realistic social network into which the “cells” are embedded, as well as a formulation of the diffusion 

process in continuous time. Finally, models with heterogeneity factors can be improved if the 

heterogeneity factors closely reproduce the network-induced variety o f inter-personal communication. 

This in turn can be achieved through explorative simulations with the other two simulation 

approaches.

This chapter gave an overview of diffusion models in marketing and the approaches used to integrate 

aspects of social networks in these models. The approaches can be classified into analytic and 

simulation models. The analytic models include social networks in a very normative way, usually with 

oversimplifying assumptions. Nevertheless models with this approach, for example, the Bass model, 

have a strong appeal for practitioners due to their parsimonious form. We thus choose the Bass model 

as a framework for the subsequent research in this thesis and also use it as a benchmark for designing 

a concise network-based diffusion model in chapter 7.

The presented simulation models allow us partly to include the structure of social networks in the 

diffusion models. In the marketing literature these models are applied for practical decision making in 

marketing, but more often serve to clarify the role of heterogeneous structures between consumers. 

Among the presented simulation models, only the cellular automata models are able to include a 

detailed network structure, albeit simulations on these models usually do not reproduce the diffusion 

process in an efficient and exact way. The segmentation diffusion models describe social networks 

only as segments, but can be very practical. We will thus take segmentation diffusion models and 

cellular automata as reference points when we develop simulation models for network-based 

propagation processes in chapter 6. Before that, however, we need to have a closer look at the 

structure of social networks (chapter 3) in order to construct a realistic set of social networks (chapter

4).
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Chapter 3

Describing social networks

Diffusion processes in markets, as discussed in the previous chapter, are driven by mass 

communication and inter-personal communication. Inter-personal communication runs along the 

social ties between friends, relatives, colleagues, acquaintances and so on. The social ties between 

people constitute social networks which we want to model in order to investigate their impact on the 

diffusion process. For modelling social networks, we need to address how to describe and specify 

them, which is discussed in this chapter. First we give an overview of network measures and 

terminology, mostly originating from sociology and graph theory (section 3.1), before we characterise 

social networks (section 3.2).

3.1 Network terminology

Different fields of science have developed their own characterisation and measures of social networks 

(Newman [128]). A common terminology for these approaches is provided by graph theory, starting 

with the assumption that a network consists of a set of N  nodes (’’vertices” or persons) and L links 

(“edges”, ties, or relationships) between them. Links can have different qualities, expressing, for 

example, the type of relationship between two individual nodes j  and f .  If the link from j  to f  is 

the same as from j '  to j ,  the relationship is symmetric (“undirected”), or unsymmetrical 

(hierarchical) otherwise. All types of links can be represented in an adjacency matrix A (also called 

sociogram) of size N x N  so that an element Ag  of the matrix shows the quality of the link. In the

simplest version, an adjacency matrix only indicates if a link between nodes j  and j '  exists 

(Ajj> = 1) or not (Ajf = 0).

The structure of the network, that is, the structure of the adjacency matrix, can be analysed and 

measured in many ways (see, e.g., Wassermann and Faust [169], Newman [128], and Freeman [57]). 

In the following we present those network measures that have gained popularity in the literature and 

have the potential to define the characteristics of social networks in a comprehensive way: the degree 

distribution, transitivity, the average path length plus related measures, as well as degree correlation 

and other mixing patterns.
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3.1.1 Degree distribution

Let us define p(k) as the proportion of nodes with k links in the network. It is the probability that a 

given vertex in a network has k  neighbours (that is, has the “degree” k). Then p(k) for a given 

network is the degree distribution, which, for convenience, many authors refer to as the probability 

function p(k). The moments o f the degree distribution, (k n), reflect its shape and are given by

(*") = £ * ■ > (* ) , (2.1)
k

as Newman, et al. [131] show through the generating functions of p{k). Accordingly, the average 

degree (also called average connectivity), Ik}  is the average number of links per node

(k) = Y Jkp(k), (3.2)
k

while the degree distribution’s variance o f  has the form

(  Va] = ( i 2) - ( i )  = 2 > 2P (* )-  5 > ( * )  . (3.3)
* \  k J

Similar to (k ) and crk are the concepts of network density D and normalized degree variance V. 

The network density is the proportion of the actual number of links L to the potentially maximum 

number \  N (N  -1 ) of links. As there are L = j N ( k ) links in the network, D can be calculated as

D = -— 7------r = (3-4)
\ N ( N - 1) N - 1

The normalized degree variance V

(3.5)
<*> «

is sometimes used instead of cr2k to make the degree variations comparable across networks with 

different average connectivities. Yamaguchi [174], for example, defines the coefficient o f  variation as 

yfv  when he analyses the degree distribution of social networks.

The variance a] and higher moments of p(k)  are of particular interest as the degree distribution of 

social networks can be heavily skewed, often yielding the shape of a lognormal or gamma distribution 

with a fat right tail such as the one in FIG. 3.1.

FIG. 3.1 depicts the probability density distribution p(k) determined by McCarthy, et al. [110] 

who investigated people’s personal network size & in 2 independently conducted US surveys. The two 

studies were analysed with the so-called scale-up method and the summation method and yield very 

similar results across surveys and methods. The results reveal that people greatly vary in the number
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of personal acquaintances. Killworth, et al. [91] fit the pooled results to a gamma distribution (solid 

line in FIG. 5) with a modal value of 43, a mean value (&) = 282, and a standard deviation crk = 259.

2 0  r 

15

P(k) 10 
[%]

5 

0
0

k (binned by 60s)

Studies like this show that the tail of the degree distribution can be difficult to determine accurately. 

One can alleviate that problem by recording the data in large ranges of k (for example, o f bin size 60 

as in FIG. 3.1) or by using exponentially increasing bin sizes k (for example, 1-2, 3-6, 7-14, etc.) if the 

histogram has a logarithmic scale k. The drawback o f this procedure, o f course, is a loss o f 

information as nodes of different degrees fall into the same bin. Alternatively, one can calculate the

• Survey 1 (Scale-up method) 
Survey 1 (Summation method) 
Survey 2 (Scale-up method) 
Survey 2 (Summation method)

FIG. 3.1: The probability
density distribution p{k) of
people’s personal network size 
k levied in 2 independent 
surveys conducted in the US. 
Two different methods (scale- 
up and summation) were 
applied to each survey
resulting in very similar
distributions across surveys
and methods. One can fit a 
gamma distribution (solid line) 
to the pooled data, indicating a 
modal value of 43, a mean 
value (A:) = 282, and a standard 
deviation crk = 259 (Killworth, 
et al. [91]).
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FIG. 3.2: The cumulative distribution function P(k) of the number k of co-actors in a 
movie actor’s career (graph and data taken from Amaral, et al. [4]). The graph in a) has a 
semi-logarithmic scale and yields an exponential cut-off of P(k) for large k. On the right, 
the graph b) has a logarithmic scale and reveals that P(k) follows a Power-law for an 
interval of k that is approximately between 30 and 1000.

However, the right tail of the degree distribution tends to be less important for subsets of the 

acquaintance network such as colleagues at work, family members, sport mates, etc. For these subsets, 

the degree distribution’s variance can be expected to be relatively small, while the lower and upper 

bound of the degree distribution are of special interest. The lower bound is the proportion of “hermits” 

(nodes without any links), /?(0), while the upper bound is the proportion of nodes with the maximum

degree kmax in the network. Instead of the maximum degree, one can also determine a cut-off point 

k = k  of the degree distribution, at which the proportion of p(k)  sharply falls off.

All these measures of the degree distribution can also be applied exclusively to the distribution of in

degrees and out-degrees, that is, to the number o f inbound and outbound links o f a node. That allows 

investigating further network properties, for example, the covariance between the in-degrees and out- 

degrees, which can be interpreted as a measure of trust in the network (Buskens [31], p. 39).

3.1.2 Transitivity

We often find that a friend’s friend is also a friend of ours, thus forming a social triangle. In fact, these 

triangles are very typical for social networks and are described by the concept of transitivity, also 

called clustering. To define transitivity, think o f three nodes j  = {1,2,3} with a social tie between 1 and

2 as well as 2 and 3. Given these ties, transitivity denotes the probability that there is also a tie 

between 1 and 3. Mathematically, this is often described by the clustering coefficient C
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with E being the number of triangles and A representing the number of connected triples in the 

network (see Newman [128]). A connected triple is a vertex that is linked to an unordered pair of 

vertices. A triangle thus contains three connected triples so that we have to multiply the number of 

triangles with three to normalise C and bring it into the range 0 < C < 1. Accordingly, C indicates the 

proportion of triples that form a complete triangle in a network. For example, the network in FIG. 3.3 

has one triangle and five connected triples so that C = = }.

FIG. 3.3: Undirected network of four nodes with one triangle and five connected 
triples. The clustering coefficients are C = ^ |^ = |  and C/ = -|(0 + l + l + ̂ ) = | .

For a slightly different definition of the clustering coefficient (Newman [128]), one first calculates the 

local clustering Cj around node j  according to

Cj ~~K<3'8)
j

where Sy is the number of triangles running through node j ,  and Ay is the number of connected 

triples in which node j  is “in the middle”. Nodes with less than two links have no local clustering 

{Cj =0). Then the clustering coefficient C' is the average local clustering across all nodes:



into networks. For our purpose, however, such multi-node-loops seem to be less relevant compared to 

other network measures such as traditional transitivity and the average path length.

3.1.3 Average path length and related measures

The nature of the average path length in social networks surfaces in common phrases such as “it’s a 

small-world” and “six handshakes to the President”. The connotation is that it takes only few 

intermediaries to connect any two people in a large population. Before defining this feature, we need 

to introduce the concept of a geodesic <7-, that is, the shortest path (= smallest number of

intermediaries necessary) to connect a randomly chosen pair of vertices j  and f  in a network. The 

average path length t  is then defined as the average geodesic over all pairs of network nodes:

y  v
1=  7 . (3.10)

N ( N - l )

This definition leaves us with the problem of how to deal with unconnected pairs of nodes. One option 

is to exclude these pairs and the respective geodesic from the calculation of L Another possibility is to 

define the average path length as harmonic mean of the geodesic distance so that the infinite geodesic 

between unconnected nodes counts as zero (Newman [128]):

r 1 = /  v -  (3 .ii)
N ( N - l )

The first option, however, is much more widespread in the literature so that we will stick to (3.10) 

throughout the thesis when calculating I. We also note that the definitions of d g  and I given here are

applicable to undirected as well as directed networks. In an undirected network the geodesic path 

d jf ~ d f j , however, this is not necessarily true in a directed network.

In many networks one finds that the number of vertices that can be reached for a given path length 

grows exponentially. Thus some authors assign a small-world effect to a network if its average path 

length £ scales with log N  or less.

Several other measures are closely related to the average path length in a network, in particular, the 

diameter and centrality closeness.

The diameter is the maximum path length between a pair of nodes in a network or in one of the 

network’s components. If there is more than one component in a network, it is also possible to 

calculate the average diameter across several network components.

The centrality closeness can be derived for individual nodes and the entire network (Freeman [57])
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N - 1VCC = = —— (3.12)
L djf
f

and is the inverse ratio of average geodesic between node j  and any other node in the network. For 

calculating the network centrality closeness NCC, one uses the formula (Freeman [57])

NCC = N  ~ 3N + 2 y  (VCC* -  VCC ) (3.13)
2 N - 3  J)

with VCC* being the largest of all VCCj.

3.1.4 M ixing patterns, community structure, and degree correlation

Individual attributes such as cultural background, personal interests, age, gender, profession, etc.

obviously affect the structure of social networks. People tend to mingle with people similar to them, a 

phenomenon, often described as assortive mixing or homophily. To formalise the intensity of assortive 

mixing in a network, consider a node-specific characteristic (for example, a node’s music taste) drawn 

from J  discrete types (such as pop, jazz, classic). Let us then define eg  as the proportion of all edges

running from a node of type j  to a node of type / .  Accordingly, one can establish a matrix e of size

J x J  indicating all eg  across all types, so that ^ g C g  =1. The matrix e is symmetric if it holds

eg  = eg  for all combinations of j  and j \  that is, if we do not differentiate between the ends of an

edge. Otherwise, the matrix is asymmetric. In that case, we have to consider an additional attribute 

with traits a and b, for example, male and female music lovers. The fractions and bj represent the

proportion of edges that have nodes of type j  at one end and are, respectively, of trait a and b. We

can calculate aj and bj as

a> = I « y  <314)
/  /

For clarification, have a look at the following matrix e (see TAB. 3.1) indicating the music preference 

among couples of a given population.

Pop(f) Jazz (f) Classic (f) bJ
Pop (m) 0.38 0.05 0.03 0.46

Jazz (m) 0.04 0.17 0.06 0.27

Classic (m) 0.02 0.01 0.24 0.27

aj 0.44 0.23 0.33 1.00

TAB. 3.1: Joint probabilities for the music preferences of couples 
(example values)
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The example population yields a strong trend to assortive mixing, that is, many couples have the same 

music taste. An effective way to quantify this mixing pattern is the assortative mixing coefficient 

racc defined as (Newman [128])

y . e n - y . aibi 
r„c = , v  ■ (3-15)

with 0 < racc < l .I f  raccis 1, there is complete assortive mixing (meaning in our example that couples 

always have the same music taste). If racc is 0, assortive mixing is absent (suggesting here, that music 

taste is irrelevant for mating). The actual value of racc in the example is 0.675. Note that formula 

(3.15) is based on a nominal scale of characteristics.

If people mix by characteristics that follow a ratio scale such as age, income, height, etc., the 

definition of racc changes slightly. Now individuals at either end of a social tie are of attribute u and 

u (say the respective income of a couple). Then the fraction au and bu> respectively represent the 

proportion of links that have attribute u (respectively u )  at one end. As before, it must hold that

au = Y jeuu'i bu = Z e^ ’and
U U

* „ = ! > » '•  (3-16)
U U

Based on this, the assortative mixing coefficient r has the form of the Pearson correlation coefficient

Y  , xy(e> - a ' b ’) 
racc = -----— . (3.17)

with -1 < racc < 1 and o a and a h being the standard deviations of the distributions au and bu. In case 

of racc > 0, the population follows an assortative mixing pattern and is completely mixed for racc = 1. 

If no assortative mixing takes place (racc = 0), people mingle randomly with each other. For cases 

with racc < 0, people mix in a dissortative way, for example, an affluent and a poor person mate each 

other.

People mix by many different types of nominal and ratio scale characteristics. Especially the mixing 

by nominal characteristics such as location, culture, race, etc. is a major reason for community 

structures (also called stratification), another widely observed feature of social networks. A 

community (also called a block or a group) is a subset of nodes which have many more links among 

themselves than with other parts of the network. The usual way of detecting communities is a cluster 

analysis. For this method, one first assigns a connection’s strength to all ^ N ( N - l )  links in the

network (zero for non-existent links). Then the nodes of links surpassing a minimum strength are part 

of a community. In sociology, these links are called strong ties, while links between the community 

and the outside are regularly referred to as weak ties (see chapter 2). There are many different ways of
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attributing strength to network links. One popular concept to do this is edge betweeness, defined as the 

number of geodesic paths running through the respective link. The same betweeness measure can also 

be applied directly to individual nodes and is usually called vertex-specific centrality betweeness. A 

node’s vertex-specific centrality betweeness VCBj is then defined as the number of geodesics passing

through node j .  The concept of VCB indicating the network’s centrality, that is, the extent by which 

links are located in a small number of vertices, can also be found in the literature.

Another way to cluster nodes is by their social position in the network. Among the methods to 

determine a node’s social position, the concept of structural equivalence probably gained most 

popularity. Accordingly, two nodes j  and j '  are classified as structurally equivalent if they maintain 

the same relations with all other nodes in the network. The extent of structural equivalence SEg  

between j  and j '  in a directed network is calculated by the Euclidean distance defined as (Burt [30], 

p.76)

lV2

SEj f  = (3.18)

where d g  (and accordingly all other d  -values) is the geodesic distance from node j  to node j ',  

while j ” stands for all other nodes besides j  and / .  If the network is undirected, it holds d g  = dyj, 

djj* = dj-j, and d jy  = djy,  so that formula (3.18) reduces to

SEr = J 2X ( dr

To make this equation more practical, the factor 4 l  is usually dropped. In passing we also note that 

the structural equivalence measure is often normalised so that the largest, respectively smallest, 

distance for each node to the other nodes becomes 1, respectively 0.

Community members maintaining weak ties have been dubbed bridges and “gatekeepers” to other 

communities. In absence of bridging nodes, a community is self-contained and equates to a network 

component. In many ways such a component can be treated as a network in its own regard so that, for 

example, the component size simply equates to network size N. As a component’s size can be 

relatively small and close to (k),  the density D  (see formula 3.4) is a comprehensive measure of a 

community’s profile.

In network analysis, one can, of course, analyse the assortative mixing according to one particular 

scalar dimension: the number of degrees that are at both ends of a network link. This assortative 

mixing coefficient is commonly called the degree correlation r and can be calculated as follows. First 

we need to determine the density of the remaining degrees’ distribution, qk , which is the probability 

that there are k links at one end of a randomly chosen link. That probability must depend on the
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degree distribution p{k) = pk . In addition, we have to take into account that qk scales with k, that is, 

the more links a node has, the more likely it is that one of its links is randomly picked. We achieve this 

by normalising the factor (k +1) with the average connectivity (k ) so that we obtain the following 

formula for qk :

„ _ (*  + ! )Pk+]f t  — ■ (3.19)

The degree correlation r is  then the correlation coefficient for unordered pairs of the remaining 

degrees k and k'

y ,  V  .'kk'Ujj.' - q kqk>) r _Z =jk_Luk V** _ i < r <i  (3.20)

where a q is the standard deviation of both qk and qk>. The degree correlation, as was shown in several

empirical studies, tends to be positive for social networks (see TAB. 3.3). Although this could be again 

due to assortative mixing, the question is still open why people preferably deal with others of similar 

connectivity. One potential reason relates to structural balance and is given in chapter 5.

3.1.5 Prioritising network measures

The scope of network measures confronts us with two problems. First, most measures are not mutually 

exclusive, for example, a high network centrality can be expected to be strongly correlated with a 

small average path length in the network. Second, not all measures are equally relevant either because 

some parameters have no bearing on the diffusion process, or because it is too difficult to obtain 

empirically the underlying data for them. So we have to select a set of measures for this study. In the 

following we argue that these measures are the average degree (k), the normalised degree variance V, 

the clustering coefficient C, the degree correlation r, and the average path length I.

In many field studies of social networks, survey participants are asked to name or indicate the number 

of people with whom they maintain social ties of some kind. A typical question of these surveys is, for 

example, (Wassermann and Faust [169], p. 42 citing Burt [29])

“Looking back over the last six months - who are the people 
with whom you discussed matters important to you?”

The resulting data indicate the personal or ego-centered network and, through several shrewd scaling 

methods (Bernard, et al. [20]), can deliver reasonably good estimates of the first and second moment 

of the degree distribution p{k) for the ensemble of personal networks, that is, for the entire

population’s network. The two measures (k) and ( k1  ̂ are thus good candidates for our set of

network descriptions. The degree distribution’s second moment, however, can vary considerably for 

different network sizes so that heteroscedastic effects could bias in any statistical analysis. A remedy

41



for this problem is to normalise (^k2Sj by (&). Interestingly, this can be done in different ways, for 

example, using the expression (k ) j ( k 2'sj ,  which is used in epidemiology to define an outbreak

threshold for epidemics in networks (see, e.g., Pastor-Satorras and Vespignani [136]). Instead we 

propose the normalised degree variance V as defined in 3.1.1, which is closer to the standard statistic 

of the variance. Taken together, these measures not only represent a good description of the entire 

degree distribution, but also cover the concept of network density (= (A:)) (see TAB. 3.2).

Transitivity in networks can be measured in different ways, for example, by one of the formulae 

given above. In addition, one can subsume not only 3-cycles but 4-cycles, 5-cycles, or n-cycles by the 

concept of transitivity. The 3-cycle, however, has been constantly identified as a wide-spread feature 

of social networks. We here use the clustering coefficient C as defined in (3.7) to describe transitivity 

in a social network. The similar concept of formula (3.9) could be used equivalently but is less used in 

the literature.

•  Degree distribution •  Different concepts •  Community structure »C onceptsof •  Degree
• Network density_______o f  transitivity________ •Assortative mixing________Centrality correlation

cV t r

TAB. 3.2: Translation o f social networks’ traits into five concise measures: (k ) , V , C , r  and L

Measuring the community structure and the assortative mixing in social networks is largely about 

identifying groups and the links between groups. To do so, one can measure the distribution of group 

sizes, the distribution of shortest paths between groups, the centrality of particular groups, etc. In more 

abstract terms, one measures the conditional probability that a node of type X interacts with a node of 

type X’ as indicated by the aforementioned affiliation matrix e. Something very similar to e is 

determined, for example, by marketers performing a cluster analysis. So a comprehensive measure of 

e such as the assortative index racc defined in 3.1.5 could be a very practical network measure for our 

analysis. The only problem with such a measure is that it is already a very aggregate description of 

networks so that a change in racc automatically affects other measures, especially the clustering 

coefficient, the average path length, and the degree correlation. We thus rather focus on these three 

measures, hereby taking indirectly into account the community structure and the assortative mixing.

The degree correlation r is a type of assortative mixing that can be largely disentangled from 

concepts like the average path length or transitivity. Furthermore, it has been shown that the degree 

correlation can have a major impact on certain epidemic processes (see, for example, Boguna and
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Pastor-Satorras [24], Moreno, Yamir, et al. [119]). Therefore we consider the degree correlation r in 

our analysis.

The concepts of centrality and structural equivalence are frequently used in social network analysis. 

As shown in 3.1.4, these concepts can be applied for the assessment of single actors as well as for the 

analysis of the entire network. The latter is probably more relevant for the analysis of diffusion models 

in the presence of mass media -  although a node-specific diffusion analysis, for example, in terms of 

“time-to adoption” or “time-to awareness” is also an interesting research approach which we do not 

follow here (compare, e.g., Valente [164]). On a global network level, however, both centrality and 

structural equivalence have much communality with the average path length I  as defined in formula 

(3.10). For example, the network’s betweeness centrality is an averaging measure of all geodesics in 

the network, but defined slightly different to £. However, the definition of the average path length is 

much more intuitive, and probably more general than most other concepts of centrality and structural 

equivalence. We thus use I  as defined in (3.10) as a proxy for a network’s centrality and structural 

equivalence.

This leaves us with the five measures (k),  V ,C ,r, and £ which we apply to capture a network’s

structure. What about measuring the differences between the in- and out-degree of nodes? We could 

apply the five measures separately for in- and out-degrees so that our analysis is applicable to 

undirected and directed networks. However, none of these concepts mirrors any asymmetry of the in- 

and out-degrees, as for example, a correlation coefficient between in- and out-degree. The question is, 

however, to what extent link reciprocity is important for the diffusion of marketing information. It is 

clear that a random asymmetry between in- and out-degrees stalls the diffusion process in a way 

similar to reducing the average number of interactions in the network, which is captured by (k ).

In contrast, non-random link asymmetry is likely to affect all other measures and the diffusion process 

in a much more complex way. Another argument against considering non-random link asymmetry is 

that it is usually very difficult to obtain empirically for any practical purposes. Of course, one can 

point out that some empirical studies produce asymmetric links, for example, when one survey 

participants nominates another person as informant who does not do so in return. Yet it can be argued 

that such a link asymmetry is rather random or potentially does not even imply any hierarchy: the 

other person might have simply forgotten to nominate that link. We thus might be sufficiently exact if 

we evaluate all directed links as undirected, especially if we study the overall awareness -  not 

adoption -  in a network of consumers. For these reasons we consider only undirected links in our 

study and leave a diffusion analysis on directed networks for future analysis. How real social networks 

score in terms of (A:), V, C, r, and £ is discussed next.
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3.2 Profiling social networks

The previously presented network measures help us to describe social networks. To do so, we can use 

empirical data of social networks from different areas of science (Newman [128]). There are, for 

example, analyses of

•  Friendship and acquaintance networks (Moreno, J. L. [118], Davis, et al. [41]; Rapoport and 

Horvath [138]; Fararo and Sunshine [56]; Milgram [114]; Travers and Milgram [161]; Bernard, et 

al. [20]; McCarthy, et al. [110]; Dodds, et al. [44]; Bearman, et al. [15]); Killworth, et al. [91]),

• Intermarriages between families (Padgett and Ansell [135]),

•  Webs o f  sexual contact (Liljeros, et al. [97]),

•  Community websites (Holme, et al. [79]),

•  Referrals on websites (Kautz, et al. [88]),

•  Referral networks (Coleman, et al. [36]; Rogers, et al. [144]; Rogers and Kincaid [145]),

• Informal employee networks (Roethlisberger and Dickson [142]; Guimera, et al. [74]),

• Business contacts between companies (Mariolis [106]; Galaskiewicz and Marsden [61]; Mizruchi 

[115]; Galaskiewicz [60]; Adamic and Huberman [1]),

•  Collaborations between scientists (Melin and Persson [111]; Amaral, et al. [4]; Newman [123]; 

Newman [124]),

•  Newspaper co-authorships (Corman, et al. [37]),

•  Actors starring in the same movies (Newman, et al. [131]),

• Email correspondence (Ebel, et al. [52]),

•  Phone calls (Aiello, et al. [2]; Onnela, et al. [134]),

• Instant messaging (Smith [148]).

While older studies on social networks are usually constrained by a limited sample size and people’s 

inaccurate recall and evaluation of social contacts (Marsden, P. V. [108]), more recent studies achieve 

considerable accuracy, relying on computer data bases and digitally stored communication data.

A quick look on these examples makes clear that social networks stretch over many different areas and 

levels of human interaction. In the literature it is common to classify social networks according to their 

intensity and importance for the individual into four different network classes emotional support 

networks, social support networks, acquaintance networks, and referral networks (Bernard, et al. [20]) 

(see FIG. 3.4)

A person’s emotional support network is a rather small band of intimates with whom people 

discuss important personal matters, talk to when they are lonely, etc.

The social support network are people such as friends, intimates, etc on which a person can 

always count for a favour, usually in return for a favour on their behalf. So, in contrast to the first 

network class, reciprocity but not necessarily intimacy characterise social support networks. The exact
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definition may change from study to study, but usually members of this network are identified with 

questions such as “Who could take care of your house when you are on holiday?”

I I—  •*-

  -

O  Emotional support network 

Social support network 

/  ' Referral network

Aquaintance network (active) 

( 3 )  Aquaintance network (ever met)

FIG. 3.4: Classification o f  social networks to which an individual belongs. The life-time acquaintance network 
(“ever met”) is usually much larger then the active acquaintance network that in turn is much larger than the 
other classes o f  social networks.

The acquaintance network comprises the emotional support and social support network and all 

other people known to an individual. “Knowing” means, for example, remembering the first and 

surname, telephone number, and professional background. Here one can further differentiate between 

a person’s active acquaintance network and the life-time network, that is, all acquaintances ever met in 

life so far. The contact to most acquaintances is often kept entirely for sending and receiving 

information, often without knowing much more about an acquaintance than the contact details. 

However, several members in the acquaintance network serve a role apart from emotional and social 

support or relays of information. These people have particular interests, work in certain areas, or have 

expert insights, for example, know where to find a good medical specialist or are candidates to whom 

we can refer other people. Such referral networks (also called “interest networks”) are within the 

global acquaintance network and might overlap with each other and with the emotional and social 

support networks. Referral networks can exist for educational issues, sports, professions, areas of 

expertise, and all other types of interest. For most of this thesis, we equate referral network with social 

networks.

In sociology these network classes are often defined as ego-centered, that is with regard to a 

particular person. For example, in a survey on acquaintance networks each participant recounts his 

own emotional, social, and acquaintance network. To obtain a profile of the entire network, we then 

have to combine the results for the ego- centered networks. For example, a node’s degree k equates
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with the personal network size; the degree distribution p (k ) corresponds to the distribution of personal 

networks.

Let us now check how social networks score in terms of and i  in the real world

across different classes and social settings (see TAB. 3.3).

The first thing to note is that the average degree (k ) for each of the four network classes differs 

considerably. To highlight these differences, we depict the respectively highest and lowest value of 

(k ) that we measure for each network class on our list in FIG. 3.5.

Acquaintance network (ever met)

Acquaintance network (active)

— — Social support network

.------------   Referral network

■ ■ Emotional support network
i _____________________  L    B .z  I -  -   I___— -  -  ^ -  i

1 10 100 1000 10000

<*>
FIG. 3.5: The range o f  (A) for each social network class on a logarithmic scale according to our sample o f  

empirical studies. Referral networks have an average degree between approximately 3 and 15.

Emotional support networks seem to have an average degree (k ) between about 2 to 7, while social 

support networks are larger, usually having a (k) between 10 to 22. Active acquaintance networks 

encompass many more people, featuring an average degree of about 100 and 300. Life-time 

acquaintance networks are much larger than active acquaintance networks with estimates for (k)

ranging between about 550 to 1,800 or even a lot more. For example, it was estimated through 

appointment documents of Franklin D. Roosevelt, that the number of the President’s acquaintances 

was about 22,500 (Freeman and Thompson [58], p. 149).

Referral networks, in contrast, have a much smaller average degree, approximately between 3 and 15. 

Obviously, contextual factors such as culture affect the network’s average degree. For instance, in a 

survey in Jacksonville, Florida and Mexico City, Bernard, et al. [20] attempted to measure p{k) for all 

four classes of social networks in two different cultural settings. They find that the US networks 

consistently display larger (A) than the Mexican counterparts for all four network classes. O f course,

average degree (A ) is also affected by the network’s definition (by interest, by expertise, by 

relationship type). For example, an emotional support network consisting of sex relationships among
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students is a subset of full emotional support network comprising all close social ties. Likewise, the 

colleagues of movie actors do not constitute their entire active acquaintance network, but still appears 

to form an acquaintance network rather than a referral network.

N etw ork class N etw ork type / Survey (k) V C r t  R eference

Emotional
Jacksonville (module 1) 6.88 0.51 - -

Bernard, et al. [20]

support network Mexico City (module 1) 2.95 0.81 — —

Student sex relationships 1.66 - 0.005 -0.029 16.01 Newman [128]

Social support Jacksonville (module 2) 21.82 0.58 - -
Bernard, et al. [20]

network Mexico City (module 2) 10.05 0.41 - - -

Acquaintance
Jacksonville (module 3) 1 700 0.06 - - -

network Mexico City (module 3) 570 0.65 - - -  Killworth, et al. [89]
(ever met) Orange County 1 806 0.01 - - -

Florida 286 1.04 - - — Killworth, et al. [90]
Acquaintance

network
(active)

US-wide survey (2001) 290 0.80 - - — McCarthy, et al. [ 110]
US-wide survey (2006) 282 0.84 - — Killworth, et al. [91]

Movie actors (Database) 113 - 0.2 0.208 3.48 Newman [128]

Co-directors 14.44 - 0.59 0.276 4.6
Referral
networks

Co-authors (Physics) 9.27 - 0.45 0.363 6.19
Newman [128]

(databases) Co-authors (Mathematics) 3.92 0.15 0.12 7.57

Co-authors (Biology) 15.53 - 0.088 0.127 4.92

Jacksonville (module 4) 11.51 0.97 - -
Bernard, et al. [20]

Referral
Mexico City (module 4) 4.2 3.33 — — —

networks Travel destinations (WoM) 3.703 0.47 - - — East and Hammond [50]
(memory-based) Family planning advice 4.769 0.59 0.213 -0.026 2.775(undirected;

Family planning advice 
(directed) 3.026 0.44 0.221 0.222

Valente [164]
2.829

TAB.3.3: Network traits ( k ) , V ,  C, r ,  and I  for different classes and types o f  social networks. For most emotional

and support networks as well as life-time acquaintance network, the list indicates the location o f  the survey. For 
the referral networks, the type o f  interest is the defining criterion o f  the network. Note the difference between 
referral networks levied from databases and those derived from people’s recall.

One can differentiate between referral networks found in databases and those derived from 

people’s memories. The former tend to have larger average degrees than the latter, which is also 

interesting from a marketing point of view. Database-supported referral networks are similar to online 

databases of community websites such as “Facebook.com” and “Xing.com”, while memory-based 

referral networks are closer to the social webs along which product recommendations are passed on.

The normalised degree variance V differs strongly from network to network, but does not seem to 

be overly dependent on the network class. For example, low and high V are found for emotional 

support, active acquaintance, and referral networks. However, the life-time acquaintance network 

seem to have a rather low variance while active acquaintance network appear to have a high V. In 

addition to V, the surveys allow us to approximate the distribution p(k).  Here, we find that active

47



acquaintance networks and memory-based referral networks can be well replicated by a Gamma 

distribution (Killworth, et al. [91]).

Empirically, the clustering coefficient C is found to be between zero and 0.6 and does not seem to 

be affected by the network class with the potential exception of emotional support networks. For 

sexual relationships between students, we hardly find any clustering, which is not entirely unexpected.

The degree correlation r ranges between values around zero to positive values of around 35%, 

again with no clear pattern with the network class besides the general observation that social networks 

usually have a positive r.

The average path length I  is exceptionally long for the student relationship network, which 

can be assumed to be similar with other emotional support networks in a population. Other network 

classes, however, have a relatively short average path length, with t  ranging between about 3 and 8 

steps. This range is substantiated, for example, by Milgram [114]’s classical study on acquaintance 

networks in the United States. In that study Milgram estimated the average path length between two 

white US citizens to be about 5.5, while the average path length between one black and on white US 

American was found to be about 6.5. In general, it appears that the average path length of a social 

network with size N  scales with log(A) (Albert and Barabasi [3]).

Let us analyse the referral networks in more detail. TAB.3.3 displays referral networks derived from 

databases and gained from recalled data of survey participants. The databases used for the former were 

article collections published in Biology, Mathematics, and Physics, and directorship interlocks 

obtained from annual reports of American Fortune 500 companies (see Newman, et al. [131]). The 

distribution for the referral network on travel destinations was derived from a survey on 

recommendation behaviour conducted in New York and the UK (see East and Hammond [50]). The 

question used in the survey was:

“How many times have you recommended your last holiday
destination in the past six months? Please write in (0,1, 2, etc)”

The number of participants in that survey was 128. In contrast, the survey about the recommendation 

behaviour on family planning had a total sample size of 1,025 participants conducted in 25 South 

Korean villages (see Rogers and Kincaid [145] for the original study). The data used here is the 

referral network of one selected village, reported in Valente [164]. In the survey, the women 

nominated other women (of the same village) with whom they communicated about family planning. 

The resulting network is thus a directed network in which the link runs from the nominator to the 

nominee. Originally these links were analysed to find out the opinion leaders in each village. 

However, one can argue that the links are rather non-hierarchical, especially for a mere exchange of 

information, so that the derived network can also be perceived as undirected. The degree distribution 

and the other network traits of the directed and undirected version of this network are shown in TAB.
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3.3 and FIG. 3.4. The degree distributions for referral networks appear to have the shape o f Gamma 

distributions.

The database-derived and memory-based distributions resemble each other but can differ in 

several aspects. In our example, the modal value kmod of the database-derived distribution is about 10 

while it is about 3 for the memory-based distributions. The maximum degree kmm lies clearly above 50 

in case when we use databases, but is only 10 to 20 when survey participants are asked. This can 

partly be explained by the larger sample size of databases, and the limited memory o f people. In 

addition, the databases also included articles written long-time ago so that many indicated contacts are 

likely to be inactive. The recalled data of survey participants, in contrast, is likely to constitute recent 

contacts. The undirected network of the South Korean villagers is much more skewed and has a much 

thicker right tail than its directed version. Therefore, the average degree (&) and the normalised

variance V of the undirected networks are larger than these measures o f the directed network (see FIG. 

3.6 and TAB.3.3). On the one hand, this suggests that communication links are not necessarily seen in



In terms of other network measures (see TAB. 3.3), the two versions are fairly similar for the 

clustering coefficient C and the average path length £, but strongly differ for r. Here the undirected 

graph displays a degree correlation of about 0, while the directed graph has r ~ 0.2. This might be just 

coincidence for the case of the particular village. Nevertheless it highlights that directed referral 

networks can be somewhat different to their undirected counterparts. It should also be noted that the 

average path length of the directed graph is usually much longer than the respective undirected graph. 

For calculating we omitted all non-existing paths between pairs. As there are more non-existing 

paths between pairs in the directed graph than in the undirected one, our result for £ in a sense 

underestimates the average path length. The undirected version of the village network is depicted in 

FIG. 3.7, showing, among other things a strong clustering, a “hardcore” of highly connected nodes, 

and considerable divergence of links per node.

This example is one of the few memory-based referral networks for which the detailed link 

structure is known. For other referral networks derived from recalled conversations, for example, the 

one assessed in the Jacksonville/Mexico City study, we only have estimates for the first and second 

moment of the degree distribution (see TAB. 3.3). However, the detailed structure of referral networks 

can at least partly be estimated through the databases of scientific articles, and other digital 

documents. Comparing these networks with the study on Family planning suggests that most network 

traits (V,C,r,  and C) are similar, while certain measures of the degree distribution ((&) ,kmaji ,kmod) can

strongly differ. This is not surprising, given that each class of social networks is a subset of the 

acquaintance network, only at a smaller scale.

FIG. 3.7: The structure of an undirected 
referral network on family planning in a 
South Korean village (village specific 
sample size). The network comprises 
typical traits of social networks: high 
clustering, relatively short average path 
length, and considerable degree variance 
(see Valente [164] for network data).

Taking these empirical studies together, we can draw the following profile of social networks:

• Large variety of degree distributions

• High levels of clustering

• Rather small average path size that is likely to scale with log(A) unless only very close social 

ties are considered

• Positive degree correlation
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• Direct and undirected networks can largely differ from each other, especially in measures like 

the degree distribution and the average path length

• The size and characteristic depends heavily on the network definition (for example, by 

interests, by area), and on the cultural background of network members.

• The network structure repeats itself for different levels and areas of social networks, albeit the 

degree distribution can be somewhat different.

The last point is encouraging for simulation models as the effects of social networks can be expected 

to be reproducible on relatively small, but detailed networks (say N  = 200).

This chapter offers a toolbox for analysing social networks. Such a toolbox can only be a selection of 

existing concepts and modelling ideas, given the burst of network models in recent years and the many 

approaches to network analysis in different disciplines. However, we have attempted here to collect 

together those concepts that are most relevant for diffusion analysis in marketing and mass media 

management.

The first part introduced a network terminology that largely originated in graph theory, 

sociology, and publications in “socio-physics”. What the last of these contribute is probably less the 

application of physics model to social phenomena, but rather the well-trained eye of the natural 

scientist for parsimonious, but powerful models. Following that example, we tried to find the crucial 

features of network analysis. We thus filtered the five network measures (k) ,V,C,r,  and I  out of the

many concepts of network analysis that we described before, and argued that we should concentrate 

our work on undirected rather than directed networks.

These measures were then analysed for a collection of real-life social networks whose data 

primarily comes from sociological, anthropological, and marketing studies. In need of a classification 

of social networks, we transferred a sociological framework of ego-centric networks to the realm of 

global network analysis. In so doing, we assumed that the ensemble of individual networks can be 

combined to the network of the entire population. The classification comprises the largely overlapping 

four network classes: emotional network, social support network, acquaintance network and referral 

network. Of these four network classes, we identified referral networks as central network class for 

our diffusion analysis. Referral networks (also called interest groups) comprise those people with 

whom someone would exchange information on a particular topic, for example, music, politics, 

fashion, etc.

Referral networks have a varying average degree (&) that can be as high as 15 or even 20. Their

normalised degree variance V can be small or large, depending on the cultural context as well as the 

actual type of interest. The clustering is usually relatively high, the degree correlation positive, and the 

average path length rather short relative to the network size. These features of referral networks thus 

have to be included when we re-construct social networks for our diffusion study (chapter 4).
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In this chapter we identified a set of features by which social networks differ from other networks. 

There might be additional characteristics typical for social networks. However, if the cited literature is 

any guidance, we have singled out the most important characteristics of social networks in the 

marketing context. The directionality and weighting of links between people are common for social 

ties, but deliberately excluded in our list of key traits as empirical data about both features is not 

readily available at this point of time. Yet it might be important to include directionality and weighting 

of links in future network-based diffusion analyses.

Summing up, we here highlighted the traits whose diffusion effects we want to analyse in chapter 

7. Let us proceed in the next chapter by showing how to generate such features in networks.
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Chapter 4

Constructing social networks

We need a sufficient set of realistic network structures before we can analyze the effect of social 

networks on the diffusion process. In chapter 3 we saw that such structures contain a certain range of 

degree distributions, average path lengths, degree correlations and clustering. To obtain structures of 

that type, we can, of course, set up an adjacency matrix based on empirical data of social networks. 

This option was chosen, for example, by Valente [164], who investigated the spread of three 

innovations (hybrid com, new medical treatment, new contraceptive) in real-life social structures. 

Studies like this will become commonplace for certain areas in the future, as more and more 

descriptions of large social networks become available (for example through community websites, 

recording of telephone connections, cash point scanners etc.). Up to now, however, empirical network 

data, especially of referral networks, is relatively scarce and probably not yet sufficient to analyse 

propagation processes in social networks. A way forward is thus to simulate social networks through a 

computer algorithm. In doing so, we not only can generate as many networks as we like but also can 

cover a complete range of potential network constellations, for example, have networks with low, 

medium, and high clustering.

There have been many attempts to simulate social networks (see for example, Rapoport [137], Erdos 

and Renyi [53], Watts and Strogatz [171], Barabasi and Albert [8], Holme and Kim [81], Ebel, et al. 

[51], Newman and Park [130], Boguna, et al. [25], Kim, et al. [92], Holme and Ghoshal [80], 

Toivonen, et al. [160], and Handcock, et al. [76]). The starting point of these simulation models is a set 

of N  nodes that are tied together according to certain construction principles. In most of these models, 

the construction principles describe the probability that two given nodes of the network are linked with 

each other. The resulting graphs are random networks so that the construction principle leads to an 

entire set of network graphs. A typical construction principle is, for example, to link up nodes 

according to a given degree distribution. Other construction principles are directly derived from 

sociological observations, for example, how people introduce each other to friends, chose affiliations, 

and so on. Most random network models mimic the real world in some aspects, some of them even 

describe (almost) all aspects of social networks (see, for example, Boguna, et al. [25] and Toivonen, et 

al. [160]).

In this chapter we describe random networks that, taken together, closely reproduce social networks in 

aspects we want to focus on: the degree distribution, degree correlation, clustering, and the average 

path length. We start with the Poisson random graph (section 4.1), before we describe the generalised
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random graph (section 4.2) and the small-world model (section 4.3). All of these network models lack 

a community structure and a positive degree correlation, which can be introduced through a link 

swapping mechanism given in section 4.4. We finally show in section 4.5 how to combine these 

models to obtain a comprehensive description o f social networks.

4.1 Poisson random graphs

Poisson random graphs were introduced by Solomonoff and Rapoport [150] and, independently, by 

Erdos and Renyi [53] and are probably the oldest and simplest random network model. Imagine a 

network of N  nodes in which each pair of nodes is connected by an undirected link with a probability 

p ER. In that way we define an ensemble of potential graphs whose expected number of links is

L = \ p ERN ( N  - 1). If we have, for example, a set of 10 nodes and use connection probabilities 

P e r  = {0.1,0.2,0.3), we respectively get L = 4.5, L=  9 ,and L = 13.5 as the expected number of edges 

in the network (see FIG. 4.1).

0  0

0

O
e

o  o

P e r  = 0  

L = 0 L = 4.5 L = 9 L = 13.5
FIG. 4.1: The expected number of links L in Poisson random graphs for different connection probabilities 
pER; the graphs are example constellations from the respective ensemble of potential graphs.

Since their inception, Poisson random graphs have been intensively investigated (see, for example, 

Bollobas [26], Luczak [98]). Before we go into details, we note that a random graph (a Poisson 

random graph or any other random network model) is always a set o f  potential network realisation 

whose average behaviour is described. Thus the following analytic solutions are always averaged 

network properties. Here we want to focus on the network properties that we identified as particularly 

relevant to the description of social networks: degree distribution p(k),  degree correlation r, clustering 

coefficient C, and the average path length (.

The degree distribution p(k)  of the Poisson random graph follows the binomial distribution of the 

form (Bollobas [26], p. 5 and p. 61)

P ( k )  =
N - \

k P er
k \

(4.1)
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but converges to the Poisson distribution (hence the model’s name) for sufficiently large N. The 

assumption of a large network is a standard device in random graph theory as it facilitates the 

derivation of analytic solutions. We will make use of it as well in subsequent sections.

The degree distribution of the “Erdos-Renyi-model” is thus frequently assumed to be Poisson,

yielding a mean of (k) = p ER( N - l)and a second moment of ( k̂2  ̂= (k)2 +(&}. A look on FIG. 3.1

makes clear that the degree variance of the Poisson random graph, especially its probability for high 

degrees, is much smaller than those in the empirical study by Killworth, et al. [89]. In that survey, the 

social network’s average degree and standard deviation is (k) = 282 and <Jk -  259. A Poisson 

distribution of the same mean, in contrast, yields the standard deviation of only a k =16.8. There 

might be yet unrecorded social networks whose degree distribution is actually Poisson. Nevertheless, 

the Killworth study and many other examples (see references in chapter 3) strongly suggest that the 

degree distribution of social networks is typically non-Poisson.

The degree correlation r in  the Poisson random graph is zero as long as there is a sufficient 

number of nodes and links in the network. To see why, we just have to recall that nodes are linked up 

totally at random, especially with disregard to the number of links they already have. This again is 

different to real social networks, which usually have a positive r (see TAB. 3.3). It should be noted, 

however, that r fluctuates around zero during the evolution of the Poisson random graph, that is, when 

links are subsequently added to the network and r is measured after each introduction of a new link 

(Newman [125]).

To determine the clustering coefficient C in the Poisson random graph, remember that C is the 

fraction of triangles to triads in the network. Here a triad becomes a complete triangle by the 

connection probability pER that the missing link is in place (Albert and Barabasi [3]). So the clustering 

coefficient C simply equates pER and, using the result for the average degree, is inversely proportional 

to the network size N :

(*>c = p E« = i r Li (4.2) N  — 1

Note that this is different to social networks, which usually show significant clustering even for very 

large N. Moreover, this result applies not only to the entire random network but also to any subset of 

it. Therefore, equation (4.2) holds for both definitions of the clustering coefficient (see (3.7) and 

(3.8)).

To measure the average path length in a random graph, authors usually assume that most, if not 

all, nodes in the network belong to one large component. Otherwise the paths between pairs of nodes 

are either not existing or very small. It is one of the most interesting insights about Poisson random 

graphs that such a giant component emerges at a critical connection probability p ER -  jj (see, for 

example, Albert and Barabasi [3]), which is equivalent to the condition
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(4.3)

Chung and Lu [34] identified a second phase transition at pER -  \n(N)/N,  that is

(4.4)

for which the entire network almost certainly consists of one single component. So if we assume that

this condition holds, the average path length I  in the Poisson random graph is approximately

this result with the average path length in the real world, we find that the Poisson random graph 

mimics this property of social networks rather well: the average path length of social networks scales 

with the network size as do Poisson random graphs (Albert and Barabasi [3]).

On balance, the Poisson random graph is a great benchmark model, as it is easy to generate and 

thoroughly analysed, but reproduces the traits of social networks rather poorly. That has initiated many 

efforts to make random graphs more realistic. There are many ways to do so, for example, by 

exchanging the connection probability p ER with other control parameters such as the clustering 

coefficient, the community structure etc. Probably the most common control parameter is the degree 

distribution as applied in the “generalised random graph”, also called the “configuration model”.

4.2 The configuration model
The history of the configuration model probably begins with a paper by Bender and Canfield [18], 

followed by many more publications since then. The idea of the model is to generate a random 

network with a pre-specified degree distribution. To create such a network, we first attach a certain 

number of links k.j to each node i in a set of N  nodes according to a given degree distribution p(k).

Technically speaking, we generate a degree sequence {£, } by randomly drawing numbers from the

distribution p{k). If the number of nodes N  is large enough, the distribution of {&,} converges to the

desired distribution. In a second step, we randomly pick pairs of nodes and attach them at their links 

until all links are “plugged” into two nodes (see FIG. 4.2). Obviously, the total number of links in the 

degree sequence {&, } has to be even. If that is not the case, one simply generates a new sequence until

this condition holds. After plugging the links together, it is important to remove potential multiple and 

self-referring links. We can do this in a follow-up procedure by re-plugging one end of a multiple or 

self-referring link to a different node (see Appendix 2). In that way we generate a network with any 

degree distribution as long as the number of nodes is sufficiently large.

, log N
log (k) '

(4.5)

as can be shown through an analysis of the configuration model (see next section). When we compare
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FIG. 4.2: Procedure in the configuration model: 1. Step: Assigning 
links to each node; 2. Step: Pairing up nodes

As in the case of the Poisson random graph, it is possible to describe certain characteristics of the 

Configuration model in closed-form solutions or with good analytic approximations for cases o f large 

network sizes N. A useful quantity for this endeavour is the average number of nodes that can be 

reached from a given node to its direct and indirect neighbours via n steps, gn (Newman [126]). For 

n = 1, g, equates the average number of direct neighbours, that is the average degree (k ). To derive 

the average number of second neighbours (n = 2), we recall from chapter 3 that the number of links at 

one end of any randomly drawn link follows the distribution q k = ( k +  \ ) p ( k +  \ ) / ( k ) .  The average 

degree of qk is (Newman [126])

(k 2) - ( k )
Y j k(fk = ik 'Z k (k + l)P(k + V = ls) 'L (k - l )kP(k ')= / . \  • <4-6>

k k k \ K /

Next we have to check if one of the direct neighbours is also among the second neighbours. That 

situation is equivalent of having relationship triangles -  clustering -  in the network. As we will see 

below, however, the clustering coefficient usually becomes very small in the configuration model for 

large network sizes. If this is the case, we can ignore triangle relationships and only need to multiply 

the average of qk with (k ) to obtain g 2

(k2) ~ ( k ) / V
*■<*> (4-7)

The same logic applies to the average number of neighbours after n steps so that we determine g n 

through iterations as (Newman [ 126])
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Let us now take the standard assumption that N  —» Then, according to (9.3), the total number of

neighbours that can be reached from a given node in n steps is finite, if g2 < g ,, or infinite, 

i f§2 > Si- We thus can say that a giant component is very likely to emerge at g2 = g, as long as the 

network is large enough. Reformulating this condition through the result in (9.2), we get the following 

condition for a phase transition in a configuration model (Molloy and Reed [116]):

already presented in the last section. Of course, the condition for this phase transition in the 

Configuration model rests on the assumption stated above that there is no significant clustering in the 

network.

In order to approximate an analytic solution for the average path length, let us apply these results 

and assume that every node in the network belongs to one component, that is g2 »  g, and the network

size is large In such a network, the overwhelming majority of paths between pairs of

nodes takes the maximum number of n steps (Newman [126]). Thus the average path length (  is very 

close to «,so thatgn -  g r  If we then sum up all neighbours’ neighbours g, + g2+g2 +••• + £#> we 

approximately obtain the total number of nodes in the network (minus one for the originating node) 

(Newman, et al. [131])

Solving this expression for the average path length, we find that

for large network sizes N. As we assumed to have N » g, and g2 » g l , we can

account, we have the following formula for the average path length in the configuration model 

(Newman, et al. [131]):

A giant component is thus likely to exist if >2(&).For example, the Poisson random graph has 

g2 = (k )2 (for large N ) and so usually yields a giant component if ( jz f  >(&)<=>(£)>!, as was

1°g [ ( ^ - 1)(g2 ~ g l) + gl2] - l0S(g»2) (4.10)

simplify (W -l) (g 2 - g ] ) ~  Ng2 and log^-^j- + lj  = log|-% j. Taking these two approximations into



' ° g ( t )  i o g i y - i
(4.11)

w-',1
log AIn case of the Poisson random graph, this formula yields £ = l-\----- —^  = r-,as we saw

log(Ar) log(£)

previously. Here it is interesting to note that if{k2^>{k)2 ~ (k)  = (&)((&)-l) the average path length

of the network ceteris paribus, is even shorter than in the Poisson random graph. So we can cut t  in 

the Configuration model by increasing the degree variance. Again, however, these results for the 

average path length are approximations and only hold if there is only one component in the network, 

clustering is negligible, and the network is large enough.

To determine the clustering coefficient C in the Configuration model, we define ki as the 

number of links emerging from a neighbour of a given node Y (Newman [126]). As shown in (3.19), 

ki has the distribution qk. Then the probability that node i is connected to another neighbour j  of

k k
node Y is , that is the number of times that two stubs with k links can be connected, divided by

the total number of stubs N  (k ) in the population. By averaging this result over all vertices, we can 

calculate the clustering coefficient C as (Ebel, et al. [52], Newman [126])

(k.) (kj)  _ C £ “.kq‘ f  -  1
2

_<*) f v , <*>-•)
N (k )  N (k)  N (k ) <*> N <*> J

Note that the normalised degree variance V for the Poisson random graph is l/(&), which leads to the 

clustering coefficient C - { k ) / N  -  p ER that we found in the previous section. As for the Poisson

random graph, the result applies to the entire network and any part of it, so that (4.12) is an 

approximation for both definitions of the clustering coefficient. Furthermore, this result highlights that 

clustering in the configuration model is inversely proportional to the network size N  and directly 

proportional to V. Thus even large networks can yield substantial clustering if  V is high. 

Nevertheless, if we hold the degree variance constant, the clustering tends to zero for large networks.

The degree correlation r becomes zero as in the Poisson random graph if the degree variance and 

the network size are sufficiently large.

After analysing these properties of the configuration model we can check to which extent they fit 

empirical network data. The degree distribution obviously can assume any shape. The average path 

length usually turns out to be relatively short for large networks, as we observe in reality. However, 

the degree correlation r in the configuration model is (very close to) zero -  and not positive as in most 

social networks. The clustering coefficient tends to be too small for large networks in comparison to 

what we find in the real world. Only for a large degree variance and relatively limited network size,
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we can generate realistic levels of clustering with the configuration model. To replicate high levels of 

clustering more efficiently in a random graph, we rather apply, for example, the small-world model.

4.3 The small-world model

The small-world model is a combination of a network lattice and a random graph similar to the 

Poisson random graph model. The motivation behind the model is to introduce a realistic level of 

clustering to a random graph through adding the structure of a lattice. In that way the small-world 

model is able to reproduce the type of clustering found in social networks, that is, clustering that is 

largely independent of the network’s size and density.

There are several versions of the small-world model varying, for example, with the shape of the 

lattice. In the following, we focus on the original version by Watts and Strogatz [171].

Imagine a ring lattice, that is, a ring of N  nodes where each node maintains links to the respective 

K  = 1,2,3,... nearest neighbours (see left side of FIG. 4.3) to their left and right. For example, if 

K = 1, we simply get the ring of nodes without any additional links so that each node has 

degree (A:) = 2. If K = 3, each node additionally maintains links to the second and third next neighbour 

o f both sides so that a node’s connectivity is (k ) = 6. In general, we find that (k) = 2K  for this 

version of the small-world model. Next, we visit one link after the other clockwise, but only once. One 

end of each link is rewired to another node by the probability psw, hereby creating shortcuts between 

nodes in different parts of the ring (see right side of FIG. 4.3). Multiple links and self-referring links 

are excluded.

Psw ~ 0 Psw > ®
FIG. 4.3: Small-world model (version by Watts and Strogatz [171]) 
for N  = 10 and K = 2 without and with shortcuts.

The rewiring of edges introduces shortcuts between different parts of the ring lattice and generates a 

“small world” as the average path length decreases.

Let us now see how the four properties p {k ),i,C  and r turn out in this version of the small-world 

model. To analyse the degree distribution, consider first the ring lattice before it is rewired. At that 

point, each node has 2K  links and the average degree \s(k) = 2K. Then, while rewiring, we iterate 

each link just one time so that only A' of the 2K  links of each node are potentially relocated. So after
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the rewiring procedure, a node i has kt = K  + /, links, where + l2i comprises two parts (Barrat 

and Weigt [9]). One part, lu < K, is the number of links that were considered for rewiring but were 

kept in their place. This number lu follows the probability distribution Pr(Z,w = /,,)

K
Pr(A, ~ h i ) ~  ^  J ( l P s w ) P s w  • (4.13)

The other part, l2i = /, -  Iu, is the number of links that were removed from their previous location and 

reconnected to node /'. Each node i has a probability pstv/N  to be chosen for a rewired link (this is 

not entirely exact, as multiple and self-referral links are excluded, but the resulting inaccuracy is 

miniscule). Thus the number of links l2i is drawn from the probability distribution Pr(Z,2l = l2i)

P r (L 2i = W = ) ( l - T f '  ( t P '  e x p ( - A jv ) ,  (4.14)

which becomes Poisson for a network o f sufficient size. Combining (4.13) with (4.14) and using 

kj = K + l u + /2|. <=̂ /2l ~ kt - K - l u, we get the following degree distribution for the Small-world 

network:

min( k - K , K ) /  f f \  (  i s

P(k)=  S  \ \( \-P sw )J PKswJ 7 7  . „ exp (-Kpsw)
U  , j )  ( k - K - j ) l

(4.15)

if k > K, and p(k) = 0 if k < K. This distribution is truncated at k = K , peaks at k = 2K  and becomes
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For p sw < 1, the degree variance of the small-world model is smaller than the one of a Poisson random 

graph with the same average degree. As p sw —> 0, the degree variance becomes smaller and smaller 

and turns zero for psw = 0.

There is also an analytic solution for clustering coefficient of this model (Barrat and Weigt [9]). 

To derive it, we first note that the maximum number of links between neighbours of node / with ki

links is {ki -1 ) in any network. For example, if a node i has kt =2K  links, its neighbours can 

have up to ±kj (kj - i )  = K ( 2 K - l )  links between each other. In the small-world model without 

shortcuts (p  sw = 0), the actual number of links between neighbours is 3K(K  - 1)/2 for each node. In 

that case, the network’s clustering coefficient C(psw = 0) is

^\Psw — 0) —\ 2 K ( 2 K - \ )  2 ( 2 K - 1 ) ’

regardless which definition of the clustering coefficient (“ratio of means”, see (3.7), or (“mean of 

ratios”, see (3.8)) is applied.

If p sw> 0, we can obtain an analytic solution as well, but only for the definition in (3.7) (Barrat and 

Weigt [9]). To see how, note that two neighbours of node / are neighbours of i and connected to each 

other after the rewiring by the probability (1 -  p sw )3. Given the definition in (3.7), we can determine 

C as

(4i6>
This formula shows that the clustering coefficient converges to C = 0.75 if there are no shortcuts 

(psw = 0) and K  becomes large, and decreases as p sw goes up and more and more shortcuts are 

introduced. If we have a rewiring fraction psw = 1, that is, if all edges have been randomly rewired, 

the model is very similar to the Poisson random graph. In that case, the Clustering coefficient is 

approximately C = 2K /N ,  approaching zero for N  —»

These results are based on the definition of the clustering coefficient in (3.7) (“ratio of means”). 

In contrast, Watts and Strogatz [171], use the definition of (3.8) (“mean of ratios”) to calculate the 

clustering coefficient. As Barrat and Weigt [9] show, however, the solution in (4.14) is a very good 

approximation for both definitions.

An analytic formula for the average path length for the Small-world network exists for the case 

Psw ~ 0

N ( N  + 2 K - 2 )
^ =  r 1 ’ (4-17)4a:(w - i )

which is of the order t  ~ N/4K. If psw = 1, the average path length is approximately
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1 log(2 K )'
log N (4.18)

as in the Poisson random graph. For intermediate cases of psw, the average path length t  has been 

determined only numerically so far. For example, Watts and Strogatz [171] measured the average path 

length and the clustering coefficient C' (see definition (3.8)) for different rewiring probabilities psw 

(see FIG. 4.5) (Newman [127]). They found that the average path length sharply decreases, even for 

relatively small probabilities /^.Interestingly, it takes many more rewired links (higher psw) to 

reduce the clustering in the network. Thus, if people estimate the “smallness” of the world by the level 

of clustering in their social web, they live in a much “smaller world” than they realise (Watts [170], p. 

90).

The degree correlation is (close to) zero as in the case of the Poisson random graph. For our 

purposes the small-world model is nevertheless very useful as it allows us to generate network 

properties that the configuration model does not produce, for example, high levels of clustering 

combined with a small average degree.

\

FIG. 4.5: The average path length fand  
the clustering coefficient C ' (according 
to (3.8)) for different rewiring pro-

t b o  e m a l L u / n r I H  — — 1 ~ 1



Psw = 0 Psw > 0
FIG. 4.6: Small-world model (version by Newman and Watts [133] and 
Monasson [ 117] for N  = \0 and K  = 2 without and with shortcuts).

Self-links and multi-links hardly have an effect for large networks with a sufficiently low probability 

p sw. Yet we want to avoid them in our study and slightly change this second version of the small- 

world model. Again we begin with the usual setup of a ring lattice with a number of local links K  and 

the probability psw for shortcuts. This probability, however, is only applied once to any pair o f nodes 

that are not yet linked up. Technically speaking, we determine a list o f unconnected pairs, then 

sequentially go through this list, and establish a link between each pair by the probability p sw (see 

Appendix A2.3.3).

As in the previous two versions, this model makes it possible to generate networks with a rich 

combination of different clustering coefficients and average path lengths, albeit the formulae cited 

above do not hold anymore.
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FIG.4.7: Degree distribution and network graph of a Poisson random network with N = 100,/? = 0.1, and 
random mixing between three different affiliations (football, tennis, and cricket).

We now drop the assumption of random mixing between the three sports affiliations and assume 

instead that people mingle with each other according to an affiliation matrix e = {c^-}, as defined in 

the previous chapter. In our example, we use the following symmetric matrix e (see TAB. 4.1):

*jr Football Tennis Cricket

Football 0.34 0.02 0.01

Tennis 0.02 0.24 0.03

Cricket 0.01 0.03 0.29

TAB. 4.1: Example of a symmetric
affiliation matrix e for three sports 
affiliations. The assortative mixing 
coefficient is relatively high 
(r~ 0 .8 )as  people hardly maintain 
social ties outside their group.



Repeated for a sufficient number of steps, this simulation generates the ergodic set of networks with 

the given degree distribution and converges to the desired link distribution e. The metropolis dynamics 

stops once the network’s link distribution is close enough to e, for example, when the actual and target 

assortivity coefficient differ less than a pre-determined margin. Applied to our example, the procedure 

results in a network with three closely-knit modules, representing the social web of the three sport 

clubs (see FIG. 4.8).

FIG. 4.8: The club population grouped by the 
metropolis dynamics according to the affiliation matrix 
e. The degree distribution is the same as in FIG. 4.7.

While the degree distribution is the same as in FIG. 4.7, we note that other networks traits, for 

example, the clustering, the average path length, and the degree correlation have changed.

The Metropolis dynamics thus can potentially improve the network’s realism with regard to other 

network traits besides assortative mixing. This is especially true for the degree correlation if  we 

classify vertices by their degree instead by their group affiliation. Let us consider, for example 

(Newman [125]), the following matrix e = {e-} indicating the probability that the remaining degrees

of a randomly chosen link are j , j '  = 1,2,3,...

etf = X  exp (“ O' + / ) /  k )
j  + f  

j
j  + f  

. /
J

(1 - P ) j p f (4.20)

with the probability 0 < p  < 1, the constant k  > 0, and the normalising constant Z = 2 ^ ~  exP(- V**)) • 

The probability p  is independent of p ER or other probabilities used to set up the network in the first 

place. The constant k  regulates the giant component size in the network, so that the giant component 

is the larger, the larger is k . The distribution of e -  is a binomial distribution with an exponential cut

off and is mathematically convenient as it lets us obtain a “target degree correlation” r a s a  function of 

P-

S p ( l - p ) - l
r(p ) =

2 exp(l/Ar) - 1  +  2 (2/7 - 1)‘
(4.21)
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We then can take the inverse function r~ \p )  = p (r ) to determine p  and the matrix e for a given 

degree correlation r. In FIG. 4.9 we see the S-shaped function of p(r) for k  = 1,000 and notice that 

it works for positive as well as negative degree correlations.

It is also interesting that the range between -0 .6  < r < 0.6 is covered by small variations of p. 

We get an idea how the matrix e is driven by p  if we look at the two example matrices for 

r  = {0,0.3}, k  = 1,000, and degrees k  = {1,2,...,6} in TAB. 4.2 (the matrix cells are multiplied by 106 

to clarify the picture). The cells follow a binomial distribution, truncated at k  = l,for small degrees and 

fall off exponentially for larger degrees. An increase of p  results in higher values on and around the 

main diagonal of the matrix. If r = 1, only cells on the main diagonal are larger than zero.

i
FIG. 4.9: The probability p  as a function of 
the degree correlation r on the basis of 
formula (4.21) with v=  1,000.
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We thus can tune the degree correlation to any given level, provided of course, that the network’s size 

and degree distribution is large enough. If that is not the case, the ensemble of potential network 

graphs for a given degree distribution can be very limited so that the metropolis dynamics either takes 

very long to achieve a target correlation coefficient or has to stop for much smaller changes in r.

v K ]  1

1 79 89 89 69 42 21
2 89 67 56 47 33 19

1 80 90 75 48 25 11
2 90 103 86 60 35 17



The metropolis dynamics also allows introducing degree correlations and group assortment at the 

same time, as outlined in the next section.

4.5 Assembling a comprehensive social network

The link swapping mechanism presented in the last section is a powerful way to modify any network 

of a given degree distribution. We can use it to alter the degree distribution as well as the assortment 

structure of the network. The assortment structure in turn affects the transitivity and average path 

length so that, in theory, we can produce a wide variety of networks by combining the configuration 

model and the metropolis dynamics. To apply the link swapping procedure to alter the degree 

correlation and the assortment structure at the same time, let us consider the following model.

Think of a network constructed through the configuration model with a given degree distribution 

p(k). Now we assign each node to one of J  equally sized groups. Group sizes, of course, vary in 

reality, yet we chose this assumption to make the model more tractable as well as comparable to other 

models. The size of groups in this model solely depends on the population’s size N  and the number of 

groups J. Then each group comprises N. = N /J  members. For sufficiently large groups, we then can

define an assortment matrix *=\eJkjV J that indicates to which extent people of different degrees,

k and k ', as well as members of different groups, j  and j ' ,  deal with each other (see FIG. 4.10).

| Group 1 | Group 2 \ Group J | | Group J  |

1 2 3 *«,, 1 2 3 1 2 3 1 2  3 * ™ ,
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FIG. 4.10: Structure of an assortment matrix 
e = {f/*./.'*•} that shows how probable a person 
of degree k and group j  has a link with a 
person of degree k ’ and group j. The main 
diagonal for the group assortment matrix is 
grey; the one for the degree-degree matrix is 
black.

The degree-degree matrix and the group assortment matrix are independent of each other so that the 

same degree distribution can be found in each group. Hence the cell values ejk jV of the joint matrix 

are

- i k . j k . - e . :eij kk ’ (4.22)
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for J >  1 or ejk j.k, = ekk, for 7 = 1. Concerning the degree-degree matrix {ekk,}, we can apply, for 

example, the distribution in TAB. 4.2. For defining the group assortment matrix {e^}, let us introduce 

a group assortment coefficient rGr defined as in (3.17). Due to the equal size of groups, we can 

calculate this coefficient as

again with J  > 1. If the coefficient is rGr = 0, people randomly mix across groups so that =yr- 

The higher is rGr, the larger tend to become the cell values on and next to the main diagonal of the 

matrix. If we have rGr = 1, only members of the same group interact with each other, thus all cells on 

the matrix main diagonal are ej=j- = j , while all other cells have ejitj. = 0. In that setting, we simply 

have many small networks of degree distribution p(k). Hence, when rGr = land  r  = 0,we have the 

same network traits of the unmodified network, only with network size AT instead of N. Under that 

condition, the group-specific clustering coefficient becomes the overall clustering coefficient and is

Similarly, we can use formula (3.10) and approximate the group-specific average path length by 

replacing N  with AT = N / J :

Of course, the entire population’s average path length (. is either undefined or infinite as no 

interaction outside groups takes place. If rGr slightly turns positive, t  is very high but becomes 

smaller as rGr increases. By the same token, the clustering decreases as rGr goes up. In fact, the 

assortative mixing coefficient rGr and the partition factor g  have similar roles to the probability

(4.23)

with J  > 1. It is then possible through basic transformations to derive the following formula for a cell 

value e# in the group assortment matrix

[l + rGr( J - l ) ]  U = f )  

i l - rGr) O '* / )

(4.24)

v 7
(4.25)

(4.26)
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p sw and, respectively, the local connection parameter K  in the small-world model. Therefore, we can 

expect that changes in average path length and clustering are similarly dramatic as in the small-world 

model if we keep J  relatively large and vary rGr.

The advantage of such a model is that it can produce a considerable value range of network 

parameters (V,C,r, and £) on which we focus in our analysis. Moreover, this model can be even 

more realistic if  we drop the assumption of equal group sizes. Combined with a model of Markov 

networks (see next section), this approach might even allow us to approximate the diffusion process in 

networks without actually constructing the network. However, at least two complaints can be brought 

against using the model.

The model’s first disadvantage is that one might need a very large network to accommodate all types 

of assortments and groups. If, for example, the group size is too small, especially if the maximum 

degree kmax is smaller than NGr, the degree distribution in the group becomes very different from the 

population’s degree distribution. As a consequence, the model might not be able to reproduce all 

required combinations of network parameters for limited population sizes. On the other hand, when 

the population size N  is large, it can be very time-consuming to simulate diffusion process on that 

network. The second drawback is that the joint effect of r,rCr, and J  on parameters like C and £ can 

be very intricate and difficult to fine-tune. We thus leave this model for future analysis and go for 

another option.

A potentially more fruitful approach is to first ask which combinations of parameters we need to test, 

and secondly, which of these combinations are reproduced by existing network models. We then 

simulate diffusion process on networks constructed with different methods and pool the simulation 

results.

Let us start with defining the required combinations of network parameters. As discussed, we want to 

investigate the impact of the four parameters V,C,r, and t  on the diffusion process. To limit the 

number of trials, we adopt a common practice in experiments to restrict the number of value levels per 

parameter to two (Box, et al. [27], p. 306). This approach equates a factorial design at two levels and 

requires that we identify a high and low value level that define a comprehensive range of values for 

each parameter.

In a next step we can compile all combinations of high low parameter values for the parameters. 

Hence, if there a n different parameters, we ideally have to test 2” combinations of parameter values. 

In our case, we have n = 4 parameters so that there are 16 combinations (“cases”) to be simulated (see 

the design matrix in TAB. 4.3).

Of course, it would be possible to run simulations with more than two levels of parameter values 

if we wanted to explore values between the two extreme points. This would be especially important if 

the effect of each network trait on the diffusion process followed a non-linear function. However, 

several pre-test runs suggested that this is not the case. Moreover, the required number of runs quickly
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becomes high if more than 2 levels are studied. For example, a factorial design at 3 levels results in 3” 

test combinations. We thus apply a factorial design at two levels and leave a more complex 

experimental design to future research.

The question now is which network models are able to reproduce these combinations. There are, 

of course, many different network models, but we here focus on the previously discussed Poisson 

random graph, configuration model, and small-world model plus the aforementioned link-swapping 

mechanism for introducing degree correlations. The reason is that these models are thoroughly 

discussed in the literature, have very general construction principles, and are relatively easy to 

implement.

C ase V C r i Construction m ethods

1 H H H L Configuration model (fat right tail)

2 H H L L Configuration model (fat right tail)

3 H L H H Configuration model (fat right tail)

4 H L L H Configuration model (fat right tail)

5 L L H L Small-world model, config. model (small degree variance), Poisson random graph

6 L L L L Small-world model, config. model (small degree variance), Poisson random graph

7 L H H L Small-world model, config. model (small degree variance), Poisson random graph

8 L H L L Small-world model, config. model (small degree variance), Poisson random graph

9 L H H H Small-world model

10 L H L H Small-world model

11 L L H H Small-world model

12 L L L H Small-world model

13 H H H H

14 H H L H

15 H L H L

16 H L L L

TAB. 4.3: Design matrix for a two-level factorial design with 4 parameters V , C , r ,and C requiring 16 test 
combinations (“cases”) and the respective network construction methods that can produce the level combination. 
High and low  value levels are abbreviated “H” and “L”.

For each of these models, we first check which models generate a high and/or low level of the 

respective parameter (see TAB. 4.4), before we ask which models can reproduce an entire case.

A configuration model with a fat right tail can generate a network with a high degree variance, 

and, if N  is sufficiently small, high clustering and short average path length (see formulae (4.3) and 

(4.4)). If the configuration model follows a Poisson distribution or any other distribution with a small 

variance or has a low maximum degree kmax, the resulting network has a low V, and if (k ) is small, 

low levels of clustering (see (4.3)). For a low maximum degree k^  and large N, the configuration 

model also produces long average path length (see (4.4)). The Poisson random graph has low levels of
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degree variance, a short average path length, and can have high or low clustering, depending on the 

connection probability p ER. The small-world model has a low level of degree variance and can 

accommodate all high and low levels of C and i  (see section 4.3). The link swapping mechanism to 

introduce a positive degree correlation into the network can be applied to all three network models, 

provided that the degree variance is sufficiently high.

If we now analyse which model can reproduce particular cases of the two-level factorial design, 

we find that the configuration model with a fat-tailed distribution can accommodate parameter 

combinations where the degree variance is high and the degree correlation can be high and low while 

clustering and the average path length are, respectively, high and low, or low and high (cases 1 to 4 in 

the experimental design; see TAB. 4.3). A configuration model with a low level of degree variance 

and a Poisson random graph can cover settings with short average path length and all combinations of 

clustering and degree correlation. Such set-ups thus cover cases 5 to 8 (see TAB. 4.3). A small-world 

model is able to produce all combinations that include a small degree variation (cases 5 to 12 in TAB. 

4.3) as long as the model’s small degree variation permits introducing a sufficiently high degree 

correlation.

Finally, settings with a high degree variance and joint high levels, and respectively, joint low 

levels of clustering and average path length are difficult to reproduce with these network models 

(cases 13 to 16 in TAB. 4.3). A quick look at formulae (4.3) and (4.4) shows why: if the network 

size N  increases, the clustering tends to decrease while the average path length increases. Likewise, if 

(k 2  ̂ or (k) becomes large, the clustering increases, whereas the average path length becomes shorter.

Network. Model with high parameter value (H) Model with low parameter value (L)

• Configuration model with small V

V • Configuration model with a fat right tail • Poisson random graph

• Small-world-model with small p sw

• Small-world model with K >  1 and small p „  .  Small-world model with high p„.

c  .  Configuration model with a fat right tail and .  Configuration model with small V and (k) 
relatively small N  ' '

• Poisson random graph with high p ER * Poisson random graph with low pER

r Poisson random graph, configuration model, and small-world model with V >0, modified with link 
swapping mechanism

• Small-world model with high psw
• Small-world model with low p sw

£ • Configuration model with a fat right tail
• Configuration model with small kmax a°d relatively small N

• Poisson random graph

TAB. 4.4: Construction methods and specifications for reproducing high and low levels of network parameters 
V,C,r, and L
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This overview shows on the one hand that the configuration model and the small-world model, 

modified with the link swapping mechanism, can describe most of the desired parameter combinations 

(cases 1 to 12). The Poisson random graph model can be skipped in favour of a configuration model 

with a small variance or the small-world model for cases 5 to 8.

On the other hand, we see that none of the three construction methods is able to generate networks 

with a high degree variance, a high clustering coefficient and a long average path length (cases 13 and 

14). Likewise, the three presented methods cannot design networks with a high degree variance, a low 

clustering coefficient and a small average path length (cases 15 and 16).

The question is then how important these missing cases are if we later pool the simulation results 

over all cases. To answer this, we can, for example, perform a multicollinearity analysis with the 

network measures V, C, r, and £ as input parameters of a regression model. It can be expected that 

these parameters are hardly correlated as long as we can supply sufficiently large data samples of the 

twelve feasible cases.

Taken together, we can use different specifications of the configuration and small-world model, 

potentially altered by the link-swapping mechanism, to produce a wide range of different networks 

that allows us to investigate the network effects on diffusion processes.

In this chapter, we presented four models to construct networks: the Poisson random graph, the 

configuration model, the small World model, and a very versatile link swapping mechanism that can 

be applied to the other models to introduce any degree correlation or assortative mixing between 

nodes. Each of these models only partly reproduces the desired combination of network features. We 

then identified for which combination of network features a construction method is applicable. As a 

result, we can reproduce very realistic social networks on which we can run diffusion processes. How 

to set-up such simulations is discussed in chapter 6 and 7. Before turning to simulating processes on 

social networks, we model the development of a social network in the next chapter. This offers 

potential explanations for the structure of social networks and provides hypotheses on the stability of 

features in social networks.
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Chapter 5

Modelling the evolution of social networks through 
structural balancing*

The descriptions of networks in the previous chapters were largely snapshots of social structures. That 

raises the question whether the presented features are static or change over time. Of course, the best 

way to answer this is to observe the development of social networks for a given duration. Such a 

survey, however, is not easy to conduct. For example, many people at potentially distant locations 

might have to be monitored, and most social interactions of survey participants have to be recorded in 

the study (see, for instance, Sampson [146] for such an endeavour). Of course, the digital footprint of 

social interactions on the internet and on mobile phones will facilitate such surveys (see, for example, 

Onnela et al. [134]). Yet many technical difficulties remain in obtaining empirical data on the 

evolution of social networks. One option to get at least a rough idea about the dynamics of social 

networks is to simulate the network’s development (see, for example, Newman, et al. [129] for an 

overview of attempts in that direction). In this chapter we follow this route by introducing a new 

evolutionary network model. Here, we only propose -  and do not empirically test -  this model. The 

model’s results should thus be seen as hypotheses about a social network’s development. This chapter 

is an excursion from the main research plan as we only require static networks for the diffusion studies 

presented later in the thesis. Nevertheless the described evolutionary model gives us an intuition of 

how social networks might develop. In addition, the evolutionary model can give us some hints about 

how robust the results of the diffusion studies on static networks are.

Static and evolutionary network models have been developed in several fields, for example in 

physics, biology, operational research, economics, and sociology (see, e.g., Albert and Barabasi [3] 

and Newman [128]). Most of these models reproduce the observed properties of biological and 

technical networks well but provide less accurate descriptions of social networks. The reason for this 

could be that people -  unlike cells or particles- pursue individual goals that are mostly responsible for 

their social contacts (Doreian [46]). These goals affect the network but are also affected by the 

network (Doreian and Krackhardt [47]). The goals as well as the network are not static but co-evolve 

over time.

This chapter is almost entirely equivalent with the article (Ludwig and Abell [99]). The co-author Prof. Peter 
Abell contributed the initial idea of combining structural balance theory with random networks and 
commented on all parts of the article. I designed the model, programmed and ran the simulations, generated 
the results and graphs, and wrote the article.
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Of course, several general principles of network construction could apply in the social as well as 

in the physical domain (Albert and Barabasi [3]). Take, for example, three fairly common growth 

principles of networks: random attachment, preferential attachment, and age-driven removal. Random 

attachments might happen within groups of people with no previous contacts at all (say, on a cruise). 

Preferential attachment could be at work when people with a larger number of friends tend to acquire 

new friends more readily (evoking the Matthew effect: “For to every one that hath shall be given”). 

Age-driven removals take place as people die or fall into oblivion (for example, forgotten High School 

friends). These principles surely play a role in the emergence of social networks; however, they only 

describe wholesale phenomena, insensitive to individuals’ goals. For example, a person might choose 

to contact a less popular person if his position in the social network makes it preferential to do so.

How then can we extract a feasible construction principle out of the myriad of individual goals in 

social groups? Sociology offers at least two findings: the locality principle and structural balance. The 

locality principle describes the fact that people mostly choose their social contacts based on their local 

information of the network (Doreian [46]). For example, people might become acquainted with each 

other through the introduction by a common friend. Using this argument, Ebel, et al. [51] simulated 

the evolution of social networks by randomly linking up neighbouring nodes. Such an introduction 

mechanism alone, however, does not take into account two other cornerstones of social life: the 

quality o f dyadic relations (Do two people like/dislike each other?) and triadic relations (Do two 

people compete for the attention, co-operation, etc. of the third person?). These two aspects of social 

interactions are major drivers of social choice and at the heart of another classic in sociology, 

structural balance theory.

Structural balance theory evolved from the work of Heider [77] and describes a social selection 

process in people’s minds. According to this theory, people establish dyadic relations that each side 

equivalently perceives as either positive or negative. If three persons form a triadic relation they 

perceive it as either “balanced” or “imbalanced”, depending on the number of positive and negative 

relations in the triangle (see FIG. 5.1).

T r f  (A;B) (A;C) <B;C)

+ + + 
+

Balanced +

Imbalanced + +

FIG. 5.1: Positive (+) and negative (-) sentiments in triangle 
relations and the respective triangle type.

A balanced triangle exists if either one or all of the three relations are positive, that is, if “my fr ien d ’s 

friend is my friend”, or “my enemy’s enemy is my friencT\ or “my enemy's friend is my enemy”, or “my
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friend’s enemy is my enemy”. An imbalanced triangle, in contrast, occurs in all other combinations, 

that is if either two or none of the three relations are positive. Imbalanced triangles provoke unease 

and force people towards more balanced combinations that could involve a re-organisation of the 

entire network (Heider [78]). These effects of triadic relations have been confirmed in several 

empirical studies (Sampson [146] and Doreian and Mrvar [48]). It, thus, seems reasonable to use the 

balance of sentiment in triadic relations as a construction principle for social networks.

This chapter outlines an evolutionary network model that is based on the insights of balance 

theory as well as the locality principle. To model the network growth accordingly, we sequentially 

randomly attach positive and negative edges to a given set of nodes. For each node, we sequentially 

keep track of the number of unbalanced triangles. Once a node reaches a certain threshold of 

unbalanced sentiments, we remove its links at random one after the other until the threshold is not 

exceeded. This process in turn might cause other nodes to become too imbalanced so that the re

balancing process cascades until all affected nodes are sufficiently balanced again.

We first show how to model such a network’s evolution and then analyse how the evolutionary 

process converges towards an unstable equilibrium that may be a state of self-organised criticality. 

The concept of self-organised criticality, first outlined by Bak, et al. [7] in the “sand pile” model, 

increasingly stimulates research into the description and construction of networks (see, among others, 

Goh, et al. [66], Hughes, et al. [83], Bianconi, et al. [21], Sneppen, et al. [149], and Fronczak, et al. 

[59]). For example, Hughes, et al. [83] use a network mechanism to describe self-organised criticality 

in the sun’s magnetic field lines and the resulting size distribution of solar flares. Fronczak, et al. [59] 

show how a random network evolves into a state of self-organised criticality upon introducing a 

rewiring procedure that depends on each link’s age. Although these models make reference to the 

original sand pile idea, they usually apply different definitions of self-organised criticality in networks. 

We here define a network’s self-organised criticality as a medium-term statistical steady state where 

the average number of added and removed links (or triangles) per time step is equal, and the 

distribution of triangle removals in a given time unit is scale-invariant (Grinstein [73] and Somette 

[151]). The properties of networks in such a state will be reported later in the chapter.

5.1 Model of network evolution

Consider a set of N  vertices (that is, persons) that are subsequently linked with each other. At each 

time step t a single symmetric positive or negative link is established at random between two directly 

unconnected vertices. The likelihood of a link’s quality (positive or negative) depends on a 

friendliness index-\<<p<\ so that the probability of a positive link is *j-. Accordingly (see FIG.

5.2), the probability of a randomly chosen completed triangle being balanced (respectively 

unbalanced) is
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pa =
(5.1)

2 2

If we have, for example, ^  = 0.4, then 70% of newly introduced links are positive and 

^(0.43 + 1) = 53.2% of triangles are balanced (see FIG. 5.2).
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FIG. 5.2: Probabilities for positive 
links and balanced triangles in the 
network for different values of <p. 
If ?̂ = 0, both probabilities are 50%.
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In general, the fraction of balanced triangles in the network shifts only slightly as the friendliness 

index varies between-0.5 < <p< 0.5. It is only for extreme values for a  that the mix o f triangles 

changes dramatically.

Now consider a uniformly distributed threshold parameter-1 < Q< 1 that indicates the quantity of 

imbalanced triangles that is just tolerated by an agent. We compare 6  with a vertex j ’s balance

/  +_a->
index 67; = —— r  , where a+ and a are the number of balanced and imbalanced triangles running

V A +* Jj

through the vertex. Hence, a vertex i stays inert as long a s # <67,, and becomes unbalanced otherwise.

After a new link is hH H pH  tr» thp» n p h v n r t  n i l  /7T n f  t h p  n e t w o r k  nrf» r 'n l r n l n t p r l  i n  n r n n d n m



especially if they are interpreted as an actor’s attempt to become more restrained in general.

The network’s evolution proceeds either until the network contains the maximum number of potential 

links N(N - I ) / 2 (self-referring links are excluded), or until a predetermined number of time steps is 

reached. For each time step, we measure several network properties, the number of link removals as 

well as number and type of triangle removals.

5.2 Settings for the network’s evolution

Three types of networks occur in the simulations: dense, semi-sparse, and sparse networks (see FIG.

5.3). In dense networks the number of triangles 5, and links Et at time step t quickly grows, 

interrupted by little cascades of break-ups, until the network becomes complete at or soon after 

t = N(N - \ ) / 2 is reached. Sparse networks hardly have any triangles and accumulate only a relative

small number of links up to a certain level around which both E, and E, fluctuate. Semi-sparse 

networks have a similar growth pattern to sparse networks; however, the level around which their 

number of triangles and links fluctuate is significantly higher than in sparse networks.

1000 FIG. 5.3: Typical growth patterns of triangles 
E, and links Et in dense, semi-sparse, and sparse 
networks (N = 60) during the early time steps of 
the evolution.
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The type of network depends on both the friendliness index and the (assumed) uniform balance 

threshold in the network. To investigate the “space of networks” we vary the friendliness index and 

the balance threshold for representative values. For each combination, the network size is N = 60 and 

the duration of the evolution is ?max = 1,700, chosen to be well before the time / = 60x59/ 2 = 1,770 

when the network could become complete. We measure the average number of links between 

1,600 < t < tmax and repeat this procedure 4 times to calculate the average number of edges E over all 

four network evolutions (see FIG. 5.4).



FIG. 5.4: Average number of
links E for various combinations of 
(p and d\ each line represents a 
different friendliness index 
<p = { - 1.0; -0.8;-0.4; 0.0; 0.4; 0.8; 1.0}. 
Data are averaged results over 
1,600 < t < 1,700 and 4 simulations. 
The three highlighted combinations 
6? = {0.1;0.4;0.7}lie on the line of 
(p = Q and are analysed in more 
detail later in the paper.
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For each friendliness index (p we obtain a different function between the balance threshold and the 

average number of links. For #> = 1.0, the network evolves to the maximum number of 1,700 links 

regardless of the balance threshold as a new link is added at each time step and no break-ups occur. 

This case is thus equivalent to the classical random graph model (also called ER-model) (Bollobas 

[26]). The same ER-network is in place for 0 = - \ ,  when the nodes tolerate an unlimited number of 

negative triads.

If (p — —1.0, the network contains 1,700 links when 6 - - 1, but only about 145 links for most 

other balance thresholds. A special combination is ( p - -1.0 and 6 = 1 where no triangles exist at all
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1,700 If 0 is sufficiently low, the evolved network is dense and contains only slightly less than

come links. As 6  becomes more positive, the number of links strongly decreases and the networks be

very semi-sparse. Beyond a certain degree of intolerance (balance threshold), the number o f links is
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FIG. 5.5: The average number of links E for 0 = {0.05,0.10,...,0.95,1} and q> = 0 standardised by £(0 = 1).The 

number of links were averaged between 1,000 < t < N (N  — 1 )/2 and, respectively, over 5 runs for the three 
network sizes N ={60,80,100}. The function £(0)/£(0  = 1) is almost identical for the three cases. At 0 = 0.65, 
the function becomes significantly larger than 1 and strongly increase as 0 tends to zero.
Inset: The number of links £(0) for the same set-up. The slope of £(0) seems to be independent of n for 
sufficiently large 0.

To analyse what drives the boundaries between the three types of networks, let us first take into 

account two measures: the probability for a balanced triangle PB = ^ f-  and the minimum proportion 

of balanced triangles required by the network’s members *° remain inert. The division between 

dense and semi-sparse networks appears to occur where the probability for a balanced triangle is lower 

than the required minimum proportion of balanced triangles:
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G(<p,0) =
1 + (ff3 \ A* 1 + p } (5.4)

2 ) 1 2\  /  \

which is the probability that a randomly chosen set of y  triangles created at any time throughout the 

evolution, contains only balanced triangles. If G((p,Q) is significantly above zero, the average number 

of edges E in the network strongly increases and the network is likely to become semi-sparse. In FIG. 

5.6, we plot G for (p -  0 and against different values of 0.
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FIG. 5.6: The probability (/(#> = 0,0) that a 
randomly chosen set of a* triangles ever created 
throughout the evolution contains only balanced 
triangles. For sufficiently high values of 0 
(here, about 0 = 0.75), a* increases very fast 
and converges to infinity for 0 = 1. Consequently, 
G{<p,G) is approximately zero for values 
0>O.75 (and exactly zero for 0 = 1). As a 
result, the number of triangles and links in the 
network falls strongly at around 0 = 0.75 and 
stays at about the same low level for higher 
values of 0. This cut-off value increases for 
larger network sizes N and longer durations of 
the evolution, / .

Apparently, G decreases steadily as 0 grows. At a certain value of 0 (for q> = 0, at about 0 = 0.75),

the  n rn h ah ilitv  G  ic rlr>gp tn 7Prn T h is fnllnw g frnm  thf>

between sparse and semi-sparse networks not only depends on G but also However, the frontier

duration /max of the network’s evolution, and other random effects during on the network size N, thi

the evolution.

of the three types of networks, we measure the number of balanced and To gain a better idea



of balanced triangles in semi-sparse networks are higher for cases of lower values of ^.Moreover, it 

becomes clear that a proportion of balanced triangles * 1 corresponds to sparse networks.

FIG. 5.7: The fraction of balanced 
triangles <%B for different values 6 and
for (p = {-0.8,0,0.4}. For values 

<p} > 0, the fraction of balanced 

triangles %B is close to +

Beyond that point, steadily
increases until it is close to one. The 
usual examples 0 -  {0.1,0.4,0.7} are 
for q> = 0.
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The fact that a very high fraction of balanced triangles indicates a sparse network allows us to use it as 

an order parameter for identifying the frontier between semi-sparse and sparse networks.

Let us define the margin s  = 1 -  <̂B « 0 by which the proportion o f balanced triangles in the 

network is lower than 1. This margin is driven by G(q>,0), the network size N, the duration of the 

evolution tmax and other random effects during the network’s evolution. If we set everything else 

constant, we can define a sparse network in terms of s  and G((p,0) where the following holds
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All networks whose fraction of balanced triangles is^B > 1 -  £ are thus defined as sparse. This allows 

us to indicate the frontier between semi-sparse and sparse networks for different combinations of 

#?and 0. To this end, we simulate networks with Af = 100 and measure the fraction o f balanced 

triangles for 10,000 <t<  30,000. If a network becomes complete during this simulation, it is 

classified as dense. Accordingly, a sparse network is a non-complete network whose fraction of 

unbalanced triangles falls below a given level £ . This level increases as the evolution’s duration 

increases. For the example’s duration tmM =30,000, the sparse networks appear to occur for 

approximately £ -  0.03. Thus non-complete networks with %B <0.97 are labelled as semi-sparse. In 

FIG. 5.8a), we give an overview of this classification for combinations of (p~ {-1,-0.8,...,0.8,1} and 

0 -  {-1,-0.8,...,0.8,1}. Apparently, the area of semi-sparse networks lies between the sparse and 

dense networks in the q>- 0 -  space. We can now compare the simulation results with the two frontier 

conditions stated in (5.2) and (5.5) (see FIG. 5.8b).
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FIG. 5.8a): Schematic location of sparse, semi-sparse, and dense networks in the q>- # -space. The networks are 
of size N = 100 and are analysed for the duration of 10,000 <t < 30,000. Completed networks are classified as 
dense. Non-complete networks whose share of balance triangles is %B > 1 -  £ are classified as sparse, while all 
other non-complete networks are labelled as semi-sparse.
FIG. 5.8b): The frontier conditions 0-qP  and 6 -  l-21og|^yLjy/log(£-) with s  = 0.03 almost completely

envelope the area of semi-sparse networks found in the simulation, suggesting that both conditions are major 
drivers of the change between network types. Some completed networks can occur below the upper frontier, 
which is discussed below. For our standard examples with (p = 0, we expect a sparse network for 6 = 0.7 and
semi-sparse networks for 6 = {0.1,0.4).

Using £ = 0.03 in (5.5), we can closely reproduce the shape and location of the frontier between 

sparse and semi-sparse networks. The example networks for (p = 0,0  = {0.1,0.4) are semi-sparse, 

whilst the network for q> = 0,6  = 0.7 is sparse. We also show the frontier between dense and semi- 

sparse networks as given by (5.2). At /max =30,000, all networks with qy" >6  are complete whilst 

most other networks have fewer links. However, there are also complete networks for q? < 6  (for 

example, in case of q) = 0.8,0  = 0.8). So obviously, the frontiers are not entirely fixed. As we will see 

in the next section, the links and triangles of networks in and around the semi-sparse area fluctuate 

considerably during the evolution. This can result in sparse networks becoming semi-sparse and semi- 

sparse networks becoming dense.

5.3 Sim ulating the netw ork’s evolution

The network’s evolution is interesting in two respects: first, the number o f break-ups that occur during 

each time step of its evolution, and second, the corresponding development of network traits. To 

describe a network, we calculate the following properties after each time step t : Et , E* and E~ , the

proportion o f balanced triangles £Bt = , the number of newly formed triangles dE t at the

beginning of time step t , the break-ups of the number of links and triangles (dEt = \Et +1 -  | and
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9E, = |E, + dE t - 5,_,|), the degree distribution p ,{ k ) , and the degree correlation a; .The degree 

distribution indicates the fraction p{k) of vertices with k links in a network. A positive degree 

correlation r represents the tendency of network nodes to be connected to nodes of similar degree. It is 

defined as the Pearson correlation coefficient of degrees at either end of a link and assumes values 

between -1 < r < 1 (Newman [125]).

A network’s evolution always passes through a starting or “build up” period, as shown in FIG. 

5.9. The plot depicts the number of links, triangles, and positive triangles during the evolution of a 

network with (p = 0 and 0 = 0.1. After the start-up period is finished (here, after about 1,600 time 

steps), the number of links starts fluctuating around a mean value (in this setting, at about 33% of the 

maximum number of potential links 60- 59/2 = 1,770). The fluctuating (or “stationary”) state begins 

earlier the higher is the balance threshold 0. However, its start can be difficult to spot, especially for 

the number of triangles. As observable in FIG. 26, the number of triangles approaches the fluctuating 

state much later and is more volatile than the number of links. The swings can be massive even for the 

short period of 10,000 time steps. In our example, there is a decrease o f about 30% of triangles and of 

about 15% of links between time steps 6,467 and 6,480. The positive triangles’ trajectory mostly 

moves in parallel to the development of all triangles. However, the proportion of positive triangles 

decreases until it converges to about 60% of total possible (FIG. 5.10).

FIG. 5.9: The evolution of Et , 5 ,, and
H,+ during 10,000 time steps for 
(p = 0,0 = 0.1. The number of links is in 
a state of steady criticality after about
I,200 time steps, while the number of 
triangles and positive triangles reaches 
the same state some time later. When the 
network becomes steady critical, the 
changes in triangles and links can be 
considerable (see, for example, the 
period shortly before t = 6,500.

FIG. 5.10: The evolution ofgBl and rt 
during 10,000 time steps for (p- 0, 
0 -  0.1. The fraction of positive triangles 
<yg t decrease from 1 to a stationary value
(here, about 0.6). The degree correlation 
first assumes negative values before 
turning positive and fluctuating around a 
positive value.
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The reason for this decrease is that, as the evolution of the network proceeds, more and more links and 

triangles are located with nodes that by chance have enjoyed a stream of predominantly balanced 

triangles. These “super-balanced” nodes act as a stabilising “buffer”, increasing the network’s capacity 

to absorb negative triangles.

To determine the distribution of break-ups per time step, we need to strike a balance between the 

network’s size N  and the duration tmax of the network evolution. While the statistic of break-ups 

clearly requires large networks to be meaningful, the running times usually become unacceptable for 

very large networks. However, we can partly capture the behaviour of large networks by extending the 

duration of the evolution (for example, to collect more extreme outliers of break-up sizes). For these 

reasons we ran the network evolutions for 100,000 time steps with a relatively small network size 

TV = 60 . We collect data for t > 10,000 in order to measure the break-ups only during the fluctuating 

state. As before, we choose the three standard combinations with balance thresholds of 

# = {0.1,0.4,0.7] and a friendliness index of <p = 0.

FIG. 5.11a) and 5.11b) depicts respectively the relative frequency of break-ups of triangles and 

links during a time step /. The break-up distribution for triangles can be fitted to a power-law for 

semi-dense networks (here: # = 0.1 and # = 0.4). For example, the power-law exponent of the break

up distribution for # = 0.1 is about 1.3. As # increases, the power-law exponent becomes larger, that 

is, the power-law distributions become steeper.
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FIG. 5.11: The relative frequency distribution of a) the number of break-ups of triangles 5E, and b) the 
number of break-ups of links dE, in the network during t =10,000 until t=100,000 for e = {0 .1 ,0 .4 ,0 .7 } . The 
break-up distribution of triangles follow a power-law for # = 0.1 and # = 0.4 and an exponential distribution 
for # = 0.7. The break-up distribution for links seem to follow exponential functions but can also be fitted 
to power-law functions. Simulations with much larger networks are required to confirm this judgement. The 
regressions become less accurate for highly infrequent data points due to the finite size of the network and 
of the network’s evolution.
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For sparse networks (here: 9 = 0.7), the distribution is exponential, as shown in the semi-log plot of 

the insert in FIG. 5.1 la). The break-up distributions for links can be fitted to an exponential function 

whose mean is (very close to) 1 as long as the network is non-dense (here, for all three cases 

0 = {0.1,0.4,0.7}). To substantiate this observation of the exponential distribution, however, one 

needs much larger networks and more data points for the distributions’ tails. In other words, the 

creation of links equals the average destruction in non-complete networks with (p3 < 0. According to 

our definition, this indicates that semi-sparse networks approach a state of self-organised criticality. 

Simulations of other settings show that break-ups in dense networks hardly occur while break-ups in 

sparse networks are frequent but of limited size. The reason for the latter is that unbalanced triangles 

beyond the lower frontier are almost always tom apart upon their creation, which leaves no room for 

the creation of network structures large enough to provoke break-ups at significant scale. So it is only 

in semi-sparse networks, we find that the number of triangle break-ups follows a power-law. This 

condition, of course, only holds if the average number of added and removed links is in equilibrium.

The degree correlation and degree distribution fluctuate throughout the evolutionary process and 

each is quite different in the “start up” period and the stationary period. Therefore, we take averages 

over a period of time steps that surely take place in the stationary period and mark mean values by a 

bar over the respective symbol: the average degree correlation is r = -— r, and the average

degree probability is p(k) = -— ^  p, (k ). Proceeding in this way, we can compare values for 

different combinations of ^>and 9.

The degree correlation r  assumes positive values in semi-sparse networks (see FIG. 5.12, using 

settings as in FIG. 5.7). The positive degree correlation is due to the fact that links and triangles 

gravitate to the “super-balanced” nodes. These nodes are less likely to remove links, and thus, on 

average, tend to be linked to each other, resulting in a positive degree correlation r, (“hard core 

effect”). The “hard core effect” increases as the balance threshold increases but disappears after the 

lower frontier is encountered.

FIG. 5.12: Average degree correlation r  for 
different values of 6 (settings as in FIG. 7). 
Until the frontier condition at q? = 9, the 
degree correlation is slightly below zero (but 
converges to zero for larger networks as in 
the classical random graph). Between the 
first and second frontier, the network 
displays self-organised criticality and the 
degree correlation increases until about 
r =  0.1 (and beyond 0.25 if the evolution 
lasts longer). Beyond the lower frontier, the 
degree correlation is slightly negative. The 
example combinations <p- 0,9 = {0.1,0.4}

-0.1 have a positive r, while the combination
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 l (p = 0,9 = 0.1 leads to a netw ork w ith  a

6  n egative  r .

^  =  - 0.8 
( p -  0 . 0

09= 0.4

e= 0.4 
e= 0.7
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The reason for this on-off phenomenon of degree correlations is that an increasing balance threshold, 

on the one hand, makes the group of “super-balanced” nodes more exclusive and fosters links to and 

between them. On the other hand, it increases the number of nodes that frequently break up links and 

“re-randomise” the network. Both counter-steering trends determine the size of the “hard core”. If the 

“re-randomisation” dominates, as in sparse networks, the degree correlation becomes slightly negative. 

In case of completed networks, the degree correlation is very close to zero, but might slightly diverge 

from zero if the network size is relatively small or if a sufficient number of break-ups have taken place 

before the network is completed.

The balance threshold 0not only has a strong impact on the degree correlation but also on the 

degree distribution p(k). The inset of FIG. 5.13 shows the degree distribution p{k) for the three cases 

of 0 = {0.1,0.4,0.7} with a network size N  = 60. Again, the “hard core effect” is at work: if the balance

threshold increases, the “super-balanced” nodes gain additional links during the network’s evolution, 

which leads to more varied degrees and thicker right tails of the distribution. At a certain point, the 

“hard core effect” becomes smaller as the “re-randomisation” intensifies. If the balance threshold is 

high enough (0 = 0.7 in the example), the degree distribution seems to converge to a Poisson
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the epidemic threshold of the network (Albert and Barabasi [3]). We find that the generated degree 

distributions p(k)  mimic those in the real world strikingly well for suitable values of the balance 

threshold (Newman, et al. [131]). For example, compare the degree distribution for 0 = 0.1 and 

for# = 0.4 in FIG. 5.13 with respectively the number of collaborators of movie actors and interlocking 

directorships (both reported in Newman, et al. [131]).

The evolutionary network model described in this chapter is based upon a plausible sociological 

concept -balance theory- and reproduces several characteristics of known social networks, notably a 

positive degree correlation and a variety of degree distributions. The model gives an idea how social 

networks might evolve over time, and that their characteristic features might require different periods 

of time until they reach their medium-term stationary values. This, and the existence of different 

balance thresholds between groups, organizations, and populations might explain the observed variety 

of real world degree correlations and degree distributions. The reasonable fit with some empirical 

network properties can also be interpreted as a validation (but certainly not a proof) of balance theory. 

The simulations of the network’s evolution suggest that certain network features might be more stable 

than others. According to the model, the average degree and the clustering stays relatively inert over 

time, while the higher moments of the degree distribution, the degree correlation, and the number of 

triangles can change strongly. These potential variations of network features should be kept in mind 

when we analyze the impact of static network structures on the diffusion process in chapter 7. In order 

to quantify these effects, we first have to set up a simulation model for a network-based propagation 

process. Such simulation models are described in the next chapter.
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Chapter 6

Simulating diffusion processes in stratified 
populations and networks

The review of diffusion models in marketing, as shown in chapter 2, singled out two simulation 

models that could be helpful when we simulate propagation processes on networks: the segmentation 

diffusion model and cellular automata. Yet both methods have their drawbacks if we apply them for 

our diffusion analysis. The segmentation diffusion model does not represent networks in a detailed 

manner; cellular automata do not simulate the diffusion process in an efficient and exact way. In this 

chapter we present two simulation models that can be understood as improved versions of the two 

models, inasmuch as they largely avoid the mentioned shortcomings. First we present the general 

technique of the embedded Markov chain (section 6.1), which is the classical approach for setting up 

segmentation diffusion models. This approach can be partly adjusted to mimic networks in so-called 

Markov networks (section 6.2). As it is difficult to investigate the impact of a detailed network 

structure with Markov networks, we then propose an extension of cellular automata. This extended 

model, that we call the “event-queuing-approach”, is able to efficiently simulate the diffusion 

processes on any network structure (section 6.3). It is this approach that we use in chapter 7 to 

quantify network effects in diffusion processes.

6.1 The embedded Markov chain
There a two basic modelling approaches for a Markov process. In the first approach one describes the 

probability distribution that a certain number o f  state transfers happen in a given amount of time. In 

the second approach one specifies the probability distribution that a certain amount o f  time goes by 

until the next state transfer happens. This second approach can be implemented conveniently as an 

embedded Markov chain, sometimes also called a jump process. An embedded Markov chain 

describes one state transfer after the other in discrete time steps. The resulting Markov process is 

efficient, stable, and very suitable for computing, embedded Markov chains are therefore popular in 

many areas of science and engineering. In the following we describe how to use an embedded Markov 

chain in order to simulate a diffusion process in a structured population.
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6.1.1 Deriving the simulation algorithm

Consider the two states S  and 7 representing, for example, non-adopters and adopters in a market of 

N  consumers at time t. People at first are non-adopters and then subsequently become adopters. Once 

adopters, people remain adopters. The population is divided into J  subgroups so that Sj (t) and I} (/)

represent the number of non-adopters and adopters in group j  —1,2,3,... The time-constant (and not 

necessarily symmetric) transmission rate between a sender of group j  and a receiver of group j ' is 

Pjj,. Given these assumptions, the following simulation model gives the correct mean diffusion 

trajectory I(t) in actual time units.

Imagine now a series of “jump points” y  = 1,2,3,... at which exactly one person adopts the product 

and changes from state S  to 7. To find out to which group j  the person belongs, we first determine 

the transition rate Tr(Sj —» Ij \ y) for each group j .  We thus calculate the group-specific hazard rate 

hj (t) and set

hJ(ty) = Tr(SJ - * I J \y). (6.1)

where tv is the time when jump point y  takes place. Next we normalise each group-specific transition 

rate by the total sum of transition rates at y  and obtain the transition probability Pr(Sj —> 7. | y) 

through (Stewart [153], p. 20)

T r ( S , - H j \ y )
(6 .2)

so that ^ j P r ( S j  —> 1},| y)  = 1. We then derive the cumulative function CPr(j \ y)  of transition 

probabilities

CPr(j | y)  = 'ZP H Sj  -> I, I y). (6.3)
j

In order to specify the group j  where the transition happens at time tv, we have to pick the group j  

which satisfies

C P r(j  - 1 1 y)<ci)< CP r{j + 11 y )  (6.4)
with 0 < a> < 1 being a number randomly drawn from a uniform distribution at time step y. Thus the

higher the transition probability Pr(Sj —» 7. | y) the more likely a transition occurs in group j .  After

each jump point y, the number of non-adopters in group j  is reduced by one and the number of

adopters in group j  goes up by one. Accordingly, the hazard rate for the next jump point is h In

that way the Markov model simulates the entire propagation process until everyone has adopted the 

product.
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It remains to determine when the jump points take place. If the underlying Markov process of the 

diffusion is memory-less, that is, if an adoption at jump point y  only depends on the current state of

people at time fv_,,the sojourn time x until the next adoption is distributed according to an

exponential distribution whose mean is the reciprocal of the sum of transfer rates at y  (Stewart [153]).

We thus can calculate the sojourn time z v through

_ -ln(*»)
T , ~ 'Z T r(S j ^ I J \y)

j

in the standard way by drawing a random number 0 < 0)< 1 from a uniform distribution. However, if 

we are only interested in the average behaviour of the diffusion process and want to avoid the 

computationally costly step of generating a logarithmic number, we may simply determine the average 

time span r v between jump point y  and y - l  as

Ty = Y ^ r ^ h \ y ) '  ( 6 ' 5 )

j

Note that the underlying process still has to be memory-less for this simplification. Using either the 

simplification or the exact solution, we then can calculate the time tv for jump point y  with

' v = ' , - > + V  (6.6)

The time is measured in units given by the transmission rates fig.

If we simulate such a diffusion model many times and average the trajectories, we obtain the 

correct distribution of trajectories (or only the mean trajectory if mean sojourn times are used) in real 

time units. This holds true for any stratification of the population, including the case when 

j  = 1,2,3,... stand for single nodes so that fig  is the transmission rate between sender j  and receiver

j ' in a population of N  people.

6.1.2 The simulation procedure

We now show how the embedded Markov chain can be simulated. Here we focus on the same set-up 

of states as in the previous section, that is, we have S  and I  for the number of non-adopters and 

adopters in the population. However, the following algorithm can be applied to any other set of states 

and state sequences:

1. Generate or upload a matrix of rates f3g indicating the inter-group transmission rates between 

a member of group j  to group j ' .

2. Partition a population of N  people into J  groups with index j  = 1,2,3,....
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3. Set t = 0 and divide each group j  into the number of non-adopters 5 .(0  and adopters 

7.(0 for / = 0 .

4. Calculate and sum up all transition rates Tr(Sj —> 7. \ y)  for current time step y.

5. Determine all transition probabilities Pr(Sj —> I  j \ y ) = Tr(Sj -» 7y | y ) j ^ JjTr{Sj —> f  | y).

6 . Draw a (new) random number 0 < to < 1.

7. Determine the cumulative function CPr(j \ y) of transition probabilities and pick the 

transition /  which satisfies C P r(j  \ y )  < 0) < C P r( j  + 1 1 y).

8 . Reduce S*(t) by one and increase 7* (/) by one.

9. Calculate r , = (or,alternatively r ,  = ^ ^ ^ ) a n d s e t / " ’  = / + r >,.

10. Update all transition rates involving 5*(r) and 7* (t).

11. Re-calculate .7r(5y —>7y | y) by adding the updated transition rates and subtracting the 

respective old ones.

12. Go back to 5. for the next time step y and repeat the procedure until a pre-determined number 

7 or time fmax is reached.

This algorithm needs computing time as follows. Step 1-4 are conducted only once, whereas the 

remaining steps are performed for each transmission. Step 5 determines all transfer probabilities and 

comprises J  operations where J  is the number of groups. For step 6 , one random number is drawn, 

step 7 has, on average, \  J  if-then commands, and step 8  and 9 comprise some basic calculations. The

length of step 10 and 11 depends on the hazard rate and involves, at maximum, 2 x J  calculations and, 

respectively, exchanges of new transition rates in the summation of all transition rates. Thus decisive 

for the computation time are step 5,1, 10, and 11 for which we need approximately operations per

transmission. The approximation is due to potential changes in the hazard rate that make steps 10 and 

11 less time-consuming, for example, if only certain groups deal with each other at all. As long as all 

groups mingle with each other, however, the required computing time for both steps is 4 J. If the 

number of states M  is larger than two, the respective computational effort for one transmission 

becomes - \ ) J  operations.

Simulating this algorithm for several simulation runs generates a sample of diffusion trajectories 

whose average is a correct presentation of the mean diffusion trajectory in the network. In addition, 

this simulation model is able to comprise any number of subgroups in the population. For example, we 

can take each node as a group j ,  potentially maintaining a maximum number of N  -1  links to other

nodes. The average computational effort per transmission then increases to - \ ) [ N  + 2 jj) where 

L is the number of links in the network. This means that the simulation time scales with N 2, which is
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usually unworkable for large networks. However, for analysing the diffusion process in a lightly 

stratified population (say, J  < 10), the embedded Markov chain can be a helpful tool, as shown in the 

next section.

6.1.3 An example application of the embedded M arkov chain

Let us consider a case study from the nutritional supplements market. A drug company plans to launch 

a new vitamin supplement on a market of size 77 = 10,000 comprising 20 GPs, 10 pharmacists, and 

9,970 health-conscious patients (index j  is 1 for GPs, 2 for pharmacists, and 3 for patients). The 

product can be obtained from different retail outlets, for example, supermarkets, drug stores, and 

pharmacies. In order to penetrate that market as quickly as possible, the company has to choose 

between two marketing campaigns. Campaign Y represents classical opinion leader marketing with a 

focus on sales representatives promoting drugs to GPs and pharmacists. The rationale behind this is to 

rely strongly on recommendations from GPs and pharmacists, and to a less extent on 

recommendations between patients. Campaign Z, in contrast, prescribes no promotion activities with 

GPs and pharmacists, but intensive advertisement in health magazines to address patients directly. 

Here, the company hopes to win over a sufficient number of patients whose recommendations to other 

patients and pharmacists would boost sales. Both campaigns count on patients demanding the 

supplement at the pharmacies so that pharmacists themselves become heavy advocates of the product 

(usually referred to as “pull-strategy” in marketing). The campaigns are expected to persuade the 

following numbers 7 f of GPs, pharmacists, and patients to become adopters (and thus advocates) in 

the course of 25 weeks (see TAB. 6.1):

Target group Expected number o f  
adopters due to marketing

Campaign Y 
(opinion-leader marketing)

Campaign Z 
(mass-media marketing)

GPs /,“ 4 0

Pharmacists 7 f 3 0

Patients 73- 0 2000

TAB. 6.1: Uniform reach levels over 25 weeks, differentiated by target group and marketing option.

Once a member of group j  is aware of the product (that is, becomes an adopter), his average number 

Vjy of effective recommendations to a member of group j ' is estimated in market surveys. Here it is

assumed that the social network underlying the recommendation behaviour is stable during the time 

horizon of interest. By effective recommendation we mean that the recipient of the recommendation 

immediately adopts the product, given that he has not already done so. In other words, 77, is the 

expected standalone number of adopters, that is, without regard to saturation effects in the market. 

The survey results for 77, over a period of 25 weeks are shown in TAB. 6.2:
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Receiver
Sender GPs Pharmacists Patients

GPs 7* = 2

in0II•S ^ 7in =413 H

Pharmacists i * = 0 7£= 0 i m = 7
23 '

Patients 7j" = 0 7 g = l V" = 3133 J
TAB. 6.2: The average number of recommendations /'" over 25 weeks.

Accordingly, GPs and patients recommend these vitamins relatively often among each other 

= 2,733 =3), while pharmacists do not appear to recommend the product to their fellow 

pharmacists (I22 =0). Pharmacists and patients seem to have no impact on GPs ^  =0,7]" =0).ln  

contrast, pharmacists can be assumed to take some recommendations by GPs and patients into account 

(7,2 =0.5,732 =1). Each GP and pharmacist would give, on average, 4, respectively 7 effective 

recommendations for the product during a period of 25 weeks.

To derive the internal transmission rates 7"-,we assume that everyone in the market mixes with

everyone else, that is, within and across groups. The implications of this assumption will be discussed 

later.

Next, for both external and internal transmission rates, we have to consider that the embedded 

Markov chain outlined above works with individual transmission rates. Thus the average 

recommendation numbers 7 f  and l mg  have to be divided by the respective group size

A, = 20, N2 =10, and N3 = 9970. Furthermore, we have to specify the time units. As the survey results 

are given for a period of 25 weeks, we use a weekly basis and scale all 7" and 7”» by 1/25 = 0.04. We 

thus obtain the external and internal transmission rates, a j and (see TAB. 6.2) , all /? - = 0  are 

excluded), using the following formulae (Morris [121], p. 36)

rev  j  in

< * , = — ; P n = — -J TNj "  TNj

Transmission rate CCY] aY2 aY3 aZ\ aZ2 aZ2 Pn Pn A , Pn Pn Pn

00

b

12 0 0 0 8.02 4 1 0.004 8 28 0.012

TAB. 6.3: External and internal transmission rates in [lO 3 J .

Then the transition rate TrySj —» 7y. ) for the respective group j  is

Tr(S, -+ ll ) = a iS](t) + f t ]S](i)Il (t) 

for GPs to become convinced of the product (to adopt it),

Tr(S2 - * l 2) = a 2 S2 (/) + S2(t)[P 2I{ (t) + Pi213 (/)]
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for pharmacists to becom e convinced o f  the product (to adopt it), and

7r (S, - > / , )  = a 3S3(0  + 5 , (r) [ / U  (r ) + fia I1 (/) + / V ,  (0 ]  

for patients to adopt the product.

The company is interested in the trajectory of the number of adopters /(/)  of the first 8 weeks of 

the launch. After that time, competitors are expected to react to the new offer and the recommendation 

behaviour might change so that a new assessment is due by then. Applying the described embedded

Markov chain, we take the given input data, simulate 100 diffusion processes, and calculate the
_  100

average trajectory of the number of adopters = with
run=l

(0  = Aw.,1 (0  + (0  + A™,3 (0- In FIG. 6.1 the corresponding averaged proportion of adopters

i (t) = /  (t )/N  is depicted for both campaigns during the first 8 weeks after the launch.
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FIG. 6.1: The proportion of adopters ;(/) achieved through opinion-leader marketing (campaign Y) and mass- 
media marketing (campaign Z). Opinion-leader marketing requires about 4 weeks to take off and results in a 
higher proportion of adopters after 8 weeks. Mass-media marketing leads to an almost linear increase of the 
number of adopters, but is eventually outperformed by the other campaign.

We find that the opinion-leader marketing (campaign Y) shows a significant increase in the proportion 

of adopters i(t) only after about 4 weeks. This take-off pattern can be partitioned into a short phase of 

slight picking up, followed by a sharp increase, sometimes called “the knee” of the diffusion or the 

“threshold for take-off’ (see Golder and Tellis [70]). In contrast, the mass-media campaign steadily, 

almost linearly garners a higher proportion of adopters until week 8. Interestingly, the opinion-leader 

marketing betters the mass-media campaign in the last two weeks of the period. One thus might 

conclude that campaign Y is the high risk/high reward alternative, while campaign Z is the safer, but 

less aspiring bet.
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It should be noted that the presented model describes a diffusion process of the proportion of 

adopters in the market over time. Each of these adopters usually purchases the vitamin pills more than 

once per year so that the depicted trajectories do not represent the company’s sales curve. However, if 

the company is able to estimate how many vitamin supplements the average adopter buys per year, the 

firm’s cumulative sales curve can be derived from the shown trajectory of /(/).

Thanks to the embedded Markov chain, we here analyse one transmission after the other, which 

makes it possible to simulate the interaction effects of different groups in an accurate way. After each 

transmission, we can re-calculate the transfer rates a new and thus consider all types of structural 

complexities in the population.

Our model of the nutritional supplements market, however, does not take into account detailed 

network structures among the population. For GPs and pharmacists, this might be negligible as their 

total number is relatively small. Yet the social structure among patients could massively affect our 

results. To take these structures into account, we can simply introduce as many groups as we like (for 

example, very active, active, passive, silent recommenders among patients), or even mimicking the 

detailed referral network between GPs, pharmacists, and patients. The only drawback with that is that 

simulations with the embedded Markov chain tend to become very clumsy for large J  (see also 

Sprang [154], p. 332, who makes this point for Markov models of diffusion processes in general).

There are now two ways out of this problem. On the one hand, one can think of a different 

modelling approach, as we do in section 6.3. The other possibility is to model the referral network 

according to the embedded Markov chain, but with a much smaller number of groups than the actual 

network size N. The latter approach is described in the next section.

6.2 Diffusion modelling with Markov networks

In recent years, several authors in physics and epidemiology have used a modified version of the 

aforementioned embedded Markov chain to describe diffusion processes in networks (see for example, 

Boguna and Pastor-Satorras [24], Moreno, Yamir, et al. [120], Moreno, Yamir, et al. [119], 

Barthelemy, et al. [10]). In these models the population is divided into groups of different connectivity 

k  according to the degree distribution p{k). So now, our previously used index j  becomes k. We 

also specify that a member of group k has k links, and that the size of a k -group is Nk = p(k)N. The 

clue is how the matrix of internal transmission rates f5kk. is defined. To do this, as pointed out before, 

one can include all types of network characteristics, for example, the clustering, the network centrality, 

etc. Here, however, one only considers the conditional probability p(k'\ k) that a person with degree

k (that is, a member of group k) is linked up with a person of degree k ' . Thus the matrix J3kk. (and 

indeed the network) is entirely defined by p(k) and p{k ' | k ) according to the equation (Boguna and 

Pastor-Satorras [24])
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kp(k'\k)p(k) = k 'p (k \k ')p (k ') .  (6.7)

This states that links in the network are symmetrical, that each link emanating from one node must be 

linked to another node, and that all other network traits besides p(k)  and p ( k 11 k) (clustering, etc.) 

are ignored.

Networks that are completely defined by this equation are called Markov networks (Barthelemy, et al. 

[10]). The benefit of using Markov networks for simulating diffusion processes in complex structures 

is, of course, that the number of groups is kept much smaller than network size N. Also, as the focus 

is only on the network properties p(k)  and p {k ' | k), it becomes easier to find analytic solutions for the 

simulations. In the following we describe a diffusion model based on such a network.

Let us consider again a population N  with S(t) non-adopters and I(t) adopters at time /.The

number of people with degree A: is Nk -  Np(k) consisting of Sk (t) non-adopters and Ik (t) adopters. 

The proportion of adopters in a k — group at time t is ik (t) = I k ( t)/Nk.

We now differentiate between two cases: random mixing and assortative mixing. When people 

mix randomly with each other, the conditional probability p {k ' \ k) that a link of a given degree k 

points to a k ' -node is independent of k and we find that

p(r \ k ) = b l l ^ l .  (6 .8 )
w

This is just to say that the probability to pick a node with k links at one end of a randomly chosen link 

is proportional to p{k) (that is, the more k -  nodes, the more likely we find them) and k (that is, the 

more links a node has, the more likely it shows up at the end of a link). Furthermore, the factor 

kp(k) has to be divided by the average degree (&) to obtain the correctly normalised probability 

p ( k ' | k ). Using p ( k ' | k), we can derive the matrix of J3kk. for interactions across all k -  groups as

( 6 - 9 )

where k /z  is the number of interactions k that a person of degree k  has during a time period 

z  (Moreno, Yamir, et al. [119]). For example, if a person has 40 conversations in 5 days, the quotient 

k jz  -  40/5 = 8 . Given that this person has a conversation, there is a probability p(k '\k )  that the 

conversation will be with a person with k links, that is, with a person who has k ' interactions in r.

In presence of marketing activities, expressed by the external transmission rate a, we then have the

following hazard function dlk (t)/dt for a k -  non-adopter becoming an adopter

= aS„ ( 0 + ^ ( 0 * 2  / U « ,  (6-10)
dt 7?\
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with kmax being largest degree in the network (Moreno, Yamir, et al. [120]). If we know the initial 

number of adopters I k (0 ) for all k -  groups, we can simulate the number of adopters Ik (?) over time 

and simply sum them up over all k to obtain the trajectory of the total number of adopters

/ ( 0 = £ /» « ) •  (6 .1 1 )
k

In this case we assumed random mixing between nodes. If there is non-random mixing, the degree- 

degree mixing follows a certain structure, which can be described in different ways, perhaps most 

importantly in terms of the degree correlation r, as defined in chapter 3. A network with random 

mixing of degrees yields r = 0. Otherwise, we have r  ^  0, and more specifically r > 0 in the area of 

social networks. If r > 0, we have a case of assortative mixing.

Assortative mixing can be included in Markov networks, as proposed by Moreno, Yamir, et al. [120], 

To do so, they introduce an index 0 < r < 1 that corresponds to the positive degree correlation in social 

networks. As the degree correlation alters the conditional probability p{k'\k), they use the following 

formula (Moreno, Yamir, et al. [119])

p (k ' \k )  = ( l - r ) ! ^ P -  + rSu . (6 .1 2 )
W

with Skk. being the Kronecker delta function of the -matrix, acquiring the following values

Skk> = 1 , if k = k'

8kk. = 0 , if k ^ k ' .

For r = 0, the random mixing case appears, as before. If r > 0, we take the weighted average of the 

random mixing case and the total assortative mixing case where people only interact within their own 

k -  group. Accordingly, the modelled diffusion process is under the influence of a positive degree 

correlation. However, the modelled extend of correlation, r, is likely to be different from the actual 

r. To see why, compare the definition of the degree correlation in chapter 3 with formula (6 .8 ). 

Nevertheless this model serves to investigate the impact of degree correlations and the degree 

distribution in an approximating way. In addition, this set-up allows analysing network of substantial 

size, for example, Moreno, Yamir, et al. [120] runs simulations on networks of size 106.

The embedded Markov chain thus is able to reproduce several network traits, especially the 

degree distribution and degree correlation, and generates the accurate average diffusion trajectory. 

However, a simulation of other network traits or even the detailed network is difficult to accomplish 

for reasonable network sizes. Furthermore, it does not represent the distribution of inter-transmission 

times correctly so that, for example, the distribution of diffusion trajectories is not accurate. In the
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next section, we propose an algorithm that circumvents these drawbacks of the embedded Markov 

chain.

6.3 The event-queuing model

In this section we describe an efficient version of a Markov process that can encapsulate many 

different modes of individual behaviour and allows us at the same time to correctly simulate mixed 

diffusion processes in complex networks. The underlying method is a variation of the Gillespie 

algorithm, originally proposed to determine coupled chemical reactions (Gillespie [63]). It turns out 

that this method is very flexible and can easily be adapted to diffusion processes in networks.

We first start with some mathematical underpinnings of the algorithm before we outline each step 

of the algorithm. As an example application, we finally simulate how contradicting news (that is, 

information favouring either one of two parties) diffuse among the electorate of a two-party system.

6.3.1 Deriving the algorithm

Consider a network of A vertices and E  directed links as defined by an adjacency matrix of size 

N x N .  Each link / e L ties a sending vertex j e N  to a receiving vertex j ' e N .  Each vertex y(or 

f )  at time t assumes a state z(y';/)that is one of Z different state types z = l,2,...,Z indicating the 

respective propensity to send and receive information. Furthermore, let us define the transmission 

rate p, (z(j;t);z(j';t)) so that P,dt is the probability that information is transmitted on a link I during 

the small time interval dt, given the two states at the ends of the link. While these two states remain 

unchanged, we assume P, is constant (so the time to transmission has an exponential distribution with 

mean 1//?,).

We now bring in M  different external information sources, each maintaining a transmission channel 

to all vertices so that M x N transmission channels exist between the network members and external 

sources. Similarly, the transmission rate or . (z(m;t);z(j;t)) is the probability that information is 

transmitted from an external source mto a vertex j  with state z(j\ t)  during the interval dt. The 

transmission state z(m;t) denotes the reach of the sender over time and can be at the discretion of the 

external sender m (for example, marketing efforts of company m, announcements in mass media by 

party m,etc.). Adding the external transmission channel to the network links, we have V = L + M x N  

communication links in total. For convenience, we label all V communication links, regardless 

whether internal or external, as v = 1,2,.. .,L + M x N  and let Zve {a^,...,aMxN,Px,...,PL\ be the 

transmission rate on link v. As before, \  depends on the link type and the end node states.

We now interpret the propagation process as a sequence of information transmissions along the links. 

To simulate the sequence, we have to find out at time t of the diffusion process on which link v* and

99



at what time tv„ > t the next transmission occurs. Then we set t = tv, to obtain the starting time for the 

next step in the sequence.

For determining v* and tv*, we first note that no other communication takes place between time t and

the next transmission in the sequence. Put differently, the communication on link v* is “standalone”, 

that is, it is independent of other transmissions. The trick is then to calculate a potential “standalone” 

transmission time tv for all links v at time t and simply select the link v* whose transmission time 

tv = tv* is the earliest point of time (Gillespie [63]). We sample tv from an exponential distribution 

with mean 1/AV in the standard way, by sampling a uniform random deviate co on [0 , 1] and setting 

t = -ln(*y)/Xv. So we draw a random set of “standalone” transmission times tv for all communication 

links v. We then select the link v* whose “standalone” transmission times tv = tv* is the minimum 

(that is, earliest) of all “standalone” transmission times tv

v =argm in(/v). (6.13)
v

Once the link v* and the transmission time tv, is known, we set t — tvt, update the states o f network 

nodes z(j;t)  as well as the corresponding transmission rates Xv and recalculate the “standalone” 

transmission times for the next step of the sequence. According to (5), the new “standalone” 

transmission times t"™ must be

tr=<+(-Ho»/*r), (6.14)
where t is the updated time .

Only those “standalone” transmission times tv have to be recalculated whose transmission rates X"ew 

have previously been updated. All other “standalone” transmission times tv are still valid for the next 

time step. This makes the algorithm very efficient because we update only those “standalone” 

transmission times, which border the previous receiving and sending nodes.

The type of updates, in turn, can be very varied. For example, a node can be updated from 

"uninformed" to "informed", or from "non-adopter" to "adopter" of a product. Another rule can 

prescribe that a sender stays silent after having learned that the receiver is already informed.

Alternatively, both nodes can simply alter their status without any interference of other nodes (due to,

for example, forgetting information). It is also conceivable that the update follows a game theoretical 

rule or any other behavioural assumption.

To formalise the transformation rules for changes in states z( j; t),we introduce the functionH .The 

function H  shows which state is acquired by the sender and receiver of communication link v upon a 

transmission of information at time tv:

H :(z ,z ' \ t ) ^ > (z ,z ' \ tv. >t)  z ,z ' = {l,2,...,Z}. (6.15)
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The sender (that is, the external source or another node) is of state z, the receiver is of state z .

After each transmission, the prevalence of states in the network changes according to //.Then the 

prevalence of certain states can be re-counted to derive a sample trajectory of measures like the 

number of adopters in a market or the market share of a brand. How to implement the recording of 

such trajectories in the simulation procedure is shown next.

6.3.2 The simulation procedure

Our objective, as previously discussed, is to simulate the information diffusion in a network as a 

stochastic process through successively sampling potential transmission times tv and selecting the 

shortest of them. This can be done as follows:

1. Simulate or upload an adjacency matrix that defines a network’s directed links / = 1,2,..., L.

2. Set t = 0 and the initial state z( j , t  = 0) for each node j.

3. Generate “standalone” transmission times tv = —ln(ry) / Avfor all communication links vby 

drawing V independent uniformly distributed random numbers 0 < co < 1 and store the 

tv values.

4. Pick the shortest “standalone” transmission time tv. and the corresponding communication 

link v* according to v* = arg min (/v).
V

5. Update the states of the involved vertices according to H  and set t - t v„.

6 . Re-calculate the transmission rates Av = A”ew for all communication links coming from or 

leading to the updated vertices j  (and / ,  if necessary). This includes the M  transmission 

channels to vertex j  (and j ' , if necessary) and all network links of vertices j  and f .

7. Draw a new “standalone” transmission time t”™ =t + (-hi(*y)/,lv”ew) for each updated 

transmission rate A"™.

8 . Record the statistics of interest (for example, the number of vertices of state z at time t ).

9. Go back to 4. until all nodes have reached a certain state, or until a pre-determined maximum 

time imax is passed.

The steps of this algorithm require the following computing time. Steps 1-3 are only conducted one 

time, while steps 4-9 are carried out for each transmission. Step 4 includes looking up a transmission 

time in an array of size V = L + M x N  so that, on average, V operations are necessary. Step 5 just 

means some exchanges of values. Step 6  comprises looking up the updated nodes and swapping values 

for their links, which requires, on average, L/N  operations, if either one of the receiver and sender is 

updated, o r lL /N  operations, if both are updated, or no operations if neither is updated. For step 7,
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independent random numbers have to be drawn for as many links as were previously updated. The size 

of Step 8  depends on the measurements of interest, but usually can include just one or several 

additions. Step 9 is just an if-then-command. So only steps 4 and 6  are decisive in terms of network 

size and number of information sources. The procedure can be even faster if one stores the 

“standalone” transmission times tv in an indexed priority queue, as suggested by Gibson and Bruck 

[62]. Then step 4 would be just one instant, while step 7 would include a heapsort mechanism that 

costs at most 2 (M  + L/N)\og2 V per transmission.

The resulting algorithm generates a trajectory of a given measure (for example, the number of 

informed people) that is a correct realisation of the diffusion process. By conducting several 

independent trials of the procedure, we obtain a representative sample of diffusion curves whose 

average represents the expected behaviour of the diffusion process (see Gillespie [63] and Gibson and 

Bruck [62]).

6.3.3 An example application

We now apply the algorithm to investigate the diffusion of two contradictory new stories in a social 

network. Each network member is either of state z = l or z = 2 which symbolise the bipartisanship in a 

two-party system (1 = voter for Party ONE, 2 = voter for Party TWO).

The two-party system contains the electorate (that is, the social network) and two external information 

sources (that is, mass media) favouring either one party. Neutral information does not exist, so that 

information pro Party ONE is equivalent to information contra Party TWO and vice versa. People in 

the social network receive information from the mass media and exchange this information with their 

network neighbours. Social ties are assumed to be stable during the period of interest. Upon receiving 

information, a person updates his state according to the following rules:

' (1;1) - > ( 1;1)
(1;2 ) —> (1;1)
(2 ; l) -> ( 2 ;2 )
(2; 2) - > ( 2; 2)

This means that the recipient of information immediately acquires the view of the sender or of the 

external information source unless he is already a supporter of the respective party. In the latter case, 

the states of sender and recipient stay the same so that both keep on transmitting their view.

The updating rule is a very simplified behavioural assumption as it prescribes that network 

members change their opinion without regard to their previous states or their social environment (see 

for example, Sznajd-Weron [156] and Weisbuch, et al. [173] for different rules of opinion updates). 

However, more complex assumptions can be added easily. In passing we note that the chosen setting 

can also be used, for example, for describing the prevalence of positive vs. negative opinions of a 

product, or the bullish vs. bearish views on a financial asset.

H  =
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In this model, a party has X t (respectively S, ) supporters across the network at time t. The 

corresponding shares of support are xt and sr , which satisfy xt + st = 1 throughout the diffusion 

process. The shares eventually arrive at a long-term share xm(and soo= \ - x oo).

To get an overview of potential results, we neglect the structure of the network for the time being 

and assume that a sufficiently large number of nodes mix homogeneously with all other nodes. Then 

the model can be described by the following differential equation:

Under the assumption of homogenous mixing, we can differentiate between three cases, 

depending on the size of external transmission rates a x and a 2. If either one of the external 

transmission rates is zero, or, = 0  or a2 = 0 ,the trajectory of xt follows a logistic curve and converges

zero, a x ,a 2 = 0, the diffusion of jc, is a Gompertz function, again with an absorbing state at either 0 or

1. If both external transmission rates exceed zero, a x, a 2 > 0, two sub cases are of interest. First, 

assume that the internal transmission rates are equivalent, /?, -  P2. Under this condition, the described 

two-state system has the following closed-form solution for xt

with x0 being the share of xt at time t = 0. Hence, the trajectory xt follows a strictly monotonically 

increasing (respectively decreasing) function that converges to the long-term share xm = ^ ^ 7 . Second, 

let us assume that the internal transmission rates are different, /?, ^  /?2. An analytic solution for the 

curve of xt is now impossible so that we have to numerically solve the trajectory of xl. The numeric 

solutions show that the resulting diffusion curves are similar to a logistic curve, while the long-term 

level x„ depends on the relative size of the transmission rates and lies between 0 and 1. All in all, the 

complete mixing assumption leads to strictly monotonic diffusion curves that converge to a long-term 

level xm.

Let us now drop the assumption of complete mixing and introduce a network along which the 

diffusion takes place. We, therefore, construct a network according to the small-world model (Watts 

and Strogatz [171]) at the beginning of each simulation run. In the small-world model nodes are tied 

together as a circle in which each node is linked to the K  or fewer next neighbours. Then each link of 

this set-up is rewired by a probability 0 < psw < 1 to a randomly chosen node. For our example, we 

use a small-world network of size A = 200, p sw =0.3 and K  = 2 (or K  = 5). This network features

dx
— ,: = a x( \ - x l ) - a 2xl +(px- p 2)xt { \ - x l ). 
dt

(6.16)

to either 0 or 1. The model is then equivalent to the Bass model. If both external transmission rates are

(6.17)
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several realistic traits of real-life social networks, particularly an average connectivity per node of 10  

and a clustering coefficient C of about 0.23. We simulate the diffusion process 1,000 times, each until 

?max=100, and analyse the distribution of xt over all runs. The density p(xt) of x,will be 

approximately the normalised frequency of x, at time t (bin size is 0 .0 1 ) with mean

*, = I*™, and standard deviation a, = '

Here we focus on a two-state system where both external transmission rates are above zero. For 

this case, we want to compare the network-based trajectory jc,with the one of complete (that is, 

homogeneous) mixing. As we only have an analytic formula if /?, = f$2, let us take the following 

values or, =0.012, a 2 =0.01, /?, =0.05,/?2 =0.05 for transmission rates and jc0 =0.2 as initial share.

FIG. 6.2 depicts the density distributions pK=2(x,) and pK=4(xl ) at time t = {10,40,70} along 

with the mean trajectory x, and the trajectory xlCM of the complete-mixing case. The mean trajectory 

for K  = 2 is almost congruent to the one with K  = 5 and not shown here, 
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FIG. 6.2: The average trajectory 3c, of 1,000 simulations, each on a newly constructed Small-World model with
N  = 200, p sw = 0.3, K  -  5, the trajectory xtCM of the complete mixing case, and the simulated density p (x ,)

with K  = 2 (respectively AT = 5) for / ={10,40,70}. Note that the trajectory xt CM can hardly be distinguished
from the average trajectory x, in this example. The distribution of the probability density p {x t ) can be well
fitted to a Normal distribution Af(x,,cr,) whose standard deviation of xt across different runs increases as the
diffusion proceeds. Accordingly, polls can strongly diverge from the expected mix of opinions reflected by 
mass media.

The density distributions pK=2(x,) and Pk=Ax,) can be well fitted to a normal distribution A(x,,cr,) 

with parameters shown in TAB. 6.4:
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Sampled
parameter

G.

K t =  10

0.2693
0.2705
0.0456
0.0780

t = 40

0.4022
0.4018
0.0812
0.1288

TAB. 6.4: The average share x, and the standard 
deviation g , of the density distribution /?(.?,) for

---------  t ={10,40,70} and two different small-world
0-4749 networks, respectively with K = 2 and K = 5. While

t = 10

0.4749 the averages are almost identical, the standard 
deviations become larger as the network’s 
connectivity (high AT) increases. In both cases the0.091

standard deviation increases the longer the diffusion 
process lasts.

For this setting we find that the support for party ONE develops, on average, almost exactly as in the 

complete mixing case. However, a single trajectory x, is usually very different to the mean trajectory 

and follows a density distribution p(xt) whose standard deviation Gt is 0.0456 for K - 2  and 0.078 

for K  = 5 at t = 10. Accordingly, there is a chance of about 20% if K  = 5 (about 8 % if K = 2) that the 

share of supporters for party ONE is still only 20% at t = 10 despite the party’s favourable standing in 

mass media (or, > a 2). The standard deviation <7, increases as the number o f links per person goes up 

from 4 to 10 (that is, K = 2 vs.K  = 5). This suggests that the diffusion curve’s fluctuation intensifies 

as people exchange their opinions more often and within wider circles of friends. Also, the standard 

deviation becomes larger as the diffusion proceeds until the long-term share = otxj{ a x + a 2) « 0.55 

is reached. At that point, the Markov process is equilibrium and the standard deviation g „ does not 

change anymore.

The corresponding stationary probability distribution ^(2f)(with X  -  for the long-term number of 

supporters of party ONE) can be determined for the special case o f a network in which everyone is 

connected to everybody else (compare, e.g., Schulz [147], p. 176-179). In such a network the transfer 

rates ^ +(2f) and y/ (X )io v  a party winning (respectively losing) a supporter, given that there 

are X  supporters of that party in the population, are

(6.18)
ys+(X ) = a i ( N - X )  + f t X ( N - X )  

y / ( X )  = a 2X  + p 2X(<N - X ) .

As the Markov process is in equilibrium in the long-term, the transfer probabilities for party ONE 

winning an additional voter equals the transfer probability for the same party losing an additional 

voter. This equality yields the following recurrence equation

p( X)  ■ y/ (X)  = p ( X  -1 )  ip+ ( X  -1 )  => p ( X )  = ¥  (_ f 1} p { X  - 1).
¥  W

(6.19)

If we apply this equation to all probability densities p( X)  and plug in the transfer rates stated in

(6.18), we obtain the analytic form of the stationary probability distribution
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X* VS ( X )  or22T +J32X  ( N - X  )

AT ^  a, + B A X ' - 1) _
l 3 a 2 + A ( i v - r ) p,0)’

(6 .20)

with p(0) = \ ~ Y j p(X).
x=i

O f course, the assumption that all network members are tied to each other is usually not realistic. It 

turns out, however, that (6.20) is a good approximation for the stationary probability distribution p( X)

if we take f t  = (3 - 2 K/ ( N  - \ )  and le t/: be sufficiently high. In that way, one can calculate p ( X)  for

different values of a ,j3 ,K , and N. For an overview of the different distributions p ( X )  we can, for

example, vary the network size N  as shown in FIG. 6.3 (compare also with Weidlich [172]).
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FIG. 6.3: The stationary density
distribution p(X)  (scaled to 101 bins, if 
A > 100, and to TV+ 1 bins, if A7 <100) 
for N = {30,100,3000}, or, = {0.01,0.02}, 
a2 = 0.01,/?, = /?2 =0.05, and/: =5.

The mean of » (^ )is  x = — in allf «* a’i+̂ 2

cases. For high JV,the distribution 
p{X)  is similar to a normal distribution. 
As N decreases the standard deviation 
becomes larger and the distribution 
flattens. For sufficiently small networks, 
the distribution’s mode lies at either one 
or both extremes x = {0,1}, depending on 
the gap between a, and a2. If or, is 
larger than a 2, p(X)  is skewed to the 
side that follows a, .

In that example, we apply N  =  {30,100,3000],or, ={0.01,0.02],cr2 =0.01,/?, = /?2 =0.05,and AT = 5 to 

formula (6.20) so that /?' = 0.05 • 1 0 /(3 0 -1) = 0.0172... Apparently, p(X)  is similar to a normal 

distribution for sufficiently large networks. As the network becomes smaller, the distribution’s 

standard deviation increases and the distribution flattens. If or, > a 2, the distribution becomes skewed 

towards a high share of X.  For particularly small networks (here, N  = 30), the distribution’s mode is 

located at X / N  = 0 and/or 1, conditional on the size of or, and or2.

To check how the approximation with /?' fits the simulated distribution pSim(X ) after a

sufficiently long duration (here, /max =300), we conduct two sets of simulations, each 5,000 runs,

using the parameter values N  = 30,or, =0.01,/?, = /?, =0.05. In the first set, we let Â = 5and
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or, = 0.02, in the second set we have K  = 1, but now with or, = 0.01 to better clarify the effect of a very 

low K.

FIG. 6.4: The stationary density 
distribution p(Ar)and the relative
frequency distribution p Sim {X ) with 
N  = 30, or, ={0.01,0.02}, a2 =0.01, 
f t  = p2 =0.05, and K=  5. The 
simulated distributions comprise 
5,000 runs respectively and are 
measured after a duration of 
tnm = 300. For K = 5, the simulated 
distribution closely tracks the 
approximated one. If K = 1, the 
simulated distribution has a smaller 
standard deviation and kurtosis than 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l the approximation.
X /N

FIG. 6.4 shows the approximated stationary density distribution p{X)  and the simulated relative 

frequencies pSjm (X ) for both sets. We find that the approximation works well for K = 5. However, for 

K = 1 the simulated distribution pSim (X )  has a smaller standard deviation and kurtosis than the 

expected distribution p(X) .

The simulation results suggest that the analytic solution in (6.20) for the stationary probability 

distribution p( X)  and the approximation f t ' = 2 f t K( N  - 1) 'is  a good estimate for the long-term 

distribution of public opinion in a bi-partite system as well as other situations of binary choice in 

markets and society.

It is now interesting to note that the distribution of p ( X )  in formula (6.20) is similar to the Beta 

distribution which -  among many other applications - is commonly used in marketing to describe the 

heterogeneity of consumers (Fader and Hardie [54]). The beta distribution is defined by the following 

density functionBeta(x\aB,ftB)

Beta(x | a B,ftB ) °c xaB~[ (l -  xf*' 

with x = X / N , and otB,ftB > 0. By tuning the two parameters a B and ftB (not to be mistaken with the 

external and internal transmission rates), the beta distribution mimics the shapes of p(X) .  We can 

distinguish between four general shapes that emerge for five basic cases of parameter combinations of 

p ( X )  (see TAB. 6.5).
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„  , , Internal trans- Polarisation Symmetry o f Corresponding
Case General shape . . _  A J , .. V .. *mission effect effect transmissions beta distribution

High
a x,a2 i ,  or 

0 , 0 2 t ,  or 

(£)T , or 

N i

0=02
aB,0B<\,

0 < > 0 2

/

On
(0,02 >0)

aB l,or

ccB< \,0B>\

a X l o r  A - A

0,02 ^ or ----------
(k) f ,  or

N't

cxB,0B> 1, and 

a B =  0 B

0 O  02
aB,0B>\,an<\

<*b o 0b

Off
(0 ,02= 0)

aB,0B» 1 ,  and 

<*b = 0 b

TAB. 6.5: General shapes of the stationary probability distribution p(X)  (see formula (6.20)) and 
the beta distribution Beta(x \ ttB,0B) for different parameter combinations; cr, = or2 in all 
examples.

Each case has a corresponding combination of a B and 0 B for the beta distribution. To shortly 

describe these cases, we here use the approximation 0 '  = j3 (k)(N - 1) ' with 0  = {0\,02] and the 

average degree (&) instead of 2K.

The stationary probability distribution p( X)  “polarises”, that is, it follows a “U-shape” (case 1), if 

0i = 0 2, 0\ ■,02 > 0 , and at least one of the following conditions holds:

• The external transmission rates a x and a2 are sufficiently low or

• The internal transmission rates 0 i and 0 2 are sufficiently high or

• The average degree [' .){'  he example expressed as 2K)  is sufficiently high or

• The network size N is sufficiently low.

As long as at least one of these conditions is met, the polarisation effect is (relatively) high; otherwise 

it is (relatively) low. A similar beta distribution is generated if aB and 0 B are smaller than one.

The stationary probability distribution p ( X )  becomes unimodal, if the polarisation effect is low

while 0\ = 0 2 and 0 X,0 2 >0(case 3). Similarly, the beta distribution approximates the shape of the

normal distribution, if a B,0 B > 1 and a B = 0 B. A  special situation of case 3 occurs if a B= 0 B- \  so 

that the beta distribution assumes the form of a uniform distribution. Again, we can reproduce such a 

shape for (6.20) if we choose the parameters a ^ a 2,0 x,0 2,{k),a.nd N  appropriately.
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In case 4, the distribution of p ( X ) and Beta(x\aB,f3B) approximately follow a skewed normal 

distribution under the condition that /?, o  P2 and P ,P 2> 0 , respectively, a B,p B>\ and aB o  fiB. 

We obtain a “J-curve” with a maximum at either zero or one for the parameter combination /?, o  fi2 

and P, f i 2 >0 in p{X)  and a B > or aB<\,f$B>\ in B eta (x \aB,PB) (case 2). Finally, 

p { X ) converges to a normal distribution (or a binominal distribution for sufficiently low N ) with 

mean if Px,p2 = 0 , which is very similar to a beta distribution with a B = PB and otB,p B » 1  

(case 5).

In TAB. 6.5 we only consider distributions for p(X)  where or, =or2. However, the same general 

shapes of the distributions can be derived when or, <> or2, except that then the similarity to the beta 

distribution does not hold for case 5.

Before interpreting these findings in the context of opinion making, we have to highlight again 

that the underlying assumptions of opinion updates are relatively basic and will certainly be more 

complex in the real world. Yet taking this caveat into account, we still can derive some insights from 

the simulation and their closed-from approximation.

Our analyses show the impact of two important assumptions: many people and complete mixing 

between people. If we drop these two conditions, the results of opinion polls over time become erratic. 

In other words, instead of one trajectory of survey results, we obtain an entire set of potential 

trajectories. Such a set of trajectories indicates the probability distribution of potential survey results at 

a certain point of time. The existence of such a probability distribution highlights the fact that the 

social structure between people (that is, the social network) can strongly affect public opinion and can 

add substantial variance to the samples in opinion polls. Let us outline these effects in more detail.

As long as the effects of inter-personal communication is not too high relative to the mass media’s 

impact, the distribution of the survey’s trajectories can be well fitted to a normal distribution whose 

mean represents the opinion mix in the media. When the opinion mix in the mass media changes, 

public opinion adjusts accordingly. During that adjustment process, the standard deviation of the polls 

distribution changes over time; for example, the standard deviation became wider in FIG. 6.2 as the 

diffusion proceeded.

The inter-personal effect grows when the internal transmission rates P  increase (that is, people 

communicate to their friends more often or more effectively), or as the mass media transmission rates 

a t,a 2 are reduced, or as people communicate to more people on average (increase of (k ) (or 2 K  in

the example), or as the total network size N  decreases. Once the inter-personal effect intensifies, the 

distribution’s standard deviation increases. For a sufficiently large inter-personal effect, the 

distribution turns from a unimodal shape to a flat distribution or even “polarises” so that a complete 

sweep of either party becomes the most likely outcome. If the transmission rates are not equal, the
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distribution follows a curve skewed towards the party who communicates more efficiently in the 

media (high or, > a 2) or whose supporters are more convincing than the other camp (high/?, > P2) ■

In the presence of strong inter-personal effects, the social networks can considerably affect 

opinion polls as suggested by FIG. 6.3 and FIG. 6.4. In our example, this is indicated by people’s 

average degree (k ) and the network size N. The simulations suggest that an increase of (A;) enhances 

the standard deviation of an opinion poll’s outcome in a similar way as an increase of f t  (as long as 

the network is not overly sparse).

The effect of the network size N  becomes apparent if  we interpret N  in the simulation as the size 

of a small group within a much larger population. A reduction of N  is then the same as sequestering 

the entire population into many small components (almost) without any inter-group interaction. This is

equivalent of increasing the population’s density (or social cohesion), measured as 1, and,

by and large, this is similar to enhancing the clustering C or the average path length (. in the 

population. A simulation with a small N  thus portrays the diffusion process in populations with many 

tightly-knit groups (= cliques). Then the simulation results reveal that the standard deviation of a poll’s 

outcome widens as social cohesion increases.

Encouragingly, empirical findings support these findings: Reingen and Ward [140], for example,

report that the existence of subgroups (corresponding to a high ratio ^  in our model) and a high 

intensity of inter-personal communication (/?(&)) in the studied population was conducive to a

polarisation of opinions among survey participants.

To estimate at what clique size the distribution of the poll’s outcome “polarises”, we can again 

turn to the presented simulation set-up. East and Hammond [50], for example, find in a survey that 

consumer products are recommended on average up to 15 times in six months. So if the time unit is in 

years, the value of /? = 0.05 and K  -  5 are realistic. The “polarisation” then would take place for small 

networks of around N  < 50 or for large networks that are sequestered into many small components of 

N  <50 (see FIG. 6.3).

Overall, these findings highlight that the distribution of results in opinion polls can significantly 

depart from the commonly assumed normal distribution if the inter-personal effects (high interaction 

frequency or efficiency, low media effects, and strong social coherence) are strong. In that case, 

opinion polls might require very detailed cluster sampling or a relatively large sample size to be 

sufficiently accurate.

In this chapter we discussed two techniques to simulate diffusion processes on networks: the 

embedded Markov chain and the event-queuing model. The former is suitable for simplified 

population structures such as a set of groups whose members randomly interact with members of the 

same group (as assumed in our case study of the market for vitamin supplements). The latter is the
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model of choice for exactly reproducing the distribution of diffusion trajectories on detailed network 

structures. We applied the event-queuing model for analysing the diffusion of two competing opinions 

in a population. The application revealed a trade-off between the network size, the number of sample 

trajectories, and the external information’s strength when approximating the mean-field behaviour of a 

network-based diffusion. The larger the network and/or the larger the external information source’s 

transmission rate, the less sample trajectories are required to approximate the average diffusion 

trajectory. This insight facilitates the assessment of network effects in diffusion processes.

Both presented techniques can be used to simulate diffusion processes on networks. The 

techniques based on the embedded Markov chain can provide good approximations of the diffusion’s 

trajectory as long as certain network features such as the average path length are excluded from the 

analysis. However, as we want to measure the effects of all network features highlighted in chapter 3, 

we have to choose a simulation method that correctly represents the entire complexity of the network. 

Thus we apply the event-queuing-approach in the next chapter, where we analyse in detail network 

effects on diffusion processes.
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Chapter 7

Estimating the diffusion of commercial information 
in social networks

In this chapter we use the event-queuing approach described in the previous chapter to model how the 

social structure of inter-personal communication affects the diffusion process of new products. We 

here follow the framework laid out in chapter 2  as we assume that the diffusion is driven by two 

information sources: marketing efforts (through mass media) and customer interactions. Customer 

interactions are not assumed to be random but to follow the structure of a network formed according to 

the social relations among customers, as presented in chapter 3. The networks underlying the 

simulations in this chapter have been constructed in the ways outlined in chapter 4, namely the 

generalised random graph, the small-world model, and the link-swapping mechanism that introduces 

assortative mixing in the network. Each network link between customers constitutes a possibility for a 

contact. During a contact between two customers, two types of information transmission can take 

place according to the model’s specification. On the one hand, the transmission can signify the 

influence that a product adopter exerts on a non-user. On the other hand, the transmission can equate 

the actual transfer of information such as news, rumours, and views. The model can, therefore, be used 

to predict not only the number of product adopters but also the prevalence of news, rumours, and 

views in the market.

We first describe a survey on people’s recommendation behaviour and show how this empirical 

data can be transformed into a network model (section 7.1). For such a network, we report an analytic 

formula that approximates the diffusion process under certain network conditions (section 7.2). Using 

a stochastic diffusion model, we simulate the diffusion process on more realistic networks (section 

7.3), before we compare the simulation results with the analytic solutions (section 7.4). Next, we use 

the simulation results to assess how relevant network effects were in past innovation processes, for 

example, for the home PC and the cellular phone (section 7.5). Finally, we show how the analytic 

formula and the simulation results can be used to forecast better the effects of a marketing campaign 

(section 7.6).
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7.1 Estimating the social web among customers

In a survey, randomly selected participants were asked how many times in the last 6 months they 

recommended a brand for various different product categories (East and Hammond [50]). The product 

categories comprised items such as cars, mobile phones, travel destinations, laptops, fashion shops, 

medical services, and credit cards. The answers stretched from zero to about ten or even dozens, and 

resulted in different frequency distributions for each category. As an example, the sample distribution 

for travel destinations is shown in FIG. 7.1.

FIG. 7.1: Distribution of the number 
of recommendations given in the last 
6 months for travel destinations 
(survey size = 128)

0 1  2 3 4 5 6 7 8 9  10

Recommendations (Travel destination)

Suppose a marketing manager wants to use the data to estimate the awareness for a new adventure 

package tour. What assumptions and model parameters are needed? Firstly, of course, the manager has 

to assume that the survey is fairly representative and stable over time. Secondly, he must assume that 

repeated recommendations to the same person are excluded from the data. Once the two caveats are in 

place, the question is how the number of recommendations translates into aggregate results on a 

market level.

As customers not only give but also receive recommendations, it is straightforward to perceive each 

recommendation as a directed link between two customers who are member o f an entire network of 

travel enthusiasts. The network comprises only those people who have an interest in travelling. It is a 

subset of the social network in which each customer lives. The marketing professional thus needs to 

determine how quickly the news about the package tour propagates through this network. To this end, 

three aspects have to be modelled: the transmission rate between the company and the customers 

(iexternal communication), the transmission rate between a pair of customers (internal 

communication), and the social network structure.

The rate of external communication equates to the reach of the campaign, that is, the number of 

customers who are affected by the company’s marketing activities in a certain period of time (for 

example, one week). Its inverse is proportional to the expected time until a customer is informed about 

the commercial.

The rate of internal communication is inversely proportional to the expected time until a customer 

recommends a product or service to anyone of his acquaintances. For example, if a customer gives
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three recommendations in half a year, the internal communication rate is one recommendation each 

two months.

We assume that the structure of the social network is stable during the time horizon of interest. 

Furthermore, we focus on those network measures that, if applied jointly, largely describe the major 

characteristics of social networks, and which have gained practical relevance in marketing (see chapter 

3): network size N , average degree (k),  normalised degree variance V, degree correlation r, 

average path length I, and clustering C.

The network size N  is the size of the target group or market. Each customer in the target group is 

represented by a vertex in the network and can either have at least one link to other customers or no 

link at all. In the latter case they are still part of the network but have no communication with others 

about the given product or information. The frequency distribution of recommendations in FIG. 7.1 

can be taken as an estimate of the degree distribution p(k). In addition, the network size N  is given by 

the market size. However, the degree correlation r, the average path length t, and the clustering C are 

usually unknown for a network of customers.

We thus propose the following strategy. First, we approximate the diffusion process with an analytic 

model based only on the transmission rates Grand (5 as well as the average number of links (k ). Then

we simulate the actual diffusion process on a variety of adjacency matrices representing different 

constellations of the network and transmission parameters. The simulation results will then be 

compared to the model to see for which constellations the analytic solution is sufficient to describe the 

network-based diffusion process. In the next section we formulate the analytic model.

7.2 A network-based diffusion model
The following model can be used to predict the future market penetration and awareness of a product 

or message in the market. In the model we treat a person who is aware of a piece of commercial 

information as equivalent to a person who adopts a product. That assumption, however, can be relaxed 

if required.

Consider first a market of size N  with S(t) non-adopters and I(t) adopters at time t so that 

S(t) + I(t) = N. Other consumer states are excluded. As in the Bass model, non-adopters become 

adopters either through marketing activities (external communication) or through other adopters 

(internal communication). External communication increases I( t) at rate aS(t)  at time /o f  the 

diffusion process.

For analysing the internal communication, we have to differentiate between dense and sparse customer 

networks. When the customer network is dense, the average connectivity is (k ) ~ N  -1 , that is each 

customer interacts with all or most other customers. Accordingly, the number of informed customers 

7(/)at t is increased through internal communication at rate fi(k)S(t)i{t), where /? is the
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transmission rate between any pair of two customers and /(/) is the proportion of informed customers 

at time t. Combining both effects, we obtain the following approximation

^ p - - a S ( t )+ p { k ) S ( t ) i ( t ) ,  (7.1)
at

which becomes an exact equality if (k) = A -1 . This setting corresponds to the assumptions of the

Bass-formula for the propagation rate of consumer durables. We can transfer equation (7.1) into the 

Bass’ framework by noting the following relationship between micro and macro parameters

Ate. “ £(*). (7-2)

which again becomes an exact equality if (k) = N  — l. For sufficiently large (k ), we thus obtain the 

following closed-form solution for i(t)

1-exp ( - ( a  + /3(k))t)
i(t) * -----------— ----- --- ' (1 3)
,U  1+ M exp( _ ( „ + / ? W ) , ) ’

with i(t = 0) = 0.

As long as (k ) is sufficiently large, effects of the network’s structure can be ignored. In such a case, 

the average number of transmissions between adopters and non-adopters, J5(k) S(t)i{t), is a robust

predictor of inter-personal communication in the diffusion process (see Dodd [42] and Dodd [43] for 

probably the first theoretical derivation and empirical verification of this result).

However, consumer networks are typically sparse, that is, the average number of network 

neighbours (k) is usually much smaller than the size N  of the network so that the approximation of

formula (7.3) becomes less exact. Under that condition, the network’s structure affects the diffusion 

process.

Such structural effects can certainly be partly incorporated in a closed-form solution such as (7.3) 

(see for example, Barthelemy, et al. [10]). However, it is difficult or potentially impossible to track all 

network effects analytically. Yet we can estimate the impact of the network structure by simulating the 

diffusion process on different networks. The set-up of such simulations is described in the next 

section.

7.3 Simulating the diffusion processes

The simulation is a two-step procedure: first, constructing the adjacency matrix of the social ties 

among customers, second, simulating the diffusion process along the matrix structure. For the first 

task, it is important that the matrix represents the characteristics of social network sufficiently well.
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For this, we used the construction method outlined in chapter 4. For the second step, we use an

abridged version of the algorithm presented in chapter 6. The procedure is as follows:

1.Construct an adjacency matrix indicating the network’s undirected links. For each undirected 

link, for example, between nodes j  and / ,  we create two directed links: one between j  and j '  

and one vice versa. Thus the total number of directed links L , is twice the number of undirected 

links in the adjacency matrix.

2.Generate a series of event times ta^ ta2,ta;i,...,taN according to ta = - ln  (aj)/a  for each node in 

the network where co are uniform random numbers between 0 and 1.

3.Set event times tpx,tp2,tp2i,...,tp L for the L directed links of the network to infinity as no

informed customer exists in the beginning (7(0) = 0).

4.Take the shortest event time as t = Min[ta,tp ).

a. If the chosen event time is associated with marketing communication, switch the respective

node to informed, j s —»j , , increase I(t) to I ( t - t a j ) + \ , update t = ta j , set ta j =<*>, and

draw an event time tp = -  In {co)/ f t  for all links that emanate from node j .

b.If the chosen event time originates from inter-customer communication, that is, from a 

directed link I from node j  to f , check the status of j '.  If j '  is already informed, update 

t = tp j , set tpj = 00 and proceed. If j '  is uninformed, switch the respective node to 

informed, j's —»j ' , increase I{t) to l ( t - t p , )  +1, update t = tp i , set tp ] -  , and generate

an event time tp = -  In(a))/ j3 for all links that emanate from node j ' .

5.Go back to 4. until all nodes are informed or a certain duration t is reached.

The algorithm determines a sample trajectory of the total number of informed people I{t) for actual

time t. If the values for I(t) are averaged over a sufficient number of simulation runs one obtains the 

expected trajectory of I(t)  for the respective parameter combinations.

To give an example let us return to the package tour example. Here, the average number of 

recommendations is about (k )~  4, while p  depends on the duration under consideration:

= 1 1 ~ - = 0.04per week.
6 months 25 weeks

The manager assumes a marketing reach a  = 0.02. For the simulation, we generate a network of 

N  = 500 nodes with (k) -  4 and V = 0 (see FIG. 7.2).
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FIG. 7.2: The share of informants 
for N  = 500; a  = 0.02; p  = 0.04;
(k) = 4;V = 0.
The averaged simulation result is the 
mean of 100 runs, each with a newly 
generated network. The trajectories of 
the average trajectory (/Sim(/))
diverges from the predicted trajectory
i\4od (0-

0 10 20 30 40
t [week]

The depicted simulation results are averages over 100 different runs, each based on a newly created 

network. Accordingly, the manager can expect that about 30% of the target market is aware of the 

travel package offer 10 weeks after its launch.

The simulations’ results are close to the prediction of the network-based Bass model and within the 

expected boundaries. However, it remains to be tested how robust these results are under different 

constellations. We thus run several more simulations with different parameter values and compare 

them to the model.

7.4 Statistical analysis of deviations from the model

The model’s analytic result is based on three assumptions: a sufficiently strong external effect, small 

variance of degrees k, and abstraction from other network traits. Using the described simulation 

procedure, we can conduct a sensitivity analysis with regard to each assumption. To this end, we 

construct a set of networks whose degree distribution, clustering, degree correlation and average path 

length is typical for social webs. Other network characteristics such as the network size are not 

investigated in detail as we assume that they only have a minor effect on the diffusion or are 

sufficiently described by modelled characteristics. We neither control for the network’s average 

degree (k) as this is already specified in the benchmark model (see formula (7.3)).

In order to determine the individual impact of each trait, the network constellations should be as 

orthogonal as possible, that is, high correlations between the characteristics o f interest should be 

avoided. For example, a high variance of degrees k should not always coincide with high clustering. 

Accordingly, we set up twelve different network types 1,2,3,..., 12 each simulated 100 times so that we 

generate 1,200 different networks in total by using the two construction methods (see TAB. 7.1).
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Network Construction method 
type Model coefficients k^ V C r £

1
2 Configuration model 

(Poisson distribution)
/ /  = 10 10 

15
p  = 20 99

0.05 0.07 0.00 2.42 
0.09 0.11 0.35 2.28 
0.05 0.23 0.30 1.80

4
5 Configuration model
6 (power-law  distribution)
7

30

A = 1 30 
10
10

1.02 0.30 0.00 2.64 
0.96 0.43 0.35 3.02 
0.57 0.06 0.00 3.58 
0.53 0.10 0.35 3.80

8
9
10 Small-world model
11 
12

K  = 3 ,Psw=0.02 99

K  = 2 ,Psw =0.005 99 
99
99K = h Psw =0.01
99

0.03 0.35 0.00 2.67 
0.02 0.38 0.00 4.35 
0.02 0.40 0.36 4.81 
0.10 0.02 0.01 4.46 
0.11 0.02 0.37 4.88

TAB. 7.1: Network types 1,2,3,...,12 and their respective traits, respectively averaged over 100 realizations. 
The degree-correlated configuration model generates networks with contrasting values for V, C, and r; the 
small-World model produces networks with different values of C  and L Most generated networks consist of 
one giant component, except network types 5 and 7 whose giant component, on average, comprises 97% of all 
nodes.

The three construction methods have control parameters that allow us to fine-tune network traits for 

each method. The control parameters in the configuration model are the degree distribution p(k) and 

the maximum degree kmax in the network. Here, the degree distribution is either a Poisson distribution 

with mean p  = {l 0,20} and a low normalised degree variance V or a power-law distribution with 

exponent X = 1 and a high V (Newman, et al. [131]). Furthermore, we can intensify the clustering C in 

the network, by increasing £max.

The small-world model has two control parameters: the number of ties each node has in its local 

network neighbourhood (“strong ties”) and with all other nodes in the network (“weak ties”). The 

former is regulated by the number K  of next neighbours connected to each node in a circle, the latter 

is modelled through the probability psw that a given node in a circle is connected to any other node 

beyond its K  next neighbours (Monasson [117]). Through this set-up we realize different ranges of 

C and L Once a network is established according to either method, we introduce a degree correlation 

of a given level (here, 0 < rlow < 0.02 and 0.35 < rhigh < 0.37) into the network, following the procedure

outlined in section 4.4. The generated networks almost always consist of one single component, except 

networks of types 5 and 7 whose giant component, on average, contains about 97% of nodes. All 

networks have N = 100 nodes.

Of course, one could construct networks of different sizes A, which in presence of external 

information sources is equivalent to varying the size and number of components in the network. The 

network size in turn determines the stated network traits, but is likely to have no further impact on the 

average trajectory of the diffusion process once all nodes are sufficiently exposed to an information
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source external to the network, as was shown in section 6.3. We thus hold N  fixed, leaving us with the 

four network parameters V, C, r , and £, that are not covered by the analytic solution in (7.3).

The task is now to determine the effect of V,C,r, and £ on the temporal divergence A/(/) 

between the predicted time tMod (/') and simulated time tSjm (z) until a certain share of informed people 

/ ={5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} is reached. To this end, we derive the 

predicted time tMod (z) through the inversion of “network-based Bass model” in (7.3):

'mod (0 =  'mod(0 = >  'mod (0 =  ± \ 111a  + p {k )
i+ i-

(7.4)
1 - /

/

Then we simulate 400 diffusion processes on each of the 1,200 networks for the three cases 

a  = {0.005,0.02,0.05}, measure the time t{i) at which a certain share i is reached and calculate the

average share (tSim (/)) over 400 runs for each particular network. In total, we simulate

12x100x3x400 (number of different network types x number of different realisations per network 

type x number of different a ' s xsize of sub sample) diffusion processes, take averages over the 400 

sub samples, and obtain 1,200 data points, respectively for each a  and /.For all simulations, we let 

P  (k ) = 0.2 which is a typical value for diffusion processes of commercial information according to 

empirical data (see East and Hammond [50] and Sultan, et al. [155]) and the transformation 

Pboss = P (k ) (see formula (7.2)).

It is now of interest to what extent the model tracks the diffusion times (tSjm (/')) for different 

network structures. This can be analysed by running a linear regression over all 3x1,200 = 3,600 data 

points for each share i with tMod(i) as explanatory variableX }, and (tSim(/)) as dependent variable Yj 

so that

Y ^ b M + u ,.  (7.5)

Of course, the explanatory variable in this and the subsequent regression analysis is different to the 

variable X{t) used in the previous chapter. The residuals ut in that regression follow a normal 

distribution reasonably well as suggested by the Jarque-Bera-test. As shown in TAB. 7.2, the network- 

based Bass model’s tMod (/) explains most of the simulated (tSim (/)) up to about a share of / > 70%.

For larger /', the coefficient of determination R 2 decreases but is still larger than 70% for / = 90%.

i [%] 5 10 20 30 40 50 60 70 80 90

ho -0.15 -0.32 -0.69 -1.10 -1.59 -2.22 -3.09 -4.40 -6.63 18.34

hi 1.31 1.23 1.22 1.24 1.28 1.33 1.40 1.50 1.65 1.39
R2 [%] 99.8 99.3 97.4 95.6 94.4 93.9 93.9 92.9 87.5 87.8

TAB. 7.2: The coefficient of determination R and regression coefficients with tMod(i)as 
explanatory variable X f and (tSim(i)) as dependent variable Yf for different shares /. Most 
of the simulated diffusion times are explained by the model for about i > 70%. j



To analyse the difference a/between the network-based Bass model and simulations more thoroughly, 

one can compare the model’s prediction tMod(i) with the respective maximum and minimum value 

tSjm (/) across all simulations for different sizes of the external transmission rate a. As the maximum 

and minimum values might fluctuate considerably, however, we take the average values of the 5% 

quartile of the largest and smallest values tSim(i), Max and Min instead (see FIG. 7.3).

The size o f the average number of internal transmission per time unit, is held constant so

that the ratio decreases as a  is lowered. This analysis highlights that the differences at are likely

to be more pronounced as the share / becomes higher (that is, as the diffusion goes on) and as the 

external effect a  becomes smaller. Moreover, we note that the model’s prediction is closely in line 

with the minimum values of the simulations. This suggests that the network’ structure primarily 

hinders the diffusion process. It should be stressed, however, that the simulated values in this analysis 

are net effects of the network’s structure.

~77T 25% 15% 2.5%

40

[weeks]

0 10 20 30 40 50 60 70 0 60 70 0 10 20 30 40 50 60 70
i [%] / [%] J [%]

FIG. 7.3: Number of weeks / to achieve a given proportion i of informed people according to the network- 
based Bass model and the simulations. For a high ratio the maximum and minimum time for a given

proportion, M a x (tSim(i) )  and M in ( tSim( i ) ) ,  are similar and closely tracked by the model (/). As the ratio

becomes smaller, the divergence between the model and the simulations become larger. The model 
1 ^ ( 0  appears to be approximately equivalent with the minimum time M in ( iSim(i) ) .

Effects of particular network features such as the degree distribution and the clustering are not yet 

taken into account, which is important for two reasons. First, the sample of networks (see TAB. 7.1) is 

chosen to single out the diffusion effects of particular network feature, and thus is not necessarily 

representative of the actual combinations of these features in real-life networks. Second, the effects of 

individual network features might counteract each other. Therefore, we need to analyse the diffusion 

effects of each network feature separately to better understand in which way the network structure 

affects the diffusion process.

We can investigate how the network’s features affect the diffusion over time in a second linear 

regression. This time we let Af(/) = (tSim ( / ) ) - 1̂ ,  (i) be the dependent variable Yi and the network traits
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V,C ,r, and £ be the explanatory variables X x_4. Additionally, we differentiate by different levels of 

a - {0.005,0.02,0.05] to appreciate the result of FIG. 7.3 that a  strongly drives the gap between 

tMod(/') and ( tSim(i)) . Then the regression has the following function for each diffusion level i :

Yx = bifi + b,xX x + bii2X 2 + b.3X , + biAX 4 + ur (7.6)

Variables Yt X x X 2 X 3 X 4

Sampled data for networks A t(i)  = ( tSjm (/)) ~ M̂od (0 V C  r  i

The square of correlation R2 (X, X') between the network's measures is low as we intended with the

cross-sectional choice of network types (see TAB. 7.3). Thus the level of multicollinearity among the 

regressor variables is small.

TAB. 7.3: R2(X ,X ') between the network R2[X ,X ') X x X 2 X 2 X4
measures V,C, r ,  and £ reveal that x x=V 1.000 -0.208 -0.007 0.145
multicollinearity among them is low. x 2=C _0.208 1.000 -0.057 0.050

x 3= r -0.007 -0.057 1.000 -0.101
x 4 = t 0.145 0.050 -0.101 1.000

As indicated by the coefficients of determination R 2 in TAB. 7.4, the regression variables explain 

most divergences from the model’s prediction for sufficiently large shares i (here, about i > 10%).

For smaller diffusion levels i, the divergence from the model’s trajectory is very small so that the 

regression variables have much less explanatory power. In general, the explanatory power of the 

regressors augments as the diffusion level i increases and as a  moves closer to 0.

TAB. 7.4 also presents the unstandardised regression coefficients and their respective standard 

deviation for different values of / and a. The network’s structure represented by the measures

V,C ,r, and £ apparently has a strongly varying impact on the diffusion process.

The coefficient’s standard deviations are relatively small compared to the coefficients. At the 

beginning of the diffusion and for relatively high values of a , the network effects hardly come into 

play. Once there the level of internal communication is high enough, however, all network 

characteristics can considerably alter the diffusion’s speed. In a similar way, the significance of the 

coefficients increases as the proportion of adopters i is sufficiently high and a  is sufficiently small.

The coefficients presented in TAB. 7.4 are highly significant (at the 5%-level, mostly also at the 

1%-level) except for

•  r  incases {a,i} = {(0.005,0.05),(0.02,0.05),(0.05,0.05),(0.05,0.1),(0.05,0.2)}

• V in cases {or,/} ={(0.02,0.05)}

• C in cases {a,i} ={(0.05,0.05)].
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In these cases, the external transmission was so high and the proportion i so small that the coefficients 

were still significant but at low levels.

i a h cr(b0) f f fo ) b2 cr(b2) *3 K °{b<) R 2
0.05 0.184 0.003 -0.006 0.002 -0.006 0.005 -0.002 0.004 0.001 0.001 1.7%

0.1 0.165 0.003 -0.026 0.003 -0.015 0.006 0.001 0.005 0.005 0.001 14.2%

0.2 0.143 0.005 -0.111 0.003 -0.060 0.008 -0.006 0.007 0.023 0.001 64.0%

0.3 0.107 0.005 -0.218 0.004 -0.128 0.009 -0.026 0.008 0.055 0.001 85.4%

0.4
0.05

0.064 0.006 -0.290 0.004 -0.190 0.010 -0.049 0.009 0.098 0.001 90.7%

0.5 -0.008 0.007 -0.255 0.005 -0.219 0.012 -0.055 0.011 0.152 0.002 91.2%

0.6 -0.113 0.009 -0.006 0.007 -0.201 0.016 -0.014 0.014 0.218 0.002 88.6%

0.7 -0.256 0.014 0.663 0.010 -0.111 0.024 0.089 0.020 0.296 0.003 89.9%

0.8 -0.461 0.023 2.187 0.016 0.050 0.038 0.343 0.033 0.394 0.006 94.7%

0.9 -0.660 0.042 5.977 0.030 0.142 0.072 0.848 0.062 0.524 0.010 97.2%

0.05 0.406 0.006 -0.006 0.004 -0.026 0.010 -0.008 0.009 0.009 0.001 4.2%
0.1 0.336 0.007 -0.108 0.005 -0.084 0.012 -0.021 0.010 0.037 0.002 51.1%

0.2 0.208 0.009 -0.470 0.006 -0.229 0.015 -0.092 0.013 0.130 0.002 90.6%

0.3 0.058 0.011 -0.814 0.008 -0.334 0.018 -0.182 0.016 0.251 0.003 95.6%
0.4

0.02
-0.140 0.013 -0.993 0.009 -0.357 0.022 -0.229 0.019 0.390 0.003 96.6%

0.5 -0.414 0.017 -0.844 0.012 -0.255 0.029 -0.171 0.025 0.547 0.004 95.5%
0.6 -0.794 0.027 -0.145 0.019 0.026 0.045 0.062 0.039 0.724 0.007 91.5%
0.7 -1.323 0.043 1.521 0.031 0.541 0.073 0.555 0.063 0.928 0.011 88.8%
0.8 -2.026 0.069 5.006 0.050 1.283 0.118 1399 0.102 1.173 0.017 92.3%
0.9 -2.932 0.123 13.116 0.089 2.208 0.210 3.075 0.182 1.487 0.031 95.4%

0.05 1.253 0.018 0.029 0.013 -0.100 0.031 0.028 0.027 0.101 0.005 30.7%
0.1 0.871 0.021 -0.626 0.015 -0.217 0.036 -0.085 0.031 0J06 0.005 83.9%
0.2 0.205 0.027 -2.000 0.019 -0.173 0.046 -0.474 0.039 0.741 0.007 96.0%
0.3 -0.461 0.033 -2.975 0.024 0.151 0.056 -0.793 0.049 1.158 0.008 97.3%
0.4

0.005
-1.227 0.041 -3.414 0.029 0.717 0.069 -0.905 0.060 1.574 0.010 97.4%

0.5 -2.167 0.052 -3.089 0.038 1.602 0.089 -0.638 0.077 1.999 0.013 96.7%
0.6 -3.385 0.076 -1.604 0.055 2.959 0.130 0.143 0.112 2.451 0.019 94.2%
0.7 -4.972 0.119 1.721 0.086 4.877 0.202 1.640 0.175 2.951 0.029 90.1%

0.8 -7.135 0.192 8.412 0.139 7.580 0.326 4.278 0.283 3.545 0.048 89.0%

0.9 -10.522 0.354 23.865 0.256 11.929 0.603 9.967 0.522 4.332 0.088 91.0%

TAB.7.4: Unstandardised regression coefficients and their respective standard deviation for different shares 
/ and a  -  {0.005,0.02,0.05}. The coefficient of determination R2 is high for almost all regressions, except
for very small shares /. The regression coefficients ba,bv b2,b,,bA vary considerably for different i and a , 
while the standard deviation of regression coefficients is relatively small.

The presence of variations in the degree distribution, V > 0, first decreases the time until a given share 

i is realised so that the simulated diffusion is faster than predicted in the model. At a density 

i ~ 40% ,this accelerating effect lessens, eventually turning into the opposite for high Vs and 

increasingly obstructing the diffusion process. To see why we have to realise that, at first, the above- 

average nodes receive information faster than in the standard setting of constant degrees and can in 

turn re-transmit the information to a wider audience. In the second phase, the communication channel
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via multi-spreaders becomes increasingly overcrowded: although most multi-spreaders know already 

of the news by then, they are still the others’ first choice to communicate.

If the average path length £ in the population is extended, the divergence At becomes slightly 

negative for small i and turns positive and grows almost linearly for larger i. The deferring effect due 

to t  becomes more pronounced as or becomes smaller. For sufficiently large or, however, the average 

path length has a rather small effect on At. In such situations, all parts of the network are strongly 

exposed to external communication so that structural bottlenecks in the network’s structure (“weak 

ties”, “gate keepers”) cannot substantially hold back the diffusion process.

The degree correlation r seems to have a small impact on the diffusion process, even for small values 

of or. This can be partly caused by the relatively small -yet (in the marketing context) realistic- degree 

variance used for some network types. Only after a sufficiently large share / has been informed (here, 

i > 60%), a positive degree correlation significantly prolongs the diffusion process. This might be due 

to the fact that an increase in r reduces the “multiplying power” of highly connected nodes. As 

r » 0 ,  these nodes tend to deal with other high-degree nodes that in turn are likely to be already 

informed in the later stages of the diffusion. Again, this effect intensifies, as or is reduced.

If the network displays clustering (C >0), the divergence At is positive and increases in a linear way 

as the share i becomes larger. So a high C (that is, many triangles in the communication structure) 

causes redundant information flows in the network and slows down the diffusion process.

Overall, the effects of V,C ,r, and i  partly equal out, but can become substantial, especially in the 

later stages of the diffusion. Their relative size depends on the specification of the model as well as the 

level of or and i.

The constant term b0 can be interpreted as the net effect of network traits not considered here. As 

shown by b0, this effect is relatively small for or = 0.05 , but its absolute value tends to increase as or 

diminishes. In the diffusion’s early stages, ^contributes to enhance At before it increasingly reduces 

the temporal divergence between modelled and simulated values.

The crucial question is now how these different effects measure up with each other. To answer 

this, we pick the maximum (or very high) values Vmax, Cmax, /-max, f max for each network measure, as 

found in various empirical studies on social networks (Albert and Barabasi [3] and Newman [127]) see 

(TAB. 7.5).

Network measure Vmax m̂ax '"max
High(est) value 1.5 0.66 0.5 6

Lowest value 0 0 - 0 0

TAB. 7.5: Extreme values for measures in social networks.

The maximum values are then multiplied with the respective regression coefficient for a given i and 

or, as depicted in FIG. 7.5 for the two cases or = {0.005,0.02]. To make the graphs more comparable to
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our example on the travel market, we choose weeks as unit o f time but the results scale with any 

duration.

It becomes clear that even for extreme cases of network structures, the temporal divergences At are 

small as long as a  is sufficiently high (here: a  = 0.02). The divergences individually caused by each 

network characteristic mostly stay within a band of +/- 2 weeks around the predicted trajectory until 

about 70% of the population is informed. Thereafter, especially the variance of the degree distribution 

and the average path length drive the spread between model and simulation. These effects become the 

more pronounced the smaller is a  (here: a  = 0.005). Then network effects can evoke major temporal 

divergences between simulation and model throughout the entire diffusion process.
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FIG. 7.4: Temporal divergences from the model’s prediction if the respective network measures V,C,r, and t 
assume the highest (or very high) values reported in empirical studies. Graph a) depicts the divergences At for 
a  = 0.02. Here, the external information source is still sufficiently strong to keep network effects within a band 
of +/- 2 weeks of the predicted times until a share of about /' = 70% is reached. Graph b) reflects the situation 
for or = 0.005 where network effects can have massive effects on the diffusion’s progression almost 
immediately after its launch.

Again, the variance of the degree distribution and the average path length can have the strongest 

impact on At during the entire diffusion process while the degree correlation still has a relatively 

modest impact in the beginning, but gains importance in the later stages. Also, if oris sufficiently 

small, the clustering strongly affects the diffusion. These results are buttressed by other diffusion 

studies.
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Using a slightly different definition of degree variance, Kretschmar and Morris [93] simulated the 

spread of infectious diseases in networks and found that networks with more varied degrees spur the 

epidemic. Pastor-Satorras and Vespignani [136] established the rule that networks with a high degree 

variation (that is, scale-free networks) lack an epidemic threshold, which, in our case, means that the 

diffusion runs faster. In an empirical study of adoption patterns, Valente [164] found evidence that 

highly connected people tend to adopt innovations earlier than less connected persons. He also showed 

that clustering (“low radiality”) and degree correlations (“network centrality”) defer the adoption of 

new products, while a small average path length (“structural centrality”) spurs the diffusion. In a 

marketing simulation study, Goldenberg, et al. [67] showed that a short average path length (presence 

of many “weak ties”) between customers accelerates the adoption of new products. Buskens and 

Yamaguchi [32] confirm that clustering (“transitivity”), a high average path length (few “bridges” 

between parts of the network), and -partly contrary to our results- the degree variance (“coefficient of 

variation in centrality”) slow down the propagation process. They also find that the degree correlation 

(similar to their measure “degree quality”) can have shortening and lengthening effects on diffusion 

times. Such a mixed result was also found by Buskens [31] for “degree co-variance”, a measure 

related to degree correlation. This ambivalent picture for degree correlations might result in the small 

impact on the diffusion process in TAB. 7.4 and FIG. 7.4. In summary, these results are largely in 

agreement with our findings. None of these studies, however, mentions a reversal of the degree 

variance’s effects in the second half of the diffusion.

7.5 Relevance of network effects for different innovations

As the size of the network effects depends on the ratio , it is interesting to see for which products

network effects are likely to occur. One way to obtain an estimate for this is to compare a  and fiBass 

derived from a maximum-likelihood analysis of market penetration data (see TAB. 7.6), as discussed 

in chapter 2.

Product Period of Analysis a Pboss C*l Pboss [%]
Cable television 1981 - 1991 0.080 0.167 48
Home PC 1982- 1988 0.121 0.281 43
Electric toothbrush 1991 - 1996 0.110 0.548 20
CD player 1986- 1996 0.055 0.378 15
Micro-wave oven 1972- 1983 0.012 0.382 3
Cellular phone 1986- 1996 0.008 0.421 2
VCR 1981 - 1991 0.011 0.832 1

TAB. 7.6: The external and internal transmission rate for diffusion process of different consumer goods in 
the US. The rates were derived from short-term first-purchase data collected over periods of between 5 and 
10 years (see Lilien, et al. [96], p. 302). The ratio a/ r e v e a l s  for which diffusion processes were likely 
to be affected by the social structure of consumers. Complex network effects ( V, C, r, and £) are likely to 
have affected the propagation of micro-wave ovens, cellular phones, and VCRs, while the spread of CD 
layers and the electric toothbrush might have been influenced by network effects in the later stages of the 
diffusion process. For the market diffusion of cable television and the home PC, it can be assumed that the 
effects of the consumer’s network hardly had any effect on the diffusion process.
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Here we approximately take PBass ~ fi(k )  which should be relatively exact for a large ratio of

For smaller ratios, the derived values of a  and fiBass are likely to be biased by network effects, yet we 

still can see if  network effects are probable. TAB. 7.6 shows estimates of diffusion parameters 

according to the Bass model that was applied to short-term first purchase data gathered in the US over 

the course of respectively 5 to 10 years.

We find that the propagation of cable television and home PC was strongly driven by external 

information sources so that network effects were not likely to have a large impact. For the spread of 

the electric toothbrush and the CD player, we have a similar ratio as in the simulated case for

or = 0.02. It is thus likely that the consumer’s social network had a considerable impact in the later 

stages of the diffusion. The diffusion trajectories for the micro-oven, the cellular phone, and the video 

recorder have a relatively small ratio -^y,corresponding to simulated cases for or = 0.005. For these

products, the social network structure is very probable to have affected the entire diffusion process. 

These examples demonstrate that network effects are likely to have a significant impact on the market 

penetration of certain product categories. It also highlights that consumers’ responsiveness to external 

and internal information differs from product to product.

7.6 Predicting diffusion in social networks
The previous analyses in this chapter have shown that the structure of social networks can massively 

affect the adoption of innovations in markets, and in general, the propagation of information like news 

and announcements in society. A marketing professional or PR manager might then ask “how do these 

results help me in my job?”

There are probably three answers to this question. First, the presented study helps a promoter to 

understand which features of social networks can be relevant for diffusion processes. Second the 

simulations show how a practitioner can use information about consumers’ social network to predict 

better market outcomes -  at least for the short term. Third, thanks to these analyses of social networks, 

a student of the markets gains some intuition on the vagaries of market forecasts.

In order to highlight these points, let us consider the marketing example given in the beginning of 

the chapter. The marketing manager in this example wants to estimate the time t(i = 30%) until 30% 

of the market is aware of a new package tour offer. Based on the presented results, the manager thus 

can use five insights on network-based diffusion processes.

a) Estimate external and internal transmission rates. The marketing manager can try to assess the size 

of mass communication and inter-personal communication in the diffusion process, that is, the 

external and internal transmission rates a  and fiBass. The external transmission rate can be estimated 

by the campaign’s reach, that is, for example, the number of people who will see a commercial on TV 

next week divided by the total number of people in the market. Such data is relatively easy to obtain
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for a market researcher. In contrast, it can be difficult to estimate the internal transmission rate 0 Bass

prior to a market launch. As discussed above, a rough, but reasonable approximation for fiBass is

(3{k). Following the argumentation in chapter 7.1, we can interpret /3(k) as the average number of

recommendations that a consumer passes on in a given unit of time (say, one week). The marketing 

manager thus can try estimate the size of internal communication by asking himself how many times, 

on average, a person aware of the offer will make other people aware of the package tour for a given 

time horizon. Alternatively, the manager can set up a survey or pilot study to predict this number. 

This, of course, is not easy to organise, and the search for an appropriate survey methodology has only 

started. Yet, several promising approaches for measuring inter-personal communication have been 

suggested. For example, one can conduct surveys amongst sales representatives (for example, the sales 

force of a pharmaceutical company) to estimate the average number of recommendations given by key 

market players (for example, medical doctors, pharmacists, etc.).

Alternatively, a market researcher can try to assess the importance of inter-personal 

communication for a new product XY by asking consumers in a pre-launch study the following 

question:

“On a scale between 0 to 10 how likely would you 
recommend XY to a friend or colleague?”

® © © © 0 © © © ® ® ©
N ot a t all H igh ly

likely  likely

Empirical studies suggest that such “would recommend” questions have good predictive power for 

future sales (see Reichheld [139], Marsden, Paul, et al. [107]). What is interesting in the “would 

recommend” approach is that survey participants only have to predict their individual behaviour, not 

an aggregate outcome. That prediction might be biased and unreliable, and more empirical tests 

should be conducted to check the validity of this approach. However, it seems likely that the average 

prediction of individual behaviour is more reliable than the average prediction of aggregate market 

outcomes. Hence, the average score of the “would recommend” question among survey participants 

could be a robust estimator for fi(k ).

To make this estimator operational, one has to translate the average score into a recommendation 

frequency P{k). Again, whether this is feasible is subject to future research. One potential option to

achieve this is to compare survey results of already launched campaigns. For example, a marketing 

manager could leam from previous market launches that the internal transmission rate fiBass 

determined sometime after the product launch (through a regression analysis based on the Bass model, 

see section 2.1) corresponds to a given pre-launch score of the “would-recommend” survey.

Another interesting option for approximating P (k)  could be to take the Euclidian (that is, the 

spatial) distance between two consumer’s post codes (that is, home addresses) as a proxy for their
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interaction frequency (Bell and Song [16], Bradlow, et al. [28]). Here, it is assumed that a short spatial 

distance corresponds to a relatively high interaction frequency. Thus if the marketing manager knows 

where consumers (or all household in an area) are located, he can derive the average spatial distance in 

a region. This in turn might be proportional to the average interaction frequency of the area. However, 

it should be noted again that this approach still has to be tested.

b) Apply the network-based Bass model for the initial stages o f  the diffusion process. Once the 

marketing manager has an estimate of a  and f3(k) he can proceed by applying the network-based

Bass model for the early phase of the diffusion process. In this period, the reaction of competitors or 

the occurrence of competitive news can be largely excluded. Furthermore, as we saw in FIG. 7.4, the 

network effects on the diffusion process are relatively small. If the previously cited data applies for 

this campaign, then we have /? ~ 0.04 and (&) = 4. Moreover, let us assume that pre-tests have shown

that the reach of the campaign is about a  ~ 0.02 and customers being aware of the offer indicate that 

they would make their friends and colleagues aware of it. This tells the manager that he can 

approximately apply formula (7.3) and its corollary (7.4), to estimate the number of weeks until the

30%-yardstick is reached as /(/= 30%) = In |(l + 0 .3 ^ 1)(l-0 .3)_11(0.02 + 0.04x4)"' =8.8. Of course, this

is a first approximation and should be validated by answering some additional check-up questions, as 

outlined next.

c) Validate i f  network effects should be considered. The marketing manager should always keep in 

mind that the quality of the approximation depends crucially on the relative strength of the marketing 

effects a  vis-a-vis the average communication frequency among customers (3(k). He should thus

compare f ( k )  and eras discussed in section 7.5 to see if the network effects (apart form (A:)) might

strongly influence the product’s propagation. If this is the case, he should expect that the diffusion 

process will divert from the network-based Bass model. The diffusion process could become faster or 

slower, depending on the actual structure of the network. For instance, as shown in FIG. 7.4, the 

diffusion could become faster, when the degree variance V is high and the other network 

characteristics C,r and t  are relatively small. In our marketing example, the manager might want to 

be rather conservative and predict a slower-than-expected diffusion. The previous analyses then 

suggest that -given a j  fi(k )  = 0.125 -  the manager should add a safety cushion of about 2 weeks to the

estimate of the Bass model to take network effects into account. Accordingly, he finds that 30% of the 

market can be expected to be aware of the offer after about 8.8 + 2 = 11 weeks. For later stages of the 

diffusion process, the manager should expect much larger deviation from the prediction of the 

network-based Bass model and probably might refrain altogether from forecasting the medium and 

long-term effects of the diffusion.
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It should also be noted that, as shown in chapter 4, the estimate of the network-based Bass model 

is more exact the larger the target market is, as long as the external transmission rate a  applies to the 

entire population of customers. The reason is that, under the condition of a uniform and sufficiently 

large a, the market size is proportional to both the number and size of sub samples of diffusion 

processes we took to conduct the regression analysis. Thus in a large equally exposed market the 

stochastic fluctuations of diffusion processes tend to cancel out.

If a more detailed prediction of network effects is necessary, the manager can try to account for 

the factors V,C,r, and I. For example, the variance of the degree distribution V can be approximated 

by the variation of answers in surveys similar to the cited example (East and Hammond [50]). The 

remaining factors C, r, and I , however, are usually much harder to measure for a particular market. 

The good news is that our regression results are based on extreme cases that cannot be expected to 

prevail in all contexts. If existing empirical data is any guide (Newman [120]), the degree correlation 

r and the clustering C are usually somewhat lower than the values assumed in our example. Therefore, 

the real source of uncertainty for estimates of the network-based Bass model seems to be the average 

path length I  as it can have a strong impact on the diffusion process and is difficult to estimate.

d) Assess the stability o f  the social network between consumers. Another reason why the diffusion can 

differ from the network-based Bass model is that the social network between people could be unstable 

during the analysed period. As suggested by the evolutionary network model in chapter 5, social 

networks are likely to be in constant flux and sometimes can exhibit massive changes. Of course, we 

did not prove that social networks actually develop in such a way. However, the underlying 

assumptions and the resulting network evolution appear to be plausible. So what the practitioner can 

take away from this model is that at times -and sometimes quite suddenly- extreme structures of 

social networks can emerge and potentially lead to atypical and unexpected market reaction. So the 

benefit of the model in chapter 5 is not to serve as a predictor for network evolutions. It rather gives an 

intuition how the emergent behaviour of markets -potentially driven by the emergent behaviour of 

social networks- can massively and unexpectedly change market trends. Put differently, it is a 

reminder that one should remain very cautious and humble when forecasting market outcomes. A 

marketing manager should thus ask himself if there are potential shifts of the social network in the 

time horizon of interest, for example, as a consequence of technological changes in inter-personal 

communication. He should also consider seasonal effects and cultural habits as potential triggers for 

massive alterations of social networks. Sunny weather, for example, might cause people to contact 

acquaintances more frequently, potentially giving an extra boost to a campaign’s success.

e) Control for heterogeneous recommendation behaviour. In consumer surveys, it might become clear 

that the recommendation frequency varies a lot, that is, V is large or (d is not the same across the 

population. Such segmentation might be institutionalised in certain markets, for example in the
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healthcare market where pharmacists and medical doctors are people with high recommendation 

frequency. In a similar way, the recommendation behaviour could be different between loyal and 

disloyal customers (see Godes and Mayzlin [65]). In that case, the marketing manager can try to 

estimate fi(k )  for different consumer groups and apply the embedded Markov chain model (section

6.1) or the Markov network model (section 6.2) to estimate the trajectory of the diffusion process. 

Then again, the same check-up questions as described before should be answered.

Let us sum up the findings of this chapter. The presented network-based diffusion model rests on the 

assumption that members of the network receive information from an external source as well as from 

their network neighbours. Once informed, a network member remains a sender of information. For 

dense networks, the model has an analytic solution in which only the average connectivity is 

considered. For sparse networks, one has to rely on numeric solutions of the diffusion process. The 

numeric results show that the network structure can massively affect the diffusion process. In line with 

related research, for example, in sociology and epidemiology, we find that a high variance of the 

network’s degrees can accelerate the diffusion process while the presence of a long average path 

length positive degree correlation or clustering delays the propagation. Moreover, our simulations 

reveal that the effect of the degree variance is reversed in the later stages of the diffusion

The network effects become the larger, the less the network is exposed to external information. In 

the marketing context, the external transmission rate can be so high that network effects are rather 

curbed. For these cases, the analytic solution of the network-based Bass model provides robust results, 

especially for the early stages of the diffusion. However, in cases where external transmission is 

relatively low, the analytic solution does not hold anymore, and network effects significantly alter the 

diffusion process. These effects include evolutionary changes of the social network during the 

diffusion process. To account for the network’s impact on the diffusion, once can add a safety margin 

to the results of the network-based Bass model or simulate the diffusion process with a Markov model 

for different consumer segments.

This chapter brought together the results of the previous parts of the thesis, which made it possible to 

quantify the size of network effects in diffusion processes. We also used the Bass model as a reference 

point to formulate a concise network-based diffusion model for the marketing and PR professional. 

These results lead the way to several interesting applications and opportunities for future research, as 

outlined in chapter 8.
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Chapter 8

Conclusions and outlook

Let us summarise the theoretical and practical findings of the previous analyses. The first section of 

this chapter highlights the results of the thesis and is subdivided into insights about modelling social 

networks and about analysing network-based diffusion models. The results on social network 

modelling (subsection 8.1.1) mostly cover conclusions from chapters 3, 4 and 5, while section 8.1.2 

presents findings primarily of chapters 2, 6 and 7. The limitations of the research methods applied in 

this thesis are outlined in section 8.2. We then discuss applications of the presented network-based 

diffusion models (section 8.3), before proposing ideas for future research (section 8.4). The 

suggestions for further research include potential extensions of the evolutionary network model 

discussed in chapter 5, applications of the network-based diffusion model shown in section 6.3, and 

empirical validations of the evolutionary network model and the simulated diffusion processes.

8.1 Conclusions

The starting point for our investigations was the observation that the social structure affects the 

diffusion of information among people. Our goal was to quantify these structural effects on the 

information propagation in order to better predict diffusion processes in marketing, mass media 

management and other areas. In a first step we interpreted the social structure as a network of dyadic 

links between individuals. This had the advantage that the notion of social structure was brought into a 

clearly defined framework. The main question was then how the network structure shapes the 

diffusion process. In particular, we wanted to prioritise the different network effects through 

simulations and potentially integrate these features in a closed-form solution of the diffusion’s 

trajectory. In order to achieve this, we had to model social networks and then simulate the diffusion 

processes on different network structures. The conclusions are therefore grouped into two areas: social 

network modelling and network-based diffusion processes.

8.1.1 Social network modelling

There are several types of social networks, depending on the definition of network links and network 

members (for example, close friends vs. first-name acquaintances). Most relevant for diffusion studies 

appear to be social networks defined by a certain interest (for example, baby cloths, music styles, 

spare time activities). These networks overlap with other types of social networks and vary by size and 

structure. It is likely that different linking-up processes contribute to the creation and evolution of
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social networks, which most generally can be described in terms of random and preferential 

attachment and reattachment of network nodes.

These linking-up processes, however, are included only partly in existing network models. Most 

network models rely on the assumption that links once established between nodes remain constant 

over time. While this assumption might be accurate for steadily growing social networks such as 

citation webs, it does not capture the fact that people talk to each other sometimes more, sometimes 

less frequent, see each other with new eyes etc. We propose an evolutionary network model that 

emphasises the changing nature of social interactions.

The model suggests that certain features of social networks result from a combination of 

individuals’ cognitive psychology, external conditions (culture, geography, climate, etc.), and self- 

organised group-effects. While this model is not yet tested in empirical studies, it nevertheless 

suggests at least two things: small changes in people’s readiness to reconfigure relationships could 

cause major and on-going modifications in the entire network structure. Furthermore, network features 

such as the degree distribution and degree correlation are likely to differ in their stability over time. 

For example, according to this model, the average number of links in the network changes only 

slightly, while more complex features, such as higher moments of the degree distribution can strongly 

change throughout the network’s evolution.

The presented evolutionary network model is based on Structural Balance Theory, a classical 

research paradigm in sociology and social psychology. As the model reproduces several characteristics 

of social networks in the real world, especially a positive degree correlation and a realistic variety of 

degree distributions, it can be seen as a validation of the theory.

Moreover, this evolutionary approach suggests a new classification of social networks: sparse, 

semi-sparse, and dense social networks. These network types, according to the model, depend on 

people’s tolerance of unbalanced triangle relationships: a relatively high tolerance of unbalanced 

triangles results in dense networks, a lack of tolerance leads to sparse networks. The medium case of 

semi-sparse networks occurs as a certain proportion of people, by chance events, have joined so many 

balanced triangles that they serve as stabilisers of the network, temporary increasing the overall 

tolerance of the network. The existence of such “buffers” in social networks is at least plausible, 

although this hypothesis still has to be put to a test. It is interesting, nevertheless, that the changes of 

certain features in semi-sparse networks seem to follow a power-law distribution and are reminiscent 

of so-called “sand-pile” models that yield a behaviour of self-organised criticality. This underscores 

the need for time-varying network measures, such as the average number of break-ups per time unit.

Our review of network measures in the social and natural sciences hints at a convergence of 

definitions in both strands of research. The degree distribution, clustering, components (or “blocks”) 

and the degree correlation are acknowledged key measures across different scientific areas and differ 

not much in their definitions. In contrast, the concept of path length between pairs of nodes is the basis 

for a remarkable variety of sub-concepts in the social sciences, for example, network centrality,
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network betweeness, and structural equivalence. Their emphasis can be partly explained by prevalent 

research paradigms (for example, the notion of a person’s “status” in a group), and partly by the 

limited empirical data of social networks. Authors in the natural sciences, in contrast, are usually 

content with the average path length, as they are often interested in the mean-field behaviour of a 

network and rather deal with non-social networks such as the world’s airways network. However, as 

network research increasingly becomes an inter-disciplinary science, such differences in views and 

interests (more individual-minded vs. more system-minded) are increasingly bridged (see, for 

example, Holme and Ghoshal [80]).

The quality of network links also tends to be defined in much more detail in the social than in the 

natural sciences (for example, different weights of links). While it is interesting to check the impact of 

such network features, for example, on the diffusion, the parsimonious approach has three advantages. 

Firstly, equivalently weighted links are easier to determine in surveys. Secondly, general results such 

as closed-form solutions are easier to derive. Thirdly, the approach directs attention to more subtle 

modelling of network links, for example, implying different strength of links through their duration 

during the network’s evolution. As differences in network links can hardly be measured in marketing 

surveys, we only used equivalently weighted, undirected links throughout the simulations of network- 

based diffusion.

For the diffusion analyses, we focus on four network characteristics (in addition to the average 

degree): degree variance, clustering, degree correlation and average path length. To disentangle the 

individual effects of these features, we need to construct networks that cover the entire range of 

potential network structures. Hardly any known network construction method is capable of doing so. 

We show, however, that we can combine the classical configuration model, the small-world model, 

and the assortative mixing model by Newman [125] to design a large set of networks that covers all 

required network traits.

8.1.2 Network-based diffusion processes

The diffusion analyses enhance the standard Bass model in one particular respect: instead of 

homogenous mixing, equivalent to the assumption that everybody is linked to everybody else, we 

assume heterogeneous mixing. Heterogeneous mixing can be perceived as people interacting only with 

a selected number of other people, for example, members of certain groups (“population strata”) or 

local neighbours in a network. The stratification of the population converges to a homogeneous 

network if each stratum contains exactly one person and all interactions between strata are defined.

We showed in chapter 4 that certain network features such as assortative mixing of nodes, the 

degree distribution, and the degree correlation can be mimicked in strata-based diffusion models. 

However, in order to replicate exactly all the effects that the social network inflicts on the diffusion 

process, we created a more refined model. The main challenge for such a model is to keep the 

simulation running time acceptable for large networks. In the proposed model, the so-called “event-
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queuing model”, we keep the running time, on average, of the order TVlog(TV) for each information 

transmission so that the complete diffusion process for the network-based Bass model is of the order 

N 2\og(N). The simulations with the event-queuing model exactly reproduce the distribution of 

trajectories for any time t in the diffusion process. In particular, if we average the trajectories over a 

sufficient number of runs for a given set-up, we obtain the average behaviour of the diffusion process. 

This model can be easily extended to more than two states (for example, being a non-adopter, being 

aware of a product, being an adopter) more than one information type, and time-varying transmission 

rates.

The event-queuing model was tested on a small-world network with two different information 

sources external to the network and the network representing the electorate in a two-party system.

For this set-up, we derived a closed-form solution for the probability distribution of bipartisanship in 

the steady state if (k) = N - 1. Interestingly, the simulations show that the closed-form solution

appears to be a very good approximation even for (k) <sc N - \  as long as the average degree is not too

small, and the average path length is sufficiently short. Through the simulations we also find that the 

distribution of trajectories increases its variance as the network size N  becomes smaller. For relatively 

small populations, the distribution becomes bi-modal with the two modes at the extremes of the 

distribution. This shows that opinion polls might require sophisticated cluster sampling or a large 

sample size if the population is sequestered in many small groups.

In a next step we compare the simulation results of the event-queuing model to the Bass model to 

check in which way the assumption of heterogeneous mixing alters the diffusion curve. In network 

terms, the standard Bass model has the assumption that the average degree is (k) = N - \ .  In such a

situation, the Bass-specific internal transmission rate PBass = p{k )  provides an important link between

a parameter specified in a macro-market-setting (“cumulated number of adopters”) and the micro

market structure (“average number of recommendations given for a product”).

Of course, in a market for consumer products, the target group is usually much larger than the 

average degree. In the simulations, we, therefore, assume heterogeneous mixing, where (&)«: N, and 

a large range of typical social network structures that automatically emerge if this is the case.

A crucial finding is then that ($Bass ~ p (k ) ,  as long as the external transmission rate a  is large

enough relative to P (k). In other words, network effects can largely be ignored if a  is sufficiently

high. A good indicator for the occurrence of network effects is thus the ratio , respectively In

our simulations, we find major network effects for a ratio of about 10% and smaller. Among other 

things, this offers us an interesting perspective on past diffusion studies of consumer products. If we 

apply the Bass model, for example, to the cumulative units sold of home PC, we find a ratio of about 

50%. Accordingly, network effects (apart from (&)) hardly played a role in the propagation of
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computers for the period of analysis (until the mid-nineties). The diffusion trajectory of the VCR in 

this period, in contrast, yields a ratio of less than 2%. Even if we take into account that the ratio itself 

is altered by network effects (that is, that fi(k )  might be smaller than suggested by the approximation

Pboss ~ we can expect a substantial impact of the consumer networks on the product diffusion.

Across a company’s product portfolio, network effects will occur most likely for those products that 

are hardly advertised.

If the ratio is lowered to about 2.5%, the simulations show that potential network effects are

still relatively limited for a diffusion level of about 10 to 15% of the market’s potential. For later 

stages of the diffusion process, however, the network effects come into play.

The network effects are especially driven by the average path length I  and the (normalised) 

degree variance V. An increase of the average path length prolongs the diffusion process 

approximately in a linear way, that is, the longer i,  the more time is required before a certain 

diffusion level i is reached. Increasing the degree variance first spurs the diffusion, before, in the 

latter stages of the diffusion, this effect is reversed, that is, an increase of the degree variance 

postpones the time until a certain diffusion level i is reached. The effect of the degree variance appears 

to follow a quadratic function of the diffusion level i while the average path length’s effect can be 

approximated by a linear function of i.

The clustering and the degree correlation have a smaller effect on the diffusion process than the 

average path length and the degree variance. Both stall the diffusion in the later stages and have a 

relatively small impact in the early stages. Of course, as the ratio becomes smaller, their impact

becomes significant for the earlier stages as well. It is interesting to note that the degree correlation 

slightly speeds up the diffusion early on, before reversing its effect in the later phase.

When the ratio of is very low, we also observe that other network effects increasingly

contribute to the difference between the network-based Bass model and the actually simulated results. 

Such network features are the combined effects of the considered network features or even totally new 

network characteristics. However, as there are a boundless number of different network structures, a 

network-based diffusion process can be expected never to be entirely determined by an analytic 

solution. Yet, as the simulations show, the diffusion’s trajectory even for relatively low external 

transmission rates a  can be well approximated by the first and second moment of the degree 

distribution and the average path length.

The fact that fi(k )  covers most network effects for sufficiently large a  can be used to estimate 

the parameter f$Bass prior to a product launch.

Finally our analysis suggests a way to assess the relative importance of external versus internal 

information sources for different diffusion processes: we can estimate f i(k )  in surveys and compare it 

with the external transmission rate or. We thus find that the ratio can strongly vary from topic to
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topic, from product to product. If is sufficiently small (according to our study, that is 

approximately if < 0.1), we have to take network effects such as the degree distribution into 

account.

In summary, the results give us a much better understanding of the interplay between information 

sources and the social structure o f people in the diffusion process. Nevertheless the proposed 

simulation study entails several simplifications that should be kept in mind.

8.2 Limitations

It certainly can be argued that the presented results about network construction and network-based 

diffusion process have limitations. Let us first indicate potential shortcomings of the network 

construction methods before turning to the diffusion simulations.

In the proposed evolutionary model, the major unit of social evaluation, the triangle relationship, 

is not necessarily the main driver for changes in the social structure. We could consider, for example, 

cycles of more than three nodes, or the ratio of negative to positive links maintained by an individual 

node. Similarly, one could use different definitions of social balancing. It should also be mentioned 

that the applied network size and the number of iterations for a particular combination of friendliness 

index and balance threshold was relatively small.

In the diffusion studies we could have investigated additional network features such as network 

centrality, components of different sizes, etc. In addition, the applied network sizes are surely larger 

than those used in several other diffusion studies, yet the modelled number of nodes is still somewhat 

smaller than the size of actual consumer markets.

Another simplification in the diffusion analysis is our focus on two states (non-adopters and 

adopters). A third or even more states might be desirable, for example, to model different levels of 

adoption behaviour such as repetitive purchases of the same item and the cumulative sales (not just 

awareness or market penetration) of a product.

We also applied the most basic form of updating people’s state: a person was assumed to adopt an 

opinion, change his behaviour and so on in the same way as he would become informed about a news 

story. A personal threshold or a complex adoption behaviour expressing, for example, a person’s risk 

aversion, inertia, information requirements etc. was not taken into account. However, our model is 

able to incorporate such behavioural assumptions, for example, if we let the transmission rates a  and 

P  be dependent on time or on the adoption rate i, if we introduce more states, or if we vary the

transmission rates for specific nodes.

This brings us to another critical point. In the simulations we used time-constant transmission 

rates a  and P  as it is common to assume that human activities are conducted at a constant rate. The 

corresponding frequency of transmissions can be approximated by a Poisson process, where the 

waiting time between two standalone transmissions (that is, transmissions between a given pair of
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consumers, between an external information source and a given consumer) is exponentially 

distributed. Recent studies suggest, however, that for certain human activities the waiting time can 

follow a heavy-tailed distribution. In that case the resulting frequency of transmissions is not a Poisson 

process, but a process of so-called “burst dynamics” (Vazquez, et al. [167]). If we assume such 

dynamics for mass and inter-personal communication, the rhythm of transmissions is likely to be more 

erratic than modelled and could somewhat alter the simulation results.

Probably the most severe limitation in the simulation study is our assumption of undirected links. 

Instead, we could have considered directed links and link-specific weightings. Yet it is possible that 

the model described in chapter 7 includes directed links and heterogeneous weightings of links.

Overall, it would have been desirable, of course, to check empirically the simulated results of the 

evolutionary network model and the diffusion studies. How such surveys and verifications could be 

organised is the subject of the remaining sections on applications and future research.

8.3 Applications

In the previous chapters we described practical ways of using the results of this thesis to measure the 

socio-structure of inter-personal communication and to take it into account to improve market 

forecasts. Let us briefly list these applications

Our results are relevant for those diffusion processes that are strongly driven by inter-personal 

communication. Hence a practitioner should ask first how to estimate the significance of inter-personal 

communication. This can be done, for example, by estimating the ratio for the diffusion process, if

a sufficient amount of data on market penetration (cumulative number of adopters) is available. 

Instead, it is possible to use a  and fiBass derived from similar campaigns or products that were 

previously launched. If this ratio is sufficiently small, inter-personal communication among consumers 

should be taken into account.

Alternatively, a market researcher can ask consumers how often they recommended a certain 

product or service to their friends and colleagues in a given period of time (for example, the last 6 

months). If the average number of recommendations is high enough, inter-personal communication is 

an important driver of consumers’ adoption behaviour.

Another survey method to check for inter-personal communication is to ask customers upon their 

purchase through which information source (media vs. personal contacts) they became aware of the 

product or were convinced to buy it. If a high proportion of customers indicate “personal contacts”, 

inter-personal communication should be considered. Additionally, one can try to evaluate the 

recommendation behaviour for a product by observing online newsgroups over time (Godes and 

Mayzlin [64]).

Once we know that inter-personal communication for a given product or campaign is important, 

we suggested two methods to forecast the diffusion process: through the network-based Bass model 

and through simulations of group-based market diffusions.
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In order to apply the network-based Bass model, one has to assess the average frequency f i(k )  of 

interactions between consumers. We can try to estimate f3(k) by asking people how often they did/

likely would recommend a product or service. It might also be possible to use the population density 

of a region to approximate the average frequency of inter-personal communication in that area.

Using the group-based diffusion simulation, we first need to divide the market into meaningful 

groups (for example, medical doctors, pharmacists, and patients in the pharmaceutical market). Then 

we need to check if all group members interact within and between groups in a sufficiently similar 

way, for example, a pharmacists being accessible to all patients in a town. Once we can be sure of 

homogenous interactions by groups, we estimate the average frequency of group interactions. To do 

so, a marketing manager might ask, for example, the pharmacy sales reps of his company to estimate 

the number of recommendations by each pharmacist in the target area. The survey data is then used to 

calibrate the group-based diffusion model that predicts the cumulative number of people aware of this 

offer for the next weeks or months.

Both models are best applied to the early stages of the diffusion process as they acknowledge only 

the average connectivity in a network. At later stages more complex network effects are felt and need 

to be added to the respective model. This is also the case if the average recommendation frequency 

P(k)  is relatively high in comparison to the external transmission rate a.

When applying these models, a marketing manager should try to assess the stability of the social 

network underlying the market. The structure of the social network could strongly reconfigure during 

the period of interest so that the diffusion’s dynamic might change. In which areas and when such 

reconfigurations of social networks actually happen is one of the questions for future research.

8.4 Future research

While our results are probably most applicable to marketing and mass media management, they have 

research implications to a much wider field. The presented evolutionary model of social networks and 

the event-queuing model can become part of the research agenda in such different areas as marketing, 

economics, cognitive/social psychology, physics, and other natural sciences. Further research 

possibilities concern the empirical verification of the simulated results. Our agenda for future research 

thus consists of three issues: extensions of the evolutionary network model, research applications for 

the network-based diffusion model, and empirical validation.

8.4.1 Extensions o f the evolutionary network model

The presented evolutionary model of social networks could be extended in at least six ways: varying 

the distribution of the friendliness index and the balance threshold, measuring other network traits, 

changing the deletion mechanism, combining the model with other models of network construction, 

and transferring the model to complex systems other than social networks.
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One option for altering the model is to apply a variation of values for the balance threshold 6  and 

the friendliness index (p to the same evolution and population. It would be interesting to have more 

than one value of 6 for different situations during the evolution, for instance to incorporate exogenous 

factors that influence the quality of links. Another option then is to have more than one type of group 

so that the friendliness index varies for links within and between groups. Furthermore, one could 

assign a distribution of balance thresholds across all nodes.

Second, network traits not yet analysed such as the component distribution, the number of “hard 

cores”, higher moments of the degree distribution and so on could be investigated and checked for 

their realism, especially on much larger networks.

Third, the deletion mechanism could be altered, for example, by using a different definition of 

balance, by incorporating an exogenous deletion mechanism (randomly deleting links, independent of 

the balance indices or by deleting certain links more readily than others and so on).

Fourth, one can combine the evolutionary model with other network models, for example, the 

Barabesi-model, Newman’s assortative model, and the “introduction model” by Ebel, et al. [51]. The 

resulting network could reproduce social networks in the real-world even better than the present 

version. Additionally, such a model could provide further insights into which construction 

mechanisms are the main drivers of social networks.

Fifth, the model is interesting for formal analyses, for example, to derive analytic solutions for the 

average number of links and triangles in any given setting of 0 and (p.

Sixth, it would be interesting to check if the number of triangles and links in the network exhibits 

1/f-noise, which is an ubiquitous pattern in time series, observed, for example, in stock price 

movements, heart beat frequencies and meteorological data (Bak, et al. [7]).

In a similarly inter-disciplinary way it is possible to make further use of the network-based 

diffusion model.

8.4.2 Research applications of the event-queuing model

The event-queuing model for simulating diffusion processes on networks can support, on the one 

hand, further research on the impact of network structures and on mass-media-induced diffusion 

processes. On the other hand, the model lends itself to any other research topic about information 

running through a given structure, for example, liquids, traffic flows, and electronic signals. Let us 

first sketch the list of follow-up questions for mass-media-induced propagation of products and public 

opinion.

An important next step is to vary the external and internal transmission rates during the simulation 

as a function of time and the diffusion level i. In that way one can compare different pulsing strategies 

for marketing campaigns, the effects of conspicuous consumption, threshold effects, and other 

product-specific adoption phenomena. It is also possible to reconstruct decision behaviour of groups in
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the presence of external and (group-) internal information transmission. Moreover, including directed 

and weighted links might grant several additional insights into network-based diffusion processes.

Additionally, one could configure the external and internal transmission rates in such a way that 

the interaction dynamics between two persons, and between the external information source and an 

individual, follows “burst dynamics”, where the waiting time between two subsequent transmissions is 

modelled as a thick-tailed distribution (Vazquez, et al. [167]).

Then it is potentially interesting to model more than two states of people. For example, one could 

include an awareness state, plus one or more adoption states. In that way, one could include complex 

consumer behaviour such as repetitive purchases. For news diffusion models, it would be interesting to 

include a stifling state of informed but not-communicating people. Once more than two states are 

considered, it would also be a worthwhile endeavour to have three or more external sources of 

information, for example, to indicate the advertisement of different companies or parties.

Another important direction of research is to check the impact of other network structures on the 

diffusion process, for example, path-based measures such as network centrality and structural 

equivalence.

Further simulations might also allow us to find closed-form solutions that describe a wide variety 

of structural effects in network-based diffusion processes.

Apart from simulations in the context of marketing and mass media management, the event- 

queuing model (as applied to networks) can be taken to other areas of science, for example, to 

microeconomics and operational research. The event-queuing model could be used, for example, to 

analyse the structural effects of markets on the circulation speed of money in an economy or liquidity 

in a stock exchange. In operational research, the event-queuing model could help to measure the 

efficiency of corporate reporting systems and queuing systems.

Probably the most interesting project of future research, however, will be empirical tests of the 

simulated results.

8.4.3 Empirical validation

The evolutionary network model and the network-based diffusion model offer several new avenues for 

empirical research. For the evolutionary network model, it would be interesting to determine the 

average balance threshold in different contexts (nations, cultures, metropolitan vs. rural areas) and 

then verify the respective network properties like the degree correlation.

It would also be interesting to compare the development of social network websites and their 

implied social ties with the network evolution of the model.

Finally, the evolutionary network model suggests that people constantly redefine their social 

contacts. Thus, the rate of social adjustments within the network (rebalancing sentiments by removing 

social links) is much faster than the rate at which new contacts are established. This contrasts with 

many other models of network evolution where new edges are added to the network at quicker rates
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than edges are removed (the usual logic being that links stay in the network for a person’s lifetime) 

(Ebel, et al. [51]). Interestingly, the gravity of social confrontations and revolutions (as, for example, 

measured by the number of workers involved in strikes (Biggs [22]) or by the number of victims in 

terrorists attacks (Clauset, et al. [35]) seem to follow a power-law as well. If we therefore interpret the 

size of social upheavals as the change in the number of triangles of the underlying network, we can 

use the model as a conceptual bridge between the population’s sentiments (tolerance), the evolution of 

its social network, and the likelihood of social disruptions. In future empirical studies one could try to 

substantiate this link.

Empirical studies will also help to test the simulation results of network-based diffusion 

processes. For example, one can try to determine the ratio of for different products by asking
PBass

consumers for their source of information or by using scanner data that allows differentiation between 

mass-media-induced and recommendation-induced purchases.

Alternatively, one can ask the “would-recommend” question for different products, 

advertisements, and news stories as well as for different cultural/geographical/national settings. For 

these items and information, one can then compare the survey results with data of the market outcome, 

for example a product’s market penetration. Such a procedure might lead to a new taxonomy of 

products and marketing messages that helps to forecast better the success of new products and 

marketing campaigns.

All in all, this thesis provides extensive proof that social networks can strongly affect the diffusion of 

information in markets and society. The presented results encourage the further exploration of the 

interplay between network structures and information flows.

141



Appendix 1: Symbols and conventions

Network structure
N  Population size, number of network nodes

= {1,2,3,...} Index for network nodes and population strata 

L A set of links in a network

L Expected number of links in a random graph

yf = { Ag } Adj acency matrix

k ,k ' Degree (that is number of links or “connectivity”) of a node

p(k) Proportion of nodes with degree k; density function of the degree distribution

P(k) Cumulative degree distribution

£mod Most frequent degree in the network; mode of the degree distribution

kmax Largest degree in the network

{k) = ^ k kp{k) Average degree in the network

(A") = ^Lkk n p(k) The nth moment of the connectivity distribution p(k)

<Jk Degree variance

V Normalised degree variance

D Network density

r Degree correlation

rocc Assortative mixing coefficient

S Number of triangles in the network

A Number of connected triples

C Clustering coefficient

Cj (Local) clustering coefficient for node j

C ' Average clustering coefficient across all Cj

I  Average path length in a network

djj. Geodesic, that is, the shortest network path between two nodes j  and j  ’

VCCj Vertex-specific centrality closeness of node j

VCC* Largest vertex-specific centrality closeness across all nodes

NCC Network centrality closeness

VCBj Vertex-specific centrality betweeness of node j

e “  \.eii'\ Adjacency matrix or affiliation matrix

ejj’,emr Cell in an adjacency or affiliation matrix
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aj ’ ,au’ û Proportion of nodes with trait a or b and with a qualitative, respectively 
quantitative trait j  and u

<lk Remaining degree distribution

Standard deviation of au,bu, and qk.

8 Heterogeneity factor in the NUI-model

&k,k' Kronecker delta of the k, k ' - Matrix

Network construction

P er Connection probability {random graph model)

s„ Average number of nodes that can be reached from a given node on a path 
with n steps

K Number of close vertex neighbours {small-world model)

Psw Connection probability {small-world model)

/„ Number of links considered for rewiring but left in place at node i

h, Number of rewired links rewiring connected to node i

p Probability in a metropolis simulation

M Exponent in the power-law function; mean of the Poisson distribution

K Constant parameter

X Normalising constant

rGr Group assortivity

r Degree correlation in a Markov network

Evolutionary model o f social networks

<P Friendliness index -1 < <p < 1

e Threshold index -1 < 6 < 1

pb Probability that a completed triangle is balanced, disregarding the break-up

Pu Probability that a completed triangle is unbalanced, disregarding the break-

Ufj individual balance of node j

+ — 
A ,A Number of balanced (imbalanced) triangles running through a given node

E, Number of network links at t

E Number of network links, averaged over a certain period of time
+ Required number of bal. triangles for accepting the next unbalanced triang]

G{(p,d) Probability that a randomly chosen set of a* triangles created at any time 
throughout the evolution, contains only balanced triangles

u Probability that a node retains an unbalanced triangle at t

Zb Proportion of balanced triangles in the network
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£

r

m

Number of balanced and unbalanced triangles in the network 

Margin by which the proportion of balanced triangles %B is lower than 1 

Degree correlation averaged over a certain period of time 

Degree distribution averaged over a certain period of time

Propagation dynamics 
t Time

S(t) Number of non-adopters or number of adherents of party TWO at t

I  (t) Number of adopters or people aware of certain information at t

X{t)  Number of supporters of party ONE at t

Sk(t),Ik(t) S(t),I(t) with degree k

Z  Number of potential states of a person

z Index of states

z(j ,t )  State of node j  at t

s(t) = S(t) /N  Proportion of non-adopters or adherents of party TWO at t

i(t) = I  (t)/N Proportion of adopters or people aware of certain information at t

x(t) = X ( t) /N  Proportion of supporters of party ONE at t

l c‘ose (t) Number of adopters of in the close neighbourhood of consumer j  at t

l j ar (t) Number of adopters of in the “far neighbourhood” of consumer j  at t

I** Number of adopters in group j ,  persuaded through external effects

l 't  Number of adopters in group j ,  persuaded through someone in group f

I  (t) Average number of adopters across different simulation runs

Nj Size of group j

J  Number of groups in a population or number of survey participants

a,a'j External transmission rate

Internal transmission rate (at /)

A Event rate

Av Transmission rate on link v

h{t) Hazard rate for an event at t

hj (t) Hazard rate for an event happening to person j  at t

T Time when an event (that is, the next event) happens

/ ( t) Probability density function that a given event happens at time T

F(t) Cumulative probability function of / ( 0

0) Number between 0 < cj<  1 randomly drawn from a uniform distribution

T(COV) Factor describing the impact of covariates on consumers’ purchasing rate
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o Heterogeneity factor

/ = {1,2,3,...} Index of directed links in a network

y Index of jump points in an embedded random walk

T Period of time

T =  t1 y  b y - ty_i Duration between two the jump points y  and y  — 1

Transmission rates

Transmission probability at t

CPr{k\t) Cumulative function of transmission probabilities at t

M Number of external information sources

m Index of external information sources

V Number of transmission links

V Index of transmission links

H Function indicating how states change at either end of a transmission link v

P M Probability that the proportion of adherents of party ONE is x  at t

p{X) Probability that the number of adherents of party ONE is X  at t =

P sm W Simulated relative frequency of X  adherents of party ONE at t =

v \v ~ Transfer rate for a party winning (respectively losing) a supporter

&B* Pb Coefficients of the Beta distribution

Statistical assessment
b Regression coefficient

R2 Square of the Pearson correlation coefficient, coefficient of determination

(tsimi 0) Time until a certain proportion i of people is informed, averaged over several 
simulation runs

?mod(0 Time until a certain proportion i of people is informed according to the model

Y, Dependent variable for a given i

x , Explanatory variable for a given i



Appendix 2: Programming codes for simulations

The following codes underlie the simulations conducted for the thesis. They are written in Visual 
Basic, but can easily be transferred into other programming languages. The parameters have usually 
the same designation across the different simulation tasks (for example, i ,  i ° , j , j °  for indices, n 
for the network size) but can also vary in their connotation (for example, the probability p). Note that 
the index of arrays and matrices start with 0 so that the highest index number is n -1  for an array of 
size n. “ReDim” in Visual Basic is used if the size of an array or matrix is flexible.

A2.1 Poisson random graph model

Dim i , j , n  a s  I n t e g e r  
Dim p ,  r a n d  a s  D o u b le  
n  = 100 
p  = 0 . 1 2
ReDim A d j ( n  - 1,  n  - 1) As I n t e g e r  
F o r  i  = 1 To n

F o r  j  = i  + 1 To n 
r a n d  = Rnd 
I f  r a n d  <= p  Then

End I f  
N ex t  

N ex t

'Network size (example value) 
'Link probability (example value) 
'Adjacency matrix of size n

'Deciding which nodes are linked
Adj ( i - 1, j - 1) = 1 '1 if there is a link from i to j
Adj (j

E l s e
- 1, i - 1) = 1 '1 if there is a link from j to i

Adj ( i - 1, j - 1) = 0 ' 0 if there is no link from i to j
Adj ( j - l . i - 1) = 0 ' 0 if there is no link from j to i

A2.2 Small-world model

A2.2.1 Basic Wiring
Dim i ,  j ,  i ° , j ° ,  n ,  k b a s e ,  c o u n t  a s  I n t e g e r  
Dim p ,  r a n d ,  r a n d °  a s  D ou bl e
p  = 0 . 2  'Rewiring or shortcut probability (example value)
k b a s e  = 4 'Number of neighbouring nodes to each side of a node
n = 100 'Network size (example value)
ReDim A d j ( n  - 1,  n  - 1) As I n t e g e r  'Adjacency matrix of size n
F o r  i  = 1 To n

F o r  j  = 1 To n
A d j ( i  - 1,  j  - 1 )  = 0  'Setting matrix cells to zero

N e x t
N ex t

F o r  i  = 1 To n  'Linking up nodes with their local neighbours
F o r  j  = 1 To k b a s e

I f  i  + j  <= n Then
A d j ( i  - 1,  i  + j  - 1) = 1
A d j ( i  + j  - 1,  i  - 1) = 1

E l s e
A d j ( i  - l ,  i  + j - n - 1) = 1
A d j ( i  + j  - n  - 1, i - 1) = 1

End I f
Nex t

Nex t
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A2.2.2 Rewiring links (Watts-Strogatz-version) (continuing A2.2.1)
F o r  i  = 1 t o  n  'Considering each link previously set-up

F o r  c o u n t  = 1 t o  k b a s e  
r a n d  = Rnd

I f  r a n d  <= p  Then  'Deciding for each link if it is rewired
r a n d °  = I n t  ( (n * Rnd) + 1) 'Choosing the distant node

F o r  i °  = 1 To n  
I f  i °  + rand® <= n  Then 

j  = i °  + r a n d °
E l s e

j  = i °  + r a n d 0 - n 
End I f
I f  A d j ( i - 1 ,  j - 1 )  = 0  And i  <> j  t h e n  

I f  i  + c o u n t  <= n  Then 
j ° =  i  + c o u n t  

e l s e
j  ° = i  + c o u n t  -  n 

e n d  i f
Adj ( i - 1 ,  j ° - l )  = 0 'Swapping old link with new one
A d j ( j  ° - 1,  i - 1 )  = 0 
Adj ( i  - 1,  j  - 1) = 1 
Adj ( j  - 1,  i  - 1) = 1 
i ° =  n  + 1 

End i f  
N ex t  

End i f  
N ex t  

N ex t

A2.2.3 Determining shortcuts (Monasson-Newman-Watts-version without double-/ self-links) 
(continuing A2.2.1)
F o r  i  = 1 To n

F o r  j  = i  + k b a s e  + 1 To n  'Links beyond the local neighbourhood
r a n d  = Rnd 
I f  r a n d  <= p  Then

A d j ( i  - 1,  j  - 1) = 1  
Adj ( j  - 1,  i  - 1) = 1 

End i f  
N e x t  

Nex t

2.3 Configuration model

2.3.1 Generating stubs according to a given degree distribution
Dim i ,  j ,  n ,  c o u n t  a s  I n t e g e r  
Dim p ,  r a n d ,  r a n d °  a s  Do ub le  
Dim c h e c k  a s  B o o l e a n  
n = 400
Dim p k ( 2 0 0 ) , p k c u m u l (200) As D o u b le

ReDim k i ( n  - 1) As I n t e g e r  
F o r  i  = 1 To 2 01 

pk  ( i - 1 )  ={...}
Next
p k c u m u l (0) = 0 . 0 4  
F o r  i  = 2 To 2 01

p k c u m u l ( i  - 1) = p k ( i - l ) +  p k c u m u l ( i  
Next
c h e c k  = F a l s e  
Do U n t i l  c h e c k  = T r u e

'Network size (example value)
'Array of the degree distribution's 
' density and integral(200 is an 
'example value for the max. degree) 
'Array of degrees for each node
'Example degree density distr.
'Example value for p(k = 0)
'Forming the cumulat. degree distr.
- 2 )
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c o u n t  = 0 
Fo r  i  = 1 To n 

r a n d  = Rnd 
F o r  j  = 1 To 2 01

I f  p k c u m u l ( j  - 1) > r a n d  Then
k i ( i - l )  = j  - 1 'Each node is assigned a degree
c o u n t  = c o u n t  + j  - 1 
j = 201 

End I f  
N ex t  

N ex t
I f  c o u n t  /  2 = F i x ( c o u n t  /  2) Then

c h e c k  = T r u e  'Checking if # of stubs is even
End I f  

Loop

2.3.2 Enumerating stubs (continuing 23.1)
Dim s t u b m a x , l i n k t o t a l  a s  I n t e g e r  
s t u b s m a x  = c o u n t
ReDim s t u b s ( s t u b s m a x  - 1) As I n t e g e r  'Array of stubs
l i n k t o t a l  = c o u n t  /  2 'Total number of network links
ReDim P a i r s ( l i n k t o t a l  - 1,  3) As I n t e g e r  'Array of pairs of nodes
c o u n t  = 0
F o r  i  = 1 To n

F o r  j = 1 To k i ( i  - 1) 'Each stub is located on the stubs' array
c o u n t  = c o u n t  + 1 
s t u b s ( c o u n t  - 1) = i  

N ex t  
Nex t

2.3.3 Connecting stubs (continuing 2.3.2)
Dim a ,  k a s  I n t e g e r  
c o u n t  = s t u b s m a x  
F o r  i  = 1 To l i n k t o t a l  

c h e c k  = F a l s e  
Do U n t i l  c h e c k  = T ru e

r a n d  = I n t ( ( c o u n t  * Rnd) + 1) 
r a n d 0 = I n t ( ( c o u n t  * Rnd) + 1) 
I f  r a n d  <> r a n d °  Then 

c h e c k  = T r u e  
End I f  

Loop
P a i r s ( i  - 1,  0)  = s t u b s ( r a n d  - 1)
P a i r s ( i  - 1,  1) = s t u b s ( r a n d 0 - 1)
I f  r a n d  < r a n d °  Then 

a  = r a n d  
r a n d  = r a n d °  
r a n d °  = a 

End I f
F o r  k  = r a n d  + 1 To c o u n t

s t u b s ( k  - 2) = s t u b s ( k  - 1)
Nex t
c o u n t  = c o u n t  -  1
F o r  k = r a n d °  + 1 To c o u n t

s t u b s ( k  - 2) = s t u b s ( k  - 1)
Nex t
c o u n t  = c o u n t  -  1 

Next

'Randomly picking one stub 
'Randomly picking another stub
'Checking if the stubs are the same

'Recording the stub's node number 
'Recording the stub's node number

'Making sure that rand >= rand®

'Moving the stack up by one 
'Reducing the stack size by one 
'Moving the stack up by one 
'Reducing the stack size by one
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2.3.4 Removing self-referrals (continuing 2.3.3)
F o r  i  = 1 To l i n k t o t a l

I f  P a i r s  ( i  - 1,  0) = P a i r s  ( i  - 1,  1) Then 
c h e c k  = F a l s e  
Do U n t i l  c h e c k  = T r u e

r a n d  = I n t ( ( l i n k t o t a l  * Rnd) + 1)
I f  P a i r s ( r a n d  - 1,  0) <> P a i r s ( i  - 1,  0) And _

P a i r s ( r a n d  - 1,  1) <> P a i r s ( i  - 1,  0) Then
c h e c k  = T r u e  'Finding a suitable pair for swapping

End I f  
Loop
a  = P a i r s ( i  - 1,  1) 'Swapping ends of the two pairs
P a i r s  ( i  - 1,  1) = P a i r s  ( r a n d  - 1,  1)
P a i r s ( r a n d  - 1,  1) = a 

End I f
Next

2.3.5 Removing double-referrals (continuing 2.3.4)
ReDim Adj (n - 1,  n  - 1) As I n t e g e r  'Adjacency matrix of size n
F o r  i  = 1 To n

F o r  j  = 1 To n
Adj ( i  - 1,  j  - 1) = 0

N ex t
N ex t
F o r  i  = 1 To l i n k t o t a l

I f  A d j (P a i r s ( i  - 1,  0) - 1,  P a i r s ( i  - 1,  1) - 1) = 1  Then  'Linked yet 
c h e c k  = F a l s e

Do U n t i l  c h e c k  = T r u e  'Checking if new connection is open
' and without self-referrence 

r a n d  = I n t ( ( l i n k t o t a l  * Rnd) + 1) 'Searching for replacing link
I f  A d j ( P a i r s ( i  - 1, 0) - 1,  P a i r s ( r a n d  - 1,  1) - 1) = 0  And_
A d j ( P a i r s ( r a n d  - 1, 0) - 1,  P a i r s ( i  - 1,  1) - 1) = 0  Then

I f  P a i r s ( i  - 1,  0) <> P a i r s ( r a n d  - 1,  1) And _
P a i r s ( r a n d  - 1,  0) <> P a i r s ( i  - 1,  1) Then

a  = P a i r s ( i  - 1,  1) 'Swapping ends of the two pairs
P a i r s ( i  - 1,  1) = P a i r s ( r a n d  - 1,  1)
P a i r s ( r a n d  - 1,  1) = a 
c h e c k  = T r u e  

End I f  
E l s e

I f  A d j ( P a i r s ( i  - 1,  0) - 1,  P a i r s ( r a n d  - 1 ,  0) - 1) = 0  And
Adj ( P a i r s  ( r a n d  - 1,  1) - 1, P a i r s  ( i  - 1, 1) - 1) = 0  Then

I f  P a i r s ( i  - 1,  0) <> P a i r s ( r a n d  - 1,  0) And _
P a i r s ( r a n d  - 1,  1) <> P a i r s ( i  - 1,  1) Then

a  = P a i r s ( i  - 1, 1) 'Swapping ends of the two pairs
P a i r s  ( i  - 1, 1) = P a i r s ( r a n d  - 1,  0)
P a i r s ( r a n d  - 1,  0)  = a 
c h e c k  = T ru e  

End I f  
End I f  

End I f
Loop 'Indicating the 2 new links in the adjacency matrix
A d j ( P a i r s ( i  - 1, 0)  - 1,  P a i r s ( i  - 1 ,  1) - 1) = 1
A d j ( P a i r s ( i  - 1,  1) - 1,  P a i r s ( i  - 1,  0)  - 1) = 1
Adj ( P a i r s  ( r a n d  - 1,  0)  - 1, P a i r s  ( r a n d  - 1,  1) - 1) = 1
A d j ( P a i r s ( r a n d  - 1,  1) - 1,  P a i r s ( r a n d  - 1,  0)  - 1) = 1

E l s e  'Indicating link in the adjacency matrix
A d j ( P a i r s ( i  - 1, 0)  - 1,  P a i r s ( i  - 1,  1) - 1) = 1
A d j ( P a i r s ( i  - 1, 1) - 1,  P a i r s ( i  - 1,  0)  - 1) = 1

End I f
Nex t
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2.3.5 Obtaining the correct adjacency matrix (continuing 2.3.4)
F o r  i  = 1 To n 

F o r  j  = 1 To n
Adj ( i  -  1,  j  -  1) = 0 

N ext  
N ex t
F o r  i  = 1 To l i n k t o t a l

A d j ( P a i r s ( i  - 1,  0) - 1,
A d j ( P a i r s ( i  - 1,  0) - 

A d j ( P a i r s ( i  - 1,  1) - 1,
A d j ( P a i r s ( i  - 1,  1) -

N ex t

'Indicating links in the adjacency matrix
P a i r s ( i  - 1, 
1,  P a i r s ( i  - 
P a i r s ( i  - 1, 
1 ,  P a i r s ( i  -

1)
1,
0)
1,

-  1 ) =  

1 ) -  1 ) 
- 1 ) = 

0 ) -  1 )

+ 1

+ 1

2.4 Link swapping mechanism (for modifying the degree correlation)

Dim i ,  j ,  j ° ,  k ,  k ° ,  n ,  l i n k t o t a l ,  c o u n t ,  c o u n t m a x  a s  I n t e g e r  
Dim r ,  p ,  q ,  k a p p a ,  r a n d ,  r a n d 0 , r a n d s w a p ,  a s  D o u b le
Dim e j k  , e j ° k  , e j k °  , e j ° k ° ,  a  a s  D ou b le
Dim c h e c k ,  c h e c k l i n k  a s  B o o l e a n
n  = 100 'Network size (example value)
ReDim l i n k p e r n o d e  (n - 1) As I n t e g e r  'Array of degrees per node 
ReDim A d j ( n  - 1,  n  - 1) As I n t e g e r
c o u n tm a x  = 1500 'Number of iterations (example value)
l i n k t o t a l  = 2047 'Number of links (example value)
ReDim P a i r s ( l i n k t o t a l  - 1,  3) As I n t e g e r  'Array of links
r  = 0 . 3  'Target degree correlation (example value)
k a p p a  = 1000 'Constant for the distr. p (example value)
p = 0 . 5  - 0 . 2 5  * ( 4 - 2 *  ( l + r + r * 2 *  E x p ( l  /  k a p p a ) )  /  (1 + r ) ) A 0 . 5

'Example distribution (see Newman (2003))
q = 1 - p
F o r  i  = 1 To n

l i n k p e r n o d e ( i  - 1) = 0 
N ex t
F o r  i  = 1 To n

F o r  j  = 1 To n
Adj ( i  - 1,  j  - 1) = {...} 'Example adjacency matrix

N ex t  
N ext
F o r  i  = 1 To n 'Recording the number of links per node

F o r  j  = 1 To n
l i n k p e r n o d e ( i  - 1) = l i n k p e r n o d e ( i  - 1) + A d j ( i  - 1,  j  - 1)

N ex t
N e x t
F o r  i  = 1 To l i n k t o t a l  'Recording the number of links at both link ends

P a i r s ( i  - 1, 2) = l i n k p e r n o d e ( P a i r s ( i  - 1 ,  0) - 1) - 1
P a i r s ( i  - 1, 3) = l i n k p e r n o d e ( P a i r s ( i  - 1 ,  1) - 1) - 1

N ext
c h e c k  = F a l s e  
c o u n t  = 0
Do U n t i l  c h e c k  = T r u e  'Checking if number of iterations is reached

c h e c k l i n k  = F a l s e  
Do U n t i l  c h e c k l i n k  = T r u e

r a n d  = I n t ( ( l i n k t o t a l  * Rnd) + 1) 'Randomly picking one link
r a n d °  = I n t ( ( l i n k t o t a l  * Rnd) + 1) 'Randomly picking another link
I f  r a n d  <> r a n d °  Then

I f  Adj ( P a i r s  ( r a n d  - 1, 0) - 1,  P a i r s  (r a n d °  - 1,  0) - 1) = 0  And_ 
P a i r s ( r a n d  - 1,  0) <> P a i r s ( r a n d °  - 1,  0) Then

I f  A d j ( P a i r s ( r a n d  - 1,  1) - 1,  P a i r s ( r a n d °  - 1,  1) - 1) = 0_ 
And P a i r s ( r a n d  - 1, 1) <> P a i r s ( r a n d °  - 1,  1) Then

c h e c k l i n k  = T r u e  'Checking if new connections are open 
End I f

150



End I f  
End I f  

Loop
j  = P a i r s ( r a n d  - 1, 2)
k = P a i r s ( r a n d  - 1,  3)
j °  = P a i r s ( r a n d ®  - 1,  2)
k°  = P a i r s ( r a n d ®  - 1,  3)
e j k  = 0 . 5  * (1 - E x p ( - 1  /  k a p p a ) )  * E x p ( - ( j  + k) /  k a p p a )  *_
(Combin ( j  + k ,  j )  * p Aj * q Ak + Co mbin( j  + k ,  k) * p Ak * q Aj )
e j j ®  = 0 . 5  * (1 - E x p ( - 1  /  k a p p a ) )  * E x p ( - ( j  + j ° )  /  ka p p a )  *_
(Combin ( j  + j®, j )  * p Aj  * q Aj °  + C om bi n ( j  + j®, j ° )  * p Aj °  * qAj)
e j ° k °  = 0 . 5  * (1 - E x p ( - 1  /  k a p p a ) )  * E x p ( - ( j ®  + k° )  /  k a p p a ) *_ 
( C o m b in ( j °  + k®, j ° )  * p Aj® * q Ak° + C o m b i n ( j °  + k ° , k ° )  * p Ak® * q Aj ° )  
ekk® = 0 . 5  * (1 - E x p ( - 1  /  k a p p a ) )  * E x p ( - ( k °  + k) /  k a p p a )  *_
(Combin(k° + k ,  k° )  * p Ak° * q Ak + Combin(k® + k ,  k) * p Ak * q Ak°)

'Combin( , ) is the VB-function for the binominal coefficient 
'Formulae see Newman (2003) 

r a n d s w a p  = Rnd
I f  r a n d s w a p  <= M i n ( l ,  ( e j j ®  * e k k ° )  /  ( e j k  * e j ° k ° ) )  Then 

'Min( , ) is a standard VB-function
'Checking if networks's degree correlation get closer to the r 
' by swapping ends of the two links

A d j ( P a i r s ( r a n d  - 1,  0) - 1,  P a i r s ( r a n d  - 1,  1) - 1) = 0
A d j ( P a i r s ( r a n d  - 1,  1) - 1,  P a i r s ( r a n d  - 1,  0) - 1) = 0
A d j ( P a i r s ( r a n d ®  - 1,  0) - 1,  P a i r s ( r a n d ®  - 1, 1) - 1) = 0
A d j ( P a i r s ( r a n d ®  - 1,  1) - 1,  P a i r s ( r a n d °  - 1, 0) - 1) = 0
A d j ( P a i r s ( r a n d  - 1,  0) - 1,  P a i r s ( r a n d ®  - 1, 0) - 1) = 1
A d j ( P a i r s ( r a n d ®  - 1,  0) - 1, P a i r s ( r a n d  - 1,  0) - 1) = 1
A d j ( P a i r s ( r a n d  - 1,  1) - 1,  P a i r s ( r a n d ®  - 1, 1) - 1) = 1
A d j ( P a i r s ( r a n d ®  - 1,  1) - 1, P a i r s ( r a n d  - 1,  1) - 1) = 1
a  = P a i r s  ( r a n d  - 1,  1) 'Swapping ends of the two pairs
P a i r s ( r a n d  - 1, 1) = P a i r s ( r a n d ®  - 1,  0)
P a i r s  (rand® - 1, 0) = a  'Swapping ends of the two pairs
a = P a i r s ( r a n d  - 1,  3)
P a i r s ( r a n d  - 1, 3) = P a i r s ( r a n d ®  - 1,  2)
P a i r s ( r a n d ®  - 1, 2)  = a
c o u n t  = c o u n t  + 1 'Counting the number of iterations

End I f
I f  c o u n t  = cou n tm ax t h e n

c h e c k  = T ru e  'Checking number of iterations
End i f  

Loop

2.5 M easuring network characteristics

2.5.1 Basic statistics
Dim i ,  j ,  k ,  n ,  c o u n t  a s  I n t e g e r  
n  = 100
l i n k t o t a l  = 2047
ReDim l i n k p e r n o d e ( n  - 1) As I n t e g e r  
ReDim A d j ( n  - 1,  n  - 1) As I n t e g e r  
F o r  i  = 1 To n

F o r  j  = 1 To n 
A d j ( i  - 1,  j  - 

Next  
Next
ReDim P a i r s ( l i n k t o t a l  
c o u n t  = 0 
F o r  i  = 1 To n

F o r  j  = i  + 1 To n
I f  A d j ( i  - 1, j  - 1) = 1 Then

'Network size (example value) 
'Number of links (example value) 
'Array of degrees per node 
'Adjacency matrix of size n

'Example adjacency matrix

1,  1) As I n t e g e r  'Array of links
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c o u n t  = c o u n t  + 1
P a i r s ( c o u n t  
P a i r s ( c o u n t  

End I f  
N ext

N ext
F o r  i  = 1 To n 

l i n k p e r n o d e ( i  
Nex t
F o r  i  = 1 To n

F o r  j  = 1 To n 
l i n k p e r n o d e ( i  

Nex t  
N ext

- 1 ,
- 1 ,

-  1 ) =  0

0) = i  'Recording the nodes at each link's ends
1) = j  'Recording the nodes at each link's ends

1 ) =

'Recording the number of links per node

l i n k p e r n o d e ( i  -  1) + A d j ( i  - 1,  j  - 1)

2.5.2 Degree correlation (continuing 2.5.1)
ReDim s i d e l ( l i n k t o t a l  -  1 ) ,  s i d e 2 ( l i n k t o t a l  -  1)  A s  I n t e g e r  
F o r  i  = 1 To l i n k t o t a l

s i d e l ( i  -  1)  = l i n k p e r n o d e ( P a i r s ( i  -  1 ,  0)  -  1) -  1 
s i d e 2 ( i  -  1)  = l i n k p e r n o d e ( P a i r s ( i  -  1 ,  1)  -  1)  -  1 

N e x t
r  = P e a r s o n ( s i d e l ,  s i d e 2 )  ' Pearson( , ) is a standard VB-function

2.5.3 Degree distribution and its 1. and 2. moment (continuing 2.5.1)
Dim a v e k ,  avek2  As D ou bl e  '1. and 2. moment of the degree distr.
ReDim P k ( n  - 1) As I n t e g e r  'Degree frequency distribution
F o r  i  = 1 To n

P k ( i  - 1) = 0
Nex t
F o r  i  = 1 To n 

k = 0
F o r  j  = 1 To n

k = k + A d j ( i  - 1,  j  - 1)
N ex t
P k(k )  = Pk(k )  + 1 'Recording the degree frequency distr.

Nex t
a v e k  = 0 
a vek2  = 0
F o r  i  = 1 To n 'Calculating the sumproducts for avek and avek2

a v e k  = a v e k  + ( i - 1 )  * P k ( i  - 1) / n
a vek2  = avek 2  + ( i - 1 )  * ( i - 1 )  * P k ( i  - 1) / n

Nex t

2.5.4 Clustering coefficient (continuing 2.5.1)
Dim t r i p l e s ,  t r i a n g l e s  a s  I n t e g e r
Dim C a s  D o u b le  'Clustering coefficient
t r i p l e s  = 0 
t r i a n g l e s  = 0 
F o r  i  = 1 To n

F o r  j  = 1 To n
I f  A d j ( i - 1 ,  j - 1) = 1  Then 

F o r  k = 1 To n
I f  i  <> j  And i  <> k And j  <> k Then

t r i p l e s  = t r i p l e s  + A d j ( i  - 1,  k - 1)
'NoTriples are counted 3 * 2  times 
'(any set of 3 connected people) 

t r i a n g l e s  = t r i a n g l e s  + A d j ( i  - 1,  k - l ) * A d j ( j  - 1,  k - 1) 
'Triangles are counted 3*2  times

End I f
Nex t  

End I f  
N ex t
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Next
C = t r i a n g l e s  /  t r i p l e s

2.5.4 Average path lenth, diameter and giant component (continuing 2.5.1)
Dim h e a d ,  t a i l ,  u ,  g i a n t ,  co m p o n en t ,  d i a m e t e r ,  l i n k s d  a s  I n t e g e r
Dim a v e p l  a s  D ou bl e  'Average path length
ReDim q ( n  - 1 ) ,  c o l ( n  - 1) As I n t e g e r  'Arrays for burning algorithm

'Steps between any two nodes 
'Start of burning algorithm to 
' determine the path lengths 
' between any two nodes

ReDim d i s ( n  - 1,  n  - 1) As I n t e g e r  
F o r  j  = 1 To n

F o r  i  = 1 To n 
I f  i  = j Then

c o l  ( i  
d i s  ( i  

E l s e
c o l  ( i  
d i s  ( i  

End I f
1)

1)
1 ,

1 )
1 ,

1
-  1 ) =  

0
-  1 ) = n  + 1

q ( i  -
N ex t
h e a d  = 1 
t a i l  = 2 
q ( h e a d  - 
Do U n t i l

= 0

1) = j
h e a d  = t a i l  

u  = q ( h e a d  - 1) 
q ( h e a d  - 1) = 0  
I f  h e a d  = n  Then  

h e a d  = 1 
E l s e

h e a d  = h e a d  + 1 
End I f
F o r  i  = 1 To n

I f  A b s ( A d j ( i  - 1,  u  - 1 ) )  = 
I f  c o l ( i  - 1) = 0 Then 

c o l ( i - 1 )  = 1  
d i s ( i  - 1,  j  - 1) 
q ( t a i l  - 1) = i  
I f  t a i l  = n  Then 

t a i l  = 1 
E l s e

t a i l  = t a i l  + 1 
End I f  

End I f  
End I f  

N ext
c o l ( u  - 1) = 2 

Loop
Nex t
a v e p l  = 0 
g i a n t  = 0 
d i a m e t e r  = 0 
l i n k s d  = 0 
F o r  i  = 1 To n 

com ponent  = 0

1 Then

= d i s ( u  - 1,  j  - 1) + 1

'End of burning algorithm

F o r  j  = 1 To n
I f  d i s ( i  - 1,  j  - 1) <> n 

a v e p l  = a v e p l  + d i s ( i  
comp on en t  = comp one nt  
l i n k s d  = l i n k s d  + 1 
I f  d i s ( i  - 1, j  - 1) 

d i a m e t e r  = d i s ( i  
End I f  

End I f

1 Then
- 1,  j  - 1)
+ 1
'# of node-connecting paths in the network 

> d i a m e t e r  Then 
1,  j  - 1) 'Measuring the network's diameter

153



N ext
I f  com po ne n t  > g i a n t  Then

g i a n t  = co m ponen t  'Sizing up the network's giant component
End I f  

N e x t
a v e p l  = a v e p l  /  l i n k s d  'Calculating the network's average path length

2.6 Simulating network-based diffusion processes (SIS-model)

2.6.1 Creating a link list with stand-alone transmission times for all links
Dim i ,  j ,  k ,  n ,  m, l i n k ,  e a r l i e s t ,  l e f t ,  r i g h t ,  p a r e n t ,  NumI, Numl° As Long
Dim c o u n t ,  l i n k t o t a l ,  N u m l s t a r t ,  d u r a t i o n ,  r u n ,  w eb ru n ,  i t e r a t i o n s  As Long
Dim sumx, sumy,  sumxy,  sumxx,  sumyy,  t r i p l e s ,  t r i a n g l e s  As Long
Dim a l p h a l ,  a l p h a 2 ,  b e t a l ,  b e t a 2 ,  p ,  i s h a r e ,  t i m e ,  week a s  D o u b le
Dim v ,  w, x ,  y ,  z As D o u b le
Dim c h e c k ,  c h e c k h e a p  As B o o l e a n
n  = 100 
a l p h a l  = 0 . 0 2  
b e t a l  = 0 . 0 5  
a l p h a 2  = 0 . 0 1  
b e t a 2  = 0 . 0 5  
i s h a r e  = 0 . 2  
i t e r a t i o n s  = 100 
d u r a t i o n  = 3 00

'Network size (example value)
'External transmission 1 (example value)
'Internal transmission 1 (example value)
'External transmission 2 (example value)
'Internal transmission 2 (example value)
'Initial share of X-type nodes (example value) 
'Number of simulation runs (example value) 
'Diffusion's duration in time units (example value) 

ReDim T r a j e c t o r y ( d u r a t i o n  - 1 ) ,  M e a n T r a j e c t o r y ( d u r a t i o n  - 1) As D o u b le
'Storage of share of X-type nodes 

Dim t a u ( 3 )  As D o u b le  'Storage for sojourn time, sender and
' receiver of the latest transmission 

ReDim D i s t r (3000 ,  d u r a t i o n )  As Long 'Array of the distribution of
' supporters at a given time of the
' diffusion; 3 000 is an example value
' and corresponds to the network size 

Dim Adj (n - 1,  j  - 1) a s  I n t e g e r  'Adjacency matrix of size n
ReDim k i  (n - 1) As I n t e g e r  'Array of degrees for each node
F o r  i  = 1 To n 

k = 0
F o r  j  = 1 To n

Adj ( i  - 1,  j  - 1) = {...}
I f  A d j ( i - 1 ,  j  — 1) < > 0  t h e n

k = k + 1 
End i f  

N ex t
k i ( i  - 1) = k 

N ex t
F o r  i  = 1 To d u r a t i o n

F o r  j  = 1 To 3000 + 1
D i s t r ( j  - 1,  i  - 1) = 0

N ext
N ex t
F o r  i  = 1 To d u r a t i o n

M e a n T r a j e c t o r y ( i  - 1) = 0
N ex t
Dim c o m l i n k s ,  l i n k t o t a l  As Long
l i n k t o t a l  = 2047  'Number of network links (example value)
c o m l i n k s  = 2 * n  + l i n k t o t a l  'All int. and ext. transmission links
ReDim L i n k s ( c o m l i n k s  -  1,  4) As D o u b le  'Queue of transmission times 
ReDim l i n k n u m ( n  - 1,  n + 1) As Long 'Array of link numbers for each

' node (n+1 = max. degree n-1 plus 
' 2 external channels)

ReDim N o d e s ( n  - 1) As D o u b le  'Storage of nodes' type
I f  n  >= 100 Then  'Calibrating the array length of pstat(,)

'Example undirected adjacency matrix

'Recording each node's degree
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m = 1 0 0  
E l s e

m = n  
End I f
ReDim p s t a t ( m , 1) As D oub le 'Array of the share density distribution
F o r  r u n  = 1 To i t e r a t i o n s 'Start of each iteration of the simulation

F o r  i  = 1 To d u r a t i o n
T r a j e c t o r y ( i  - 1) = 0

N ex t
NumI = 0
l i n k  = 0
F o r  i  = 1 To n 'Generating stand-alone external transmissions

F o r  j  = 1 To 2
l i n k  = l i n k  + 1 'Enumerating transmission links
l i n k n u m ( i  - 1, j - 1) = l i n k  'Assigning link numbers to node
L i n k s ( l i n k  - 1, 1) = i  'Receiver of the transmission
L i n k s ( l i n k  - 1, 2) = i  'Sender = receiver indicates ext. transm.
L i n k s ( l i n k  - 1, 4) = j  'j is the external sources' state
I f  j  = 1 Then 'Assigning transmission times

L i n k s ( l i n k  - 1, 0) = - L o g ( l  - Rnd) /  a l p h a l
L i n k s ( l i n k  - 1, 3) = 2  'Sender's state

E l s e
L i n k s  d i n k  - 1, 0) = - L o g (1 - Rnd) /  a l p h a 2
L i n k s ( l i n k  - 1, 3) = 1  'Sender's state

End I f
Nex t
I f  i  > I n t ( i s h a r e  * 

N o d e s ( i  - 1) = 1
E l s e

N o d e s ( i  - 1) = 2  
NumI = NumI + 1 

End I f  
Nex t
F o r  i  = 1 To n 

k  = 2
F o r  j  = 1 To n

I f  A d j ( i - 1 ,  j 
l i n k  = l i n k  
k = k + 1 
l i n k n u m ( i  - 1,  ] 
L i n k s ( l i n k  - 1, 
L i n k s ( l i n k  - 1, 
L i n k s ( l i n k  - 1, 
I f  N o d e s ( i  - 1) 

L i n k s ( l i n k  - 
L i n k s ( l i n k  - 

End I f
I f  N o d e s ( i  - 1) 

L i n k s ( l i n k  - 
L i n k s ( l i n k  - 

End I f  
End I f  

Next  
Nex t

n) Then 'Assigning a state to each node

'Generating stand-alone internal transmissions

-  1 ) =  

+ 1

1)
2 )
4)
= 1
1,
1,

1 Then
'Enumerating transmission links 
'Determining node-specific degrees 

1) = l i n k  'Assigning link numbers to node 
= j  'Receiver of the transmission
= i  'Sender of the transmission
= k 'k -2 is the sending node's degree

Then 'Assigning transmission times
0) = - L o g ( l  - Rnd) /  b e t a 2  
3) = 1  'Sender's state

= 2 Then  'Assigning transmission times
1, 0) = - L o g ( l  - Rnd) /  b e t a l  
1, 3) = 2  'Sender's state

2.6.2 Initial heap-sorting the stand-alone transmission times
F o r  i  = I n t ( c o m l i n k s  /  2) To 1 S t e p  -1

j  = i
c h e c k  = F a l s e  
Do U n t i l  c h e c k  = T r u e  

l e f t  = 2 * j 
r i g h t  = 2 * j + 1
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I f  l e f t  <= c o m l i n k s  Then
I f  L i n k s ( l e f t  - 1,  0) < L i n k s ( j  - 1,  0) Then  

e a r l i e s t  = l e f t  
E l s e

e a r l i e s t  = j 
End I f  

End I f
I f  r i g h t  <= c o m l i n k s  Then

I f  L i n k s ( r i g h t  - 1,  0) < L i n k s ( e a r l i e s t  - 1,  0) Then 
e a r l i e s t  = r i g h t  

End I f  
End I f
I f  e a r l i e s t  <> j  Then  'Swapping queue positions of transmissions

l i n k n u m ( L i n k s ( j  - 1,  2) - 1, L i n k s ( j  - 1,  4 )  - 1) = e a r l i e s t  
l i n k n u m ( L i n k s ( e a r l i e s t  - 1, 2) - 1 , _
L i n k s ( e a r l i e s t  - 1, 4) - 1) = j
v  = L i n k s ( j  - 1, 0) 'Transmission time
w = L i n k s ( j  - 1, 1) 'Receiver of transmission
x = L i n k s ( j  - 1, 2) 'Sender of transmission
y = L i n k s ( j  - 1, 3) 'Sender's state
z = L i n k s ( j  - 1, 4) 'State of external transmission (0 

'  or 1) or sending node's number of 
'  links (starting with 1,  so that 3 
' means 1 link, 4 means 2 links,„.)

L i n k s (j - 1, 0) = L i n k s ( e a r l i e s t - 1, 0)
L i n k s  (j - 1, 1) = L i n k s ( e a r l i e s t - 1, 1)
L i n k s (j - 1, 2) = L i n k s ( e a r l i e s t - 1, 2)
L i n k s (j - 1, 3) = L i n k s ( e a r l i e s t - 1, 3)
L i n k s (j - 1, 4) = L i n k s ( e a r l i e s t - 1, 4)
L i n k s ( e a r l i e s t  - 1, 0) = v
L i n k s ( e a r l i e s t  - 1, 1) = w
L i n k s ( e a r l i e s t  - 1 , 2)  = x
L i n k s ( e a r l i e s t  - 1, 3) = y
L i n k s ( e a r l i e s t  - 1 , 4) = z
j  = e a r l i e s t  

E l s e
c h e c k  = T r u e  

End I f  
Loop 

Nex t

2.6.3 Picking the earliest transmission and updating affected transmission links and nodes
N u m I s t a r t  = N u m I s t a r t  + NumI
NumI0 = NumI
t i m e  = 0
week = 1
c h e c k  = F a l s e
Do U n t i l  c h e c k  = T ru e

t a u ( 0 )  = L i n k s (0,  0) 'Earliest transmission time
t a u ( l )  = L i n k s (0, 1) 'Receiver of earliest transmiss.
t a u ( 2 )  = L i n k s (0,  2) 'Sender of earliest transmission
t a u ( 3 )  = L i n k s (0, 3) 'Sender's state
I f  t a u ( 3 )  <> N o d e s ( t a u ( l )  - 1) Then 'Deciding if state took place 

k° = 3 , 3 is 2 states plus 1; adding 1 is necessary as the
, arrays (here: linknum(,); see below) start with 0

E l s e
k°  = k i ( t a u ( l )  - 1) + 3 'No state change happened

End I f
F o r  k = k° To k i ( t a u ( l )  - 1) + 3 'Note: if ki(tau(l) - 1) =0,

' only sender's new transmission 
' times are determined

I f  k = k i ( t a u ( l )  - 1) + 3 Then
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I f  L i n k s  (0,  4) = 1  Then 'New trans. time for extern, sender
L i n k s (0, 0) = - L o g ( l  - Rnd) /  a l p h a l  + t a u ( 0 )

End I f
I f  L i n k s  (0,  4) - 2  Then  'New trans. time for extern, sender

L i n k s (0,  0) = - L o g ( l  - Rnd) /  a l p h a 2  + t a u ( 0 )
End I f
I f  L i n k s (0,  4) > 2  Then 'Indicating that trans. is intern.

I f  L i n k s (0, 3) = 1  Then  'New trans. time for intern, sender
L i n k s (0,  0) = - L o g ( l  - Rnd) /  b e t a 2  + t a u ( 0 )

E l s e
L i n k s (0,  0) = - L o g ( l  - Rnd) /  b e t a l  + t a u ( 0 )

End I f  
End I f  
l i n k  = 1

E l s e  'State changed happened and receiving node
' has at least on link 

l i n k  = l i n k n u m ( t a u (1) - 1, k  - 1 ) 'Identifying the link number
' among the receiver's 
' internal links

I f  L i n k s (0,  3) = 1 Then 'New time for internal transm.
L i n k s ( l i n k  - 1, 0) = - L o g ( l  - Rnd) /  b e t a 2  + t a u ( 0 )
L i n k s ( l i n k  - 1, 3) = 1 'Updated sender's state

E l s e 'New time for internal transm.
L i n k s ( l i n k  - 1, 0) = - L o g ( l  - Rnd) /  b e t a l  + t a u ( 0 )
L i n k s  d i n k  - 1, 3) = 2 'Updated sender's state

End I f  
End I f

2.6.4 Heap-sorting the stand-alone transmission times during the diffusion process
j  = l i n k
c h e c k h e a p  = F a l s e  
Do U n t i l  c h e c k h e a p  = T ru e  

l e f t  = 2 * j  
r i g h t  = 2 * j  + 1 
I f  j  = 1 Then 

p a r e n t  = 1 
E l s e

p a r e n t  = I n t ( j  /  2)
End I f  
e a r l i e s t  = j
I f  L i n k s ( p a r e n t  - 1, 0) > L i n k s ( j  - 1,  0) Then  

e a r l i e s t  = p a r e n t  
E l s e

I f  l e f t  <= c o m l i n k s  Then
I f  L i n k s ( l e f t  - 1,  0) < L i n k s ( j  - 1,  0) Then 

e a r l i e s t  = l e f t  
E l s e

e a r l i e s t  = j 
End I f  

End I f
I f  r i g h t  <= c o m l i n k s  Then

I f  L i n k s ( r i g h t  - 1,  0) < L i n k s ( e a r l i e s t  - 1,  0) Then 
e a r l i e s t  = r i g h t  

End I f  
End I f  

End I f
I f  e a r l i e s t  <> j  Then 'Swapping queue positions of transm.

l i n k n u m ( L i n k s ( j  - 1,  2) - 1 , _
L i n k s ( j  - 1,  4) - 1) = e a r l i e s t  
l i n k n u m ( L i n k s ( e a r l i e s t  - 1,  2) - 1 , _
L i n k s ( e a r l i e s t  - 1,  4) - 1) = j 
v  = L i n k s (j  - 1,  0)
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w = L i n k s ( j  -  1, 1)
x  = L i n k s ( j  - 1, 2)
y  = L i n k s ( j  - 1,  3)
z = L i n k s ( j  - 1, 4)
L i n k s (j - 1, 0) = L i n k s ( e a r l i e s t  - 1, 0)
L i n k s (j - 1, 1) = L i n k s ( e a r l i e s t  - 1, 1)
L i n k s (j - 1, 2) = L i n k s ( e a r l i e s t  - 1, 2)
L i n k s (j - 1, 3) = L i n k s ( e a r l i e s t  - 1, 3)
L i n k s (j - 1, 4) = L i n k s ( e a r l i e s t  - 1, 4)
L i n k s ( e a r l i e s t - 1, 0) = v
L i n k s ( e a r l i e s t - 1, 1) = w
L i n k s ( e a r l i e s t - 1, 2) = x
L i n k s ( e a r l i e s t - 1, 3) = y
L i n k s ( e a r l i e s t - 1, 4) = z
j  = e a r l i e s t  

E l s e
c h e c k h e a p  = T r u e  

End I f  
Loop 

N ex t

2.6.5 Recording results
I f  t a u ( 3 )  = 2 And N o d e s ( t a u ( l )  - 1) 

N o d e s ( t a u ( l )  - 1) = 2  
NumI = NumI + 1 

End I f
I f  t a u ( 3 )  = 1 And N o d e s ( t a u ( l )  - 1) 

N o d e s ( t a u ( l )  - 1) = 1  
NumI = NumI -  1 

End I f
t i m e  = t a u ( O )
I f  F i x ( t i m e )  + 1 > d u r a t i o n  Then 

c h e c k  = T r u e
E l s e

I f  week > F i x ( t i m e )  Then
T r a j e c t o r y ( w e e k  - 1) = NumI 
Numl° = NumI 

End I f
I f  week  <= F i x ( t i m e )  Then

F o r  i  = week To F i x ( t i m e )
T r a j e c t o r y ( i  - 1) = Numl° 

N ex t
week = F i x ( t i m e )  + 1 
T r a j e c t o r y ( w e e k  - 1)
NumI° = NumI 

End I f  
End I f  

Loop
F o r  i  = week To d u r a t i o n

T r a j e c t o r y ( i  - 1) = Numl°
N ex t
F o r  i  = 1 To d u r a t i o n

= 1 Then 
'Recording receiver's new state 
'One more person of state 2

= 2 Then  
'Recording receiver's new state 
'One more person of state 1

'Checking total diffusion time

'Recording # people of state 1 
'Storing NumI if the next transmission 
' takes longer than one week

'Recording NumI for weeks 
' without transmission

= NumI 'Recording NumI for the next week

'Recording NumI for weeks without transm. 
' or, if everyone is of I-state before 
' duration time has been reached 
'Summing up results over all iterations

M e a n T r a j e c t o r y ( i  - 1) = M e a n T r a j e c t o r y ( i  - 1) + T r a j e c t o r y ( i  - 1)
D i s t r ( T r a j  e c t o r y ( i  

Next  
N ex t
F o r  i  = 1 To d u r a t i o n

-  1 ] 1) = D i s t r ( T r a j e c t o r y ( i  - 1 ) ,  i - 1 )  + 1

'Output of averaged trajectory and 
' simulated density distribution of 
' population splits at a given time 

{...} = M e a n T r a j e c t o r y ( i  - 1) /  i t e r a t i o n s
i  -  1) /  i t e r a t i o n s{...} = D i s t r  ( T r a j e c t o r y  ( i  -  1)

Nex t
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2.7 Diffusion model with stratified population (embedded Markov chain)

Dim i ,  j ,  r u n ,  i t e r a t i o n s  As I n t e g e r  
Dim A l p h a (2) As D o u b le  'Extern.
Dim B e t a (2,  2) As D o u b le  'Intern.
Dim n As Long 
Dim T r ( 2 )  As D o u b le  
Dim SumTr As D o u b le  
Dim CumPr As D o u b le  
Dim r a n d  As D oubl e  
Dim S ( 2 ) ,  X(2) As I n t e g e r  
Dim Xsum, Xsum0 As D ou bl e  
Dim t i m e ,  week ,  d u r a t i o n  As D o u b le  
Dim c h e c k  As B o o l e a n

Transmission rates (for 3 groups) 
Transmission rates (for 3 groups)

'Transfer rate (for 3 groups)
'Sum of transfer probabilities 
'Cumulated transition probability
'# people of state X/S (for 3 groups) 
'Total # people of state X/S

n = 10000 
d u r a t i o n  = 2 5 
i t e r a t i o n s  = 100

'Network size (example value)
'Duration of diffusion process (example value) 
'Number of iterations (example value)

ReDim T r a j e c t o r y ( d u r a t i o n  - 1 ) ,  M e a n T r a j e c t o r y ( d u r a t i o n  - 1) As D o u b le  
F o r  i  = 1 To d u r a t i o n

M e a n T r a j e c t o r y ( i  - 1) = 0  
Nex t
F o r  r u n  = 1 To i t e r a t i o n s  

F o r  i  = 1 To d u r a t i o n  
T r a j e c t o r y ( i  - 1) = 0 

N e x t  
Xsum = 0 
Xsum° = 0 
F o r  i  = 1 To 3

A l p h a  ( i  - 1) = {...}
S ( i  - 1) = {...}
X ( i  - 1) = 0 
F o r  j  = 1 To 3

B e t a ( i  - 1, j  -
N ex t  

N e x t  
t i m e  = 0 
week = 1 
c h e c k  = F a l s e  
Do U n t i l  c h e c k  = T ru e  

T r (0) = A l p h a (0) *
T r (1) = A l p h a (1) *

B e t a (2,  1)
T r (2) = A l p h a (2) *

2 )

'Alpha for each group
'Initial number of uninform, people per group 
'Initial number of inform, people per group
1) = {„.} 'Betas of inter-group interactions

S(0)  + B e t a (0,  0) * S( 0 )  * 
S ( l )  + S ( l )  * (B e ta  (0,  1) *
* X (2) )
S (2) + S (2) * ( B e t a (0,  2) *
* X ( l )  + B e t a  (2,  2) * X (2) ) 

T r (1) + T r ( 2 )

X (0) 'Tra. rate groupl 
X(0) +_

'Tra. rate group2 
x ( 0 ) +_

'Tra. rate group3B e t a (1,
SumTr = T r (0) +
CumPr = 0 
r a n d  = Rnd 
F o r  j  = 1 To 3

CumPr = CumPr + T r ( j  - 1) /  SumTr 'Cumulated transition probab.
'Picking group of next state change> r a n d  Then  

1) = S ( j  - 1) 
1) = X (j  - 1)

I f  CumPr 
S ( j  - 
X( j  - 
j  = 4 

End I f  
Next
Xsum = X(0) + X ( l )  + X (2) 
t i m e  = t i m e  + 1 /  SumTr 
I f  F i x ( t i m e )  + 1 > d u r a t i o n  Then 

c h e c k  = T r u e  
E l s e

'Calculating sojourn time 
'Checking total diffusion time
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I f  week > F i x ( t i m e )  Then
T r a j e c t o r y ( w e e k  - 1) = Xsum 'Recording # informed people 
Xsum° = Xsum 'Storing Numx if the next transmission

End I f  '  takes longer than one week
I f  week <= F i x ( t i m e )  Then

F o r  i  = week To F i x ( t i m e )
T r a j e c t o r y ( i  - 1) = Xsum° 'Recording NumX for weeks

' without transmission
Next
week  = F i x ( t i m e )  + 1
T r a j e c t o r y ( w e e k  - 1) = Xsum 'Recording NumX for the next week
Xsum° = Xsum 

End I f  
End I f
I f  n  = Xsum® Then

c h e c k  = T r u e  'Checking if all people are already informed
End I f  

Loop
F o r  i  = week To d u r a t i o n  'Recording NumX for weeks without transm.

T r a j e c t o r y ( i  - 1) = Xsum® '  or, if everyone is informed before
N e x t  '  duration time has been reached
F o r  i  = 1 To d u r a t i o n  'Summing up results over all iterations

M e a n T r a j e c t o r y ( i  - 1) = M e a n T r a j e c t o r y ( i  - 1) + T r a j e c t o r y ( i  - 1)
N ext

N ex t
F o r  i  = 1 To d u r a t i o n

{„.} = M e a n T r a j e c t o r y ( i  - 1) /  i t e r a t i o n s  'Output of averaged trajectory 
N ext

2.8 Simulation of an evolutionary model o f social networks

2.8.1 Setting up the network’s evolution
Dim h ,  i ,  j ,  k ,  n ,  t ,  t s t a r t ,  tm ax ,  r u n ,  i t e r a t i o n s ,  r a n d o m i s e r ,  l i n k s ,  
t r i ,  b t r i  As I n t e g e r
Dim P h i ,  T h e t a ,  d i r v ,  r a n d ,  T r i v a l ,  p r o p b t r i ,  a v e p r o p b t r i  As S i n g l e  
Dim o p e r n l i n k s  As Long
P h i  = 0 
T h e t a  = 0 . 4  
n  = 60 
tma x = 1700 
i t e r a t i o n s  = 10 
t s t a r t  = 1600 
a v e p r o p b t r i  = 0 
ReDim s e q u e n c e ( n  
ReDim A d j ( n  - 1, 
ReDim P a i r s ( (n * 
ReDim T r i c o u n t ( n

'Friendliness index (example value)
'Balance threshold (example value)
'Network size (example value)
'Total number of time steps (example value)
'Number of iterations (example value)
'Time step when measuring starts (example value)
'Prop, of bal. triang. averaged between tstart and tmax 

'Sequence by which nodes are checked 
'Adjacency matrix of size n

1) As I n t e g e r  'Queue of "open" links 
'(,0) # of triangles of node i 
'(,1) sum of bal./unbal. triangles of 
' node I (bal. tri.=l, unbal. tri.=-l)
'(/2)=(,1)/(,0)=balance index of node i

-  1) As I n t e g e r
n - 1) As I n t e g e r  
(n - 1 ) )  /  2 - 1,
- 1,  2) As S i n g l e

Dim v a l ,  c h e c k l ,  c h e c k 2  As B o o l e a n  
F o r  r u n  = 1 To i t e r a t i o n s  

Rnd ( -1 )
Ra ndomize  
k  = 0 
F o r  i  = 1 

F o r  j

VB-function to randomly pick 
’ a new set of random numbers

To n  
= 1 To 3 

T r i c o u n t ( i  - 
N ex t
F o r  j  = 1 To n 

A d j ( i  - 1,  j

1,  j  - 1) = 0

- 1) = 0
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N e x t
F o r  j  = i  + 1 To n 

k  = k + 1
P a i r s ( k  - 1,  0) = i  'Numbering the undirected links
P a i r s ( k  - 1,  1) = j

Nex t
Nex t
o p e n l i n k s  = n *  ( n - 1 )  /  2 'Initial number of "unconnected" links

2.8.2 Adding a new link and the resulting triangles
F o r  t  = 1 To tmax

r a n d  = 2 * Rnd -  1 
I f  r a n d  < P h i  Then 

d i r v  = 1 
E l s e

d i r v  = -1  
End I f
r a n d  = I n t ( o p e n l i n k s  

- 1 , 0

'Checking if newly added link is 
' positive or negative

Rnd + 1)
k  = P a i r s ( r a n d  
j  = P a i r s ( r a n d  
A d j ( k  - 1, j  - 
Adj ( j  - 1,  k  - 
F o r  h  = r a n d  +

P a i r s ( h  - 2 
P a i r s ( h  - 2 

N ext
o p e n l i n k s  = o p e n l i n k s  
F o r  i  = 1 To n

T r i v a l  = A d j ( i - 1  
T r i c o u n t ( i  - 
T r i c o u n t ( i  - 
T r i c o u n t ( k  - 
T r i c o u n t ( k  - 
T r i c o u n t ( j - 
T r i c o u n t ( j  - 
I f  T r i c o u n t ( i  

T r i c o u n t ( i  
E l s e

T r i c o u n t ( i  
End I f
I f  T r i c o u n t ( k  

T r i c o u n t ( k  
E l s e

T r i c o u n t ( j 
End I f
I f  T r i c o u n t ( j  

T r i c o u n t (j 
E l s e

T r i c o u n t (j 
End I f  

Nex t

- 1 , 1 )
1) = d i r v  
1) = d i r v  
1 To o p e n l i n k s

0) = P a i r s ( h  -
1) = P a i r s ( h  -

'Picking the space for the new link 
'Recording the two nodes that will be 
' connected by the new link 
'Recording new link in the adjacency 
' matrix as either 1 or -1

'Pushing the stack of the 
' link queue up by one0)

1)

1 , 0 )
1 , i )
1, 0 )

1 , l )
1 , 0 )
1 , i )

- i , 0 )
i , 2 )

i , 2 )

i , 0 )

i , 2 )

i - i , 2 )

_ i , 0 )

i - i , 2 )

i - i , 2 )

- 1 'Reducing the stack size by 1
'Recording newly formed triangles for all nodes
, k - 1) * A d j ( i - 1 ,  j  - 1) * d i r v  'Tri. type 

T r i c o u n t ( i  
T r i c o u n t ( i  
T r i c o u n t ( k  
T r i c o u n t ( k  
T r i c o u n t (j 
T r i c o u n t  (j

> 0 Then 'Calculating the i's balance index
= T r i c o u n t  ( i  - 1,  1) /  T r i c o u n t  ( i  - 1,  0)

- 1, j - 1) * d i r v
1, 0) + A b s ( T r i v a l )
1, 1) + T r i v a l
1, 0) + A b s ( T r i v a l )
1, 1) + T r i v a l
1, 0) + A b s ( T r i v a l )
1, 1) + T r i v a l

= 1 'No triangles: node is in balance
0 Then 'Calculating the k's balance index
T r i c o u n t ( k  - 1, 1) /  T r i c o u n t ( k  - 1,  0)

= 1 'No triangles: node is in balance
0 Then  'Calculating the j's balance index
T r i c o u n t ( j  - 1,  1) /  T r i c o u n t ( j  - 1,  0)

= 1 'No triangles: node is in balance

2.8.3 Simulating the break-ups of links and triangles
c h e c k l  = F a l s e  
Do U n t i l  c h e c k l  = T r u e  

F o r  i  = 1 To n
s e q u e n c e d  - 1) = i  'Sequence for checking balance indices

N ext
F o r  i  = 1 To n 'Randomising the nodes' sequence

r a n d  = R o u n d (1 + ( n - 1 )  * Rnd) 
r a n d o m i s e r  = s e q u e n c e d  - 1) 
s e q u e n c e d  - 1) = s e q u e n c e  ( r a n d  - 1)

161



s e q u e n c e ( r a n d  - 1) = r a n d o m i s e r  
Nex t
F o r  h  = 1 To n  # Checking each balance index in a random sequence

i  = s e q u e n c e ( h  - 1)
T h e t a  Then  'Checking if node is inert1 , 2 )

'Picking a link to delete
1 Then

I f  T r i c o u n t ( i  ■ 
v a l  = F a l s e  
Do U n t i l  v a l  = T r u e

k = I n t ( (n * Rnd) + 1)
I f  A b s ( A d j ( k  - 1, i - 1 ) )  = 

v a l  = T r u e  
End i f  

Loop
I f  T r i c o u n t ( k  - 1,  0) > 0 Then

F o r  j  = 1 To n  'Deleting the link's triang.
T r i v a l  = A d j ( i - 1 ,  k - 1 ) * A d j ( i - 1 ,  j - 1 ) * A d j ( k - 1 , j -1)

0)=  T r i c o u n t ( i
1)=  T r i c o u n t ( i
0)=  T r i c o u n t ( j
1)=  T r i c o u n t ( j
0)=  T r i c o u n t ( k
1)=  T r i c o u n t ( k

1,
1,
1,
1,
1,
1,

0)
1)
0)
1)
0)
1)

A b s ( T r i v a l )
T r i v a l
A b s ( T r i v a l )
T r i v a l
A b s ( T r i v a l )
T r i v a l

'Recalculating all balance indices
> 0 Then
= T r i c o u n t ( j  - 1, 1) / _

T r i c o u n t ( i  - 1,
T r i c o u n t ( i  - 1,
T r i c o u n t ( j  - 1,
T r i c o u n t ( j  - 1,
T r i c o u n t ( k  - 1,
T r i c o u n t ( k  - 1,

Next
F o r  j  = 1 To n

I f  T r i c o u n t ( j  - 1,  0)
T r i c o u n t ( j  - 1,  2)
T r i c o u n t ( j  - 1 ,  0)

E l s e
T r i c o u n t ( j  - 1 ,  2) = 1  

End I f  
Nex t  

End i f
Adj ( i - 1 ,  k - 1 )  = 0  
Adj  ( k - 1 ,  i - 1 )  = 0  
o p e n l i n k s  = o p e n l i n k s  + 1 
P a i r s ( o p e n l i n k s  - 1, 0) = i  
P a i r s ( o p e n l i n k s  - 1, 1) = k 

End I f
N ex t
c h e c k 2  = T ru e
F o r  i  = 1 To n 'Checking all balance indices

I f  T r i c o u n t ( i  - 1,  2) < T h e t a  Then  
ch e c k 2  = F a l s e  

End I f
Next
I f  c h e c k 2  = T r u e  Then

c h e c k l  = T r u e  'Evolution continues if all nodes are inert
End I f  

Loop

'Declaring link as "open"

'Declaring link as "open'

2.8.4 Recording results (only shown: the number of links at t and the proportion of bal. triang.)
t r i  = 0
b t r i  = 0
F o r  i  = 1 To n

t r i  = t r i  + T r i c o u n t ( i  -  1,  0) 
b t r i  = b t r i  + T r i c o u n t ( i  - 1 ,  1)

Next
t r i  = t r i  /  3 'Number of triangles at t
b t r i  = b t r i  /  3
b t r i  = ( b t r i  + t r i )  /  2 'Number of balanced triangles at t
l i n k s  = 0 
F o r  i  = 1 To n

F o r  j  = 1 To n
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l i n k s  = l i n k s  + A b s ( A d j ( i  - 1,  j  - 1 ) )  'Counting #links at t 
N ext

Nex t
I f  t  > t s t a r t  Then 

I f  t r i  > 0 Then
p r o p b t r i  = b t r i  /  t r i  'Prop, of balanced triangles at t

E l s e
p r o p b t r i  = 1 

End I f
a v e p r o p b t r i  = a v e p r o p b t r i  + p r o p b t r i  

End I f
{...} = l i n k s  'Output of #links at t

Next
N ex t
{...} = a v e p r o p b t r i  /  ( ( t m a x  - t s t a r t )  * i t e r a t i o n s )  'Output proportion of

' balanced triangles,
' averaged over all runs 
' and measurement period
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