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Abstract
This thesis is primarily about spectral measures and walk-generating functions of
lattices. Formally a lattice is obtained from a finitely-generated abelian group
G, a finite set T, and a finite subset L of G x T x T, by constructing a graph
with vertex set GxT, and joining (gi,Ui) and (92,72) if (g2 —91,"1 ,"2) £ L
though of course we need L to obey extra conditions if we want this graph to
be undirected without loops. Informally a lattice is likely to be some structure
in n-dimensional space such as a hexagonal or cubic lattice. Spectral measures
and walk-generating functions determine each other, and are relevant to Markov
Chains and networks of resistances.

Formulae for spectral measures and walk generating functions of lattices are
found, and generalised to sum-difference graphs and graphs obtained from groups
with large abelian subgroups.

Formulae are also found for walk generating functions for modified lattices.
Lattices may be modified by a finite set of changes to edges or vertices, but also
by an infinite but periodic set of modifications (such as a row of points being
removed). For example, this makes it possible to find exact formulae for Markov
Chains where two interacting particles move around a lattice. However only
one infinite periodic set of modifications can be so handled; we show that with
directed lattices with two infinite periodic sets of modifications, even finding if
two points are connected can be equivalent to the Halting Problem.

New methods are found for discovering what a spectral measure looks like.
We develop techniques in the theory of complex functions of several variables
to provide criteria which make it possible to show that a spectral measure is
well-behaved at some point (in the sense that its density function is analytic) if

local properties of certain analytic functions are satisfied globally.
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Statement of Originality

The concept of a lattice in Chapter 1 has been around for a long time, but

the formal definition is my own. Chapter 2 is standard, except possibly

Theorem 2.1:7, which I have never seen stated or proved, though it seems likely
enough that it has been done before. Chapter 3 is entirely standard except for
the applications of Theorem 2.1:7 and the definitions in Definition 3.1:1. All of
Chapter 4 is standard. Section 5.1 is not original and may be found in [MOHAR&
WOESS,1989] and [GODSIL&MOHAR,WSS].!

A finite set of modifications to a Markov Chain based on a lattice was
dealt with in [MONTROLL,1969]. Apart from this Subsection 5.1.4 is original.
Section 5.2 is already known in that similar results may be found in [MOHAR&
WOESSs,1989].

There are two different approaches given in Chapter 6 for finding the spectral
measures of lattices. The first, given in sections Section 6.1 to Section 6.4, is
based on finding the spectral measures of finite lattices, and then using a notion
of convergence of lattices to find the spectral measures of infinite lattices. Hints
of this technique occur in various places in the literature. In [MONTROLL,

1956), a similar technique is used for solving random walks on certain lattices.

In [GODSIL&MOHAR,1988], the technique is applied to the special case of

a 1-dimensional hexagonal chain. However, I know of nowhere where the

method for general lattices has been completely explained, still less justified.
Furthermore, I have given a definition of convergence which is useful for weighted
lattices; the existing definitions of convergence that I have seen only make sense
for graphs with bounded degrees.

The second approach I have given, in Section 6.6, is original. It has the
advantage of providing the walk-generating functions for directed weighted
lattices, where the spectral measures may not exist at all.

In Section 6.7, I give some applications of these methods which I have not
heard of before. It is original that the methods used for lattices can be applied to
the Dihedral Groups and Sum-Difference Lattices.

Chapter 7 is completely original.

Chapter 8 is original. However, the functions ¢ involved in simple local
threadings were inspired by similar functions used in [MILNOR,1963], Chapter 1,
Theorem 3.1, to compare portions of manifolds. Here they are used in a
different way for different purposes. Also the limiting argument used to show
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Lemma 8.9.2:9 is similar to one given in [RELLICH,1969] to show that eigenvalues
of a hermitian matrix function in a single real parameter can be written as power
series in that parameter.
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Chapter 1
Lattices

Let G be a finitely generated abelian group and Y a'non-empty finite set. A
Lattice on (G,7Y) is a triple (G,Y,L) where L is a finite subset of G x ¥ x Y such
that:
(1) Vg€ G,Yvi,v2 € Y (g,v1,v2) €L & (—g,v2,v1) €L
(2) WweY(0,v,v) ¢ L.

In fact I shall usually be lazy, and write the lattice as L, without
distinguishing the subset of G x ¥ x Y and the triple (G, Y, L).

We associate each lattice with a graph. The vertex set of the graph
will be G x Y. Vertex (g1,v7) will be adjacent to (g2,v2) if and only
(g2 — g91,V1,V2) € L. (1) ensures that this edge condition is symmetric, and from
(2) we can see that the graph has no loops; hence it is simple. Furthermore, each
vertex has degree at most |L|, so the graph has bounded vertex degrees.

For example, suppose Y to be a singleton set {v}, and G to be the
group of addition on Z4, for some positive integer d. We may as well define
L' ={x | (x,v,v) € L} Then the associated graph has one vertex vy = (x,v,v)
for each x € Z9, and v, is joined to vy if and only if y —x € L'. This means
that the graph is a Cayley graph on the group Z¢ with edges given by L'. If
d=2and L' = {(0,1),(0,-1),(1,0),(—1,0)} then we obtain the familiar
two-dimensional grid, as shown in Figure 1. In this and Figure 2 the dashed
box will indicate the vertices corresponding to a single group element; hence if
the segment inside the dashed box is repeated indefinitely in all directions the
complete lattice is obtained.

Now we consider a more complicated example. Take T = {vy,v2} and
G = Z%. Let L ={((0,0),v1,v2),((0,1),v7,v2),((1,0),v1,v2),((0,0),v2,v1),
((0,—1),v2,v1),((—1,0),v2,V1)}. In this case we obtain the hexagonal lattice, as
shown in Figure 2.



(-M) (U
0.0)
(-1,-1)
Figure 1. Part of the Two-Dimensional Grid

Figure 2.

Part of the Hexagonal Lattice
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Chapter 2

Banach Spaces

This is a well-studied area, and 1t is unnecessary for-me to try to provide a full
introduction to it. Instead, I shall sketch what seem to me to be the important
points. This can at most make it clear how my approach differs from others, or
remind the reader of what he has already studied.

For a general introduction to functional analysis, the reader is referred to
[BOLLOBAS,1990]. However, this does not cover, for example, the functional
calculus; for that and other advanced topics, see [DUNFORD&SCHWARZ,1963].

Let A be a set. A A-sequence is a function y from A to C, mapping A to ya.
Let x be such a A-sequence. Let 1 <p < 0.

Definition 2:1. Define ||x||, to be

sup |xal, for p = oo.

1
{ (ZaenbalP), forp < oo;
AEA

Clearly 0 < [[x]|p < oo. The sum in the definition is always defined (though it
may be oco) because |x,| will always be non-negative.

Definition 2:2. Define £,(A) to be the Banach Space {x | ||x||, < oo}, with

pointwise multiplication by scalars and addition, and Norm | ||,,.
I shall not define Banach Space and Norm; these terms are defined in [BOLLOBAS,
1990]. Though there are other kinds of Banach spaces, the {,(A) are the only
ones I shall consider for the moment.

For general Banach spaces, I shall write the norm of x as ||x||; in particular,
I shall do this sometimes for £,(A) where there is no risk of confusion.

When A has finite order, the Banach space is the same as the ordinary
complex vector space of dimension |A|, except that it also has a norm, which for .
p = 2 is the Euclidean norm used to measure distances.

Definition 2:3. I shall call a (complex) Banach Space Finite-Dimensional if its
vector space is isomorphic to C™ for some finite n.
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Definition 2:4. Suppose {zg | 0 € O} to be a set of elements of a normed
vector space (for example, a Banach Space), indexed by ©. Then the Sum
> oco zeo 1s defined to equal z if for any € > O, there is a finite set @ C ©
such that for all finite ¥ with ® CY C O, [[z— ), cyzuyl <€

It will be seen that for finite sets ©, this definition corresponds with that of finite

sums, and for @ = N, this definition is consistent with the conventional one, but

only is defined when there is absolute convergence.

Definition 2:5. For A € A, e is the function on A mapping A to 1 and all
other elements to 0. This can be considered as an element of the Banach
space £, (A); it has norm 1. For p < oo, the Canonical Basis of £,(A) is the
set{e* |[A e AL

For p < oo, any element x of £, (A) can be written uniquely as an infinite sum

> auae?, for y a function from A to C. Namely, with y =x.

§2.1. Operators on Banach Spaces
Let X be a Banach Space.

Definition 2.1:1. Let L(X) be the set of partial linear maps from X to X; and
B(X) the set of total continuous linear maps from X to X. The elements of
‘B(X) are called Operators

Clearly B(X) C L(X). If X is finite-dimensional, all total maps in L(X) are

in B(X), since linear maps on finite dimensional spaces are automatically

continuous.

Definition 2.1:2. The Identity Operator, I, is defined to map every element of
X to itself.
Clearly I 1s continuous.
We can compose operators as we compose functions, so that if Ty and T, are
two operators, then T T, is defined as the operator mapping x to T1(T2(x)).
For example, for any operator T, we have TI =1T = T.
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Definition 2.1:3. For T € L(X), the Operator Norm of T, ||T|}, is defined as
inf {M | ¥x M||x|| > || Tx|| where Tx is defined }.
For example, we see that [[I|| = 1, provided that X contains some non-zero

elements.

Definition 2.1:4. For T € L(X) we say that T is Bounded if | T|| is finite.
The following is proved in [BOLLOBAS,1990] (Chapter 2, Theorem 2), though I

have made some trivial changes.

Lemma 2.1:5. Let T € L(X) be defined on all of X. Then the following are
equivalent:

(1) T € B(X) (that is to say, it is continuous);

(2) T is continuous at some point xo € X;

(3) T is bounded.

It is also easy to see the following:

. Lemma 2.1:6. Let T € L(X) be bounded, with norm || T||, and defined on a
dense subset of X. Then T can be extended uniquely to T € B(X), with
1T =17 )

I shall not bother to use the notation T; in future I shall just write T.

For X = £,(A), and p < oo, a particularly useful dense subset is the set of
finite linear combinations of elements of the canonical basis. For the rest of this
section, let F be this set. )

I shall now use this to show that a particular class of linear functions is in
B(& (A)).

Theorem 2.1:7. Let aj,a, be a function from A x A to C satisfying
(1) If p < oo then for all Ay, }_,, lax,a,| <M.
(2) If p > 1 then for all A3, ZM [ax, A, £ M.

where M a finite constant.

Then there is an operator Z € B({,(A)) such that for all Ay,

ZeM = ZCIMAZCAZ; ) (1)
A2
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this satisfies ||Z|] < M. Z is unique for p < oo.
Proof. First we prove the result for when p = oo, since this is entirely separate

from the rest of the proof.

Lemma 2.1:8. Theorem 2.1:7 is true for p = o0
Proof. Let x € {(A). I claim that the following definition of (Zx),, defines Z

satisfactorily:

def
(Zx)hz = Zx}\l Ax, A2 (2)
Ay

It is trivial that this satisfies Display (1). I need to show that ||Zx| < M||x||
according to this definition. From the definition of || ||, We see that:

Z XAy QA A,

A

up Z ”X” lan; A, |

S

A2 M

=[] supzlah)\zl
A2 A

< |x||M.

|Zx]| = sup
Az

which proves the lemma. These inequalities also prove absolute convergence of
the sum in Display (2).

Unlike the case where p < oo, it is impossible to ensure uniqueness. For
example, consider {,(N). Let Zy,Z; € B({,,(N)) be defined so that Z; is the
function mapping everything to 0, and Z;(x) is L(x)e, where L is the Banach
Limit, as defined in [BOLLOBAS,1990] (Chapter 3, Exercise 19), and e, is always
1. Like Z;, Z, maps every e” to 0, yet Z; # Z;; for example Z,(e) = e.

It remains to deal with p < co. It is easy to see that for any Ay € A, the sum
on the right hand side of Display (1) converges, and in fact Zx can be defined as
a linear operator for all x € F with

Zx = ) Y manne™ B

A1 Az
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So Z can at least be defined as an element of L({,(A)), with domain a dense
subset of £,(A). By Lemma 2.1:6, we see that it suffices to show that this Z has
norm at most M. Thus the theorem follows from

Lemma 2.1:9. Under the conditions of Theorem 2.1:7, for x € F and Zx
defined by Display (3), [|Zx|| < M||x||.

My strategy will be, first to show Lemma 2.1:9 for p = 1, then to deduce it for all

p € (1, 00).

Lemma 2.1:10. Lemma 2.1:9 is true forp = 1.
Proof. Letx € F; we need to show that ||Zx|| < M||x||. However from
Display (3), and the definition of || ||,, we see that

”ZXH = ” Z Z XAy ANy A2 e?? “

A A2

=22 xnann

Az A

< D gl )_lana,l
At A2
< (Z XA, l) x M
A

= M|

which completes the proof of the lemma.

Now we show the theorem for p € (1,00). To begin with, I shall adapt a
standard inequality.

Lemma 2.1:11. Forn > 1, let uy,..., un be positive with >_p; = 1. Let
Y1,...,Yn be non-negative. Let v be non-zero. Then

n e
def
Ki(y) = (Z Hiyir)
im1

is monotonic and increasing with v, that is, 11 <13 iriupﬁes Ky, (y) <K, (y).
Proof. This lemma is part of Theorem 5 in Chapter 1 of [BOLLOBAS,1990]
(though I have changed the notation).
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Lemma 2.1:12. Let u and y be A-sequences, with pu) non-negative such that
Y kA <1, and y, non-negative. Then

e
= (Z_ HAUAT) .

is monotonic and increasing with r, as before.

Proof. We relax the conditions of Lemma 2.1:11 one by one to obtain the

result.

(1) It is easy to see that it doesn’t matter if for some A, p) =0.

(2) Let p=) ux. Wehave 0 < u <1, and in fact the lemma is trivial if p = 0.
Otherwise let p;' = ‘;‘ and let K;'(y) be the K, we obtain using p' instead
of u. In fact K, (y) = K'("’) Lemma 2.1:11 applied to K, ', together with
u € (0, 1], ensures that Kr (y) 1s still monotonic and increasing with r.

(3) It remains to show that we can change the sum from 3 ", to }_,. .. Since
everything is non-negative, Definition 2:4 is equivalent to defining the sum
over A as the supremum of the sum over finite subsets of A. Such a finite
subset will correspond to {1,...,n}, where n is its order; and with (2),
we know that the sum for any particular finite subset will monotonically
increase. As the sum over A is a supremum of these sums over finite subsets,
this proves the lemma.

We now proceed to complete the proof of the.theorem. As in Lemma 2.1:10,
let x € F; it may be assumed that x # 0. I have to show that || Zx||, < M||x||,.
By expanding this inequality, we find that it may be assumed that M = 1 (by
dividing ax,a, by M), that ||x||, =1 (by replacing x by T )» and that for any A,
Ay and Ay, xa, and ax,a, are real and non-negative (by replacing each by their
absolute values). Define the A-sequence y to have yj © xAP, then ||y|y =1. It
remains to show that ||Zx|, < 1; that is to say:

12 (1)) xaanne™
Az

A

= | z e’ Z XA, QA |l
A2 A -
P LA s
= (Z_ Z_x'M ax;A; )

Az I A
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which 1s equivalent to:

P
1> ) D xaann
Az | A
P
=y (ZXM 07\,7\2)
A\ A
P
= Z (Z a)\,;\zy;‘/“’) .
A\ A

By Lemma 2.1:12, comparing T = | and r = 1/p, this is

< Z (Z a;‘,;‘zy)\,) since VAz 3, axa, SM=1.

A2 At

The result, and hence the whole theorem, now follows from the case p = 1, where
we bound Zy rather than Zx. : d

Both condition (1) & condition (2) are required in the statement of this
theorem. Let A = N and M = 1, then without (1), ax,x, = 8x,1 would be a
counter-example with x = e for any p < oo; and without (2), ax,a, = 6a,1
would be a counter-example with x = 3" le™ for any p > 1. I leave the details
of this to the reader. )
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Chapter 3
Hilbert Space on the Lattice

For any set V, define H(V) to be the Hilbert Space of all functions x : v — x,
from V to C satisfying ), lx,\,l2 < oo, with inner product defined to be

(x,9) Lef Y . X% Uy. Forany v € V, define e” € H(V) to map v to 1 and
everything else to 0. Let H be any Hilbert Space. For a general introduction to
Hilbert Spaces see [BOLLOBAS,1990].

Definition 3:1.
(1) For x € H, the Norm of x, ||x|, is 1/(x,X).

(2) For T an operator on H, the Norm of T, ||T||, is sup %’ﬁl
x€H

We let [ denote the operator mapping x to itself.

It will be seen that H(V) contains the same elements as £,(V) and has the
same norm for elements and operators.

Let K be a function from V x V to C.

Definition 3:2.
def

(1) M-] (K) = supuEV Zv IK(u,V)I.
def

(2) M2(K) = sup,ev 2_,, IK(u,v)|.

(3) M(K) = max(M;(K), Mz(K)).

Theorem 3:3. Suppose M(K) < co. Then there is a unique bounded operator
T on H(V) such that for alluw and v in V, (Te*,e¥) = K(u,v). Furthermore
| T|l is at most M(K).

Proof. This follows from Theorem 2.1:7.

Corollary 3:4. T as constructed in the previous theorem is Hermitian if and
only if for all (u,v), K(v,u) =K(u,v).

Proof. only if is true as K(u,v) = (TeY“,e"). if is true as (T*e%, eV) =

(ev, T*ev) = (Tev,e*) = K(v,u) = K(u,v); thus T = T* by the uniqueness of T.
We shall also need the following theorem.
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Theorem 3:5. If ||T|| < 1 then there is an operator T' with T'(I—-T) =
I-T)T'=Land |[T'|<O=|TPN".
This is essentially [BOLLOBAS,1990], Chapter 12, Theorem 1, in that the existence
of T is in the statement of the theorem and the bound on || T'|| follows from the
proof. - i
We now consider Hilbert Spaces on lattices. Specifically, H(L) is defined to
be H(V) where V is the set of vertices of the associated graph; namely G x Y.

Definition 3:6. For a lattice L, the Adjacency Operator A is the operator on
H(L) defined so that (Ae“,e") is 1 if u and v are adjacent in the graph, and
0 otherwise.

Because the graph has bounded vertex degrees, by Theorem 3:3 A is a

well-defined operator with norm bounded above by the maximum degree of the

graph. Furthermore, A is Hermitian by Corollary 3:4.
§3.1. Weighted Lattices and Directed Weighted Lattices

Definition 3.1:1.

(1) For G and Y as in Chapter 1, a Directed Lattice Weighting on G(Y') is a
function f mapping G X Y x Y to C, such that Zg.u, vs If(g,v1,Vv2)| is finite.
A Lattice Weighting on (G, Y) is a directed lattice weighting which also
satisfies Vg € G,Vv1,v2 € Y f(g,v1,v2) = f(—g,v2,01).

(2) A Weighted Lattice (respectively Directed Weighted Lattice) is a triple
(G,7,f), where f is a Iattice*weighting (directed lattice weighting) on (G,Y).
The associated Hilbert Space H(G, Y;f) is H(G x Y), as for lattices.

(3) The Weighted Adjacency Function of a weighted lattice or a
directed weighted lattice (G,7Y,f) is the function B mapping
(= (91,11),v = (92,02)) t0 By = f(g2 — g1,01,7). The Weighted
Adjacency Operator, also called B, is the operator on the associated Hilbert
Space defined by (Be", e") e Bvewu-
The weighted adjacency operator B is well-defined by Theorem 3:3, because
M(B) < oo. Also, by Corollary 3:4, the weighted adjacency operator of a '
weighted lattice is Hermitian.

We can identify a lattice with a weighted lattice, with the same adjacency

operator. For if we construct A from L as we did originally, we obtain the same
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operator as if we had defined f to map everything in L to 1 and everything else to
0, and then constructed B from f.
Thus weighted lattices and directed weighted lattices generalise lattices. We

need this generalisation for Chapter 7, which obtains results about lattices (and
in fact directed weighted lattices) with periodic modifications by constructing

directed weighted lattices from them.
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Chapter 4

Spectral Measures

Throughout this chapter, let T be a Normal operator in a Hilbert Space H.

Let Spec(T) denote the Spectrum of T, that is to say, the set of A € C such

that there is no bounded operator on the Hilbert Space inverse to Al — T.

For finite-dimensional Hilbert spaces, the spectrum is the set of eigenvalues;
however for infinite-dimensional Hilbert spaces the situation is considerably more
complicated. Thus, if A is in the spectrum of T, it is not necessarily true that
there is a non-zero x in H such that Tx = Ax. For a discussion of the various
possibilities, see [BOLLOBAS,1990], Chapter 12.

Theorem 4:1.

(1) sup{A € Spec(T)}=|IT].

(2) If T is Hermitian, Spec(T) C R. _

(1) is proved in [BOLLOBAS,1990], Chapter 12, Theorem 11. (2) is a standard
result. To prove it we may proceed as follows. Spec(T) is bounded; let A be

on its boundary. Then by [BOLLOBAS,1990], Chapter 12, Theorem 7, A is an
Approximate Eigenvalue of T. That is to say, there is a sequence (x™)°_; with
x™ € H(V) and |[x™| = 1 for all n, such that (AI — T)x™ — 0 as n — oo. Since
(x™,x™) = 1, we have A — (Tx™,x™) — 0. However (Tx™,x™) is real because
(Tx™,x™) = (x™, Tx™) = (Tx™,x™). Thus A is real, and so the whole boundary of

Spec(B) is real; this concludes the proof.

Definition 4:2. Let f be a function mapping any set to C. Then
def
Il = suplf(x)I-
x

This extends Definition 2:1.

Definition 4:3. L (Spec(T)) is the set of measurable functions f from Spec(T)
to C with ||f||_, < oo.

We regard L, (Spec(T)) as an algebra over the complex numbers by defining

(F+0)A) E () + g(A), (A E x x f(A), and (fg)(A) L #(A) x g(A); for all f

and g in Lo, (Spec(T)), all A € Spec(T), and all complex x.

We also regard the set of bounded operators on H as an algebra, by
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] de ' def
defining (V1 + V2)(u) = Vi(y) + Va(y), (xV1)(y) = x x Vi (y), and
(ViV2)(y) et (Vq o V2)(y); for all bounded operators V; and V3, all complex x,
and all y € H.

Theorem 4:4. There is a unique function @1 from L., (Spec(T)) into the set
of operators on H satisfying the following conditions:

(1) @y is an algebra homomorphism.

(2) |21 £ |Ifllos for all f.

(3) @+ ([1]) =1, where (1] is the constant function mapping everything to 1.

(4) ©v([A]) =T, where [A] is the function mapping each A € Spec(T) to itself.
Furthermore, the following are also true:

(5) For any elements x and y of H, there is a unique bounded complex
measure iy, on the Borel sets in Spec(T) such that for any f,
(D7 (f)x,y) = [ fdpx,y.

(6) If f is continuous, || @7 (f)|| = ||f]| -

Definition 4:5. The @y satisfying the conditions in Theorem 4:4 will be called
the Functional Calculus on T.

These are all standard results, and may be found in [PLESNER,1969] in

Section 8.6 and Section 8.7 together with Theorem 9.5.3.

Definition 4:6. Iff and T are as above, then we write f(T) for @1 (f).

Definition 4:7. The Spectral Measures of T are the measures (i, , given in

(5)-

Definition 4:8. Suppose H = H(V). For u,v € V, define p, . to be peu ev.
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Lemma 4:9. IfH = H(V) then
Hx,y = Z XuYvHu,v-
u,v

Proof. Let f be any function in Lo, (Spec(T)). It suffices to show

that [fdpxy = Y ., *uUv [ fHu,v. Indeed, the left hand side equals
(f(T)x,y) while the right hand side equals 3, |, x,Uv(f(T)e*,e"),

which converges since [(f(T)e*,e¥)| < ||fll lle*lllle¥]] = [Ifllo, so

2wy X (f(T)e", ev)| < |Ifll, 3. IxuUvl which is bounded by the
Cauchy-Schwartz inequality. The result then follows from x = )~ x,e" and

y=>2 ,y.e".

§4.1. Spectral Measures on Finite Dimensional Hilbert Spaces
Consider what happens if H is finite dimensional, with dimension n. H is a
vector space. For any basis of H, we can write the elements of H as vectors and
the operators on H as matrices. If the basis is orthonormal, and if two elements x
and y of H are represented with this basis by vectors containing only real entries,
then in fact (x,y) is just the conventional dot product of the vectors.

Since T is normal we can choose an orthonormal basis {e'1 ,e.., e ™}over

which it diagonalises. So we can write

A4
A/ .

where the off-diagonal elements are all zero. Since H is finite-dimensional,
Spec(T) is equal to the set of eigenvalues of T, which is {Aq,...,An}. €’ tisan
eigenvector corresponding to A;. Suppose f € L., (Spec(T)); over the same basis
as before it 1s in fact true that

f(A1)
f(T) =
f(An)

»

and it may be easily verified that the conditions in Theorem 4:4 hold. In
particular, we look at the spectral measures of T.
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Definition 4.1:1. The Point Measure at A, 6, is the measure with 5)(S) equal
to 1 if A € S and to O otherwise.

Since the spectral measures on T are on the finite set {Aq,...,A,.}, they must be

linear combinations of point measures.

I now give a formula for the spectral measures of T. Let x and y be two
vectors, and suppose we want to know p, ,. Write x = Zx.;e'i and y = Zyie’i,
where x; = (x,e’i) and y; = (y,e’i). We have (f(T)x,y) = Z f(A;{)xiUy; hence

i

we have
Hx,y = Z ximﬁ)\l . (M

It is easy to check that these spectral measures satisfy the given conditions, which

means that our formula is correct.

84.2. Traces and The Spectral Measure
Let us for the moment continue to assume that H is finite-dimensional. Let
{x',...,x™} be any orthonormal basis of H, and let U be any operator acting
on H. Then since H is finite dimensional, we can define Tr(U) and it is equal
to Y, (Ux? x*). Furthermore the trace is of course independent of basis, so
> .(Ux',x') will be the same for any orthonormal basis {x',...,x™}.

Recall that T is a normal operator, with p , the corresponding spectral
measures. Let f € L, (Spec(T)); we can now write down Tr(f(T)) in terms of the
spectral measures. In fact

Tr(f(T)) = ) (F(T',xY)

= Z J'f dp.xt'xt

i

£ b

So we have expressed Tr(f(T)) as an integral of f with respect to a certain
measure. However in this thesis I do in fact want to do similar things for
infinite-dimensional Hilbert Spaces. Unfoétunately it may well be true that for
any orthonormal basis ) pyt t is undefined. There is no satisfactory way of
dealing with this, but we proceed as follows.
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Definition 4.2:1. Suppose H is any Hilbert Space, and that X is some
orthonormalised basis of H. Suppose M is a set of functions m: X — C,
and suppose we have defined an averaging function mapping m € M to its
average in C. Then the Normalised Trace of an operator U, NTr(U), is the
average of the function mapping x € X to (Ux,x).

For H finite-dimensional with dimension n, and hence X of size n, we have no

problem defining an averaging function; we simply define the average of m to be

> vex m(x)/n. Then we have NTr(U) = % Tr(U), where U is any operator. In
fact, I won’t use any averaging functions much more complicated than this one,

so it won’t be necessary to go into much detail.

Definition 4.2:2. Suppose we have defined an averaging function. Then
The Spectral Measure of U is the measure u defined (if it can be defined) so
that p(S) is the average of pyx x(S) over x € X, where S is a measurable set.
We now return to the finite-dimensional case, with f € L (Spec(T)). In
the finite-dimensional case, recall that we had Tr(f(T)) = [ fa(} Hyt 21)-
NTr(f(T)) = LTr(f(T)) and p = 1 3 pyext. Soin fact we have
NTr(f(T)) = [ fdp. This will also be trivially true for the averaging functions we
shall consider. »
Now in fact there is a simple expression for the normalised trace of T
when H is finite-dimensional. For recall that since T is normal, we can choose
a basis over which it can be written as a diagonal matrix with diagonal entries
Al,...,An, where these are the eigenvalues of T (counting multiplicities). Then

we have

f(Aq1)
f(T) =
f(An)

So Tr(f(T) = Y f(A;) and NTr(f(T)) = 1 5 f(A;). Let p be the spectral measure,
then '

1
H = ;{Zé)\t' ) (2)

5

This means that we can regard the Spectral Measure as encoding the eigenvalues
of T, counting multiplicities.
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Chapter 5

Uses of the Spectral Measures: Walk Generating
Functions and Markov Chains

Let V be any set. Let B be some function V x V — C, mapping (u,v) to B, ..
Suppose M(B) < oo. Then we can construct an operator (which we shall also call
B) on the Hilbert Space H(V) defined by (Be", e") = Byu. B is a well-defined
operator with operator norm at most M by Theorem 3:3. However we will

not in this chapter make any other assumptions on B, except where stated.

In particular, we cannot assume that B is Hermitian, nor even that there are

spectral measures for it.
§5.1. Walk Generating Functions

Definition 5.1:1.

(1) A Walk w on V is a sequence (wy,...,wy) of elements of V; it is said to
Start at wp, End at wy, or go From wy To wy, and the length len(w) is
defined to be 1. Walks may have zero length; a zero length walk is a sequence
containing just one element.

(2) The Power of w, P(W), is [ [; Bw,wy_; -

(3) Given a family of walks W, the power of W is the sum of the powers of the
elements of W. '

(4) Given walks w' and w?, such that w' ends at the vertex w? starts at, then
their product w'w? is the sequence (Wos e s Wi (o1 = Was - - ,wﬁn(WZ]).

(5) Given families of walks W' and W? such that all walks in W' end at and all
the walks in W? start at the same vertex, their product WYW2 is the family
of all walks w'w? with w' € W' and w? € W2 (so each w occurs as many
times in W'W?2 as there are pairs (w',w?) € W' x W2 with w = w'w?).

(6) Given families of walks W' and W2, their sum W' + W? is their union,

- . taken as a union of families, so that the number of times a walk occurs in
W' + W2 is the sum of the number of times it occurs in each of W' and W2,
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Lemma 5.1:2. For two walks w' and w?, and two families of walks W' and
wW2:

(1) len (wlw ) = len(w') + len(w?), provided the product is defined.

(2) P = p(w')p(w?), provided the product is defined.

(3) p W‘W2 = p(W1)p(W?2), provided the product is defined.

(4) (W' +W2) =p(W') +p(W?2).

Proof. These all follow immediately from the definitions.

Definition 5.1:3. For i a non-negative integer, and u,v € V:
(1) WW_u is the set of all walks from u to v.
(2) Wi_,, is the set of all walks of length i from u to v.

Lemma 5.1:4.
(1)
(1.1) PForallu, ¥ ,[P(Wi_,)l < M(B).
(1.2) Forallv, }_, [P(W}_,)I < Mz(B)".
(2) Bl_. is well-defined by the above definition and,
(2.1) Forallu, ¥, |Bi_.|I< M;(B).
(2.2) Forallv,y ,IBi_ . |<M;(B).
Proof. (1) is trivial by induction on 1; (2) then follows immediately.

Lemma 5.1:5. Bi_, = (Ble%,e"), where Bi is the i*® power of the weighted
adjacency operator B.
Proof. By induction on i.

Definition 5.1:6. Forz € C:

(1) B(z) = o S~ 2'BY, where the sum is absolutely convergent (as defined by the

i=0
operator norm).

(2) Foru,v €V, Byw(z) = (B(z)eY, ev).
(3) The Walk Generating Functions of B are the functions taking z to By—wu(z) -
asuandv varyin V.



Lemma 5.1:7. B(z) 1s defined for |z| < m‘s—“, and equals (I — zB)~'. B(z) is
undefined (so the power series isn’t absolutely convergent) for all z where
(I —zB)~! is undefined.

Proof. ||zB|| < 1 and so the first sentence follows from Theorem 3:5. If the

power series is absolutely convergent (as defined by the operator norm) we can

define (I —zB)~! to be its sum.

Lemma 5.1:8. B,u(z) =) ;B _,z}
Proof. Trivial from the definitions and Lemma 5.1:5.

Definition 5.1:9. For W a family of walks, we define W(z) = } .\,
z‘en(“’)p(w).

Lemma 5.1:10. In fact we have B, (z) = Wy u(2).

Lemma 5.1:11. For Wy, W> two families of walks

(1) (Wi UW2)(2) = Wi (2) + Wi (2);

(2) (W1/W3)(z) = W4(2)W>(z), provided the product is defined.

Proof. This follows immediately from the definitions, as in Lemma 5.1:2.

Definition 5.1:12.

(1) For any p and q we define [p = q] to be 1 if p = q, 0 otherwise.

(2) We define B, (z) = Byeu(z) — [u=v]. So B%_,, is like B, except that
we ignore the zero length walk (u) when u =v.

Lemma 5.1:13.
(1) For all u and all z with |z] < m,

|zZlM(B)
ZIB\:(—u )I S —'_—IZ—I’)\T](_B—)'-

(2) Por all v and all z with 2| < ks,

>

1zIM2(B)
2_IBeule) < Tty
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Proof. This follows from Lemma 5.1:4 (1). I shall only prove (1) as the proof

for (2) is similar.

Y Biu(@l < ) ) 1By .7

v v i=1
< Z Mi(B)'z!
i=1
= > My(B)al’
i=1

_ _|ZIM4(B)
1—1z2IMy(B)"

(by Lemma 5.1:4 (2.1))

§85.1.1. Walk Generating Functions in Terms of Spectral Measures

Suppose that there is a functional calculus on B. Then we can write down a
formula for B(z) in terms of its spectral measures, using Lemma 5.1:7. In fact we
have B(z) = (I — zB)~'. Define f,(t) to be 1/(1 — zt); then it is easy to see that
(I — zB)f,(B) = [; therefore (as inverses are unique) B(z) = f,(B). In terms of the

spectral measures we have

1
1—2zt

Burul) = | 7 s (t) (1)
However there is another way of finding B(z), which might work even

if B has no functional calculus. We have B(z) = (I —zB)~', so this is what

we want to find. Write C(z) = I — zB; we want a formula for the inverse

of C(z). Write D(z) = C(z)C(z)*. Then D(z) is certainly Hermitian, as

(D(2)* = (C(z)C(z)*)* = C(2)*(C(2)*)* = C(2)C(z)* = D(z). Furthermore we can

write B(z) = C(z)*(D(z))~!, provided D(z) has a bounded inverse operator.

Lemma 5.1.1:1. D(z) has a bounded inverse operator whenever B(z) is
defined.

Proof. If C(z) and C(z)* have bounded inverses, then so has D(z), namely

their product. If C(z) does not have a bounded inverse, B(z) isn’t defined

anyway, by Lemma 5.1:7, so we are done. If C(z)* = I — zB* does not have

a bounded inverse, then 1/z € Spec(B*). By [BOLLOBAS,’] 990], Chapter 12,

Theorem 11, 1/z € Spec(B), so C(z) does not have a bounded inverse, and we are

done as before.
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D(z) is Hermitian, and therefore has a functiomal calculus. If D(z) has a
bounded inverse then 0 ¢ Spec(ID(z)). Define f(t) = 1/t on Spec(D(z)), then
f(D(z)) is the inverse of D(z), and is bounded (as Spec(D(z)) is closed). Suppose
that we know the spectral measures of D(z), then we know (or at least have a
formula for) f(D(z)), and hence for B(z)'= C(z)*f(D(z)).

§85.1.2. Spectral Measures in Terms of Walk Generating Functions

Suppose we know B(z), and that B is Hermitian. Then there is in fact a formula
for the spectral measures, and hence the functional calculus. To find this we
start from the following, taken from [WIDDER,1946] (I have corrected an obvious

- misprint):

Theorem 5.1.2:1. If the integral

f(s) = r da(t) )

0 s+t

converges then for any particular number &

) 1 & . ,
dim 5 L [f(—0 — in) — f(—o + in)] do

_ o) +alEm)  «(04) +a(0-)
2 2 |

(3)

The integral [ de(t) is the Stieljes Integral with respect to o; Display (2) means
that f is the Stieljes Transform of «; and Display (3) is the Stieljes Inversion
Formula giving « in terms of f. «(&+) is defined as lim¢— ¢4 ((t)) and a(&—) as
limy ¢ (x(t)).

To use this, suppose|we know B, . (z) and want to find py,». Let M > |IBII;
then in fact Spec(B) C (—M, M) by Theorem 4:1. Define

%olt) = tuv(—00, ) + 7yt )

Lemma 5.1.2:2. Display (4) determines a unique Borel measure w.,, , which is
linear in the function oy.
Proof. Suppose ap and W, . satisfy Display (4); we show that p,, , is
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determined by and linear in .

(1) Mup(—o0,t1) =limey04 xo(t1 —€) and py v(—00,t2] =lime 0+ xo(t2 + €).

(2) Hence the measure with respect to p,, , of all intervals is determined by oy;
for example pyv[t1,t2] = Huy(—00, t2] — puw(—00,t1).

(3) The proof that p, . is determined on all Borel sets follows by the standard
measure-theoretic argument of showing that the set of all sets whose measure
with respect to p,,, is determined by «o is a o-field, and hence p,,  is
determined on all Borel sets of R, and hence all Borel sets of Spec(B) C R.
Similarly, if ap = Ajad + Az2a3 and a0, ), % determine corresponding
measures W, u', u?, then we can prove that p = A;u' +A,p2 by showing that
the set of sets S for which w(S) = Ayu'(S) + A2u%(S) is a o-field containing

all intervals.

Now define am(t) = xo(t — M); let s = —M — 1. Starting with
Byu(z) =] 1—_12—t duy v (t), as in Display (1), we find by elementary algebraic
manipulation that f(s) = —zBy—w(z) and « = o satisfy Display (2). Note
that (am (&+) + am(E-))/2 = am(E), and am(0) = 0. We have z = — 1.
Therefore, from Theorem 5.1.2:1,

.1 (% . .
am(&) = 711—1*%1"'-27—“?[0 f(—o—in) —f(~o +1in)do

= i
20 o —(e—M)—1n —(o— M) +1in

-1 —1
1 r By (m) Bveu (m) 4
n—-0+ 2mi

So

1 1
. 1 M Bveulsrm B o
xo(&) = lim J u(c,+m> - w_u(a, m) do
n—-0+ 27 J_p  —0—1in —0+1in

which by taking M — oo equals

— —0— 1 —0+1in

Thus we deduce

Theorem 5.1.2:3. For any u, v, the spectral measure W, of a Hermitian
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Operator B is determined by and linear in the function B, (z).
Using this and Lemma 4:9 we find that

Theorem 5.1.2:4. All the spectral measures of B are determined by and linear
in the functions By (z).

§85.1.3. Equitable Partitions

Definition 5.1.3:1. An Equitable Partition on (V,B) is an equivalence relation
~ on 'V such that ifu,v € V then

> Byeu

A4 Kad'

remains the same if u is replaced by any other element of its equivalence
class.
Suppose throughout this subsection that ~ is indeed an equitable partition on
(V,B), where M(B) < co. Let V' be the set of its equivalence classes, and write
[v] for the equivalence class of v.

Definition 5.1.3:2.

def
B[v](—-[u] = Z Bvu—u-

Vi~V

Thus we may consider B as a function on V' x V'.

Lemma 5.1.3:3. Write M’ for M(B) when B is considered as a function on
V' x V', and write M for M(B) when B is considered as a function on V x V.
Then M’ < M.

Proof. Consider B as a function on V' x V/; then

M;(B) = sup Z

[ulev? vlev!

< sup ) 3 [By,eul

UEV [leV! vi~y

Y Byeu

Vi~V
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= sup ) [Byeul

uevaV
< M.

Similarly for M2(B). Therefore M’ < M.

This justifies us in considering B as an operator on H(V').

Lemma 5.1.3:4. Forallk >0

(B[v](—[u])k = Z (Bk)vl(—u-

Vi~V

Proof. We use induction on k. The result is trivial for k = 0, so suppose
k =n+ 1 where the lemma is true for n. Then

Brecr)® = Y Bpvera Buiem)”

[wlev!

= ) (Z Bwu—u) (Bretwl) "
[wlev’! \wj~w

= Z Z Bo,u Z B} ., (byinduction)
[wlev’ wy~w Vi~V

= Z Z_ Z BWH—uB:}](——w1

Vi~V [wleV! wi~w

= Z Z BWH—quTzLI(—wl

vi~vwieV!

= Z (Bk)vu—u-

A2 Kol
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Definition 5.1.3:5. An equitable partition ~ on (V,B) is Finite if for any
veV,{vy|vi ~v} is finite.
For the rest of this subsection, I shall assume that ~ is in fact a finite equitable

partition.

Theorem 5.1.3:6. Foru,veV,

B[v]c—[u](z) = Z Bv|¢-—u(z)-

v €]

Proof. This follows from Lemma 5.1.3:4 and Lemma 5.1:8.

Theorem 5.1.3:7. For B Hermitian, and for u,v € V,

Mol = ) Huw-

A A Haa

Proof. This follows from Theorem 5.1.3:6 and Theorem 5.1.2:3.

0

§85.1.4. Traps and Other Ways of Adding Operators

Let V(1) and V(2) be two sets with union V* and intersection V'. For i equal
to 1 and 2, let B(*) be some function mapping vl x v 4, mapping (u,v)
to B, _,,. Suppose B{!) and B(?) correspond to operators on the Hilbert
Spaces H(V(Y) and H(V'?)). Define B{')(z) and B{?)(z) from B(!) and B

as we defined B(z) from B at the beginning of this section. Define B so that
B_. =B, + B2, where we take B(),_,, to be 0 if either w or v is not in
V), We can regard B(") and B(?) as acting on H(V*), by defining

BYx), = { (BW(x|,,))v ifveVH;
0 otherwise.

Then we can regard B* as the operator equal to B(') 4 B(2), Again, define
B*,—u(z) and other notation from Bt as’ we ,defined notation from B at the start

of this section.
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For example, suppose V) = 7Z x Z x {v} and take BO): V(" x V(I 5 C
to be the adjacency function and operator of the two-dimensional grid described
in Chapter 1, Take m ¢ V(1) and define V() = {m, ((0,0),v), ((0,1),v)} and
B(2):V(2) » V(2) _ C so that B{Z), is 1 if exactly one of w and v is m; —1
if {u,v} = {((0,0),v), ((0,1),v)}; and O otherwise. Then BY_, is 1ifuandv
are joined by an edge in the graph obtained from the two-dimensional grid by
creating a new vertex m in the middle of the edge (((0,0),v), ((0,1),v)), and 0
otherwise.

I shall show that we can reduce the problem of finding the walk-generating
functions Bt,.(z) to the problems:

(1) Finding the walk-generating functions of B(!) and B(?).
(2) Finding the walk generating functions B _, (z) where B° will be defined on

V° x V°,and V° =V’ x {1,2}U {u,v}.

So we can find the walk-generating functions of the two-dimensional
grid modified as in our example if we know them for the walk-generating
functions for the two-dimensional grid, the three-element set V(?) and the (at
most) six element set V' x {1,2} U {u,v}. In Chapter 6 I will show how to find
walk-generating functions for lattices, and we can find walk-generating functions
for finite sets from Lemma 5.1:7. So we can find walk-generating functions on the
modified two-dimensional grid. This can be generalised to allow a finite set of
local modifications (such as adding or deleting edges or vertices).

Traps are examples of such local modifications. Consider a Markov chain
in the form of a particle wandering the vertices of a directed weighted lattice
with transition probabilities given by the adjacency function and operator (as
described in Section 5.2), except that if the particle reaches a given vertex it
stays there. This vertex is a typical trap. More generally we can allow traps
which absorb a particle with probability less than 1, and more than one trap. As
is shown in Section 5.2, random walk probabilities and expected times are given
by walk-generating functions, so the methods of this section make it possible to
find formulae for random walk probabilities in lattices with a finite number of
traps. This has already been explained [MONTROLL,1969]; however in Chapter 7
we will find procedures for deriving walk-generating functions for lattices with an
infinite number of modifications made in a periodic way.

Definition 5.1.4:1.

(1) A Modified Walk w on V7 is a sequence (wo,'bl y+..,01,W1) where each w;
is in V* and each b; is in {1,2}; it is said to Start at wy, End at wy, or go
From wo To wy, and the length len(w) is defined to be l. Modified Walks
may have zero length like walks.
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(2) The Power of w, P(w), is []; Bwli)_wt_, .

(3) Given a family of modified walks W, the power of W is defined as for walks.

(4) Given modified walks w' and w?, such that w' ends at the
vertex w? starts at, then their product w'w? is the sequence
(wd, bl ... ,bl‘en(w,),wl‘en[w,) =w},bl,... ,bin(wz),wlzen(wz)).

(5) Given families of modified walks W' and W? such that all modified walks
in W' end at and all the modified walks in W? start at the same vertex,
their product WW? is defined in terms of the product of modified walks in
the same way as the product of families of walks was defined in terms of the
product of walks.

(6) Given families of modified walks W' and W?, their sum W' + W? is their
union, as for walks.

Lemma 5.1.4:2. The identities in Lemma 5.1:2 are also true for modified
walks.
Proof. This is equally trivial.

Definition 5.1.4:3.
(1) WM | is the set of modified walks from u to v.
(2) For W a family of modified walks, W (z) «f > wew 22 WID(w), as for walks

(see Definition 5.1:9).

Definition 5.1.4:4.

(1) Given a modified walk w = (wp, by,...,b1,wy), the Restriction of w, R(w),
is the walk (wo,...,wy).

(2) Given a modified walk w = (wo, b1,...,by,wy), the Change Sequence of w
is (K1,...,km) such that 0 < ky < --- <kyn < 1, and i € {k1,...,km} if and
only if by # biyq.

(3) Given a modified walk w = (wp,by,...,by,w;) the Summary of w is the
sequence (wo, (W, , by, ),..., (W, , bk, ),w1) where kq,...,kn is the change
sequence of w. The summary of a modified walk of length 0 is just itself.

For example, if | = 7 and (by,b,,b3,b4,bs5,bs,b7) = (2,2,1,2,1,2,2) then the

change sequence is (2,3,4,5). The summary is (wo, (w2,b2), (ws, bs3), (wg, bs),

(ws,bs),w7).

Lemma 5.1.4:5. Letw be a walk in V*. Then the power of w is the sum of
the powers of all modified walks w' such that R(w') = w.
Proof. This is easy by induction on the length of w.
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Lemma 5.1.4:6. Ifw has non-zero power, and the summary of w is

(wo, (x1,¢1), ..., Xm,Cm),w1), then each x; is in V'.
Proof. If x; were not in V(1) then both BL].)_,“ and th._u are gero for any u,
but one or the other occurs as a factor of P(w), so that would have to be zero
too. Similarly for V(2),

Now suppose that we want to evaluate the walk generating function
By, (2) at some z, for some uo,vo € V7.

Definition 5.1.4:7.
(1) Vo & v % {1,2}U fuo,vo}. ﬁ
(2) The map B° from V° x V° to C is defined so that Bj,_,, is zero except in the

following cases, where w,x € V' and 1 € {1,2}: |

(2 1) Box 1)e—(w,3—1) =B 1);(—-w(z)

(2. 2) (x De=uo B(l);(—uo (z).

(2 2) Bv o—(w,3—-1) — =Bl Vohw(z)

(2 2) BVo(——uo = B“):oi—-uo (Z] + B(Z Vot—Uuo (Z)
Theorem 5.1.4:8. BJ _, (z) =B; . (1)
Proof. Starting with Lemma 5.1:8 we find that

B:‘o(—uo (Z) = Z B+:’o(—uozi
i
wew+ voug
— Z (W) len{w)
R(W)Ew+vo(—uo
= Y pw)dent,
WEWVO"—HO
\
Therefore we have to show that W\’,\Q‘(__uo ) (the sum over all modified walks w in

V from ug to vo of P(w)z'¢2(")) is equal to B}, u, (1) (the sum of the powers of
all walks from ug to vo in V°).

To do this we shall associate each walk w from up to vo in V° with non-zero
power with a set WM of modified walks in WM,_,, in such a way that each
modified walk with non-zero power is associated with exactly one walk, and
pP(w) = WM(z). This will prove the theorem.

Therefore let w be a walk from up to vp in V° with non-zero power; I shall
now define the association, showing in each case that P(w) = WM(z).

Firstly, if len(w) = 0, then I associate w with the set containing the modified
walk (uo = Vo), which has length 0. P(w) = WM(z) = 1.
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Secondly, if len(w) = 1, then w = (uo0,vo). I associate w with the set WM
of all modified walks with non-zero length which go from u, to vo in which
the b;’s are constant. P(w) =BS ., =BM: . (z) +BP; _ (2). The
elements of WM either have all b;’s 1 or all b;’s 2. The elements with all b;’s
1 have the same power as the the restriction has when the power is evaluated
with respect to B(1): similarly if all b;’s are 2. Thus WM(z) is also equal to
B“)* u (2) + B(Z)\,o(_u (z). So in this case we have P(w) = WM(z).

Lastly, suppose len(w) > 1. We may assume that P(w) > 0, so
w = (up, (x1,b1),..., (Xm,bm),vo), where the b; alternate between 1 and 2. We
associate w with the set WM of all modified walks wM which have summary
w. Define xo = U0, Xm+1 = Vo, and by = 3 — by, Thus wM is in WM

if and only if there exist k1, ..., km, with wM = (xo = uo,b1,w1,...,
b],Xl = wk]’bZ’wk|+1)---)wkm_1 »bm;wkm_1+1)---»bm,xm =
W, s Dmt1s-- s Xm4+1 = Vo). For 1 <i < m+1, define W' to be the set of

modified walks with non-zero length from xi—7 to x; with all b’s equal to b;.
Clearly we have WM(z) = W' (z)... W™+ (2). So

= 1_1\/\/L z)
= HB(bt)Xti—xt 1 )

— ° H B o
(x1,b1)e—1ug xi,biée—(x4-1,3—by) Vo= {(Xm,bm)

T<i<m

= P(w).

as required.

It should also be clear why each modified walk with non-zero power is
associated with exactly one walk; the reason is that each modified walk is
associated with its summary; the vertices all lie in V° because of Lemma 5.1.4:6.
Thus the theorem is proved. [

Theorem 5.1.4:9. Suppose M(B(") < 0o and M(B(?)) < oo. Then for
lz] < min(M“;(,)) , M“;(ZT)): M(B°) is finite and so B° can be regarded as an
operator on the Hilbert Space H(V°).
Proof. We need to show that for sufficiently small |z|, M1(B°) < oo and
M2(B°) < o0, and we will deduce this from Lemma 5.1:13. But the situation is
symmetrical, so I shall only give the proof of M;(B°) < oo.

If u =1up, then for |z] <

1 1
M; (B M, (B(2))»

Z Byewl < Y BEr L@+ BN L@+ BP: (2
1,XxEV/



<

[zIM4 (B(l}) |Z|M|(B(2))
. . (L 5.1:13
<‘ —1zIM (B 7 1 —]zM,(B2) (Lemma )
If u=(w,3 —1) then for |z < M;(B®),

Y Bl < ) B L@I+BM; ., (2)
v xXEV!

|zZIM,; (B()
= T1—[zZM,(BW)’

Therefore M;(B°) < oo for all z with |2| < min (5 (}3(.“, e (}wr)). Similarly
with M replacing M. So the theorem is proved.

§5.2. Markov Chains

Suppose we have a Markov Chain with state set V, with the transition
probability from u to v given by By. For the standard Markov Chain

Y ., Byew = 1 for all u; however in this section I shall generalise this slightly
and allow }_ By, < 1. If the chain reaches such a state u, there is a non-zero
probability that at the next step it will not go to any vertex v. If this happens I
shall say that the Markov Chain Terminates at u.

I shall also make the assumption that M3(B) < oo. As M(B) =
sup, Y, Bveu < 1, we can define the weighted adjacency operator by
Theorem 3:3, and then proceed as in Section 5.1, to define the Walk Generating
Functions.

In this section we find how various properties of the Markov Chains can be
obtained from the Walk Generating Functions, which can in turn be obtained in
terms of Spectral Measures, as in Subsection 5.1.1.

First, take u,v € V; suppose the Markov Chain begins at u; let p be the
probability that the Markov Chain at some time is in state v, and let T be the
expected time before the Markov Chain is first in state v (so if with non-zero
probability the Markov Chain never visits v then T = c0). We shall find formulae
for p and T in terms of the walk generating functions.

Define W, &, to be the set of walks which begin at u and end at v, but do
not contain v except at the end.
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Lemma 5.2:1.

(1) p= W, cu(1).

(2) Ifp =1 thenv=Weeulel]

Proof. We shall associate each member (wo = u,...,w; =v) of W, with
the event that the Markov Chain goes through the states (wo,...,w;) from when
it starts to when it first reaches v. There is no way the Markov Chain can go to
state v without one of these events happening; also these events are all disjoint.
The probability of the event associated with a member w of W, ., is P(w).
Therefore

(1) 0= wewoe, PW) = Waeu (1)

(2) fp=1thent= Zwewvgu len(w)P(w) = Wy, (1), by differentiation of

pOWer series.

p is certainly defined, and because probabilities are always non-negative real
numbers (1) demonstrates that in fact 3 .\, . P(w) is absolutely convergent,
and so the W, are all (since u and v were arbitrary) well-defined at 1.

Since the W,,,, are all given as power series this means they are defined at all
complex z with |z] < 1. However it may well be that the radius of convergence
of the W, ,, will be exactly 1, in which case it may not be true that they are

differentiable there; when they are not T may be infinite.

Therefore it suffices to find the functions W, (z).

Theorem 5.2:2.

W,eu(z)

Wyeu(z) = Woro(2)

where W, (z) is defined.
We can decompose any walk in W, (z) uniquely as a product of the section
of the walk up to the first occurrence of v, followed by the remainder which
is a walk from v to v. In other words any w € W,y (z) can be written
uniquely as wyw; with wy € W, (z) and wy € W, (z); furthermore
wiwy € W, (z) for any such wy and w,. Therefore we have, by Lémma 5.1:11,
W, u(z) = Wyeu (2)Wy—v (2), from which the result follows.

- []

This may also be shown using traps. For define B}, to be equal to
By/wur except if v = u’ when it is 0. The effect of this is to leave the power
of any walk unchanged unless it passes out of v, in which case it becomes
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zero. Clearly W_ (z) will be equal to W, (z), and we can find this using
the method in Subsection 5.1.4. However this is fairly mechanical, involving
little more than elementary algebraic manipulation, but involves quite a lot of
complication, so I shall not do it this way.

Of course, the formula in Theorem 5.2:2 will only be valid when W, (z)
is defined; that is, within its radius of convergence. However to make use of
Lemma 5.2:1 we need to know the value or derivative of Wy, (z) when z = 1.
M;(B) < 1, and so by Lemma 5.1:4, (2.1), all the coefficients of W,,..(z) have
absolute value at most 1, so the radius of convergence of W, (z) is at least 1.
So the only problem here is when the radius of convergence is exactly 1. In this
case, we can replace the equations in Lemma 5.2:1 by p = limr_”_WW:u(f)
and T = lim,,;_ $%£u8)| and then replace Wy, by the formula in
Theorem 5.2:2. It is clear that the first limit will always exist, and the second
will fail to exist if and only if 7 is infinite.

A more serious problem may arise if we have found a formula for W, (z)
which is only known to be valid for |z] < R where R is some constant in (0, 1).
The theoretical solution is obviously to analytically continue this formula inside
the whole of W, u(z)’s radius of convergence. In practice this may mean proving
that the formula can in fact be extended to an analytic function throughout
W, .(2z)’s radius of convergence, in which case this must equal W,,,,(z).



Chapter 6
Finding Spectral Measures of Lattices

Let L be a weighted lattice on (G, Y'), with lattice weighting f; let V be G x V;
and let B be L’s weighted adjacency operator on the Hilbert Space H ef H(L).
Let M = M(B). When we consider lattices in this chapter, we consider them to
be weighted using the construction given in Section 3.1.

I will give two proofs of the formula for spectral measures (which is
Theorem 6.4:27). The first one is a development of the method given for the
one-dimensional hexagonal chain in f [GoDSIL&MOHAR,1988], and uses a weig

generalisation of graph convergence. The second, in Section 6.6, does not use

hted

convergence, and is probably simpler. However the weighted generalisation of
convergence makes sense for non-abelian groups, so it is conceivable that one
day it will be useful for finding spectral measures of operators associated with
non-abelian groups.

§6.1. Finitely-Generated Abelian Groups
Recall that G is a finitely-generated abelian group. In this section let G be a
general finitely-generated abelian group.

Definition 6.1:1. Suppose {g1,...,9x} C G is a finite set of generators for
G. Then it is a Basis of G if any g € G can be written uniquely as 25 49;
- where |; is an integer modulo the order of g; if g; has finite order, and any
integer if g; has infinite order.

Theorem 6.1:2. There are non-negative integers T and s, a basis {g1,...,0r+s;
of G, and positive integers Xq,...,k; such that: for 1 <j <, g; has order k;
and for v+ 1 <j <t 45, g; has infinite order.

This follows because G is a module over Z and from the fundamental theorem on

finitely generated modules, which is proved (for Euclidean rings; in particular Z)

in [HERSTEIN,1975], Theorem 4.5.1.

For the whole of this chapter, I shall use the notation given in this theorem -
namely (1, s, 95, k;j) — without further comment.
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§6.2. Finite Lattices
Here we have s = 0, so G has a basis {g1,...,g+} where g; has order k;. Let
=G| = Hj kj.
For 1 <j <1, define w; = e’™x; Define G' to be the set of all r-tuples
Y = (v1,...,Yr) where each y}cj 1. G' has N elements. For g € G, write it
as Y 1;g; where for each j, ——zkl <l < —zi For v € (C\ {0})® define y(g) € C;
xY,eY € H(G) by

Y(legi) = o

def
v(g

e 1,
A

\_/

er &

Lemma 6.2:1. Ify',y2 € G/, then (e¥',e¥") =[y! =y2]; {€¥ |y € G'}isan
orthonormal basis of H(G).
Proof. The result is trivially true if y' =y2. So we must show it for y! # 2.
First note that if w = e®""* and a! and a? are different integers modulo k
then 3 ; wila'—a?) — 0, which follows from the geometric progression formula.
This incidentally proves the result for r = 1.
Since y! # y2, we may assume without loss of generality that vl # y%. Since
for i = 1,2, (y})¥' =1, define integers a* by yi = w?'. a' and a? are different
modulo ky. Then

1 2
(e¥ ,e") =

R ICARICEE

Osl] <k|
0<1r<kr

;hl—[(vj‘:y?)l,
A

Z| -

—_ Z|._.
—
=

However j | w 1' (@'~a*) _ 5 and |G| = |G'| so we deduce the lemma.

Definition 6.2:2. For g € G, the operator £y on H(G) is the unique bounded
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operator such that for any hy,hz € G,

1 ifhp=h1+g,

E,eM eh?) = {
( g ) 0 otherwise.

By Theorem 3:3, Eg is defined.
We return to the assumption that G is abelian.

Lemma 6.2:3. Fory € G' and g1,92 € G we havey(g1)y(92) =v(g1 + g2).
Proof. Trivial.

Lemma 6.2:4. Forg € G, andy € G’ we have EgeY =y(g)e?.
Proof.

(Ege”,e") = (e7,e"9) = y(g){e”,e")

by Lemma 6.2:3.

886.2.1. Finite Weighted Lattices with Y = {v}
Now consider a weighted lattice (G, Y, f) where G is finite and Y = {v}.

We associate g € G with (g,v), and e9 with e(9¥). Then {eY |y € G'}is
an orthonormal basis of H. I claim that in fact the eY are all eigenvectors of B,
and so B is diagonalised by this basis.

Lemma 6.2.1:1.
B =) f(g,v,0)E,. (1)
g

Proof. Since the operator B is defined as the unique operator with
(Be9',e92) =Bg,.g, =f(g2 — g1,V,V), it is enough to show that the expression
on the right hand side of Display (1) satisfies this. In fact

(Zf(g,Um)Egeg',egz) = (Zf(g,v,v)egw',egz)
g g
= f(g2 —g1,v,v)
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as required.

Theorem 6.2.1:2. {eY |y € G'} is a complete orthonormal set of eigenvectors
of B; the eigenvalue corresponding to €Y is }_ f(g,v,v)y(g)-
Proof.

BeY = Zf(g,v,v)Ege” (Lemma 6.2.1:1)

g
= Z f(g,v,v)y(g)e”. (Lemma 6.2:4)
p ,

So each e? is an eigenvector with the eigenvalue claimed. As the eY form an
orthonormal basis of H, this shows that they are a complete set of eigenvectors.
In particular, this allows us to write down formulae for the spectral measures
of B using the technique in Section 4.1, and so find formulae for walk generating
functions and solve random walks as in Chapter 5. These formulae will typically
involve sums over the whole of G’, which has the same size as G, so they may be

expensive to compute if G is large.

§86.2.2. All Finite Weighted Lattices
Using a more general version of this technique, we can find all the eigenvectors
and associated eigenvalues when Y contains more than one element (though,
from the definition, we may assume it is finite). However moré complexity
is introduced; in particular it is necessary to find all the eigenvalues and
eigenvectors of |Y| x [T matrices. -

The approach I shall use will be, as in Subsection 6.2.1, to produce a
complete orthonormal set of eigenvectors.

Definition 6.2.2:1. Fory € C'" and v € Y, define

X = = v'lv(g);
elvyw) — 1 x(v.v).

Jial

We consider e(*?) to be an element of H. We need to produce |G| x [Y]
orthonormal eigenvectors. We will do this by choosing |Y| orthonormal
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eigenvectors corresponding to each 'y € G'. Each eigenvector corresponding to -y
will be of the form }__ x, eV}, and is given by x, a function from Y to C.

We now repeat some of the definitions and lemmas we used to deal with the
cases where Y has just one element, generalised a bit.

Definition 6.2.2:2. For g € G, vy,v; € Y, the operator Eg.y,,, on H(G x Y)
is the unique bounded operator such that for any hy,h; € G and vi,v; €7,
<Eg"U2(-—‘U| e(h-l ,'U; )’ e(h—ZfUE])
_ {1 ifhy =hy +g and v; =v] and vy =V};
0 otherwise.

By Theorem 3:3, Eg.y,v, 1s defined.

Lemma 6.2.2:3. For (G, Y, f) any weighted lattice or directed weighted lattice
and B its adjacency operator

B = Z f(g,Uth)Eg;vz«——m . (2)

g,V1,V2

Since the operator B is defined as the unique operator with

(Belor i), el9223)) = Brg, 1) (gy,0p) = Fl92 — 01,7,03), it is

enough to show that the expression on the right hand side of Display (2) satisfies
this. In fact

{ £(g,11,12)Egiuyeu, 19101, @(92:93)
g;v2 1

g,v1,v2
- <Z f(g,v},v2)e(9191:v2) l92.v2))
9,v2

f(g2 — g1,v1,v3).

Therefore the result is proved.
We return to the assumption that G is finite and abelian.



52

Lemma 6.2.2:4. Forge€ G, and y € G' we have

Egivsev eyl = {Y(Q)eh’»vz) ifv =vy;
V2 1 ‘
0 otherwise.

Proof. This is obvious for v # vy. Otherwise, we can prove this in exactly the
same way as we proved Lemma 6.2:4.
We can now demonstrate the existence of eigenvectors corresponding to each

. Consider the action of B on e(¥+¥),

Be) = 3} f(g,01,02)Equpev, 7
g,vy,V2
= Ze“’"’Z)Zf(g,v,vz)y(g). (Lemma 6.2.2:4) (3)
v2 g

So for all fixed v, B leaves the subspace of H generated by the e!¥*") invariant.
For vy € G', let BY be the matrix of B restricted to this subspace, with basis the
e(v:Y), Display (3) tells us what the entries of this matrix are (where BY,+, is
the entry in row v;, column vy):

BY,., = 2 _flg,v1,v2)¥(g). : (4)
9

Lemma 6.2.2:5. BY is Hermitian.
Proof.

(BY)"

= B‘\))/lvz

= Y flg,v2,v1)v(9)
g

V2V

= ) f(—g,v1,02)¥(9)
g

= ) f(g,v1,v2)v(g) (substituting —g for g)
g
-~ BY

vavr
»

Hence BY is Hermitian. Therefore it has a complete set of orthonormal
eigenvectors. For e(¥")) one of these eigenvectors, with (e(¥+))), the entry of
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ev) corresponding to the basis element eY:*), we define € to be the
element of H equal to Y (e(”)),e(¥:¥). Thus these eigenvectors of BY, when
considered as elements of H, correspond to eigenvectors of B, with the same

eigenvalues.

Theorem 6.2.2:6. As we vary vy through G’ these eigenvectors form a

complete orthonormal basis of H.

Proof. First note that the e(¥"*) form an orthonormal basis for H. For by
Lemma 6.2:1, the eY"?) are orthonormal for fixed v. However if vy # v then
e¥1:v1) and elv2:¥2) have no non-zero entries in common; therefore all the e(Y:)
are orthonormal. There are |G I x |Y| of them, the dimension of H, so they form a
complete orthonormal basis.

We now need to show that the basis of eigenvectors is orthonormal. We
obtained the eigenvectors corresponding to 'y by finding the orthonormal
eigenvectors of the matrix BY and mapping them into H using the basis e(YV);
as this basis is orthonormal, the eigenvectors in H obtained from a single y are
orthonormal.

It remains to show that if we have y! # y2, the eigenvectors corresponding
to y! are all orthogonal to the eigenvectors corresponding to y2. However
this is true as the eigenvectors corresponding to y* are all obtained as linear
combinations of e!*"*), and these are orthogonal as y! # y2. Thus, as we have
|G| x |Y| orthonormal eigenvectors altogether, the theorem is proved.

§6.3. Convergence of (V(}) B(1)) and of Measures

In this section, let V be a set and (V)ien a sequence of sets. Let B: VxV — C,
and B® : V(A x v} 5 C. Suppose M(B) and each M(B!)) are less than

some finite constant M, so B and B! can be regarded as operators on H(V) and
H(V{)) respectively, with norm always bounded by M. Define this and other
notation as in Section 4.1 and Section 5.1. Suppose v(!) : V — V) is a surjective
map for each i.
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Definition 6.3:1. (V) B} (V,B) if

(1) For every u € V and every € > 0, there is an N such that for all i > N and
allveV, IB(i)v(t)(\,)e_v(n(u) —Byeul L e

(2) For every u,v € V, there is an N such that for all i > N, v{!(u) £v{I (v).

In this section I shall show that if (V(V),B(})) & (V,B), the spectral measures of

the B(1) converge to those of B, in a way to be defined. This will allow us to find

the spectral measures of infinite lattices.

Definition 6.3:2. Define B* and (B'V)¥ to be the k** powers of B and B(¥)
considered as operators, and consider them as functions mapping (u,v) to
(Bre*, e”) and ((B1))*ex, ev), |

Lemma 6.3:3. If (VY B{)) 3 (V,B), then for any non-negative integer k,
(VI, (B)*) 3 (V,B¥).

Proof. We have two parts of Definition 6.3:1 to establish. (2) is trivial. So we

have to prove (1) for each k. We use induction on k. k = 0 is trivial. Suppose

k = n + 1 and that the lemma is true for n. Let us suppose that u and € are

given. Then for any v we have

w—u = 2 Bwt——u vEew

wev
i)k
B(I)'V(U(v)(—‘v(”(u) = Z (B(l))wq—-—v(‘)(u)B ‘v“)(v)(—w
wevit)

Let & > 0. By Lemma 5.1:4 we can choose a finite nonempty set S C V such that

for any w ¢ S, [BY | < 8, because the sum over all w of this is at most M™,

which is finite. Now, using the lemma for n, choose N such that for all i > N the

following conditions are satisfied:

(1) For any wy,w; € S, wy # w; implies that v{¥ (w;) 7é'vm (wa).

(2) For any w € {u}US, and for any v € V, [B?_,, — (B¢ )y“,(v)‘_v“,(w)l < 5.

(3) For any w € {u}U S, and for any v € V, |Byew — BV v(t)(v)._.v(t)(wﬂ < lSl
Take i > N. If x € V(?) \v()(S), there must be a x' € V\ S with v(V (x') =x,

by the surjectivity of v(!. Thus by (2),

|(B () )x(._'v(l)(u) 6+|B;tr(_u| < 26. ' (5)
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It is now possible to bound BX_, —B{ kH ) (v) ey (V) (w0) without reference to v. For

we have

k
Bv(——u - Bh vii) (v)(__vu)(u)‘ =

Z Bw(—-u ve—w Z (B(I)):;(_-v(l)(u)B(l)‘V(k)(V)(—W
wEeV wevit)

< M+ M(28)+

Z Bw(—-u vew T Z (B(I) )llv(_-v(i)(u)B(l)'V(”(V)!——W
wES wev (1) (S)

(by Display (5))

= 30M + Z Bw(—u vew T Z (B( ))y(l)(W)(_—y(i)(u)B(i)‘v(U(v)(—'v“)(w]
WwES wES
(by (1))
= 36M + Z Bw(—u véw (B( ))V(t)(w)(__y(t)(u)B[i)v(U(v)«—w(t)[w)
wEeS
< 3BM+ Y
wES

IBI e (Byvew — B ) (v)=v (1) ()l

+|(Blew — (B(i))3(1)(w)‘_v(t,(u))Bw_W|

CHIBRew — (B(i))nm(w)e_ym(u))(Bw—w =B (1) vy () () )
36M + M™ & + 5M + s[5 %,

5(4M + M™ + §).

-

<
<

As M is constant, and § is arbitrarily small, we can prove the lemma by choosing
5 so that 5(4AM + M™ +6) < e.

For the rest of this section, I shall assume that the operators B and B(V) are
Hermitian, and so have spectral measures and a real spectrum.
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Definition 6.3:4. Let L be a compact subset of R, and let u and p!) fori € N
be (possibly signed or complex) measures on X. Then nw® Converges to u,
Wi — W, if for every continuous f : L - R, [ f dulth 5 [fduasi— oo.

Note that by Lemma 5.1.2:2, if u() — p, the measure p is determined by the

u® ) since

(xo(to) = lim 11m er.to (t) du(l)
€e—0i—0c0

where fe ¢, (t) is 1 if t € (—o0,to —€), 0if t € (to + €,00), and linear inbetween

these two intervals. We shall in fact choose ¥ = [—-M, M], which contains the

spectra of B and of all the B(}).

Definition 6.3:5.

(1) Forx € &;(V), define v (x) = ¥,y xve¥ " ™),

(2) For any i, define the spectral measures i " from B(}) as the spectral
measures WUy ,y were defined from B.

Theorem 6.3:6. Ifx,y € £;(V) and B®) 2 B then 'u,vu)(x)’ym(y)(i) — Ux,y-
Proof. By Lemma 4:9, it suffices to establish this if x = e* and y = e", for
u,veV.
Let a continuous function f:[-M, M] — C and an € > 0 be given; suppose we
want to find an N such that for all i > N,

dei“'v(i)(u),-v“)(v)_J‘fdu'u.v ,S €.

Let & > 0 be arbitrary. By the Weierstrass Approximation Theorem ([BOLLOBAS,
1990],Chapter 6,Corollary 11), there is a polynomial p such that, for any

t € [-M, M], If(t) —p(t)] < 6. Write p(t) = Z{i:o pxt¥. Using Lemma 6.3:3,
choose N such that for any 1 > N, and for any k between 0 and k,

i 1)
Bk —BX l . —
—v(‘)(v)(—-'v“)(u) vée—u Zk lpk|+]

We now show that this N works, for a suitable value of §. By the definition
of the spectral measures, we have [p dpy,y = (34 PxB*)veu. Also, from (2) of

\

\

\
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Theorem 4:4, we know that ||f(B) —p(B)|| < S andso [f—pduyxy < 6. And
similarly for p,v(n(u)ym(v)“). So

deu-vm(u),v(i)(v) - deuu,vl < 26+ Uvdu\,m(u),v(i)(v) - J“D dpuv

< 26 + Z |pk|‘B(i)5(i) (v)e=v D (u) B]\je—u
k

S 25 + Zk ka|5
Zk kal +1
< 3b.
So by taking & = §, the theorem is proved. [

§6.4. Infinite Lattices

In this section I shall use Theorem 6.3:6 to find the spectral measures of the
lattice when G may be infinite, by choosing finite weighted lattices for which the
weighted adjacency operator converges to the weighted adjacency operator of the

lattice.

Definition 6.4:1.

(1) Mistheset{zeC|lzl=1}

(2) G'is the set of (y1,...,Yr+s) in C™** such that for 1 < j < r,v; is a ki
root of unity and forr+1<j<r+s,v; €TL

(3) Forye G' and g =} lg; € G, we define

v(a) = [T (6)

Definition 6.4:2. For i an integer:

(1) For 1 <j <1+ s define T
MO {kj ifj <y
) i otherwise.

(2) GW is‘the abelian group with a basis {ggi), ey g,(_i)s} where g).m has order
(i)
ki .
j

|
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(3) v¥ : G — G is the group homomorphism mapping g; to g,gﬂ_

(4) VW is GW x v,
(5) v : G x ¥ = G x Y is defined by v(Y)(g,v) L (v (g),v).
(6) The lattice weighting f!) on (G, 7), is defined by

. . df
fO(gD,u1,0) = ) f(g,v,v2). (7)
vi)(g)=g)

(7) The weighted lattice L) is (G¥) ¥, £(1)).

(8) BW is the weighted adjacency function and operator for LV,

(9) The Hilbert Space H" is H(G) x 7).

The weighted lattices L(¥) are finite, and we have given a method to find the
eigenvalues and eigenvectors of each B(!). To obtain the spectral measures of B,
our first task is to show that B(Y) 5 B.

Lemma 6.4:3. B(Y % B,

In Definition 6.3:1, (2) is trivial. To show (1), suppose uw € V and € > 0

are given. We have to find an N such that for alli > N and allv € V,
IBO), (6 (v) v (0 () — Bueeul < €. Write w = (g1,11); then for all (g2,v2) € G x Y
we want

[FO (v (g2) —vP(g1),v1,v2) — f(g2 — g1,v1,v2)| < e (8)

Recall that 3" If(g,v1,02)] < c0. Let G\n ¥ {¥ Lig; | I >, > n}.
NG\ n =0, so we can choose N such that for all n > [}, 2 9cG\nw1 v2
If(g — g1,v1,v2)| < €. By Display (7), Display (8) is true, so the lemma is true.

So by Theorem 6.3:6 we have a construction of the spectral measures of B as
a limit of the spectral measures of the B(Y). We now consider how to construct
these measures in practice.

Recall that the eigenvectors of the finite lattices GV were parameterised by
¥Y1,---,Yr+s Where each y; is a kj(i)"h root of 1.
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Definition 6.4:4. Let d be a non-negative integer, and S an arbitrary subset of
c4.

(1) A function F: S — C is Continuous on S if for every € > 0, every s € S has a
neighbourhood U C C¢ such that for s’ e UNS, |F(s') —F(s)| < e.

(2) A function F: S — C is Analytic on S if every s € S has a neighbourhood
U C CH such that on UN'S, F is given by a multivariate power-series.

(3) For e a non-negative integer, F : S — C°¢ is Continuous (respectively
Analytic) on S if F(s) = (f1(s),...,fe(s)), where each f; is continuous
(analytic) on S. Similarly a matrix function mapping S to matrices (all with
the same dimension) is continuous (analytic) if all the entries of the matrices
are continuous (analytic) on S.

(4) A function with domain C? is Continuous (respectively Analytic) if it is
continuous (analytic) on C4.

I shall not explicitly state and refer to proofs of every elementary fact about

analytic functions. For general information, the reader is referred to [HERVE,

1987].

Definition 6.4:5.

(1) Let G* be {(y1,--er¥Yres) | ﬂj'Yi =0}

(2) Fory € G' and g = }_ l9; define y(g) as in Display (6).

G' is open in C™** and contains G'. For all g, y(g) is analytic and non-zero on
G\

Lemma 6.4:6. IfF is complex-valued and analytic, as in Definition 6.4:21, then
F is continuous. . :
Proof. F has a derivative.

Lemma 6.4:7. Suppose m : G — C satisfies Zg Im(g)| < oco. Then we can

define a continuous function M : G' — C by M(y) o > m(g)y(g)-
Proof. M(y) is defined because Y |m(g)y(g)l = 3_Im(g)| < oo so the sums
are absolutely convergent. Let GNn e {3 Lgi | Villil £ n}. GNmnis finite.

Define M (y) to be 3 cgnn m(9)Y(9)- My is analytic and so continuous.

>
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U,GNn=G. So given € > 0, we can choose N such that for n = N, and hence
aln>N, 3 oganim(g)l < e. Then for all v,

IM(Y) =Ma(y)l = | ) mlg)v(g)
ggGnn

< ) Im(g)v(g)l

geGnNn

= ) Im(g)

ggGnn
€.

IA

So the M,, converge uniformly to M on G'. As each M, is continuous, M 1s

continuous.

Definition 6.4:8. Forally € GY, g € G, v1,v2 € Y define the Y x YV matrix
EY.v, v, by defining, for all vi,v5 €7,

(E'y ) — i=villvy=v,]
g;v2e&uy viv] v(g)

For all g, EY.,, v, is analytic in G'.

Definition 6.4:9. For a finite matrix C we shall use C,,., and Cy, v,
interchangably for the element on row v, column v;.

Definition 6.4:10.
(1) _.
(1.1) Extend vV to map £;(V) to H(VW)) by defining v(!}(x) =
Y, xer W),
(1.2) Forg € G withg = ) ljg; andy € G', define xg::z) ==
.Ul] H -Ylj .
(2) Forx € (V) and vy € G/, define (x,x""") = 5 xxir |
(8) Forx in £ (V) or £;(VY) and Y € G', define x¥ to be the vector with
entries indexed by Y where (x¥), = (x, x )y,
Note that these definitions accord with those for finite G.”



Lemma 6.4:11.

(1) By Lemma 6.4:7, the function taking v to (x,xY*)) is defined and
continuous.

(2) Hence the map taking v to XY is continuous on G'.

Lemma 6.4:12. Forx in ¢;(V) andy € G' ||xY|]2 < +/IYl|x||1 for all y.
Proof.

(xY)y = (x,x[y"’))
< le(g,v)ml

A
=

Hence ||x7]|2 < 4/ITl||x||1 as required.

Lemma 6.4:13. Fory € G’ and x € £;(V),

Y _
(Eg;vze—u{x) = EZ;vZ(—mXY-

Proof. Forv e 7Y:

(Egivzev:X) )y = (Egivaev %, X))

= Z Y(h) (Eg;vzf—tn 'X) (h,‘U]
h

= [‘U = Z‘Y h—-g 1)

= = ZY h)xmrwyy (B =h—g)
. hl

= [v = _(_)—<x x('Y:UI))‘

= = Uz]_( Yo,

(9)
Z(gv#—v") (asyeG')

61
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Definition 6.4:14. For all y € G, define

BY = ) f(g,v1,02) 0500, 9)

g,vi,v2

where the sum is convergent.
Note that by Display (4) this is consistent with the previous definition of BY for
finite lattices and vy € G'.

Lemma 6.4:15. Where BY is defined,

(B )upwy = D_fl—g,v1,02)¥(9). (10)

g

Proof. This follows by Display (9) and Definition 6.4:8.
Lemma 6.4:16. BY, considered as a function in v, is defined and continuous in

G’
Proof. This follows from Display (10) and Lemma 6.4:7.

Lemma 6.4:17. For+y € G', BY is Hermitian.
Proof. This follows similarly to Lemma 6.2.2:5.

Lemma 6.4:18. Forx € {;(V).
(Bx)Y = BY(xY).

Proof. From Lemma 6.2.2:3 we have B = Zg,‘m,uz f(9,v1,v2)Eg;v v, - The
result follows from Lemma 6.4:13.



Lemma 6.4:19. Forie Nandvy e G(1)':

(1) Forx € & (V), v (x)Y =x.

(2) (B B())y =B,

(3) For all x € & (V), (Bx)" =BY(xY).

Proof. (1) and (2) follow immediately from the definitions and Lemma 6.4:15.
(3) is true because (B{Vx)" = (B())Yx¥ = BYx?.

Lemma 6.4:20. Forally e G', M(BY) <M.
Proof. In fact M(BY) < M(B) and M,(BY) < M,(B); the proofs are similar
so I only prove the former.

Mi(B) = sup ) _[f(g,v1,v2)l

vy
g,v2

and

M, (BY) = SUPZ Y(9)f(g,v1,v2)].

Asy € G', ly(g)l=1for all g € G. The result follows.
As for any operator T, Spec(T) C {z | |z| < ||T||}, and || T]| < M(T),
it follows that Spec(BY) C {z | |z] < M(B)}. As BY is Hermitian,
Spec(BY) C [-M, M].
Let x,y € £; (V). We want to find p,,. We know that u\,m(x)'vm(y)“) —
Hx,y. Let the orthonbdrmalised eigenvectors of BY be e(¥-1), ... e(v:IT])
with corresponding eigenvalues AY:V)  AITD For x’ and y’ in H(Y)
define pix/ 37 to be the spectral measure of BY such that for all functions
g € Lo (=M, M]), (g(B”)x',y') = [ g ux+,yY. Then by Display (4.1) we have

ux,'y,y — Z(xl’e('Y»i)>(yl’e(‘y,i))sA(Y’”. (]])

i

Now let (v+3) be the eigenvector of B(!) corresponding to e(¥+)) using the
construction in Theorem 6.2.2:6. In other words

v
v

>
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where here we take e!¥'¥) € H(V!V). Recall that the e+ are orthonormal.

Hence

(.V(i)(x)’é(v.i)) — Z(V(i)(x)’e(v'.v)>(e(v'.v),é(v’.i)>
-Yl‘v N
(since the e(¥*V) are orthonormal)

_ Z(v(i) (X),C(Y’U))Wv

v

(since e(‘YaU) — x('Yov))

\/IG‘”I

Z x")v(e(%ﬂ)

v

|Gh
1

Y plv,i)
T (xY, ey,

]

Therefore, by Display (4.1),

Hy(v (x).v“’(y)(i) = Z (v (x), ey (vl (y), g, (v

(v.j)
= Z IG(~.)|<Xy eV 9)(xv, ei))5yr.5)
(‘YJ
= —,G(i),Zw.yﬂ (by Display (11)) (12)
Y

where the sums over vy are taken over all y € G(V)’.
Note that this is an average over all possible y’s for G), We can now take
this to infinity, by replacing averages over v;’s with j > r by integrals.
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Definition 6.4:21. Let F be a bounded measurable function mapping G’ to C.

Then we define

ki—1 ke—1
JF(Y)dY =
ocf—O
27 27 5
i iy
J J F(e2™ Ve ™™ e
er+l=o O0r4s=0
ele”" go ey eler+s) d9r+‘] R d9r+s.

Definition 6.4:22. IfF is a bounded measurable function as in
Definition 6.4:21, we define

ky—1 ke—1 i-1 -1
" e Lt 2 L L
kik k.18
1%2° v o =0 or=00ty1=0 oy s=0
2
Fle "’“l/lq eers ez"‘j"“f/kr’ez""“r-i-l/i’ . ’ez"‘j“f+$/t)

(I have used j here as a synonym for i, a square root of —1, to avoid
confusion).

ere def
Definition 6.4:23. For any s = (s1,...,sq) € C%, |s| = max; |s;|.

Lemma 6.4:24. IfF is a continuous function on G' then given € > 0 we can
choose & such that for all v,y' € G', ly —v'| < 6 implies [F(y) — F(y')[ <e.

Proof. Define X, a subset of (G')%, by X = {(v,v') | v,Y' €

G' & |F(y) —F(y')l > €}. By the continuity of F, X is closed, and hence compact.

Define Us = {(y,v') € X | ly —=v'| > 6}. Us is open in X; also (Jz., Us =

So (because the Us form a chain) we can choose § with Us = X, from which the

lemma follows.
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Lemma 6.4:25. If F is continuous, F) — [Fdy.
Proof. Given €, choose 6 as in Lemma 6.4:24. Then for all 1 > %, we have
[F(Y — [Fdyl < e, by using the sums in F() to estimate the integral in the usual

way.

The following theorem is useful now, but we shall also use it later on in this

thesis.

Theorem 6.4:26. Let K be a compact subset of a topological space
homeomorphic to R™ for some non-negative integer n. Then there is a
bijection from complex-valued Borel measures pu on K to functionals ¢ (that
is, continuous linear maps ¢ : C(K) — C, where C(K) is the normed space of
continuous functions from K to C normed by || ||, ), given by

o(f) jfdu.

Proof. The hard part of this is done by [HALMO0S,1950] in Chapter 10,
Section 56, Theorem D and Theorem E, which proves it for positive functionals
and positive measures, and Exercise 5, where it is extended to real functionals
and signed measures. To extend to complex functionals and measures, we
proceed as follows. Split complex measures p into a real part u® defined by
uR(S) = Re(u(S)), and an imaginary part u! defined by p!(S) = Im(u(S))
(here we're adopting the convention that z = Re(z) 4 1Im(z)).” Split continuous
functions f : K — C into R and f! by defining fR®(x) = Re(f(x)) and

fI(x) = Im(f(x)). Split functionals ¢ into. $® and ¢! by, for continuous

f® 1 K = R, defining $¥(f*)(x) = Re(d(f*)(x)) and ¢'(f*)(x) = Im(d(f*)(x)).
¢® and ¢! are then linear maps from the real continuous functions to R, and we

can reconstruct ¢ from them since

d(f) = o(f* +if!)
= o(f?) +ie(f!)
= OR(FR) + 1! (FX) + LR (F) +id! (1))
= OR(fR) — o1 () + LR (F) + &' (FF)).

It is then easy to verify that the result is true by applying the results in
[HALMOS,1950] to ¢&, R and ¢!, ul. O
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This is known by various names such as the Reisz Representation Theorem
for Measures, and the Reisz-Markov-Kakutani Theorem.

Theorem 6.4:27. Forx,y € {1(V), ux,y is the unique (complex) measure such
that for all continuous functions h :"[-M,M] — C,

Jhdux,y = thduxy,yy” dy. (13)

Uniqueness follows immediately from Theorem 6.4:26. We know that

Moy (1) (x) v (1) (y)(i) — Hx,y- Using the Weierstrass Approximation Theorem as in
Theorem 6.3:6, it suffices to show that Display (13) is true for h a polynomial,
and in fact for h(t) = t*. So we need to show that as i — oo

thduv(t)(x)'y(t)(y)(i) — J‘[tkdu/xv,yvy(t) dy. (14)

By Display (12), the left-hand side of Display (14) is equal to

1 k
e 2 Jt Wrarr™ )

-yeG(‘l.)l

Let F(y) = ((By)kx”,y”). By the definition of the spectral measures,
Display (15) is equal to F(. The right-hand side of Display (14) is equal to
JF(y) dy. Thus the theorem is true provided F is continuous on G’. However
this follows as BY and x¥ are continuous on G' and because conjugates and
products of continuous functions are continuous. Therefore the theorem
follows. d

§6.5. The Spectral Measure for Lattices
Let m be a function from V to C such that m(g,v) is independent of g. Then
I define the Average of m to be 'I‘lf_l 3, m(g,v). From this we can define the
normalised trace and the spectral measure as in Section 4.2.

Let g be an arbitrary element of G.
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Lemma 6.5:1. (e(g"’))Y is an orthonormal basis of H(Y') as v ranges through
Y,ifyeG'.
Proof. ((e(g"’))y)u, = (e[g"’),xh"‘")> = =v'ly(g). So (ela))Y =v(g)ev.
As vy € G', ly(g)] =1, so the result follows.
Let p be the spectral measure of B, and pY the spectral measure of BY.

Theorem 6.5:2. Let f be a continuous function on [—M, M]. Then

[fdu=[[fdu¥dy.
By definition p = I_;T 2 o H(g.).(gv)- By Theorem 6.4:27, we have

1 < | |
delJ« = m E J’J"fdl’le(g,v)"'e[q,v)”y dY
v
[ 1 Y v
o — f BY e(gyv) , e[gvu) d
i zv {(f(BY)( ) ( )")dy

= | NTr(f(BY))dy (as the (e(9¥))Y are an orthonormal basis)

A
= deu” dy.

O

Note that by Display (4.2), ¥ = TWIF—I Y 6a,, Where the eigenvalues of BY are

1
(counting multiplicities) Aq,...,Apvy.

§6.6. Directed Weighted Lattices
Now let L be a directed weighted lattice on (G,Y) with directed lattice weighting
f and weighted adjacency operator B. B niay not be hermitian, or even normal,
so there is no reason to suppose it has spectral measures. However we shall find
formulae for the walk-generating functions.

Define terms such as Eg;y, v, , Eg;usev; and x¥ as before.
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Lemma 6.6:1. For any g € G,

Jv(g)dv = [g = 0.

Proof. Write g =) 1;0;. Then
J g)dy = JHYJ’ dy

T (E) i ()

= a;=0 j=r+1

For each j, the term for j in these products is [l; = 0], from which the result
follows.

Lemma 6.6:2. Forany g € G, v1,v2 €Y, and x',x% € {;(V),
(Eg;vz(—-\nxl’xz) = I(E;;vzt—vl (xl )'Y, (XZ)-Y)Ad‘Y-

Proof. (Egu,evX',X%) =3 Lev X x2(Eg.vye-v, €, €¥); and similarly for
(E¥.v 0, (x1)Y, (x2)Y), since the map taking x to x¥ is linear from the definition
of xXY. Because )_|x)| and ¥~ [x2| are finite, it suffices to prove the lemma for

xi = e(Q\.U(l.

(Eg;vz«—vr)vév; = 'Y(g)[v{ = U]][’U;)_ = v7].

Therefore

J(E";Uz(_v, ", dy = b} = mlbvy = UZ]J‘Y(Q)Y(QI)’Y(QZ)CW

I

= [ = nlh; = Uz]IY(gz—g—gﬂdY
= [vy = nllv; = vallg+ g1 = g2l
(Lémma 6.6:1)

= (Eg;vzt—v:xl’xz)-
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Definition 6.6:3. Let h be any directed lattice weighting on (G,Y). Then we
define

(1)

ef .
h(E) d= Z h(gvvlyUZ)Eg;vze—ul-

g,v1,v2

(2)

def
h(E‘Y) = Z h(givlin)Eg;vz‘—Ul°

g,v1,v2
In particular f(E) = B by Lemma 6.2.2:3.

Definition 6.6:4. BY = f(EY).
This definition is identical (except for differences in notation) with

Definition 6.4:14.

Lemma 6.6:5. For all y € G', M(f(EY)) < M(f(E)).
Proof. This lemma is similar to Lemma 6.4:20. As there, prove
M1 (f(EY)) < M (f(E)); this follows as

M (f(E)) = sup D _If(g,v1,v2)l

v
' g2

and

Y ¥(g)f(g,v1,v2)

M. (f(E)) = sup )
Vi v | g

As in Lemma 6.4:20 we deduce that M, (f(EY)) < M, (f(E)); similarly
M2(f(EY)) < M2(f(E)); hence the lemma follows.
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Definition 6.6:6. Let hy, hy be two directed lattice weightings on (G,Y). Let
A € C. Then we define the directed lattice weightings Ahy, h1 4+ h, and hyh;
by

(1) (Ah1)(g,v1,v2) = A(h1(g,v1,v2)).

(2) (hy +h2)(g,v1,v2) =hi(g,v1,v2)+ ha(g,v1,V2).

(3) (hih2)(g,v1,v2) = Zs1+2z o hi(g1,v1,V)ha(g2,v,v2).

Ah; and hy + hy are obviously directed lattice weightings.

> (uha)(gun,v)l < ) Tha(gvn,v)l ) Tha(g,v,v2)l

g,v1,v2 g,vi,v g,v,v2
< O0.

so hih; is too.

Lemma 6.6:7. For hy, hy directed lattice weightings:

(1) (Ah1)(E) =Ahq(E) and (Ahy)(EY) = Ahq(EY).

(2) (h1 +ha)(E) = ha(E) + h2(E) and (h1 +h2)(EY) = i (EY) + ha(EY).

(3) (h1h2)(E) = hy(E)h2(E) and (hihz)(EY) = hq(EY)h2(EY).

Proof. By the definitions of h;(E) and h;(EY), we can assume for each i that
each h; is 1 for some (g,v1,v2) and O elsewhere; then hi(E) is Eg;y, v, and
hi(EY) is the corresponding EY.,,,,; the result is then trivial.

Lemma 6.6:8. Let h be any directed lattice weighting on (G,Y'), and
X,y € £1(V). Then

(h(E,y) = J(h(E”’)xy,y*) dy.

Proof. This follows immediately from the definitions of h(E) and h(E?)
together with Lemma 6.6:2 and Lemma 6.6:7.

We can now prove the formula for walk generating functions of directed
weighted lattices. Recall from Lemma 5.1:7 that B, (z) = ((I —zB)'e*, ev).
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Theorem 6.6:9. Forz< K/T:T) and x,y € {; (V)

(1~ 2B)"x,5) = [(1=287) ") a.

Proof. Let fi be the directed lattice weighting 3~ ¥ zif.
Define Hx = fy(E). Then Hy = Z?:o z'B, and so

o0

I(I—2zB)™" —Hi] < || D Z'BY|
i=k+1

> =By
i=k+1
(IzB)**"
= 1-zl||B|
(IZM(B))*+!
~ 1-12M(B)
— 0as k — oo.

IA

Similarly, if we define HY = fx(EY) we find that

- (1=A][BY])**
(I—zBY)" ' —HY|| < =/t __

(IZIM(B))*+!
- 1-1ZM(B)
— 0 uniformly as k — co.

Therefore (Hix,y) — ((I—zB)~'x,y) and [(HYxY,y)dy — [((I-2zB) 'xY,
yY)dy.

However by Lemma 6.6:8, for any k, (Hkx,y) = [(HYxY,yY) dy. Therefore
the result follows. U
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Theorem 6.6:10. Forz < ﬁ’:‘B_) andu,veV

(1)

Bucw(z) = [((1=2BY)7"(e)7, (") a.

)
BY, u(2) = j(zB*(I—szr‘(e“)*,(eVMdy.

Proof. (1) follows immediately from Lemma 5.1:7 and Theorem 6.6:9.
(2) is true because B}, (z) = Bye—u(z) — [u = V] and therefore
B¥(2) =Byu(z) —Byew(0). (2) is thus true because

véeu

(I—2zBY) (I — (I—2zB"))
= zBY(I—2zBY)™\.

(I—2zBY)~! — (I—-0BY)™!

0

Now suppose again that we are dealing with a weighted lattice, not a
directed weighted lattice, so the adjacency operator B is Hermitian. We can now
provide the alternative proof of Theorem 6.4:27.

Theorem 6.4:27. . Forx,y € &(V), ux,y is the unique (signed) measure such
that for all continuous functions h: [—M,M] — C,

Jhdux'y = IJhdp«Y'yYY d‘Y- (]6)

Proof. Uniqueness follows by Theorem 6.4:26 (so as in the original proof). So
it remains to prove Display (16) for all continuous functions h : (—M,M] — C.
Let € > 0 be given. By the Weierstrass Approximation Theorem (as before),

let p be a polynomial such that sup, |h(t) —p(t)| < €. By Theorem 4:4, (2),
[[(h—p)(B)|| < €. Therefore

j hdpey — j Py < eyl
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and similarly

j h iy yo¥ — j pdier gy < eIyl

By Lemma 6.4:12, for constant x and y, ||xY|| and ||yY|| are bounded, so the
theorem is proved if we can show it for h =p.

However for h = p, h(B) is a polynomial in B. Therefore h(B) = (h(f))(E)
and h(BY) = (h(f))(EY), where h(f) is the directed lattice weighting obtained by
applying h to f. The theorem then follows by Lemma 6.6:8.

§6.7. Some Examples
In this section I shall illustrate the method of finding spectral measures of lattices

by some examples.

§86.7.1. The Dihedral Groups (and a generalisation)

The group D2 = {a,b | a™ = 1,b% = 1,ab = ba™") is the Dihedral Group of
Order n. We allow n = oo by defining D2, = {(a,b | b2 =1,ab = ba"). Its
elements are {1,...,a™ ', b,ab,...,a™ 'b}if n < oo, and {a},a'b | i € Z}if

n = oo. Suppose a function d : Dy, — C is given, satisfying deDzn ld(g)] < oo.
Let V be the set of elements of D3, and define a function B: VxV — C by

def

Bg,—g, = d(g17'g2). Also let B denote the corresponding adjacency operator

in H(V). Then I claim we can obtain B as the adjacency operator of a directed
weighted lattice over (%,{l ,b}), where % is the additive group of integers modulo
n. In fact, we shall identify a' € V with (i,1), and a'b € V with (i,b). The
lattice weighting f will be defined by ’

f(iJ] ’jZ) = d(j] aij2)$

forie %, and jq,j2 € {1,b}. To check that this works, suppose g, = a'rj, for
r=1,2. Then

def _

Bg,qr = d(g17"g2)
= d((a"'j1) " "a'jy)
= d(jra~+i2j,)

= f(i; —i1,j1,32)
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as required. Also Zi,j. 5, f(L,31,52) £ 2 deDz“ |d(g)| (we divide the summands
into those with j; =1 and j; = b). Therefore B is the adjacency operator of the
directed weighted lattice (%,{1,b}, f).

Suppose n is finite. We now find the eigenvalues of B (we could also find all
the eigenvectors with a bit more trouble). By Theorem 6.5:2 we know that for
any continuous function f, the integral of f over the spectral measure of B is the
average of the integrals over the spectral measures of BY as y ranges through
(%)' . By Display (4.2) this means that the complete family of eigenvalues of
B is the union of the families of eigenvalues of the BY. This is obvious anyway
because by choosing the basis of vectors e{Y'¥) B can be block-diagonalised with
the BY represented by the matrices on the diagonal, but we don’t do it this way
because that is not part of the general method.

For example, suppose

e -1
(o) def {l 1fg—l.),a,a (17)
0 otherwise.

Then a little calculation shows that f(i,j1,j2) = 0 except when

(i,31,j2) € {(1,1,1),(1,b,b),(-1,1,1),(-1,b,b),(0,1,b), (0,b, 1)}, in which case
f(Lini2) =1.

( %)’ is the set of n*® roots of unity (to be pedantic, it is in fact the set of
sequences of length one of roots of unity). Let iy be such a root. Then we have
Bl v =24 f(g,v1,v2)/v(g). So

o0
1 v+v/)’

with eigenvalues +1 + vy +7¥. Therefore the eigenvalues of B are +1+v +¥v as y
ranges through the n'® roots of unity.

Similarly, if n is infinite, things are much the same except that spectral
measures replace eigenvalues and eigenvectors. For d as in Display (17) we find
that BY is the same as for finite n, but -y can be any point in T. The spectral
measure W of B is then defined

deu = “fdwdy '

1
= Jde(iw—lww + 8147+y) Ay
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] 27
= — J f(—1 4+ 2cos(0)) + f(1 + 2cos(0)) do
47t |,
The eigenvalues for finite n of the Dihedral Groups have already been found
in (BABAL1979] using the characters of the dihedral groups.

Definition 6.7.1:1. A set S is Small if it is finite and we can find eigenvalues
and eigenvectors of S X S matrices.
Now suppose that H! is a small group and that H? is an abelian group. Suppose
G is a group containing H' and H? as subgroups, such that for g € G there
is a unique (h',h?) € H! x H? with g = h?h’. Suppose V=G, d: G — C
with 3 d(g)l < oo, and Bg,g, = d(g1~"g2); we want to find the spectral
measures of B considered as an operator in H(V). We can consider B as
the weighted adjacency operator of the weighted lattice (H2,H?, f) where
f(h2,hl,h}) = d((h})“h"-h}). For suppose g; = h?h! where h% € H? and
h! e H', for i =1,2. Then
Bosgr = dlg17'92)
= d((h))"(h})""h3hy)
= f(hi(h})™",hi, h})

as required.

In particular this means we can find spectral measures when G is the
semidirect product of an abelian group with a small group of automorphisms. For
example, let a be an element of small order modulo an integer N (and so coprime
with it); then we can take G to be the set-of functions from Z to % of the form
x — a‘x + b with H; the subgroup of maps x — a‘x, and H; the subgroup of
maps x — X+ b.

886.7.2. Sum-Difference Lattices and a generalisation

We can also handle sum-difference lattices, and some others, with this technique.
Let G be an abelian group, and suppose that two functions f; : G — C and

f_: G — C are defined, satisfying 3 If+(g)| < oo and Y_g If_(g)| < co. Suppose
V =G and that B: V x V — C is defined by

def
Bg,g: = f_(g2 —g1) +fi(92 +a1).
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Clearly M(B) is at most Zg If+(g)] + Zg |[f—(g)] < oo and B corresponds to an
operator on H(V) with norm at most M(B). How can we find walk generating
functions for B and (if B is Hermitian) spectral measures? It is possible to do this
using a lattice with an equitable partition.

Let ¥ = {+,—}. Define the directed lattice weighting f on (G,Y) by

f_(g) if (L1,v2) = (+,4).
f_(=g) if (U1,v2) =(—-).
filg)  if (V1,v2) =(—,+).
fi(=g) if (v1,v2) = (+,-).

f(g,v1,v2) =

Then we consider the directed weighted lattice (G,Y,f). Let V=G x Y and B
be the weighted adjacency function and operator for the lattice. Since this is a
directed weighted lattice we can find its walk-generating functions and (if f is a
lattice weighting) spectral measures.

We now define a finite equitable partition ~ for which V', the set of
equivalence classes, can be identified with G in such a way that B, considered as
an operator on H(V'), is equal to B. Hence, by the results in Subsection 5.1.3, we
can find the walk-generating functions on B and (if B is Hermitian) its spectral
measures.

Specifically, define ~ so that (gy,vy) ~ (g2,v2) only when
(g1,v1) = (92,V2), or g1 = —g2 and vy # v2. This is trivially an equivalence
relation with a complete set of equivalence classes given by [(g,+)] as g ranges
through G. We will identify V' by V by identifying g with [(g, +)].

Theorem 6.7.2:1. ~ is an equitable partition of (V,B), and

Bgrg1 = Bl(gz,+)11(g1,+)1-

Proof.

Z Byve(g1,4) = Blgs)~(g1,4) T B(—g2,~)=(g1.4)
V~(921+)

= f-(92 = 1) +f+(92 + 01).

Similarly



Z B\"-(“‘gl,—) = B(—Qz'—ﬁ—-(—gl.—) +B(92.+)*——(—gl.—-)
v~(g2,+)
(—(=92 — (=91))) + f+(g92 — (—g1))

f_
= f_(g2—g1)+f+(g2 +g1)

The fact that both are equal to f_(g2 — g1) + f4+(g2 + g1) establishes both parts
of the theorem. 0

Thus we can find walk-generating functions of sum-difference lattices. If they
are Hermitian we can find formulae for the spectral measures using the methods
of Subsection 5.1.2. [CHUNG,1989] found eigenvalues and eigenvectors of finite
sum graphs (where f_ = 0).

More generally, let G be an abelian group, and H a small group of
automorphisms of G. Suppose for each h € H there is a function fj, : G = C
satisfying Zg |fr(g)] < co. Let V=G, and B : V x V — C the function defined by

def
Bgyg, = ) fnlg2 —h(g1)).
heH

Clearly M(B) < 31, 3, Ifn(9)l, so by Theorem 3:3, B can be considered as an
operator. We shall now show how to find the walk-generating functions of B
by looking at a directed weighted lattice on (G, H) with a suitable equitable
partition.

Specifically, define the directed lattice weighting f by

f(g:hth) = fh;‘h‘ (hv;l(g)y .

Let V be G x H and B the adjacency function and operator of (G, H,f).
Define ~ by

[(g,)] = {(h'(g),h'h) | h' € H}

Clearly ~ is an equivalence relation, and the set {(g,1) | g € G} is a complete set’
of representatives of the equivalence classes.
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Theorem 6.7.2:2. ~ is an equitable partition and

B[(gz.1)]<—[(g|.l)] = Bgze—gu

Proof. Let (hy(g1),h1) be a typical element of [(g, 1)]. We need to show that

Y Biratoahma)e(rionm = D fuloz —h{g1)).
h2€H heH

In fact:

Z B(ha(2)ha) (1 (g1)hy) = Z f(h2(g92) —hi(g1),h1, h2)
ha€eH haeH

= Z fr,-1h, (h2 7' (h2(g2) — h1(g1)))
h2€H

= Z fr,~1h, (92 — (h27 ") (g1))
ho€H

(as hz is an automorphism)

= Y fulgz —hlgn).

heH

[

We can then use the results of Subsection 5.1.3.

For example, if G = Z¢ and H is a small group of permutations on {1,...,d},
then we can consider H as a group of automorphisms on G by defining h € H to
map (1y,...,14) to (ih(1), .«+ln(4)). Or another example would be if G is the
additive group of integers modulo some N, a is an element with small order in G,
and H is the group of automorphisms of G generated by the map taking x — ax.

Suppose more generally that as well as G and H we have a small set Y, and
for each h € H we have a function fy : G X ¥ x ¥ with } _ Ifn(g)| < co. Suppose
we define V = G x T and we want to find the walk generating functions of B

where

B(gz.vz)é—(gl.tn) = th(gl_h(gl)rvl:UZ)-
h
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It should be possible to do this by considering the directed weighted lattice on
(G,H x Y) with directed lattice weighting

f(g, (h1,v1), (h2,v2)) = fr,-1, (h27'(g),v1,02).

Define the equivalence relation ~ by defining

[(g, (h,v1)] = {(h'(g),(h'h,v1)) | h' € HL

Let B be the adjacency operator and function of this. Then we should be able to
show that ~ is an equitable partition and that B on the equivalence classes of ~
is equal to B on G x Y. However I shall not prove this as the proof is identical to
that in Theorem 6.7.2:2 except for the added complication of replacing the h;
that appear as arguments of f by (h;,v;), and adding parameters vy,v; to f,

and therefore has no extra mathematical interest.

§86.7.3. The Two-Dimensional Grid
See Figure 1. This was defined to be (Z2,Y,L), where ¥ = {v} and
L ={(x,v,v) | x € L'} where L' = {(0,1),(0,-1),(1,0),(—1,0)}. Thus if we
consider the two-dimensional grid as a weighted lattice, it is (Z2,7Y,f) where f
is 1 on L and O elsewhere. Let B be the adjacency function and operator of this
weighted lattice. We have M(B) = 4.

Let v = (v1,v2) € G’ = IT2. By Definition 6.4:14 and Definition 6.4:8 we
have (BY)y,v, = }_—_g f(g,v1,v2)/v(g). So BY is the 1 x 1 matrix with the single

entry Aly) = v1 + 77 +v2 + 7.

This BY has the single eigenvalue A and eigenvector 1 (we identify elements
of H(Y) with their single value). Therefore its spectral measure pY is 6, and for
any continuous function h:[—4,4] — C,

[nau = [nomar.
Let u=(i,j) and v= (i + k,j + 1); then for |z] < ;1—:

Bv(——-u(z) = ((I_ZB)—1eu,ev)
- j (1= 2B") " (ew)?, (ev)") dy
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[ 1
- 7). i+k,'+l>d
<1—Z(Y1+Y1+Y2+Y2)Y( . I+ ) dy

N 1 —_— .

_ i.,) 4,1tk )+1 d
J1—z(vi +¥v7+72 +Y_2)yﬂ/2y' Y2

_ 'Y]IC'Y} ) dy
J1—z(yy +¥v1+v2+72)

1 27 27 eik91 +1il9,

4_7?,[0 L 1 —2z(cos(07) + cos(03))

1 JZ“ r"‘ cos(kB7 + 183)

42 o 1—2z(cos(01)+ cos(62))

r

do, do,

do, do,
0

as it’s real if z is.

§86.7.4. The Hexagonal Lattice

Recall that this is (Z?,Y,L) where ¥ = {v;,v2} and L = {((0,0),v1,v2),
((0,1),v4,v2),((1,0),v1,v2),((0,0),v2,v1),((0, —1),v2,v1), ((—1,0),v2,v1)}-
See the picture in Figure 2. The lattice weighting is 1 on elements of L and 0
elsewhere. Let B be the adjacency function and operator. M(B) =3. G/ =T12.
Let v = (v1,7v2) be an element of G’. Then we have

BY ( 0 1+Y1+Y2). (18)
14+v1+7v2 0

The eigenvalues of BY are

/(1 +¥71+72)(0 +v1 +v2) = 1 +v1 +7v2l.

So if f is a continuous function on [—3, 3] and p is the spectral measure of B?,
then

1
j fdp = j LU +y1 +v2l) +F11 471 +v2) .

Similarly, by finding the inverse of I — zB” we can find the walk-generating
functions of the hexagonal lattice.



82

§86.7.5. Decaying Particles

We suppose that we have an abelian group G and two finite sets ¥ and L,
together with a function p : G x (¥ x L) x (T x L) — [0, 1] such that for any
(vy,001) €Y x L,

> g, wi,01),(v2,02) < 1.

g,v2,02

Then (G,Y x Z,p) is a directed weighted lattice.

However, we also consider it as a Markov Chain. A particle moves around
in G x Y. In addition to its position (an element of G x Y), it also has an
internal state which is an element of X. If it is at (gy,V;) and in internal state
01, suppose that with probability p(g2 — g1, (v1,01), (v2, 02)) it will move to
(g2,v2) and internal state 0. So in this situation we can find formulae for the
probability of visiting a given vertex and expected time to do so, using the results
of Section 5.2.

Thus using directed weighted lattices we can find solutions of Markov
Chains with particles which with certain probabilities are transformed into other
particles or disappear altogether, provided we can handle formulae involving
eigenvalue and eigenvector problems for (Y x ) x (Y x X) matrices.



Chapter 7
Lattices with Modifications

In Subsection 5.1.4 we have shown how to deal with a finite number of
modifications. In fact for lattices we can also deal with one periodic set of
modifications (though not more).

I hope I will be forgiven for emphasising how much of an advance this is.
The state-of-the-art is perhaps represented by [MONTROLL,1969], [WALSH&
Kozak,1981], [WALsH&K0ZAK,1982] and [PoLiTowicz&KozAK,1983).
[MONTROLL,1969] contains a method for solving random walks on lattices
where there are a finite number of traps. [WALsSH&K0zAK,1981], [WALSH&
KozAK,1982] and [PoLiTowWICZ&KO0ZAK,1983] give methods which speed up
the computation of walk-generating functions for finite lattices to which a small
number of modifications have been made in a symmetrical way. By virtue of
Subsection 5.1.4 and our expressions for the walk-generating functions of lattices,
we can already find exact formulae when a finite number of modifications have
been made in a lattice. In this section we go further and show how to find
formulae for walk-generating functions (and therefore random walk probabilities)
when a periodic set of modifications has been made to the lattice. This will allow
us to solve, in principle at least, Markov Chains in which two particles move
about independently on a lattice except when they get within a certain distance
of each other. )

However, it is only fair fo admit that the formulae which we shall find are
quite complex, and a typical formula for a walk-generating function will involve
an integral of a matrix expression when the coefficients of the matrices are
themselves expressions involving integrals. As I am not a physicist, and have
not had time to investigate the possible physical applications of this technique, I
cannot say whether these formulae will be useful in practice.

Define (V*,B*) as follows.

Suppose that we are given for 1 = 1,2, a finitely-generated abelian group
G, a finite set Y(), and a directed lattice weighting () on (G, Y1),
together with functions ¢¥ : Y° - G and YV : Y° - Y where YO is a
finite set. We require that G(') and G2) have intersection a finitely-generated
abelian group G°. We require that Y°, TV and 7(2) be disjoint. For i = 1,2,
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define a function 8 : G° x Y° — G x YV by 00 (g,v) = (g4 ¢V (v), VP (V).
We require that each 8% be injective.

For i = 1,2, define VIV to be G(!) x T(V) and define B¥) to be the adjacency
function and operator of the directed weighted lattice (G(V), Y (1)) For
(g,v) € G° x Y°, identify (g,v) with 8(")(g,v) € VI and 8(?)(g,v) € V{2
Clearly V(") and V(?) are disjoint except for these identifications. So
v A V(2) = G° x T°. Now define V* and B* as in Subsection 5.1.4.

Suppose uo,vo € V' and z € C, and that we want to evaluate BY ., (2).
We assume, as in Theorem 5.1.4:9, that |z| < min(M(B!(,,), M“;(z,) ). In
Subsection 5.1.4 we showed that B} _, (z) =B} (1) where B>:V° x V* = C
and V° = V' x {1,2} U {up,Vvo} are as defined in Definition 5.1.4:7. To find a
formula for B} ,_,,, (1) we show that restricted to (V' x {1,2) x (V' x{1,2}), B° is
the weighted adjacency function and operator of a lattice on (G°,Y° x {1,2}).

It is clear from the definition of B° that

Bl (1) =fuo = vo] + B, (2) +BD . (2)+ (M
(12) % o i1 ) %
Z B 12]Vo""Wz (Z)B(Wz WB—i2)e(wr,iy) (] )B(n )WI —ug (z).

Ciy,iz,wrwa

Also any walk with non-zero power in (V°,B°) from (w1,1;) to (w2,3 —1;) can
only go through elements of V x {1,2}, so B‘(’Wz'3_i2)‘_(w‘ i)
we restrict B® to (V' x {1,2}) x (V' x{1,2}).

To handle the (possibly infinite) sum in this expression, and certain others

(1) is unchanged if

that will arise, we need to set up some additional machinery for handling
characters in G° and GV, and prove Lemma 7.2:8.

§7.1. G’ as the set of Characters of G
Let G be any finitely-generated abelian group.

Definition 7.1:1. A Character of G is a function y : G — Tl such that for any
91,92 € G, v(91 + g2) =v(g1)v(g2).

By virtue of Definition 6.4:1, (3), we can regard any element of G’ as a

character. Furthermore, given any character y and any basis g1,...,gr+s

of G, we can identify y with the element of G’ (with respect to this

basis) (y(g1),...,Y(gr+s)). This follows as if gj has ﬁnité order k;, then

1 =v(0) = v(kg;) = (v(g5))¥, so v(g;) is a k' root of 1. So the correspondence

between G’ and the characters of G is a bijection.
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From now on we shall identify G’ and the characters of G according to this
correspondence except where stated. Our next task is to define various concepts

in a way which is independent of which basis is being used.
Definition 7.1:2.  For each g € G, we define f; : G’ — C by fg(y) =v(9).

Definition 7.1:3.  Let the Character Topology on the characters of G be the

Weak Topology generated by the set of functions {fgq | g € G}, where that is

as defined in [BOLLOBAS,1990], Chapter 8.

Informally the character topology is the weakest possible topology (that is, with
the fewest open sets) such that all the functions fy are continuous (that is, for
open U C C, f;'(U) is open).

However we already have a topology for G’ given any basis g1,...,gr+s of G,
which is that induced by the ordinary topology in C™**5. In this section we will
call this a Basis Topology. We now show that this is the same as the topology of
Definition 7.1:3.

Lemma 7.1:4. The Basis Topology is identical to the Character Topology.
Proof. Every fq is continuous in the Basis Topology, so every set open in the
character topology is open in the basis topology. Hence it is enough to show

that for every set U open in the basis topology, and for every vy € U, there is

a Uy, vy € U, C U, such that U, is open in the character topology, since then
Uyeu Uy = W is open in the character topology. Suppose Y = (v1,...,Vr+s);

we can find € > 0 such that for all y' = (y31,...,Y{4s) € G’ satisfying

Vily;j —v;l <e, v' €W Thed U, def ﬂfg"j‘{z | Iz—v;l < €} C U, contains -y, and
must be open in the character topology.

From now on therefore, we shall use only this topology on G’, and so can use
terms such as ‘open’, ‘converges to’ and ‘continuous’, for G’, without ambiguity.

Lemma 7.1:5. G’ is compact.
Proof. G’, as we originally defined it, is a closed subset of TT"*5.

We now consider functions G’ — C.



86

Definition 7.1:6. Let C(G') be the set of continuous functions on G'.

Recall that for f € C(G') we defined ||f||_, = sup |f(x)| (in Definition 4:2). This
X

is finite for any f € C(G') since G' is compact. Clearly |||, is a norm on C(G').
For A C C(G'), write A for the closure of A with respect to this norm.

Lemma 7.1:7. Let A be the linear span of the functions f,. Then A = C(G').
Proof. This is an easy application of the Stone-Weierstrass Theorem

for complex functions ([BOLLOBAS,1990], Chapter 6, Theorem 10). G’ is
compact. The fq are closed under pointwise conjugation (W =f_g(y)) and
multiplication (fo(y)frn(y) = fg+n(Y)), and so A is a closed subalgebra of C(G);
it strongly separates the points of G’, in the sense of [BOLLOBAS,1990], because

the fg do, and so the lemma follows.

Lemma 7.1:8. IfF e C(G') and ||F||, < € then for any basis of G,

U F(v) dv‘ < e

Proof.

[Foar] < [iFmier < [ear.

It 1s then trivial from Definition 6.4:21 that this is at most €. »

The following lemma is not perhaps strictly required, but is good practice for
Lemma 7.2:6.

Lemma 7.1:9. Suppose that for i = 1,2, g,...,9%, is a basis for G, and
JI g+ @y is defined as in Definition 6.4:21 with respect to it. Then for any
continuous function f € C(G'),

1 2 .
J f(y) dy =J f(y) dy. (2)
G’ G’
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Proof. First suppose f = fq for some g € G. Then f(y) = y(g) and by

Lemma 6.6:1

So the lemma is true if f = fg.

Now, as in Lemma 7.1:7, let A be the linear span of the functions fg, and
suppose f € A. Then clearly the lemma is true.

Now suppose f € C(G'), and € > 0 is given. Since A = C(G'), there must be
an f —F € A where ||F||_, < €. So we find that

1 2
[ t-pmey = [ t-Pmar.
G’ G’

and by using Lemma 7.1:8 we know that fori=1,2

< e

Ji Flv)dy

GI

So the difference between the left and right sides of Display (2) is at most 2¢. As
€ can be arbitrarily small, the lemma follows.

Hence for any f € C(G'),

Jf(v) dy

can be defined independently of the basis chosen for G.

§7.2. Combining Characters of G° and G

Let i be equal to 1 or 2. Recall that G° and GV are finitely-generated
abelian groups, and G° is a subgroup of G(*).  Suppose that y° € (G°)'
and y(V ¢ (%)’. We define a character v° @ y¥) of G(1), as follows:

(v° & vy)(g) = v°(g)yV(g), where v° and y'¥) are extended to become
functions on the whole of G(¥), and are both characters of G(!). Then clearly
v° @ v is a character of G(1).
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We now have to extend the definitions of v° and y(! to the whole of G(¥),

and show that they are then characters of G(V). y(!) is easier, so we do it first.

Definition 7.2:1. For g € G and y(V) € (%)',

def i °
= yW(g+6G).

v¥(g)
Clearly this turns y(!) into a character of G(*). To turn a character of G° into
a character of G(!), we need to make a number of choices and set up some
machinery. :
Let hy + G°,...,ht + G° be a basis of %:—, We will combine characters
using the h;.

Lemma 7.2:2. Let g € G). Then we can write

g =9°+) Uh 3)

where g° € G° and for all j, U € Z; furthermore the cosets ljh,- + G° are
unique.
Proof. g+ G° ¢ —G—;G(—:-’- So g + G° can be written as Y_ U(h; + G°) where the
U(h; + G°) = Uh; + G° are unique. Also g + G°® = Y U(h; + G°) if and only if -
g— Y Uh; € G°, so if and only if there is a g° € G° such that.g = g° + J_ Uh;.
The lemma follows.

As an example, suppose that G(V) is the additive group of Z, and G° is
the subgroup of even integers. Then % is the cyclic group of order 2, and is
generated by h + G° where h is any odd integer. If we have g € G(!) and want to
write g = g° + lh where g° € G°® and 1 € Z, we can choose 1 to be any integer
with the same parity as g, so the representation is a long way from being unique.
In particular, G(!) is not a direct product of G° with any other subgroup.
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Definition 7.2:3. Let n be a positive integer and z a non-zero element of C.
Then we define

Vz
to be the complex number w such that w™ = z and

< —.
0 argw < -

Definition 7.2:4. For 1 <j <t, let nJ be the order of h; + G° in GG[:)

Definition 7.2:5. Suppose v° to be a character of G°. We extend it to
G° U{hy,...,h} by defining

if = 00,

vihy) = { ~/Y° (Wh;) i < oco.

Note that if n < oo, then nh; € G°, so y°(n/hy) is defined.
By Lemma 7.2:2, this suffices to determine v°(g) for any g € GV, if we also
have the condition that y° is to be a character of G(). Namely, we must have

(9°+ > Vhy) = v (g) [ (v°(y))V 4)
. )

where g° € G° and the U are integers. However, to define v° this way, we must
show that however we write g = g° + J_ Uh;, we still obtain the same value for
v°(9)-

Suppose that for k = 1,2, we have g =g§ + }_ llhj, where gy € G° and the
l]j( are integers. It will be enough to show that

Y ) [T )y = v2(e3) [T (v (hy)). (5)
j j
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Dividing the left-hand side by the right-hand side, we need to prove that

volos — o) [T )" = 1.

i
Also, because g + Y~ Uh; = g5 + Y 5h;, we have

(05 —g3)+ ) (U —1)n =o.

So, letting g° = g — g3, and U = lj, — 152_, it is enough to show that if
g° + Y VUh; =0, then

y(@) [T )Y = 1. (6)

j

We now show this. By Lemma 7.2:2, we must have Uh; € G° for each
j. Therefore, for any j, if ¥ = oo, U = 0; while otherwise nJ | U. In the
latter case, let p; = nJh; and mJ = %’r Then p; € G° and Uh; = mlp;. So
9° + anioo mip; = g° + 3 Uh; =0, and therefore

of .0 o J o o j
(@) JT &)™ =v"[g°+ ) mp;
niioo niioo

= 1.

as y° is a character on G°. However we have y°(p;) = (y°(h7-))“’, from the
definition of v°(h;). Display (6) follows, as does our claim that y° as defined
in Definition 7.2:5 can be uniquely extended to a character. This concludes the

process necessary to define y° @ y(V).
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Lemma 7.2:6. Iff: (G())' — C is continuous, then
J fly)dy = J J fly* @vy™)dy™ aye. (7)
(G (G°)' J(alt) /go)'

Proof. If Fe C(G™') and ||F||, < e then it is easily seen that both [ F(y)dy

and [F(y° & v®)dy™) dy° have absolute value at most €. Hence, by the same

arguments as we used in Lemma 7.1:9, it is enough to show that Display (7)

is true for functions f of the form fy, where g € G!¥). The left hand side of

Display (2) is equal to [g = 0]; we need to show that the right hand side is too.
As in Lemma 7.2:2, write g = g° + J_ Uh;. Consider first

| o trevme = ey
(G(”/5°)’ (G“]/GO)'

- | v (v (g) dy®
(611 /ge)"
= Y°(9)J Y (g +G°) dy™

(6(t) /go)!

= v°(g)lg + G° = G°]. (by Lemma 6.6:1)
This is 0 unless g € G°, and the same must be true of the right-hand side of

Display (7). Suppose otherwise that g € G°. Then y(!)(g) =y (G°) = 1. Soin
this case the right hand side equals

J av°(g)dv,° = [g = 0],

using Lemma 6.6:1 again. This completes the proof of the lemma.

O

Lemma 7.2:7. Fori=1,2, if h is a continuous function (G)' = C,

J hiyi @ yY) dy™
(611 /)"

is a continuous function of v € (G°)".

>

Proof. Once again we use the Stone-Weierstrass theorem, via Lemma 7.1:7.
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If for some g € G*) we have h = fg, then

J hiv: @) ayt =J (v1 ©v)(g) dy™ (8)
(c(1)/go}! (1) /go)!

= YI(Q)J vy (g) ay®

(G(l)/GO)'

= v1(9)lg + G° = G°l.

If g ¢ G°, then [g + G° = G°] = 0, and so certainly the left hand side of
Display (8) is continuous. However if g € G°, the left hand side equals y1(g), and
this too is a continuous function of y;. Thus the lemma is true whenever h is an
fg, and thus true for any function which is in the linear span of functions f,.

Now suppose h to be any continuous function (G!))! — C. Let € > 0. Then
by Lemma 7.1:7, we can find a h' which is in the linear span of the fg such that
[h—h'|l, < e So

J Ry @y ™) ay®
(69 /ao)"

is a continuous function of vy, while for any v,

J hivi @ yP)ay™ —J
(V) /o)’

hiyrovyP) vV < e
(6(9)/g0)" : |

Thus the function taking vy to

J hiy: @yV)dy®
(G“)/Go)'

is the uniform limit of continuous functions, and so is continuous itself.



Lemma 7.2:8. Fori=1,2, if h is a continuous function (G*))’ — C, and

2

go €G°

< oo

J v(g°)h(y)dy
(GL)

then for all vy € (G°)’

D Y'(9°)J v(g°)h(v)dy = J hivi & y)ayl.
g°eGe (G (6(1)/go)!

By Lemma 7.2:7, the function taking v° to I(G“)/Gu)' hiy® ® yV)ay® is

continuous. Take h to be this function in Lemma 7.2:9; by Lemma 7.2:6 it is
enough to show the following lemma.

Lemma 7.2:9. Ifh is a continuous function (G°)' — C and

| FEmear) < o )
Q°EG° (Go)l
then for all v, € (G°)'
> )| Tt = hen) (10)
goeGo (Go)l )

Proof. Because of Display (9) and as |y(g)| = 1, the sum on the left-hand
side of Display (10) is uniformly absolutely convergent to something for all

Y1 € (G°)'. Define a function h' : (G°)’ — C so that h'(y) is the actual
value which this sum converges to, so we want to show that for all v, € (G°)’,
h'(y1) = h(y1).

Choose any enumeration gy,... of G° — it is easy to construct such an
enumeration without using the Axiom of Choice given any basis for G°. It is
possible that G° is in fact finite, in which case the sum we are trying to show
is equal to h(y1) has finitely many terms and this enumeration will terminate.
This case is simpler than that in which G° is infinite and the proof I shall give
here will work for this case also provided it is understood that when I refer to
the limit of a sequence which is actually finite, the limit is defined to be the last
element of this sequence.
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For each positive integer n < |G°| define a function hy : (G°)' — C by

halyr) = ZY:(QT)J v°(gr)h(y®) dy°.
r=1 (Ge)!

The h, converge uniformly to h' (or, if |G°| < o0, hjge; = h'). Also for any
gr € G°, the function taking vy to yi(gr) is continuous, and so each h,, is
continuous. By a standard argument it follows that h' is continuous. So the

lemma follows from
[ ey =nivnRan - o.

As the h;, converge uniformly to h', it suffices to show that

Lim flth(w)— h(vi)Pdy; = o. (1

In fact I believe this to be a standard result in multi-dimensional Fourier
Analysis, and it is in any case a straightforward generalisation of [BOLLOBAS,
1990], Chapter 10, Display (2). So I shall only sketch the proof.

Definition 7.2:10.
(1) For continuous functions f,g : (G°)' — C, define (f,g) = [ f(y)
Define ||f|| = +/(f,f). Using the Cauchy-Schwarz inequality, it is easy to show
that || || is a norm, and so with it the set of continuous functions : (G°)' — C
becomes a normed vector space. ’
(2) Define L2((G®)’) to be Hilbert Space obtained as the completion of this
normed vector space with inner product (, ).
By Lemma 7.1:7 any continuous function on (G°)’ can be obtained as a uniform,
and so || ||, limit of linear combinations of the fy. Therefore, with respect to
| Il the closed linear span of the fg is L;((G°)’). However it is an immediate
consequence of Lemma 6.6:1 that the f; are in fact orthonormal under (, ). By
[BoLLOBAS,1990], Chapter 10, Theorem 8, h = Y gec{hifg)fg, where this infinite
sum converges absolutely in the norm obtained from (, ). So

>

lim(h — D (hfg,)fg,,h ihng fg,) = 0.
r=1 =1

This is exactly the same as the Display (11), after expansion of (,), fg, and h,.
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Thus the lemma is proved. l

§7.3. The Method

We now consider the problem of finding a formula for B{.., 3—ig)e(wr.i1) (1.
First we find a directed lattice weighting f° on (G°,Y x {1,2}) such that B® is the
weighted adjacency function and operator of this directed weighted lattice.

Recall (Definition 5.1.4:7, (2.1)) that we defined B® =BWx__ (z)

(x,1)&—(w,3—1)
and Bc(,x,i)(—(w,i) =0.

Definition 7.3:1.
(BWY)*(2) def ZBOY([ — 2BB7)~T,
By Theorem 6.6:10 (2), for go,g € G'* and vy,v; € YV we have

i) * i * v Y Y
B(l)(go+9.v2)<——(go,v|)(z] = J((Bmy) (Z)(e(go' ')> ,(e(g°+g’UZ)) ) dy

By Definition 6.4:10 (3), (e(92¥1))" is the vector with v; entry ¥(go) and other

entries 0; similarly for (e(90+9v2))". Hence

— [YEahviso+9) (B () ay

V2V

= Jv(g) ((B“”)*(Z)) dy.

VU]

So if go,g € G° and v1,v2 € Y° we have

(1) *
B 9“)(go+g,vz)(—9(”(go,v|)(Z)

— pl)=

- (go+g+d (V) (v2), (V) (v3))e=(go+d (V) (vy),h (V) (vy))

= [vlo+ 0002 000 (B @)

Therefore if we define

fo(g) (Ul )i'l)) (Uz,i))
Jv(g + e D (vy) — oW (1)

(BE @)y o & F AL
0 ifi' =i
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then f° is the required directed lattice weighting provided that ) |f°] < co. This
follows because M(B°) < oo, by Theorem 5.1.4:9. '
We now find a formula for (B°)?’U2’iz)(v‘ i)

v1,V2 € Y°. From Definition 6.6:4 we have

where v € (G°)' and

B)osinywray = 2 Y@ (g, (vi1,11), (v2,12))

(v2,i2)(v1,ir)
geG®

This is 0 if i = 12; we assume iy 1 =1

- Y@, v+ - 90w

g€eG®

(B9 () oo &Y'

P ()P (¥ (vy)
=) YQ)J m)lv’(g)v’(tb‘”(vz)—d)“](vu))

geG®

B(‘-)'Y * a !
(@) gy &
(12)

To evaluate this sum we are going to use Lemma 7.2:8. Define h: (G(V)' — C by

ny g —o® (D' y*
hey) E v (00 w2) ~ eV ) (B @)
To apply Lemma 7.2:8, we need to show that h is continuous and that the sum in
Display (9) is finite.

We assumed that |z] < min( ) By Lemma 6.6:5,

" !
m—,)- W, and so “Z B(1 Y “<]
By Theorem 3:5, I —z(B(1))Y' is invertible for all v’ € (G(!)’. By Cramer’s Rule,
we can express each entry of its inverse as a rational function of the complex

M(B“))’ M(Bm

|z| < and so by Theorem 3:3, |z| <

numbers on the unit circle which make up 'y’ and their conjugates, and because
I—2z(BM)Y' is invertible for all y' € (G(V))’, the denominator of this rational
function is never 0. So the inverse of I —z(B(¥)Y" is a continuous function of vy'.
And by Definition 7.3:1, so is h.

To show that the sum in Display (9) is finite, we need to show that

2

geGe

j Yoy (69 (w2) — 69 (1)
Gy

B * ) ! )
(( "By <
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However (reversing the steps by which we arrived at these integrals) this is equal

to deco IB‘()go+g,v2,i)(—(go,v1 ’3_i]|, where go 1s any element of G°, and so is at

most M(B°), which we know to be finite.
From Display (12) we have

(B Yoz ) (w1 3—t) = 2 Y(Q)J LY (@hty) dy’
gego (G )

= Y Y| FTEmeer (60 =-o9)

goeGo (G(i))l
=J h(y ®v2)dy2z (Lemma 7.2:8)
(6 (1) /o)’
- (v ©72)(0 (v2) — 6 (v1))
(1) /go)’

B(H)v®v2)* Z) dvo.
(( )'(z) Yt} (v2) P (P (vy) V2

So we have expressions for the entries of (B°)Y in which each is 0 or an integral

over one of the (GG(:) ).
However we want to find an expression for B} ., (2z) = B ., (1). By

Display (1) we have

Boou, (1) =luo = vol + B3, (z) +BP5 . (2)+
Z B(IZ):o«—wz (z) ‘(’Wz,3—iz](—(w1 ,il)(”B(h):VH—uo (2).

iy,i2,wy, w2

Define x,y € H(V' x {1,2}) by

X(wi,i) = B(h ):vl —up (z)
and
Y(wz,3-i3) = B(iZ):o(—wz (2).
So

By, (1) = Iwo = vol +BUS | (2) + B2 ., (2) + (B°()y,x).
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Also, because M(B°) < o0, X,y € &3 (V' x {1,2}). So by Theorem 6.6:9,

(B°(1)y,x) = j((l—(B")v)—'yv,xv)dy.

We already have found expressions for the entries of h(B°)". For the entries of yY
and xY we again use Lemma 7.2:8.
Fory € (G°)' and v € Y° we have (xY)(y 1)

= Z —y-(ax(g,v,i)

geGe

= Z Y(g)B(I)TgMJ“’(v).ll,:(”(v))t—uo(Z)'
geG®

If uo ¢ VI this is 0. Otherwise suppose 1o = (gu,Vu) € VIV, Then (x)(y 14

= > y(g)j (BU)Y'*(z)elowvu)Y’ elo+d V)M )Y’y gy

9€G° (G(i)],
= LY@ (O @) 0y, T (0 + 60 0) &y
et (G

Write ¥ for the element of (G°)' which is obtained by conjugating the

co-ordinates of vy.

= ZV(Q)J

0cGe (G(V)r

v'(9) (BE)Y'*(2)) i1y uyp, Y (@ (V) — gu) dY'

This satisfies the conditions of Lemma 7.2:8 by a similar argument to that used

before. So

= J( 6 ) ((B(l) )7@72*(2))‘1’“)(1))”“ (769'}/2)((1)({) (U) _ gu) d‘YZ-
G o)

So

(BWWovz*(z)) ..
J(G(l)/Go)'( )\b“)(v)vu

(TGB'YZ)M)({) (V) —gu)dy2 ifuo=(gu,vu) € V(i);
0 if up ¢ V.

(xy)(v.i) =
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Similarly we deduce that for y € (G°)' and v € Y°, (" )(v,4) =

(3—1)yyDy2*
J‘(6(3‘“/ )! ((B e (Z))U\ﬂl’(s‘“(v)
Go \ ' |
(?@YZ)(QV - ¢(3__1) (U)) dy, ifvg= (gV’UV] € v(3—1);
0 if vo ¢ V3—1),
(z) and B(2)* (2).

Vot—Uuyp

The other terms in Display (1) are [up = vol, Bm:m—uo
[uo = vo] 1s trivial, while the other two terms can be deduced from the formulae
for walk-generating functions for the weighted lattices (G(V, Y1) (i),

We now give two examples of problems where this method may be applied.

§7.4. Example: The Grid with Every Other edge in a line removed

(—Za]) (0,1) 1 (2)])

Figure 3. The Grid with every other Edge in a Line deleted
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Take the two-dimensional grid, defined at the beginning of this thesis and
for which walk-generating functions of the associated adjacency operator B were
found in Subsection 6.7.3. Then define a new operator B’ by B_,, = Bveu
unless {u,v} = {(2k, 0), (2k, 1)} for some k € Z, in which case B],_,, = 0. A picture
of this is shown in Figure 3. )

We use the construction as given at the start of Chapter 7 as follows.

Define G(1) to be the additive group of { (x,y) | x,y € Z}.

Define Y1 = {v{V}. Define L' = {(0,1), (0,—1),(1,0),(—1,0)}, define
L={(g,0",v(M) | g € L'}, and define the lattice weighting (') on (G(V),v(1))
as the characteristic function of L. Thus (G, Y(") L) is the two-dimensional
grid, as described at the start of this thesis, and (G("), Y1), (1)) is the
corresponding weighted lattice.

Define G(2) to be the additive group of { (x,0) | 2 divides x}. Define

Y2 = P 1P, Define

ﬂz)((X,O),‘U] )UZ) — {"‘] if x =0 and {U],UZ} ={Ug2),v(22)};
0  otherwise.

We must have G° = GV N G2 = G2). Define Y° ={v3,vs}

Define ¢ (v3) = (0,0). Define ¢!V (v3) = (0,1). Define
ﬂl”)(v?) = 11’(”(1)3) =p(),

Define ¢2)(v3) = ¢ (v3) = (0,0). Define Y2 (13) = v!?. Define
P2 (vg) = véz). ‘

It can now be shown routinely that the construction at the start of
Chapter 7 does produce an opera;cor Bt equal to B’, and so the method
there can be applied. I shall not work through the method of Section 7.3
here, as this is a purely mechanical operation; however I will summarise
what will happen. We have to find formulae for the matrix (B°)Y and also
(B°)Y*(1) = (B°)Y(I — (B°)Y)~'. (B°)” will have a row and a column for each
pair (v € T°,1i € {1,2}), and so the dimension of (B°)Y is |[Y°| x 2, or 4. Also
(B°)Y is 0 if i} =13, so if we arrange the rows and columns of (B°)" in

(‘-’2 |i2)(vl ,i'[ )

order (v§,1), (v3,1), (v§,2), (v3,2), (B°)Y will look like

(n 0)
A, 0)°
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where Ay and Aj are 2 x 2 matrices with entries corresponding to values of the
walk-generating functions at z for B{") and B(2). The entries derived from B{?)
are easy to compute, as G(?) = G°, and the walk-generating functions of B(?) can
themselves be found by an elementary calculation. However the entries derived

from B{1) are integrals over (GGl.‘,) ) =TT of expressions themselves involving the

walk-generating functions of B(M), so there is no reason why there should be
simple expressions for them.

Furthermore, to find formulae for the walk-generating functions of B/, we
have to find (B°)Y*(1), so have to invert (I — (B°)Y). This involves a further layer
of complication. ‘

So even for extremely simple examples like this one, it turns out that finding
expressions for the walk-generating functions is quite a complicated operation,
and the final expressions are liable to contain integrals within integrals.

§7.5. Example: Markov Chains with Two Interacting Particles

Suppose we have a finitely-generated abelian group G and a finite set Y.

Two particles X and Y move about G x Y. At time t € N the position

of X is the random variable X, and the position of Y is Y;; we have

Xt,Yt € G x Y. The system is to be a Markov Chain with the state at

time t given as (X, Yt). Let p(x1,y1;%2,y2) be the transition probability

from (X¢,Y:) = (x1,Y1) to (Xi¢s1,Ye41) = (x2,y2). Define a function B+

by Bz“xz‘yz)‘_(xhyl) = p(x1,Y1;%2,yY2), and suppose M(B*) < oo. Using
Theorem 3:3, define a corresponding operator B* on H((G x T) x (G x T7)). In
Section 5.2, we found how to derive certain statistics of the Markov Chain from
the walk-generating functions"W,,._,,(z) derived from (G x ¥,B*). So we concern
ourselves here only with finding the walk-generating functions. '

We may summarise the transition probabilities we shall look at as follows..
These will be the sum of two components. The first component will be transition
probabilities in which the two particles move independently around G x Y with
their own transition probabilities, each of which are derived from a directed
lattice weighting on (G,Y’). The second component is zero except when the
difference between the values of G for the positions of the two particles belongs
to a certain finite sef, and is a function of the differences at the beginning and
end of the transition together with the various elements of Y involved. So, for
example, we might have two particles moving about an n-dimensional grid or
other lattice, independently except when they come within a certain distance of
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each other, in which case the transition probabilities are altered depending upon
the positions relative to each other of the two particles.

Formally, we suppose f* and fY to be two directed lattice weightings on
(G, 7). Let B* and BY be corresponding adjacency functions and operators.
These correspond to the transition probabilities when the particles are moving
around independently. So we let py, the first component of the transition
probabilities, be defined by

def
P1(x1,U1;%2,92) = (BY e, ) By, )-

We also suppose A to be a finite subset of G and f¢ a directed lattice weighting
on (G,A x Y x Y), and define p2, the second component of the transition
probabilities, by

def
p2((g%,v%), (g¥,vY); (95, 1%), (0¥, 1Y) =
f<(g% — 0%, (g — 9%, v¥,vY),
(95 — 95,v3,v3%)) if gy —o%,05 — g3 € A;
0 otherwise.

Now define p by

P(x1,Y1;%x2,42) = P1(x1,U1;%2,Y2) + p2(x1,Y1; X2,Y2).

This completes the construction of the Markov Chain.

We now show how to apply the method of Section 7.3. (V(}),B(1))
corresponds to the first component, py, of the transition probabilities. Let
G =G x G and YV =7 x Y. Define

def
(g%, g¥), (W}, 1Y), W5,09)) = *(g*,v%,v5)Y (g¥,vY,vY).

(V(2) B(2)) corresponds to the second component, p,, of the transition
probabilities. Let G2 ={(g,g9) | g € G}. Let T2 = A x Y x Y. Define

f2((g, 9), (81,v%,0Y), (62,v3,13)) = (g, (61,vF,1Y), (62,03,v3)).
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We must have G° = G!V) 0 G{?) = G(?). Define Y° to be exactly the same as
Yi2) except that the elements are marked in some way so that Y° and Y(2) are
disjoint. Define ¢V (8,v*,0¥) = (0,5). Define (1 (§,v*,vY) = (v*,vY). Define
&2 (5,v%,vY) = (0,0). Define P2 : v° o Y(2) by (2 (5,v%,vY) = (5, v*,VY).

This completes the necessary definitions for the method in Chapter 7 to
be applied. I shall not demonstrate that these definitions do indeed define
B?sz'yz)‘_m uy) €qual to p(x1,Y1;%2,Y2), where BY is the operator whose
walk-generating functions are found by the method, but this is just a routine
matter of checking through the various definitions.

§7.6. There is no method for more than one set of Periodic Modifications
Using the method of Section 7.3 it is possible to find expressions (albeit
complex ones) for walk-generating functions when there is one set of periodic
modifications. Using the method of Subsection 5.1.4, we can then find
expressions for walk-generating functions when we make a finite number of
changes to individual By. It is natural to wonder if we can find expressions
for walk-generating functions when there are two sets of periodic modifications.
In this subsection I shall show that these can in general make the situation
sufficiently complex that useful expressions are unlikely to exist. More
specifically, I shall explain how to transform a particular instance of the Halting
Problem into the problem of determining whether there are any walks with
non-zero power between two particular vertices in a two-dimensional lattice in
which two sets of periodic modifications have been made. Furthermore, the power
of any walk will necessarily be O or 1, so this means that the Halting Problem
can be transformed into that tf determining if the walk-generating function

* 1s non-zero when applied to any positive z, and it makes no difference which
positive z we choose.

Specifically I shall show that if there is an algorithm which decides if there
is a walk with non-zero power between two given vertices in a two-dimensional
lattice with two sets of periodic modifications, then we can modify this algorithm
into one which solves the Halting Problem for the Abacus, as described and
discussed in Chapter 6 to Chapter 8 of [BOOLOS&JEFFREYS,1980].

We describe the Abacus now. A Program for the Abacus consists of a
function from a finite set I of States with a designated Initial State oo into the
set of possible Instructions. We speak of a Situation of the Abacus. A situation
is a pairing of a state together with a function n € Ny — [n] € Ny, such that for
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all but finitely many n, [n] = 0. We sometimes refer to [n] as the Contents of
Box n. A program determines a function M with domain the set of situations
and codomain the disjoint union of the set of situations and the set {L}. With
this function, we Execute the program by the following construction; let so be
the situation consisting of oo paired with the function mapping everything to 0,
and define the (finite or infinite) sequence of situations so, 57, ..., In that order,
so that if M(sx) = 1 we terminate the sequence at sy, and otherwise define
sk+1 = M(sy) and repeat. If the sequence terminates we say that the execution
Halts. ‘

Let s = (0, f) be a situation. M(s) is determined by the instruction
associated with the state o by the program. The instructions are of three types.
(1) The Halt instruction returns L (and therefore terminates the execution).

(2) Increment instructions specify
(2.1) A Box b in No.
(2.2) A state o'.

When this instruction is obeyed M returns (o', g) where g(b) = f(b) + 1 and

for b’ #b, g(b') =f(b').

(3) Decrement instructions specify
(3.1) A Box bin No.
(3.2) Two states gz and op.

Such an instruction is obeyed as follows. If f(b) = 0, M returns (oz, f).

If f(b) > 0, M returns (op, g) where g(b) = f(b) — 1 and for b’ # b,

g(b") = f(b"). '

The Halting Problem is that of determining if the execution associated with
a given program halts. [BOOLOS&JEFFREYS,1980)] gives an algorithm which,
given a program for a Turing Machine, outputs a program for the Abacus which
will halt if and only if the program for the Turing Machine halts; hence there is
no algorithm for solving the halting problem for the Abacus.

In fact we shall strengthen this. Because there are only a finite number of
states for any program, only a finite number of instructions are used, and hence
only a finite number of boxes b occur in the whole program. We say that the ’
Arity of the program is the number of boxes which occur. I shall show that there
is no algorithm for solving the halting problem even for programs in which the
Arity 1s at most 2, because the only boxes which occur are 0 and 1, where the
execution of the program only halts when all boxes contain 0, and where there is
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only one halt instruction. Call a program satisfying these conditions a Restricted

Program, then this follows immediately from:

Lemma 7.6:1. There is an algorithm which, given a program P, outputs a
restricted program P’ such that the execution of P' halts if and only if that
of P halts.

Proof. We replace each instruction of P by a set of instructions in P/, adding

extra states as necessary. We provide an injection k from situations of P into

situations of P’ such that when an instruction is obeyed for P to map one
situation sy to a new one sy, the corresponding set of instructions in P’ map
k(sy) to k(sz2). Let the primes for the positive integers be po,p1,.... We define

k as follows: it maps a situation (o, f), where o is a state and f : Ny — Np, to

(o,f'), where

70 = [To(® (13)
i=0

and f'(b) = 0 for all b > 0. The product in Display (13) is finite as all
but finitely many f(i) are 0. k is injective by the Fundamental Theorem of
Arithmetic.

When (1) is incremented, f'(0) is multiplied by p;. f(i) is non-zero if and
only if p; | f'(0), and if so when f(i) is decremented, f'(0) is divided by p;.

We now construct the transformation required to turn P into P'. We give
six program fragments which will be connected together to make P’'. In each
program fragment we will specify an initial state; program fragments can also
refer to exit states, which must be set to initial states of other program fragments
upon connection. Four of the program fragments may need to be copied more
than once; when this is done it is necessary to make their states disjoint. For
each program fragment we give the conditions assumed ‘on entry’, when the
instruction associated with the initial state is obeyed and what subsequent
behaviour follows from these conditions, together with names for the exit states;
we then specify the instructions of the program fragment, preceding each by the
name of the states with which it is associated. Two of the fragments are also
variable in a number N. A
(1) On entry we assume that [0] = [1] = 0. There is a single exit state o; the

execution reaches the situation (o, f) where f(0) = 1 and f(1) = 0. The
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instructions are (just one this time):

I: An instruction to increment box 0, specifying o.
(2) On entry we assume that [1] = 0. The execution halts with [0] = 0. The

instructions are:

D: A decrement instruction specifying box 0, specifying 6z = H and
op = D.
H: A halt instruction.

(3) On entry we assume that [1] = 0. There is one exit state o. If on entry
t = [0], then the execution reaches (o, f), where f(0) =0 and (1) =.

D: An instruction to decrement box 0, specifying 07 = 0, and op = L.

I: An instruction to increment box 1, specifying D.

(4) On entry we assume that [0] = 0. There is one exit state o. If on entry
T = [1], then the execution reaches (o, f), where f(0) = r and f(1) = 0. The
instructions for this fragment are identical to those of (3) except that “box
0”and “box 1”are interchanged.

(5) There are no assumptions on entry. There is a single exit state o. If on entry
T = [0] and m = [1], the execution reaches (o, f) where f(0) =t + N x m and
f(1) = 0. N must be a non-negative integer.

D: An instruction to decrement box 1, specifying 0z = ¢ and op =I;.
For 1<j<N-1

I An instruction to increment box 0, specifying I;1.

In: An instruction to increment box 0, specifying D.

(6) On entry we assume that [1] = 0. There are two exit states, P and Z. Let
T be the value of [0] on entry. The program reaches (o, f); here 0 = P
if N divides v, 0 = Z if N does not divide r; while f(1) = ], and
f(0) =t — Nf(1). N must be an integer greater than or equal to 2.

Do : An instruction to decrement box 0, specifying 0z = P and op = Dj.
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For 1<j<N-2

D;: An instruction to decrement box 0, specifying 0z = I; and op = Ij41.
DNn-1: An instruction to decrement box 0, specifying 0z = Iy—7 and op = 1.
I: An instruction to increment box 1, specifying Dy.

I: An instruction to increment box 0, specifying Z.

For2<j<N-2

I;: An instruction to increment box 0, specifying I;_;.
IfN>2:
In—1: An instruction to increment box 0, specifying In—2.

We leave the verification that these program fragments work to the reader.

We change P into P’ by performing the following transformations, in order,

starting with P/ = P:

(1)
(2)

(3)

(4)

We insert (1) into P’, specifying its initial state to be the initial state of P’,
and letting the exit state be the initial state of P.

We insert (2) into P’ and delete all halt instructions originally in P, replacing
all references to their associated states with references to the initial state of
(2).

For each box b, we replace each increment instruction of box b originally in
P by separate copies of (3) and (5), with N = py, replacing all references to
the associated state by a reference to the initial state of (3). The exit state of
(3) is the initial state of (5); the exit state of (5) is the state specified by the
increment instruction.

For each box b, we replace each decrement instruction of box b originally in
P by separate copies of (4), (6) and (5), with N = py, replacing all references
to the associated state by a reference to the initial state of (6). The P exit
state of (6) is set to the initial state of (4); the exit state of (4) is set to the
op state of the original decrement instruction. The Z exit state of (6) is set
to the initial state of (5). The exit state of (5) is set to the o state of the
original decrement instruction.
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We now show how to transform a restricted program with state set 1, initial
state 0o, and single halt instruction associated with state o, into a directed
weighted lattice over (Z2, L) with two sets of periodic modifications such that
any walk with non-zero power from ((0,0), 0o) to ((0,0), o1 ) corresponds to an
execution of the program which halts, and vice-versa.

To do this we identify any situation with state ¢, box O containing [0], and
box 1 containing [1], with the vertex of the lattice (([0], (1]}, o).

Define N : ((No x No) x X) x ((No x Np) x £} — {0,1} so that
N((xg.xf).dz)f—((x(‘,,x} ),0v) 15 1if and only if the function M associated with the
program maps the situation associated with ((xJ,x}), 1) to that associated with
((x%,x%),02), and is O otherwise.

We will define B, the adjacency function and operator of a directed
weighted lattice with two sets of periodic modifications, so that when
x3,x},x3,x3 € Ny and 01,07 € I, B&xg'x%)’ozl‘_((xg.x})m) =
N((x%,x%),dz)ﬁ((xé.x: ),01)" Thusif u,v € (No X No) x X, Bd—(—u 75 0if and only
if M(u) = v, in which case it is 1. M(u) = v is equivalent to saying that if
the situation u occurs in the execution of the program, v will come next. Any
execution which halts must necessarily correspond with a walk with non-zero
power (and therefore power equal to 1) starting at ((C,0),00) and ending at ‘l
((0,0), 01 ) (recall that we have arranged that the abacus only halts when all
boxes have content 0). Similarly, any such walk corresponds to an execution
which halts. So this suffices.

Of course, there is in fact only one possible execution of a given program, so
either the walk generating function from ((0,0), go) to ((0,0), o) is identically
0 if the execution doesn’t halt, or takes z to some z™ where the execution
(considered as a sequence of situations) has length n + 1.

I have not in fact defined what a lattice with two periodic sets of
modifications is, but I do not think such formality is necessary, since it should be
clear that what I shall describe is one.

The directed weighted lattice L(2) will be (Z x Z,Z_,}f(z)), where
£(2)((80,81), 01, 02) equals 0 except in the following cases in which it equals 1:
(1) The instruction associated with oy is an increment instruction for box 1

(which must be 0 or 1) specifying 03, and &; =1, §;1—; =0.

(2) The instruction associated with oy is a decrement instruction for box i,
specifying o, as op, and &; = —1, §;_; =0.
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Let B(?) be the adjacency function and operator of L{2). Observe
that if x},x],x3,x? € No and 01,07 € I, BE(Zlo,xf).Uz)(—((xé.x:).61) =
N((x2,x2),02)¢((x} x]),0,) Unless for some b € {0, 1}, x), =0, and oy corresponds to
a decrement instruction for box b.

We now proceed to deal with this. Define G(®) = {(0,x) | x € Z}. Define
Y(0) = ¥ x {0, —-1}. Define f(9) a directed lattice weighting on (G(®),7(®)), so
that f(°)((0,x), (o71,11), (02,12)) is 0 except when x = 0, o'y corresponds to an
instruction to decrement box 0 specifying ¢z and op, and i; = 0. In this case we

define

1 if0'2=0'zandi2=0;
£9((0,0), (01,0), (02,12)) = { -1 ifo,=o0pandi, =-1;
0 otherwise.

Define ${%)(0,1) = (i,0) and P(®)(0,1) = 0. The purpose of this is to arrange
that B* will be different from B(2) to correct for what happens when box

0 contains 0 and we come to a decrement instruction. We set f(©) = 1 to
correspond with the situation moved to in this case, and we set f(®) = —1 to
compensate for the definition of Bg() 1x2),02)¢((0.x2).09) = V-

Similarly we define G(") ={(x,0) | x € Z}, and similarly Y(1) (1) () ()
reading (x,0) instead of (0,x), box 1 instead of box 0, and (0,1) instead of (i, 0).

Define Gt =G =Z x Z, Yt =Y@) =1, ¢(0) = (0,0), ¥(o) = 0.

We now have a similar situation to that at the start of Chapter 7. I shall not
formalise the process of generalising the definitions there from combining two
lattices to combining-three lattices, as this is routine. It should however be clear
what will happen, and that this will define B* as required.
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Chapter 8

Properties of the Spectral Measures of Lattices

Definition 8:1. Let u be a (signed) measure on some bounded subset of R.
(1) The Cumulative Distribution Function C of y is defined by C(A) = p(—oo,Al.
(2) pis Analytic at A € R if C is given by a power series in a real neighbourhood

of A.

From Section 6.5 we see that the spectral measure of a weighted lattice (G, f)
is an integral over G’ of a measure puY enumerating the eigenvalues of BY. The
eigenvalues of BY are the roots of its characteristic function, so (Lemma 8.9.2:5)
the spectral measure equals a measure u giving the distribution of the roots of
the characteristic function.

We will develop sufficient conditions for the spectral measure to be analytic
in Section 8.9. These are based on the results of the earlier sections; the main
one (Theorem 8.7:1) gives sufficient conditions the distribution of the roots of a
function to be analytic. Section 8.8 gives a converse result.

§8.1. Distributions of Roots of Functions

In this section we show how to define a measure giving the distribution of the
real roots in the first variable of an s + 1-variable function as the other s variables
are varied. Here the s variables vary over the torus (2&”)5. Of course we could
use another surface by applying an analytic bijection first; this is what we will do
for lattices.

Definition 8.1:1.

(1) Let (=) be the set of complex numbers modulo 2m, so that we identify x
andy if x —y = 27n for some n € Z.

(2) Let (&) be the subset of (5=) containing just real numbers modulo 27.

(3) We regard any function on a subset of (<) as also being a function on C,
by forgetting this identification. Similarly, if we have a function f defined on
a subset C, we can and do regard it as a function on (5= ), provided that if
x,Y € C, f is defined for both x and y, and y — x = 27n for some n € Z, then
f(x) = f(y).

(4) Throughout this section, s will be a positive integer.
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(5) (%)S may of course be regarded as C° where (x1,...,Xs) is identified
with (yi,...,ys) If there exist (nq,...,ns) € Z* such that for any j,
X; —Yj = 27mn;. We regard functions on (i%)s as also being functions on C*
similarly to (3), by ignoring the identification.

(6) We define terms as Analytic and Continuous for functions on subsets of (—2%)
and (:)° by using the correspondences in (3) and (5).

Of course, there is already a topology on (£), (&), (£)° and (£)°, namely

quotient topologies and their direct products derived from the standard

topologies on C and R. It may easily be verified that our definition of continuity

for (£) and (£)° is identical to the one derived from this topology.

Definition 8.1:2. In this chapter it will often be necessary to refer to sets as
being ‘open’ or ‘neighbourhoods’ when they could be either subsets of some
C" x (£)° or of its subset R" x (&.)°. We will take them as being open in
C" x (£)° except when R" x (&)° is implied (as in ‘real open set’ or a ‘real

neighbourhood’).

Lemma 8.1:3. (&) and (&)° are compact.
Proof. (%) is homeomorphic via tha map t — et to IT, the unit circle in the
complex plane, which is compact, and so (&) is. Hence (%)S is compact since

finite products of compact spaces are compact.

Definition 8.1:4. Throughout this section, we suppose that n is a positive
integer, U an open subset of (£.)° containing (R)°, and that G is a
function C x U — C given by

n-—1
G(A;8) = A™+ ) Ng(0), (1)
0

where each ¢’ is an analytic function taking U to C.

In particular, since n has to be positive, G(A; 8) must be dependent on A.

Here, as throughout this chapter, a semicolon (*;’) is used to separate two
arguments to G which are to be treated in different ways; this will be done
throughout this chapter, not only for G, but for other functions whose arguments
can be divided in the same way, or even in expressions such as (x;y) which we
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take to be formally the same as (x,y), but where the semicolon indicates the

different treatment of x and y.

Lemma 8.1:5. There is a constant M such that for any 6 € (é—R—;‘)S, all n roots

of the equation in A,
G(A;0) =0

have absolute value at most M.
Proof. Since (7“%)5 is compact, the functions |g°|,...,|g™" | are all bounded on
it; let N be the supremum of all |g’(8)| for 8 € (2%-)5. I claim that M =N+1 will
do. For suppose [A\| > M. Let A =|A|. Then |[G(A;0) — A" = [Z“—] Agi(9) <
S TAIN = N(A™ —1)/(A —1) < NA™/(A — 1) < A", where the last inequality
follows easily from A > M = N + 1. So |G(A;0) —A™| < A™; since |]A™| = A™, we
have G(A;0) # 0, and so A is not a root.

We will take M as in Lemma 8.1:5 throughout this section.

Lemma 8.1:6. Let 0° € (5=)°. Suppose the distinct roots in A of G(A;8°) =0
are A',...,A", and that A! has multiplicity n'. Suppose that for each i,
U' is a neighbourhood of A}, and that the U' are disjoint. Then there is a
neighbourhood V of 6° such that if @ € V then for any j, G(A;0) = 0 has
precisely n' roots, counting multiplicities, in U, and no others.
Proof. First we show that for any i there is a neighbourhood Vi of
8° such that if 6 € V*' then G(A;8) = 0 has at least n' roots in U'.
This is a standard result; we adapt part of the proof of [HERVE,1987],
Chapter 2, Theorem 1. Specifically, choose some i, and some € > 0 such that
D {A | A =AY < €} C UL Let y be the positively oriented circle which is
the boundary of D. So if A € v, G(A;08°) # 0. As v is compact, we can choose a
connected neighbourhood V* of 8° such that for 8 € V* and A € v, G(A;8) # 0.
For otherwise there would be sequences (0;);en and (v;)jen with 8; — 0° and
each y; € y such that G(v;;6;) = 0; since y is compact we could replace (6;)
and (y;) by subsequences with v; — y° for some y° € v; then G(y°;6°) =0; a

contradiction.



For 8 € V1, let

1 J 9G(A;8) dA
, OA G(A6)

Then ¢(0) is the number of roots A € D of G(A;0) = 0. However it is integer
valued and, because of the compactness of y, a continuous function of 8. As V' is
connected, this means that o(0) is a constant, and thus o(8) = ¢(8°) = n'. Thus
for 8 € V', the number of roots A € D C U' of G(A;0) = 0 is exactly n', which
suffices.

To complete the proof take V = (Vi If 8 € V, G(A;8) = 0 has at least n'
roots in U'. However the equations in A, G(A;6°) = 0 and G(A;8) = 0, both have
degree n and so, counting multiplicities, n roots. Using the disjointness of the
U, we deduce that each U* contains exactly n' roots, and there can be no others,

as required.

Definition 8.1:7. In this section A={A|A]<M}.

Definition 8.1:8. Given 0 € (%r)s, the measure p.$;e supported on A is
defined as % Z;;, bx, where Ay,...,A, are the roots in A of G(A;0) =0,
including repeated ones, and 6y, is the point measure at A;, as defined in

Definition 4.1:1.

Lemma 8.1:9. Le( f: A — R be continuous. Then

-

deuﬁﬁ

is a continuous function of §, and never more in absolute value than ||f||_,.
Proof. First we establish continuity. Suppose 6° and € > 0 given; we will find
a neighbourhood V of 8° such that if 8 € V then

ijdugﬁ-—deu$ﬁ° < e.
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By the definition of ug;e‘
) 1
[fauge = 25 ) @
i

where the roots of G(A;8) = 0 are Ay,...,An. Let the distinct roots of

G(A;6°) = 0 be A',...,A", where A* has multiplicity n'. Clearly we have

5" n' = n. Choose disjoint neighbourhoods U* of each A* such that for A € U,
If(A) — f(Al)| < €. Find V as in Lemma 8.1:6. Suppose 8 € V. Let the roots of
G(A;8) =0be Al,... Al JAT,...,ALr, where for 1 <j <n', A} € U' (using

. ERRR

Lemma 8.1:6). Then by Display (2),

Jrae - fras

i=1

5 e
i

=€ (as Y nt=n)

v & i i
= -2 (;f(hj)—f(k ))

(as |f(7\}) —f(AY) <€)

31—

Thus we have proved continuity.
If the roots of G(A;0) = 0 are Aq,...,A,, then by Display (2) we see that

: 1 ¢
G;
[fans® < 23 1l = Il
j=1
This completes the proof of the lemma.

Definition 8.1:10.
(1) For f: (&)® — C a bounded measurable function, define

1 27t 27
jf(e)de - (‘zE)’J J £(01.....8.)d0; ... ds..
0 0
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(2) For X C (&) and f: X — C, define

L 8)d0 = Jf(e) a0

where
7(0) def { f(8) ifée X','
0 otherwise.

The definition of [ d8 is analogous to our previous definition of [ dy in
Definition 6.4:21.

Definition 8.1:11. The Borel measure u$ with support A is defined so that for
all continuous functions f : A — R,

deu$ = ”fduﬁi;" de. (3)

We use Theorem 6.4:26 to justify this definition. The integral with respect to 0
in Display (3) is defined since, by Lemma 8.1:9, it is of a continuous function
bounded by ||f||,. This also means that the integral is at most ||f||_, in absolute
value, showing that the functional from continuous functions f to [ fdu$?® ae
has norm at most 1. Finally, A is compact. Thus Theorem 6.4:26 applies, and
Display (3) does indeed uniquely define p$, on all Borel subsets of A.

Definition 8.1:12. For € >0 and A € R, define the function t} : R — R by

_ly=Al _ .
Ay) = {1 B ifly—Al< g
0 otherwise.
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Definition 8.1:13.

(1) Given® € (%)s, the real measure supported on [-M, M], u%®, is defined
by uG9(S) = ucT;;e(S) where S is any subset of [-M, M].

(2) The measure p© with support [-M, M| is defined by uG(S) = u$(S) where S
is any subset of [-M, M].

Since uT is defined on all Borel subsets of A, uC is defined on all Borel subsets of

M, M].

Lemma 8.1:14. S is the unique Borel measure such that for any continuous
function f : [-M,M] = R,

deuG = ”fduG;e de. (4)

Proof. Uniqueness follows from Theorem 6.4:26. To show Display (4), extend f
to map A by defining it to be 0 outside [—M, M]. Define fc : A = R by

fe(x +iy) = f(x)t2(y)

for x,y € R. Then each f. is a continuous (so measurable) function on A, so

er au$ = “f ap$ de.

As € — 0, the fc decrease pointwise to f; and for any 8 € (R)°, [fe ap$®
decreases to [ fduS®. It follows (for example by [HALMOS,1950], Chapter 5,
Section 27, Theorem B) that Display (4) is true.

So uGi® and puC ignore all non-real roots in A of G(A;8) = 0. In fact, in the
context in which we shall apply this theory for lattices and weighted lattices,
it will be the case that for all 8 € (%)s, all roots in A of G(A;0) = 0 are real.
However we do not need such an assumption for this section, so we do not make
it.

Lemma 8.1:15. The measures p$ 9, i u?, u€ are all non-negative.
Proof. This follows immediately from their definitions. *
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Lemma 8.1:16. Let I be any interval in R. Then

WS(1) = JMG;"(I) do. (5)

Proof. Suppose that [ = (—oo,a]. For € > 0, define fc : R — R by

1 if x <aq
fe(x) = l—("%“) ifa<x<a+e
0 otherwise.

Then f. is continuous and for any non-negative measure L, [feduisa
monotonically increasing function of €. Furthermore p(—o0,a] < [fedp <
H(—oo,a+ €), so as € tends to 0, [ fe dp — p(I). We know that

[feaus ”f aus® do. (6)

For n a positive integer let € = % Hence as n — oo, the left hand side
of Display (6) tends to u®(I). By [HALMOs,1950], Chapter 5, Section 27,
Theorem B the right hand side tends to [ n®(I) d6. Thus Display (5) follows if
[ =(—o0,d].

It also follows if [ =R (by letting f = 1 in Lemma 8.1:14) and if I = (—o0, b),
by letting

1 Hfx<b-—g
fe(x) = {‘—"%"—’ fb—e<x<b;
0 otherwise.

and proceeding in the same way as for [ = (—o0, aJ, with some changes of sign.
Furthermore if Display (5) is true for I equal to Iy and I, and Iy C I, then it

is also true for I equal to I \ I;. All intervals can be obtained in this way from
intervals of the form R, (—o0, a], (—o0, b); for example (a,b) = (—o0,b)\ (—oo0, al.
So Display (5) is true for all intervals and the lemma follows.

§8.2. Germs

From this section to Section 8.5 we will consider only local propefties of G.

In this chapter we shall look at factorisations of G; to discover if the spectral
measure is analytic at A°, we would like to be able to write G = G --- G, so that
for any 8° and j, the equation G;(A; 6°) = 0 does not have a root of multiplicity 2
or more at A = A°. But we will allow local factorisations; this makes our results
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more general, as it is possible for a function to have a local factorisation which
does not correspond to a global factorisation. Consider for example the elliptic
curve with equation y? —x2 + x3 = 0. This is irreducible globally. Nevertheless,
at the point (0,0) there is a double point where two separate parts of the curve
cross each other; at this point y? — x? + x3 factors locally into two parts, each of
which is of the form y — f(x), where f is an analytic function of x.

Germs are a way of looking at functions locally and we shall discuss them in
this section. We will go on to establish some results about roots of equations of
the form g = 0 where g is a germ.

Let X be some space of the form C" x (%)s, where 7,5 > 0.

Definition 8.2:1. For x € X, a Germ at x is a triple (U,x, f), where U is an
open subset of X containing x and f is an analytic function mapping U to
C, and two germs (U, x,f) and (V,x,g) are defined to be equal if and only if
there is a neighbourhood W of x for which flw = g|w.

Germs are defined in a similar way in [HERVE,1987], Chapter 1, Section 2,

Definition 2, to which the reader is referred for statements and proofs of their

elementary properties and definitions.

Definition 8.2:2. If two germs f and g on x are equal, clearly the associated
functions must have the same value on x. We say this is the Value at x of
the germ.

If we have an analytic function f defined on any neighbourhood U of x then

(U,x,f) is a germ. However because of our definition of equality it doesn’t matter

what U is; for example we could replace it by any neighbourhood of x contained

in U. Also it is rarely necessary to specify x, for we shall not often need to deal
with germs which are at different points, so in statements involving more than
one germ, we assume that all the germs are at the same x, unless it is stated
otherwise. Thus we will normally just refer to the germ as f, if necessary making
1t clear (as in “the germ f”) that we are talking of a germ and not a function.

Similarly, we will sometimes treat germs as functions and manipulate them thus

in expressions, but of course to do this it is necessary to make sure that the

statements we make are true whatever (U, x, f): we use to represent the germ. For
example, if g, g1, g2 are germs, the equation g = g + g is meaningful because of
the definition of equality of germs. So we can define gy + g, as a germ, or more
generally given germs gj,...,gn and an analytic function F : C* —» C we can
define a germ F(g1,...,0n). Similarly, since the functions corresponding with
germs must be analytic, we can define derivative functions of germs which are
also germs.
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The following is a typical elementary property of germs:

Lemma 8.2:3. Let f and g be two germs on x and suppose that the value of g
at x is non-zero. Then there is a germ E’;— at x such that g(é) =f.

Proof. Suppose f = (U,x,f') and g = (V,x,g'). As g’ is analytic, and

g'(x) #0, we can find a neighbourhood W C U NV of x such that g’ is non-zero

on W. Thus &; 7 is analytic on W and it is easily seen that = (W,x, ;—lf) will do.

Definition 8.2:4. A Vector Germ at x of Dimension k (a non-negative integer)
is a list f = (fy,...,fx), where each f; is a germ at x. We call the f; the
Entries of f, and, as here, denote the j*® entry of f by f;.

Consider the set of germs at x € CT x (1 )°. We can drop the identification

implicit in (é%)s and regard x as belonging to C™*S. Suppose x = (A; ©) where

©® € C" and A € (£.)°. Take some positive R < 7 and let B be the open ball in

C* about © of radius R. No distinct elements of B are identified in (£)°.

Definition 8.2:5. Given a germ (U, x,f) at x € C"™*, we identify it with the
germ (LN (CT x B),x,f) at x € C" x ().
By the definition of equality for germs (in Definition 8.2:1) this identification
bijects germs at x € C'** and germs at x € C" x (<)° and commutes
with addition, multiplication, composition with other analytic functions, and
differentiation. So we can and shall use this identification implicitly.
In this chapter we denote the co-ordinates of C x ( %)s by (in order) the

names A, 04,...,0.

Definition 8.2:6. Let G be any germ on C x C® and g any germ on CS.
(1) G is the germ 3§.

(2) Gy(n) forn>0is the germ a)\S.
(3) For any j between 1 and s, Ge, is the germ S and 9o, 1s the germ —695—.
(4) VG is the vector germ (Gy,,...,Ge,.) and Vg is the vector germ

(991) . ’99 )

For example, suppose that the germ G is represented by (U,x,g). Then G, is the
germ represented by (U,x,g’), where g’ is defined so that

9g(t; 0)

9'(%8) = =,

Note that VG does not involve G,. This is because we will treat derivatives
with respect to the 8; separately from derivatives with respect to A.
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Definition 8.2:7. If g is a germ at x, then g is Defined on U if the following
are true:

(1) U is a convex open set containing x.

(2) g can be represented as (U,x,9') where g' : U — C is analytic.

Ifx € (i—c—“)u x CV, we nevertheless regard U as a subset of C**¥ and define

convexity in that.

Definition 8.2:8. If g is a germ at x, then g is Defined at y if there is a set U

containing y on which g is defined.

Definition 8.2:9. If g is a germ at x, and Z is a set, g is Defined Throughout
Z if g is defined at every element of Z.

Lemma 8.2:10. IfU is a connected open set, g is a germ, and y € U, then for
any (U,x,g') representing g, g'(y) is the same.

Proof. If g is represented by (U,x,g7) and (U,x,g3), then g7 and g; must be

equal on an open set V contained in U. The lemma follows from the Principle of

Analytic Continuation ([HERVE,1987], Chapter 1, Section 1, Corollary 2).

Lemma 8.2:11. If g is a germ defined at y, then for any U containing y such
that g is defined on U, and for any (U,x,g') representing g, 9'(y) is the
same. )

Proof. Suppose g is defined on Uy and U3, both containing y. Suppose g 1s

represented by (Uy,x,g7) and (Uz,x,g5). We need to show that gj(u) = g5 (y).

Let U = Uy N U;. Both Uy and U; are convex and contain y; therefore U

1s convex, hence connected, and contains y. g is defined on U, and g can be

represented by (U,x,g1) and (U,x,g5). Thus by Lemma 8.2:10, g§(y) = g5(y)

and we are done.

Definition 8.2:12. In the circumstances of Lemma 8.2:11, then g(y), the Value
at y, is equal to g'(y). '

Any germ g at x is defined on some set; for example we can just choose

a sufficient small open ball about x. Thus this definitidn generalises

Definition 8.2:2. '



Definition 8.2:13. A vector germ f = (f;,...,fx) at x is Defined on U

if each of its entries is defined on U. Fory € U, its value at y, f(y), is

(fi(y), ..., fely))

If we have two germs or vector germs at x, f and g, defined on U and V
respectively, let W =U N V; then f and -g are defined on W. By the definition of
f + g, there is a neighbourhood of x such that (f + g)(y) = f(y) + g(y). Let h
be the analytic function on W taking y to f(y) + g(y); then it follows that the
germ (W, x,h) equals f + g. Hence h = f + g and we deduce that for ally € W,
(f+9)(y) = f(y) + g(y). In a similar way we deduce that if f and g are germs at
x, then for all y € W, (f x g)(y) = f(y)g(y)-

The operations of addition and multiplication make the set of germs at x a
commutative ring, which we denote by H,. H, contains a copy of C, withz € C
being represented by the germ of the function taking everything to z. We shall
identify this germ with z. J{, has additive and multiplicative identities, which
are thus 0 and 1 respectively. By Lemma 8.2:3, any germ g with g(x) # O is
invertible in this ring. Conversely, if g is a germ with g(x) = 0, then it cannot be
invertible for if h was its inverse we would have f(x)g(x) = 1.

Definition 8.2:14. . % {g € % | g(x) = 0}.
Thus H,, is the set of all non-invertible germs at x.

Definition 8.2:15.

(1) Let U be a set. Two germs g1,92 € Hy are said to be Equivalent on U if
they are defined throughout U and there is an analytic function h:U — C
such that for all v € U, h(u) # 0 and g1 (u) = h(u)gz (u).

(2) 91,92 € Hx are said to be Equivalent if they are equivalent on some open set
containing x.

It is easy to verify that gq,92 € H, are equivalent if and only if there is some

germ h with h(x) # 0 and g7 = hga, by expanding definitions and remembering

that h(x) # 0 if and only if there is an open set containing h(x) throughout which

h is non-zero.

It is also easy to verify that equivalence is an equivalence relatiox'l, and that
for fixed U equivalence on U is an equivalence relation. However it is important
to keep in mind that if two germs are equivalent, it does not follow that they are
equal. For example, if g is a germ and A is a non-zero complex number then g is
equivalent to Ag.
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Lemma 8.2:16. If germs at x, gy and g3, are equivalent on a set containing y
and g1(y) = g2(y) = 0, then at y, for any co-ordinate function x;, g%; =0 if
and only if %%2 =0.

Proof. Write g1 = hg, with h(y) # 0. Then at y, by the product rule,

%}f— = h(y)%—‘;—; hence the lemma follows.

Definition 8.2:17. If f is a non-invertible germ at x, it is Reducible if there
are two non-invertible germs at x, f1,f,, with f = f1f,. Otherwise, f is
Irreducible.

Now in fact the ring of germs at x is a unique factorisation domain, so:

Theorem 8.2:18. Given a non-invertible germ f at x, we can find a finite
family F of irreducible germs at x with product f; furthermore this family is
unique up to equivalence.

Proof. This is [HERVE,1987], Chapter 2, Section 3, Theorem 3.

Definition 8.2:19. Let f be a germ at (A;0). Then I(f) is the set of all germs
h at (A;0) such that on some neighbourhood U of (A;0) on which h and f
are defined, {u e U | f(u) =0} C{ue U|h(u)=0}

Lemma 8.2:20. Let f and F be as in Theorem 8.2:18. Then I(f) = (), ¢ I(h).
This follows by [HERVE,1987], Chapter 2, Section 8, Definition 9, Example 2.

Lemma 8.2:21. Let G be a germ at (A; 0) with GA(A;0) # 0. Then G is
irreducible.

Proof. Otherwise, suppose G = AB where A,B € H}; then A(A;0) =B(A;0) =

0, so G, = A\B + AB, is equal to 0 at (A; 0), a contradiction.

Lemma 8.2:22. Let G,G be germs at (A;0) with (G4)a(A;0) # 0 and suppose
there is a neighbourhood U of (A;0) such that {a € U | Gy(a) =0} C{a €
U | G(a) =0}. Then there is a germ h at (A;0) with G = hGj.

Proof. By Lemma 8.2:20 and Lemma 8.2:21, I(G;) is generated by G;.

However clearly G € I(Gy). Thus we can find an h with G = hG; and the lemma

follows.

|




Lemma 8.2:23. Let G,Gy,...,Gm be germs at (A°;0°) such that for each
Gi, (Gi)a(A%6°) # 0, and suppose there is a neighbourhood U of (A°;6°)
such that at any (A;0) € U with some G;(A;0) =0, G(A;0) = 0, and the
multiplicity of the solution A' = A to G(A';0) = 0 is greater than or equal
to the number of G; with Gi(A;0) = 0. Then there is a germ h such that
G=hGy---Gn,.

Proof. We prove this by induction on m. Clearly it is trivial if m = 0. If

m = k + 1, apply Lemma 8.2:22 to find a germ h' with G = h’'G; and let

U’ be a neighbourhood of (A°; 6°) contained in U such that for (A;8) € U’,

(G1)a(A; 0) # 0. By elementary properties of multiplicities, the conditions of

the lemma hold for h, Gj,..., Gy, with U’, so inductively we can find h with

h! =hG3---Gn, whence G =Gy--- G-

Lemma 8.2:24. Suppose Gy and G, are analytic functions defined on some
open set U such that at any a € U with Gy(a) = 0, there is a germ h at a
with G2 = hGy, where both sides are considered as germs at a. Then there
is an analytic function H defined on U with G; = HG;.

Proof. If Gj is identically 0 throughout U, then so is G, and the lemma is

trivial. Otherwise, let S ={x € U | G1(x) = 0}, and define H = § on U\ S; H

is analytic on U\ S. We need to show that H can be extended to the whole of

U. To show this we will apply [HERVE,1987], Chapter 3, Section 1, Theorem 2.

By this, we can extend H to the whole of U provided that any a € S has a

neighbourhood on which H is bounded. To show this, let h be a germ at a with

G2 = hGy; then h = H on a neighbourhood of a, but h is continuous at a, so the

-

lemma follows.

Definition 8.2:25.

(1) Suppose that g is a germ at x defined on U and that y € U. Then gV is the
germ at y given by (U,y, g).

(2) Suppose that g is a vector germ of dimension k at x defined on U. Then gY
is the vector germ at y given by ((U,y,(g1)Y),..., (U,y, (gx)¥))

In this definition we see that g¥ is also defined on U.
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Definition 8.2:26.  For f a diffeomorphism and y in its domain write J(f)(y)
for the Jacobian (or determinant of the matrix of derivatives) of f at y.
We now state a version of the Implicit Function Theorem.

Theorem 8.2:27. Let G be a germ at (A°;8°) defined on U, and suppose
Ga(A%;8°) # 0 and G(A%;08°) = 0. Then we can find open neighbourhoods
V C U and W of (A%;6°) and 6° respectively, together with an analytic
function g : W — C such that the sets {(A;0) € V| G(A;8) = 0} and
{(g(8);0) | 8 € W} are identical. Furthermore, for (A;0) € V G)(A;0) # 0.

Proof. We use the inverse function theorem, as proved in [HERVE,1987],

Chapter 1, Section 5, Theorem 1. We may assume that U is sufficiently small

that it can be regarded as a subset of C x C$, ignoring the identification involved
C

in (5)"

Define f : U — C by f(A;8) = (G(A;6);6). Then J(f)(A%;8°) = G»(A°; 8°),
and so is non-zero. Thus by the inverse function theorem, there are open
neighbourhoods V of (A%;8°) and V' of f(A%;08°) = (0;6°), such that fis a
bijection from V to V' with an analytic inverse h. Clearly h(t;0) = (A;0)
where G(A;0) = t. Define W = {0 | (0;0) € V'}. Define g : W — C so that
h(0;0) = (g(0);0). Then it is easily seen that V, W and g satisfy the conditions
of the theorem, with the exception of the last sentence. For this, note that
since f : V — V' and h : V! — V are inverses and both are differentiable
J(f)(A; )] (h)(f(A; 0)) = 1. So for any (A;0) € V, J(f)(A;8) # 0 and hence
Ga(A;0) 0. ’ ‘ g

Corollary 8.2:28. ‘ .

(1) For any (A';0') € V, the equation in A, G(A;0') = 0, does not have a root of
multiplicity 2 or more at A = A'.

(2) For8 e W, (g(6);0) € V.

(3) g(8°%) =A°.

Proof. These all follow immediately from the statement of the theorem.
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Theorem 8.2:29. In Theorem 8.2:27, we may assume that V = W' x W
where W' is a convex open neighbourhood of A° and W is an open convex
neighbourhood of 6°.

Proof. Find V, W and g as in Theorem 8.2:27. Let W' be a convex open

neighbourhood of A° and X a neighbourhood of 8° such that W' x X C V. The

set {8 € X | g(8) € W'} is an open neighbourhood of 8°. Choose Y to be a

convex open neighbourhood of 8° contained in this set. Then in the statement of

Theorem 8.2:27 replace W by Y and V by W' x Y. It is then easy to check that

this suffices.

Corollary 8.2:30. In Theorem 8.2:29 W' and W can be made arbitrarily
small, so that if T' and T are any open neighbourhoods of A° and 9°
respectively, we can additionally require that W' C T' and W C T, and that
g can be analytically extended to W.

Proof. Let T'bea neighbourhood of 8° such that T' C T. In Theorem 8.2:27,

and so Theorem 8.2:29, we can féplace UbyUN T! x T'; then we must have

V=W'xWCT'xT'andsoW'C T and WC T.

Definition 8.2:31.  We say that g is a Root Function for G on W' x W
if it satisfies the conditions of Theorem 8.2:29 and, with V = W! x W,
Theorem 8.2:27.
Thus Theorem 8.2:29 says that we can find W', W, and a root function for G
on W' x W, and Corollary 8.2:30 says that W' and W can be made arbitrarily
small. ' .

Lemma 8.2:32. If G is a germ at (A°; 6°) with root functions for i=1,2, g; on
W]} x W;, then g1 = g2 on Wi NWs.

Proof. LetW = {6 € Wy NW;z | g1(6),92(0) € W] nw]}.

Since Wy, W3, W], W2 are open, 8° € W' n W2, A° ¢ W] N W2, and

g'(8°) = g%(6°) = A° (by Corollary 8.2:28 (3)), W is an open neighbourhood of

8°. So by Lemma 8.2:10 it is enough to show that g; and g, are equal on W.
But if 8 € W, then for i = 1,2, gi(8) must be the unique element A of W]

such that G(A; 0) = 0; as gi(6) € W] N W} we must have g1(8) = g2(8) which

concludes the proof of the lemma. ’
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Lemma 8.2:33. If G is a germ at (A%; 6°), and g is a root function for G on
W' x W (so in particular G(A%;8°) = 0) then for any (Al;0") e W' x W
with G(A';8") =0, g is a root function for GA'i®") on W' x W.

Proof. This is true as we made no mention of (A% 6°) in Theorem 8.2:29

except by requiring (A%;08°) € W' x W and G(A%;6%) = 0, so we can replace

(A%:8°) by (A';8') without problems.

Theorem 8.2:34. Fori = 1,2 suppose g' is a root function for G', a germ at
(A%;8°), on W' x W. Then the following are equivalent:
(1) G' and G? are equivalent on W' x W.
(2) G' and G? are equivalent at (A% 6°).
(3) For8 e W, g'(8) = ¢g2(0).
(4) The germs (W, (A%;0°),g") and (W, (A%;8°), g?) are equal.
Proof. (4) and (3) are equivalent by Lemma 8.2:10. Now we suppose (2) and
deduce (4). Since G' and G2 are equivalent at (A%;8°), by Definition 8.2:15,
there is a convex open set U C W' x W containing (A% 8°) and an analytic H
non-zero on U with GZ = HG'. Thus if (A;0) € U then G'(A;0) = 0 if and only
if GZ(A;0) = 0. However by the definition of a root function, we know that if
A€ W! and 6 € W then for i = 1,2, G}(A;0) = 0 if and only if A = g*(8). The
functions taking 6 to (g*(0);0) is continuous; also by Corollary 8.2:28, (3) each
g*(8°) = A°. Solet U’ be an open neighbourhood of 8° such that for 6 € U/,
each (g*(0);8) € U. Then we see that for 8 € U’, g'(8) = g?() from which (4)
follows.
By Definition 8.2:15, (1) implies (2). So we finish the proof of the theorem
by showing that (3) implies (1). So suppose (3). o
Fori=1,2,let X' ={(A;0) e W' x W | g%(8) = A}. Since on W,'g! = g2, we
deduce that X' = XZ; let X = X' = X2. Let (A;0) € X. For i = 1,2, consider G*
as a germ at (A;0); By Lemma 8.2:21 G is irreducible, and so by Lemma 8.2:20
I(G') is the ideal generated by G'. However, since g' = g2 on W, the zero
sets of G and G2 are equal on W > (A;8), and so G2 € I(G'). Thus we can
find a germ h at (A;0) such that G2 = hG'. So by Lemma 8.2:24, there is an
analytic function H : W' x W with G> = HG'. Applying the same arguments
with G' and G? exchanged, we see that there is also an analytic function
H': W x W — C with G = H'G2. Thus for u € W' x W\ X, G'(u) # 0,
so H'(WH(u)G' (u) = G'(u), so H(u) # 0. For u € X, we have G'(u) =0
and GZ(u) # 0; however G2(u) = Ha(w)G' (u) + H(u)G] (1) = H(w)G} (u); so
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H(u) # 0. This completes the proof that G' and G2 are equivalent and the proof
of the theorem. [

Lemma 8.2:35. Suppose g is a root function for G on W' x W. Then the

function h on W' x W defined by h(A;0) = A — g(0) is equivalent to G.
Proof. It is easy to check that g is a root function for h on W' x W. Therefore
the lemma follows from Theorem 8.2:34.

Theorem 8.2:36. Let m be a positive integer and suppose f is a germ at the
origin of C™, which we call 0, mapping to C, and that f is not identically 0,
but f(0) = 0. Then we can choose a basis of C™ with respect to which there
is a germ { equivalent to f of the form

P .
V(X100 3Xm) = x‘,’“+ZCk(X1,---,Xm—1)X&_k (7)
k=1

where each cy Is analytic and equal to 0 at the origin of C™'. The value of
P Is unique.
This is part of the Weierstrass Preparation Theorem, which is proved in [HERVE,
1987], Chapter 2, Section 1, Theorem 1. From this proof we also observe

Corollary 8.2:37. )

(1) In Theorem 8.2:36, we can choose any basis of C™ provided that f is defined
at its m't element, a, and f(a) #0.

(2) In Theorem 8.2:36 we can choose the basis to consist entirely of real vectors.

Proof. (1) follows immediately from the proof in [HERVE,1987]. For (2),

observe that we only need to find a real vector a lying sufficiently close to O such

that f(a) # 0. This must exist, for otherwise all the derivatives to any order of f

would be 0, and so its Taylor series would be 0; hence f would be identically zero.
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Lemma 8.2:38. Suppose m is a non-negative integer, f is a germ at some
element x of R™, and f is not identically 0. Then there is a neighbourhood
U of x on which f is defined such that the set {y € UNR™ | f(y) = 0} has
gero measure in R™,

Proof. If m = 0 the lemma is trivial. Otherwise let 1 and p be as in

Corollary 8.2:37, (2) and let U be such that ¥ is defined on U and f and ¢ are

equivalent on U. From Display (7), for any y' € R™!, there are at most p values

of t such that ¥(y’,t) = 0. As the measure of R™~! is 0 in R™, the lemma

follows.

§8.3. Differential Equations
In Section 8.4 we will construct germs which we shall call threadings as solutions
of differential equations. To justify this construction, we need some basic results

about solutions to differential equations.

Theorem 8.3:1. Suppose Z is a vector germ of dimension s at (A°;6°) where
A% € C and 6° € CS. Then there is a unique vector germ of dimension s, ¢,
at (A%,A%; 8°) (which is in C x C x C®) such that the following equations are
satisfied, where left and right hand sides are compared as germs of functions

in (A, w; 0).
(1)
$(A,A;0) = 6.
(2)
ap(A',1;0)

o Iaa = ZO5 6, ;).

There is a standard argument for proving the existence and uniqueness of
solutions to differential equations, developed, for example, in [BIRKHOFF&ROTA,
1989], Chapter 6. We will now adapt it to prove Theorem 8.3:1. Let U be an
open set containing (A% 6°) on which Z is defined.

We turn CS into a Banach Space by equipping it with the Euclidean norm
def ’

1l = €0).
Choose compact convex sets C C C® and C! € C such that C'! x C is a subset

of U and (A%;8°) is in its interior.

|
|
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For (A;0) € U, define the matrix Z'(A; 0) by

a(Z(A; 6):)

(Z'(%;8)) = 300

For x € C%, (A;0 +tx) € U,

dZ(A; 0 + tx)

o It:O = Z'(A;0 + tx)x. (8)

Recall from Theorem 3:3 that the operator norm of Z’ is bounded by M(Z'). As
Z is analytic, M(Z') is continuous. Let M be its supremum on C' x C. Let N be
the supremum of ||Z(A;8)|| for (A;8) € C' x C.

Let D be any open convex subset of C containing 8° such that there is a
& > 0 satisfying for all x e D and y ¢ C, |ly —x]|| > é.

Let € > 0 be less than % and 1ﬁ Let D! be an open convex subset of C’
containing A° of diameter at most €. Therefore D! x D is an convex subset of U.
Let V=D' x D! xD.

Lemma 8.3:2. ForAe D' and 8',02 € C,
1Z(x;0") —Z(A;0%)] < M8 — 7.

Proof. This follows from the Mean Value Theorem applied to the function
taking t to Z(A; 0! +t(62 —@')), by Display (8).
For ¢y : V — C an analytic function, define z(p) : V — CS by

z(P)(A',A;8) = 0 +Jj Z(1,¥(1,A;0)) dt, - (9
where the integral is evaluated along any path in D'. Z(1,9(1,2;8)) is an
analytic function of 1, A, 6, and so as D! is simply-connected the integral in
Display (9) is the same if evaluated along any path from A to A’ in D'. Its
derivative with respect to A’ is Z(A’,P(A’,A; 0)), which is analytic; hence it is
analytic and so is z(1). .

Furthermore, since P (1,A;0) € C, || Z(1,(1,A;8))]| < N, and therefore
lz(W)(A',;8) —8]] < Ne < 6. So z() : V = C, by the definition of 6.
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For YP1,P2 : V — C® two analytic functions, define

d(r,¥2) =  sup WA, A0) =2, A 0)].
(A", N0)eV

Lemma 8.3:3.

d(Z('\b] )a Z(wZ)) < Cd(l‘l)] ’11)2))

where ¢ is a constant less than 1.
Proof. For (A',A;0) €V,

flzW1)(A',7; 8) — z(W2) (A", A; 0)|]
A’

AI
j za,wlu,x;e))dl—J Z(Lwa(LA;0)) dl
A A .

A .
< [ 120w axen -z e e a

< Med(¥1,¥2),

using Lemma 8.3:2 and integrating along the straight line from A to A’. However
Me < 1, so the lemma follows.

Thus d is a contraction mapping. Furthermore, it is easily seen if an
analytic ¢ satisfies d(¢) = ¢, then it satisfies (1) and (2), and vice-versa. This
demonstrates the uniqueness of ¢, since if*'we had two different solutions ¢; and
&2, then, if necessary choosing Cy and C sufficiently small that both are defined
on an open set containing Cy x Cy x C, we would have d(¢1, d2) < d(dq, d2),
which is a contradiction. Existence of a solution follows from the contraction
mapping theorem.

To apply the contraction mapping theorem we need to show that the set
of analytic functions ¢ : V — C is a complete metric space with the respect
to the metric d. This follows immediately from Weierstrass’s Theorem, which
I have copied (changing notation and removing part of it) from [HERVE,1987],
Chapter 1, Section 4. T,
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Theorem 8.3:4. If a sequence (hy,) of functions, analytic on an open subset
U of C*, converges uniformly on every compact subset of U, then the limit
function h is analytic in U.

This completes the proof of Theorem 8.3:1. d
We will take ¢ and Z as in the statement of Theorem 8.3:1.

Definition 8.3:5. We shall say that (D'; D) is Mapped by ¢ if

(1) D! is an open convex set containing A°.

(2) D is an open convex set containing 8°.

(3) ¢ is defined and analytic on D1 x D7 x D.

(4) Z is defined on D' x D.

(5) For \,p € D! and 8 € D we have ¢(A,A;8) = 8 and w(;\#
Z(A; 0 (A, 1;8)).

By taking D' x D' x D with closure inside some ball-shaped neighbourhood

of (A% A% 8°) in which the two equations in the statement of Theorem 8.3:1

are true considered as functions of (A, u; 8), we can certainly find some D! x D

I)\':A =

mapped by ¢. Or we can simply take D' and D as we constructed them while
proving Theorem 8.3:1, if necessary reducing D! and D so that ¢ is defined on
D' xD' x D.

Lemma 8.3:6. If (D'; D) is mapped by ¢ and (A';0') € (D' x D), then the
germ at (A',A';01), $A'2'i8") (see Definition 8.2:25), is the unique solution
obtained by Theorem 8.3:1 for the germ at (\';0'), ZA'®") and (D'; D) is
mapped by cb("""" 0,

Proof. ¢ A'®") gatisfies the conditions of Theorem 8.3:1, replacing Z by

Z(A'e') '

We now give some additional assumptions that can be made if necessary
about D! and D.
We can require D' and D to be arbitrarily small.

Lemma 8.3:7. Let U be a neighbourhood of (A°,A%; 6°); then we ean choose
D' and D with D' x D! x D C U.

Proof. This is easily seen if U is a ball about (A%,A%; 6°), and therefore if U is

any set containing such a ball; clearly U must contain such a ball since it is open.
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Lemma 8.3:8. Let V be a neighbourhood of (A°; 6°); then we can choose D'
and D such that for all \,p € D! and 8 € D, (A\; d(A, 1;8)) € V.

Proof. The function f taking (A, u;0) to (A; d(A, u; 8)) is continuous and

at (A%, A%;8°) it has value (A%;6°). Define U to be f~'(V); then U is a

neighbourhood of (A% A% 8°) and the result follows from Lemma 8.3:7.

In fact the uniqueness condition can be considerably strengthened.

Lemma 8.3:9. Suppose (D'; D) is mapped by ¢. Let w € D' and 8 € D.
Suppose that w : D! — C® is a differentiable function satisfying:

(1) w(n) =6.

(2) ForA e D!

ow(A) ]
5 = Zw(). (10)

Then for A € D', w(A) = (A, 1; 8). J
Proof. Clearly w(A) = cb()\,'ui 0) satisfies (1) and (2). So it suffices to
show that there is at most one w satisfying (1) and (2). This follows from
[BIRKHOFF&ROTA,1989], Chapter 6, Section 12, Theorem 11, where we reduce
the differential equation to a real-value problem by choosing any A € D! and
defining x(t) = w(p + t(A — u)), and letting X(x,t) = Z(p + t(A — p); x).

This strengthens the uniqueness part of Theorem 8.3:1 sirice D' could have
been made arbitrarily small without affecting it.

-

Theorem 8.3:10. Suppose A,v,u € D! and 0, $(p,v;0) € D. Then

d(A,v;0) = (A, 1;d(u,v;0)) (11)

Proof. Define w(A') = ¢(A’,v;0). Then for A’ € D!, w(A’) is defined. Also
w(p) = ¢(¢,v;0) and Lemma 8.3:9, (2) is true. So Display (11) follows from
Lemma 8.3:9.

Definition 8.3:11.  For x,y € R, we define Re(x +1y) =x and Im(x + iy) = y.
Forv = (vy,...,Vs), we define Re(v) = (Re(v1),...,Re(vs)) and

Im(v) = (Im(v1),...,Im(vs)).
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Lemma 8.3:12. IfXCRandf: X — Corf:X — C? is analytic on X, then
Re(f) and Im(f) are analytic on X.

Proof. If f: X — C then for any x € X, we can convert any power series for f at

x to power series for Re(f) and Im(f). If f = (fy,...,fs) € C® the lemma follows

by looking at the fj.

Lemma 8.3:13. Suppose ty € R, xo € R®, and x and X are germs such that
(1) x is defined at to and x(to) = xo0; X is defined at (to;xo).
(2) Considered as germs at p in t, d’:l(tt) = X(x(t),1).
(3) If X is defined on (y,t) € R® x R, X(y, t) is real.

Then for all t € R with x(t) defined, x(t) € RS.
Proof. By [BIRKHOFF&ROTA,1989], Chapter 6, Section 9, Theorem 8,
there is a function x; mapping to R® defined on a real neighbourhood of t,
such that d"&t[t) = X(x7(t),t). Transform the complex differential equation
d—’(‘ig = X(x(t),t) into a real one by defining %X(t) = (Re(x(t)),Im(x(t))) and
(for y1,u2 € R®) X((y1,92),t) = (Re(X(y1 + iy2,t)),Im(X(y1 + iy2,t))). By
Lemma 8.3:12 X is analytic. By the uniqueness of solutions to real differential

equations ([BIRKHOFF&ROTA,1989], Chapter 6, Section 3, Theorem 1), on

any connected real neighbourhood of tg, X is uniquely determined by the two
conditions X(to) = (x0,0) and di‘l(tt) = X(x(t),t). However these are also true in a
real neighbourhood of tg for X(t) = (x1(t),0), so Im(x(t)) =0forallt € Rin a
neighbourhood of to. By Lemma 8.3:12 and Lemma 8.2:10, Im(x(t)) = 0 for all

t € R at which x is defined, as required.

§8.4. Simple Local Threadings :
As before, suppose A° € C and 8° € (£)°. If G is simple (Definition 8.4:2) and
G(A%;8°) = 0, then there are neighbourhoods V! and V of A° and 0° respectively
such that for any 8 € V there is exactly one A € V! with G(A;8) = 0; this root
has multiplicity 1 in A.

A simple local threading provides an analytic function ¢ : V! x V! xV 5V
with the property that for A, u € V! the map taking 8 to &(A, 1; 0) bijects
{0] G(n;0) =0}to {6 | G(A;8) = 0}. For fixed p and 0 we can think of the
function taking A to ¢(A, u; 0) as a Thread through V; Simple Local Threadings
are so called as they divide V into such threads.

We will eventually use simple local threadings to show that measures giving
distributions of roots are analytic by using them to perturb A. In this section we
state and prove conditions for simple local threadings to exist.
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Definition 8.4:1.  Suppose x = (x1,...,%s) andy = (y1,...,Ys) are two
vectors in C®. Then we define @ by x ey = )_x;y;.

Of course, this is very similar to the definition of {, ) at the start of Chapter 3.

However there is no conjugation involved in the definition of e, so x e y is actually

analytic in the entries of x and y. If these entries are real, we have x e y = (x,y).
Let G be a germ at (A%; 8°) such that G(A%;0°) = 0.

Definition 8.4:2. G is Simple if at (A°;0°), G # 0 and (VG ¢ VG) #0.
If the entries of VG are real, then the latter inequality is equivalent to VG # 0.
We will assume that G is simple throughout this section.

Definition 8.4:3.  The vector germ at (A°;8°), Z, is defined by

def G)\VG

z = " VGeVG’ (12)

Since the germ at (A°;0°), VG e VG, has non-zero value at (A%; 8°), the division
in Display (12) is well-defined by Lemma 8.2:3. We now apply Theorem 8.3:1 to

this Z.

Definition 8.4:4. Construct ¢, D', D from Z as in Section 8.3.
Thus for A, € D' and 8 € D we have

S(AA0) = 0 ’ (13)

and
0p(A', ;0 GAVG
‘_——'_(b(a?\,u )l;\,:,\ = — <-€GA.—VE> (A d(A, 1; 8)). (14)

Definition 8.4:5. If ¢, D' and D satisfy Definition 8.3:5 with Z as in
Display (12), we say that ¢ is a Simple Local Threading of G at (A°;8°),
and, as in Definition 8.3:5, say that (D'; D) are Mapped by ¢.

»
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Lemma 8.4:6. Let A,p€ D' and 6 € D. Then

G(A; (A, 1;8)) = G(i;0).

Proof. Write f(A) = G(A; d(A, u; 8)); we want to show that f(A) = G(u;0).
Since ¢(u, u; 0) = 0, this is true if A = u. As ¢ and G are analytic, sois f. So it
1s enough to show that g—{ =0.

However, by the chain rule, we have

af G
’d—A == GA+VG._6_A-
GAVG
= G”VG‘_(%EWG)

= 0.

This completes the proof of the lemma.

Lemma 8.4:7. If G' and G2 are equivalent and for i = 1,2, ¢! is a simple
local threading of G' at (A°;8°), then there is a neighbourhood U of 6° and
a neighbourhood U' of A® such that for any 6 € U and any A, € U' with
G'(1;8) =0, ¢ (A, 1;0) = d2(A, 1; 8).

Proof. We choose U, U! and an analytic H such that (U'; U) is mapped by

each ¢'; and for any A,n € U! and 0 € U, at (A; ¢ (A, 1;0)), H is defined and 1

non-zero, and G' = HG2. This is possible by Lemma 8.3:8.
Choose p € U' and 6 € U with G'(i;0) = 0. As G' = HG2,if G' =0 at

some point in U' x U, then G2 =0 at that point. In particular, G%(p;0) = 0.
To prove the lemma we shall use Lemma 8.3:9. Definew : U! — U by

w(A) = ¢'(A, 1;0). By Lemma 8.4:6, G'(A;w(A)) =0 and so GZ(A; w(A)) = 0.
By the definition of ¢?,

dw ([ GVG!
dA VG e VG!

) iwia) )

Let t be either A or some 0;. Then for A € U, since GZ(A; w(A)) = 0, the

following holds at (A; w(A)): ,
0G! 9(HG?) ,0H G2 0G?
i T e
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Therefore at (A;w(A)), G = HGZ and VG'! = HVG?. So from Display (15) we
see that

dw G:VG?

Fruia (W) wd). (16)
Also we have w(u) = ¢' (1, 1;8) = 0 and so we deduce from Lemma 8.3:9 applied
to ¢2 that ¢'(A, 1;8) = w(A) = $2(A, u;0). This concludes the proof of the

lemma.

Theorem 8.4:8. We can find VI CC and V C (i%)s and an analytic function

g :V — C such that
(1) G is defined throughout V' x V. There is a (D; D) mapped by ¢ with

vVicD!' and VCD.

(2) A€ V' and 8% € V.
(3) V! is convex and open; V is open.
(4) g is a root function for GonV'xV and can be extended analytically to

V! x V.

(5) For any A,p € V! the map taking 6 to ¢(A, p;0) bijects {0 € V| G(n;0) =0}

to {0 € V| G(A;0) =0}, with inverse taking 0 to ¢(u,A; 6).

Proof. Apply Corollary 8.2:30 to find W', W and g from G, such that

W' C D' and W C D. Apply Lemma 8.3:8 to find D' € W' and D such that

(D'; D) are mapped by ¢ and for A,p € D' and 6 € D, ¢(A, 1;08) € W (hence

for 8 € D, $(A°,A%08) =0 € W and so D C W). Apply Lemma 8.3:8 again

to find E' C D! and E such that (E'; E) are mapped by ¢ and for A, pn € E!

and 0 € E, (A, 1;08) € D (hence E C D C W). Define V' = E'. Define
={0 € E|G(A%;68) =0}). Define V={dp(A,A%0) |AcE'&0eV'}).

It remains to show that this V' and V will do. (1) is trivial since
VI=E'CD'and VCD CW. (2)is trivial since \° € V! =E' and 8° € E (by
construction) and 8° = $(A°,A%0°) € V.

Next we show (4). For 8 € V, 8 = $(A,A%;0') for some A € D' and 8' € V'.
As @' € V', G(A%;8') =0 and so G(A;8) = 0. So the equation G(A’;8) = 0 has at
least one solution for A’ € V'; namely A = A’. Furthermore, any A’ € V! ¢ W!
with G(A’;0) = 0 must equal g(0) by Corollary 8.2:30, so (4) follows. Now we
show (5). Take A, € V! and 6 € V with G(u;8) =0. As 8 € V, there must be a
u' € VY and 8' € V! with 8 = $p(p',A%0'). As 08’ € V', G(u';0) =0, and
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ApC V' =E' C D', we have, by Theorem 8.3:10,

d(A, 1 0) = ¢, 1 (1A% 0") = $(A,A%0").

So ¢(A,1;0) € V, and of course G(A; (A, u;0)) = G(p;0) = 0. Therefore the
map taking 6 to ¢(A,pn;0) maps {0 € V| G(p;0) =0}to {6 € V| G(A;0) =0}
To show that it is a bijection, note that by similar reasoning, if 6 € V and
G(A;0) =0, d(1,A;0) € {6 € V]|G(y;0) =0}, and as by Theorem 8.3:10 again

d(, A 0(A, 1;0)) = (A, 1 d(1,A;0)) = 6,

the map taking 6 € V with G(A;0) =0 to ¢(u,A; 0) is a two-sided inverse of the
map taking 8 € V with G(p;0) =0 to ¢ (A, 1;0). Hence both are bijections, and
(5) is true.

It remains to show (3). V' is convex and open by the construction of E’,
since V! = E'. Let f(8) = $(A%, g(08);6) and O ={0 € D | g(08) € V' & f(0) € E}.
D, E and V! are open, and f and g are continuous. So O is open. We will show
that in fact V= 0.

If 0 € Vthen 6 € D and it easily follows that 8 € O. On the other hand,
if @ € O, then f(0) € E, and G(A%;f(8)) =0, f(8) € V'; also g(0) € V'; hence
¢ (g(8),A% f(0)) € V; but by Theorem 8.3:10,

5(9(6),1%(6)) = $((0),2% 6(A°,g(0);0)) = 0

so 8 € V and O C V; thus the theorem is proved. g
We now package all the notation used in the previous theorem.

Definition 8.4:9. A Detailed Simple Local Threading of G at (A°;8°) is a
tuple (¢, V',V, g) where ¢ is a simple local threading of G at (A°;6°) and ¢,
V', V, g satisfy the conditions of Theorem 8.4:8. .

Thus in this section we have shown that if G is simple at (A%; 8°), it has a

detailed simple local threading.
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Lemma 8.4:10. If ($,V',V,q) is a detailed simple local threading of G

at (A%; 0°), then it is also a detailed simple local threading of G at any

(A;0) € V! x V such that G(A;8) =0.
Proof. While the definition of detailed simple local threadings is quite
complicated, it is routine to check that all the clauses will work equally well with
(A; 8) as with (A%; 6°), with the aid of Lemma 8.3:6 and Lemma 8.2:33.

Lemma 8.4:11. Suppose G has a detailed simple local }threading (b, V', V,q).
IfApeV!,0€eV, and G(y;0) =0, then '

ap(A', 1;8) _ Vg .
e = (Gews) o000 v

Proof. By Lemma 8.2:35, the germ G? taking (A;0) to A — g(6) is equivalent to

G. However

_( G2VG2 ) B ( Vg )

VG2 e VG2 VgeVg/ "

Thus by Lemma 8.4:7, Display (17) is true for G(¢;8) = 0 and (A, p; 0) in some
neighbourhood of (A°,A%;8°). In particular, it is true for p = g(8) and (A;8) in
some neighbourhood of (A%; 6°). If we replace p in Display (17) by g(8), both
sides are analytic in (A;8), so by Lemma 8.2:10 Display (17) is true for all A € V!,

0 €V, and p = g(0). But by the definition of a root function, if G(i;8) = 0 and
n € V!, we must have p = g(0), so the lemma follows.

Definition 8.4:12. A detailed simple local threading (¢, V',V,g) is said
to be Contained in an open set U € C x C* if for \,p € V! and 8 € V,
A d(A,1;0)) € UL

Lemma 8.4:13. Let U be an open set containing (A°;8°). Then if G is simple
at (A% 09), it has a detailed simple local threading contained in U.

Proof. This follows by the same construction used

in Theorem 8.4:8, using
Lemma 8.3:8 and Corollary 8.2:30. | ’
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We now prove a theorem which will be crucial when we knit local threadings
together to obtain global results.

Theorem 8.4:14. Suppose that fori = 1,2, G; has a detailed simple local
threading at (AY; 0%), ®; = (1, V], Vi,9i), and Gy and G; are equivalent on
VIinV])x (VinV,). Thenforu€ V] NV] and 8 € Vi N'V,, Gy(k;0) =0
if and only if G2(u;8) = 0. Furthermore if so, and A € V] N'V], then
S1(A, 15 0) = d2(A, 1; 0).

Proof. If for all (A\';8') € (V] NV]) x (ViNV3),and i=1o0r 2, Gi(A';8") #0,

the theorem is vacuously true. Otherwise suppose without loss of generality that

Gi1(A1;0') = 0; then since G1 and G are equivalent, G2(A';07') =0. Fori=1,2,

by Lemma 8.4:10, @; is a detailed simple local threading of G; at (A';0").

For i = 1,2, define the function f; with domain (V] NV]) x (V; N V,) by
fi(A';8') = i(A',9i(8)';0'). Suppose A, € (V] NV]) and 8 € (V7 NV3), such
that Gy(p;0) = G2(w; 0) = 0. We want to show that ¢1(A, 1;8) = ¢p2(A, 1; 0).
Since each g; is a root function, we have g1(0) = g2(0) = n. So it is enough to
show that f(A;0) = f2(A;0). We now apply Lemma 8.4:7. As we must have
91(8") = 92(8") = A, and G1(g1(8');8') = G2(92(8");08') =0, f; =frina
neighbourhood of (A';8'). The result follows by Lemma 8.2:10.

i

§8.5. Local Threadings

We now generalise simple local threadings to local threadings. In constructing a
local threading of G at a point (A°; 6°), we factorise G, and (if possible) construct
a simple local threading for each factor. As we are eventually only going to be
interested in real A, we allow local threadings to ignore a factor H of G provided
that there is a real neighbourhood of (A%;8°) containing no roots of H except
possibly (A%;8°).

Once we have set up this generalisation we shall prove some results showing
that if two local threadings (possibly at different points) overlap, they are similar
in some ways within this overlap. This is necessary as we will eventually obtain
Global Threadings by putting together lots of local threadings.

Throughout this section, we suppose that A° € R, 8° € (&£)°, and G is a
germ at (A%;0°) with G(A%;8°) = 0.
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Definition 8.5:1. Let K be a simple germ at (A°;0°). K is said to be Really
Simple if for some root function g at (A°;8°) of K on some D' x D, if
8 e DNR?, g(6) e R.

Lemma 8.5:2. If K is really simple and g is any root function of K at (A°; 8°)
on D' x D, then for 8 € DNRS, g(0) € R.

Proof. There must be some root function satisfying the conditions of

Definition 8.5:1, and it is clear from the definition of root functions that this root

function agrees with g near 8°; thus for 8 in a neighbourhood of 8°, if 8 € (£)°,

g(8) € R. Consider the function taking 6 € D NR* to Im(g(0)); by Lemma 8.3:12

this function is analytic on DN RS®; it is 0 in a neighbourhood of 8°, and so as D

is convex, the function is everywhere 0. So the lemma follows.

Lemma 8.5:3. If K{,K; are equivalent germs at (A%; 6°) then K; is really
simple if and only if K; is.
Proof. This follows from Theorem 8.2:34 and Lemma 8.5:2.

Lemma 8.5:4. If K is really simple and (¢,V',V,g) is a detailed simple local
threading of K, then if A\,p € VI NR, 6 € VN RS, and K(y;0) = 0, then
d(A, 1;0) € RS,

Proof. This follows from Lemma 8.4:11 and Lemma 8.3:13.

Definition 8.5:5. G is Locally Threadable at (A°; 8°) if there exist germs
H,Gy,...,G, and a neighboirrhood U of (A°; 8°) with:

(1) G=HG;:---G,.

(2) H is defined throughout U, but there is no (A;0) € UN (R x R®) with
H(A; 8) = 0 except possibly (A%; 6°).

(3) Each G; is really simple.
(U,H, G’) where G’ is the family {G1,...,G;} is said to be a Factoring of G
at (A%;0°).

Definition 8.5:6. A Local Threading of G at (A%;8°) is a family given by
{®,..., D} where there is a factoring (U,H, G')‘of G such that we can
write G’ ={Gy,...,G;} where ®@; is a detailed simpIe’ local threading of G;j.
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Lemma 8.5:7. If G is locally threadable at (A%;6°), it has a local threading o
Proof. This follows from Theorem 8.4:8.

Definition 8.5:8. The Range of a local threading T = {®q,...,D,} of G at
(A%; 8°) with respect to the factoring (U,H,G’) is (N;—, V{'; U nN:
where @; = (5, V) 53 V3, 05)

Since each Vj1 is an open neighbourhood of A° and each Vj is an open -

neighbourhood of 6°, the range of a local threading is a pair (V'; V) where V'

is an open neighbourhood of A° and V is an open neighbourhood of 8°. Usually - -

1—)

there will only be one factoring of G under consideration; then we will not bother
to specify the factoring in question when we refer to the range.

Definition 8.5:9.  Adopt notation as in Definition 8.5:8. A Subrange of T is a
pair of open sets (W'; W) with \° € W' C V! and 6° € W C V such that for
A€ W' and 0 € W, and any &;, ¢;(A,1;0) € V.

Lemma 8.5:10. Given a local threading T at (A°; 0°) we can always find a
subrange for it.
Proof. This is immediate from Lemma 8.3:8.

Lemma 8.5:11. Fori=1,2, let (U, H',G"\) be two factorings of G at (A%;6°).
Then up to equivalence at (A°;8°) of germs H! is the same as HZ and G'! is
the same as G'2. _

Proof. Using Thgorem 8.2:18, write G as a product of irreducible geims 7

Gi---GeHy-- Hrz, whéré Gi,...,Gy, are really simple and Hy,...,H,, are

not. Using Lemma 8.5:3, there i is only one way in wh1ch this can be done, up to )

equivalence of the families {G1 yo-+»Gr, } and {Hy,. rz} We now show that for

each i, up to eqmvalence of germs, the famlly G equals the famlly {G1 y- G_r, }  A

and H' =[] H,, this will sufﬁce to prove the lemma. S
Write G/t = (G G’) Then each Gj € H! and by Lemma 8. 2 21 each is

irreducible. Since G = G’ ..GIHY, by Theorem 8.2:18, the famﬂy {G1,-..,G}}

is contained in the fam11y {G1 y+++»Gr }. Furthermore, if the two families are

not equal we must have H = G L for some j and some germ L, by looking

~-at factonsatlons of H‘ Th,ls is not p0551b1e for if g were a root functlon for
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Gj, H(g(0); 6) would equal 0 for 0 near 6° by Lemma 8. 5 2 contradicting the
definition of a factonng (in Deﬁmtron 8.5: 5)

Lemma 8.5:12. Let F = (U H {G1, 1-}) be 'a‘fatfbrir:g of G at (7\0 ’9°)V,
with a threading T = {®1,. r} and range (V'; V) where ®@; is a detailed
simple local threading of G{ Let (V‘ V) be the range of T with respect to
F. Suppose A' e V' NR and 8' e Vn (&)° satisfy G(A';0') = 0. Let the i
such that Gi(A';0') =0 be iy,...,ir. Then thereisa U’ and H' such that

(1) There is a factoring of G at (A';8") F' = (U',H",{G;,,...,Gi,}).

(2) {®@s,,...,Qi,}is a local threading of G at (A!;0') with (Di, a detailed
simple local threading of G, .

Proof. If (A%8°%) = (A';0") then let U’ = U and H' = H; we have nothing to

do. Otherwise let U’ be an open subset of U \ {(A°; 8°)} containing (A';0') such

that if i & {i1,...,1+/}, Gi is non-zero on U’, and let

H' = H H Gi.

ig{iv,-.., i}

Then this lemma follows by checking definitions, with the aid of Lemma 8.4:10.

Theorem 8.5:13. Suppose that for i =1,2, G has a factoring F; = (U;, H;, G{)
at (AY; 0') with a corresponding local threading T; with range (v}, vi).
Suppose A' € V} NV} and 6' € V4 N'V,. Then we find a non-negative integer
k and order each G{ as G; = {Gﬂ, ,Gix,} and each T; as {®@i1,..., Vi, }
so that, letting ®s; = (¢s5, V4, ,,gl,) forallAeV]NV] and 6 € Vy N Va:

(1) For all i,j, ®s; is a detailed simple local threadmg of Gl, at (A%; 0Y).

(2) Fort—l ,2, k < kj.

(3) Gy(A';0') =0 if and only if j < k.

(4) For 1 <j <k, g1;(0) = g2;(0). |

(5) For1<j <k, Gy; is equivalent to G; on (V] f‘lV‘) x (V1 ﬂVz)

(6) For1<j <k, ¢15(A,A%;0) —¢;_,(7\ A 0.

Proof. Fori = 1,2, choose k' and order G! as {Gﬂ yo+-Gik } S0 that

Gi;(A';8') = 0 if and only if j < k'. Use Lemma 8.5:12 to construct a factoring

for G at (A';0') of the form (Uf,H{,{Gi1,...,Giyt}). Using Lemma 8.5:11, we

deduce that k! = k?; let k = k! = k?; and reorder {G11,...,G1x} so that for
1< ) <k, G1, is equivalent to Gz;. We also reorder the T; so that (Dt, isa

1
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detailed simple local threading of Gj; at (A!;8%). From this we deduce (1) (2),
and (3). :

Now suppose j < k. By Lemma 8.5 12 we see that ®;is a detalled smple
local threading of Gi; at (A';8'). Thusin a nelghbourhood of 0, g1; = g2;. "As .
(Vi1 N'V2) is convex, and so connected, by Lemma 8.2:10, g1;(0) = g2; (G) and .
from this we deduce (4). Write g;(8) = g1;(0) = g2;(8). It is easily seen that
gj is a root function for each Gy; on (V] N'V]) x (V4 N'V3). (5) follows from
Theorem 8.2:34. We deduce (6) from Theorem 8.4:14. [

Definition 8.5:14. Let F = (U,H,{Gy,...,G,}) be a factoring of G with a local

threading T ={®,...,D,}, ordered so that Q; = (d’i'vi]'vi’ g;) is a detailed ‘

simple local threading of G; with range (V'; V). Define the Association
Function of T, A1, mapping V' x V' x (&)° x V to the non-negative
integers by

At(AA;0,0%) (18)
= #{i | Gj(r";6") = 0&¥6 ;AN 60

Lemma 8.5:15. IfAt+(A,A';0,0') 50 then G(A;0) = G(A';0') =0.
Proof. Let notation be as in Definition 8.5:14. If j is some element of the
set on the right hand side of Display (18), then G;(A’;68') = 0 and since

8 = ¢;(A,A';0'), Gj(A;0) = G;(A';06') = 0; hence the lemma follows.

Theorem 8.5:16. If Ty and T3 are two local threadings with ranges vy ,V1)
and (V},V2) respectively, and A, A’ € V, ﬂVZ, and 0’ € Vi NV, then
(1) Ife e (2 ) then :

AT,(\A6,6') = Ar,(\N;0,0). a9
(2) Fori=1,2 take Ti = (Ui, Hi, G!) and let G* */er(;' f. Then

Y Ar(AN50,60) - , (20) -
0€(R/20)* . . o
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s if G"‘(?\" 0') # 0, and 6t11érwise is the mu]tip]icity of the solution t = 7\’
‘of the equatmn G*(t;0) = -
Proof. We adopt the notatmn of Theorem 8.5:13 (apart from 6 which has
already been defined differently) and without loss of generality order threadmgs
and factorings in Definition 8.5:14 as in that theorem. From (3) we see that

Gi;(A;08') = 0 &= Gz(A8") =0 & j <k

From (6) we see that if j <k, then

$1;(A,A;07) = ¢z,(7\ A’ 0).

So the set
{i | Gz(A';8') = 0&6 = ¢3;5(A,A';0')}

is the same for i = 1 and for i = 2 whence we deduce Display (19) and (1).
To show (2), note that from the foregoing considerations, the sum of
Display (20) equals k, while G;;(A';0) = 0 if and only if j < k. Furthermore

by Corollary 8.2:28, (1), if j < k then the equation Gy;(t;0') = O has a
root of multiplicity exactly 1at t = A’. So G*(t;0') = [; Gi;(t;8') has a
root of multiplicity exactly k at t = A’; as this equals Display (20) we are
done. [

§8.6. Global Threadings
Now let A° € R and G be an analytic function, n a positive integer, and U an
open subset of (£ ) containing (& )°, as in Definition 8.1:4.

Definition 8.6:1. - G is Globally Threadable at A° if for every 6° € (&)° with
G(A%6°) =0, G is locally threadable at (A%;6°), :
We will show

' Theorem 8.7:1.  If G is globally threadable at A°, uS is analytic at A°.
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Definition 8. 6:2. A Global Threading of G at A° is a finite List

S T= {T1, , T+} and a list {(W]; Wy),.. ,(w,',w,)} such that
(1) Each T;isa Iocal threadmg of G at (7\0 G‘) where 0 E ( 27‘) and
, G(7\° 9‘) = -

@) For each i 1 ( W )isa subrange of T;, and

Uw: 2 {6 € (£)° | G(A%86) = O}

Suppose the range of each T; is (V{';Vi). Ifr > 1 then the Range of T is
(V{!. If r =0 the range is C. The Extent of T is |JW;.
The range is a open set in C containing A°. The extent is an open set in (:,_%)s
containing all 8 with G(A%;0) =

Lemma 8.6:3. If G is globally threadable at A%, it has a global threading at A°.
Proof. Let9 ¢ (%)s be such that G(A%;0) = 0. By Lemma 8.5:7 there is a
local threading Tg at (A%;8); let a subrange of this be (W); Wy). Wy is open
and contains 8. As (&)° is compact, so is {6 € (£) )* | G(A%;8) = 0}, and we
can choose a finite subcover of it by the Wp; let the T; be the associated local
threadings and we are done.

Lemma 8.6:4. If G has a global threading T at A° we can find an open interval
R containing A° and such that if 8 € (2"‘—3-,;()s and A € R satisfy G(A;0) = 0,
then O is contained in the extent of T.

Proof. Let E be the extent of T. Since the range of T is a neighbourhood of

A%, if the lemma is false there must exist sequences At e R and 6' € (zﬂ) \ E

with each G(A};8%) =0 and y A%, Since (& 3 7I) is compact we can, by

replacing these sequences with subsequences assume that in addltlon the 9‘

converge, say to 6. Hence G (7\° 8) =0. By the deﬁmtlon of a global threadmg 0

is contained in E. As E is open and 6‘ — 0 we must have some 6‘ € E wh1ch isa

contradiction. -

One possibility is that there are no 8 € (R)° with G(A% 0) = 0; then IV
the empty set is a global threading at A°. When the empty set is a global
threading, we shall call it the Trivial global threadmg To av01d havmg to ‘; "
allow for th1s possxblhty throughout this sectmn we prove the followmg, from
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which it is obvious from Lemma 8.1:16 that puS is analytic (and indeed O) in a
neighbourhood of A°.

Lemma 8.6:5. If G has a trivial global threading T at A, then there is an
open interval R containing A° such that for any 0 € (%)s, the equation
G(A;8) =0 has no roots A € R.

Proof. This is immediate from Lemma 8.6:4, since in this case the extent of T
is the empty set.

§8.7. uS is analytic at A°
In this section we prove the following theorem.

Theorem 8.7:1. If G is globally threadable at A°, then uC is analytic at A°.
We will do this by using a partition of unity to rewrite p¢(I), for intervals I, as a
sum of volume integrals, one for each simple local threading contained in a global
threading of G. To show that these integrals are analytic we will use Jacobians
with the simple local threadings providing the change of variable.

Using Lemma 8.6:3, we assume that at A, G is globally threadable with
global threading T = {T;,..., T,} and {(W];W1),..., (W]; W,)}, where the
range of T;is (V]; Vi), and for 1 <i<r, (W};W;) is a subrange of T; such that
Uwi;o{ee (%)s | G(A%;0) = 0} as in Definition 8.6:2, (2). We let R be as in
Lemma 8.6:4; by replacing R with R(Y W] if necessary we assume that R C nwil.
Let E be the extent of T. '

We also define more notation so that for 1 <1 <, T; is the local threading
(®iy,...,Dir } at (AY 9"‘) associated with the factoring (Ui, Hi,{Gi1,..., Gir D),
where each Dy = (¢1,, G Vij, 9ij) is a detailed simple local threading of Gj;.

§§8.7.1. uC in terms of integrals
Definition 8.7.1:1.  For A€ C and 0 € (£)°, let

k if the equation in A, G(A';8) =

0 ifG(A;8) #0;
o - {
has a root of multiplicity k at A" =A.
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Lemma 8.7.1:2. Let I be an interval in R. Then

wem = [ uierae.

R/2n)* A€l

Proof. In fact this is Lemma 8.1:16, rephrased, since if the roots in A’ of
G(A’;0) = 0 are (including repeated ones) Aq,...,Aq, then p(A;0) is the number
of j with A; =2, and so 3, ¢; H(A; 6) = uC®(I).

Definition 8.7.1:3. For1<i<7t,0€V;and A €R, let

k if the equation in A’ [, Gy;(A';8) =0,

0 if [T, Gij(A;0) £0;
w*(A; 0) {
has a root of multiplicity k at A' = A.

Lemma 8.7.1:4. ForA€R, 8¢ (&)

(1) w*(A;8) is well-defined and equals J_go¢w,, )= AT, (A%, A;8,6) (so, in
Definition 8.7.1:3 it makes no difference which V; containing 6 we choose )i

(2) Unless (A; 0) is equal to some (AY;0%), u*(A;0) = w(A;6).

Proof. (1) follows from Theorem 8.5:16. (2) follows from the definition

of a factoring, since if (A;8) € V; but is not equal to (Al; 8%), we must have

H(A; 8) 5 0.

Lemma 8.7.1:5.

W = | Y wose)ae.

R/2n)* A€l

Proof. This follows from Lemma 8.7.1:4, (2) and Lemma 8. 7 1:2, since there
are only finitely many (A%; 6%).
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§88.7.2. Partitions of Unity

Definition 8.7.2:1. Let {fy,...,f;} be a set of continuous functions from
{8 € (&) | G(A%0) =0} to [0, 1] such that 3"]_, fi(x) =1 for all x and
fi(x) =0 for x & W;.
{f1,...,fr} is a partition of unity subordinate to the cover {W;,...,W,}, and
the proof of its existence appears to be part of [BOLLOBAS,1990], Chapter 6,
Exercise 22 (though there is a misprint in the first edition). A more general result
is given in [SPIVAK,1965], Chapter 3, Theorem 11.

Lemma 8.7.2:2. IfAcRand 0 € E then

WA 8) = Y fildy (A% ;0)). (21)
i,j
GEV”

A=gyjy(8)

Proof. Since 6 € E there is an i’ with 6 € W;/. Then by Lemma 8.7.1:4, (1),

w'(A;0) = > Ar,(A%,2;6%86)
00

If A1, (A°,A; 8% 8) # 0 then by Lemma 8.5:15, G(A%; 8°) = 0 so p*(A; 0)

-y (Z fi(6°)) AT, (A°%A;6°,8)

60 i

=D D fi(6)Ar,(A%2;6%0)

i e%ewt
Suppose 6° € W' and At (A%A;6°,0) # 0. Then for some j’ we have
8% = ¢i+5:(A%,A;0) and Gisj/(A%;8°) = 0 (by Definition 8.5:14 and
Lemnia_8.5:15). 8° € V; (since W; C V;) and 6° € Vi (as ® € W/ and
8% = ¢i+3+(A%A;0)). We apply Theorem 8.5:13, (6); thus there is a j with
$35(A, A% 8°) = dirj¢(A,A%;6°). By Theorem 8.4:8, (5), dis5:(A,A%0°) = 6;
hence 0 € Vi. As ® € Wi/ C Vir we deduce from Theorem 8.5:16, (1) that
AT,(A%2;0°,0) = At ,(A%A];0°,6), and so u*(A; 0) ‘
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1, e%ewt
Z H%WA@)

BGVH
A=g45(0)

Z ) f (6°)A-rt(7\° 7\ e° e)

by Definition 8.5:14 and Lemma 8.5:4, and because if f;i(di;(A%,A;0)) # 0,
$i5(A%,A;8) € W, so as before 8 € V; C V;;. This proves the lemma.

U

Definition 8.7.2:3. For 1 <i<r,1<j < and I an interval contained in R,
define

0 .
veve fi(ds; (A", 915(0); 6)) d6
045 (0)EL

Cy(Il) =

Theorem 8.7.2:4.
Wn Zq,

Proof. From Lemma 8.7.1:5 we have

W = | Y weyde

J (R/ln) A€l

= Z u*(2;0)d0 (by Lemma 8.6:4)
‘Exer

o

= Z > f1(¢1, (A% ;0)) de (by Lemma 8. 722)

JE el BE“;"
i

A=g45(0)

= ZJ B’IEV‘” ((')11(A vgu(e) 0)) de

i,j " gyy(e)€t

" This proves the theorem. 0

To show Theorem 8.7:1, it will be enough to show that the cumulative
distribution function taking A to u®(—oo,?) is analytic for A € R. We
will in fact show that ifA' € RandR’ ={A € R| A > A'}then the
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function taking A to u®(A?,A) is analytlc for A € R'. Th13 will do, since

1S (~00,4) = (00, A" + LS (A, ).
By Theorem 8.7. 2 4 th.ts follows from the followmg theorem.

Theorem 8.7.2:5. cij (7\1 ,7\) is analytic for A € R'.
We will prove this in the rest of this section.

Definition 8.7.2:6.
(1) For A € R' define V ={0 € V50 (&) | g5(68) € (A*,A) }.
(2) For A,p € V], define

—Al
;\L—)\‘ (t—=A")+Al.

k—w—)\ (t) =

(3) Define

S ={(Awo) | An € V]&0 € Vi&k, a(gy(0)) €

(4) For (A,u;0) € S define

huea(0) = dij(kuena(g:(8)), 915 (8); 0).
Note that k. is analytic and bijects (A!,A) to (A, p).
Lemma 8.7.2:7.

(1) S is compact.
(2) If\,u € R’ and 8 € V,, then (A, H; 0) € Int(S).

@)

Proof. (1) follows as S is closed and bounded. (2) follows as (A, u, 6) €
{(A\150) | A, 1 € V&0 € Vi;&kya(g:;(0)) € V] } which is an open subset of S.-
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Lemma 8.7.2:8. h,, (0) is analytic for (A, u;0) € S.
Proof. This follows as it was obtained entirely by composition of analytic
functions, and from the information that ¢;; can be extended analytically to
ViTi X -\7;': X Vi3, (Theorem 8.4:8, (1) and Definition 8.3:5, (3)); that g;; can be
extended analytically to V;; (Theorem 8.4:8, (4)); and that its value on the
frontier of V;; must lie within \71'; since it maps V3 into V.

Lemma 8.7.2:9. hy Is a bijection from V), to V,,, and has inverse hacp-

Proof. Define V) ={0 € Vi | g;;(8) € (\1,A")}. It will be sufficient to show ,

the following:

(1) huea(Va) € (£)°. This follows from Lemma 8.5:4, as Gy;(gs;(0); 0) is
necessarily 0.

(2) hpea(VX) € V|, and hj,, is an inverse to h,, . This follows from
Theorem 8.4:8, (5).
This proves Lemma 8.7.2:9.

Lemma 8.7.2:10. For A,A' € R’ and 8 € Vy,

$35(A°, g5 (Racar (0)); hacar (8)) = &45(A°, gs;(0); 6).

Proof. This follows from Theorem 8.3:10 and as, from Theorem 8.4:8 and
Display (22), gs;(hacar(8)) = kaear(g15(0)).

Lemma 8.7.2:11. J(hy-2)(0) is positif/e for © € V,.

Proof. ] o ](h;;(_,()(e) is always real since hy,x(0) maps Vy, C (%)s

toV, C (%‘)s. ] is always non-zero since hy, ) has inverse hy,,, so the
product of their Jacobians is always 1. J must be a continuous function of A, t,
since hy, is analytic in A and p.  Hence ] always has the same sign, since R’

is path-connected, by the intermediate value theorem. hy.) is the identity
transformation (from Display (13)), and so J(haca) = 1. Thus J(hacy) is always
- positive, as réquired. |



152
Lemma 8.7.2:12. rl(hw_j\)(e) is analytic and bounded for (A, 1;0) € S.

Proof._' I’s"‘én'aly‘tic'i_ty follows from Lemma 8.7.2:8; its boundedness follows as S
is compact (Lemma 8.7.2:7, (1)).

Lemma 8.7.2:13. For any fixed A' € R’ there is an open set O C C containing
R’ such that the function taking A € O and 8 € V), to J(haca+)(0) is analytic
in y, continuous in 0, and bounded.

Proof. Apply Lemma 8.7.2:12 and observe that the function taking A to

(A,A'; 9) is continuous.

We now refer to a theorem from [SpIvaKk,1965], (Chapter 3, Theorem 13),
justifying the use of Jacobians in changes of variable.

Theorem 8.7.2:14. Let A C R™ be an open set and g : A — R™ a 1-1, _
continuously differentiable function such that det g'(x) # 0 for all x € A. If
f: g(A) — R is an integrable function then

J f -——J (fog)-|detg’l.
g(A) A

Here g’ is the matrix of derivatives of g, so det g'(0) = J(g)(6). I am not going to
define an Integrable function, but in particular f : g(A) — R is integrable if it is
continuous and bounded and g(A) is bounded.

Now fix A/ € R'. Let A € R'. We have

Cy(ATA) = | (4 (A, 955 (6); 0)) o

GEVU
syg(0re(r! n)
.

= fi(di;(A°, g1;(0); 0)) do
JOEV,

- 255 (A, 055 (Macas (6)); haens (0)))] (haeon ) () A6
..GEVAI : . :

by Theorem 8.7.2:14 and Lemma 8.7.2:11
= [ #(050°,95(0) 0)I(haca)(6) a8 (23)
GEV,‘; .

by Lemma 8.7.2:10.
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To prove that this is an analytic function of A, we need some lenimas about
integrals of analytic fti;ictions.

Lemma 8.7.2:15. ‘I)étA‘,O be an open set in C and K a compact subset of (%) %,
Supposep : K — C is continuous and q: 0 x K — C is analytic. Then the
function F(A) = [, p(8)q(A;6) d@ is analytic for A € O.

Proof. This is immediate from part of [HERVE,1987], Chapter 1, Section 4,

Corollary 2. |

Lemma 8.7.2:16. Lemma 8.7.2:15 remains true if we drop the requirement -
that K is compact and replace it with requirements that K be open in (%)S
and that |p| and |q| are bounded.

Proof. For 5 > 0 let Ks be the set {6 € K | V8’ € (&)°\K||6 -0l > 8).

Each Kj is closed and (as it is a subset of (&.)*) compact; the K5 form a chain of

sets and as K is open [ J;s.,Ks = K. Define

Fs(\) = L p(6)q(A, ) de.

Then by Lemma 8.7.2:15, F5 is analytic. Let N5 = | K\Ks i; then N5 — O as

8 — 0. Let P be an upper bound for [p] and Q an upper bound for |q|. Then F(A)
is defined and |Fs(A) — F(A)| < PQN; for any A. So the functions F5 converge
uniformly to F throughout O, and so by Theorem 8.3:4, F(A) is analytic.

We now apply this to Display (23). Let p(0) =\f1(¢i5 (A, g1;(8);0))
and q(A;8) = J(haea+)(8). p(8) is bounded and continuous since f; is, by :
its definition in Definition 8.7.2:1. We use Lemma 8.7.2:13 to find O. Hence L
q(A; 0) is bounded and analytic. Thus we can ‘apply Lemma 8.7.2:16 to

show that DlsPlaY (23) 15 analytu: in A. This proves Theorem 8.7. 2 Sand < i o

Theorem 8.7:1. - o . e -0

§8.8. When p.G ({A}) #£ 0

In this section we examine one reason why uS m1ght not be analytlc at A°, when Ve

it contains point masses. We find a criterion for this.
Write p for Lebesgue measure in (R )°.
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Lemma 8.8:1. IfpS({A}) #0 and X ={0 € (&)° | G(A;6) =0} then u(X) #0. -
Proof. This is a consequence of Lemma 8.1:16 appﬁed to I={A}=],Al- ”

Lemma 8.8:2. If pG({A}) # 0 then for all 8 € (&), G(A;8) =0. |

Proof. Let f(8) = G(A;0). Let X ={0 | f(6) = 0}; by Lemma 8.8:1 X has
non-zero measure. Suppose the lemma is false so f is not 0 throughout ( %)s.
Thus by Lemma 8.2:10, f is not identically 0 in any open set in (&:)°. We apply
Lemma 8.2:38. So for every 0 € (Z—R;)s we can find an set Ug open in (2’%)s such
that X N Ug has zero measure. Since (&) is compact, choose a finite open cover
Ug,,...of (%r)s; then pu(X) < 3> p(XNUg,) =0; a contradiction.

Definition 8.8:3. Let U’ be the component of U containing (&.)°.

Lemma 8.8:4. If u®({A}) #0 then for all @ € U’, G(A;8) = 0.

Proof. Let f be as in the proof of Lemma 8.8:2. Choose some 6° € ()%
by Lemma 8.2:10 it suffices to show that that f = 0 in a neighbourhood of 6°.
However this follows from Lemma 8.8:2, since all partial derivatives of f at 6°
to any order must be 0; thus the power series for f at 8° must have just zero

coefficients. J

Now suppose HE({A}) #0. /

Then we know that for all 8 € U’, G(A;8) = 0. Note that at any 6° € U/, the
function taking (A’;6') to A’ — A, considered as a germ at (A°; 8°), is irreducible
by Lemma 8.2:21 and divides G by Lemma 8.2:20; so by Lemma 8.2:24, there
is an analytic H with G(A';0') = (A’ —A)H(A’;0'). By dividing Display (1) by
A’ — A we see that we can write : :

h n—2 1 1
r.gty — y/m-! dy.51n1 ‘h'(8')
H(AG0Y) =A™ 4 i§=0 RO + Gy

where each W and h' is analytic in 8’ € U’. However as H is analytic for all A’,
we must have h! = 0, and so we can write H in the same way as we wrote G in
Definition 8.1:4.

For any 6 we have u®® = &, + "%, and hence p€ = 1§, + 2=1yH,
Thus, for example, if H is globally threadable at A% then from Theorem 8.7:1 it
~will follow that M is analytic at A% and thus that near A%, u€ is the sum of a
rpeasure'whith is aﬁalytic at A% and a point mass Lsa.
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§8.9. Application to Lattices

Let L = (G, 7, f) be a weighted lattice. Define notation as in Chapter 6, so for
example define B to be the corresponding adjacency function and operator. Let
n =|Y]. We will soon assume that r =0, so that G contains no elements of finite
order apart from the identity, and that f is a well-behaved lattice weighting; a
term which will shortly be defined. These will then be assumed for the rest of the

chapter.

§68.9.1. Ift>0
We now find out how, if 1 > 0, we can write the spectral measures, and in
particular the spectral measure, as a spectral measure of a lattice where + = 0.
Suppose T > 0. Define terms as in Theorem 6.1:2. Write Gi® for the
subgroup of G generated by {g1,...,9:}, and G* for the subgroup of G
generated by {gr+1,...,9r+s}- Thus we can write any element of G uniquely
as gfi® + g where g1* € Gf and g™ € G™. Define the lattice weighting
' on (G*=,G" x ) by f'(g, (91,v1), (92,v2)) = f(g + g2 — g1,v1,V2).
Let B be the weighted adjacency operator obtained from f and B’ that
obtained from f'. Givenx € H(G x 7Y) define x’ € H(G*,G" x T) by
(x')(go0,(gfin v)) = X(goo+gtin,y)- Then the map x + x’ is an isomorphism between
H(G x T) and H(G* x (G*® x Y")) commuting with {, ), and it is easily seen
that Vx,y € H(G x T), (Bx,y) = (B'x’,y’); thus the spectral measure i,/ y-
(obtained from B') and px,,, (obtained from B) are equal.
Thus, from now on in this chapter, we assume that v = 0, so that G has a
basis g1,...,9s of elements of infinite order.

Definition 8.9.1:1. Well-Behaved Lattice Weightings

In this chapter it will be necessary to impose a further condition on lattice
weightings. Recall that in Definition 3.1:1, (1), where we defined a lattice
weighting, one of the conditions for f to be a lattice weighting was that
Zg‘u - If(g,v1,v2)l is finite. ‘We nbwstrepgthen this condition.
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Definition 8.9.1:2.

(1) A Well-Behaved Lattice Weighting on (G, Y) is a lattice weighting f on:
(G, Y), such that for some open set W C G containing G', and for all
YEW,

2 h(e)f(g,v1,02)l < oo. (24)

g,Vi,V2

(2) A Well-Behaved Weighted Lattice on (G,Y) is a weighted lattice (G v, f),
where f is a well-behaved lattice weighting.
In particular any lattice weighting on (G,Y') with finite support is well-behaved.
So using the identification in Section 3.1, any lattice is well-behaved.
For the rest of this chapter we assume that L is a well-behaved weighted
lattice, and we consider W to be an open set satisfying Definition 8.9.1:2. In fact,
I shall use the next lemma to restrict the sort of set W can be, without loss of

generality.

Lemma 8.9.1:3. We can choose b > 0 such that L is well-behaved with respect
to theset ({z ||zl € (1 —6,1+8)})5. -

Proof. 1° € G' C W, so choose 6 > 0sothat ({z||1—2/<8})* CW. In

particular (1 — 8,1+ 8)° C W. However it is obvious that only the magnitudes

of the co-ordinates of 'y are relevant in Display (24), and the lemma follows

immediately.

For the rest of this chapter, therefore, I will assume that W is of the form
({z|ld € (r,R)])®, where 0 <t < 1 <R.

We showed in Lemma 6.4:16 that BY is continuous in y. The main use of the
assumption that L is well-behaved is the following:

Theorem 8.9.1:4. BY is analytic fory € W.
- Proof. By Display (6.10) we have

(Buzv, = ) f(~g,01,02)¥(9)-
9
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We are going to use Theorem 8.3:4. Choose any enumeratlon g',. . of G for
example by choosmg a basis of G and buectmg Z‘ to the pos1t1ve mtegers in one
‘of the various standard ways avaﬂable Deﬁne

haly) = Zf(—g‘,vuvz)v(g*).
i=1

For y € W, no co-ordinate of y is 0. So for each g € G, the function taking vy to
vY(g) is analytic in W, so each h,(v) is analytic in W. By Theorem 8.3:4, it will
be enough to show that on every compéct subset of W, the h,, tend uniformly to
2o f(—g,v1,02)v(g). So suppose € > 0 and a compact set V to be given. We
will show that we can choose an n such that for any y € V,

[e o]

> If(—ghun,v2)v(gh) < e

1=n+1

First, we show that we may assume that V has a particular form. Write
= (Y1,.--»Ys)- We know that y € W if and only if for all j, |y;| € (r,R). Define
= inf{|y;l | (¥1,.-.,¥s) €V & 1 <j < s}. Then because V is compact this
infimum is attained somewhere inside V which itself is inside W, so we must have
T < r'. Similarly, define R! = sup{h/,l | (Yi,-.-,Ys) €V & 1 <j < s} then we
have R’ < R. Clearly V C v ({z | Izl € [r',R1})%, and V' is also compact, so
We may assume V =V'.
Let g1,...,9s be a basis of G. We know that any g € G can be written
uniquely as }_1g; with all |; € Z; write |;(g) = 1;, so for any g € G we have
9= ¥ 4(g)g;. Define <

. M > .
G(U={+] Tfl_O,
-1 if1<0.

and define o(g) = (o(l; (g)),.. .,0(ls(g))). There are only 2° possible
values for o(g) as g ranges over G. If T is any of these values write

Gz ={g € G| g(g) =T}. It suffices to show that there is an n, such that for any
Y E V.

Y lf(=g,vr,v2)v(g') < =, (29
2ng+1 - o
oleGy

}
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becéiuse then we can choose n to be the largest of the n..

So this is what we shall do. Suppose T given. y only occurs in Display (25)
in y(g'), and there only the magnitude matters. Write y = (y1,.:.,vs);

then v(g') = Hy}’(gl){ The magnitude of this is maximised for y € V by

Y= (‘Yl yee r‘Ys) where

et {R’ if o(l;(g") = +1;
© b (e =1
Furthermore, because T determines each o(l;(g')) for g* € G-, this y maximises -
the left-hand side of Display (25). So we only need to show that there is an n

such that for this particular v, Display (25) holds. However, because * < t' and
R’ <R, this y is in W. Therefore, because L is well-behaved, :

D (=g v1,v2)v(gY) < oo.

i=1
gtece -

Hence, by the convergence of this sum, the result is proved.

§88.9.2. The Characteristic Function
Define F: Cx W — C by

F(A;y) = det(AI — BY).

The function taking x to e'* is analytic on (), and bijects between (=)
and the set of non-zero complex numbers. In particular it bijects ( %r) and TT.

Definition 8.9.2:1. For 6 € (£)° with 6 = (61,.. .,05), we define ¢'® by
el(01,...,85) def (é{e‘ ..., e, |
Now let U={0 € ()" | e® € W}. Uis open. Define G: C x U — C by

G(A;8) = F(r; e'9).
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Definition 8.9.2:2. An analytic function G : C x U — C where U is an open
subset of (£)° containing (&)° is a Real-Root function of Degree n. if

(1) G and n satisfy Definition 8.1:4.

(2) G(A;8) =0 has a complete set of n real roots in A, for any 0 € (£:)°.

Lemma 8.9.2:3. G as obtained above from lattices or well-behaved weighted
lattices is a real-root function of degree n.

Proof. B¢’ is an n x n matrix. By Theorem 8.9.1:4, its entries are analytic in

6. The lemma follows from the definitions of F and G, because the eigenvalues of

B are precisely the roots of the characteristic equation of Bew, or the roots in

A of F(A; '®) = 0, or the roots in A of G(A;8) = 0, which are hence all real, since

for 0 € (257;)5, by Lemma 6.4:17, B¢ is Hermitian, while by Theorem 4:1, (1), all

its eigenvalues are real.

Definition 8.9.2:4. Let p be the spectral measure of B. Let u® be the spectral
measure of B€'®

Lemma 8.9.2:5. p=puS.

Proof. By Display (4.2), u® is the average of the point measures corresponding
to the eigenvalues (including repetitions) of B€'’. As before all the roots of
G(A;0) = 0 are real. Hence we deduce

e G;0

w = uy e,

= u

Combining Theorem 6.5:2 and Lemma 8.1:14 we see that |

o= uo.

We now consider some of the implications of Theorem 8.7:1 in terms of
finding when uC is analytic at some A° for general real-root functions G, rather
than ones obtained just from lattices and weighted lattices. The conditions we
shall obtain will depend largely on derivatives of G. Of course, for lattices and
weighted lattices these can be obtained by expanding out the whole characteristic
polynomial in terms of the 6;. But in practice this may not be the best method,
since if A is a n X n matrix-valued function, the derivative of the determinant
of A is the sum of the determinants A(i), for 1 < i < n, where A(i) is the

i
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determinant of the matrix obtained from A by taking the derivative of the
i*® row and leaving the others unchanged; this rule follows from the one for

differentiation of products.

Lemma 8.9.2:6. IfG:C x U — C is real-root then u® is analytic at A° if for
every 8° € (&)° with G(A%;6°) =0, GA(A%;6°) # 0, and VG #0.
Proof. In this case take any 8° € (£)° such that G(A;8°) = 0; then since
G is a real-root function, it is really simple at (A°;8°), and so (U,1,{G}) is a
factoring of G at (A%;8°). Therefore G is globally threadable; the result follows
by Theorem 8.7:1.
More generally, the following is also true.

Theorem 8.9.2:7. If G is real-root then uC is analytic at A° if for every
68° € (&)° with G(A%;8°) = 0, there is an open set V' C C with A° € V'
and an open set V C (£)° with 6° € V, a non-negative integer m, and
analytic functions g1,...,gm : V — V! such that:
(1) For © € V, the roots A € V' of G(A;8) = O are precisely, counting
multiplicities, g1(8),...,g9m(0).
(2) For every gi, 9i(6%) = A° and Vg;(8°) # 0.
Proof. Let 8° € (&) be such that G(A°;6°) = 0, and choose
V', V,m,g1,...,0m as in the statement of the theorem. For any g;, define the
germ Gj; at (A%;6°) to be G;(A;08) = A — gi(8). We show the existence of an open
set U’ and an analytic function H such that (U’,H,{Gy,...,Gn}) is a factoring
of G at (A% 6°). Certainly, since G is real-root, and Vg;(8°) # 0, each G; is
really simple at (A%; 6°). So it is enough to find U’ and an analytic H: U’ — C
which is non-zero throughout U’ such that G = HG;...Gy,. Find agerm h
with G = hGy...Gym using Lemma 8.2:23. By (1) and (2), the multiplicity of
the root A = A° of G(A;0°) = 0 is precisely m, which is the number of G; with
Gi(A%;6°%) =0, so we deduce that h(A%;08°) # 0. Choose U to be a neighbourhood
of (A% 6°) contained in V! x V throughout which h is defined and non-zero; then
the theorem follows. ' :

It is in fact possible to simplify Lemma 8.9.2:6 by removing the condition
that Ga (A% 6°) should not equal O for every 8° € (£)° with G(A%;8°) = 0. This
is because it turns out that, for any real-root function G, if G()\oi 0°) =0 and
GA(A%;6°) = 0 then VG(A%;8°) = 0. To prove this we proceed as follows.
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Lemma 8.9.2:8. Suppose that f(1,t) is an analytic function defined for (1,t) in
a C2-neighbourhood U of (0, 0), satisfying the following conditions:

(1) For constant t, f(1,t) is a monic polynomial in | of degree D, where D is
independent of t;

(2) At t =0, the equation f(1,t) = 0 has a root of multiplicity at least 2 at 1 = 0.
Then there is a positive integer m and functions yi(z),yz(z) analytic on a
C-neighbourhood V of 0, with y1(0) =y2(0) =0, such that forz € V,

fui(2),2™) = flya(2),z2™) =0,

and if yq(z) = y2(z) = U then f(1,z™) = 0 has a root of multiplicity at least
2atl=1".
Proof. This is a consequence of the existence of Puiseux Series, for which see
[BRIESKORN& KNORRER,1986). Specifically write

k
fLt) = []f(L1)
j=1

where each f; is analytic in a complex neighbourhood of (0,0), such that for
constant t, f; is a monic polynomial in | of degree D; > 0, and such that k is as
large as possible subject to these conditions. This is possible, since we must have
Y Dj =D, and hence k < D.

Hence no fj can be written as a product g(1,t)h(l,t) where g and h are
monic non-constant polynomials in 1 for any constant t. Also, because at t = 0,
we have a root with multiplicity at least 2 of f at 1 = 0, for t = 0 we must have
either a root with multiplicity at least 2 of some f; at 1 = 0, or else there must
exist j1 # j2 such that f;, and f;, both have a root of multiplicity 1 at 1 = 0.
Hence by [BRIESKORN& KNORRER,1986], Section 8.3, Theorem 1 we are done, by
taking either the Puiseux series of f; with m equal to the multiplicity of the root
of f;(1,0) =0at 1=0, or of f;, and f;, with m = 1.
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Lemma 8.9.2:9. Let f satisfy the conditions of Lemma 8.9.2:8. Suppose
in addition that for any t in a real neighbourhood W of 0, the equation
f(1,t) = 0 has a complete set of real roots for 1. Then in Lemma 8.9.2:8 we
may take m = 1.
For j = 1,2, let y; be as in Lemma 8.9.2:8. -For any z € C such that z™ € W,
we must have each y;(z) real. Suppose that in a neighbourhood of z = 0,
y;(z) = X_ axz*. We will show that ay = O unless m | k. Then we can define
yj’(t) =Y amkt® and m’ = 1; then we can use (yj’,m’) rather than (y;, m).
Let g(z) = Zm|k axz* and h(z) = y;(z) — g(z). We want to show that h(z)
is 0 in a neighbourhood of 0. Otherwise suppose that k is minimal such that
ax # 0 and m{k. Then axz* is the leading term in the Taylor expansion of h(z).
If w is any m*® root of unity then for any real r we have (rw)™ € R and so for
sufficiently small r we have h(rw) € R (since g(rw) € R). But we also have

lim h(rw)

k
B o)

= ax (26)

since ayz* is the leading term of h(z). If we look at the argument of
Display (26), we see that karg(w) is constant. This is impossible, since w is
any m*® root of unity and m { k. Thus we have a contradiction and the lemma

follows.

Theorem 8.9.2:10. Suppose G : C x U — C is a real-root function, where
U is an open subset of (%)s, and (A% 6°) € UN (R x (&)°) satisfles
G(A%8°%) =0 and G (A%;8°) =0. Then

VG(A%;8°) = o.

Proof. Choose j from {1,...,s}. We will show that Gg, (A% 6°) =0.
Define the analytic function f(1,t) by

f(Lt) = GA°+1;09,...,00 +t,...,09).

Then at (1,t) = (0,0), f = 2f = 0. So at t =0, the equationin |, f(1,t) =0, has a
root of multiplicity at least 2 at | = 0. Furthermore, for any real t, the equation
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f(1,t) = 0 has a complete set of real roots in 1, since G is a real-root function.
Therefore the conditions of Lemma 8.9.2:9 are satisfied.

So there exist analytic functions yy,y; with y;(0) =y2(0) = 0 such that in
a neighbourhood of t = 0, f(y1(t),t) = f(y2(t),t) =0, and if y¢(t) =y2(t) =V
then the equation in 1, f(1,t) = 0 has a root root of multiplicity at least 2 at
=1

We now apply Lemma 8.2:23 to f,1 —y;(t),1 —y2(t), to find an analytic h
such that in the neighbourhood of (0,0), f = h(l —y1(t))(1 —y2(t)). Therefore
at (1,t) = (0,0), since y1(0) = y2(0) = 0, we deduce from the ordinary product
rule of differentiation that g—: = 0. However this is equal to Ge, (A%; 89), and the
theorem follows. U

Hence we deduce

Theorem 8.9.2:11. If G is real-root then uS is analytic at A° if for every

8% € (£)° with G(A%;6°) =0, VG #0.
If then some lattice or weighted lattice is given and we wish to find out
where the spectral measure p is analytic, we can apply Theorem 8.9.2:11,
and if the conditions of that theorem are not met, perhaps the more complex
Theorem 8.9.2:7. Note one advantage of Theorem 8.9.2:11: if we want to find
pairs (A%; 8°) where it does not hold, we have s + 1 variables (A%, 89;...,09), and
s + 1 equations (G =0, G, =0, ..., Gg, =0). This thesis presents no converse
results which enable us to establish that the spectral measure is not analytic at
some A°, with the exception of those in Section 8.8.

We now consider two lattices, which exemplify these results.

§88.9.3. The Hexagonal Lattice
We considered this in Subsection 6.7.4. Using the same notation as we used
there, if 6 = (01,0;) we have

et _ ( 0 T+e 0 102
- ‘|+eie| +e‘iez o *

We now define G(A; 0) = det(Al — Bew) as before. To find where the
spectral measure u = pu® of the hexagonal lattice is analytic, we shall use
Theorem 8.9.2:11 and look for pairs (A;0) € R x (&)° where G(A;0) =0 and
VG =0.
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To do this we expand out the characteristic polynomial. Then we find that

A2 —(14e79 +e7192)(1 4 €% +¢192)
= A% — 3 —2(cos(87) + cos(B2) + cos(8; — 82)).

G(A; 0)

Thus if the spectral measure is not analytic at A there must be some 6 such that

this is equal to 0, and also

Gg, = 2(sin(B7) +sin(8y — 02)) = 0;
Ge, = 2(sin(B2) +sin(62—04)) = 0

If we solve these equations we find that they have the following solutions:
(1) A =43 with (84,62) =0.

(2) A= =1 with (84,82) €{(0,m), (m,0), (7, )}.

(3) A =0 with (8¢,02) € {(Z, 4F), (A&, &)},

We can therefore conclude that the spectral measure is analytic at all A € R
except for £+3, +1, and 0. This is consistent with Figure 4, which is the output of
a computer program which approximated the spectral measure of the hexagonal
lattice by taking a large number of random values of 0 € (2]3;)5, and finding the
corresponding eigenvalues of Be'. The histogram shows the distribution of the
eigenvalues; we would expect this to approximate a density plot of the spectral
measure. The Y axis shows the number of computed eigenvalues falling in each
range; the X axis corresponds to values of the eigenvalues. As will be observed,
the histogram does indeed look relatively smooth except at values on the X-axis
of £3, 1 and 0.

The results in this thesis do not explain the type of bad behaviour that
occurs at each of these values. In the case of the hexagonal lattice, there are
further techniques which can be applied to each case; these are explained in
[B1GGS,1994], which applies the results of these thesis and some others to the
hexagonal lattice, and a rather more complex one, the Laves graph.
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§68.9.4. Y3

This lattice was described in [BiIcGs&BURFORD,1985], and I will not describe it
here. In our notation it is of the form (Z*,Y,L), where Y has 6 elements, and
(as it is a cubic lattice) L has 9. So it is a 4-dimensional cubic lattice, with a
repeating pattern containing 6 points. Unfortunately it is quite hard, though
theoretically possible, to apply the methods of this thesis to this lattice, since as
T has 6 elements, the matrices involved are 6 x 6. In fact they are given by the

formula

(o ¥ w w00

YiYys Y2 Y&

Y2Ya 0 Y Y Vs

Beie _ %—:? 0 0 0 Y1 %

= 1
0 Loy, 0 0
\ 0 Z oy L 0 0

where we take y; = e*®). Hence the corresponding characteristic functions G are
of the form G(A;04,02,03,04) and have degree 6 in A. For this reason I have not
been able to conduct an exhaustive search for all (A;04,...,084) € R x (%f—t)s for
which G =0 and VG =0, though this seems possible with appropriate techniques
of numerical analysis. However the obvious alternative to using the methods of
this thesis is fo solve the simultaneous equations of degree 6 in A directly for the
eigenvalues and find some bare-hands approach for showing that except at certain
points, the distributions of the eigenvalues are analytic; this would appear to be a
much more forbidding computation. .

I have found some solutions to G = 0, VG = 0; these have A equal to 43,
42, and 0. It may be instructive to consider this in relation to Figure 5, which
was generated using the same method as Figure 4. Indeed the histogram does
not appear to be smooth at these values on the X-axis; however-it also does not
appear to be smooth at some other points, so it seems likely that my list of

solutions is not exhaustive.
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§8.10. Directions for Future Research
It will be seen that the results presented in this chapter are incomplete in that
while they are useful for demonstrating that the spectral measure is analytic,
~provided we can find an exhaustive set of solutions to the corresponding '
simultaneous equations, it has not been shown that the spectral measure is not
analytic where the characteristic function G does not satisfy the conditions of
Theorem 8.9.2:11 or Theorem 8.9.2:7, nor have ways of classifying the different
types of non-analytic behaviour been found. However, it seems likely to me
that some progress will be made in this area. Indeed, I believe I have already
found methods using Morse theory (see [MILNOR,1963]) which classify some
- circumstances in which the spectral measure y, or indeed the measure puG, is
not analytic at particular points, but these are not included here, though it 1s
my intention to publish them soon. Even these methods are quite limited; they
classify the different types of behaviour of the spectral measure of the hexagonal
lattice for A = £3 or +1, but cannot be used to predict what will happen at

A = 0; this requires an ad hoc technique of the sort given in [BIGGS,1994], which
would be hard to generalise to more complex lattices.

The most promising approach to obtaining more general results would
seem to me to involve some sort of surgery, where pairs (A%; 8°) which break

- the conditions of Theorem 8.7:1 are removed, possibly together with small
neighbourhoods surrounding them, some sort of threading is constructed for
the remaining (A; 0), and the total measure is written as a sum of ‘nasty’
contributions from the points which have been removed, and a ‘nice’ contribution
from what remains.

I have deliberately organised this chapter so that the main result, »
Theorem 8.7:1, is stated as a fairly general theorem on functions of several
variables, rather than just as a theorem about spectral measures of lattices.
Indeed, it seems possible these results, and the techniques by which they were
obtained, could be used to gain insights into the behaviour of singularities.
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