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Abstract

This thesis investigates higher order asymptotic properties of a semiparametric averaged
derivative estimator. Classical parametric models assume that we know the distribution
function of random variables of interest up to finite dimensional parameters, while
nonparametric models do not assume this knowledge. Parametric estimators typically
enjoy yn - consistency and asymptotic normality under certain conditions, while
nonparametric estimators converge to the true functionals of interest slower than parametric
ones. Semiparametric estimators, a compromise between the two, have been intensively
studied since the 1970s. Some of them have been shown to have the same convergence rate
as parametric estimators despite involving nonparametric functional estimates. Semiparametric
methods often suit econometrics because economic theory typically does not provide the
whole information on economic variables which parametric methods require, and a sample
of very large size is rarely available in econometrics. This thesis treats a semiparametric
averaged derivative estimator of single index models. Its first order asymptotic theory has
been studied since late 1980s. It has been shown to be yn - consistent and asymptotically
normally distributed under certain regularity conditions despite involving a nonparametric
density estimate. However its higher order properties could be affected by the property of
nonparametric estimates. We obtéin valid Edgeworth expansions for both normalized and
studentized estimators, and moreover show the bootstrap distribution approximates the exact
distribution of the estimator asymptotically as well as the Edgeworth expansion for the
normalized statistics. We propose optimal bandwidth choices which minimize the normal
approximation error using the expansion. We also examine the finite sample performance of

the Edgeworth expansions by a Monte Carlo study.
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Chapter 1.
Introduction

Single index models have been developed to analyze mainly limited dependent
variables (LDV) models and some transformation .models semiparametrically. The
purpose of this thesis is to study higher order asymptotic properties of certain
semiparametric estimator of a single index model. In the following section we review
how parametric estimation fails'in case of model misspecification, then introduce a
semipérametric sihgle index model. Section 1.1 reviews an estimator of its parameters
called density-weighted averaged derivatives. This estimator is shown to be +/n -
consistent and asymptotically hormally distributed even though it involves a
nonparametric estimate with slower conVergence rate than n~"2 .| This thesis
investigates the higher order properties of the estimator focusing on the point if
parametric rate of Edgeworth expansion is possible. Sections 1.2 and 1.3 respectively
explain other semiparametric estimation methods and established higher order
asymptotic theory related to the estimator of interest. Chapter 2 validates Edgeworth
expansions for the density-weighted averaged derivatives suitably normalized, while
Chapter 3 derives valid Edgeworth expansions for the studentized statistic. We further
propose optimal bandwidth choices minimizing the normal approximation error based
on the validated Edgeworth expansion. Chapter 4 compares the bootstrap distribution
to the Edgeworth expansion derived in Chapter 2. Chapter 5 provides a Monte Carlo

study based on a Tobit model.



1.1 Parametric estimation and averaged derivative estimation for single index
model
1.1.1 Parametric regression model and single index model
One of the main interest iﬁ econometrics is the mean response of certain
economic random variables to others. Given two vectofs of random variables X and
Y, if we can consider that the value of Y is determined depending on the value of X,
we would like to make inference on the regression function,
E(Y|X)=g(X) almost surely (a.s.)

where X and Y are called the independent (or explanatory) variable and dependent (or
explained) variable respectively. Let Y be a scalar and X be a dx1 vector. Suppose

(i) we have independently and identically distributed (iid) observations

x7.Y), i=1,2,... of (X"Y) , 7 denoting transpose. Note that it implies

(i)’ (Xi.e) are also iid where €,=Y,-g(X)) , i=1,2, .....
We have by the construction of e, -

(ii) E(e,]X,)=0 a.s.
Assume also

(ili) Var(e,|X|)=0*<o a.s.
and

(iv) Var(X,) =V is finite and positive definite. This implies p, = E(X,) exists.
Supposing

(v) g() is linear in x,
namely g(x)=B"x , classical statistical theory has considered inference on 3. Ordinary
least squares (OLS) method rr;gmzn: (Y;-B"X)* provides a very satisfactory point

i=1

estimate of 8. If rank(X)=d , this problem has a nice closed form solution



Bos = X"X)'X"Y
where X = (X,, X,, =~ ,X,)" and Y=(¥,,Y,~Y,)" , and it is known to be the best
linear unbiased, consistent and asymptotically normally distributed under (i)-(v). The
proof is based on the equality

Bors = (X"X)X"Y= (X"X) ' X"(XB+€) =B+ (X"X)"X"e (1.1)
where €= (€, €,,€,)" . When E|B, sl < o !, || denoting Euclidian norm,
unbiasedness is straightforward by (i)’ and (ii) because

EBoys) =B+ EIE{(X"X)"X €| X}] =B + E[(X"X)' X "E(e|X)] =B .
(i), (iv) and Khintchine’s weak law of large numbers (WLLN) yield

plim%X*X= 0 | 1.2)
where Q=V,+p,py is finite and positive definite due to (iv). plim %X e =0 by
(i)’, (ii)-(iv) and Khintchine’s WLLN. Therefore we have

plimB oy =B + @lim L X7X) plim 1 x7¢ = B (1.3)
n n

d
due to Slutsky’s theorem. Because of (1.2) and -LX e — N(0,0°Q) by (i)’, (i)-(iv),

n
Lindeberg-Levy’s central limit theorem and Cramér-Wold device, we have

lyrnt 1 yr @ _ -
VnBors -B) = (=X"X) ' —X"e—>N(0,0’Q") . 1.4
. n Vn
If furthermore ¢; are normally distributed, B, coincides with the maximum
likelihood (ML) estimator, so that it is efficient in the sense its variance attains
Crameér-Rao lower bound.
As far as (i)-(v) are satisfied, the OLS estimate enjoys the above desirable

properties. Some modified methods have been proposed when they are not satisfied.

In case (ii) is violated, we can apply the instrumental variable (IV) method. If (iii)

1 A sufficient condition is E [A;,l.m(X X)] <o where A_.(A) is the minimum

min

eigenvalue of 4.



is violated, OLS still provides a consistent estimate, but it is no longer efficient, when
~ generalized least squares (GLS) method can be used to derive an efficient estimate.
The asymptotic distribution in case of heteroscedasticity is typically normal or some
Gaussian functional depending on the data generating process (DGP). We also have
enormous research on regression analysis of correlated variables.
When (v) is violated, however; we face difficult problems to resolve. Suppose
g(x) is nonlinear in x in fact but we are ignorant of it, then OLS gives
Bors = (X"X)1X7Y = (X"X)'X"G + (X"X)'X e
where G =(g(X)),....g(X,))" , so that roughly speaking we can think that S,
estimates quantities such as E[(X"X)'X"G] or (plim%X "X)‘lplim%X TG but these
would not be what we want to estimate in regression analysis.?> Thus OLS estimation
will collapse under misspecification in regression function. In econometrics, we easily
face this situation. Important examples include limited dependent variable (LDV)
models such as: |
1) censored regression model (type 1 Tobit model)
Y, =BX,+u)IBX,+u,=0) . (1.5)

2) Truncated regression.model

Y,=p'X;+u; , but Y; are observable only when B°X;+u; =0 .(1.6)
3) Probitmodel : Y,=I"X,+u;=0) , u,|X~idNO0,0% . 1.7
4) Logit model : Y,=IBX,+u,=0) , u;|X~iid logistic . (1.8)
5) Transformation models such as
logY;, A=0
Box-Cox LRV =BX tu, b (Y)={ Y} -1 120 (1.9)

? We can always calculate 3, ¢ formally as long as |X"X|#0 even if it does not
make much sense theoretically. We might think it gives a rough relation between Y and X
as a kind of descriptive statistics.
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Here I(.) is the indicator function and u; are iid disturbance terms. Letting F(.) be
the distribution function of u; conditionally on X, , the regression functions for the
above models are |
censored regression model
E(Y;|X)=BX{1-F-BX)}+ [ ;Xiu dFw) a.s., (1.10)

truncated regression model

1 °° 11)

Probit/Logit model : E(Y;|X;)=1-F(-8X) as. 1.12)

EQY;|X) =B, +

where F(.) is normal and logistic for Probit and Logit respectively,

e P i f_we “dF(u), A=0

Box-Cox model : EY;|X)=9 .., °°
[T A@X 0 M) Fw), A#0

a.s. (1.13)
The functional form of the regression function is nonlinear in X, in each of the
above cases so that the OLS does not work to estimate parameters in these models.
Classical theory has developed two ways that may be able to handle nonlinear models.
One is nonlinear least squares (NLS) estimation and the other is ML estimation. We
explain them in terms of the Probit model (1.7). Exactly the same thinking is possible
for the other models.

Since the disturbances u; are assumed to be independently and identically

"normally distributed with mean zero and variance ¢® in (1.7), (1.12) gives

2
E(;|x)-1- [*% 1 exp(-%)du=l—®(—&) as. (1.14)
~* o o ¢

where ®(.) is the distribution function of a standard normal variate. Only a=/0 is
identifiable here. The NLS estimator is the solution to

miny " {Y; - [1 -<I>(-an,.)]}2 .

a j=1

11



It is known that the estimator is consistent and asymptotically normally distributed.
However if u; are not normally distributed in fact, it means corresponding regression
function (1.14) is incorrect. Thus the NLS estimator becomes inconsistent similarly
to the OLS estimation with incorrect regression form.

We implement the ML estimation as follows. Under the assumption of normal
disturbances conditionally on regressors, we construct the conditional probability
function of Y, given X,

P(Y;=y|X;;B,0%) =F{(1-F)"7,y=0,1
where F,=P(Y;=1|X;;B,0% = q>(-¥) - ®(-a”X,) . ais identifiable again. The ML
estimator for « is defined by

a,, =argmax LL(a)

where
LL(x)= il {YlogF,+(1-Y)log(1-F))} , (1.15)
is the log—likelmo;d function. The first order condition for the maximization is
s(ay; )= Z"l:s,.(aML) =0 (1.16)
where s(a) = %"Q is the score function of the whole sample and

s(a) = a—aa{Y,.log F;+(1-Y)) log (1-F)} is the score associated with observation i.
ML method is known in general to provide consistent, asymptotically normal and
efficient estimates under certain regularity conditions (see e€.g. Amemiya (1985,
p.115-125)), so that it dominates the NLS in the current cases in terms of efficiency.
We refer to Amemiya (1985, p.270-273) for the rigorous proof and conditions of
consistency and asymptotic normality for the current Probit model. Here we would
like to give only a heuristic explanation of the asymptotic properties. Letting a, be

the true parameter value, mean value theorem gives

12



0 s(ay)

. (@), —a)+R
o

S(ayy) =s(ay) +
where R is a d X1 vector with kth element
__a_zs_(a_)__(aML —ag) , a'=0ay+ (1-O)a,, , 0<f<1 ,

@, denoting the kth element of . Supposing «, isbounded, «,, is Op(l) and

1 _Ps@ _ 1y _@s@

_ S OP(I) uniformly in o, we have
noa"day Nt Ja’0ay,

.3
s(@yy) =s(ay) + g(c;‘:o)(aML—aOMOP(n) . 1.17)
(1.16) and (1.17) give
- = -1 125@ 5 ) " 1 5@ (1.18)
ML *0 n da’ 4 n 0 .

if the inverse exists. Khintchine’s WLLN gives

-—s(ao)——zs(ao) E{s,(ay)} =0 (1.19)
and
1 9s(ay) l1en O8{ay) 7
_1 1 R 1.20
n gar nzl da’ (@ (1.20
* LL(a @)

where I(a,) = -E{ } is the information matrix. The last equality in (1.19)

daod a”
is because

E[Sl(ao)] = E[E{Sl(ao) IX 1

P(-agX;) ———L PCaXy) - {1-®(- ch)}jL'X‘—
O( aoXl) 1-P(- aOXI

P
using (1.12) where ¢(z) =d®(z)/dz. Thus we have «,, — a, by (1.18)-(1.20).> We

=E =0

next see the asymptotic normality. We now have R, =0 P(n) due to the consistency,
so that we can modify (1.18) times Jyn to

as(oz)
da’

ey —ap) = —{rll (1)} \/lﬁs(ao) . (1.21)

> For the rigorous proof of consistency, we examine if n'LL(a) converges
uniformly to a nonstochastic function of « taking maximum at a=a, , and other technical
conditions on the objective function such as differentiability and measurability.

13



Since s,(a,) are iid with mean zero and variance () ,

n d
L stag = LY 5@ = NO, (@) (1.22)
vn ni-l

by Lindeberg-Levi’s central limit theorem and Crameér-Wold device. Slutsky’s
theorem and (1.20)-(1.22) give the asymptotic normality
Vi@ -ag) — NO, (@) -
The above heuristic explanation suggests that (1.19) is vital for fhe consistency of ML
estimators.
Similar calculation to (1.16)-(1.22) applies to the following log-likelihood
functions corresponding to (1.5), (1.6), (1.8) and (1.9). The log-likelihood function

of the transformation model under normal disturbances is
log L(B,A,0%) = —%(log 21 + logo?) - 51—2X:h,f(Yi){l'z,L(Y,.) —;BTX,.}2 . (1.23)
o°in1

For the truncated regression model (1.6), assuming normality of «, the log-likelihood
function is
log L(B,0%) = —%(log27r+ logo?)
- LS gy - Y log{1-0(-X)) (1.24)
20% 4 i1
Tobin (1958) first proposes an estimation method of (1.5) to analyze household
purchases of durable goods so that it is called a Tobit model. Assuming normal

disturbances, the log-likelihood function is

logL(B.0%) = {—%<log2v+log02> - L(Y,-—B*X,-f}

Y>0 207

+Y log{l —@(B X
Y0

o

)} . (1.25)

The first term on the right corresponds to the likelihood of the observations with
positive dependent variables and the second term is for the observations with ¥Y=0.

Amemiya (1973) proves that this estimator is strongly consistent, asymptotically

14



normally distributed and efficient. There is no closed form solution for the
maximization of (1.15), (1.23), (1.24) and (1.25) so that we will need to maximize
them numerically.

We briefly review related research to these. Heckman (1976) proposed a least
squares type estimation for type 3 Tobit model mentioned later. The idea can be
applied to estimate (1.5). Since

EY,[Y>0) = BX;+E(u; |u>-pX) = B’X,-w% a.s. (1.26)

where o? is the variance of the disturbance term, d): =¢(E§) and ®,= @(Fé ,
We have
EY;|X)=®,X +0¢, as.

Thus after getting some estimates of ¢, and ®, , we can perform OLS estimation.
Robinson (1982) considers ML estimation of the Tobit model when independence
assumption is violated. He proves it is consistent and asymptotically normally
distributed. Maddala and Nelson (1974) show how consistency of ML estimator does
not hold any more in the existence of heteroscedasticity. A modification to adjust for
the heteroscedasticity is in Maddala (1983). Other types of Tobit model are also
considered:

Type 2 Tobit model : Y=(BX,+€,) I(B1X;+€, = 0) ,

Type 3 Tobit model : Z=(B1X,+e)I(BX,+€, 2 0),Y=(BrX,+€) I(BX,+€, = 0) .
Gronau (1973) and Heckman (1974_) estimate wage function of female workers based
on type 2 Tobit model by ML method, where the latter takes into account the
detemination of hours worked, while the former does not. LS type estimator is

considered in Heckman (1979). Regarding type 3 Tobit model, Heckman (1976)

proposes a two-step least squares estimation based on the similar transformation as

15



(1.26), while Amemiya (1978, 1979) extends the method to estimate all types of Tobit
models based on.their reduced formé by least squares or generalized least squares
method. Comprehensive survey on LDV models caxi be found in Amemiya (1981,
1984, 1985) and Maddala (1983) among others.

We now discuss when and how ML estimation can fail. As seen in the above,
(1.19) is crucial for the consistency of ML estimators. There are two sources of
violation of (1.19) in the above models. One is when the functional relationship is
misspecified in (1.5)-(1.9) and the other is when the conditional distribution of
disturbances is misspecified. If, for example, the model specification (1.7) is correct,
we have E[s,(@,)]=0 as shown in the above. However, suppose it is incorrect but
the correct relation between Y and X is in fact

Y, =I(h(B'X)+u,;=0) , hx)#x . (1.27)

Then —:;s(ao) does not converge to zero in probability since the expected score is
non-zero because E(Y;|X) =1-P(-h(BX)/o) # 1 - P(-a"X)) , whichmeans (1.18)
does not converge to zero in probability. Therefore ML method does not give a
consistent estimate in the case of misspecified relation between variables. The same
thing happens when the functional specification in (1.5), (1.6), (1.8) or (1.9) is
incorrect. Similarly misspecification of disturbance distribution results in inconsistent
gstimate in general due to the violation of (1.19). For example, Robinson (1982)
illustrates how misspecified underlying distribution leads the expectation of score to
non-zero and yields inconsistent estimates for a Tobit model.*

Taking into account that economic theory typically does not provide us the

* There are some exceptional cases like Gaussian pseudo maximum likelihood
estimation for linear regression model, when misspecification of the disturbance distribution
does not cause inconsistency under some conditions.
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whole information necessary to construct likelihood functions®, it is unlikely that we
afe sure of the specification like (1.5)-(1.9) with normal or some other specified
disturbance distribution. Nonparametric and semiparametric methods have been
developed to overcome these misspecification problems. There are many kinds of
semiparametric regression models and their estimation procedures studied until now.
Among thém, semiparametric single index model is a usefull alternative to some
parametric models. It assumes Y depends on a dX1 vector X only through its linear
combination without specifying the disturbance distribution and functional relationship
between Y and S3°X , namely

EY|IX)=gX)=G@BX) a.s. : (1.28)
where G: R—R is assumed unknown. This is a rather general model including linear
regression model, (1.10)-(1.13) as well as (1.27) as special cases. Since ML
estimation is not robust to model misspecification, the estimation based only on (1.28)
without specification of G(.) and the joint distribution of (¥,X) or conditional
distribution of the error Y-E(Y|X) given X may be more favourable than ML
method. We note that models like type 2 and 3 Tobit are not nested in (1.28),
however these are special cases of a multiple index model, a generalized version of

the single index model, reviewed in Section 1.2.

1.1.2 Density-weighted averaged derivative estimation
Several semiparametric estimation methods for (1.28) have been proposed

since late 1980°s. One of them is the density-weighted averaged derivative (AD)

5 It is especially unlikely that economic theory provides the true- disturbance
distribution.

17



estimator by Powell, Stock and Stoker (1989), Robinson (1989) and Cheng and

Robinson (1994),
n -/
U= %E F)Y, (1.29)
i=1
where
~/ n
1 /}(i_X'
)= VKN 1.30
[ &)= KD (1.30)

h is a positive constant converging to zero as n — o and K/(x) =9 K(x)/0x for
a differentiable function K:R ¢ — R satisfying K(u)=-K(-u) and f K(u)du =1 . This
estimator has the following intuition. It is easily seen that 8 in (1.28) is identifiable
only up to scale since G(.) can be any function. For example B=8, Gu)=u? and
'B=2B,, Gu)=u?%4 are equivalent with respeci to (1.28). We could impose a
normalization to make [ identifiable, such as |[3]=1 (Héirdle, Hall and Ichimura
(1993)) or B,=1 (Horowitz and Hirdle(1996)) where B, is the leading element
of B . AD estimation does not employ these sorts of explicit normalization.
Assuming g(x) differentiable, the AD is a nonparametric quantity defined
by E{g/(X)} which measures mean response of Y to marginal change in X. This is
proportional to 3 since

w=E{g'X)}=E{G'BX)IB=cp (1.31)
where G/(u)=dG(u)/du and c,=E[G/(B"X)] is an unknown constant, so that
estimation of AD means estimation of 8 up to a constant. Weighted averaged
derivative

n,= EwX)g'X)) (1.32)
is also proportional to 8 for any weight function w(.) since

E{wX)g'X)}=E{wX)G'BX)}B=cp . (1.33)

Therefore estimates of weighted AD also estimate 8 up to scale. Suppose X is a

18



continuous random vector with unknown density f(x). When the density is used for
the weight, He is called the density-weighted average derivatives. Under the
assumptions that f(x)’g(x) diminishes on the boundary or more precisely
ltllnn | fix)’g(x)| =0 and the integrals in the following equation exist, we have
b= E(fX) g0} = [fos 'widx = - [2f wfo)gerdx
= -EQfX)eX)}= 2E(f'X)Y} (1.34)
using iterated expectation in the last equality. The third equality is because
[rep 2 £ 2 - [erger; s -2 o Doras
=<2 g0 S Dot
due to Fubini’s theorem, integration by parts and the above assumption on
feYgkx) , where dx ,=dx,: dx, dx,,.~dx, . We are concerned with an estimator
of p=-p=2E{f ‘X)Y} in this thesis which is a weighted AD with w(x) =-f(x) and
is also proportlonal to 8. Supposing we have iid observations (X,Y)), ., We
may estimate p by its sample analogue ;Z f(X)Y,; .Ithowever involves unknown
f/(x) so that it is replaced by a consisten:::stimate ;‘/(x) , then we obtain (1.29).
We discuss the properties of }/(x) in 1.1.4. Plugging (1.30) into (1.29) and some
algebra using K'(u) = -K'(-u) yield
( )MEIZ”: i Uy h*“K’( )(Y Y) . (1.35)
This has a U-statl;tllc:] lf;rm so that it is computatlonally less expensive than many
other estimators involving nonlinear optimization such as ML estimators for LDV
mode)s in the above or semiparametric estimators seen in Section 1.2. There are some
variants of AD type estimation depending on the choice of weight function in (1 .32)

and what estimate of f’(x) is plugged in instead of (1.30).

The above authors have studied the asymptotic properties of U under various
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DGPs. Small sample theory is virtually impossible because of unspecified underlying
distribution. Powell, Stock and Stoker (1989) and Robinson (1989) prove the

yn - consistency and asymptotic normality for iid and weakly dependent
observations respectively under certain assumptions on g(.), f(.) and its derivatives

and function K(.) including

1, if [l++l;=0
fRdull'--- u;‘K(u)du = 0, if.0<11+"'+ld<L (1.36)

if 1ol =L
for some positive integer L. K(.) used in (1.30) is called a kernel function and those
satisfying (1.36) are called higher order kernels. L there is called the kernel order.
Higher order kernels are originally developed to reduce asymptotic bias of kernel
estimators of nonparametric functionals and first introduced to semiparametric
framework by Robinson (1988b) for estimation of partially linear regression model.
In the current estimation of p , it is easy to show EU-u=0 (h L) (see (3.21) of
Powell, Stock and Stoker), so that larger L reduces the asymptotic bias of U more
since =0 as n—> o . We see this also in a Monte Carlo study in Chapter 5.
Some methods to construct higher order kernei function are found in e.g. Robinson

(1988b) or Wand and Jones (1995, p.32). Applying the standard decomposition of U-

statistics, we have
in-1 n

U~EU=%§:(Ui—EU)+ )EZ( -U,- U,+EU) (1.37)
)

i=1 j=i+l

-X;

whely; = B, X, Y, - E{ p g , Y- V)X, }

R e ){Y 80l
=h lfK’( )Y, - g}

—p-! f K'w){Y, - (X, -hu)}f(X,-hu)du , by variable transformation
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=h Y, [K /)X, ~huddu - b~ [K ‘@)X, -hu)du
=Y, fK(u)f’(Xi-hu)du - fK(u)e ’(Xi—hu)du , by integration by parts (1.38)

where e(x)=g(x)f(x). Powell, Stock and Stoker (1989) and Robinson (1989) prove
both terms on the right of (1.37) converge to zero in probability, and the first term
times 7 converges to a normal variate while the second term times » converges
to zero in probability under certain conditions for iid and weakly dependent
observations respectively, hence Uis a n - consistent and asymptotically normally
distributed estimatpr of p . For iid case, Theorem 3.1 of Powell, Stock and Stoker
(1989) shows the asymptotic covariance matrix of U is

5 = 4VarlfX)g ‘0] + 4EI{Y - g0V ) X)) (139
and they provide a consistent estimator of V, While Robinson (1989) also calculates
‘the asymptotic covariance matrix and proposes its consistent estimator for dependent
case (see equations (2.14)-(2.21) of Robinson (1989)). We compare (1.39) with the
semiparametric efficiency bound in the following subsectioh. Cheng and Robinson
(1994) study the properties of (1.35) when the observations are long range dependent.

12 and the asymptotic

They show the convergence rate is not necessarily of n
distribution is not normal in general but it can be some Gaussian functional depending -
on the DGP.
We would like to give two remarks on the AD estimation. Firstly, (1.29)-
(1.34) suggest the following possibility of generalization. Suppose we Acan consider
E(Y|X,Z)-H@'X,2)
where H(.. ,.) and B are unknown. This model nests type 2 and 3 Tobit models as well

as the partially linear regression model (1.69) explained later in Section 1.2. Letting

f(x,2) be the joint density of X, Z and }(x,z) be its estimate, we might be able to
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estimate 3 up to scale by %ﬁ: Y, o ;‘(X},Z,.)/ax since
i=1
E[fX,Z)3 gX,2)/3 x] = BEfX,Z)0 HB"X,Z)/3 (Bx)] =-2E[Y(X,Z)
similarly to (1.34) under some regularity conditions. Secondly, even if the
specification (1.28) is incorrect namely Y depends on X not only through its linear
combination, weighted AD estimates may still make sense in that it estimates the
nonparametric quantity E{w(X)g/(X)} which is a kind of average gradient of g(x)

with some weight, especially, when w(x)=1, this is obviously of direct interest.

1.1.3 Semiparametric efficiency bound for the density-weighted AD estimator
We can consider efficiency among semiparametric estimators in the manner
like Cramér-Rao lower bounds. See Stein (1956), Koshevnik and Levit (1976),
Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang and Wellner (1983) and
Bickel, Klaassen, Ritov and Wellner (1993) among others. Semiparametric models
formally assume the distribution of random variables Z is F(z) =F(z;«,J(z)) where o
is a vector of unknown parameters, J(z) is an unknown function and F(.;.,.) may be
assumed known or unknown. (1.28) is an example with Z=(X"Y) , a=0 and
J(.)=G(.). Semiparametric efficiency bound is based on the following consideration.
Suppose we know F(.;.,.) and also we can parametrize J(z)=J(z;§) where the
functional form of J(.;.) is known, then the ML principle gives an efficient estimate
of y=(a0) . The basic idea of semiparametric efficiency bound comes from the fact
that semiparametric estimators should not be more efficient than its parametric ones,
because the semiparametric model F(z;a,J(z)) is a wider class of models than the
parametric F(z;a,J(z;0)) . Let [(y;Z)=1log F(Z;a,J(Z;0)) be the log-likelihood

function and
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(1.40)

[ - p2l2) 31r;2), | e Lot
" ov v Loy 1oy
be the information matrix of the parametric model. Cramér-Rao lower bound for

estimating o is the upper left block of the inverse of I, , I**=[I,, S S % A L
Since semiparametric estimators of a cannot be more efficient than parametric ones,
we define the semiparametric covariance bound as

12%@) =sup Ly~ 1ol g g, (1.41)
where the supremum is taken over all finite dimensional parametrization of J(.;.).
There is no guarantee that there exists a semiparametric estimator which attains this
bound for a semiparametric model, but some estimators have been shown to attain
this efficiency bound. (1.41) indicates that the nuisance function J(.;.) causeé
efficiency ' loss cbmpared with parametric‘ estimation in general. In some cases,
however, we can estimate the parameters of interest asymptotically equally well when
the nuisance function is unknown to the case when it is known. This situation is
studied in e.g. Stein (1956) and Bickel (1982) and referred to as adaptive.

Although the definition of semiparametric efficiency bounds does not directly

lead to its calculation methods, Begun et.al. (1983), Bickel et.al. (1993) and Newey
(1990b) provide methods to compute the bound. Using the method by Newey
(1990b), Newey and Stoker (1993) derive the efficiency bound for the weighted
AD p, =EWX)g'X)] ,

VarwX) g 'X)] + Eu X )N(X)] (1.42)
where u=Y-g(X) and I/X)=-w/X)-wX)f'X)/f(X) . The first term of (1.42)
comes from not knowing g(x), the second from not knowing f(x). Substituting the

weight w(x)=-f(x), we derive the efficiency bound for density-weighted AD

E[-fX)g'X)] ,
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Var[f(X) g'(X)] + 4E[{Y -g@) Y 'X)f Xy . (1.43)
Comparing (1.39) with (1.43), we see the density-weighted AD estimator U does not
attain the semiparametric efficiency bound. We will see efficient semiparametric

estimators for single index models in Section 1.2.

1.1.4 Estimation of density and its derivatives
(1.30) can be seen as an estimator of density derivatives f/(x) at x =X, .
Density and density derivatives estimation has a long history. The most primitive
estimation method for density is histogram. More sophisticated methods have been
developed based on smoothing techniques. Supposing X,i=1,2,... is an iid sample
from a scalar variate X with absolutely continuous density f(x), Rosenblatt (1956) first
applies the kernel smoothing technique to estimate f{x) by
f®)- nih;; K(

where 4 is a positive sequence satisfying A—0 and nh—>© as n—c and K(.)

(1.44)

x-X.
J
7 )

. integrates to unity. This is called kernel density estimator. First order asymptotic
properties of this estimator such as asymptotic unbiasedness, L, or L, convergence,

\/ﬁﬁ - consistency and asymptotic normality have been studied under various
conditions on K(.) and h (see e.g. Parzen (1962), Nadaraya (1965, 1974),
Epanechnikov (1969), Sethuraman and Sibuya (1961)). Berry-Esseen bounds (see
1.3.1) are obtained by Prakasa Rao (1977), while an Edgeworth expansion is

validated by Hall (1991). A natural multivariate generalization

~ n -X. )
f&x) = n,i ,d;L;K(xh L) (1.45)

is proposed in Cacoullos (1966), where X is d-dimensional and K: R 4> R . (1.30)

is based on its derivatives

24



1 < x-X;

~/
= K'(—) . 1.46
oGy K (1.46)

This way of estimating density derivatives is originally proposed by Bhattacharya

(1967) when d=1. He suggesté to estimate the p-th order derivative of f{x) by

~@) n _X.
f w-—Ly kol =) (1.47)
i=1 .

nhP

the p-th order derivative of the kernel estimator (1.44) when d=1. Bhattacharya

(1967) and Schuster (1969) show its asymptotic unbiasedness and strong consistency
respectively, while Silverman (1978) proves its weak and strong uniform consistency.
Singh (1976) generalizes this to multivariate density derivatives and proves the
asymptotic unbiasedness and strong consistency. Other estimation method is proposed
in Singh (1977, 1979).

Kernel methods include user-determined bandwidth . The first order theory
requiresonly # — 0 and nh — o forconsistency or asymptotic normality so that
the practical choice of bandwidth is of interest for empirical use. One possibility of
determining 4 is to minimize the mean integrated squared error (MISE) with respéct
to h. Asymptotic MISE of (1.45) is f :E{}(x)— )2 dx=0 ¢ 2% +n ') under
(1.36) so that the optimal bandwidthis O (n "Y®*9) and hence the asymptotic MISE
results in O (n "2/ +d) (sée e.g. Silverman (1986), p.85 for the case of L=2).
This indicates that larger d yields slower convergence of (1.45) which Bellman (1961)
calls curse of dimensionality. We could consider other criteria such as

f_ :E| fo)-foo)|dx instead of MISE (see e.g. Devroye and Gyorfi (1985)).
Typically, MISE involves unknown functionals of f(x) (see e.g. Silverman (1986),
P.39) and so does the bandwidth minimizing MISE, thus it is infeasible. Plug-in
approach has been studied by many authors for feasible bandwidth choices, where the

unknown functionals in MISE are replaced by their consistent estimates (see e.g.
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Woodroofe (1970), Nadaraya (1974), Sheather (1983, 1986), Park and Marron
(1990), Sheather and Jones (1991)). Cross validation methods have also been
developed for feasible bandwidth choices. Suppose we consider the bandwidth choice
in (1.44). Since minimization of MISE is eqmvalent to minimization of

ff ()dx -2 f f(x)f(x)dx and the second term can be estimated by

K(L) , h minimizing
nn- l)hz ,);,

ff (ke - 1)h212

is a reasonable choice. This is called the least squares cross validation. The ML

principle also can be used for cross validation. ML cross validation treats the
bandwidth like parameters to be estimated and maximizes nonparametrically estimated

likelihood function over 4, namely,

max~ log £L00), £,0%) = Ay K

J*1

Marron (1985) proves asymptqtic optlmahty of this choice. Marron (1987) compares
cross validation techniques, while Marron (1988).gives a brief introduction of these
methods. Faraway and Jhuﬁ (1990) introduce bootstrap method of bandwidth selection
where estimated MISE by bootstrapping is minimized with respect to A.

Optimal bandwidth selection 4 =O (n~Y*9) for density estimate (1.45)
mentioned in the previous paragraph is different from that for density derivative
esthﬁation. Hérdle, Marron and Wand (1990) provides an optimal bandwidth choice
for (1.47) by least squares cross validation. The MISE of (1.46) is

[TE(F 0 -fle s = [ ST @)+ Bias( F ()1 s
=[] SV K CT) B ) - f @ fads

nhu»z dtl

-0 (42 n %)
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under some conditions on f, its derivatives and K(.) including (1.36). The last equality
uses

E(K'(Y) = [TKE 0y =h 4 [ K wife-hudu

=1 [ "KGf (oc-hudu =hd+1{ [ K '@du+ 0 » L)}
=h ¥ + O (14

EK'CE) = [TKE My =h ¢ [ T (K@Y fe-hudu =09 .
This implies that the minimum MISE bandwidth for (1.46) is

h*=Cn T ) | (1.48)
where C is a positive constant. This is different from the optimal bandwidth for
density estimation. We see in the following subsection the optimal choice of 4 for the
AD estimation is different from these choices.

The kernel function is also user-determined. Additional to the condition that

K(.) integrates to unity, we ﬁlay like to impose K(u)=0 which guarantees the
resulting density estimate is nonnegative at all points. Then, K(.) is a density. Various
alternatives have been suggested in the class of density, among which Epanechnikov
kernel has an optimal property that it minimizes the MISE. Higher order kernel
function (1.36) does not satisfy K(u)=0 so that it can result negative estimate of
density at some points, which may be inconvenient. But (1.36) can reduce the
estimation bias so that there is a trade-off between }(x) >0 and smaller bias
of }(x) . In the current AD estimation, however, negative density estimate is not
so problematic as when density itself is of interest. It rather seems to work quite well
in view of the Monte Carlo study in Chapter 5.

There are other principles of nonparametric density estimation such as variable
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kernel estimation, k-nearest neighbour (k-NN) estimation, orthogonal series estimation
and penalized maximum likelihood estimation. We refer to some monographs on
density estimation, Tapia and Thompson (1978), Prakasa Rao (1983), Devroye and
Gyorfi (1985), Silverman (1986), Devroye (1987), Scott (1992), and Wand and Jones

(1995) as well as review papers by Izenman (1991) and Andrews (1995).

1.1.5 Bandwidth selection for AD estimation

As in the density and its derivatives estimation, 4 in (1.35) is user-determined
in AD estimation. Powell, Stock and Stoker (1989) show the rate of decay required
for y/n - consistency and asymptotic normalityis n pdlanpl 50 as n—0
under iid environment, while Robinson (1989), under weakly dependent environment,
shows various rates could apply depending on the moment condition, mixing
condition and the rate of smoothing parameter for nonparametric estimation of power
spectrum involved. The above theory only supplies the rate of decay, but we need to
use a specific value of % in empirical applications. A principle to select a desirable
. h is to take it such that the mean squared error (MSE) E(U - p)* is minimized.
Hirdle and Tsybakov (1993) derive the following bandwidth choice which minimizes
leading terms of the MSE for iid case, ‘

B =hon T, = { -Q_;%Z—’}m '(1'.49)
where Q, and Q, -are constants depending on unknown functionals such as density
of X and éonditional variances. It is interesting that optimal bandwidth selection for
AD estimation (1.49) is different from that for density derivative estimation (1.48).

More specifically, we require less smoothing than derivative estimation. (1.49) is

optimal but infeasible because of unknown @, and Q, . Powell and Stoker (1996)
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propose plug-in bandwidth choices for more general statistics with the form of

density-weighted averages including (1.35).

1.1.6 Estimation of the unknown function G(.) of the single index model

We have shown how we can estimate 3 up to scale in (1.28) by the density-
‘weighted averaged derivatives. The above asymptotic theory on U may be sufficient
when our main interest is, for example, to test linear hypothesis such as B,=0 or

B; =Bj where B, is the ith element of 3. However, if we also would like to know

EY|X=x)=G({B%) , say, for prediction, we need to estimate the unknown function
G() also. Since G(.) is not specified parametrically, we adopt a nonparametric
regression method. U estimates p=c, for some unknown constant c, so that we
rewrite  G(.) correspondingly as G(Bx)=G(c, rx)=H@rx) and consider
estimation of H(.).

Nonparametric regression methods have been developed to consistently
estimate regression functions when we have no information on the functional form,
namely we would like fo estimate E(Y|X=x)=g(x) without assuming any parametric
fbrm. Let f(x,y) be the joint density of X and Y, and f(x)= f_ :f(xy)dy -, Since

forg@ ="y faydy , (1.50)
we could consider the following estimatof of the regression function g(x).

80 = L yfydy (1.51)
where j~’(x,y) and }(x) are suitable estimates of f{x,y) and f{(x) respectively.
However this estimator is inconvenient since integration in (1.51) may not be able
to work out or even worse it might not exist depending on the estimate of the joint

density. Nonparametric kernel regression estimator originally introduced by Nadaraya
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(1964) and Watson (1964) independently is

n -1 n

g0 - {ﬁEIK(T)()} #le YK (1.52)
where A+n A 1—0 as n—> o and K(.) integrates to unity. This is called
Nédaraya-Watson (NW) estimator. Heuristically we can view this estimator as
follows. The inverse factor on the right of (1.52) is the nonparametric kernel estimate
| for f(x). The expectation of the second factor is, under iid environment and certain

smoothness conditions on g(.), f{.) and K(.),

hEIYK(EE) = h 'ECOKED)) = [ "gKE )y
= [ g moK)fo-huydu — g0 f) [ "K@wdu = gy o) (1.53)
as #—0, the third equality using variable transformation. Thus the right hand side of
(1.52) will converge to g(x). When X is a scalar random variable, Nadaraya (1970)
proves its uniform strong consistency, while Schuster (1972) shows the pointwise
asymptotic normality when the estimator is normalized by /nk . Since 4 is chosen
suchthat Ah+n"h'—>0 as n—> » , convergence rate of the regression estimator
is slower than n Y2 of typical parametric estimators. Greblicki (1974) generalizes
(1.52) to multidimensional regressors and shows its strong consistency, while Mack
and Silverman (1982) prove its weak and strong uniform consistency. Devroye and
Wagner (1980a, b) prove E(D,)— 0 and Dli 0 where D= fR d|§(x)—g(x) I"dx .
Singh and Tracy (1977) study estimation of higher order conditional moments
EY*X) .

In the index model, we can apply this method to estimate G(.) or equivalently
H(.). Since U estimate p , we simply regress U"X on Y nonparametrically using

above method. Namely, we can estimate H(u) by
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He) - {—ZK(“ % } ——EYK(" oy (1.54)

The bandwidth a used here need not be the same as 4 used in U. We could consider
choosing a and # simultaneously by minimizing MISE of I} (U'X) . This choicé of
h may be different from the minimum MSE choice (1.49). Which criteria should be
used depends on the purpose of the analysis. |

Other nonparametric estimators of regression functions such as k-NN,
orthogonal series, spline smoothing and local polynomial estimators could be applied
to estimation of H(.). We only refer to some good monographs on them, Prakasa Rao

(1983), Hirdle (1990) and Wand and Jones (1995).

1.1.7 Higher order asymptotic theory of AD estimation

We have seen the first order asymptotic properties of (1.35) is qualitatively
identical to the parametric statistics for iid and weakly dependent observatibns in the
sense that they are y/n - consistent and asymptotically normally distributed. This is
a surprising result in the following sense. Since (1.29)‘involves a nonparametric
kernel estimate of f/(x) and its convergence rate is of order (nh?!)yV2 | strictly
slower than parametric order of n~'2 | it is likely that the estimator (1.35) is
affected by the slow convergence property of (1.46). However, as far as the first
order properties are concerned, the nonparametric estimate does not affect the
properties of the estimator. Then a question arises: are its higher order properties also
analogous to parametric statistics? Robinson (1995a) investigates the Berry-Esseen
bound of (1.35) for iid observations. The Berry-Esseen bound determines the order

-12

of normal approximation error and it is typically of n for parametric statistics.

He establishes
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sup sup |Pn'PA"(U-p)<z]-®@)|=0(n P +nh42+pnlpl)

AATZA=1 2
where X is the asymptotic covariance matrix of U (see (1.39) for the definition of L).
The bound is not of parametric order in general, however it can attain the boﬁnd of O(n1?
depending on the rate of decay of the bandwidth. He also calculates an optimal choice
of bandwidth in terms of minimizing normal approximation error, which is

ht=Cn @ | (1.55)
This is of smaller order than (1.48) and (1.49). The purpose of this thesis is to extend
his study to derive Edgeworth expansions of (1.35). We give a summary on higher

order theory of parametric and semiparametric estimators in the last section of this

chapter.

1.2 /n- consistent semiparametric estimation

Section 1.1 shows when and how parametric methods can fail and the single
index model is a good alternative to some parametric models such as (1.5)-(1.9) and
others, then we have introduced the density-weighted AD estimation for it. We first
review other estimation methods of single index models in 1.2.1. Subsection 1.2.2
reviews other 7 - consistent semiparametric estimators related to (1.5)-(1.8) and
other models, specifically,

(1) discrete choice models

(2) censored and truncated regression models

(3) partially linear regression models

(4) linear regression models with heteroscedasticity of unknown fom

(5) semiparametric maximum likelihood estimation
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(6) other models such as simultaneous equation models.
(1) and (2) can be seen as special cases of index models, and some models seen in
(5) and (6) include certain cases of (1) and (2). Also, methods in (3) can bé applied
to estimate (2). Subsection 1.2.3 generally compares parametric, semiparametric and
nonparametric methods in econometrics.

Some review papers on semiparametric econometrics include Robinson
(1988a), Newey (1990b), Delgado and Robinson (1992), Powell (1994) and Linton
(1995b), while monographs on this topic are Pfanzagl (1990), Bickel et.al. (1993),

M.-J. Lee(1996) and Horowitz (1998).

1.2.1 Semiparametric estimation of index models

We introduce a more general single index model than (1.28) which allow the
index to be nonlinear in X, namely

EY|X)=-gX)=G (v(XB)) as., (1.56)

where Y is a scalar, X is d dimensional, function v:R4— R* (d>s) is known up to
unknown parameter B , while function' G(.) and distribution of the variables are
assumed unknown. We can reduce the dimension of variables from d to s and thus
face less curse of dimensionality, which is a strong advantage to nonparametric
regression. (1.28) is a special case when s=1 and v(X;B3)=8"X where B isa dx1
vector.

We first review AD type estimation when v(X;8)=8"X . Stoker’s (1986)

original work considers averaged derivatives without weight,

/
= —E{f%g(xn= EQIRYY , 0=logfex) . (1.57)
Supposing we have iid observations (X/,Y)),i=1,2,... , we can estimate it, similarly

33



to the weighted averaged derivatives, by

n ~/

Jl;-%;}:“{ 1 X)Y, , lx)=log &) (1.58)
where }(x) is a suitable estimate of f{x). Assuming a parametric family f(x)=f(x;0) ,
Stoker (1986) uses ]:(x)= f(x;a) where 5 is a consist;nt estimate of 8 . He
proves n - consistency and asymptotic normality of P:1 .’ This estimation
parametrizes the density function, but it does not require any specific form of g(x) so
that this .is semiparametric. Hirdle and Stoker (1989), without parametrizing f{x),
plug (1.45) into (1.58) where K(.) is a higher-order kernel function. They show this
estimator is yn - consistent and asymptotically normally distributed and derive a
consistent éstimator for the asymptotic covariance matrix. Stoker (1991) shows this
estimator is first order equivalent to other four estimators including the derivative of

NW estimator. Chaudhuri, Doksum and Samarov (1991) consider average derivative

quantile regression

36.(%)

Pl(a) =E[ 3%

1, 0,00 = infly: Fypy ) = a}
where local polynomial regression estimator is used for 8, , and prove the estimator
is n. - consistent and asymptotically normally distributed under quite weak
conditions. Hirdle, Hart, Marron and Tsybakov (1992) propose an optimal bandwidth
selection whiéh minimiies leading terms of mean squared error (MSE) of Hérdle and
Stoker’s (1989) estimator. They show that the optimal bandwidth is of order
n U@ where L is the kernel order. Hirdle, Hildenbrand, and Jerison (1991)
apply this method to estimate households’ income effect from U.K. family
expenditure data.
Andrews (1991) proposes a series estimator for AD and proves its yn -

consistency and asymptotic normality under a general setup including some other
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semiparametric estimations. In addition to deriving the efficiency bound for weighted
AD (1.42), Newey and Stoker (1993) propose a method to construct an efficient
estimator by combining different weighted AD estimators via minimum chi-square.
Ahn (1997) considers the following index model where a part of the regressors
is nonparametrically generated,
E(Y|X) = GXgBy+ MmX,)YBy) , mX) =EX,|X,) . (1.59)
Hefe Y,X,,X,,X, are observables, parameters B,, 3, , G(.) and m(.) are
unknown, but A(.) is known. He proposes the following two step estimation. We
perform nonparametric regression in the first step to estimate m(.), then replacing the
unknown m(.) by the first step estimate, we implement AD estimation for 3,8, up
to scale in the second step. He proves its % - consistency and asymptotic normality.
Ichimura and Lee (1991) propose to extend the least squares principle to the
estimation of (1.56), namely,
ngng {Y,-G(vX;:801* | - (1.60)
They partly specify the function G(.) as multiple index form,
GV (XB)= Xy Bo(0)+ Y (X[ By(6),... X B1,(0)) (1.61)
where X"= (Xy',...X,7) , Bi(), i=0,..,M are known functions of basic parameters
0 ,and Y(.) isanunknown function. (1.60) is infeasible since we do not know the
true functional form of G(.) due to the unknown y(.) , so that they replace {(.) by

its nonparametric (kernel) estimate and construct

= r 7 XT18,(6) X180
¥ KB @K, Bl

—Jj#i
B0 | ,
KIXLB® P Xialbu®
Z K }1: 0 B 1:7: Ml )

k# i

thus the feasible minimization problem reduces to
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mmE {Y;-X;B,0)-E (Y;|X.,0)}> (1.62)
They prove this estimator is y/# - consistent and asymptotically normally distributed,
and provide a consistent estimator for the asymptotic covariance matrix. étem (1996)
applies this method to estimate the supply and demand effects of disability on labour
force participation. Ichimura (1993) applies the same principle to single index model
(1.56) when s=1. He allows some weight and proposes an estimator

mmE WX)HY; E(Y X0} . ‘ (1.63)
where

3 WY RS0

E(Y 1X;.0)= "“
Z WX K( V(X ;30)- v(Xk 9)

k= i

)

He proves the estimator is also /n - consistent and asymptotically normally
distributed, and provides a consistent estimator for the asymptotic covariance matrix.
Her further shows that it attains the semiparametric efficiency bound obtained by
Newey (1990b) under the optimal choice of weight function W(x)= {V(Y|X=x)} 12 .
Though this weight is infeasible, the same asymptotic properties may still hold when
we replace it by its suitable cqnsistent estimate. Héirdle, Hall and Ichimura (1993)
derive an optimal choice of bandwidth for Ichimura’s (1993) estimator under linear-
in-variable index assﬁmption, i.e. v(X;8)=X"B8 . They show the asymptotically

minimum MSE choice of bandwidth is of order n /3

. This order equals to that of
optimal bandwidth choice for nonparametric regression with one regressor and so
differs from the choice for AD estimation.

Samarov (1993) shows that n - consistent estimates of certain AD

functionals such as E[wQX)a—g-gQ—{ ?%(j—“}’] and E [w(X)-gz—iﬂf] are useful to determine
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a model out of some alternative non/semiparametric models.

1.2.2 Other /n - consistent semiparametric estimation

We have seen single index model (1.28) is a good alternative in terms of
robustness to (1.5)-(1.9) and some other parametric models. There could be,
however, a drawback of AD estimator caused by its too much generality. Suppose we
know Y, =I(B"X;+u; = 0) is the correct specification but we do not know the
distribution of u. Obviously AD estimation can be applied to this model. However
(1.35) estimates § only up to an unknown constant so that it may be inconvenient
when we want to know the level of 8 itself. Also if we would like predictions of Y,
those based on the AD estimation and (1.54) may not be good due to the slow
convergénce of I~{ (u) . Thus we may not want to estimate the model based on (1.28),
butbased on Y;=I(B"X; +u; = 0) just without a specific distribution of «. There have
been proposed various ways to estimate the parameters of (1.5)-(1.8) \/r_z -

consistently without specifying distribution of disturbances parametrically.

Semiparametric estimation of discrete choice models

For discrete choice models including (1.7) and (1.8), the pioneering work by
Manski (1975) considers the following polychotomous choice setup. Supposing the
utility function of an individual / under a choice j is U;=B"X;; , i chooses an option
j when B'X. =X, forall k#j . He proposes to estimate 8 by

max=Y° W (R |i8))
B N

where W(.) is any monotone increasing function, and R(j|i,8) is the rank function

presenting the rank of choice j for individual i/ given a parameter 8 . This estimate
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the parameter vector such that it maximizes the sum of the rank of the choice among
alternatives each individual takes. He proves the estimator is consistent, while
Cavanagh (1987) and Kim and Pollard (1990) study the convergence rate and
asymptotic distribution and show this estimator is of slower convergence rate
than » . Manski (1987) applies this principle to binary panel data. The objective
function is discontinuous with respect to the unknown parameters so that Horowitz
(1992) modifies the objective function to be continuous using kernel method and
Horowitz (1993) appliés this method to the choice between automobile and transit for
work trip. Ruud (1983) proposes to apply pseudo maximum iikelihood estimation to
the discrete choice models, while Cosslett (1983) proposes a distribution-free MLE
for the following binary choice model. Suppose individual i faces a choice between
two alternatives "1" and "0". Let U be the utility of i from choosing j,j=1, 0, and
it has a parametric form Uﬁ=v(Xﬁ;0)+eﬁ, j=1,0 where Xﬁ is a vector of some
variables associated with option j, ¥(.;.) is known up to a parameter vector 6
and € is a disturbance term with unknown distribution. Then his choice is |
characterized by
Y, =I(U,; 2 Uy) =I(v(X;;0)-v(X;0)=€,€,; ) .
Putting WV(Z;0)=v(X;50)-v(X;;0) ., Z,=X,;;X,) and denoting the distribution

function of €,-€,; by F, the log-likelihood function is

n

> (Y,-logF[V(Z,-;O)] +(1-Ylog{ 1—F[V<Z,-;0)]}) : (1.64)
i=1 :
Applying the algorithm by Ayer, Brunk, Ewing, Reid and Silverman (1955) to obtain
an estimate of F corresponding to each 6, we maximize the likelihood with respect

to 6. He proves its strong consistency. The log-likelihood function is analogous to

(1.15). Cosslett (1987) shows its efficiency. Since (1.64) is discontinuous with respect
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to 6 due to the discontinuity of the estimate of F(.) by Ayer et.al., Klein and Spady
(1993) extend this idea to invent a continuous objective function and prove the
estimator is Vn - consistent and asymptotically normally distributed. Matzkin (1991)
proposes a semiparametric MLE of polychotomous choice models with nonparametric
utility function and normal disturbances. There are some other related works by

Manski (1991), Ahn and Manski (1993) and Lewbel (1997).

Semiparametric estimation of censored regression models
There are some studies for semiparametric version of censored and truncated
models (1.5) and (1.6) where the disturbance distribution is not parametrized. It can
be estimated by distribution-free ML method as Cosslett (1983), namely we replace
®(.) in (1.24) and (1.25) by certain estimate of the disturbance distribution and
maximize it over the unknown parameters. For (1.5), Powell (1984) proposes least

absolute deviation (LAD) estimation by

-

min-l-z |Y;-max(0,8°X)) |
B N

and proves its {7 - consistency and asymptotic normality. Powell (1986b) extends
this principle to estimation of censored regression quantiles, while Honoré (1992)

applies LAD to fixed effect panel data models. Horowitz (1986) proposes NLS type

estimation for (1.5). Since E(Y|X) =f:;x{1 - F(@u)}du , his estimator is

~ n
wher® =arggzin711-’; {K"ﬁ;}(i[l -F,wp )]du} sturbance distribution by Kaplain and
Meier (1958). Powell (1986a) takes a different approach and proposes to use only
observations satisfying E(Y -B°X|X) =0 . Assuming the symmetry of disturbance
distribution,
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E[Y*|X]=B"X where Y*'=YIBX+e=2"X) .
He trims the observations with Y,;= 237X, which are the symmetric equivalent of
observations with B7X;< 0 . Based on this idea, the symmetrically trimmed least
squares estimator is defined as |

[3 =arggzin —;—zn: {Y; —max(Yi/2,,B’Xi)}2 .
i=1 :

This estimator, however, obviously loses some efficiency because of the trimmed
observations. Extending this idea, Newey (1991) proposes a method of moment type
estimator for the Tobit model under conditional symmetry. When the sample is
trimmed as in the above, we have E[m(Y-B"X)|X] =0 for any odd function m(.)
under the symmetry of e. He proposes an estimator including this information and
proves it improves the efficiency of Powell’s estimator and attains the semiparametric
efficiency bound. Honoré and Powell (1994) propose a different way to estimate 3.
Putting

¢;=max(¥,~BX,-BX) =max(c, BX,BX) ,
since conditional expectation of €;~€; given X, ,Xj is zero, they propose to estimate

B by the following minimization of U process objective function.

1 n-1 n
min
g nn-1)iTg j=i

[max(¥;-BX,,-B7X)) -max(¥;-BX,BX)P .
Horowitz (1988b) proposes M-estimation for (1.5) with an influence function
YyyxB.F) satisfying E[Y(Y,XB,F)]=0 . His estimator is a solution to
%}; YEXBE,(:B)=0
where F,(.,8) is a smoothed version of Kaplan and Meier’s product limit estimate
of F. Hall and Horowitz (1990) discusses an asymptotically optimal bandwidth
selection for this estimation. Horowitz and Neumann (1987) use this estimator for

employment duration models.
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Ahn and Powell (1993) and Powell (1998) propose estimators for censored
sample selection models
Y=BX+e)IS=0) , S=gW)+u
where Y, X, S and W are observables, function g(.) is unknown in Ahn and Powell
(1993), while Powell (1998) assumes a semiparametric g(W )=/(6"W ). The reduced
form is
Y=BX+AgW))+e, gW)=ES|W) (1.65)
where A(.) is unknown function depending on the disturbance distribution. g(.) is
estimated nonparametrically by NW kernel regression in' Ahn and Powell (1993) and
semiparametrically in Powell (1998) in the first step. Letting the estimate ; , the
second step takes pairwise differences, collects the observations such that the nuisance
function asymptotically disappears. Writing
Y,-Y;= B, -X)+ Mg)-A@) e
if we can collect the pairs of observations ( i, j ) with A(g-;,.)—)t(;jko , We can
perform standard regression analysis based on
Y, V=B X -X) e € .
When W is discrete, we can possibly find and pile up these pairs. If not, we
regress Y;-Y; on X;-X; putting more weights oh the observations with smaller
A(gj.)-k(g’;].) . The weights are produced by the standard kernel method. These two
methods can be viewed as special cases of Ahn (1997) seen in the previous subsection
(compare (1.59) and (1.65)).
Cosslett (1991) proposes a two step semiparametric estimation for type 2 Tobit

model,

Z=1BX,+e, 2 0) , Y=BX,+e) [BX,+¢, 2 0) , (1.66)
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where Z,Y,X,, X, are observables. In the first step, distribution-free ML estimatioh
by Cosslett (1983) is applied to estimate 3, and least squares method is applied to
derive an estimate of B, in the second step. Chen (1997) proposes a fwo-step
semiparametric least squares estimator for the type 3 Tobit model,

Z=BX,+e)IB X+, 20) , Y=(BX,+€) IBX,+€,20) , (1.67)
where Z,Y, XX, are observables. Since

EY|X, € =0,8X,=20)=fX,+a (1.68)
for a constant ¢, given consistent first step estimates of €, and B, , B, can be
estimated by |

min 1Y 16,2 0,BX, = 0¥, -B3X, -

afy iz
The above estimators are all y/n - consistent and asymptotically normal.

Semiparametric estimation of truncated regression models

Tsui et.al. (1988), using (1.11), propose to esﬁmate B of truncated model
(1.6) by
where

BEX)= [ udF,up)[1-F (BXL)

is an estimate of the bias E(Y - 37X |X) . This estimator involves Kaplan and Meier’s
(1958) estimate of disturbance distribution F, which is a step function, so that the
objective function is discontinuous with respect to the parameter and thus the
estimator is computationally inconvenient. Lee (1992) uses the same transformation
as in Tsui et.al. (1988) and plugs in a kernel smoothed estimate of B(3’X) by

Breiman ef.al.(1987). The estimators by Tsui ez.al. (1988) as well as Lee (1992)
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evaluate the "bias" E(Y-B7X|X) nonparametrically and plug its estimate into the
objective function.
A more general truncated regression model allows the truncation criteria to

include other variables as in Type 2 and 3 Tobit models. Namely,

&) x>-y"W,

Y, =B'X;+m;, m; having density f, (x)= L-FCy'w)

0, x<-Y'W,
where samples with YW, +€;, =0 are not observed. Chen and Lee (1998) propose
a two step semiparametric ML estimation for this sample selection model, where
unknown density and distribution functions in the likelihood function are replaced by

kernel estimates.

Semiparametric estimation of partially linear regression models
Partially linear regression modél
EY|X, X)) =B"X,+k(X,) a.s. (1.69)
where we assume k(.) is unknown is another semiparametric regression model
intensively studied. This model includes standard linear regression model and sample
selection model (1.65) as special cases. There have been developed two approaches
to estimation of this model.

The first approach is the partial smoothing spline estimation and its variants
proposed by Wahba (1984, 1986), Engle, Granger, Rice and Weiss (1986), Heckman
(1986), Rice (1986), Shiau, Wahba and Johnson (1986), and Chen and Shiau (1991).
Assuming X, is a deterministic design variable on [0,1], they consider the estimator

defined by
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X0 {%E {Yi_BTXoi"k(Xu)}z + lf(;l{k(m)(v)}zdv} , (1.70)

i=1

where Vk ™)) denotes m-th derivative of k(.). This is an extension of nonpafametric
spline smoothing estimation of regreésion function to the semiparametric regression
model (1.69). Engle et.al. (1986) applies this méthod to investigate the electricity
demand. Rice (1986) shows this estimator can achieve the standard parametric rate
bf convergence by suitably imdersmoothing the nonparametric component k(.).
Heckman (1986) proves n - consistency and asymptotic normality of the estimator
when X, is a nonstochastic scalar variable on the unit interval. Chen and Shiau
(1991) proposes a variant of (1.70) called two-stage spline smoothing where rough
parametric component is also penalized. A raises the same practical problem as the
bandwidth choice in nonparametric kernel estimation. Chen and Shiau (1994) propose
data-driven choices of A for the estimator of their 1991 paper.

The second approach is the partial regression estimation by Robinson (1988b)
and Speckman (1988). They are based on the regression of partial correlations.
Putting e=Y-E(Y | X,,X,) , we have

Y-E(Y|X))=BolX,-EX,| X))} +€ . 1.71)
This is free from the unknown (nuisance) function k(.) and it gives
Boz(E[ {X, ‘E(Xo |X1)} {Xo‘E(Xo le)}T] )-1
E[{X,-EX,|XpHY-EY|X))] . (1.72)
Assuming absolutely continuous X, , Robinson’s (1988b) estimator for B, replaces
the expectations by their sample analpgue and the conditional expectations by their
NW Kkernel estimates in (1.72). He uses a higher order kernel to avoid the bias
problem for the first time in semiparametric estimation as mentioned in the previous

section, which gets worse as dim(X) increases. He proves the estimator is yn -
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consistent and asymptotically normally distributed and provides a consistent estimator
for the asymptotic covariance matrix. Delgado and Mora (1995) proposes an estimator
which allows discrete regressors based on (1.72). Assuming X, is a scalar
nonstochastic design variable and Xo is a vector of nonstochastic variables,
Speckman (1988) considers the same type of estimator of S, asA}Robinson’s and
derives asymptotic expressions of bias and variance of the estimator. The results
imply asymptotic unbiasedness of the estimator. He also .shows the estimator can
coincide with partial smoothing spline estimator depending on the smoother and
kernel function used in the two estimations. Li and Stengos (1996) apply this idea to
panel data, employing the same transformation as (1.71) then multiply the density
of Xl

it

to prevent the stochastic denominator in E(YIXI) . Ai and McFadden (1997)
considers more general partly specified regression model |

S(ELY, X, X, X, D=11)= B, +ky(X,)+ B, ELY, X))
where Y, and Y, are dependent variables, XX, and X, are vectors of
regressors, D is the 0-1 dummy variable, 7= (83,[3,) is a vector of unknown
parameters, k,(.) is an unknown functipn, and g(.) and k,(.) are assumed to be
known. Their estimator is based on the same transformation as (1.72) and plugs

nonparametric estimates of unknown functions.

Linear regression with heteroscedasticity of unknown form.
We assume the following linear regression model.
Y=BX+e , E(€|X)=0, Ve|X)=0*X) . (1.73)
If 0®() is known, the standard GLS estimator |

Bors={Y), oX) XX}y o(X) XY, (1.74)
i1 i1
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provides an efficient estimate for 3 under certain regularity conditions. Even if we
perform OLS neglecting the heteroscedastic structure, we still get a consistent
estimate. The problem there is that the estimator is not efficient and it also produces
invalid stafldard errors, and thus invalid test statistics. . If we have a consistent
estimate of ¢?(.) , we can perform feasible GLS estimation and it gives an efficient
estimate of 8 with correct standard errors. There have been a lot of work on linear
regression with heteroscedastic disturbance where the form of heteroscedasticity is
parametrically specified (see e.g. Goldfeld and Quandt (1965), Rutemiller and Bowers
(1968), Glesjer (1969), Box and Hill (1974), Harvey (1976) and Carroll and Ruppert
(1982) among others). If the specification of the heteroscedasticity is correct,
replacement of the true covariance function by its estimate in (1.74) will yield an
asymptotically efficient estimate of 3, but if the specification is wrong, the efficiency
does not hold any more. Without assuming a parametric form of ¢?(.) , Carroll
(1982) proposes an asymptotically efficient estimator of 8 using a kernel estimate
of 0%() under independent disturbance assumptions, while Hidalgo (1992) allows
weak dependence. Craig (1983) provides an efficient instrumental variable estimator.
His approach is not like that of Carroll, but he proposes to choose a good instrument
which can reduce the efficiency loss in the coefficient estimation. Though it depends
on the choice of instruments, he does not provide an automatic method of instrument
selection, 50 that it may not be practical. Robinson (1987) plugs a nonparametric k-
NN estimate of o?(.) in (1.74), extending Carroll’s estimation to the multivariate
regression model, and proves its yn - consistency, asymptotic normality and
efficiency. Delgado (1992) considers multivariate nonlinear regression models in the

presence of heteroscedasticity of unknown form. He also uses k-NN estimates and
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shows ail the desirable asymptotic properties in Robinson (1987) still hold.

Semiparametric maximum likelihood estimation

We have reviewed semiparametric ML estimation for discrete choice models.
We can extend it to more general semiparametric models. Gallant and Nychka (1987)
propose an estimation procedure for some nonlinear regression models without
assuming specific distribution functions of random terms. They call their method
"Semi-nonparametric" ML estimation. The main idea comes from Phillips (1983) who
shows an ERA (extended rational approximants) ¢2(u|u,Z)[P2w)/Q%u)] can
approximate any density function arbitrarily closely under certain conditions, where
¢(u|n,Z) is the density of multivariate normal distribution with mean p and
covariance matrix X , and P(.) and Q(.) are polynomials. They use this density
approximation to construct the likelihood function. They are concerned with
estimation of sample selection models and Stoker’s"(1986) functional and prove the
estimator of the parameters is strongly consistent under pertain conditions. This
method, modified suitably, can be applied to other semiparametric regression models.
Ai (1997) analyzes a general regression model, where the conditional density of Y
given X involves two parts of parameters, a finite-dimensional component 6 and a
infinite-dimensional (nonparametric) component A(.), and there exists a variable

transformation (yx)—> (v,(v,x,0),v,(x,8)) of known form satisfying

Fru 8.0) =T, 2,00 . 0,0,%,0) [v,06,6).0)

where J is the known Jacobian of transformation y— v,(y,x,8) . This class of models
- includes special cases such as limited dependent variable m&dels, partially specified

regression model, selection models, and simultaneous equation models. The ML
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estimator maximizes

%g {logJ Y,,X;:0) +108f Vv, [Vz(Vl(Yi,XiQO) ]VZ(X,-;O))}
with respect to 6 , where f,,l v, 18 the kernel estimate of f,,,, . He proves the
estimator is % - consistent, asymptotically normally distributed and efficient in the
sense that it attains the efficiency bound in Begun er.al.(1983) for multivariate
nonlinear regression, simultaneous equations, partially linear regression, index
regression, censored regression, switching regression, and disequilibrium models

where the error density is unknown.

Other semiparametric estimation

There are some other /- consistent semiparametric estimation methods
which are not classified in the above. Newey (1990a) proposes a /n - consistent and
asymptotically normal estimator of nonlinear simultaneous equation systems under iid
environment. He replaces the infeasible optimal instruments of Amemiya (1974,
1977) by their nonparametric estimates and proves this is an adaptive situation, and
thus the feasible instrumental variable estimator is efficient.

Robinson (1991a) considers more general DGP than Newey (1990a) and
derives an efficient three stage least squares estimator for nonlinear simultaneous
equations model. Unlike iid observations of Newey (1990a), he considers three
different settings; (1) independent error terms and strongly exogenous but possibly
serially dependent explanatory variables, (2) independent error terms and explanatory
variables which include lagged endogenous variables and (3) parametrically
autocorrelated error terms and strongly exogenous but possibly serially dependent

explanatory variables. Somewhat different type of estimators are proposed for
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different settings. Given first step yn - consistent estimates of parameters, he
propose an estimator by _Gauss-Newtonliteration replacing the infeasible instrument
by its estimate. He proves the estimator is y# - consistent, asymptotically normally
distributed and efficient. He further derives a Berry-Esseen bound when the error
terms are independent.

Robinson (1991b) proposes to estimate semiparametric time series models
based on first stage nonparametric; spectrum estimates. Assuming the variables are
covariance stationary, spectrum estimator based on kernel weighted periodogram is
proved to be weakly uniformly consistent. He further considers spectrum regression
in general semiparametric framework including multivariate linear regression and
proves asymptotic normality of the estimator. Automatic choice of minimum MISE
bandwidth is also provided.

Lee (1998) proposes a minimum distance estimator for semiparametric
simultaneous equation microeconometric models with index restriction. The model is

EgZp)|X]1=EREZB)|6X]
for vectors of random variables Z and X, vectors of unknown parameters 8 and § ,-
and a vector of known functions g(.). The minimum distance estimator solves

m;nzl ERZ:B)X,] - E,Z:B) FX,1)"

WX)E,[8(Z:P)1X,] - E,[gZ:B) 5,1}

whére E (.|.) is the NW kernel estimates of E(.|.) and W(.) is some matrix of
weight functions. This class of estimator can be applied to models such as
simultaneous equation sample selection models, multi-market disequilibrium models
and the simultaneous equations Tobit model. He shows this estimator is /n -

consistent and asymptotically normally distributed. If the conditional variance
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Vig(Z;3)|X] depends on X only through 6°X , the optimal weight is

Wop:(X )= V'l(g(Z;B)|3’X ) . This weight is infeasible, but we can estimate it by
the kernel method with the first step estimates of 3,6 . He proves the estimator
using the feasible optimal weight achieves the semiparametric efficiency bound by
Chamberlain (1992).

Newey (1994) derives a general formula for the asymptotic variance of
semiparametric estimators. He considers a general semiparametric estimator
depending on a series estimator of unknown nonparametrié functions and shows they
are yn - consistent and asymptotically normal under certain high-level assumptions.
The estimator considered there inciudes e.g. polynomial estimators of averaged

derivatives and semiparametric panel probit models.

1.2.3 Comparison of nonparametric, semiparametric and parametric methods
Section 1.1 and the previous subsections have shed light on some parametric,
| semiparametric and nonparametric methods in various regression framework. When
we are interested in E(Y|X)=g(X) , pérametric method assumes certain functional
form of g(.), for example linear regression g(x) = f7x , while nonparametric method
does not parametrize g(.) at all. Semiparametric method is the intermediate between
the two and it partly specifies the function, for example as in (1.28) or models in
Subsection 1.2.2. Parametric estimation methods collapse in general when the
functional specification and/or assumed underlying distribution is incorrect. In this
sense nonparametric or semiparametric estimation based on a less specified model is
more robust and reliable when we are not sure of the specification of the model. We

discuss here which of the three methods suit econometrics most.
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Formally, we can say nonparametric methods aims to consistently estimate
some functionals of the underlying joint distribution, such as joint density, conditional
density and conditional expectations, without their parametric specification.
Nonparametric models typically assume only certain smoothness of the functions so
that they are very general in the sense that they include many parametric and
semiparametric models as special cases. We, however, typically have to pay the cost
of slower convergence rate than the parametric rate of n . Semiparametric
methods parametrically specify certain aspects of the joint distribution and estimate
the parameters often using nonparametric estimates of the unspecified functions like
(1.29). Intuitively speaking, the rate of convergence should be soméwhere between
nonparamétric and parametric convergence rates as discussed in 1.1.7 for (1.29).
However, many theoretical works of semiparametric estimation have reported that the
estimators of the parametric components attain the parametric convergence rate
of n as reviewed in the previous subsections.

We can generally say that semiparametric methods suit best in many
econometric applications among the three methods because of the following reasons.
As far as the robustness is concerned, nonparametric method must be the best because
of its generality, then semiparametric method follows and parametric method is the
worst, while efficiency consideration yields the opposite order. Thus there is a trade-
off between the efficiency and robustness. When we have the true information on the
DGP, parametric method is obviously the best choice because of its efficiency. On
the other hand, when we do not know the DGP, nonparametric or semiparametric
methods would be better than parametric ones because parametric estimation will

yield an inconsistent estimate if the model is incorrectly specified. If we have a
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sample of extremely large size so that we do not need to care the efficiency of
estimation, nonparametric methods would be the best choice, while if the sample size
is not so large, semiparametric method may outperform the nonparametric method.
In view that many economic data are typically not of very large sample size® because
economists normally cannot get observations from experiments unlike in natural
science and that it is often the case economic theory does not provide the whole
information on the functional form of underlying density and/or regression function,
but only some aspects of them, semiparametric methods may have the best balance

of efficiency and robustness in econometrics.

1.3 Higher order asymptotic theory

We have seen that the density-weighted AD estimator of single index model
is yn - consistent and asymptotically normally distributed in 1.1.2. The purpose of
this thesis is to study if the nonparametric density derivative estimate can affect the
higher order property of the estimator and if so, how it does. We review related
topics on higher order asymptotic theory in this section. 1.3.1 and 1.3.2 explain
standard Edgeworth expansions of parametric statistics in econometrics and U-
statistics respectively. Results reviewed in 1.3.2 are especially closely related to our
work since the estimator of our interest (1.35) has a U-statistic form. We employ
similar techniques to those used for U-statistics to validate Edgeworth expansions,

however we can point out a significant difference between the AD estimator and the

6 There are some exceptions like datasets from population survey implemented by
overnments, when nonparametric methods may be the most suitable.
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standard U-statistics. It is that the variance of kernel of standard U-statistics is
assumed to be bounded but it is not the case in (1.35). Therefore none of the
established results for U-statistics directly apply to the estimator. The last subsection
reviews higher order asymptotic theory of semiparametric statistics related to this

work.

1.3.1 Edgeworth expansions of parametric statistics
Given an asymptotically normally distributed statistic, we may perform
hypothesis testing or confidence interval estimation using the normal approximation.
Suppose X, i=1,2,... are 11d random variables with mean p, and variance o-f , and
n

let X = %EX, and Sn=\/ﬁa;1()? -1,.) . Since Lindeberg-Levi’s central limit theorem

ijl

gives S, — N(0,1) , we implement confidence interval estimation for p  as

follows. Because P(z,os <3S, <z,5) =09 , z, denoting the «% quantile of the
standard normal distribution, we have a 90% confidence interval estimate

PX -2 <y <X-22)~09 . 1.75

X = = h ﬁ ) (1.75)

This estimation is infeasible because of the unknown o, . Given &, , a consistent

~ d
estimate of o, , we have S, — N(0,1) for the studentized statistic

X

§n= n—llﬁz; ()Q -w.)/o, . Then we can construct a feasible 90% confidence interval

estimate
PX-22% <y <X-2%y~09 . 1.76
0.4 o K - (1.76)
The precision of the estimate depends on how well the normal distribution can
approximate the exact distribution of S, .
Edgeworth expansions aim to asymptotically improve the normal

approximation to the exact distribution. Chebyshev (1890), and independently
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Edgeworth (1896, 1905), first provide a formal expansion of the distribution function
of §, ,

P, <x)=P®)+¢ ) {n " p,@)+n 'p,x)+...+n ‘f/7pj(x)+...} | 1.77)
for a sequence of functions pj(x) . There is, however, no guarantee that this series
converges and it motivates us to investigate the behaviour of

up |P(S, = %)~ D) =9 () ip,0) +n p, () an TP @)+ L}

Berry (1941) and Esseen (1945) analyze a special case when no correction term is
involved, namely the bound for simple normal approximation error, and verify the

following inequality under the existence of second moment
33 E|X;-u ’
4 ol

This kind of bound characterizing the normal approximation error is called the Berry-

sup|P(S,<x)-®k)| < (1.78)
Esseen bound. The constant 33/4 has been improved, namely reduced, by various
authors. Cramer (1928, 1946) rigorously derives an asymptotic expansion in powers
of n~'2 under some strong conditions including I}tr'nsuf |[E(®)] <1 , known as
the Cramér condition. Usually we truncate the series (1.77) after including a certain
number of terms then we investigate the order of the remainder. We say the
expansion is valid when

sup |P(S, < x)-2()-¢ () {n p,x)+...+n Ip, ()} | =0 (n ) (1.79)
for a fixed jas n— o . Itis known that the Cramér condition and E|X}**<c are

sufficient for the validity when p,(x) are constructed from the Hermite polynomials,

2

L P L FNER WA FNEIT VR
p,®) 6@ ) pe)=-o "3 Sy &1 ) L (1.80)

where k, and x, arethe third and fourth order cumulants of (X-p )/o, respectively
(see e.g. Hall (1992), p.42-44 for the construction of p,(x) ). R.Rao (1961) first

generalizes the univariate results to the multivariate case under the Crameér condition,
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which is extended by von Bahr (1967), Bhattacharya (1968, 1971), Chambers (1967)
and Bhattacharya and Rao (1976).

It is known S, and §n admit valid one term Edgeworth expansions

sup |P(S, < x) - {B () - —2(x?- 1) () | =0 (n 1) (1.81)
x 6\/;7
and
sup|P(S, < x)- {® @)+ —2(2x2+ 1) ()| =0 (n ) (1.82)
x 6\/};

respectively (see e.g. Hall (1992), p.70-72). x, in the above is tYpically unknown

so that we think of replacing it by a strongly consistent estimate K, , then we have

sup |P(S, < x)- {<I>(x)———‘j<-3—(x2- Do x)|=0o@m?) a.s. (1.83)
x 6ﬁ
and
sup |P(S, < )~ {0+ - 2x2+ () =0 (171) as. (1.84)
x 6\/ﬁ

We can modify (1.76), the 90% confidence interval estimation based on the normal
approximation, using (1.84) as follows. Letting w, be the 100a% quantile of the
sampling distribution P(§n <x) , (1.84) yields

@=P@S,<w)= <I>(w;1)+;%(2w:+ 1) w.) +om?) as. (1.85)
Expanding the right hand side around w, =z, , we have
. ] »
a=Pe,)+ ;/_3;(22,,2 1 ,)+ [1-6—\;5(22.3 -32)19E, )W, -z,)+o(n 1) as.

This yields, since Pz,)=a ,

K.

w o=z -[1-22223-3 )12 222+ 1)+ 0 (n P
e =2 (12202032 ezl ) o

6vn
=z, - {1+0(n ")} 2 (2z2+1) +o(n
z,~{ (n )}6\/’;( 1) +ro(m™")

=z - 2222 D) +on ) as. 1.86
6\/_( )+o(m™") (1.86)

a
n

This is called the Cornish-Fisher expansion (see Hall (1992), p.88). Then putting

~

W =za-j’—(22,f +1) , we have a modified interval estimate
6y/n

a

PX-Zw o< <X-2w,.)=09 1.87
X /i 085 K v 0.05) ( )
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Noting w,=z,+O0 @ 2) and w_ =w_+o(n ) ,(1.87)isanasymptotically better
estimate’ than (1.76). Similar consideration is theoretically possible using (1.81)-
(1.83), but interval estimation based on them is obviously infeasible due to the
unknown o, or X, like the infeasibility of (1.75). Similarly we can use (1.84) to
determine critical region of a significance test on p, . We call an Edgeworth
expansion involving unknown quantities depending on the underlying distribution
like x; in (1.81) or (1.82) a theoretical Edgeworth expansion, while we call the
feasible vérsion like (1.83) or (1.84) in which the unknown quantities are replaced by
their estimates an empirical Edgeworth expansion. Obviously empirical Edgeworth
expansions for studentized statistics are for practical ﬁse in interval estimation or
hypothesis testing. We provide valid theoretical and empirical Edgeworth expansions
for unstudentized averaged derivatives in Chapter 2, while we establish them for the
studentized statistics in Chapter 3.

As Bhattacharya and Puri (1995) point out, there are roughly two methods
of proving the validity of an Edgeworth expansion. One is the direct method, where
we expand the characteristic function of the statistic of interest and rearrange it with
respect to the sample size, then invert it. The other exploits the asymptotic expansion
of the statistic. For example, Bhattacharya and Ghosh (1978) employ the former
method to obtain the Edgeworth expansion of H(S,) , based on the Taylor expansion
of H(.), where S, is the sample average of d-dimensional iid random vector and H(.)
is a real valued Borel measurable function on R4 . We employ the first approach
to validate Edgeworth expansions in the following chapters.

A pioneering work of higher order asymptotic theory in econometrics is Nagar

(1959) who derives expansions for the bias and moment matrix of the k-class
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estimator in powers of n Y2 . This sort of expansion of moments is called a Nagar
expansion. Based on economic or econometric models, econometricians have
developed various kinds of estimators suitable for the models. The estimators are not
necessarily functions of a sum of iid random variables, which have been a main
interest of statisticians, so that econometricians have developed higher order
asymptotic theory for econometric estimators rather independently. Pioneering works
on Edgeworth expansions for econometric statistics are Sargan and Mikhail (1971),
Sargan (1974, 1975a, 1975b, 1976, 1980), Sargan and Satchell (1986), Phillips
(1977, 1978). Sargan and Mikhail (1971) derive a Gram-Charlier type expansion for
a single-equation instrumental variable estimator of a simultaneous equation model.
Anderson and Sawa (1973) study Edgeworth and Gram-Charlier expansions of k-class
estimators, while Mariano (1973a,b) derive Edgeworth expansions for the OLS, 2SLS
and Theil’s k-class estimators. Sargan (1974) obtains valid Nagar expansions for
rational functions of OLS estimators of thé reduced form equation coefficients.
Anderson (1974) obtains a valid Edgeworth expansion for the LIML estimator.
Sargan (1975b) considers Gram-Charlier type expansion of z-ratio for of k-class
estimators. Sargan (1976) proves the vaiidity of Edgeworth expansions for.BSLS and
FIML estimators, where he exploits the fact that the estimators can written as a
function of the first and second sample moments, which is extended by Phillips
(1977) to a more general statistic not necessarily written as a function of sample
moments. Morimune (1981) obtains valid Edgeworth expansions for an improved (in
terms of the first order efficiency) LIML estimator by Morimune (1978) written as
a linear combination. of the LIML and k-class estimators. Rothenberg (1984a) obtains

a valid Edgeworth expansion for GLS estimator. Nonrandomness of exogenous
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variables and normality of the disturbance terms were necessary for the Edgeworth
expansions derived in the above authors except Phillips (1977) and Rothenberg
(1984a). Phillips (1980) and Sargan and Satchell (1986) relax the first assumption and
derive a valid Edgeworth expansion for a linear dynamic model. Taniguchi (1983,
1991) derive expansions for estimators in Gaussian time series models. Some review
papers include Rothenberg (1984b), Magdalinos (1992) énd Bhattacharya and Puri
(1995). There are a lot of research on higher order asymptotic properties of
parametric estimation in econometrics, but only a few have been developed for

semiparametric estimators. We review them in 1.3.3.

1.3.2 Asymptotic theory for U—statistics
(1.35), the statistic of interest of this work, has a U-statistic form. We will
validate some Edgeworth expansions fqr this using some technique developed in U-
statistic asymptotic theory. We briefly review some asymptotic results of U-statistics.
U-statistics are introduced in a fundamental paper by Hoeffding (1948) as a
generalized class of statistics of sample mean. Given a sample X, X, , U-

- statistics of order m are defined as

-1
U-("] T T b ) (1.88)

1sij<ij=<i <n

for a known permutation invariant function 4(.) called kernel. This class of statistics
inciudes a large number of statistics considered in statistical theory. For example,
if A=h(x;) , U is the sample mean, while if h=I(x,<1) , U is the sample
distribution function. If A=(x, —x2)2/2 , the corresponding U is the sample variance
(see Serfling (1980), Chapter 5, for other statistics). Suppose X,,i=1,2,... are iid

observations with distribution function F(.). This statistic can be viewed as an
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estimator of
0(F)=E{hX X, X))}
= [ [y, x,)AF )0 dF(,,) (1.89)
supposing it exists because it is straightforward that E(U ) =60(F) . It is also known
that U is an efficient estimator of 6(F) in the sense Var(U) < Var(é) for any 5

satisfying E(5)=0(F) . Suppose m=2. Writing

n -in-1 n
U-0-25 5+ (1] 5 3w X) (1.90)
R 2) i

where
C6-0B) , gX)-E(X,X)-0/X) (= )) ,
WX, X)=hX, X)-gX)-gX)-0 ,
we can prove the strong consistency of U for 6 under E |h(X,X)|< (see e.g.
Serfling (1980), p.190). Hoeffding (1948) proves asymptotic normality of /n(U-6) .
Heuristically, the second term on the right of (1.90) times n converges to zero but
the first term times 47 converges to a normal variate with mean zero and
variance 4Var{g(X,)} . Hoeffding (1961) and Berk (1966) prove the forward and
reverse martingale structure of U respectively expressing it as in (v1 .90). These results
are extended to m = 3.
Comparing (1.35) aﬁd (1.88) with m=2, U,.j in (1.35) corresponds to

h(Xi,Xj) here. However, in view of Lemma 4 of Robinson (1995a) or (A.5) of
Appendix A, we have E |U;| =0 1y which may divergeas n — o . Therefore
though (1.35) has a U-statistic form, it even does not satisfy the condition for
consistency of U-statistics so that we cannot appeal to the asymptotic results of U-
statistics to investigate (1.35).

Higher order asymptotic theory for U-statistics has been developed, especially
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for m=2. Various authors have investigated the Berry-Esseen bound. Let
gp=Var{gX)} , op=varU) ,

-— 2 Y hX.X)-UP

1
U
21 n-liz

[

n-1)(E-2)*1=
D, =sup |Plyn(U-0)/20,< z]-® ()| ,

pU=st¢p |Plyn(U-8)jo, < z]-® () I

D, =sup IPVRU-0)/6y< 2]-2 ()| .
Note that both 20,//n and oyfyn are valid normalizer for U , satisfying

oy — 4g and  |63-0%]+ |65-40] | %, 0 (by Callaert and Veraverbeke (1981)).

Grams and Serfling (1973) first provides a Berry-Esseen bound,

D,=0(n -ﬁ) under E{h¥(X,,X,)} <
for a positive integer r. Bickel (1974) vvalidates a bound of order yn for the
restrictive case when X,..,.X, are iid over [0,1] and |h(x,x,)|<% . Chan and
Wierman (1977) show |

D,=0(n -%log%n) under E A (X, X,) P <o
and

D,=0(n %) under E(h4(X,X,)}<o .
Callaert and Janssen (1978) further weaken the moment condition and prove

D,=0(n _%) under E|h(X,,X,)|*<
Helmers and van Zwet (1982) slightly relax the moment condition of Callaert and
Janssen (1978) to show

sup |Plyn-1(U -0)/20,< z]-2(2)| =0 (n ;%)
under E[gX))|’<e and EJh(XX,)| <, r>.5/3 . Callaert and Veraverbeke (1981)
consider a studentized statistic and show |

Dz}=0(n'1’2) under E{g}X)}<» and Eh(X X,}|"*<» ,
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while Helmers (1985) slightly modifies the moment conditions to E{g?(X,)}< and
Eh(X,X,)|** <, 8>0 for the same bound of D. .
Callaert, Janssen and Veraverbeke (1980) (CJV hereafter) derive a valid
Edgeworth expansion of degree two for U-statistics of the form
sup |P[ynoy (U - 0) < zj -E 2)|=0o(n™)
where

E @)=2@)-¢@)I

K K : .
6nf/2(z2—1)2+2—4;‘1-(z3—3z)

+72in(25—1023+152)] , | (1.91)
K;=0; [E{g* X} +3EX XWX X . (1.92)

K,=0; | [E{g*(X))} - 30, + 12E {g2(X, 8w (X,.X,)}]

+12E[g(X)s(X)w (X,X,)w (X ,.X3)]|
under certain moment and Crameér conditions as well as a complicated condition on
the characteristic function of _znjl h(Xl,Xj) conditional on (X ,,,....X,) ,
m=[n*],ae(0,1/8) . They p}r_(')nve the validity of expansion (1.91) by
decomposing ‘/h'oz,l(U -0) like (1.90), expanding its characteristic function,
rearranging it with respect to the sample size, then inverting it. We prove Theorems
1 and 3 ln the following chapters in similar manners to these, especially CJV and
Callaert and Veraverbeke. We will see in the following chapter an analogous
correction term to that in (1.91) appears in the Edgeworth expansion of the AD
estimate. Bickel, G6tze and van Zwet (1986) prove validity of the same Edgeworth
expansion under milder conditions than CJV. They slightly relax the moment
conditions of CJV, and replace the complicated condition on the conditional

characteristic function by a condition on the eigenvalues of A(.,.). While the above

two articles consider scalar U-statistics, Gotze (1987) obtains a valid Edgeworth
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expansion of degree one for multivariate U-statistics. Helmers (1991) investigates into
studentized U-statistics and validates the following Edgeworth expansion of degree
one.
En(z)=®(z>+—£%[(k L DE(R X))

T ERDEEXEUWELE)] . (193)
We will see the correction terms here are analogous to those appearing in the
Edgeworth expénsion of studentized averaged derivatives in Chapter 3. Bentkus,
Gotze and van Zwet (1997) consider a more general asymptotically normal statistics
than U-statistics which are symmetric function of n iid random variables. They
validate an Edgeworth expansion of degree one with remainder of order n ™! based
' on an expansion of the statistics in a series of U-statistics of increasing order.

We refer to Serfling (1980, Chapter 5) and Lee (1990) for comprehensive

treatments of U-statistics.

1.3.3 Higher order theory of semiparametric statistics

Consistency, asymptotic distribution and efficiency of semiparametric
estimators have been intensively studied as seen in the previous section, however
there have not been a lot of studies on their higher order asymptotic properties.
Linton (1995a, 1996b) develop both Nagar expansions and asymptotic expansions for-
estimators of a partially linear model and of a linear regression model with
disturbance heteroscedasticity of unknown form. Linton (1996b) finds that the leading
terms are of order greater than n 2 and shows how their contribution might be

minimized by a plug-in type choice of bandwidth, attaining second order optimality.

Robinson (1995a) studies a Berry-Esseen bound for (1.35) as mentioned in 1.1.7
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which is extended in this thesis to obtain Edgeworth expansions. Linton (1996a) is
also closely related to this work in the sense that he establishes valid Edgeworth
expansions for a wide class of semiparametric estima;ors. He is concerned with
estimators obtained by minimizing the objective function
;11-21 ¥ (X:8.G(Z)

where ¥(.;.,.) is a function satisfying certain regularity conditions, (X,Z) are vectors
of observables, [ is a vector of unknown parameters of interest and E?(.) is a
nonparametric estimate of unknown (nuisance) function G(..), having a U-statistic

form

n -lﬂggl(){i)"'n 'tX;; P XX} +n <y kX)};E T3 XX X )
where p; and m; are deterministic weights, 1/2<( <E , both g, and g, are
permutation invariant satisfying E[g,(X,X)]=E[g,(X;,X,X,)]=0 . Making assumptions
of a high-level type, including that the nonparametric estimate converges suitably fast,
he shows that the estimator, suitably centred and normalized, possesses a valid

theoretical Edgeworth expansion

-~ 6 )
F@) =0@)-¢E)| ——(z2-1)+—2(z3-32
@)= 90)-¢) LS5 D e

= (z%-10z%+152)
72n

where ®(.) and ¢(.) are cumulative distribution function and density function of a
standard normal variate respectiifely, 8; depends on the weights and moments of
g X)) , gZ(Xi,Xj) and g,(X ,.,Xj,X ) - He shows that his assumptions can be
satisfied by a version of the partially linear model as well as in models where no
smoothing is involved. Comparing this expansion with (1.91), we observe they have

the same functional form with respect to z and n, with different coefficients. So the

nonparametric estimation has no effect on expansions to order n!. We closely
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investigate the relations between Linton (1996b) and the results of this work and show
how his results cannot be applied to our specified semiparametric averaged derivative

estimation in Chapter 3.
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Chapter 2
Edgeworth Expansions for Averaged Derivatives - Normalized Case '

This chapter validates Edgeworth expansions of (1.35) suitably normalized by
its asymptotic covariance. Section 2.1 introduces some notations and assumptions.
Section 2.2 and 2.3 establish valid theoretical and empirical Edgeworth expansions
respectively. The expansions involve three correction terms. Two of them are related
to the nonparametric density estimate and the rest is "parametric” whose analogue
appears in thc. Edgeworth expansion of U-statistics (1.91). The expansion suégests
that some correction term(s) can dominate other(s) asymptotically depending on the
bandwidth choice, dimension of regressors and kernel order. We discuss it thoroughly

in Section 3.3 in terms of studentized statistics.

2.1 Notations and assumptions
We have reviewed U estimates p=-E{g (X)f(X)} with first order
asymptotic properties described in Section 1.1. Additional to the notations in 1.1.2,
we introdﬁce some more of them to describe assumptions for the Edgeworth
expansions. For a function k: R¢ —R, write
k=k(X), k'=0kjox ,k"=2kjoxox™, h"=3vec (k")]dx"

and define

q=E(Y*|X) , r =E(Y’|X) ,

n=p(XY)=Yf'-e', e=fg,

a =g’f'+ﬁ ,a'=0aldx" ,

Z=4E(p-p)(p-m)7 .

! This chapter has been revised and written up as a joint paper with my supervisor
Professor Peter M. Robinson as Nishiyama and Robinson (2000). It is forthcoming in
Econometrica.
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We introduce the following assumptions to establish valid Edgeworth

expansions.
G E[YP<e.
(i’ E|Y|°<e .

@i)" E|Y|¥P<c forsome p>0 .

(i) X is finite and positive definite.

(iii) The underlying measure of (X", Y) can be written as p,*uy , where py
and py are Lebesgue measure on R¢ and R respectively. (X/,Y;) are iid
observations on (X7, Y) |

@iv) f is (L+1) times differentiable, and f and its first L+1) derivatives are
bounded for 2L>d+2.

@iv)’ f is (L+2) times differentiable, and f and its first (L+2) derivatives are
bounded, where 2L >d+2.

(v) g is (L+1) times differentiable, and e and its first (L+1) derivatives are
bounded.

(v)’ g is (L+2) times differentiable, and ¢ and its first (L+2) derivatives are
bounded. |

(vi) gq is twice differentiable and q/, q”, g/, g”, g, E(|Y) 1 X)f,
and gf / are bounded.

(vi)’ g is twice differentiable and ¢/, q”, g/, g”, g", E(Y* |X)f,
and gf / are bounded.

(vi)" gq is differentiable and gf ,qf and gf / are bounded.
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(vii) f, gf, g'f, and gf vanish on the boundaries of their convex (possibly
infinite) supports.

(vii)’ f, gf and gf vanish on the boundaries of their convex (possibly infinite)
supports.

(viii) K(u) is even, differentiable,

[l (L) 1K) UK w) Dt + sup 1K) | < o=,

and for the same L as in (iv) and (v),

1, if 1+ ,=0
0, ¥ 0<l 1+l <L
0, if I+ =L
(ix) Ll_;:}gld_lfz)— +nh? -0 as n—>o .

(ix)’ LEEJQ_ +nh?l 50 as n—>oo .

wonou

fRduf Leee ué‘K( u)du

@ 98 M _ 501y, pr2L 50 as n—oo .
n.

(x) hmsiup |[Eexp [{it 207 v (pu- p.) }1] < 1 for any vector v satisfying
viv=l .

(xiy Hu) is even in all arguments u;, i =1, - ,d and (L+1) times

differentiable,

fRﬂu)du =1

and

Jel O H ) M+ sup AT OH ) | <

for all integers [ ,, - ,1 , satisfying O0</  +-+] ;<L , where

(1 +4 )
AVv - ldpxy = all : h(x) for a function 4 : R¢ —R .
axl’-axd
(xi) b —0 and %«%’fm (1) as n —oo .
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Assumptions (i)-(iv), (vi) ", (vii)’, and (viii) are identical to corresponding ones
of Robinson (1995a), which are discussed there. Assumptions (v)-(vii) and (ix)
somewhat strengthen corresponding ones of Robinson (1995a), and assumption (x) is
a Cramér condition (see e.g. Bhattacharya and Rao (1976)). Assumptions with primes
somewhat strengthen or weaken those without primes used in Theorem 2, 3, 4 and
5. Notice that H needs only be a second-order kernel, whereas K has to be a
higher-order one unless d=1. It is possible to choose FH{u) =K(u) with
assumptions (viii) and (xi) simultaneously satisfied. However, in comparing (xii) with

(ix) it seems that b should in general be chosen larger than 7 .

2.2 A theoretical Edgeworth expansion
Define for dx1 vector v, o?*=v'Zv ,
Z=n'%v(U-p) , F(z) =P(Z=<z) ,

K2 ., 4(K;+3K,)
nh 42 3nll?

F(z) =<I>(z)—¢>(z){n”2h11<l+ (z 2—1)} . Q.1

where z is real-valued, ® and ¢ are respectively the distribution and density

function of a standard normal variate, and

o - AP ¥ ?l,.{fnu!‘K(u)du}E[(A""""’”vffog], 2

where Lyvesd g

k; = 2072 [(v'K'(w) Y'du E{(¢-g))f) ,
ks = 07E|(r -3(gg Mg} (v 1348 ) (Vf H2(va) -(via)?] ,
Ky = —0'3E[f(q-g D (vif ) (via ) f (vif ) {v(g'-28¢ ) }(v7a)
£(g2 D) (va) (vf W)+ (vgh (va)?]
where f /= LX) 4nq g-0a(X)

oxox " ox "
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THEOREM 1 : Under assumptions (i)-(x), as n—>,
vf‘fﬁ:l%e |F(z) —f‘(z) | =o(nY2+p1p-d24pl2p Ly

Theprém 1 establishes a valid Edgeworth expansion for a single linear combination
of the vector averaged derivative statistics U. The development of full multivariate
expansions would require further work (we canriot appeal to the Cfamér-Rao device),
however our present setup allows us higher-order inference on individual elements
of p , which would be of practical importance, as well as on its arbitrary single
linear combination. The normalisation v*v =1 employed here differs from that used
by Robinson (1995a), namely v"Xv=1, which is infeasible.

k; and x, involve the kefnel function K(.) and the corresponding
correction terms depend on the bandwidth A, thus they are related to nonparametric
estimate of f/x) . Also x; and «, are respectively limits of

o'V (EU-R)[h L and h?+2E( WZ) (see Lemmas 11 and 12) so fhat x, and
K, are related to first and second moments of U. In standard pafametric higher-
order theory x; and kx, do not arise since unbiased statistics with variance
O(n™') aretypically considered, not, ashere, O(n~'h¥?) . «x; and x, do
not involve K{(.) and the corresponding correction term is of parametric order and

independent of 2. We find the similarity of the last term in the wave bracket of (2.1)
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to the first term in the square bracket of (1.91) in the following sense. Firstly the
functional form with respect to z and # is thé same, anci secondly since we have
Ky +3%, =E(VT) +3E(V,\V,W,) +o(1)

due to Lemmas'13 and 14 (see below for the definition of V; and I’Ig ), we easily
see this structure is analogous to (1.92). The difference of constants 1/6 and 4/3
comes from the different choice of the normalizer. Therefore we can regard the terms
involving x, and x, as nonparametric, while that involving x; and x, as
parametric.

We follow a similar line to CJV (1980) to prove the theorem. We first
decompose the statistic Z into (1.37) (or (1.90) for ordinary U-statistics) plus a bias
term. We further decompose the first term of (1.37) into a term of exactly

o,(n -1/2) and the remainder. Then we expand the characteristic function of U ,
rearrange the decomposed terms with respect to the orders of n'/2A L, n-1h %2 and

n Y2 | Then we invert it using Esseen’s smoothing lemma (see e.g. Bhattacharya

and Rao, 1976, Chapter 3).

PROOF OF THEOREM 1
Let C denote a generic, finite, positive constant. The qualification "for n
sufficiently large" will sometimes be omitted. Writing E( - |i ) =E( - | X;, Y;) and
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B =p(X,Y;), let

v, =o' (p; -p) , Vi =o'v(U-EU) , W =ov'(U; -EU) -V;-V,

“where U, is deﬁned in (1.38). Z can be decomposed as follows.

2 2 ¢
Z = nllggl:vl + n112,=1(I/;—Vi)
n
+nll2(’21) )) 1,_;21W + nY207 1y (EU- )
=V + o+ W+ A
Define
x(t) =E(eitZ) =eitAE[eit(v_+a)+ﬁ')] , (23)

X(t) = [ei*dF(z)

. 4(xy+3%,) .
3+2(zt)2+%(zt)3} .2.4)

2 K
=e 2{1 +n1 2l (i) +
- nh

By Esseen’s smoothing Lemma,
12 X(2)-x(t)
sup |F(2) -F(z) | < f e | ———ldt + O(Wzlo?]

t +f
_ p<|t |<n VY ogn
+f |
It 1zpy

t)
X( |dt +0(n—l/2)
=. a-n + d-1n + JI-1) + »o(n"”z) , (2.5)

where p,=min (en'?,log n) for 0<e =1/ E|2v,|* . Before estimating (2.5),

we mention an inequality frequently used hereafter:

) . 2 . k k+1
|ezx_1_ix_(12x!) _..._(lkx!) I < (]lcx-!].)l (2.6)

for real x and integer k .

To estimate (I-1), we 'represent x(t) as i(t) plus a remainder. Using
(2.6),
ei*td = 1+itA+0((tDN?) , 2.7)
Ele i1 0"#M) - e 1M} 4 O(Elt @) |
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=E[e“v’{1+izW+-;—(itW)2}]'+ O(E[tW]*) + O(E|t ) . (2.8)
Writing w,.(t)=e2"'""”vf and v,(¢)=E[w,(£)] ,
E(e) =y, (2)" (2.9)
E(e’*"W) = nY2y, ()" 2E[ W,w (2 )wy(1)]

- )"-2{.4(" ) B Wy vy) +0[< J‘;ﬂ-—’-f—)h-l)} , 2.10)

ni2 n3l2
by Lemma 8, and
E(e itv'Wz )

nly ) (5 ) E w1 yw(1) ]

. 6"(’21)—2(’;)Yv(f)"'3E[ W Wiwi (£) w2 ) ws(2) ]

T (RO AL

2 y,(0)2{EE) <0l |n"2h <))

-3
v, (2)0(|e P73 )
+ ¥, (2)**0(t n 1+t Sn 2R 24 0Pt ) (2.11)
by Lemmas 8-10 and 14-(a). By Feller (1971, p.534) and Lemma 1-(a), for

|t |<en!? and m=0,1,2,3,4,
¢ 2

2 3 |
Y, (£)"™=e _T{l + E(Z—vl)(it)3}+o(n"”2( It |2+ S)e 'T) . (2.12)

6n 1/2

By (2.3), (2.7)-(2.12), (A.7) and Lemma 7,

x(t) = [1+i t A+O(t 2AY) ] [e “T{l+4E(v13) (it )3}+0(n U2 |t |3+ e ‘;)]

312

nll/2 n

x[1+4(i')3E(I’I{2V1V2)+(“)2E(W22)+An]’ 2.13)

A = 0 .t_4.+’_lt._|i_+t_6+_t8_+ l 10 +]t‘|h L+ It P
nh pd32p2 n p2p? p3p2 (nhd+2)3/2

2,4 10
- O(t—nf:tT) +O(Jt b (2.14)
by (ix). Expanding the right hand side of (2.13) and using A’ =n{v"(EU-p)/ o}?

=0(nh*) due to (A.1),
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e2 <N
n

+ O(TC o (e P+ |“)) + o(nh‘me —%( |t |3+ 4))
2 2 2
+ O(nh 2y 2 —T) + O(An(e e T) (141 9) ) . (2.15)
Since the first term on the right of (2.15) is
)-(—(t) +0 (e —‘—:( [t InY2h Let 2n-th 424+ ¢ °n ‘1/2))
by (2.4) and Lemmas 11, 12,~13-(a) and 14-(a), using (2.14),

(r)-x(t)
"‘|X_x__ ldt = o(n Y 2n 42y V2 I

I1 =
[1—
because f "It (e *%2+e*"4ydt <C for any positive constant 7.
-0

Next, (III-l) is

[\ e
lzey JE |

<c|

1+n1/2h1‘1<1it +%2-(it)2+ 3:f,2(“)3'dt

ool -.‘_z ) _ﬁ
+e 2dt +n”2the 2dt
P

Py 1

© P
The first integral is smaller than p{z f te *dt =p,;°e ? =o0(n"!) because

P
p,=min (logn ,en'/2) . The other integrals are clearly 0(1) as n —o. It
follows that (III-1) = o(n Y 2+n1h 4 24pl2p L)
To estimate (II-1), define, for m=1,2, - ,n ,
2 L 2w
nllzlzlvi ’ w(m)"n”z;(lli —vi) ’

and, for m=1,2, - ,n-1 ,

v(m) =

n

wemy =nti7{ )" JE

Note that ¥(n) =V , &(n)=@ , WMn-1)=W. Using (2.6),
|x(t) |=leitAEeit(J+('o+W)|leei:(;:‘+Z.>+pT/)|

< i& i £ 4(@-G(m) y+(FW(m) »{1 +i t (@(m) +W(m) )+_(%)_2(Z>( m) +W(m) )2}

+ O(t PEC[@(m) P+ m) )
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e i 1 7+ @-Gm)) {(HW(m)) )
+ It ||Ee it{\?+(?.)—ﬁ)(m))+(ﬁlﬁ’(m))}{a)( m) +W( m)}|
+ _t; |Eeir(ﬁ(zﬁo(m))»f(ﬁ&v?(m));{a)(m) +ﬁ/( m) }2|
O(lt PE{ |o(m) |+ |[W(m) }) . (2.16)
By (iii) and Lemma 2, the first term in (2.16) is bounded by
|Eeitv'(h)Eeit{(v_-\?'(m))+(Z)—C>(m))+(WI7V(m))]| < |Eei:v’(m)| = Iy, () " .2.17)
Using (iii), Lemma 1-(c), Lemma 2, Lemma 3, (A.5), and Holder’s inequality, the
second term in (2.16) is bounded by |t | times '
|Efe "™ @(m) }| + |Efe YW (m) )|
S 9,00 " ZREW v+ () [ 2 v B |
=Cly, (1) I"*l n’f,’zh L+ Cly, () ™ i * : (2.18)

n32p
Similarly to the derivation of (2.18), using (iii), Lemmas 1-5, (A.5) and Hoélder’s

inequality, the third term in (2.16) is bounded by ¢ %/ 2 times
|Ee i"’-('")Z)(m) 2|+2 IEe itv(m) (-o(m) ﬁ/( m) |+|Ee itv'(m)W(m) 2|

< [9,(0) M AV, v ) 2+ [y, (1) P2 2D Yy B, |

r2ly,(0) [P (BFRE|(V v ) Wy

e2|y,(¢) [ IO (PR, v E W |
le(t)I"*z(mn)n( ) E(W3)
+ v,(2) ™2 2m( - 1)n+4(m~1)mn}n( ) E|W, W, |

+6Jy, (¢ pre ) G2 Om3) 7, B |

{Ivv(t)l”“ o o) P B o) prome B

() o sy () " () e
+ IYv(t) |m-4 nﬁz}

74



< Cly,(t) | 4{( ) +n2hd*2+nh2)m+( n n? +nzhz)m2

L-1
i n31hzm4} , 2.19)

because |y,(¢) |<l. Substituting (2.17)-(2.19) into (2.16), with |y, (¢) |<l
yields

L 2
X(£) | < |1,(2) |"'+C{|vv(t> 7zt ) I 3,zh}lt |
i th 1 1 h2L hL-l 1
+C|Yv(t)| 4{( n +n2hd+2+nh2)m+( n * n2 +n2h2)m2

hLl 1 4|, 2
+ md+ mlt
n? n3h?

+O(|t PE{ |@(m) [*+|W(m) [*})

n nhd? ph?
2L L-1
+{ 1 |tl+(h +h + 1 )tz}mz

L I 2L
<Cino) 1 e e (Bl Ly o

312, n n? n2h?

hanl ¢ m3+ ns].hz t 2m4}
O(lt PE{ |@(m) [*+|W(m) |*}) . (2.20)

Now we evaluate (II-1), partitioning its range of integration into two parts,
namely.pls|t |<en'’? and en'?<|t |[sn'%og n .
(i For p,<|t |[<enY?, since € =1/E|2v,|* <{1/E(2v,)?}32=1 due to
Jensen’s inequality and so |t | <n Y2, using (2.6) and Lemma 1-(a),

it 2y
1v,(t) | = |Ee f‘l

L), 2vy |t ? 1 2V
SIE{ 1+lt 1/2 2'2 ( ”2) }| 3] E|n1/2|3
2 2
st sew (-2 | @21

so using (2.21), Lemma 7, and (A.7) in (2.20),

2 L hZL )
|X(t)| sCexp {—L’ll_%,l)—i—}lil +{h1/2It |+( n +n22d+2+nh12) t 2}m

n3'p n  n? n?h?
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L1
+h2t2m3+ 312t2m4
n n-h

+ O(It |3{ )3 2p 3L 4 ( de:z.) 31 2}) . 2.22)

We may take m=[9nlog n/t 2] since 1<m=n-1 holds for p,<|t |<en!/?

and sufficiently large n. Because m=(9nlog n)/t 2—1 ,

exp (- (AL Ty o - LD Ty o ( ST,
<Cexp ( -3logn ) sn—c; (2.23)

for |t [<en'? . Substituting (2.23) into (2.22) using m=<(9nlog n)/t ? , we

derive
C hil hL 1 nlo
x(2) | 5?[1+{n1/2|t [+ n ¥ n2hd2 nhz)t }_f?—

“L s Rt Rt 1 )2 n(logn )?
KK n nt n?p? t4

h“tzn3(logn ), 1 tzn“(logn ) 4

n? t n3h? t?
+0((logn ) 32 3L+ ( ‘hd+2)3/2]
2o
SC[{ 1+h nlsogn . liind+2+10§':2+(logn ) 32 3Ly h@d+2)3/2}

, htlogn 1 h”‘(logn )2,k (logn )2, (logn )%| 1
512 |t| n? 3 Wh? (12

L, Uogn )* 1  ht'(logn )3 1 , (logn )* 1
nSlm e B n? t4  n?m? 8]

Therefore, dropping the range of integration p <t |<en !/? on the right hand side,

[ | XD 1gr

p1slt |<en /2 t
2L

SCHl+hnlsogrt . laind)fz logn +(logn )Y+ ( hd+2)3/2} Clit_tl
, hHogn rdt hZL(logn )2,k (logn )2, (logn )* f

5/2 t2 n2 ‘ n3 n3h2 It ls
, (logn )? hL“(logn )? f , (logn )* f

n>2p t4 |t |5 n?h? J Y
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=o(nV2ip-lp42.pl2p Ly (2.24)

by assumption (ix).

(i) For en'?<|t |<n'%log n, there exists a constant 1,6 (0, 1) such that
|v,(t) |<1l-n; by (x). Choose m such that m=[-3logn [log (1-7,)] since
1<=m=<n-1 for sufficiently large ». Substituting in (2.20) and applying (A.7) and

Lemma 7 bounds |x(z) | by

_ g _ Bl h 2L 1 1 3lo,
B TRiETH 2()___dogn
C(1-my) 1+{n1/2|t.|+( n +n2h‘“2+nh2) g }{ log-(l—'lh)}

+ 1 It |+( h2L+hL_1+ 1 ) r 2l 3[082! ' 2
n3y n n® pip? log (1-m,)
. hL‘lt 2| 3logn 3 . o[ 3logn 4
n? log (1-my) n3n? log (1-7m;)
Ol (' 3¢ )3/2}‘ Y L T
nlog (1-n,) n?h4?log (1-1,)

| L) e

so that

fm V2<lt |<n Y 2Uogn

_ 0(log (n'%logn )

n3
o L togn (B nCiogn )7
(logn ) R pLt 1
+’ in's { 3/2h(n1/2108” )*( P ) +n2h2 (logn )?
3 L-1 4
(logn ) h n(logn )2+ (108713) 31 zn(logn )2
n? n’ n°h
+n 32 logn )3{( logrln y32p 3Ly ;1102@[102)3/2})
=o(nV2ipli2plyp-lp 242y (2.25)
by assumption (ix). Thus by (2.24) and (2.25),
(II-1) = o(n V2+pn-1p 4240123 L)

which completes the proof. O
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2.3 An empirical Edgeworth expansion
We derive an empirical Edgeworth expansion by replacing population x; in

(2.1) by strongly consistent estimates

- - d ; = =~/
= 2D o [l ad 15 {ac v fr,
L 0y, [ TysLt i n

i=1 i=1
144l 4=L

-~ A_n’l +27TT, ~ _b‘
K2=02(2) E Ehdz%z Ry = 2

a2 _ Ta 4= » n n .
#2=v'Zv , B (n-’l)(n—2)22{, (G U)}{k;( i U)}

1=

where for positive b and a function H: R4—R

Fxy - —L X

'l)b ]#1
ﬁ = . ’ 2.26
b= o 1}; (2.26)
Vi =v(0-U) , W =vi(U; -T -G +U)

2 is a jackknife estimate of X .
Define

F(z) =<I>(z)—¢<z>{””2’“f<1+ LIPS Rl

nh d+2 3n 1/2

(z 2-1)} L (2.27)

THEOREM 2 : Under (i)’, (ii), (iii), (iv)’, (v)’, (vi)-(viii), (ix)’ and (x)-(xii),
sufp 1.s‘zufp |F(z) F(z)| =o(nV2+nh42+nV28 L) completely.

By the statement X, =a +o0(g,) completely, for a constant @ and a
positive  decreasing sequence g, , we mean that for all €>0,
f:P( IX, -a|>eg,) <o, and if this holds for g, =1 we say that X, —a
c;;:lpletely (see e.g. Serfling, 1980, p.10, Stout, 1974, p.221). We shall frequently
use the fact that, by Markov’s inequality, X, —a  completely if
E|X -a| =O(n'(log n) %) forsome r >0, {>0. By the Borel-Cantelli
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Lemma, complete convergence implies almost sure convergence. We shall omit the
qualification "completely" when referring to this convergence.

Comparing assumptions above with those in Theorem 1, we strengthen (i)’,
@iv)’, (v)’ and (ix)’ here. We will prove this theorem by showing k; —x; |,
i=1,2,3,4 . (i) is necessary for all four of them since &* —o0? entails it. (iv)’

and (v)’ are used in the proof of k; ->K1' , while k; —>k; requires (ix)’. Before

proving Theorem 2 it is useful to establish the following

PROPOSITION 1: Under (i), (iv), (v), (vi), (vii), (viii), and (xi), U —p .
PROOF: Because EU —pu by (A.1) and v is arbitrary, it suffices to consider

n 4n-1 n
o vi(U-EU) =—2—EV,- +(n) IE > Wr=a;+a, . Since the V; are
n = 2] &4
independent with zero mean,

Ela,|? <Cn 32} E|V; | <Cn ®I>(E|YP+1) =O(n™%?) |
i =1
so a; —=0 . From (A.6),
n-1 n

E(nZ%,)? SCEE( > W) =Cn?h? =0(n?(logn )7?)
1 =1

j=i+

from (ix), so a, =0 . O

PROOF OF THEOREM 2:
In view of Theorem 1, it suffices to show k; —«x; , i =1', 2,3,4. We

first prove k; —x,; . In view of Lemma 13 this is implied if

a3 -1 (2.28)
and
;{._Si;vg —E(v?i) . (2.29)

o? —»a? . (2.30)

79



To prove (2.29), put A=o"!v and write

LEVS = lz";w(ﬁ,.-v,.w + lfjrf? - {M(U-ED) )’
nod = n n =

i=1

: %lew(ff,-—Ui)VV,- -w;\{mﬁ‘_q)}z

) ML AUR YRR EAC RS SPY Y
i=1 =1
MU—)—Z)J 0-u)v,

i

3A(U—EU)E L3 (U—EU)}zzy , 2.31)

n i=1 1 =1

We start with the second term on the right of (2.31), writing
AV - —):v, A Wi E D) BV -v]) . @32)

By (iii) and E(v{) < due tlogl(l)’ and Lemma 1-(d), H;v 2 SE(v}) from
Theorem 4.13 of Stout (1974). The third term on the right of (2.32) is O(h L) since
its modulus is bounded by

CE(|[V;-v,|[VE+vi]) <CRIEL(|Y,|+1) (¥ ]+1)?],
and this is O(h L) due to (i)’, Lemma 1-(d), and (B.1). The second term on the

right of (2.32) converges to zero because it has mean zero and variance bounded by
S BV v -B(R) < B D) )2 |
s SEEW v P+ BV -EVD 1) @.33)
and because

E|V? -vi | <CE|V;-v,]}|Vi+v{| SCR*LE( |Y,|*+1) ( |Y;[|*+1) <Ch?L ,
by (i)’, Lemma 1-(d), and (B.1), (2.33) is O(rn %) =0O(n?) by (ix)’. Thus
n “zn: VP —E(v?) . Substituting (2.26) into (2.31) and noting
A’(‘ T -U) = +V , we have the following typical quantities for the first term

on the right of (2 31) :

n(n w2 2 g 2 (W V) sV (g V1) (2.34)
2 +

n(n 1)3 1<j</<2:(uil +V) (W}lk Vk) ’ (235)

TR AU R CED
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(2.34) has mean zero and variance which, by Lemma 1-(b),(c), is bounded by
Cn > [nE{(Wp+V)) (W3 +V3) AW+ V) 2}
+n2E((Ws+V3) (W, + V) (W5 +Vs) (W +V3) (W, + V) (W5 +V5) }]
The first expectation is bounded by
CE[E(W3 |1) ECWZ|1) EQWZ (1) | =O(h 34%) =0(n? (logn )?) 2.37)
by Lemma 4, (i)’, and (ix)’ because the terms involving V are of smaller orders,
e.g.
E(PEWEW,V,) = E(WRWEE(W, V1) )
<CE{(|Y;|+1) B(WE|1) E(WZ|1) } SCh24E([Y,|*+1) =O(h-4)
where we use
BV, (1) | < |ECN ULV, |+ |E(VE) | <CC[Y |+ 1) (2.38)
dueto |E(A"U,V,|1) | <C(|Y;|+1) (see the proof of (A.4)) and E( V2 <C by
(i)’ and Lemma 1-(d). Applying Lemma 6 repeatedly and (ix)’, the second expectation
is _
E[[BCW, W11, 2) | |- O(h24%) = 0((n] logn )?)
since terms involving V; are of smaller orders again as in the above. Thus,

:

(2.34) —0 . (2.35) has mean zero and variance

n [k-1j-1 2
1
———) E V. +V.) 2(W +
nz(n_l)sg; [JZ;M( i V) k)}
1 n k-2
=— =  VFE P,)?, 2.39
nz(n_l)égg (,z; it ) (2.39)
k-1
writing Py = (W, +V,) Y (W +V;)? . Now since terms involving V; are of
j5 ‘

smaller orders,

E(Pi) <C[KE(VE;WS) +k*E(WzW5THe) | < C (kh 46 + k 2 -346)
because of (2.37) and, by Lemma 4 and (i)’,
E(W3W3) <E[WsE(W;|1)]| < Ch2E[W3(|Y,[+1)]
< Ch2E[(|Y;[*+1)E(Ws |1)] < Ch42h 344E( |V, |P+1) (Y [*+1)

<Ch -4d-6 ,
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while for I #m ,

\ECPPy ) | < C|RE(W W, W3 Wy) + k*E(W Vs W3 W, ) | <Ck b4,
since the first expectation is O(/# ™) by Lemma 6 and the second is zero by
Lemma 1-(c). Thus (2.39) is

O( ;!;é;(k%-“d-hk%-u-ﬁ)) =0(1/n(logn )?)
using (ix)’, so that (2.35) —0. Next (2.36) is
LS S (B )2 - E(OR V)2 1)

n(n 1)3 1]-:4-

' WEU 1) [ECCH; V) 21} - E(Hp+1y) ]

PN S +V.)3 /
TSR ON | 2.40)

The last expression is O(n 2k 243) by (A.5) and Lemma 1-(d) with (i)’ . The
- second term of (2 40) has mean zero and variance

nin- 1).sZ)EI 3 LCW ) ECCH V)2l 1] P

= +1

< —E {nE(W3) +n2E(W;W3)} <C(n*h 546 4 g S 46y

by Lemma 4 and (A.S). The first term has mean zero and variance
nz_(nl‘lﬁzz (j -1) 2E[EL(W;+V)) 2| } - E(W,+V,) °P

< ;%E{E( W,2|2) 2 < Cn-sh 44
by Lemma 4 and (i)’. Thus by (ix)’, (2.36) converges to zero. The other terms in
(2.31) can be handled like (2.34)-(2.36) and are shown to converge to zero using the
Proposition, so that (2.29) is established. To prove (2.30), write

ot = azﬁ%E V? . Similarly to (2.29), we have

(no?) llef —E(v}) . (2.41)

Next we prove k, —=x, . By (2.28) and Lemma 14, it suffices to show

n(n I)Ezv U; ViV, -E(Wvv,) =0 .

i=lj#
Since o'V, =V, +A* (U, -U;) -A"(U-EU)
n _ln-l n i _
o3V, V.V,
(2) |Z=1:j=12+1 v g
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74 74
- A(U- Emzlj<?jxfzqu+2<§:xfzgj (U -0y,
+2;<IZ:}‘T uN(U ))\'f(q_[']j)

- AT(U- Ew2<]zxf AT -T)

- AT(U- EU)ZZ]EA' i Vi- M (U- EU)EMJEJV M(T -U)
FUR(U-ED)PE Y xu,.j} . @.42)

Writing
O =E(XU; VY, i) -E(NUV;)
Q) =N, VV;-Q-QE X UphVy)
the first term on the right of (2.42) is

ECNUVVp) + 230 + (5] 3o (2.43)

=1 j =i +1

Since {Q.} is a stationary martingale difference sequence,
. 1 - 3 C 3 3 C
E|3 2 QP = 55EIQ| U, V,Vi i) | ek

the last inequality using (2.38), Lemma 1-(d) and (i)’. Since EQ.J- =O and

EQ.]. Q,;=0 unless i=k and j=1I, the last term in (2.43) has mean zero and
variance

n-1

Toain %, E(Q,) < S0
C £ EIWUWY,I? s Cnth42,
where the last inequality is due, in view of the proof of Lemma 5 of Robinson
(19952), to
E(MU,ViV3)? = E[VIE((AUp) W7 |1}] < E[VIC(|Y,|*+1)h 22
<Ch2E[(|Y,2+1)7],

by Lemma 1-(d). Since E( AU, V;Vy) =E(WV,Vy) =E(W,yv,v,) +0(1) by (i,
Lemmas 1-(b) and 14, it follows that the first term of (2.42) is

E(W,v,v,) +o(1) . The proofs that the other terms in (2.42) converge to zero
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are omitted because of their similarity to the proofs for (2.34)-(2.36) and because of

their straightforward use of the Proposition. Thus k; —x; .

Since a-lﬁ/ =W, -A(U -U,) - Af(ff -U) - )J(U—EU) ,
+ X;<Ehd*2{kf(v U)}?+ 2<Ehd*2{A’(U -U) )2
- 22i2hd+2n{j AT -U) - 2z];<2hd*ZW. (G -U)
- 2A:(]U-EU)EEh d2py j
i

L 20 Y 2N (T-U) W (T -U)

i<j

+ 2A7(U-EU) ZZh‘Ml’( U-U)

7<j
+ 2A"(U-EU) E;Eh 27T - q)} (2.44)
Because of (2.30), Lemma 12 and because E( W;) = O(A ¢4) due to (A.5) under
(i)’, it follows much as in the proof for (2.42) that the first term in the wave brackets
. on the right of (2.44) converges to x, . We omit the proof that the remaining terms
converge to zero because it is similar to the proofs for (2.34)-(2.36) and

straightforwardly uses the Proposition.

We finally show %, —x; . In view of (2.2) and (2.30) it suffices to show

that
-t
rlzz{ A vl d yre (X;)}Y, convergesto E[(A(I"""l")v’f 'y g] . Wehave
I~ AU D) arp!
Iy atetovixyy, - ()" >3 5 (2.45)
i=1 i=1j=i+1
where

H =b ~d-1-LAC 1 LD g e L;)(L) (Y; -Y))
Since we may choose an even L, the kernel order, without loss of generality,
AYr 'O yTH(u) s an odd function by (xi) and thus (2.45) has a U-statistic
form. As is standard in U-statistic theory, define H = E(H; i) , then (iv)’, (vii),

(xi), and integration by parts give
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H = ELE(H; |X,,Y,,X) |X " Y]
= b 4LE[ AV v D yr N —bL> Y, -g(X)}|X,Y;]
= b 1L (AN D v H ) Y, g (X; ~bu) Y (X ~bu) du
= Y, [Hu) (A7 v f (X, -bu) Ydu
-fh(u) (AP D yre (X buy Ydu

and
_1”'1 n
(g) ,le___lqlij _Efli2 =44 t ay
where
“ lnl n
[ = g

Noting that the H, -EH,, are iid with zero mean and bounded variance due to (i)’,
@iv)’, (v)’ and (xi), and .
E(Hp) <b —2d-2—2LE(E[ (aetd ,H,( (Y+Y7) X, Y] )
= b s g [(AC e vi B 2 vRag () 1 ()
= b 2UE[{A 1 v Hu) } {(Y7+q(X,-bu) }f (X,-bu) du
<Cb 422UE(Y] +1) =0(b 422

Xl-Xz)}

due to (i)’, (iv)’, (vii) and (xi), 4; =0 and a, —0 under (i)’, (iii), (iv)’, (v)’,
(xi), and (xii) similarly to the proof of the proposition. By (iv)’, (vii), (xi), and
integration by parts |
E(H,) =E{b -d-l.-LA(Il ) TH/( X Xz)Y}

= b*“"-"EfA"" 1 ’H’( 2Ty f(x)dx

= b'l'LE[Yf{A("’ " la) ’H’(u) }f(X-bu)du]

= E[be( u) (AYr LD yre H Xby ) }du]

—E[YAY " 1O yf =B (AT vrf 0y g)

so that ¥; —x; . g
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Chapter 3

Edgeworth Expansions for Averaged Derivatives
And Bandwidth Selections - Studentized Case '

Results in the previous chapter are theoretically interesting, however they do

not suit for practical use because the statistics there are not studentized (see 1.3.1).
We provide valid theoretical and empirical Edgeworth expansions for studentized U
in Section 3.1 and 3.2 respectively. The former expansion is still infeasible due to the
unknown quantities it involves, but the latter is feasible and so for practical use. It
can be used f<’)r confidence interval estimation or hypthesis tests as described in (1.87)
| for the sum of i.i.d. random variables. Section 3.3 discusses the following points.
Firstly, we show that a number of situations results depending on the dimension of
the explanatory variables, the kernel order and the rate of decay of the bandwidth,
and especially that an Edgeworth expansion of parametric order is possible. Secondly,
we propose bandwidth selections which minimize the ndrmal approximation error.

Thirdly, we discuss differences between our results and those of Linton (1996a).

3.1 A theoretical Edgeworth expansion

Our studentized statisticis Z = n'/25"'v?(U-p) and we are concerned with
approximating
F(z) =P(Z=z)

by

‘ o This Chapter has been revised and written up as a joint paper with my supervisor
Professor Peter M. Robinson as Nishiyama and Robinson (1998). A part of Section 3.3 is
included in Nishiyama and Robinson (2000).
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F*(z) =®(z) -¢(z) | n2h Ik, - n1:2+22 - 3n4”2{( 27 2+1) Kk, +3(2 2+1) K}

3.1)
THEOREM 3 : Under (i)’, (ii)-(x), as n—>
v..uvtﬂ_lsi% [i?(z) -F*(z) | =o(nM2ph42inlip Ly
The assumptions are the same as those of Theorem 1 except (i)’ strengthens
the third moment assumption. The correction term in F*(z) contains terms of the
same orders as those in Theorem 1. Moreover, the "bias" component, of
order n'/2h L s identical to that of Theorem 1, while the "variance" component,
of order n~'h 4% is the negative of that in Theorem 1, though the rcmainiﬁg
component, of order n~12 | differs from that of Theorem 1. The first two
correction terms are related to nonparametrfc density estimate as the corresponding
ones in (2.1) while the last term is also "parametric" as the last term of (2.1). We
find a similarity between the last term of (3.1) and the correction term of studentized
ordinary U-statistics (1.93) like the similarity of the last correction term in (2.1) and
the first correction term of (1.91). We discuss this "parametric" case in Section 3.3.
We use the same bandwidth 4 to estimate o? here, but it is not necessary. If
we use a different bandwidth choice, we will have the same correction terms as in
Theorem 1 and other correction terms related to the variance estimation.
We handle the studentization like Callaert and Veraverbeke (1981), namely we

expand &! around &?=o?

. Then, we have cross terms of the expansion and the
decomposition of U. Based on this, we prove this theorem in a similar manner to

Theorem 1 by investigating the characteristic function.

PROOF OF THEOREM 3

As is standard in U-statistic theory, we write

) _ 2 n n _ln-l n ) _
nl20vi(U-p) = =YV, +n”2( ) Y Y W +nl2e7 v (EU-
(T=w Vr i 2] High ! ( 2
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=V + |74 + A. (3.2)
Writing S=4Var (U,), s 2

=02v'S v , Taylor’s theorem gives

-3
oo l=g1- 5'2 (0'_26'2—5' 2) + %{S 2+9(0"2?72—S 2) }—5[2( o252-5 2)2
=s1 + R + R

(3.3)
forsome 0 e [0, 1] . Similarly to Callaert and Veraverbeke (1981), we expand IE

as follows. With V; = E(V;W i) , W, =E(W W, |ji ,k) , we have
§=T+Q+R s, T=T\+T,+T; , O=0+0, , R=R/+R,+R;+R,+R;s

n

- 2 ) 2 .2y, _ n-1\1&
T = (n_2)2E(W2), T, = ;1—2<(4V s 2) SV} T, 48( )

i=1

VY, ,Rz=,%8(”51)'li;é;"m<wkw,-,,.—w;a |

_ n\1 2 W W . 2 v
Ry = = ala) X W W cECKD L

“ __48n(n-1) (n—l -1 2
W - El , = ——_ /4 R

- B0 -BD) Ry - -0 { > }
where 8 = -5 3/2 and ; denotes summation with respect to k¥ and m for

1 <k <m=<n excluding k=i and m=i. Lemmas 24-33 show moment bounds of

T, Q and R, and E|T|" <E|Q <E|R|" asymptotically for such

r that the

expectations exist. Because
Z = (s V+R+R) (V+W5A)

by a standard inequality ’
sup |[F(z) -F*(z) | ssup P((s +T+Q (V+W) +s A <z)-F*(z)|

+ P |[(R+R) (P+T0+1) +( T+Q A| Zan)+0(an) (3.4)

for a,>0, where here and subsequently we drop reference to sup . Taking

1

v: vTv=]
a,= Wmaxw U2 p-lpd2 plti2p Ly | we bound the second term on the
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right of (3.4) by

P(|(R+§)(I7+ W A) | zﬁ) . P(|(T+Q Al =2 %h L)
2 2logn

sP(|R+1°€| >

n_| 4 P(P+W+A| 2log n) + P|(T+Q A| =202
log n g

2log n
(3.5)

The first term in (3.5) is, by elementary inequalities, bounded by

~2 an
+ P( R ZW) (3.6)

for a constant C, determined later. The third term of (3.6) is bounded by

a, IR|

P12 ndis) + P TP 2 i) * HI0 BF =)

= (a) + (b) * (¢)

Lemmas 24-33 and Markov’s inequality give, for { >0 ,

E|T,|X1+0 -(1+0) 2(1+0) -1
(a) = |a2| 1+ = e (...11(2%47) =o(r %)

(12C01:g n) n?

EITl + T |2(1+() C( n-n —d—Z) 2(1+c)( lo n) 2(1+0)
b < & =o(n'h??)
o (120:‘123 n)l+c (ntha2)1 ot ‘

(¢) = ElR:QP Cn'zh‘d-zl(/log n)? = o(n-h4?)

[ S
12Glog n

where _>.% suffices in (b) under (ix), and { arbitrarily small suffices in (a).

The first term of (3.6) is, using Markov’s inequality, (ix) and Lemmas 29-33,
bounded by

16 E(Rz)(IOg n)? <C(n-+n2h244) (log n)* =0 (n"Y2+n-1h42)
| a2

Now, in view of (3.3), R - is ( 1-20sR)‘5/2R so that because RZO and

=P(%s(1 -20s R) 5I2 =G,
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sP([fq 251?{1-(212;—0)2/5}) . 3.7

Taylor’s expansion of s 7 around s 2=1, (ii) and (A.2) give for integer ,

s =1+0(a?v(S-Dv) =1+0(hb (3.8)
3
2
and Markov’s inequality, (3.7) is bounded by a constant times E|T+Q+R|?

so that we can choose C, suchthat C,> =s for sufficiently large n. Then by (3.8)
=0( n¥2+pn7347346) from Lemmas 24-33, so that the second term of (3.6) is
O( n32+pn3p 346y | Therefore,

-1
P(R+R|z ) = 0 (n T 4n h4?) - 3.9
Writing F(z) =P[nY 207 'v?(U-p) <z] as in Theorem 1, and noting (3.2), we

have
P(|V+WAA| =log n) =1-F(log n) +F(-log n) . (3.10)
Theorem 1 implies for any z

1-F(z)+F(z) =1-F(z) +F(z) +0 (n"Y2+n h 424121 L) | (3.11)

Now by (2.1),
N 2
1-F(z) +F(2) = 1-%(z) +&2) +§(2) —2:z
= 2-28z) +¢(z) ‘Z'j{z (3.12)

Substituting (3.12) into (3.11) and putting z =log n, because
1-®(log n) =o(n"Y?%) and ¢(log n)log n=0(n2) , we have

1 -F(log n) +F(-log n) =o(nV2t+p-pd2,plizply (3.13)
By (3.10) and (3.13),
P([V+W+A|=log n) =o (nY2+nh42+spli2ply (3.14)

Finally, Markov’s inequality, (ix), (A.1), and Lemmas 24-28 bound the last term of

(3.5) by

A2E|T+Q|2(2108 n)? <C(n'+n2h24%) (log n)2=0 (nY2+n-1h 42y,
nh

(3.15)
Substituting (3.9), (3.14) and (3.15) into (3.5),
P( |(R+§) (V+W+A) +( T+Q) Al Zan) =o(nY2iptpd2.:pli2ply | (3.16)
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To deal with the first term on the right of (3.4), write b, = s 1 2
by=sW, b,=(T+QV, b,=(T+Q W, by=b,+b,,
by =b,+b, , B=b,+b, , and define

X'(2) = [ei*dF*(z)
n

_ 4(2x3+3k,)
3nl?

%2 i1y

"W (it)s}.

Esseen’s smoothing lemma gives for N, =log nmin (&gnY?2,nh?)  with
e=(E2s V!,

sup P((s 1+T+Q) (V+W) +s5 1A<z)-F¥(z)|

N it (Bss 1A) _ ot
s [olE—— X+ oY

which, for p, =min (log n, én Y2, nh4*?) <N, , is bounded by

fp2| Eeit(B+s™'8) —x*(t) dt + Ee it(B+s '8

dt
P2 4 ' Lzslt [=No 4 |

+f |X+(t)|dt + 0 (nY2+p-1pd2)
It 12p2 t
= @) + @2) + @I2) +o(n Y2 snh4?,

Here & is bounded away from zero due to (3.8) and Lemma 1-(d) for sufficiently
large n. (II-2) is o (nY2+n-1p 4240123 Ly a5 (III-1) in Theorem 1.
To estimate (I-2), we proceed by writing x(z) as X'(¢) plusaremainder.
Since s “!A is nonstochastic, . ‘
| EfeitBuTN) o gitsAp(gith) (3.17)
where (2.6) and (3.8) yield
eits™8 = 1 vjts TA+ (et —jts 1A

1+its TA+0(t %5 2A%)
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=1+itA+O(t 2N+ |t |hED) . (3.18)
Writing b, =6;/+b) where b/=TV and b5)=QV , and applying (2.6)
repeatedly, we have
E(e''B) = E(e''™) + Be!'B-¢''t
_ E(eub,) . {Eeit(b|+52+b'3) __Eeit(b1+52’)} N {Eeit(b,+52') _E(eitbl)} -
- E(e ') + O(|t |EB]'+5,]) + {Ee’" 15D —E(e by ~it B(Ble'* )
+itE(bje ithy ~BJle’'??) + it E(bJe’'t?)
=E(e''™) +itE(Bje’"") + O(|t |EBS +bs|+t (E|Bj*+E|Bb,))) .
(3.19)
Using (2.6), write
E(eithy -

!tb {1+ltb + ( ;)2b32}]

+E[ ””2{ iths 1 _ith,- (i;)zbf}]

=E[e”b2{ 1+ithy+ (’? }] + Ot PEb, ) , (3.20)

and put y(z) <E(e ') . As in (2.9)-2.11),
E(e''’) =y(£)", | 3.21)

E(bye''™) - v(r)”[“"lfz) 200 Bw, 1y

2 L 3. -4
+0(’1’72+( oz a )} 3.22)

E(bZe'') E(W2)

1\((t)"'2

e 3“)]
+ n-3 -3)2p ~342

Y(£)"O(e |n ™%k 2 7)

2

n-4 4, -1, 4 8, -35 "342 6 -2y ~34-
+¥(t)"*0(t 'n +t *n"h +t Sn2h ) . (3.23)

Since for m=0,1,2,3,

oo o B o) ol per e ) aas
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by (A.1), Appendix C-(a) and (3.17)-(3.24),

E{ei*B+™0) = (14t A+O(t 2nh L+t |n Y 2h20)

2 3 2
x“e -T{l , AE(V) (it)3} N O(n-l/z( it P+t s)e‘T)l

3nli 3

. 3 > 2 y 2
x[1+ 4G 0 g, vivy) + LEpowg) - 200 g
, n n n

_ (it )}:;gl t) {4E( 1/13) +8 E( H{ZVII/Z)} + O(A':)]
v (|t |E6{+ 5|+t 2(EIBJP +ElBbs]) )} (3.25)

where

4 <C |t|3hL+( |t|5+t4)h—§d-1+ ¢ et P
B 12 3/2 n 21, d+2 27, d+2 4
n n nh n‘h n3/2h 3d+2
6 10 8 ' 3
e g t e |Z+lz 3/2
n3h 34+2 n2h 342 (nh%?)3

2 3 25, L
t bt L2

2
L1
n

* nzhd+2 nS/zhd+2 nh d+2
3 3 7 6
B L2 S S 28 28 L | A AN
n n3/2 nshd+2 n5/2hd+2 nzhd+2
-0 t2+t 10 . t2+t6
nhd+2 nl/2 :

Expanding (3.25), we have

2 3 2
E(e 108 -T[l +{A_ SECV?) +SECH VP }(,-z)-___E(;VH’ (1)
n

3y +
~_4{2E(V1) 3E(-I'I{2VII/2) } (it)3} + D (t)
- 3pl2
2 - 3y 1+ 4=

K, -h *2E(W3)

—(nVhIx -A) (it)+ (i1)?

nhd+2
3nl/2 n
=X () + G(2) +D,(t) , (3.26)
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using Lemmas 11, 12, 13-(b), 14-(b), where

C (1) = o(e TR g, 22 ))

w12 nh 4+
i 2 3
D,(t) =0({ J—1/I7+O (n Y2t 6+|t P)e 4).}{n2thd+z ] 1-;2|t | }

i 2
.o '2(|t IR U2R Ly 22 | |n V220 ( t . |t|172!t|+A':)
n

n2hd+2
VL PR _t?
+ (e |n”2hL+t2nh2L){e 2—L—|—t”2+o(n‘”2(t6+|t 1) e ‘)}
o n

2

' - 3 12
(e |n1/2hL+t2nh2L){e 2 |t”|2+0(n-1/2(t6+|t e 4)}

t? t P+t
x( nzhd+2 J I1/z| I+A)

+ (e #8220 |t Prb 2 EIBS 4By

+(£2+ [t Prl2n Lt 4nh 2Ly (E|5;|2+E|52’b3|)) . (3.27)
By Holder’s inequality, (A.7) and Lemmas 23-28,
— — _da '
E|b)| = E|QV]| < (E|QPEIV|) Y2 =0(n"'h %) (3.28)

E|B,| = E[(T+Q W] <(E|T+QPE|W}Y*
= O((n" M2 th =42y (nlpd2Uz) (3.29)
Writing E|6/|* <C( |T,|PE|V|* +E|T,V|* +E|T,V}|*) , Lemmas 23, 24, 26 and
Hoélder’s inequality give |
|T, PE|V|* + E|T, V> <|T, PE|V|* + (E|T, |*E|V|*) 2 = O(n %h %4y
and (3.8), (i)’, (iii), Lemma 1-(d) and (B.5) give
E|T,VP? S%Elé (4VE 52+ 81};)]2 V2
- 7C3<”E'(4V‘2 -5 248 Vi [P+ n(n-1) E|(4V] -5 2 +8V)) Vz|2}

=0(n)
Thus
E[B]|> = EITV|* = O(n™'+n2h 24 (3.30)
Holder’s inequality, (3.30) and (A.7) yield
E|6jbs| = (E|BPEb;[) V2 =0((n Y240 Th42) (n 1h42) V2) | (3.31)
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Using (3.26)-(3.31),

logn it(B+slh) _ o
a2 [ | Ee — X gy

‘4103" IC,,(I);D,,(I) dt =0 (nY2+nh421pnl2ply |
oy’ .

To estimate (II-2), put 6 =TW , b4’ = QW , then noting that
b,=b6]+56; and B=b,+b,+(b;+b5]), we have, using (2.6),
|Ee itBl < |Ee itB_[F, it(by+by+53) - thslle it (b +h,+b3) l + |Ee it (by+b;+63) I

|t ”E // it(bl+52+53,) |

< [t PEBY[P+ |Be " BB |4 jp ||BB Lo 1 BB | (3.3

Writing Elb4 |* < C( E|QW|* +E|QW]*) ,Holder’sinequality, (A.7)and
Lemma 28 give ,

E|QWP < (E|Q,|) V3(E|W) Y3 = O((n 5h 54613, -1 <42) (3 33)

and

E|Q, |2<——E|22{(V+V)W -V - Vj}z;;%lz
-V -

74
EIEI;;;{(VW ViV W P
+_E|2§<;{<V+Vmg -V, -V} W, |
+—E|§,‘<§S{(V V)W -V, VYW P,
s—;zlg;z:m{(wv W, -V, -V;} W
+ S S nE| (V)T -V -V, 2

n J>122
+ SREIL AV WV, Vo) |

= O(n-3p 344 | (3.34)
where the third inequality uses the Theorem of DFJ, and the equality uses nested

conditional expectation, Lemmas 1-(d), 4, 16, and (A.5). Therefore by (3.33) and

(3.34),
EBJ)? = E|QW]* = O(n3h %4 . (3.35)

To investigate the second term of (3.32), let
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__3'3 an ) 1 n ln—l n
52— —2—{( 2)2E(W2)+ ‘Z__l:dt+(2) ;z=1:j=z+leq

|
SIS
S
N
(T8
3
™
.Tt 4
A )
-~
=~
N
AV

_ n-1 n -
Bl =-5"1_4n gy, 1lvvy +(n)" 4\
’ 2 {('1-2)2 (Ve ”:21 t\2 J=1k§;1 w
Define <
b3m=s’1n2(n)-lz E W{; ,
2 iqlj=i4q
-3 /2 m 2 n m m n
5, - -S| 8n AN ( 4.V + d.v
2m 2 | (n-2)2 ( 12),; ! n3/2i=1sz=; = - R
2 n-1 _ln-l n m Vv m n n )
e + e.V
n”z( 2 ) \t=l]=tX;l.le: Vo iz;j;ls;ﬂ:l v
8 (n_l)-l n g(i)f:l/:%r/;_l_zn: m (i) n () n I/'Wdl/s
n3/2 2 \i =1 s=1 i=1k=1 1 =k+1 s =m1
m  al@() n@) n ]
: AAAN
xXI: g»:l 1;1 sgw:l “
-3 3/2 1mon
Bl = - | 2 B(W; (3) % X W
g (n2y? ) oo
l(mnl n d n m n d J
+ W
( ) Z;;;s +1 t-nﬂ-l;l:s-ﬂ ik
n n-1 n n-1 n m n
+n”2( ) AW, W+ AW, W,
=1 k;l zlzs- +1 W gv:l k;l le- +1 J
for m=1,...,n-1. Note that b,-b,,, b,-b,, and b -b4, are independent of

(X7,Y),,(X,,Y,) . Puting B',,,=(b1-b3m)+(52-52m)+(63-153m), and

using (2.6) repeatedly, we have
Be 145 | < LR, 5L+ (B
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+ lt ||& it(§m+b3rr)(52m+53’m) I '

2 3 itB, jt)?
< L2E|By b1 + [J%LE|b3,,,|3+ [Be fPn{ 1+i 2 bye UL b2 ) l]

+ (£ 2E (D3l By B4l + 1t ||Ee PB4 61,3 |]

m

t 2
| st Bl 1 Bl BB

3 _ ; 2
) [J%J‘i"?lbsmP+ [Be "B 14 1 by, e L2102 I]

+ (It [1Be BBy, B4 1] - | (3.37)

By elementary inequalities, (ix), Appendix C-(d), (e) and (A.7), the first bracketed
term is bounded by
Ct 2{‘E|52m|2 + ‘EIB."»/ml2 + (EIbSmlz)ll 2(‘E|52m|2 +E‘|53/m|2)1/ 2}

2 1 1 1
<Cmt {nahzdu * n_z' * 1 4y 3d+6

et b e
(nZhd+2)1/2 (n3h2d44)ll2 n (n4h3d+6)ll2
< Cmt 2(, 1 _, 1 ) (3.38)

a2 s 3d+%
n2h? nzh 2

The second bracketed term on the right of (3.37) is bounded by

C

t t t 2m?
£ 1( nz}’:ld+2)3/2+{l+ ;ﬁlﬂll'l ' n’?lll‘iI+2 ' nhn; }lY(t) I”MJ 339

which is verified as in equations (13)-(19) of Robinson (1995a), because s ! is
J— . n
bounded due to (3.8) and B,is the sum of -2Y'V, and
Vs ,
(by-bs,) +(6,-b,,) +(b3-b3,) , the latter being independent of (X7,Y;) ,
. »(Xm Y,) . Appendix C-(b), (c) bound the last term in (3.37) by
Cmit -
Lot L vy e (3.40)
Now, we investigate the third term on the right of (3.32). Using elementary
inequalities, (2.6), (3.35), (A.7), Appendix C-(d), (e), (f),
|E53”e it (b;+by+53) |

: A , /et e
< |E53”e it(b,+b,+63) -E53”e it (b1-b3y+b3-55,,463-b30) I + |E53//e itB,
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< |t |EIB|bap+Bym*bgl + | EBfle P
<Clt |(E|BS]H) 1’2[(E|b ) 1/2+(E|52m|2) U2, (E|5. J2) 1/2] + |EBJe i:Em]
<_Clt|h [( m Y24

)1/2+(ﬁ2)1/2+( m yu2

= (nh 42 zh.m 3h 2d+4 1 3], 3d+6
Cn 5
+ ) |m™
W2 “lv(1) |
12 1/2
< Clt|pm . Cn ly(e) ™5 . (3.41)

nllz( nh d+2)2
Therefore, by (3.32), (3.35), (3.37)-(3.41),
. 2
Eeit®| < S\ cme 2( 1, 1

31, 3d+4 d+2
n-h 3
Zh n

[ R EER R R A m}lv(r)l”‘*‘]

3 346
2

1/ 2h n2h d+2

v SHEL (e e

n 12y 3
Chm''% 2 Cnl2t |
n1/2(nh d+2)2 + hz |Y(t) Im—5. . (342)

Now, divide (3.42) by |t | and integrate over p,<|t |<N, , where we
partition the range of integration into two parts, p,=<|[t |<N, and N=|t|=N, ,
for N, =min (&n Y2, nh?)

@ poskt SN,
We canchoose m=[9nlogn [t %] tosatisfy 1 <m=<n-1 for large n. For

this m , since E(2V;/s)=0 and Var (2Vy/s)=1 , asin (2.21),
c

ly(e) ™3 <CXP(——— t?) <Cexp (-3logn ) = 3 (3.43)
By (3.42), (3.43), |y(t) |<1 and (ix), we obtain
E itB
[ 1E
pasl | sM
= n 3k 34+ Jp, st |<nh 4 lt |dt
log n nlo n dt
+ C| g g il
( Zh-z-’- zh 3‘5]Lzs|t |<en¥2 |t |

+ | nlog n mf ar
n?hd2 | Jpsirisent |t |

2
_le ) 1 , nlogn , (nlogn ) dt
n¥pspisen?| | nU2nt 2 ph?e P
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. Cnlogn f dt
2

n2p3 Jp,sipisentiz g 2

Ch(nlogn )? C

+ dt + ——-—f dt
nY2(phd2)2 fp;SII |<nk 4+ n32p2Jip,sp |<enVi2

=o(nY2 4+ plpd?y | (3.44)

i) Nyslt |< N,
For sufficiently large n , there exists n,e (0, 1) such that |y(t) |<1-7,

‘since |v,(¢) | =m, by assumption (x) and

VCt) -1,(2) | = |Ble ' Ve ""f‘"ﬁ’—l}]l—CEﬁ/Yl't;-ll
<CE|f:S’—’Jf‘| CEIt;‘ ’}‘l (J’—L”—)=0(hLlogn ) =0 (1),

using (2. 6) in the first inequality, (3.8), Lemma 1- (d) and (B.1) in the second equality
and (ix) in the last equality. We may take m=[—3logn [/ log ( 1-n,)] to

satisfy 1<m=n-1 for sufficiently large n. Since |y(¢) |™®>=<Cn=3 ,

itB
f IEe ! |dt
Nl |sN'
< C it |dt

n3h 344 IN <t |<nh 4 2Uogn

|t |dt

logn . log n
+ C( 2h dT 346)!;&'15]1‘ ]Sén"zlogn

2h 2
+ C( log n

2 t |2dt
n2hd+2) Msmsén“%xnl |

- C 1 , logn , (logn )?
+ n3 N;SI‘ !Sénllzbgn |t |+ n1/2h + nh 2 lt I}dt

. C log n’f
n'2p3 JNsjt |<én!/2ogn

, Ch(log n) ‘lzf
n2(nh 4+2)2 JNsir |snhd2iogn

pEEd|
n312p 2IN <yt |<énVogn

|t |dt

=o(n V24 plp a2y : (3.45)
by (ix). Therefore, by (3.44) and (3.45),
AI-2) =o(nV2 + plp42) | O
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3.2 An empirical Edgeworth expansion
The k; are unknown, but as in Theorem 2, we can construct a feasible,
efnpirical Edgeworth expansion

F*(z) =®(z) -¢(z) nIIZthl-n;sz- 3n11/2{(22 241) &3 +3(z 2+41) &y} |

THEOREM 4 : Under (i)’, (ii), (iii), (iv)’, (v)’, (vi) - (viii), (ix)’ and (x)-(xii),

sup sup |[F(z) -F*(z)| =o0(nY2+nh42+nl28 Ly completely.

v: vTv=1 Z€R

PROOF OF THEOREM 4

Straightforward from Theorem 3 and %; —x; completely for
i=1,2,3,4 (see the proof of Theorem 2). O
We have seen in Section 2.3‘ that (i)’, (iv)’, (v)’> and (ix)’ are necessary to

prove k; —x; completely for i =1, 2, 3,4 . Itis obvious that we need these four
assumptions here additional to those assﬁmed in Theorem 3. Eventually the same set

of assumptions as that in Theorem 2 is sufficient here.

3.3 Discussion

This section discusses the followings regarding the Edgeworth expansions we
have verified. 3.3.1 shows which conection term(s) is dominant in the expansion
depending on the dimension of explanatory vafiables, kernel order and bandwidth
choice. 3.3.2 proposes optimal bandwidth choices which minimizes the normal

approximation error. 3.3.3 compares the results here with those in Linton (1996b).
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3.3.1 Comparison of the order of Edgeworth correction terms.

Theorem 3 covers a number of situations, depending on the choice of kernel
order L, relative to dimension d, and on the rate of decay of the bandwidth #. We
classify these according to L and then k. A similar classification was used by
Robinson (1995b) in expansions for Nadaraya-Watson regression estimates allowing
higher order kernels under heteroscedastic but conditionally normal errors, with

similar interpretations. Let C;, i =1, 2, 3,4, be finite positive constants.

I d+2 <L<2(d+2) .

@ If n3p¥LdD) 50 |

2Z9(z)

f’(z) =P(z) + nh‘”

——— {1 +o(1)} .

-3
®) If b ~Cn 7T

-2L+d+2

F(z) - ®(z) - (Cx, - d+z)¢(Z)n S 1+ 0(1))

© If n3h20dD) o
F(z) = ®(z) -x,$(z)n 2R L{1 + o(1)}
. L=2(d+2)

(@ If n2p42 -0

Fz) - @2y + X (1w o(1))
®If h ~Cn @
F(z) = ®(z) - Cfxl—éi%
MO RBEHD I 82) (1, o1y
3 112

) If nV2p4? 5o |

F(z) - ®(z) ~x,9(z)n % H1 + 0( 1)}
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L. L>2(d+2)

1

(a) If nhL*}‘W —’0 ’

F(z) = ®(z) +4{(22 2+1) k3+3(z 2+1) k) 4’( (2 11+ o(1))

-1

WIEh~CnT,

Ch, - 4{(2z 2+1)1<;’+3(z 241) x4}
L

©Ifh ~Cn 2@ |

Kz | 4{(2z 241) k4+3(z 2+1) x4}

C:{ +2 3

@If nV2h42 50 |

K,Zp(z)
nhdz

¢(2) (140(1)) .

nlli2

i’(z) =®(z) -

¢(2) (1 +0(1)} .

1/2

IE‘(z) =P(z)+

F(z) = ®(z) + 282 (1 1 0(1))
@If nht - |
1:7(2) =®(z) -k, P(z)nY2RL{1 + 0(1)} .

In each of the éeven cases I(a)-(c), II(a), II(c), I1I(d), and III(e), the correction
term in the expansion is of larger order than »n "2, In the other four cases it is of
exact order n 12?2, but of these the cases I(b), II(b), III(b), and ITI(c), which
involve a knife-edge choice of bandwidtlll,‘ include x; or k, (which depend on the
kernel K ) or both in the correction term. It is case III(a) which corresponds in detail
to the "parametric" situation in the sense of discussion in Section 2.2. We can also

derive analogoﬁs expressions based on Theorem 1. For example, for (L, d, h)

satisfying III(a), we have

4(k;+3K,)

F(z) =®(z) - 3112

(z2-1)@(z){1+0 (1)} . (3.46)

3.3.2 Bandwidth selection
For U and related statistics, Hirdle, Hart, Marron, and Tsybakov (1992),
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Hirdle and Tsybakov (1993), and Powell and Stoker (1996) derived % that are
optimal in the sense of asymptotically minimizing leading terms in the mean squared -
error (MSE). As seen in (1.49), these optimal # are of form,
h*=C*n 2@ = (< C*< o0, (3.47)
where we are in one of the cases I(c), II(c) or III(e), in each of which the leading
correction term is -k,¢(z)n 2L, so that bias correction has the greatest impact
in improving the quality of the normal approximation. However, the conventional
approach of relating choice of 4 to MSE is not directed towards producing a version
of the statistic which, in some sense, makes the normal approximation especially
good, and in the present context the latter goal is relevant. Under (3.47)
F(z) =®(z) -C‘Llclq‘)(z)n_%{l ;0(1)} . (3.48)
Here, the order of the correction term can be as large as n "1/ 2(2d*5) when
L=(d+3)/2 (see Assumption (iv)) and tends to n /2 only as L/ d—>, so
(3.47) is certainly not optimal in the sense of minimizing the error in the normal
approximation. As shown in 1.1.4, the # which minimizes the integrated MSE of
nonparametric derivative-of-density estimates is of form A *=C*n Y/ (2Ld2) | for
0 <C*< 0, but this is even larger than (3.47) and thus provides an even larger
correction term than (3.48). Robinson (1995a) calculated the rate of decay of 4 that
minimizes the order of the normal approximation error. This exceeds 7 /2 due to
choosing L<2(d+2) , and the more detailed information provided by our
Edgeworth expansion allows us to discuss the choice of # itself. In particular, the
optimal rate of /& here is that in I(b) as described by Robinson (1995a), but we
would like to know how to choose C; in
| h=C,n'W : | , - (3.49)
One possibility is to minimize the maximal deviation from the normal approximation,

by

A _ S _ K2
Ci" = argmin max|(Chx, - =) #(2) | -

Because x, >0 this equals
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argrréin mag(CLlKII C‘M)d)( )
ZE€ Z* C
= argrréin {CLlx,|+ chd(+2 ) 1e(Z*(C)) ,

where
Z*(C) = C¥2{(Cx} + 4% CH44 U2 _CLx [}/ 2k, .

Using the envelope theorem, the first order condition of minimization with respect

to Cis
{LCL‘1|K1| (_dc%‘f_z_z (C)}qS(Z*(C)) =0 . (3.50)
Solving (3.50), we deriye
ct - {—(‘M)ZK% }_(Tﬂ (3.51)
L(L+d+2) 3

The second order condition is easily verified using (3.50) and Z*(C) <0. Though
(3.51) is infeasible since it involves unknown x, and x,, wecan replace x,
and x, by their estimates k; and k, in Section 2.3 to give the feasible version

~ 222 z(z.:da)
¢t = _(d+2)"kz (3.52)
- | L(L+d+2) %}

The estimates k, and k,, introduced to provide empirical Edgeworth expansions
(Theorems 2 and 4), ére consistent under the conditions stated there, so that C:;A '
consistent for the optimal C;!
| One could consider variants of this idea for bandwidth choice, for example
maximizing with respect to z over some desired proper subset of R , sﬁch as
z: |z |>a} for some a>0, perhaps to stress one of the usual critical regions.
However, the simple forms (3.51) and (3.52) seem appealing. Hall and Shea;her
(1988) (see aléo Hall, 1992, p.321) used an Edgeworth expansion for studentized
sample quantiles, especially the median, to determine a choice of the béndwidth

/2 _ consistent statistic

employed in the studentization. In their problem, the basic n
of interest, the sample quantile, does not involve a bandwidth. In our case, on the

other hand, though we also consider studentization involving a bandwidth, it is the
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bandwidth in the basic statistic of interest, the averaged derivative, that is to be
chosen using the Edgeworth expansion. Moreover, ﬁnlike us, Hall and Sheather
(1988) did not maximize over the argument z, but simply balanced the mean and
variance terms of the expansion for given z, so that their ciata—dependent bandwidth
is z-dependent (and thus a ’local’ bandwidth). It might be anticipated that the step of
maximizing err Z, which is incorporated in our procedure, would lead to a more
complicated, perhaps only implicitly-defined, formula for the optimal C, and the
emergence nevertheless of the simple closed form (3.51) is of some interest. We
believe our ’global’ approach could be employed in choosing the bandwidth in other

semiparametric and nonparametric problems involving smoothing.

3.3.3 Comparison of the results with Linton (1996b)

We now precisely compare Theorems 1-4 with the results in Linton (1996b).
The statistics considered here and in Linton are quite similar in the sense that both
estimators are written in the form of standard U statistics, of order two here and of
order up to three in Linton, and both established valid Edgeworth expansions.
However, the two are different in the regularity conditions as follows. In order for

the comparison, we rewrite our problem in Linton’s setup. The objective function is

n

(Y, X F (%)) =%g;{ﬁ—&f’<&>} {E—Y,-f’cX,-)} .

1. Linton did not handle the bias explicitly thinking of mean subtracted U statistics
claiming that bias is deterministic and can be handled analytically. However, we show
in the above that the bias term affects an optimal bandwidth selection which
minimizes normal approximation error. Therefore we should incorporate the bias.
effect explicitly into the Edgeworth expansions in the current problem.

2. Linton’s regularity conditions require a better than n !4 - consistent
estimate f,(x) of f/(x) . Since f/(x) is ynh?% -consistentfor f (x) ,

el ) . X
h=Q(n %4> "), where >0, is necessary, which corresponds to the cases I(c),

105



II(c) or III(a), (b), (¢) depending on the values of ¢, L and d. The bias related term
has the primary effect on the expansion in four cases out of the five so that this
condition on the order of derivatives estimation entails explicit treatment of the bias
in our problem.

3. Linton worked with a fixed design case unlike us. It could be extended to
conditional arguments, but we would need additional conditions for conditional
validity of the Edgeworth or asymptotic expansions.

4. Linton’s Assumption B4(2) assumes the orthogonality condition

E{%,ﬂ}o where ¥(ii,f % = {(F-Yf (D) Y {F-YF (D} ,

which ensures that there is no "information loss" resulting from estimation
of f/(x) , but this is not satisfied unless E(Y) =E{Gf7X) } =0 in the current
problem.

5. Linton’s Theorem 4.1 looks to validate Edgeworth expansion with
error o (n-1) , however as he addresses in the note 4, what he established was the
validity of an order n "2 Edgeworth expansion. In view of the proof of Theorem
4.1 of Linton, we see that Assumption D4 is very crucial and high level. He follows
the proof of Callaert, Janssen and Veraverbeke (1981) or Bickel, Go6tze and van Zwet
(1986), where one of the main points is to find low level conditions under which D4
is satisfied. We actually even do not know D4 is/ consistent with the other
assumptions in geheral. In this sense both Linton and this work are concerned with
Edgeworth expansions of degree one. |

6. Linton was more concerned with the situation where the U statistic type
semiparametric estimators have qualitatively the same Edgeworth expansion as that
of standard U statistics obtained in Callaert et. al. (1981) and Bickel et.al. (1986),
namely the correction terms are of exactly order # */2 and n~! . What we have

established in the previous chapters are more concerned with how it can be different

from standard U statistics due to the first stage nonparametric density estimates,
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namely how Edgeworth correction terms of larger-than- » /2 can appear.

7. Like Theorems 1 and 2 in the previous chapters, Linton only investigated the
statistic normalized by its asymptotic variance in which sense it is infeasible, however
we also validate Edgeworth expansions of a studentized statistic in Theorem 3 and 4,
amongst the latter is fully feasible so that we can apply the result for higher order

inference of empirical data.
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Chapter 4
Bootstrap Distribution for Averaged Derivatives

Bootstrapping is one of the resampling methods intensively studied lately.
Given asymptotically normally distributed statistics, it has been shown in some cases
 that the bootstrap distribution‘can approximate the exact distribution as good as its
Edgeworth expansion up to certain order and thus better than the normal distribution.
We review established results on bootstrap distribution in Section 4.1. Section 4.2
compares bootstrap distribution of the density-weighted AD with its exact distribution
for normalized case, where we prove the former approximate the latter as good as the
Edgeworth expansions in Theorems 1 and 2 and so better thah the normal
distribution. This property is useful to imbrove the approximation to the exact
distribution of the estimator. This is however infeasible due to the unstudentization.

We further conjecture the possibility of analogous property for studentized statistics.

4.1 Bootstrap Distribution

Quenouille (1949, 1956) and Tukey (1958) consider nonparametric methods
to estimate bias and variance of estimators by resampling called jackknife method.
Efron (1979) proposes a different resampling principle called the bootstrap method
for the same purpose. Efron (1982), Efron and Tibshirani (1993) and Hall (1992,
Chapter 1) giveé good summary of fhe jackknife and bootstrap methods. We explain
the principles of bootstrap method following Hall’s account. Suppose we have an iid
sample X;, i =1, 2, ..., n ofavariate X with distribution function F, and would
like to estimate a parameter 8,=0(F,) . Let F, be the empirical distribution
functioﬁ of the sample, then 6,=0(F,) is a sensible estimator of 6, . We would

like to know the properties of 8, , for example, the bias Ej (8,-0,) where Ep
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indicates expectation with respect to distribution function F. The core idea of
bootstrap method is that we may infer some aspects of (F,, F;) from (F,,F,)
where F, is the empirical distribution function of a sample drawn form F 1 . For
instance, Ep [0(F;) -0(F,)] , the true bias of §(F;) , can be estimated by
E=EF1[0(F2) -0(F,)1 . Then 0, —I; is a bias reduced estimator of 8, and
typically the first order bias of O(n™!) is removed. This principle can be used to
estimate the confidence interval and other quantities related to the distribution
of 6, .
Suppose O(F;) is asymptotically normally distributed. We can expect that
H(x) =P(0(F,) <x|X|,...,X)) ,called the bootstrap dist_n'butionof 0(F)) ,
estimates M (x) =P(0(F,) =<x) , the distribution function of 6(F,) . Its
asymptotic properties have been studied and it is shown that H(x) not only
converges to a normal distribution but also approximates H,(x) at least as well as
' Edgewortﬁ expansions of 0(F;) in some cases. Bickel and Freedman (1981)
consider the sample average. Supposing X;, i =1,2, ... is an iid sample of d

dimensional random variate X and {X7,...,X,} is its bootstrap sample of size

m, they prove the conditional distribution function of m?!/?( lY‘Xh1 - lY‘_Xil)
give™ they prove the conditional distribution function of m!/?( %11 ;Xf - %Z;Xi)

zero as n and m tends to infinity. They also extends the result to vbn Mises
functionals. Singh (1981) proves that the bootstrap distribution of the suitably
normalized sample average is at least as good as its one term Edgeworth expansion
uniformly when d=1. Beran (1982) proves both the bootstrap distribution and one
term Edgeworth expansion of asymptotically normally distributed real valued statistics
constructed from an iid sample with unknown distribution function F are optimal in
an asymptotically minimax sense among possible estimates of its sampling distribution
when d=1. Beran (1984) shows the asymptotic optimality of the bootstrap distribution
and the jackknife Edgeworth expansion estimate where the unknown quantities in the

Edgeworth expansion are replaced by their jackknife estimates when d=1. Babu and
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Singh (1984) show the bootstrap distribution and the Edgeworth expansion of
functions of sample average of multivariate iid observations are asymptotically

=/2+1 ynder the existence of s-th absolute

equivalent up to the term of order n
moment. Bhattacharya and Qumsiyeh (1989) prove the bootstrap distribution of
studentized statistics constructed from iid random vector can approximate even better
than the two term empirical Edgeworth expansion under certain moment conditions.
Helmers (1991) prbves the asymptotic equivalence of bootstrap distribution and one

term Edgeworth expansion of studentized U-statistics.

4.2 Bootstrap distribution of U

Section 4.1 reviews that bootstrap distribution of sbme asymptotically normally
distributed/ statistics attains the same precision of approximation to their exact
distribution as their Edgeworth expansions of “certain order. Since U is also
asymptotically normally distributed, it naturally raises a question if the distribution
of U also has the same property. We show in 4.2.1 that bootstrap distribution of U
can uniformly" approximate F(z) asymptotically as good as the Edgeworth expansions
shown in Theorems 1 and 2 and thus it gives a better approximation than the normal.
Theorem 5 below, the main result of this chapter, describes this situation. We also
state a possibility of bootstrap distribution for the studentized statistics analogous to
Theorem 5 in 4.2.2. We report Mote Carlo results on bootstrap and Edgeworth
approximation for both unstudentized and studentized statistics based on a Tobit

model in Chapter 5.

4.2.1 Unstudentized statistics
We first give some notations and definitions to describe the theorem. We
consider bootstrapped U based on the bootstrap sample (X;", Y;), i=1,...,n,
U - (")lzlj S

2 £=1j=i+1
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where
* * * * - * X:-X.
U =K (Y-Y) ket K = K(EH)
Define bootstrap distribution of Z, F*(z) = P*(Z*<z) ,
where for a dx1 vector v
Zt =n 1/20,*-1‘,7( U-r _a-u) ,
o2 =E*[2vI(Uf -E'UM1?
U =EYU |i") = lzn:h—d-lK/(M)(y.*_Y.)
i ij n’j ~ h t J '
vip*=E*vU*-hLo*k, = n—r—llv’U—h Lok,
where P*(-) is the conditional probability measure given (X1,Y), -,
(X5,Y,), E*() is the conditional expectation given (X7,Y,), -, (X;,Y,)

and E*(:liy, = ,i/;) =E*{-(X",Y),i =i, ,i,} .Note

_4n-1 n
EU=(3]' 3 ENU) =E'(Un) =hHIE K] (YY)

i=j=s

1 «ex _n-1
_nzhdug;J;KY(Yi"Yf) o n v.

We will prove the following theorem.

THEOREM -5
Under (i)", (i), (ii), (@iv)’, (v)’, (vi)’, (vii), (viii), (ix)’ énd (x)-(xii),
as n—»>o, |
v.:s?&lszug? |[F(z) -F*(z)| = b(n N24p-lpd2,0U2pLy 45
In view of the theorem of Robinson (1995a) and Theorems 2 and 5, we easily
see that F*(z) and F(z) approximate F(z) equally well and better than $(z).
Therefore we could modify interval estimates or critical region of a test for the

parameters of interest based on normal approximation using F*(2) or F’(.z) . We
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have described how to do it using Edgeworth expansions in 1.3.1, where we have
also mentioned the problem of studentization. When we would like to implement, say,
a modified interval estimation based on the approximation to F(z) by F*(z) based on
Theorem 5, we have two problems. Firstly, we are concerned Qim the unstudentized
statistics Z so that interval estimate based on it involves the unknown variance.
Secondly, F*(z) is unknown so that we need to estimate it. One way of the estimation
is that we resample repeatedly from the original sample and calculate U* from each
resample and construct an empirical distribution based on the accumulated U* (see
5.1.2 for detail). In order for empirical applications, we need to establish a theorem
with respect to the s.tudentized. statistics Z . We state a conjecture for bootstrap
distribution of Z in the next subsection. We are currently wdrking on the bootstrap
distribution of Z to analytically prove a studentized version of Theorem 5, where we
have found Theorem 5 plays an important role as Theorem 1 does in the proof of
Theorem 3. Therefore, Theorem 5 is still worth establishing despite its infeasibility,
in addition that this itself is of theoretical interest.
We need somehow stronger assumptions than the previous theorems. (i)" is
a moment condition which is required for a sufficiently fast convergence rate of
0*? (Lemma 34-(d)). (iv)’ and (v)’ are necessary for k, —>x; which are assumed
in Theorem 2 and 4 also. (vi)’ and (ix)’ are necessary in the proof of Lemma 36 and

Lemma 34-(e) respectively.

PROOF OF THEOREM 5
It suffices to show

sup sup |P*(Z*<z) —f‘(z) |=o(nY2+p1phd2:pV2pLy a5,

v: viv=] Z€R
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in view of Theorem 1.
The qualification "almost surely” or "almost surely for n sufficiently large"
will be omitted. Let
| Vi = o Wv(U-EU") , W' = o vi( U; -E*U") -V;-V;
A* =nli?p Ly,

Z* can be decomposed as follows.

e 2 g, 2BV N e, A
z= SV R L
= I.;* + W.*. + A*..
Define
x'(t) =E*(e ”Z') = e itNEr[git(7aM] 4.1)

By Esseen’s smoothing lemma,

g | X'(E) X(E)
sup |F*(z)-F(z) | sf v | X200 +o(__1__)

U25gn ! n 2ogn
() -x(¢ .
"2|M e+ [ | X2 g
P2 4 paslt |sn'/2logn 4
x(t)
-1/2
+ f|'|ZP2| |dt + o(n'%)
= (I-3) + ({I-3) + (II-3) + o(nYV2) | 4.2)

whére p,=min (eén /2, log n) . € can be chosen such that
O<e<e* =(E*|2V]]®) ' <(E*(2V'2) } ¥2=1
almost surely for sufficiently large n by Jensen’s inequality and Lemma 34-(a). It was
shown in the proof of Theorem 1 that |
{lI-3) = o(nV2inh42:pli2ply | 4.3)
To evaluate (I-3), we proceed by representing x*(t) as ;z(t ) plus a
remainder. Since A" =nY2p Yk, =nY2p L, +0 (nV?h L) due to k, -k, a.s.
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(see the proof of Theorem 2), using (2.6),

et = 1+it A+ (efN -1 -itA) = 1+itA"+O((tA)?)

1+itn2nle vo (nY 21|t |+t %)), 4.4)
and |
E*{e it < E*[e“ﬁ'{lﬂ'tW*+%(itﬁ/*)2}]
. E*[e"”?'{e“ﬁ"—l—itW*—%(itW*)z}]
=E*[e"tﬁ‘{nith%(itW*)Z}] L OE L W*P) . @4.5)
Writing w;(2) =e 2" and v'(¢)=E"[w'(£)] ,
E*(ei'7") = y'(1)" (4.6)

E*(eV'W*) = nV2y* (1 )" 2E [ Wowi (L) w;(2) ]

_ {Y*(t)}n—2{ 4(it)2E( I’I{leV2) +o( %2) +0(( _J%E+ t4 )h"%d—l)} @.7)

12 )

by Lemma 38, and
Ex(e ) = nl 5 ) (5 Jor o) Y E T Wi wic)]
w6n( )3 O Y E TR W () Wi )W)
w6nl ) O YU E TR Wi
- 2y (e) y2{ 42, +0(h 42) +Oljt |n "Th 52}
+ f(0) 120l P3R5
+ {y*(¢ )}"'40( £ 4nLag 52 302 8y 3y -%H) 4.8
by Lemmas 39-41. Since € can be chosen arbitrarily small, for |t |[<en? and

m=0,1,2,3,4,

¢2 * *\ 3 : (2
y'(¢)y"m=e 'T{l + E(—m—(it)3}+0(n'”2( |t P+ ©)e 'T)

6n /2

2

(it)3}+o(n'”2( It |+ 6)e "T) . (4.9)
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The first equality is similarly proved as Theorem 1, Section 41 of Gnedenko and

Kolmogorov (1954) using Lemma 34-(a), (), while the second equality is because

E (V) = =253 (3wl - Hvey = S 8-S 7 ~sEv )

=1 n a
by Lemma 34-(d) and (2.29). By (4.1), (4.4)-(4.9), and Lemma 42,
x'(t) = [1 sitnV2 L +O(t *nh ZL)]
o oo )

x [1 + 45:,;2)3E( v, + (”) 22 +A/} (4.10)

where

4 3 2 5
A’{/ =0 t + |t l + [ + Itl
ph 3N ap 3 nthA? 3, g4
t 6 t 10 . i 8 t 3 t 2
+7+ id+2+ id+2+ l | 3 +o( nhd+2)
n3h3 n2h3 (nhd+2)z

2,4 10
- O(tnh%) by (ix)".

Expanding the right hand side of (4.10),

_t2 ) K .
X*(t) =e 2{1+ztn1/2h’~1cl+nhfm(zt)z

| 4E(v) 2E(H,VV) (ma}
3n 12

+0(,,,',ze Pl I“))+0(,,,,“e (e P 4))-
_‘2 - )
+ 0(nh2L|t [2%e T) + O(A”(e Tae 2)(1+t 8)) 4.11)

Lemmas 13 and 14(b) give E(v ) +3E(W,V,V,) =x3+3%,+0 (1) so that the first
2

term on the right of (4.11) is %(¢) +o0 (e Zn-Y2|t |?) . Thus
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(1) -x(1)
1-3) _f |x—x_|dt =o(n V2nh424plizp Ly | 4.12)

To estimate (II-3), define V*(m) = E Vi form =1,

1/2
and for m=1, ... , n-1
o m o
Note that V*(n)=V* and W*(n-1)=W"*. Using (2.6),
|X*(t) | _ Ie i18" freg .'x('17*+ﬁ/')| S|E*e Pt (7 |
< ’E*e it {7 (m) »{1 +itW*(m) + (L;lfﬁ/*(m) 2}

+ O(Jt PE*|W*(m) P)

<[E*e it (THIHm)Y| & ¢ ||E*e it T Hm) ) () |
2 : 7, YU *_TI7* = -

" ‘7 E*e it W m) ) 7o (m) 2| + O( |t PE*|W*(m) |°) .(4.13)
By (iii) and Lemma 35, the first term on the right of (4.13) can be bounded by

|E*e itVim) E* g it {7V (m) (W' W (m)) ) |

SlEteitV'(m)|-_-|Y*(t) Im . (414)

Using (iii), Lemmas 35, 37-(a), and (A.5), the second term on the right of (4.13) can
be bounded by |t | times

B{e P W m)| < [y(e) pr 2 i 2 ) e g

<Cly'(r) =21 @.15)

3[2h )

" Similarly to the derivation of (4.15), the third term on the right of (4.13) other

than ¢ %/ 2 can be bounded as follows using (iii), Lemmas 35, 37 and (A.5).

|E*e it (17"+(vﬁ"-ﬁ"(m))} ﬁ/*( m) 2|
< |E‘e"“7'('”)I7V*(m)2|

-2 %2

< [y [Py n{ 5 (W)

+ |y I {2m n- 1)n+4(m—1)mn}n( ) E*|W;Ws |
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+6|y°(1) I"*“”‘”*”%Zzn%n (2)'2E‘IW{£IE‘IW§I

* m- * m 2 2 m- m4
sc{w(m P (o) IRy e W}

scw*(t)w{( 1, 1 )m+ m_, m4} (4.16)

n?hd? ph? nh? n3p?

because |y*(¢) |<l. Substituting (4.14)-(4.16) into (4.13), with |y*(z) |<l yields

()] = v I"'+C{|v*(t> I"”,,'s’fzzh}" |

+C|y*(t)|'"*‘{( 1,1 )m+ m? mt }tz

n2hd+2 nhz 2h2 3h2

O(|t PE*|W*(m) |*)

2 2
<C|Y(t)|m_4[1 (——= 2]’1‘“2 _n}‘t—z)t m+ ( 13t/2|h+nt2h2)m 321;
L O(t PE* W (m) ) . @.17)

Now we evaluate (II-3), partitioning its range of integration into two parts,
namely p,<|t |<e’n'? and e'n'2<|t |<nV?og n .
(i) For p,<|t |<e*nl?

ity
ly'(¢)| = |E'e 7|

ity 2 1.0 2 o
< |[E*{e —l—zt V- (it =-17)?} |
w2t R

s |E*{1+it -\/—_-V{+ 2_'(iz %V;‘)z} |

(), ] :
=\t 2n 6n 3/2E 12V7]
2
<1-L , since |t |<e*nl?-= a2
o ERP
_t?
= ¢ ﬁ) ’ 4.18)

where the second inequality uses (2.6) and Lemma 34-(a). Substituting (4.18) in

(4.17) and applying Lemma 42,
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Ix*(t) I < exp {—M}

3n
1 t t? t mt
x[1+{( nzhd+2 nhz) } {nlwzlh+n2h2}m2+n3h2}
+o(|r 13( 2hM)”Z) - (4.19)

We may take m=[9nlogn [t ?] since 1<m=<n-1 holds for p,<|t |<e*n!/?

and sufficiently large n. Because m=(9nlogn [t ?)-1 ,

exp [ - (”*34)’ ] =exp (- (L;ﬁ—)em(
<Cexp ( -3logn ) sn_c; (4.20)

for |t |<e*n!? . Substituting (4.20) into (4.19) using m=<9nlogn [t ? , we

derive

’ C 1 1 2 nlogn |t | t?2 | n%(logn )?
|X(t)|SF[1+(n2hd*2+nh2)t . +{n3/2h+n2h2 tg;n

t2 niClogn )* logn
n3h2n(tg"n)]+0((o )3/2)

{l+ logn _, logn +(Iogn )3/2}+_ﬁl___(10 )zi
n3 n4hd+2 n3h2 nh d+2
. Uogn )2 1, (logn )* 1

5/2h It |3 2h2 t6

<cl 1087: )32 4 (ogn ) 1, (logn )? 1 , (logn )* 1]
ok 472 wih? 12 o7, tP  nh? 16

Therefore, dropping the range of integration p,<|t |[<Cn!/? on the right of the

second inequality,

I_X(t_ldt <f

py<lt |=Cn /2

[ | ZL2) g
po<lt |<e*nl/? t

log n.y32 dt (log n)
SC{( nhd+2) |t 3h2 flt '3

, (log n)? , (log n)* f
5/2h t 4 2h2 |l‘ |7
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C{(log n)sz 1 1

1
+ +
(nhd42)32  p3p2  pSi2plog n n2h?(log n)z}

= o(n Y2 +pn-1p 42y

4.21)
by assumption (ix)’.
(ii) For €*n'2<|t |[<n'?log n, noting a"v’(U -EU) =W +V;+V, ,
2it e 2it_yr k(2 (v,-v)) -E*U*
Y(£) =E(e v = 1 ;j e s : }
2it [4 WV, + T
=l;n:e ﬁa_{nz;(w Vi+V}) +v7(EU-E" U‘)}
R
1y~ 2ok, ”“’.kzzta 1 _
=1y, Vo (W +V.) +o v (EU-E*U*
ng; I(Z: HJZI i tVi) ( )
1 n 2,“7V 2lta

, —2(% +V;) +0" IV (EU-E*U") }

+ = e VA
n =

ln
n

W +V)) +o v (EU-E*U") }]
=1

21!

Writing v,(t) =E(e Rz "y as in the proof of Theorem 1, using (2.6) and

|t |sn¥2log n, we have

. 1 n 2ila.Vk 2,,

Iy (e) —vv(t)lsl—;;e vt e ) |
2 l 2”0
Loﬁ_g;ze Vio* +V1)I

n 2ite s
. |3"’J".ﬁ—vf<EU—E*U*> *Iye ™|

2
2
+ _; {ME( . +Vj)} + c{%—vf(EU—E*U*)} . 422
j g

The first term on the right of (4.22) is bounded by

2ito

1 n (A 2n‘ n 2”Vk 2lt
Ly (e v e % |4 e Vi tog VA
In; ) | ] 2“‘;( 2tt ) I
+|—§:{ef" Ee V' )} .
The first term of (4.23) is smaller than

Clelyo
7o

(4.23)

1y _I_I_
“-1(=Y Y, |+1) =0 =0 ((log n) 2
(a3 el + 1) =0 (== ns) <o ((log m) )
by (2.6), SLLN with (i)", and Lemmas 1-(d), 34-(d) for |t | <n'?log n . The
second term of (4.23) is smaller than
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| hlog n < o (nlzp L

= V,-v, |=< (1Y, ]*1) =o(n'2n 1)

13 v, <2

by (2.6), (B.1), SLLN with (i)", and Lemma 1-(d) for |t | <n'?log n . Theorem
2.6 of Feuerverger and Mureika (1977) applies to show the last term of (4.23)
converges to zero for |t | <n/2log n , thus (4.23) converges to zero. The second

term of (4.22) converges to zero because

lo <
E _8"_;
I nz 1:1]=)2 .
_(log n
-y SR V) e (W 41
‘e 2i:(Vk—Vj)(%+Vj)(%+Vk) +e 2“(Vj‘Vk)(%+Ifj)(WjIk+I/k)}

n 2it

il
e )

+ smaller order terms with k=j

2 2
<CUB M) Ejpy, v, p < CUE I - 0(n 1 (10g 1))

where the first equality uses Lemma 1-(c), the second inequality uses (A.5) and

Lemma 1-(d), while the last equality uses (ix)’. The third and last terms of (4.22)

converge to zero because of Lemma 34-(c), (d) and

n 2ito n 2ite
|i;e \%G'Vkl Sl; Ie -\/’50'Vk| =1 .
= =

The fougm term of (4.22) conVerges to z;:ro because of Lemma 34-(d) and
ﬂ’&nﬂ;ﬂ; {%}ﬁ; (W +Vj)} ->0 (see the proof of Lemma 34-(d)).
Therefore
lv*(¢£) -7,(¢) | =0 as.
SO tﬁat there exists a constant 15€(0, 1) such that
[y (£)|<1-m5 , (4.24)

since |Y,(¢)|<1-n, for some 1,€(0, 1) (see the proof of Theorem 1). We can

choose m such that

_|__ 3logn
m [ Tog (1—?73)] | 4.25)

since 1<m<n-1 for sufficiently large n. Substituting (4.24) and (4.25) in (4.17)
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and applying Lemma 42 bounds |x*(¢) | by

C(l‘ﬂs)—ﬁ%[l“{(——l 1 )tZ}{————”"g” }

n2h4*2+nh2 log (1-75)
2
e, 2 \[ 3logn L t2 [ 3logn 4
n¥2p  p2p?f| log (1-n3) n3h?| log (1-7m,)
lo 3/2
L0l B l- gr : (4.26)
[I | { n%h#*?log (1"'73)} )

- 3logn
Because (1-1,) 8 U™ =p-3  dividing (4.26) by |t | and integrating over the

range e'n'/2<|t |<n'/?log n , we obtain

| Z—(I’ ) |dt

L'n V24t |sn Y 2logn

=0(log (n”:logn ) , logn {( 1, 1 Yn(logn )2}
nh?

n n3 nzh.m
(logn Y2[ 1 n(logn )2

4
+ (lOin3) n}hzn(logn )2 +n32(logn )3( ’fozgljhd+2)3/2)

=o(nV2+ip-lp-d2 4.27)
by assumption (ix)’. Thus by (4.21) and (4.27),
@-3) =o(nV24p-tpd24ql2p L) | (4.28)

Substituting (4.3), (4.12) and (4.28) into (4.2) gives the required result. O

4.2.2. Studentized statistics
Theorem 5 proves that the bootstrap distribution F*(z) can approximate
F(z) asgood as the Edgeworth expansions in Theorems 1 and 2. It is theoretically
an interesting result, however it does not suit for empirical use. We would like to
obtain an equivalent result for studentized statistics Z analyzed in Chapter 3 for the

sake of practical application. In view of the above Theorems, we can naturally
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conjecture the following.
Let F*(z) = PY(Z*=sz) , 4.29)
where for a dx1 .vector v

a

Z* =nV2% (U -p*) , 82=vZv ,

TR 1)(n 2)22{2( / U')}{Z(U‘;‘_U*)T}

#i k#i

a

CONJECTURE
Uncier certain conditions including assumptions in Theorem 5, we conjecture
sufp 1szuep |F(z) F (z)]| =o(nYM24n1h42:p128 Ly as  (4.30)
The proof for this is currently under way and it seems to entail existence of higher
order moments than in Theorem 5. Theorem 5 seems to play an important role to
establish (4.30) as Theorem 1 does in the proof of Theorem 3. We give Monte Carlo
results based on (4.30) as well as Theorems 1-5 in the next chapter, whiéh give an
encouraging support to this conjecture. It is interesting that we found the bootstrap
distribution seems to be even better than the Edgeworth expansions in approximating

the exact distribution in the simulation study.
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Chapter 5
A Monte Carlo Study !

This chapter presents results from a Monte Carlo study for a Tobit model
based on the Theorems shown in the previous chapters. The model and kernel choice
of the estimator are described in Section 5.1. We compare empirical distributions of
the density-weighted AD for various choices of sample size, bandwidth and kernel
order with the normal distribution, the empirical and theoretical Edgeworth
expansions in Section 5.2 as well as the bootstrap distributions in Section 5.3. We
compare them for both unstudentized and studentized statistics based on Theorems 1-5
and the Conjecturé in Chapter 4. Roughly speaking, we find that the empirical
Edgeworth expansion and bootstrap distribution approximate the empirical distribution
quite well, and better than the normal in many ca;ses. We also implement confidence
interval estimation using Cornish-Fisher expansion explained in 1.3.1 (see (1.86)),
where we find naturally that the interval estimate is good when thé corresponding

Edgeworth expansion performs well.

5.1 Model and estimator
We report results from a Monte Carlo study for the Tobit model
Y, =(B'X +€;) I(BX; +€;=20) where X;=(X;,X,;)" isbivariate. We took
(X7, €;)~N(0,1,) sothat g(x) = Bx{1-B(x)}+¢(-Bx) and j =
-B/ (87 . We took B=(1,1)’. There is no closed form formula for
2, Ky, K,, K3, Ky, the first being needed in the expansions of Theorems 1 and 2,

and the last four in the expansions of Theorems 1 and 3, so they were calculated

! Some figures in this chapter are included in Nishiyama and Robinson (2000) and
discussed there.
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by simulation, with 100,000 replications, to be

887 458

458 887 ) x,=0. 397, %,=1. 724, x;=-0. 144, x,=-0. 266 ,

for example 2=10-5}§:4{u(x,-,¥,-) -EMu(X,Y;) -H)T where (X7,Y;),
i=1,...,10° arelg_enerated independently and identically following the above
Tobit model. We employed three values of L, L=4, 8 and 10 which respectively
correspond to the cases I, II and III in Section 3.3 (and easily satisfy assumptions
(@iv), (iv)’, (v) and (v)’), using normal density-based multiplicative L-th order bivariate

kernel functions proposed in Robinson (1988b), K(u,, u,) =K;(u,) K (u,) ,

where
(L-2)/2
K(u) = Y cu¥u) ,
Jj=0
such that
(L-2)/2
j; C}mz(i+j) =8i0’ 1 =0, l, o, (L-‘2)/2 ’ (5.1)

and §;, is Kronecker’s delta. The values of c; calculated from these simultaneous
equations are in Table 5.1. We chose Fu,,u,) = &(u,)$(u,) in estimation
of x; in the empirical Edgeworth expansions. We cpnsidered inference on the two
elements of p individually, but since the results for these are very similar we

report them for the first only.

TABLE 5.1

L-th order kernel functions.

L Co c C, Cs Cqy

4 15 05 - -
8  2.185 -2.185 0.4375 -0.02083 -
10 1.924 -1.347 0.1230 0.00698 -0.000489
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5.2 Edgeworth approximation |
Figures 1-21 compare approximations to the distribution of the unstudentized
statistic (U, -ﬁ(l))/a , where U, and ﬁ(l) are the first elements
of U, o, and 0%=0.00887 . Weused # = 1, 0.8, 0.6 and 0.4 for n=100,
and 2=0.8, 0.6 and 0.4 for n=400, with 600 replications, and we set b=1.2h
following the discussion in Section 2.1. U and k; involved in Figures 1-7, 8-14, and
15-21 used respectively kernel functions of orders L=4, 8, and 10; see (5.1) and
Table 5.1. The solid line is the empirical distribution function of Z, while the dotted,
broken, and broken-and-dotted lines are the standard normal distribution function @ ,
the empirical Edgeworth expansion (Theorem 2), and the theoretical Edgeworth
expansion (Theorem 1) respectively. The empirical Edgeworth correction results from
averaging k; across 600 replications for each sample size, bandwidth choice and
kernel order. The two empirical Edgeworth expansions in each Figure involve
respectively all three correction terms (shorter broken line) and one correction term
of order n~/2 (longer broken line) in (2.27), which correspohds to the feasible
version of (3.46). We examine the "one-term" case because this is the one we would
hope to be able to recommend, since it involves just the "parametric"
n -2 correction and, depending only on x; and x, butnoton k, and x,, is
free of K. |
We first compare the "three-term" empirical Edgeworth expansion (EE3) with
the empirical distribution (ED) and the normal approximation (N), finding a range of
n and » where EE3 well approximates ED, and better than N, for example, see
Figures 1, 2, 3, and 4. It emerges that 42=1.0 (Figure 1) is too large in that neither
N nor EE3 performs well, but when 2=0.8 or 0.6 (Figures 2, 3) EE3 is satisfactory,
and better than N, whereas when £=0.4 (Figure 4), the opposite outcome is
observed. It is not surprising that N sometimes outperforms EE3 since # is finite (see
Hall (1992), p.45) and the k; are subject to sampling error. We also considered, but

have not included, the case £=0.1 with n=100, where the variance in the empirical
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distribution is very large, and both N and EE3 performed poorly. Neither N nor EE3
could be expected to work well for sufficiently large or small 2. Comparing Figure
6 with Figures 2, 3, say, EE3 appears to improve with increasing n. Making broad
comparisons across the three groups of figures, 1-7,8-14, and 15-21, we find that bias
tends to vary inversely with L, keeping n and % fixed. This is consistent with the
theoretical (asymptotic) bias-reducing properties motivating higher-order kernels, but
Monte Carlo studies of semiparametric estimates employing such kernels (see e.g.
Robinson (1988b)) have found that these properties are not necessarily mirrored in
finite samples, so these results of ours are rather pleasing.

It might then come as something as a surprise that in most cases the figures
reveal that EE3 approximates ED better than the "three-term" theoretical Edgeworth
expansion (TE3). A possible explanation is as follows. The proof of Theorem 1 (see

(2.15)) implies that an alternative theoretical Edgeworth approximation to (2.1) is

: ‘ 2
P(z) —¢(z){n 26 v ( EU-p) +E( 3{2) z

X AE(v?) +12E(Wyv v,) (z 2_1)} ) (5.2)

3nll2
The expectations are untidy, depending on n so the proof goesAon to obtain the
simpler and more elegant E’ (z) , involvingthen-free x; . However, incomparing
(5.2) with the k; EE3 might seem to most directly estimate (5.2), which might be
a more accufate approximation to ED than TE3, (2.1).
Among the three cases in Section 3.3, L=10, satisfying the condition
L>2(d+2), corresponds to the case III there, when EE1 is valid if
nh L+n-Y2p 4220 (1) . Comparing shorter broken and longer broken lines, the
"one-term" empirical Edgeworth expansion (EE1) is better than EE3 when
(n,h,L)=(100,0.8,10) and (400,0.8,10) (Figures 16 and 19). It is interesting that for
other values of L, EEI1 is slightly better for some values of & depending on # than

EE3 in particular when (n,4,L)=(100,0.6, 4) and (400,0.4,4) (Figures 3 and 7).
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These are the cases of relatively small %, so that the bias is small but n 14 42 is
relatively large, namely the k; correction is negligible but the &, one tends to be
too large, having the effect of pushing the curve up and down around -1 and 1
respectively. It is clear from the discussion in Section 3.3 that one expects the choice
of h to be especially crucial where "one-term" expansions are concerned.

Figures 22-45 compare approximations to the distribution of studentized
statistics nY2( Uy, -p(yy) /&, where &2 is the leading element of il, .based
on Theorem4. U, %; , and E involved in Figures 22-29, 30-37, and 38-45 used
respectively kernel functions of orders L=4, 8, and 10 and we took #=0.2, 0.4, 0.6,
0.8 for each of n=100, 400 with 600 replications. Because the theoretical Edgeworth
expansions (Theorem 3) perforfned less well than in the unstudentized cases featured
in Figures 1-21, and because they are in any case of less practical interest than
empirical expansions, we exclude the former cases from Figures 22-45 for ease of
reading.

Generally in Figures 22-29, we observe that EE3 approximates ED very well
except for largish & (see e.g. Figure 26), where N also performs poorly. Comparing
Figures 22-29 with Figures 1-7 for the unstudentized statistic (with L=4 throughout),
EE3 is seen to work better for the studentized statistic. The reason may be similar to
the one we offered for the apparent superiority of EE3 over TE3 in the unstudentized
case, namely, Var (U;) can better normalize U than X, and il, in view of its
construction, moré directly estimate Var (U) .

We proposed optimal bandwidth choices which minimize the error of the
normal approximation in Section 3.3. (3.49), (3.51) With L=4 and x; described
above yield the optimal bandwidth as #=0.485 and 0.374 for n=100 and 400
respectively. ED with these values of 4, as well as #=0.2 and 0.6, is compared in
Figures 46 and 47 with N, which seems to best approximate ED with optimal 4.

We next consider interval estimation. We have discussed in 1.3.1 that interval

estimates based on normal approximation can be modified using Edgeworth
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expansions. A 100 (1 -a) % confidence interval based on N is, like (1.76),
(Um —7Z 2 Unt 1,2 ;) : (5.3)

where z, satisfies fz ¢(z)dz =y. We can correct this interval using Theorem 4.

Inverting the empirica'l Edgeworth expansion there, we have the Cornish-Fisher

expansion (see (1.86)),

3
_ 12 Ly _ 2
w, =z, +nli2plyx - 2 7
Y Y 17 Lpdn Yy~ 3n 1/2

+o (MY Lap-1p 424 p-12)

——{(2zy +1) K;+3(zy 2:1) k,}

=WY+0(n-1/2+n112h L+n-lh —d-2) ,

where w, isthe 100 Y % quantile of the sampling distribution. Then the corrected

interval estimate is, similarly to (1.87),

5 P
(U(l) n1/2w1—5’ Uny - n1/2w§) : 5.4

Note that w,_,,,# -W,,, in general so that (5.4) is not symmetric around the pomt
estimate Uy, unlike (5.3). According to our interval estimation in the current
Tobit example, this correction is supported when the Edgeworth expansion
approximates well the empirical distribution function, which is mostly the case for the
studentized statistic. We report two typical cases wﬁere the correction appears
effective. One is when N fails to well approximate ED due to the large bias of U, and
the other is when Z has variance significantly less than unity. Figures 48-51 show
the "true" 80% and 90% confidence intervals derived from ED (solid line), the
corresponding interval estimates obtained from N, see (5.3) (dotted line) and from
EE3, see (5.4) (broken line) for (n,h,L)=(100,0.6,4), (400,0.2,4). The vertical
closely-spacéd dotted line indicates the true parameter value p ;) =-1/(87) . The

"true" interval is derived like (5.3) or (5.4) as

A A

g
(U(l) 1/2‘1 2 Un -t 2] (3.5)

where ¢, denotes the 100 y % quantile of ED. This is due to

P(t . <Z<t 1-g) =1-a . Both estimates (5.3) and (5.4) include the true vélue in
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all four figures. In Figures 48 and 50, we observe that they are of similar length,
though (5.3) is typically biased to the right and it does not cover fhe left part of the
"true" interval, while (5.4) covers almost the whole true interval. In Figures 49 and
51, we observe that (5.3) clearly overestimates (5.5), while (5.4) performs
satisfactorily. When (n, 4, L)=(100, 0.6, 4), N is biased ;o the left (Figure 23) and
when (n, h, L)=(400, 0.2, 4), it has larger variance than ED (Figure 29) so that (5.3)
estimates the confidence interval as described. Our experiment demonstrates that the
Cornish-Fisher expansion can produce better interval estimates than N.

As discussed in Section 33 below (3.47), Theorems 1 and 3 also imply that
bias correction should have the greatest influence in improving the second order
properties of U when the minimum MSE bandwidth # * is used. In view of Theorem
2 and Lemma 11, &4 *l’fcl esﬁmatgs the bias a;lv’(EU - ) consistently and
so ovU-h* ik, isabias-corrected estimate of oy vip=-1/ (8mo) . Table5.2
shows the average estimates of o3 v"(U-p) , h *I%,, and oV (U-p) -h Ik,
for each n from 600 replications when L=4 and the (infeasible) minimum MSE
bandwidth choice of Powell and Stoker (1996) was used. The bandwidth was
calculated by means of Moﬂte Carlo simulation to be A* = 0.9048, 0.8061 and
0.7128 for n=100, 200, and 400 respectively. We used b=1. 2k * in estimating

k; . Comparing the first and the third column of Table 5.2, the bias-corrected
estimate is seen to perform much better than the uncorrected one, especially for
n=400.

TABLE 5.2

The effect of bias correction.

n oMUy k) kR 0N Uy -Rgy) -k

100 0.0664 0.0496 0.0168
200 -0.0520 0.0427 0.0093
400 0.0342 0.0338 0.0004
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Powell and Stoker (1996) also proposed a feasible minimum-MSE bandwidth h~‘ ,
which depends on two user-specified parameters s, and 7 (see (4.35), (4.38), and
(4.40) of Powell and Stoker (1996)), but we did not use it. It is because, on the basis
of our calculations, though both absolute bias |E( h~"‘ -h*) | and
MSE E( h~‘ -h*)? wererelatively insensitiveto Ak, (whileexhibiting some tendency
to decrease in #,) , they Were highly sensitive to 7 and the results depend on too

much on its choice.

5.3 Bootstrap approximation
We compare the Edgeworth and bootstrap approximations to ED based on
Theorems 2 and 5 for the same Tobit m;)del. We also examine the bootstrap
distribution for the studentized statistics Z in (4.29) though we have not yet verified
it. These Theorems and (4.30) imply that ED can be approximated by EE3 and
bootstrap distribution (BD) equally well and better thari N. Figures 52-72 and 73-96
show ED (solid line), N (dotted line), BD (dotted-and-broken line) and EE3 (broken
line) for unstudentized statistic Z and studentized statistics Z respectively for each
sample size, bandwidth and kernel order stated. We used the same combinations of
(n,h,L) as we did in the previous subsection. ED and EE3 drawn there are exactly the
same as those in the corresponding ones in Figures 1-45, for example, Figure 1 and
Figure 52 are both for unstudentized statistics with (n,4,L)= (100,1.0,4) and they
share the same ED and EE3. Bootstrap distribution is a random function so we
simulated it as follows.
1. We generate a Tobit sample of size » as in Section 5.2.
2. We draw a random sample of size n from the original sample in step 1,
then calculate the density-weighted AD from the subsample for each (4,L).
3. We repeat step 2 600 times and obtain the density-weighted AD for each
subsample.

4. We construct an empirical distribution from the 600 bootstrap estimates in
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step 3.
The empirical distribution in step 4 is an estimate of bootstrap distribution.
Figures 52-58, 59-65, and 66-72, related to the unstudentized statistics, used
kernel functions of orders 4, 8 and 10 respectively and we took #=1.0, 0.8, 0.6, and
0.4 for n=100 and ~#=0.8, 0.6, and 0.4 for n=400, while Figures 73-80, 81-88, and
89-96, related to the studentized statistics, used kernel functions of orders 4, 8 and
10 respectively and we took £#=0.8, 0.6, 0.4, and 0.2 for n=100, 400. We first look
at the unstudentized cases in Figures 52-72. BD should approximate ED
asymptotically as good as EE3 by Theorems 2 and 5, however we find, generally,
that BD and EE3 approximate ED equally well for medium values of 4, but BD tends
to outperform EE3 for smallish and largish % in the smaller sample n=100. For
smallish A, see Figures 55, 62, and 69. EE3 have decreasing parts because of the
correction term of order n 1A <42 | but BD is always non-decreasing since it is a
distribution function, thus BD outperforms EE3. For largish 4, see Figures 52, 56,
59, 63, 66, and 70. We may explain this by the difference of bias adjustment way
between BD and EE3. To clarify the effect of bias in ED, BD, and EE3, let us
consider the distribution of the bias removed statistic
F(z) =P[o'A"(U-EU) =<z]

Bootstrap distribution and Edgeworth expansion corresponding to this are respectively
Fo(z) =P*[o* '\ (U*-E*U*) <z]

and
f",(z) =P(z) —qS(z) { n:3+zz . 4( Tc)z:rl327<4) (z 2_1)} .

In view of the proofs of Theorems 2 and 5, it is easily seen that

sup |F{z) -Fp(z)|=0(n'h42+n12) as.
and
sup |F (z) —1;;,(2) |=o(nth42+n12) as,
The above equations imply that F,(z) and fn,(z) approximate F,(z)

asyniptotically equally well. Now we consider the effects of inclusion of the bias
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term EU-p . From the definitions of F(z), F*(z) and I?(z) , we have
F(z) =F,(z -0 'v(EU-p)) ,
F*(z) =F,(z -0"" W (E'U*-pY))
and
F(z) =F.(2) ~$(z)n"h %, .
Since o* v’ (E*U’-p*) -0 'v'(EU-p) =0 a.s. (see Lemma 34-(d) and proof of
Theorem 2), it is likely that F*(z) is close to F(z). Noting
nY2p I, -o71v'( EU-p) -0 a.s. (see proof of Theorem 2),
if we tried to approximate F(z) similarly to F*(z) , by
E;'(z) Efm(z -nl?p 1% )
not by f‘ (z) , then the approximation should have been as good as that by
F*(z) . However, bias adjustment in F‘(z) is a vertical shift of F.':"(z) by
é(z)nY?h | so that it may approximate F(z) worse than F*(z)
Figures 73-96 present ED ahd its approximants for the studentized statistic
é . Generally we have similar observations as for unstudentized cases other th_an
that BD does not necessarily outperforms EE3 for smallish 4. The reason is that EE3
for studentized statistics do not have decreasing parts.

We found some cases when BD approximates ED amazingly well for both
studentized and unstudentized cases (see e.g. Figures 57, 63, 78, 86), all of which
are when n=400. However we also find some cases when BD shows poor
approximation (see e.g. Figure 75, 76, 79, 83) compared with EE3. We found this
occurs rather independently of # and L, but it occurs more when n=100 than when
n=400. The reason seems to be that we sometimes obtain rather unbalanced samples
in step 1 of generating the original sample especially when # is small so that bootstrap

distributions estimated from these samples do not work well.
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Appendix A : Established results in Robinson (1995a)

We reproduce some established results proved in Robinson (1995a), which are

frequently used in the main proofs of Theorems and also Lemmas in Appendix B. .

(a) Under (i), (iv), (vii) and (viii),

E(U) -p=0(hY . (A.1)
(b) Under (i), (iv), (v), (vii) and (viii),

S-Z=0(hYH . (A.2)
(c) Under (i), (iv), (v), (vi), (vii) and (viii),

BV, [1) | S [ECAU, 1) | <C(JY;[+1) as. A.3)
(d) Under (i), (iv), (v), (vi), (vii) and (viii),

LAAAATE R (A4)

(e) Assuming E|Y|" < o for integer r =1 , (iv) and (viii),
E|W,|" <Ch -(r-Ddr (A.5)
(f) Under (i), (iii), (iv), (vi), (viii) and (ix),
E|Y W I"=0((nh 47y _ (A.6)
i
(g) Under (i), (iii), (iv), (vi), (viii) and (ix),
E|W(m) | =0(( B 7) ,
' especially E|W) =E|M(n-1) | =0(( ﬁ) ‘2‘) . (A.7)
(a), (b), (d), (e) and (f) correspond to Lemmas 1, 2, 3, 4 and 6 of Robinson
(1995a) respectively, while (c) was shown in the proof of Lemma 3 and (g)
corresponds to equation (14) noting b,, in Robinson (1995a) is equivalent to

W(m) here.
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Appendix B : Technical Lemmas

LEMMA 1: Under (i), (ii), (iii), (iv), (v), (vii), and (viii),
(@ E(v,) =0, Var(2v) =1,
() E(Vy) =E(W) =0,
©) E(W,|1) =E(W,|2) =0 a.s.,
@ i+ I" sC(|1Y;+1) as. for r=0.
PROOF: The proof for (a)-(c) is straightforward from the definitions. To prove
(@ writing |
v, = oW Yif (X)) -e (X)) i) ,
Vi = o { Y, [f (X -hu ) K(w) du - [e (X, -hu) K(u) du -EU}
since 07! <C due to (i), we have
il S C{%LI VXD [+ ve (XD I+ IVEF)
Wil <c{Ivl [Ivif (X -hu) | |K(w) [du
+f|v'e (X, -hu) | |K(u) ["du + |v"EU|’} .
Apply (iv), (v), (viii), and (A.1). J

LEMMA 2: Under (iii), v -v(m), V-V(m), and W-W(m) are independent
of (X1,Y),,(XnY,).
PROOF: Straightforward. O

LEMMA 3: Under E|Y,[ <o, (i), (iv), (v), (vi), and (viii),
ElV,-v,|f =0(h™) .
PROOF: Writing |V} -v,|" <C{|v'(U-n,) |" + |V(EU-p) |'} dueto (ii), we
have from (A.1) that the second term on thé rightis O(h™) . Writing
VI(Upy) =Y, [V7(f (X -hu) -f (X)) YK (u)du
| - [viie (X -hu) -e (X)) }K(w)du |

both integrals on the right are O(A L) a.s. by Taylor expansion and (viii) (see the
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proof of Lemma 2 of Robinson (1995a)) so that [v'(Uj-u,) | <
C(|Y,|" +1)h™ . Therefore
IV, -vI" <C(|Y,[+1)h?T as. (B.1)
Then apply E|Y,|" <o . O

LEMMA 4: Under (ii), (iii), (iv), (vi), and (viii),
ECIV, I 1) <C(|Y,'+1)R D4 g5 for 1 <r=<3.
PROOF: Using (ii) and an elementary inequality, write
E([W, [ |1) <C{E(|v'U,|'|1) + |VEUL + W' +E|V;['} .
(A.1) and Lemma 1-(d) give |V'EU| + |V | +E|V,|" <C(|Y,|" +1) . The
femaining term is bounded by

_C SUNE [IVEICEE) pr (o) d

+[ECG I X=) V(S5 [f (x) de )
d
< ;1%17 {|Y; |’f|v’K’( u) |Fdx +f|v’K’( u) |"du}

c r
SW(IYII +1)

where the first inequality uses (iv) and (vi) and the second inequality uses (viii). [J

LEMMA 5: Under (i), (ii), @ii), (iv), (v), (vi), (vii), and (viii),
E|(Vi-v) W;| = O(ht)
PROOF: Using (B.1), Lemma 4 and (i),
E|(V,-v,) Wy |=E{ [V -v, |EC W, [|1) } <ChPE(|Y, P+1) =0(h LY . O

LEMMA 6: Under (i), (ii), (iii), (iv), (vi), (vii), and (viii),
E|E( WyW,|1,2) | = O(h-UDd2y for 1<r<3 .

PROOF:  E(W,W,|1,2) = 02E(V U,V Uy |1,2) -0 tE(VyvT U, |1)
-0l E(V,vUy, |2) -0 WEU(V,+V,) -V\V,+E(V3) - (o 'vEU) 2.

(ii) and (A.3) gives
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o E(V3vT Uy [1) | + |07 E(V3v Uy [2) | SC([Y, ] + Y, + 1) as.,
and (A.1), (ii) and Lemma 1-(d) give

o VEU(V,#Vy) -V, <CUY I+ 1D ([ +1) as.,
so that their expectations are bounded under (i) and (iii). By Lemma 1-(d), (i), (ii)
and (A.1), |E(VZ) - (o 'v'EU)?| < «. Finally, since

E[v'U;3v'Uy|1, 2]

Y,-Y, x,. Y,-Y,
=E[ hld+13v-rK/( thxs) hd+13 7K/(X2X3) |1 2]
= h42E[E{(Y;-Y)) (YY) va'( 25y vK( 25 |1, 2, X,)]
= h %[ {q(x) -(Y*Y)) g (x) +¥ Y, } vK(Z2) v VK 22) 11, 2]

= h %2 [{g(u-hX,) ~(Y+Yy) g (u-hXy) +Y Yy}
xvK(u-220) vK'(u) f (u-hX,) du
using {q(u-hX,) + |g(u-hX,) _| +1}f (u-hX,) <C a.s. due to (iv) and (vi), we
have

IE(vUv U, [1,2) | = —S (Y, F+1) (|Y,)+1)

h r(d+2)

xf v'K’(u—g%X') v’K’(u)|'du .

Taking expectation on both sides,

E|B(VUvUn |1, D) | S —CnE] (W +1) [IECIT | ) +1)

f

E[( Y11+ 1) [ IR u-52) | |vK /() |rdudx]

VK (-0 viK(u) "duf (x) dx]

hr(d+2)
Ch , . e ,
<h,(d+2,E[( Yy + 1) [[IvK (u-t) | |[vKX(u) ['duds ]
=0(h-(r-l)d—2r) ,
where the first inequality uses E( |Y,|" |[X,=x)f(x) <C for 1<r <3 due to (vi)

and the last inequality uses (i) and (viii). O
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LEMMA 7: Under assumptions (i), (ii), (iii), (iv), (v), (vii), and (viii),
Elo(m) ]? = 0(( %1) 3/2h3L) form=1,...,n
In particular, E|@| = E|w(n) | = O(hDH
PROOF: Since (V, -v;) areiidby (iij) and E(V, -v;) =0 by Lemma 1-(a),(b),
applying the Theorem of DFJ, we have _
E|a(m) |? SC(%‘)%{%,;;EIV,-"V: |3} - (;’")%ochu) ,

by Lemma 3. Then E|®| = O(hL) by Holder’s inequality. O

LEMMA 8: Under (i), (ii), (iii), (iv), (v), and (viii),

E[Wom(t)m(t)] = WE(WWM) +0( Py JT/Ii)h )
PROOF: Writing {;=2n""%,, by Lemma 1-(c) and (2.6) the left side is

E[ W {w,(2) -1} {wy(2)-1}]
= E[W{(e’"-1-it {y) (e " -1-it L) vt {i(e ' -1-i2 ()
vt Ly(e tO-1-i0 {))] + Bl (it 3) (i1 )] |

- MO R vy O LW vivd) + LLE W i) )
By an elementary inequality,
Elﬂ{zvlzv,_zl 50'1E|V’U12v12v22| +E|Vv 12v22| +E|V,v 12v22| +a'1E|v’EUv12v22| .
The second, third and fourth terms on the right are bounded due to Lemma 1-(d) and

(A.1). Using (ii) and an elementary inequality, the remaining term is bounded by

_CE{IVKCEE) |1+ [5,D (Y1) (1) )
< hizE{ RENOATHAD AT Y
hmE [IVKCEE) IO, P+ Y PECIY, | =) + (Y, Df () de
WE( AR AR AN IS
< CEEBCIY, P+ Y P+ D) [IVE/ ()
=0(h7Y) (B.2)
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where the third inequality uses the boundedness of fand E( |Y| |X)f due to (iv)

and (vi). Therefore

EWvivi|=0(h™) (B.3)
Similarly, E( |W,|[v{|v,]) <Ch™ . | O

LEMMA 9: Under (i), (ii), (iii), (iv), (v), and (viii),
E[Ww, (£ )wy(t)] = ECD) + o(ﬁ%) .
PROOF: The left side is
E(W3) + E[Wgle’ -1} = E(ug) +O(|t |V, )
- E(D) +o(;ItT/J§E|ng1 |)
using (2.6), and by Lemmas 1-(d) and 4 and (i),
E|W3V,| =E{ v, |EC [W, [*|1) } SCR2E(|Y,P+1) =O(h ). O

'LEMMA 10: Under (i), (ii), (iii), (iv), (v), and (viii),
E[W2W3W1(t Ywy(t)ws(t )] 0(
PROOF: By Lemma 1-(c) the left side is
E[H{z%(e“‘l—l)(e“‘z—l) (e “‘3-1)]
=O( [t PECIW 1M (14, 118,1185D)
- o S a1 1D
using (2.6). Writing
ECIWL W[ villvalvsD =E{ W, | Ivy|Ivo [EC[Pavs]| (1)), (B.4)

3
3/2h2) :

similarly to the proof of Lemma 8,

E( [Wv| |1> <GE{ VKIS [ D (Y ]+1) [1)+C
h,m IV IE{ [VK(Z2) |(%]+1) |1
¢ CE(VEI(EE) (Y ) 1)+
T ARSI

where the third inequality uses the same method as (B.2), so that (B 4) is smaller than
C
E{ P vy |2 |C Y] +1)}
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and itis O(h %) asin (B.3). a

LEMMA 11: Under (i), (i), (iii), (iv), (vii), and (viii),
o v (EU-

h L

PROOF: Writing

o WWEU=h 10" E{(vK( 2-5) (Y,-Y,) } =2h 4o E{vK/( 22y y))
=2k 41g7E {Ylfv’K’( ﬁ;)f (x)dx }
=21 7107 E{g (X)) [ViK/(u) f (X,-hu)du}
=20"E{g(X,) [vif (X,-hu) K(w)du} ,

D) =x,+0(1) as n - .

where the second eqﬁality uses (iii) and that X is even, and the fifth equality uses (vii)
and (viii), Young’s form of Taylor’s Theorem (see e.g. Serfling, 1980, p45) gives
o' (EU-p) =bh+-+b, Al +bhl+o(h D

where
_2(-D’o’! &1, } rE A1 1D p 7
b=+~ — Iu; 'K(u) du ;v EA ,
== of;"%l Tlu; 'Keu) du v B fhel
1l = .
l=1, "',L B But b1="'=bL_l=0 by (Viii) and bL=Kl . D

LEMMA 12:  Under (i), (i), (i), (v), (), (vi), (vii), and (viii),

he2E(WE) =x,+0(1) as n—>o .
PROOF: From Lemma 1-(b),(c),

E(Wz) =E(07v'Up)*-2B(W) -(07'V'EU)?.
By (i), Lemma 1-(d), and (A.l), E( V12) + |o7!vEU| <C for sufficiently large
| n. Also
E(ovU,)? = ELE{(07'v'U,) ?|1}]
=h 2202 [(vK(52) )Y -2Y,g (x) +q(x) }f (x) dx |
= h ‘d‘za'ZE[ f (VK (u) )*f (X-hu) {q-288 (X-hu) +q(X—hu)du]

and the expectation converges, as n—> (i.e. as k=0 ), to x, by (iv) - (vi).O

LEMMA 13: Under (i), (i), (iii), (iv), ("/), (vii) and (viii),
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@ E(v?)
® E(Y)
PROOF: To prove (a), putting b‘= v’f !, ¢ =v"a, routine calculation gives
E(v?{) = o [E{(Y-g)%b 3 -3E{(Y-g)% %} +3E{(Y-g)bc?} -Ec?]
o E[{r-3(q-8*)8-8°1b*-3(g-gH)b% "’
0 E[(r-3gg+28 %) b3-3(qg*)b?c—?)

Kz ,

kz+o (1) asn —»w .

because by straight forward calculation,
E[(Y-g)%° = E[{r-3(qg-g®g-g°1b’l,
E[(Y-g)%%] =E{(gg)b%}, E[(Y-g)bc? =0.
To verify (b), it suffices to show E( V13 -v 13 ) =0(1). Lemma 1-(d) and
(B.1) give
E\V}-v{| <CE|V,-v,|[(V}+v]) <CRIE(|Y,P+1) =O0(rY) . O

LEMMA 14: Under (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii),
(a) E( u{mvz) =x4+0(1) as n—>oc
®) E(W,V,V,) = x,+0(1) as n—ce .
PROOF: - Using Lemma 1-(a2), putting a; =a(X;), Kj =K'(%%) |
E(W,v vy = 0 E[ v (Uy-EU)v v,] -E[ Vv v,] E[ Vyy v,]
= o lE(v U,V ,v,)
= h o E[VK (YY) vi{(Yig)) f -8, {(Ya8,) f 1-4,)]
= h*10E (V’K{Z vi{(Y,g,)fi-a,)
XY,V {(Y,8,) f 2-8,)-Y,v7{( Y2—g2)f2/—a2}]) :
Taking expectations with respect to Y, given X, X, Y, , it equals
B +la-3E[va{2vf{< Y,-g.>f{-al}{—Ylvfaz—vf{<q2—g§>f2’—a2g2}}]
= h-163E f VK (u) vi{(Y-8)f - a)[-Yv a( X-hu)
-{q(X-hu) -g(X-hu) 2} v'f (X-hu) +via(X-hu) g(X-hu) |f (X-hu)du .
Since g’f vanishes on the boilndary of its support by assﬁmption (vii), integration

by parts gives the above quantity is equal to
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o E[K(u) vi{(Y-g)f -a}
x{[ “Yvia (( X-hu) v-v7 {q ( X-hu) -2g (X-hu) g ( X-hu) }f (X-hu)™v
~{q(X-hu) g(X-hu)?}vif (X-hu) v
+vTa (X-hu) vg (X-hu) +v a(X-hu) g '(X-hu) "v] f (X-hu)
-[Yv'a(X-hu) +{q(X-hu) -g (X-hu) 2} v'f (X-hu) -va(X-hu) g(X-hu) ]
xv'f (X-hu) }du .
Using assumptions (iv),(v) and (vi), which imply the continuity of f, f/,f ", g,
g,q,q9',a and a’ ,as n—>x ,ie., h—0 ,
E(W,vv,)
—>0‘3E[{b(Y-g) —cH-[(vra’v) (Y-g)+{v(q'-28g ) }b
+ g8 (Vf ™) -c(vigH1f -[c(Y-g)+(q8 2)b]b}]
= 02E[{b(Y-g) ~c}{~(f via 'vbe) (Y-g) -b {v(q'288 )}
-f(gg»(vf™) +fb(vigh-(q-g 2)bz}]
= 0 E[f (g-g)b(via V) -fb{v'(g'-288 ) )¢
-f(ggHe(vf W) +f(vghe?] .
To prove (b), it suffices to show E( W[,V V,) =E(W,v,v,) +o(1) . Writing
[ECW, Vo) —E(Wpv vo) | S[EXW (Vi -v ) Vol [+ [E(Wv (Va-v) } ]
the first term on the right is équal to
LV, -v ) ECH,V; 1) } | <EC|V; v, [ |ECR V3 1) |3
<ChLE(|Y,|*+1) =O(hY) ,
by (B.1), (A.3) and (i). We can handle the second term similarly and show it is also
O(h1L)y. . O

LEMMA 15: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),
EWV\ W[ = EVy, | = OCh-0D47) for 1<r<3 .
PROOF. Using Lemmas 1-(d) and 4,
- EWWI <E{V I E(HID)
<CE{(|Y['+1)?} h~r-Dd~
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< Ch(r-Dd—r for 1 <r <3 under (i)’.

E\V\W, | = E|V,l,|" is obvious by symmetry of W], and (iii). O

LEMMA 16: Under (i)’, (i), (iii), (iv), (v), (vi), (vii) and (viii),
E|1;1|’ = O0(1) for 1sr=<6 .

PROOF. By (A.3),
I = BRI |7 <COH [ +1) as.

(B.5)
so (i)’ immediately (Produces the conclusion.
so (1)° IMmmeaiately produces e Concrusion. O

LEMMA 17. Under (i), (ii), (iii), (iv), (v), (vi) and (viii),
@ EW,|" =O(h7@D) for 1<r <3 ,
®) E|W,|" = O(h<r-Dé¥) for 1<r <3 .
PROOF.
(a). H%l = E(W3|1) <C(|Y,[>+1)h 2 a.s. by Lemma 4 so again application

of (i)’ completes the proof.
(b). Apply Lemma 6. O

LEMMA 18: Under (i)’, (ii), (iii), (iv), (), (vi), (vii) and (viii), for d, given in
(3.36),

(@) E|d,V,|" =0(1) for 1<r=<3,

®) E|d,V,|" = 0(1) for 1<r=2 .
PROOF.
(a) By (iii), E|d,V,|" = E|d,|" E|V,|" , where the second factor is bounded due
to Lemma 1-(d). From Lemma 1-(d) and (B.5),

e Y ASS E A ®.6)

then apply (i)’. O
(b) By an elementary inequality and (3.8),
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Eld Vil sC(EW +EV VI +EV,I) .
By Lemma 1-(d) and (B.5), E|Vi | + E|V;|' = O(1) for 1<r<2 ., and
E|V,V,l <CE(|Y,['+1)% = O(1) B.7)
for 1 <r <3 by (). O

LEMMA 19: Under (i)’, (i), (iii), (iv), (v), (vi), (vii) and (viii),
(@ E|\WLVViI" = EW,V,V,F = O(h~-D4Try for 1 <r<3 ,
®)  ERVEl = EWVE[ = O(h™D4) for 1srs2 .
PROOF.
(a). Using (iii), Lemma 1-(d) and Lemma 15, for 1 <r <3 ,
EWW Vsl = E Vi EVF = O(h~0-0d)
E\W ,V\V3|' = E\W,V,V;|" is straightforward by (iii) and symmetry of W[, .

(b). By Lemmas 1-(d) and 4, the left side is
E{ V[ E(W, [ |1) | <E{CCIY, [ + 1)h-CDér} = O(hDd)
EW,ViI = E IPI{ZI/ZZ | is straightforward by (iii) and symmetry of W, . O

LEMMA 20: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii), with e, given
in (3.36),

(@ Ele,Vslr = O(hDE2ry for 1<r<3

® Ele Vil = Ele gVl = O(h-04%) for 1sr=2 .
PROOF.
(a). By (iii) and Lemma 1-(d), write

Ele VIl = Eley, | EV, < C(EW,W, | +EV,| +E|W, ")

Then apply Lemmas 15, 16 and 17-(b).

(b). An elementary inequality gives
Ele ,i I
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< C(EWVH | +EWVIH,  EVIE RV EWGYT) @9
Writing due to (ii)

ElVV,W,|" < C(EIVVv'U, | +EIViV,|+EVV |+ EV,|[VEU))
the last three terms on the right are bounded due to Lemma 1-(d) and (A.1). Using

X‘;Xz) , Lemma 1-(d) and an elementary inequality,

symmetry of v7K/(
EV\V,vU, |

e AU CASE A ARV E e |,}
A (A A A AT A ATV E N

Expanding the right hand side, we can bound the first term by
s{m e v 55 vl
-E{ i [ ) R b () e |
<CE{|Y > [ |va'( 27y } <Ch4E{|v,[* [|v"K'(u) |’du}
<Ch* , |
where the first inequality uses (vi) and the last inequality uses (i) and (viii). The other
three. terms are also O(h ) similarly. Thus, for 1sr =<3 ,
EV,V, W, | = O(h~rDédry (B.9)
The second term in (B.8) has the same order bound as (B.9) by Lemma 19-(b)
for 1 <r <2 . The third term in (B.8) is bounded due to (B.7), while the' fourth
term is bounded due to Lemma 1-(d) and Lemma 16. We handle the last term in
(B.8) similarly to Lemma 6,
E\W,V,I" = EIE(W3Ws|1,2) V, | SCE{ [E(v'Uyv Uy [1,2) ['([¥, [ +1) }
=Q(h(r-Dd2ry (B.10)
Ele ,Vi|" = Ele xVa|" is straightforward by (iii) and symmetry of e, . O

LEMMA 21:  Under iy, (ii), (i), (v), (v), (vi), (vii) and (vii),
@ El|d,W,|" = O(hDdry for 1sr<3 ,
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(b) E|d,W,| = E|d,W,|” = O(h~rDér) for 1<r=<2 .
PROOF.
(a). Using (B.6) and (A.5),
E|d\W,|" = Eld,|" E|W;|" = O(h~-D47)

for 1 <r <3 under (i)’.

(b). Using (B.6) and Lemma 4 the left side is
E{Idll’ E( W, Il)} SE{(|V}|* +1) C(|Y,|" +1)h-(r-DdT}
<CE(|Y, [’ + 1) b "Dd7 = Q(h (r-Ddr)
for 1 <r <2 under (i)’. E|d,W,| =E|d,W,|" is straightforward by (iii) and
symmetry of W, . O

LEMMA 22: Under G, (i), (iii), (iv), (v), (vi), (vii) and (viii),
@ E[W,W,I = O(h--Dd3y for 1<r=<3 |
) E[W,W,[ = O(h20d3) for | <r<3 ,
© EWL,W,| = O(h2UDdé3) for 1<r<3
@ E|W,W,|" = O(h2Dd3ry for 1<r<6 .
PROOF.
(@). In view of the proof of Lemma 6,
E\W, W, ' = EIW, I W, |
Sh 7D CE(L+ Y[+ |V + V1Y) (W,
< Ch7 @ (EW, | +EY\ W, | + EIY, I, | + EVY, W, 1)
The first term in parentheses is O(h “""D47) by (A.5). From inspecting their
proofs Lemma 15 and (B.9) still hold with V; and V, replacedby Y; and Y, so

that the other terms are O(h ""D47) for 1<r<3 .

(b). Using Lemma 4, for 1 <r <3 ,
EWLW | = E{L 1 B 11, 2)}

171



SE{mZz ["CClY |+ 1A '("l)d-r}
= Ch _(r_l)d-_r(E“’IZzYl I +E|H?2 I’) .

We may replace ¥; by Y, in (B.10), so that using also Lemma 17-(b),
E[I/IZZI/I{:, " = O(h2("Dd3ry for 1<r=<3 .

(c). The proof is as in (b).

(). Writing E|W,W, | =E|W,|" E|W, | by (iii), the proof is straightforward by
(A.5) and Lemma 17-(b). O

LEMMA 23: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),
E|VI = O(1) for 2 <r=<6 .
PROOF. Since V, , i=1,...,n is an iid sequence, the result follows

straightforwardly by DFJ and Lemma 1-(d). O

LEMMA 24: Under (i)’, (ii), (v), (vi), (vii) and (viii)
|T,|" =O0(n"h74D) for r > 0.
PROOF. Using (A.5) and |6|<C due to (3.8),
T,F <-S\ECORD | =0(n 7k 7 @) O

LEMMA 25:  Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),
E|T,|" = O(n’?) for 2<r=3 .
PROOF. Using (3.8), write
By < SE|S (visp + SER T
Since E(4V,~2) =s 2 and E(V;) =0 , by (iij) both the 4Vi-5? and I}: are

martingale differences and thus the theorem of DFJ applies to yield
E|Y (4VFs2) | <CniE@Vis? =0(n?)
£ =1

172



for 2 <r <3 by (3.8) and Lemma 1-(d) and
E|Y. 8V, <CnElV,I = 0(n?)
S|
by Lemma 16. O

LEMMA 26: Under (i)’, (i), (iii), (iv), (v), (vi) and (viii)
E|T,|" = O(n"h~r-Dd2y for 2 <r<6 .
PROOF. Using (3.8), write
E|T, |’ <Cn?E| ;Zk | (B.11)
where Z, = ; W , for k=1, ... , n-1. Since
E(Wy [2) =E(W, |1) =E{ECWs W [1,2) |1} =E(H W01 =0
Z, ,k=n-1, .. ,1is a martingale difference sequence. Thus we apply DFJ to
r_ n-1 ~
bound (B.11) by Cn%(n-1)?2 1)(X:EleV. Since E(W.|m) =0 for m=
: -1

k+1,...,n, W},;n are martingale differences. We use DFJ again and get by Lemma

17-(b),

EI Zklr = C(n_k) %_l ; E|W,’;,,|’ SC(n—k) %—l(n_k) h-(f-l)d-Zr
mek+1
= O(n Th-r-Dd2ry
r_qn-1
so that (n-1)7? I;Elzk " =O(n"h--Vd)y  Therefore (B.11) is
=1 ‘

O(n-rh —(r—l)d-Zr) . 0O

LEMMA 27: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),
E|Q | =O(n"h-t-Ddry  for 2 <r=<3 .

n

PROOF. Write P; =(V;+V)W -V, -V, . Then Y  P; is a martingale

ij
j=i+1
difference sequence for i = n-1, ... ,1. We can proceed by replacing W in Lemma

26by P; duetothe property E(P i) =O for i #j . Applying DFJ and (3.8),

| scanSn g

j=i+l

ElgI sC(3]'E

1=1j=1+1
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Since P; ,j = ,it+lisa martingale difference for fixed i, we can apply the
theorem of DFJ again and obtain E| Z i | =C(n-i) 7 2 E|P; | .
j=i+l j=i+l

Lemmas 15 and 16, .
E|P; | <CLE|V,| +E|V;W, '] = O(h"¢™V4") for 1<r<3 . O

LEMMA 28: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),
E|Q =O0(n"h-UNdTy  for 2 <r=<6 .
PROOF. By an elementary mequahty and (3.8),

n-lgy B

C(n-1 Tl E| "1(') if‘)VW I
_ﬂ'(z)‘.ZI: Zl:m:kﬂikm.

VW, » m=k+1,...,n is a martingale difference for fixed i, k, k#i and

B i)

m#i , and ; V.W,, , k=n-1,...,1 is also a martingale difference for fixed
iand k#i sothat we apply DFJ repeatedly as in the proof of the previous Lemma

and get
n-lgy  ny n-lg) B (i)

L)) V"Wml’scEW-Z)’ > B3 VL

raqa. Mo B (i)

sC-nTY ¥ E(n-k)®" > EWVLL

i=1
< Cnr+lh -(r-1)d-r

for 2 <r <6 by (iii), Lemma 1-(d) and (A.5). O

LEMMA 29: Under (iy’, (i), (iii), (iv), (v), (vi), (vii) and (viii),
E|R|| =O0(n™) for 2 <r=<6 .
PROOF. Writing E|R, | sC( ) E|E Z VI due to (3.8), as in Lemma

=1 j =i +1
26 or 27 , V V- ,i=1,...,j-1lisa martmgale difference sequence for fixed j as well

as E V V , i=n-1,...,1. We use DFJ repeatedly again and (i)’, (iii) and Lemma

j=i+l
1-(d) to obtain
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n- n

n-1 n , 1
EIY. 33 ViVl sC(n-1) '3 E| 32 ViV

1=1j=i+1 et i= ]s::‘l
<C(n-1)T' ()T Y EWVF =07y . O
= jsH

LEMMA 30:  Under ()", (ii), (i), (iv), (v), (vi) and (viii),
ER,[ = O(n3CDp20Ddry for 3 <p<3 .

PROOF. Using (3.8), write

n-1¢;) "(:)

l : —
ER,| - (” ) E W, -W) | .
RIS EY Y Y i |
Since R, has the same martingale structure as Q, , the same method of proof as in

Lemma 28 applies. The difference is in the moment bounds of the two summands,

i.e.
ElV.W,_|" = O(h~-D47) for 1 <r <6, i¢k¢m,.
and
E[W, W, -W_ ' = O(h2-1d2y i ak 2m
by (i)’, Lemmas 1-(d), 4 and Lemma 17-(b) for 1<r <3 . ' O

LEMMA 31: Under Gy, (i), (iii), (iv), (v), (vi) and (viii)
\ E|R,|' = O(n¥p(>r-Dd2ry for 2 <r<3 .
PROOF. Write E|R,|" < —( ) E|X_;J;1 {ugz W -W, +E(W2)} | using
' (3.8). Since
E(W*-W, -W, +ECW3) |j } =E(W*-V§ -V +E(W3) |i } =0

for j >i , R; has the same martingale structure as T, . Therefore, we apply DFJ

to obtain
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n-1 n
771 2w W E( W2
<C(n-1)? E W-W; -W, E r
(n-1) ,z; IJ_'EH{ j W3) }
SC(n 1) E(nz)’ 2E| u:/; W +E(WD) )} I
_;4-1
— O(nrh —(2r—1)d—2r)
by (A.5) and Lemma 17-(a). O

LEMMA 32: Under (i)’, (i), (iv), (v), (vi) and (viii)
ER,[ = O(n Th7@D) for 1 <r=3 .
PROOF.  Writt ER,| < £E|z) (W, -E(WH}|" using (3.8). Since
W - E( Wz) is a martingale difference by (iii), DFJ and Lemma 17-(a) give
EIZ;{V% -E(WH I sCn® Z;EIW.- -E(W) | = O(n Th7@D)

O
LEMMA 33:  Under (i)’, (i), (iii), (iv), (v), (vi), (vii) and (viii),
E|R;|" =O(nh 4Dy for 1<r=<3 .
PROOF. Using (3. 8) DEFJ and (A.6),
2r n
ERRst s-GE E E p| s -5 () ‘2EI >
i=1j=i+ i jei+
= O(n—Zrh —r(d+2)) . . O
LEMMA 34:

@ E*(V) =0, E'(2W)%=1, E'(W) =0.
®) E (M| 1% =E*(W;]2%) =0.
Under (), (iii), (v), (v), (vii), (viii) and (ix),

(c) v (E*U*-EU) =0((log n) 3
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Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii) and (viii),
1 1

(d o*?=0%+0 ((log n) 3, == +o((log n) %, r=1,2,3.
ag

© E*(Vh) =0(1) .
PROOEFE. The proof for (a) and (b) is straightforward from the definitions. To prove
(c), write (log n)3v"(E*U*-EU) =(log n)3v7(U-EU) - (_lognn_)3v,U, then
the second term converges to zero a.s. because of Proposition 1. The first term is
(log n)3v"(U-EU)
2(_1<>g"_)zv +ME(V -v,) +(log n) ( ) E E

1=1 i=1j=i+1

‘Since v; and V; -v; are iid sequences with means zero, DFJ, Lemmas 1-(d), 3 and

(i) give
3n 9
EI (log n) Ev.-lg < C(losglzn)

E| log n)? E(V v )|2<C(log n)ﬁhzz.'

i =1 n

Therefore, Borel-Cantelli lemma and (ix)’ give

sz —0 as.
l=1
Llog_"l_z(V,. -v;) =0 as.

n i=1

Lemmas 1-(b), (c) and (A.5) give

1nl n C 1 n

so that Borel-Cantelli lemma gives

(logn)( )EZ W, —0 as.,

1j=1+
which completes the proof of (c). To prove (d), write

n

- 40 1
2 - g2E*[ 207 V(U -E*U" 2= (_
i=1} njz:

2
-1y7 _ LT T*
. =la V(U _EU))
=5L22n:
n o=

2
1y - -
le: V.) +V, +o'v(EU-E U)‘
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_ 0_2" 171 40 r _I*TT* 2
_le:l: H}Zf‘(u{.}f +V)) T +4[v(EU-E*U")]
802 v~ v 80V (EU-E*U*) x~ v
- WA AL ‘ LSS (V)
nei=j= n i=1j=1
8ov'(EU-E*'U*)
+ = V. (B.12)

The second term on the right of (B.12) is 0% +0 ((log n) ~®) since

Ay Vi- %;{(2K)2—(2vi)2}]+ L3 () 2-B(2v ) ) |+ B(2v )2

- 0 ((log m)™) foo(Ulegm ¢ o1,
due to :
E|<—‘9%¢J§=;{(2;§)2-(2vj>2}|3sﬂ’;,f2”—VE{|m—vll( ANE

3/2

by Lemma 1-(d) and (B.1) for the first term,
| (log n)szn: {(2v-)2—E(2V1)2} |3 < C(log n)g
n i =1 '

PEE
by (i)" and Lemma 1-(d) for the second term, and Lemma 1-(a) for the last term. The

third term on the right of (B.12), apart from the square, is o ((log n) ) due to
Lemma 34-(c). We shall show the other terms on the right of (B.12) are all
of o ((log n) %) so that we consider each of the quantities multiplied by

(log n)3, dropping the constants. As terms with i =j are of smaller order and
negligible, typical tehns of the first term on the right of (B.12) multiplied

by (log n)3 are constant times

&%l)_z; 2":1 (W +V))? . @®.13)
=1j=+

and
3n—2 n-1 n
BN 5 3 B V) Ky eV B.14)
i=1j=+1 k= +
Using (A.5) and Lemma 1-(d), E(W,, +V,)?=0(h 2) so that (B.13) is expressed
as

ME > [(W +¥)2-E((% +V)2 1]

£=1j=i+1
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| s , (1
+ (log n)~ °n3") ]z:;(] “D[E((W «V)2)j } -E(W, +V)2]+0(—%ghdn—+)z) '

The expectations of the first two terms above are zero. Since

E(L(W +V;)2-E((W, +V))2[i LW, +V;)* - E{(W; + V)2l }1) =
for i #k and any j, /, and the summand of the second term is an independent
sequence, their variances are bounded by

Co8 M1y 2E(Wis V) +n B+ VE) (HE+ V)]

" o({ogm)°, (log n)°,
. n4h3d+4 n3h2d+4

and
CUog 1) apm(w V2|0 17 = o UL 2L

3 n3h 2d+4
respectively due to (i)", an elementary inequality, (A.5) and Lemmas 1-(d), 4. Thus,

Borel-Cantelli lemma with assumption (ix)’ (which implies 4 1=0(n(4*2) )

gives (B.13)is o (1). (B. 14) has mean zero and variance smaller than
n k-1 j-1

Q(_log_ﬂ)_g: E{E( V) (W + V) )2

=3j=2 i=1

Sﬂkg——pl—[nE(szs) +n 2 E(W, W, W, W5,) ]

_ (lo n)é . (log n)*®
= O( n3]gzzd+4 * nzvghd+2 )

similarly to the above argument so that (B.14) is o (1) by Borel-Cantelli lemma.

Typical term of the fourth term on the righf of (B.12) multiplied by (log n)?3 is
C(lo n) EZ (W V)V, (B.15)

1=1j=1+1

which has mean zero by Lemma 1-(b), (c) and variance bounded by
6
CUB )" [ n2E((W, + V) Vi) + m3E((Wy +73) Vi W V) V1)

dueto E{(W; +Vj) V.(W,+V;)V,} =0 for j #1 . An elementary inequality and

Lemmas 1-(d) and 4 give that the first expectation above is bounded by |
CE(WIV +ViV3) =CE(VIE(W; |1) +ViV5} =O0(h )

and Lemma 1-(b), (c) and (A.3) give the second expectation above is equal to
E(W,W,ViV,) =E{E(W,V,|3) E(W;V,|3) } <CE(|Y;]*+1) <C.

6 6
Thus the variance of (B.15) is O( (1%%1?32 + (lognn) ) so that (B.15) is
n
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o(1). Since Vv (EU-E*U") is o(1) by Lemma 34-(c) and

ME E ( W + I/;-) has mean zero and variance smaller than

n i=1j=+1 u
C—“ﬂg—”)—z > (BB BV ) o U my

i=1j=i+1
the fifth term of (B.12) is o ((log n) "®), which completes the proof of the first

equation of (d). The second one is straightforward from the first.
To prove (e), using Lemma 34-(d),
Et( 1/1*4 - _E |Ea —lv'r( I]] -E*U*) |4
_1 j=
_ T I+ _ T * 4
SF;{l(n l)v (E U* -EU) + v'E*U* |4}

the first termis o (n3) by Proposmonl, E*U*=(n-1) U n and Lemma 34-(c).

The second term is smaller than a constant times

EIE A !“+—EV:‘ : (B.16)

1=1 j#i
whose second term is bounded since

1 1y Ce

=N ViI's= Y, +1) <C for r <8+3 17

noy Vil sy (Y1) (B.17)
due to Lemma 1-(d) and SLLN under (i)". The first term of (B.16) is equal to

N %EZ; W ST S
1#1 ”t”e
t#jsek;elz +_E§§¢;’HEH§ %WW

and similar method of the proof to Theorem 2 (see the proof of convergence of
(2.34)-(2.36) to zero) gives the second, fourth and fifth terms converge to zero. For
the remaining terms, we show more general results than we need here, namely,

2ZEI I =EW,|" +o (h-"D47y for r=1,2,3,4  (B.18)
T#]
and

—EZZI W, I' =E|\W, W, | +0 (h 2042y for r =1, 7B.19)
i #] =k

(B.18) and (B.19) are used to prove Lemma 37 later. Write due to the symmetry
of Hg ,



then the right side is asymptotically equivalent to

(3 )zzm, *Q+Q) BT

=1 j=f +1

-—ZQ (3 ) E Y O +EI, I  (®20)

i=1j=+

where O =E(|W, |" i) -E|W,|" and Q; = |H{;- "-0 -0 -E|W,|". Since
Q is iid with E(Q) =0 and |Q|SC(|Y; [ +1)A-"D47 by Lemma 4,

setting E=—1—8 , and using DFJ,
h(r—l)dr n 25_1

EQ |2+E <_ - 2+E E lh (r- l)d+rQ 12+E

+ -
SWZ;( [Y; |(2#0r +1) =O(n(2*012) |
1=

due to ()" and SLLN so that the léading term on the right of (B.20)

is o (h~r-D4ry | Similarly, E(Q,) =0 and

n-1 n 2
rl)der [ 18 -1 ' ~ 2h 2(r-1)d+2r 2
E{h( b(3) ,Z;j;IQf} S Tatn o)

2(r-1yd+2r
<Ch

2 E\W, > =0(n k)

by (A.S5) so that the second term on the right of (B.20) is o (A (""D9") | Thus
(B.18) is true. To prove (B.19), we only show a bound of its typical term

—Z Y ; 14 Putting

l<]<

Ry |quﬁc| R; =E(Ry |i,j) , Py =Ry -R; -Ry +E(Ryy3) ,

(3) ,<,<§'

! (B.21)

The first term times h 2(r-1)d*2r  has mean zero and variance bounded by
ChAtDdnr " "
EE( Py )?
=1 J =i+l k= ] +l
n n-1

SSYEY Y Py

1=11#i j=i+l k= +1 ja+ ks +1
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4(r-1)d+4r
_%—n————{ nE(R%;) +1n2E( Ry Rysy) }

Ch4(r 1)d+4r .
—“‘—{ nE|W, W, |> +n2E|W W, | W, ")

h Ar-1)dear R 4 -1 ds4r
B nSh 2(2r-1)+4r * n 4p 2(2r-1) 4r

)=0(n -4 -2d)'

due to Holder’s inequality and (A.5), so that it is o (A 2(r"Dd2r) py (ix).
Rewriting the second term of (B.21) as

( ) E(n—z—l)Z{R, -E(R; |i +1, * ,n)}

i>i

( ) E(n—z -1) Y (E(R; |i+1,  ,n) -E(Ry)} ,

i1
the first term times & 2("~D4*>" has mean zero and variance bounded by
Chi D™ pRE) = £’1—2‘7'1—"52—& W P (Y, [ +1) )

_ Ch 2(r-21)d ’E( Y| + 1) b Dd-2r = Q(p -2h )
using Lemma 4 repeatedly so gxat the first term is o (h 2('-D4-2r) by (ix)’. The
second term is handled similarly to the first term of (B.20) using

E(h2CDETE(R, |j) )2 <CE[AUDE( W [F(|Y; |7 +1) [j }]1%%
<CE{]Y;|*®r+1} =0(1) ,

under (i)" and so it is o (k 2(r-D4-2"y  The first and second inequalities above

uses Lemma 4 and E( [W,Y;|" |2) =O(h "-D47) shown similarly to Lemma 4.

O

LEMMA 35:
V*-V*(m) and W*-W*'(m) are independent of (X;",Y7), =,
(X', Y, conditionalon (X{,Y)), ,(X;,Y,).
PROOF.

The proof is straightforward. : O

LEMMA 36: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),
|E*(WaViVz) | = |ECW,VV,) [+o (1) = O(1)
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PROOF. The second equality is immediate by (A.4). Writing
EWaViVs) =0 'EX(Vv'ULAV) -2EX(Vi°V;) -0 ENVU'E (V)
the last two terms are zero by Lemma 34-(a), (e) and the first term is

3

;;{V’( -EU) H{v' (U -EU) H{v'(U; -EU) }
1j5=1 k=1 .

W+V+V W, +V, +V, W+V+V
U_lkz;lz)( ) (W +Vi+V3) ( )

n“,

plus smaller terms involving o* 3 -0 and v’ (E'U’-EU) , which are
o (1) . Expanding the summand of the right hand side, the dominating terms are

l n n n n
w2 T - (B.22)

and

n
izz; W V,V= E(WVV>+—2121{ [ ViV-E(W,V,V,) } . (B.23)
=g
The absolute value of the second term on the right of (B.23) was shown to converge
to zero in the proof of Theorem 2 when the normalizer is n(n-1) instead

of n2, which however does not change the asymptotic result. Rewriting (B.22) as

AR e B

we can eas1ly show that the first termis o (1) by Borel-Cantelli Lemma since it has
mean zero and variance bounded by CnE(WZWZIWZ) =O(n=h44) by
Lemmas 1-(d), 4 and we can handle the second term similarly to (2.34)'-(2.36) to

show it converges to zero. O

- LEMMA 37:  Under ()", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),
@ E*[W;| = E[W,| +o (R D7) for r=1,2,3,4.
®) E*(|WW51) SO(h20D42ry for 1,2,
PROOF.  To prove (a), write using an elementary inequality and Lemma 34-(d),
E*|W; | -E*|o"'v'(Up-EU) | SC[ [v(E*U*-EU) | +E* Vi | +E*|V; |
+E*|v'(Up-EU) | |v/(E*U-EU) |+ E*|V{ | +E* V5 |}
|[v7(E*U*-EU) | +E*|V{| +E*|V2|" =O(1) by Lemma 34-(c), (e).

We have 0! =071 +0(1) and, using an elementary inequality,
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"o nei=j=1
1 r
=5 YW +Vi+ V|
noi=1j=1
3 A e SN AT A ATES 1 AS
= - Z + —_ r- +V. |+ = r
n21=1,=1| v n2,-=1,-=1 v ' J n¢ ?

where we can show
SN LA AAR- VAT AATICR e
similarly to (B11]8-) and the expectation is O(h (7"24-(r-1) by Lemmas 1-(d) and
4 so that, using (B.17), the last term in the above is o (4 ~""D47) _ The first term
is E|W,|" +o(hr-DdTy by (B.18).
(b) Similar manipulation to the above gives
E*|WoWs | <—EZ; |W, W, ' + smaller order terms.

1#] #

Apply (B.19). O

LEMMA 38: Under (i)", (iv)’ and (viii),

E[Vawi(2)wy(2)]

- SO ROV so( LDy o[ LL L n .
PROOF.
Write {;= 1/2V

ETHwi(e ywi(t)] =E LW () -1} (wiCt)-1}] by Lemma 34-G)
- E*[Mz{e *h-1) (e By (i O (it O Y|+ E DM (it T (i1 4)]
- E*[M{e  Cint-i e Oy (e Bt e Oy Hi e Lie B 1 03)

st e 1t (DY EUMEG D (i1 )]
= E'[Ws (it C) (it 33)1 + O W5 ||t 6 Pl G312+ E* W3 e C3121e 33)
- 20 pwgvivi) +o S W i i e L s v v

- i(—int—)jE( W,V,V,) +o( _’_2)

O LS W Wi PV l2+i;,|7E*IW£|IV{|2|V£I)

by Lemma 3. The fourth equality uses (2.6). By Holder’s inequality,
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» * * 12 *12 * « 1311/ 3 . * 13k * 1312/ 3 -%d-l
E* PG|V IV2 1P < {E° W P} EIVIPE* V2 P} <Ch :
The last inequality is because of Lemma 34-(¢) with (iii) and (i)" and
E*|W;|*<Ch 2% due to Lemma 37-(b). Similarly,

* * * " 3 V3 (it i p— 2/3 -24-1
B | ViPIVi| < (B P} {EWiPE V5 P12 <Ch 7

.0
LEMMA 39: Under ()", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),
B[ i wi()] = kw0 (h )+ o b i)
PROOF.
E[Ws wi(t)wi(2)] = E* (W 2 + E*[is e i+ 4]
= E*(W; *) +OE* W |*|t Ci]) by (2.6)
- B0 o Ll e e
By Holder’s inequality, Lemma 1-(d) and 4-(a),
BRIV S(E*IWSP)Z/S(E'IWIS)UB SCh—%d-z '
Apply Lemma 37-(a) and Lemma 12. O

LEMMA 40: Under (i)", (iii), (iv)’, (v)’, (iv)’, (vii), and (viii),
3 .
E* [Fswi (e ) wi(e ) wice) ] - 0(—"—'——) .

nl2p 3d+2
PROOF. Using Lemma 34-(b) and (2.6),

E* [W3wi () wi ) wiCe) | = E* [Baws (e ' 6i-1) (e 761 (e 71 6oy |
= O(E* (W85 | W5 |1t i lle &1 G310
- o Ll e Wz‘lm{;llVfllVillV;l)) .
By Hoélder’s inequality, Lemmas 34-(e), 37-(a) and (A.5),
E* (| W3 | [VI1IV2 I IVs )
< (B* W ) P(E* W 1) P Iy PE Vs PE* V5 )

<ch? - O

LEMMA 41: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),
| E* (Wi Wawi (£ ) ws () ws(2)wy(t)
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_ t4 16, -2a2 8 _44,
"O(F*‘n—s” T gh ) :
PROOF. By (iii) and Lemma 38,

E"[Wz*VKIw{(t Yyws(£)wi(t)wi(t) ] - {E*[ Wswi (2 ) ws(2) }
[4(”) —— —E(MLN ) ”’(_) +0(( —+J_3/l5)h %d )}
Apply (A.4). O

N

LEMMA 42: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), (viii) and (ix)’,
E*|\W*(m) |?= O( W)%) ,
in particular E*|W*|* =E* |W*(n DP=0 ((n'lh -2y 2 1)
PROOF. Writing S}, = j;ﬁ W', S/, is a reverse martingale dlfference
sequence, i.e.

E*(S{ ali+1* = ,n*) =0 (B.24)
due to Lemma 34-(b). Put W*(m) n1/2( ) ;S,,Hm . » then
W*(m W(m) Taylor’s expansion and W(m) W*(m-1) n1’2( ) St n

give
Weim P - W (mr1) [P = 3sgn (W (1)) W (ml)znlﬂ(”) St
+3|W*(m—12 +on1/2(2) Stalint (2) 'S, (B.25)
for some 0[O0, 1] . Since W*(m-1) does not involve (X;",Y;y) , taking
conditional expectation of (B.25) given (X, Y;), -, (X;, Y,) using (B.24), we
have
E*II’I;‘(m) E _Etllf,*( m1) P
=3E‘[ |W=’*(m—1) +0n 1/2(121)-1S1,,'n|{ﬁ 1/2(’2‘)-151*,,.}2]
<< {E W (m1) [S7% i,zE*ls:,nP}
n

<C

1/2
{E{W*(mlm} T ACHM WE ISI,,P}- (B.26)

The last inequality uses Holder’s inequality. For i=1, ... , n, Lemmas 34-(b), 37,
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(A.5) and (ix)’ yield
E*(Si%). = 2 E'(W %) +6 ;1 k;IE (W "W %)
sc{nE (W3 %) +n2E*(W; "5 %) } = O(nh3dD) (B.27)
so that Jensen’s inequality and (B.27) give
E*|S/ . [*=O((nh42)32) (B.28)
E*(S;!%) =O(nh %) . (B.29)

The first wave bracketed term in (B.26) is equal to

{ n? ) ;S ko, } -(3 ) EE (S7.7) =0 =) - (B30)
The first equality is due to E*( S,-,,,S,- n) =0 for i #j by (B.24) and the second
equality uses (B 29). Substltutmg (B.27), (B.28), (B.30) into (B 26),
E* IW'(m) - E'IW"(m-l) I}

C m nt 1 n
Sn_3'{( nzhd+2)”2( h2(d+2)) 124 n3l2( hd+2)3I2}

B mil2
'0( (n%h42) 3/2) ’

Solving the difference equation, we get W (m = 0(( 3 ‘m) 3 2) . The second

equation follows immediately from the first. O

Appendix C
Here, we show how some of the terms appearing in the proof of Theorem 3
can be expre'ssed. For 1=sm=n-1,

(a) E(BJe''")

- _ n1): . 2 2 |t | t? t lhL
B {Y(t)} {lt -P_I_E(WZ) +0( nZhd+2 * n3/2hd+2 * ",lhld+2)

4E(V}) +8E(W, V.V,
- {v(r)}"*{ ( 1)+:1/(2 a1 +0(J%l)}
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- {v(z)}“[(”) (4E(V}) +8E(WV V) ) + o Lt Ly £ )}
n n3/2

1/2

+{Y(t)}"'3[0(lt|’:|tl+ t? + £ + ¢ |° +t4+|t|3)],

3/ 2h d+2 n 3h d+2 nS/ 2h d+2 n2h d+2

®) |E(Bye''P| < I,thm ) ™,

© |E(BLg B | < 1,2,13|\(( ) I,
1

(d) EIE I2 <Cm(—§'m+?) ’

C
€ EBj,|* = 4h’;;6,

(f) lEﬁ// lthI < Cn I,Y(t) |m—5 )

PROOF.
(a) Write
E(b'z/e itbz) = E( We l'tb.z)

J J
=(AH+(B)+HO . - (C.D
Thus |

2 =1, ith 2 - ith 2 « ith
=E(T,=Y Ve '™ E(T, =MV 2 E(T,=YV. 2
(lﬁlg, >+<2mz=1:e>+<3ﬁi;e>

4n ith,
) =-(2—)HE(W2) ZE(Ve " (C2)

Due to (iii), (2.6), () =E(e ‘= ) , 4E(V,) =s 2, (3.8) and Lemma 1-

@,
. it 2y, it-2 %
E(Vie'") = E(Vie' 75" B(e'' Vo)
2

it -2V . 2V;
=[E{V,.(e «""V—l—zrTZL)}%H)E(ﬁ)]{v(:)}"-‘

{Y(t)}"‘{ ”52+0(‘—2)}

n
n- t |h
= {y(1)} ’{ 5 +O( L - J—{,T} (C.3)

Substituting (C.3) into (C.2),
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(@ =)k lz){ - 0(‘72+J;—,’,’|TL)}
_ {Y(:)s}”"{Z:;‘ E(W2) +0( n2|25+ n3/t2h2d+2 . l:h|ff)} .
(C.4)
Now, we write (B) =(B)’ +(B) " where
(B)! = - 3,2 3sz(wz—s 2:8V,) Vie 't (C.5)
(B)" = - 3,2 32 ZE(4V—s 248V,) Ve ot (C.6)
The summand of (B)’ is, using (2.6) and Lemma 1-(d),
E((4Vi=s 28V Vi ) B(e 72_'§1V)
- (1) VPB4V 28T Vie R
{v(t)}"‘{4E(V1)+8E(%VV) +0( Jl—,g)} .

Substituting (C.7) into (C.5),

(B = ~— s (¥(1) )™ 1{4E(V1) +8E(W,VVy) +O( Jl—,g)} (€8

For j #k _, the summand of (B)” is, due to (iii),

., 20N +1p) i

> i TV
E{(4V12—s 2+8V1)V2e V= }E(e Jrs 1,2 )

- . 2(V+13)
= {Y(t)})"2E{(4Vi-s D) +8V) Ve ™ }
i 2V1 21/2

= (Y(£) }E{(aVE-s ) +8V,)e | VR E(Vye' ' )

- {y(:)}"-Z[E{(wf-s 2+817,)(e"7'n'7-1—it _V_l_)}

yns
: " 2 ol
+it E——(4Vi-s 248V))
yns
it 22 2
| E{ve" o1t L2y Vi B
yns Jyns

V. ~
= {y(t)}*? [itEth?(4I/12—s 2+81) +O( —J%E)}

2
it 222 o kL,

Jyns

X

N [—"L{E(WE) +SE(W,V,V;) } +O( M)}
s n

i_t.S'_+0( _]t_E)
JA n

189



- {v(0) }"-2[ U0 (pav) +8BHViV ) +o( L+ LL)] €9
by (2.6). Therefore, substituting (C.9) into (C.6) yields

n(n-1)
n3l2 3

(B " — _

x|(i;)2{4E(Vl3)+8E(W{2VIVZ)}+0(-J—3}3 AL ]{v(r)}"—2 (C.10)

By (C.8) and (C.10),
B - {y(:)}n1{4E(Vl)+8E(WMV2 +O(J;_[)}

1/2

”(’”"2[‘”) (4E(V]) +BE(H VW) }

PE
2 3 4
+o( L] +n’3,2)] (C.11)
Now, write
| _ 4 n-1\1 7 ith
() = —n1/2s3E( 2 ) 25 u’/} ;V 2
- _ 4 n-l ln (I)E V ttbz
n1/2s3( 2 ) =1,Z; VeVie ™™
4 n-1\1¢ = > ith
-— E(W, Ve’
nl2g 3{ 2 )J;kg;l ( Tk )
4 [n-1\18 & > ith
-— E(W, Ve’ ™
n"2s3( 2 ),=1k§;1 MeVie
=(C)Y'+(C)Y"+(Cy".

Using (iii), Lemma 1-d), E(V;)=0 and E(W) =E(W,|k) =E(W,,|m) =0 , the
summand of (E‘)’ is

~ it —=—(Vy+Vy+Vs) it-2. 3 V
E\W,V,e Vs 1 B}E(ev 'ﬁ:m,z.a‘)

it 2V ¥y¥y)

=E{n?2V3e Vs }{v(r ) }n-3

PN . 2

={EW,(e" “m-1-it V‘)(e”ﬁq-itz_Vz)
yns VNS

.2V,
- 4 Eow Y 2 B Ve VA _1-i1 2V
+(zt)2mE(H{2Vle)+(zt)7ﬁs—E{H{2V1(e f—l—ltﬁ)}
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2 ~ ir 24 2V,
+(it)ﬁE{u{2V2(e ﬁ’—l—itjﬁ;l)}}

2Vy

it — .2V .
*{E{Vs(e VR -1-it WT.:) b+(it) 7’%E(V§)}{Y(t)}”‘3

. 4 ~ t4 t 3
= {(lt)z-r;s'—zE(WZI/l%) +0( n’2h'd+2+ nSJZ}lldQ)}

i 2 2y , o L2 n-
ey ZBd soED e

The last equality uses (2.6) and

E|W,VV}| S{E|W, PYV2EV, ) % <Ch 757

= O(h —d-2)

due to Holder’s inequality, Lemma 17-(b), (i), (iii) and Lemma 1-(d).
(C)' = {Y(t)}"3 8n(n-1) (n-2)

5/2

8(it)3 t 6 t |’ t4
{ 32 FE(HViV)s * + O 3hd+z+ﬁ}z;|,d+z+nzhd+z)

_ vy 2 L 2 A Al A
- P [0( Inl * 1 3p 442 * anlzfll:m * n2h|d+£ (C.12)
Here we use, due to (iii) and Lemma 16,
E(W,ViVy) =E(WsWaViVy)
~2 .
| =El E(W;W\|3) E(W,V,13)1 =E( V) <C. (C.13)

The summand of (C)" can be expressed as follows using (iii),

—~ i _2
E(W,Vie'' ¥y =0 , Lemma 17-(b) and (2.6).

-~ . ~ it —=—(V)+V3)
B Vie ') = (y() VB (Ve %
I
- (W) VE{ Ve V(e Ve -1-i 22y L 2l gy
vyns ns
- {Y(t)}"'z{f/’_’E( ANSRTIE A } .

Thus, using (3.8) and (C.13),
¢y = LN Bl [ mi o ,iz)}}

n5/2

t)}"? t t?
_ {Y(S)B} o( |n|+n3/2h“*2) . (C.14)

Similarly,
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(Cy = {\((;)3}"‘2 oLl n31t2h2d+2) , (C.15)

By (C.12), (C.14) and (C.15),
(C) = (C)'+(CY"+(C)" |
_ {Y(t)}”[o‘( e Pejey, 2 ¢ P +t4+1t|3]]
53 '

n n3/2h d+2 nSh d+2 n5/2h d+2 n2h d+2

(C.16)
Therefore, by (3.8), (C.1), (C.4), (C.11) and (C.16),

E(bje''*) = (A4)+(B)+(C)
= —{Y(t)}"“{it%E(u{f) ol 2 1t |h’~)}

nZh d+2 n 3/ 2h d+2 nh d+2

3
- {Y(t ) }n—l{ 4E(Vl) +8E( u{zl/lI/Z) +0( _];l_l_)}

12

ey LT B 8BV YY)+ O(LEE Ly

+w<t>}n-s[o(lt|+|t|+ ot i ek )

n n3/2h d+2 n3h d+2 n5/2h d+2 n2h d+2

(b) Writing, using (3.8) and (A.5),
BB 5 | < —3,—9—-2 (Ve PP |

2h d+2

._.

=1 j =1 k=m1

. nSZ{ |E(d, Ve ' %) |+E 2 I CRAAL |}

n-1 m n n
C itB itB
+ E(e Ve m) + E(e Ve 'm
B 5 S mere s £ 5 T e )
C Z ”(j) e IE(VWV lfB)I
+ e ' 1Bm
n7/2}=l ; ; J
n M) nGy n [ 5
+ ( g Set m)
= g; Igl s;,;' jod |
m n-1 ) nGy n -
* E(V.W,V.e' " C.17
Jz:f K& 1;1 sgll(l a7 ) | (C.17)
= it 2V ‘;(—L%V +by=byytby-Bytb1-64)
E(Vie !B | = |E(Vie' V@ )E{e  verr '
<SEV,||y(t) ™ (C.18)
for ] =1’ e, m, since b3_b3m+52/—b2/m+63/' 3/m is independentof I/l’ R Vm i

For j<m, ksmand j #k ,
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|E(d-I/keith) |

- B, Vke HZ (W Vi, z Vi) #3335 0,64-54,) ||E{e“%’}:*yl}|
<E|d,V,||v(e) ™2 . | (C.19)
For j =k <m ,
|E(d;V;e "B | )
) IE[djVje“l%"»’( i+ z Vo) +b3-b3,6 52,,,+53’-53,,,}] |]E{e“ 72_;k§1¢}|
<Eld;V;||y(z) |™ <Eld;V;||y(t) ™ . (C.20)
For j <m and k2zm1 ,
|E(d; Vie "% | ] )
| dije it{%(V}+'£’V,)+b3—b3m+52-52m+53’-53/,,J] ||Efe “72»—-:?;'/‘} |
<E|d;VeIIv(£) ™ <Eld;Vi|lv(2) | . (C.21)
For j =m+1 and k<m , similarly to (C.21),
|ECd,;Vie "B | <Eld;V,||v(t) ™ (C.22)
Therefore, by (C.19)-(C.22) and Lemma 18, for all j, %,
|E(d;Vie P | <Eld;Vy| [v(2) ™ (C.23)
- Similarly to the derivation of (C.23), for any j, &, I, s,
|E(e; Vie ') | <Eles V| |v(2) ™, (C.24)
ECV; Wy Ve P | SEIV, IV, | |v(e) ™ . (C.25)

Substituting (C.18), (C.23)-(C.25) into (C.17), using |y(£) | <1 ,
E(By,e "% | < C |y(1) ™

1 & 1
|n3/2hd+2Z;E|Vj| + n_3/—2[ Eld; k|+z E E|d; Vk|]

n
j=1 = k=m#1

J
1 (/n—l n m m n n )
+ Ele | + Ele.,V,
nsl? ;k;l.gl: I * s j=1 kgl .s';l | Jk I
1 (n By m m) "(1) n
+ EV.W,V,|+ kz EVWV
n7I2 =1 k s=1 lj l =1 —k+1 s-m+l IJ u SI
n-1 "u) n

SN zi\; > EWW, |]‘ (C.26)

The summations in the square brackets have the following bounds.
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Y ElV;| =Cm by Lemma 1-(d). (C.27)
j=1
n m n m(j)
E\ld.V,| =Y E|d.V.| + El|d.V, C.28
jgllljkljz;ljjl Jz;kzﬂ: |]k| ( )
<C(m+mn) by Lemma 18.
Y Eld;V,| <Cmn by Lemma 18-(a). (C.29)
]rxi.‘:nl n-1 n m, k)
Z; (Elex Vsl = EE Y, Eley Vil E EEleJk
J=1 k= +1 s=1 =1 k=j +1 s=1 =1 k=j +1
m
+ E ElejkV;cI
Jj=l k= +1
<C(mn*+mn+m*)h? (C.30)

by Lemma 20, E(i piz iy denoting summations excluding
$

S=ig,dg 0

m n n m n B ()
Z: EEle}k s =E E E Ele}le +E EEle]kI/Icl
j =1 k5 +1 s=m+l j=1 ksj +1 s=ml
< (mn2+mn)h‘2 by Lemma 20. . (C.31)

g:‘ Wyl + 5 5 5

<C(mn®+mn?+m*n)h (C.32)

=f=1 § E ) AlLA AR g
Y

by (iii), Lemmas 1-(d), 19 and (A.5).

n ) Ry n EV
j=1 =1 12;1 :&1 I

n mgy By n G,

= E\V. |[E|\W, [E|V,

j=1 ; §;1 s =m+l I'Il | | l l

m(j) "(;)Ele |+ n M) nU)E|VWV|
—m+l ;; ; ; 1 =k+1 jTe
<C(mn®*+mn?)h! (C.33)

by (iii), Lemmas 1-(d), 19 and (A.5).
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gy n

> ,,32, 2, BV

n) (k,1)

1 2: 2: EV; |E|W |EIV; |
J=1 mk<l s=mt
n ()

DIDINCIAAARIA A
sC(mn®+mn®)h! (C.349)
by (iii), Lemmas 1-(d), 19 and (A.5). Therefore, substituting (C.27)-(C.34) into
(C.26), using 1<m=<n-1 ,
(B4 "% | < Clu(o) (ot e o )
Cm

—g ) 1™ (C.35)

the third term in parentheses dominating the others for sufficiently large n by

assumption (ix).

(c) Using (3.8) and (A.Sj, we start with writing
E(B3e "™ |

5/2hd+2;: ; !E( ”Brn)l .

Jj=ml
1 <A A - itB = - > :tf
+ E(W,. W e °m E(W, W, m .
(Ew O e Z;I O e 5o
(C.36)
Similarly to (C.23)-(C.25), for all j, %, I, s,
\E(W, &' | <EW, [[v(2) ™2, (C.37)
E(d; W, e''P | <Ed; W, ||y(2) ", (C.38)
ECW, W, e | <E[WW, ||y(2) ™ . (C.39)
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Substituting (C.37)-(C.39) into (C.36), we have, dueto |y(z) | =<1 ,
|E(B e 5|

- 1 m n
=Cly(t) | 4[—5,2}175; ZEIH{:'
L Eeen £ L L man |
EN Y Y S Y B ||
7’2(21:;1/}: 75 V% -Zlkg‘:l ls;; 1% l”
Applying (A.5), Lemmas 21 and 22, and (ix),

lE(Bglnﬁ”Em)l SClY(t)'M{ mn + mn2 . 1 (mn+mn3)}

n5/2hd+3 n5/2h n7/2 hd+3 h3

_ m4 1 1 1 1
=Cm|y(t) | ( 32p, d+3 * TET * 1 512}, d+3 * n1/2h3)

llzh 3 IY(I) |m.4

(d) Write, using (3.8) and (A.S5),

m n m
EjB, | <C| —L _E|SV |+ d,V,?+E 4,V
| 2m| n3p 2+ |x=1 ' ( I:lel ! SI |z;s§; )
1 n-1 n m m n n
+;5_ EI 2 Eeq V.;I2+E| z: Z el] slz
i=1j=1+s=1 £=1j=t+1s=mwl
1( n (‘)m ) n m (@) n () n )
+ —|E VW, V. |°+E VW, V.
n7 |1=1§ s=1 i S| |l =1 l=k+1 sgl P JI
m "1(: Ry n
+E )3 V.-%V;lz” . (€40
= —mrl I=k+1l s=m

We show bounds only of some typical terms. Since V; is an iid sequence

with zero mean, due to Lemma 1-(d), E|E V; |>= mE|V,|* <Cm. Writing

E|Ezd v, |?
sCEliZ;d |2+E|§; 2 4V, |2+E|§j E dv, ) . (C41)

the first term in parentheses is bounded by
mBd,V, [>+mm-1) Eld\V, |E|d,V,| <Cm’ C.42)
due to (iii) and Lemma 18-(b). Since d; and V, are iid with zero mean,
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E|E E d;V,|? = EE(d ) E E(V}) sCm? (C.43)

=1 s=i+1 § =i +]

by Lemma 1- (d) and (B.6) under (i)’. Similarly, using Lemma 18-(a),
ElZ Z 'AAESIDY E(dHE(V?) <Cmn . (C.44)

s=1i=s+1 s=1i=s+1

From (C. 41) (C 44),
Elzzd "> < C(m?+mn)

=1s=1
Similarly,

E|E E d,V,|? = EE(d ) E E(V¥) <Cmn.

=1 j =m1 s =m+l

We next consider

E|E 3 Zqulz sc{m"f; Y Yo, V|2+E|§; Ye,

l]—1+ s=1 s lx—s+l]-|+1 1=1j=i+1
m m2 ml
E V. |*+E V2+E V. |*r (C45
o 5 esvre £ el $ % |}< )

Due to (>iii), E(eu i) E(e,] li)=0 , E(V,)=0 and Lemma 20, the triple

summation terms on the right of (C.45) is O((m®+m*n +mn®)h %*) . Using

Lemma 20 and Holder’s mequahty, the second term in (C.45) equals
EEE(e,]V)ZQEE E(e; Ve, Vi)

i=1j=t+ 1 =1 k=i +1 j=k+1
< C[mnE(e ,V}) 2 +m’n{E(e ;V;) 2E(e 3V,) 2} 2] < CmPnh <+ (C.46)
Similarly, the fourth term of (C.45) is O(m*: %™*) . Using Lemma 19, as above,
the terms involving V; W, V., in(C.40)are O((m* +m’n +m*n? +mn3)h42), so

by (ix)

C m C
BBl < — d+2(n2hd+2) + L2

+ —Cg(m3 +m?n +mn?) h 4
n

+ £(m“+m3n +m*n?+mn3)h 42
n’

1
3h " 3) 2d+4 ﬁ

<Cm( ) .

(e) The derivation is similar using (A.5), Lemmas 21 and 22. As in (d), we can

show

Elb] > =< <—C mmpi2s € (m® +m?n +mn*) h 42
Sh 2d+4 n5
+ —Q(m“ +m’n +m*n? + mn3) h 346
7
n
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Cm

n4h3d+6 )
(f) Write
|EB Jle 13| = |EQWe ' < |EQWe ' P+ |EQWe B . (C.47) -
By (3.3),
[E(QWe """ |

E((V;+V) W, -V, -V, } W e '*Pm
)% 3 ,}jg: ((V;+VO W -V Vi) W, e P

) Z?HEE“‘V*V"’ -V, VI W[ |v(e ) I

]=1 k=j +1 1
+6C“_ ™ E|{((V, V) W, -V, -V, m3
n7/2 E ;1 l{( k) Jk k} ||Y(t)|

=1 k=j+1 s

n e - .
vC/z l,,ElEl“Vf*Vk)%—V,-—m%||v<r>|"r2
J=lk+ :

+

B

< Cr2E|{((Vy+Vy) Wy -V, ~Va)} T | |¥(2) ™

+

SB[+ V) Wy -V, -V} W | Y1) I"*3

1/2

s R A AV AN (C.48)

+

3[2

Using (i)’, (iii), Lemmas 1-(d), 4, (B.5) and (A.5), the first expectation of (C.48) is
bounded by
CE((|Y,|+[Y,[+1) W, [} E|W, | <Ch 2 .
Using (i)’, Lemmas 1-(d), 4, (B.5) and (A.5), the second expectation of (C.48) is
bounded by
CE{(|Y,|+ Y2 [+1) [W |5 [}
<CE(([Y; |+ |Y,|+1) [W | EC Wy | 1) }
SChE{( Y|+ |V, [+ D) (Y ]+1) W]} .
Similarly to Lemma 15 and (B.9), E|Y,W, |+E|Y{W, |+E|Y,Y,W,|=0(h") so
that the above quantity is O(4 %) . The third expectation of (C.48) is bounded by
CE|V,W2|+E[V,W,| <C(h42+h"Y) = O(h2)
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due to Lemmas 1-(d), 4, (A.5) and Lemma 16. Therefore,

_ B 12 1 Cnll2
|E(Q We * By | = nh2 * n3/2hd+2) ly(e) |™* < %

The second term of (C.47) is bounded by, using (3.8),

n-l¢,) "(r)nl n

PLEDIDY }ZIHE(K%W“E’"H

r=1 J- k= +1
n-3 n-2 n-1 n
C

EV t m-5
n®? relj=r+l k ;11;1.:; | Wi HY( )|

C n-3 n-2
+ (t)|™*
n9/2r2=1:];1k1+1s; ”Y I
C n-3 n-2
+ WV, W W, ||y(e) |™*
n9l2f=lj;1 k—1+1 ; riik e ” l
C n-2 n-1
+ E|V. W, (¢) |3
n9/2r=1j;1 kg;l I ”Y I
C n-2 n-1 n
+ EV.W W, ||y(t) |™?
n9/2r=1)=r+1 kfj:l I s ” I

< Cn'’E|V; |E|W, |E|Vs||v(£) |

& (EV, |EW, W, |+ EV, W, E|W, ) |v(t) ™4

iz

—5z(EVEW, |2 + EIVIWL W, ) [y(e) ™2

3/2
n'l2 1 1
< C( n2 * 12,2 * nsfzhd*z) ly(e) ™3

by (i)’, (iii), Lemmas 1-(d), 4, (A.5) and Lemma 15. Then apply (ix).
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