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Abstract

The dependence on past choices of present opportunities, costs, and ben­

efits is pervasive in industrial markets. Each of the three chapters of this 

thesis considers a different example of such dependence affecting dynamic 

behaviour.

In the first chapter a single firm’s present choices depend on what it has 

learnt from past experience. The firm is searching for the best outcome of 

many multi-stage projects and learns as stages are completed. The branching 

structure of the search environment is such that the payoffs to various actions 

are correlated; nevertheless, it is shown that the optimal strategy is given by 

a simple reservation price rule. The chapter provides a simple model of R&D 

as an example.

In the central model of the second chapter firms slowly build up stocks of 

goodwill through advertising. While many firms start to advertise in a new 

market, over time a successful set emerges and the others exit. The chapter 

explores the relative growth of firms and the determination of the number 

of successful ones. The chapter compares the results to those of a model in 

which a firm must complete all of a given number of R&D stages before being 

able to produce.

The final chapter considers one of the effects of urban bus deregulation 

in the UK: bus arrival times are changed very frequently. It is assumed that
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passengers do not know the timetable and once at a stop board the first bus 

to arrive. There can be no equilibrium in which an operator’s bus arrival 

times are never revised: otherwise those of a rival would arrive just before 

and take all the waiting passengers. The chapter considers the pattern of 

revisions when they are costly. The chapter also shows that fares can be 

higher with two competing operators than with a single monopolist.
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Introduction

The three chapters of this thesis are concerned with the impact of the passage 

of time in models of Industrial Organisation.

The first considers a firm making sequential choices between a number of 

actions, each with a cost and an uncertain reward. The paradigm for studying 

such situations is Rothschild’s paper on two-armed bandits [51]. Rothschild 

models the pricing decision of a monopolist facing an unknown stochastic 

demand. There are two possible prices (arms), each period the monopolist 

chooses which to charge (which arm to pull), and updates her beliefs about 

demand at the two prices in the light of the resulting sales. The central 

trade-off is between charging the price which maximises payoffs given current 

knowledge, and learning more about demand at the other price. Rothschild 

shows that, with positive probability, the firm will stop experimenting and 

charge the inferior price for ever more. A number of subsequent papers have 

also considered whether a firm, faced with a similar tradeoff, learns enough 

to act as it would have done had it known everything1.

*As an example, see the paper by McLennan [42] on the persistance of price dispersion 

when agents must search for the best price. Aghion, Bolton, Harris and Jullien [1] have 

considered the conditions under which a decision maker, uncertain as to the shape of his 

payoff function, will obtain the true maximum payoff. This paper also contains detailed 

references to this branch of the literature.
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A slightly different approach is taken by Weitzman [61], and by Roberts 

& Weitzman [50]. Although the central tradeoff considered by these authors 

is the same, they are concerned with the decision rule itself, with which 

action is optimal, rather than with whether optimal learning leads to a true 

maximum. Weitzman considers a problem where an agent must choose which 

project to implement. Before choosing, the projects can, at a cost per project, 

be sampled sequentially. Weitzman analyses the optimal order in which the 

projects should be sampled, and the circumstances in which it is optimal to 

stop sampling the projects, and implement one. Roberts & Weitzman look at 

an application to R&D in which there is a single multi-stage project. Benefits 

are received only at the end, and the choice facing the agent at each stage 

is whether to pay to resolve more of the uncertainty and bring the project 

closer to completion, or to abandon the project.

The first chapter of this thesis, on “exploring a branching structure”, ex­

tends the work of Roberts and Weitzman. The innovation of the chapter 

lies in its description of the environment within which an agent makes her 

choices. This environment is intended as a model of the available choices 

during a phase of R&D. A firm which is engaged in R&D takes actions which 

both bring a particular avenue of research closer to completion, and pro­

vide information about the benefits of all possible products of that avenue. 

Moreover, an action may reveal a number of different directions in which an 

avenue can be pursued further: once a prototype has been completed, numer­

ous possible improvements may become apparent. The search environment 

modelled in Chapter 1 captures aspects of the decision over which action 

to take through the way in which actions are related. Some actions can be 

taken only after another has been completed, and the result of one action 

will be informative about the benefits of completing any avenue of research
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proceeding from it.

The central result of Chapter 1 is that, despite the complexity of the 

decision environment, the optimal strategy is given by the same decision rule 

as is found in Robert’s and Weitzman^ and Weijinan’s papers: namely to 

allocate an index2 to each available action which depends only on what is 

known about avenues proceeding from that action, and to take the action 

with the highest index.

The second chapter turns to an issue closer to the heart of the literature 

on R&D: the amount invested, and its relationship to market structure. Das- 

gupta & Stiglitz [9], among others, have encapsulated the modem theoretical 

understanding of the relationship between the amount spent on R&D and 

market structure. Previously debate had centred on whether market struc­

ture caused R&D intensity, or vice versa. Dasgupta & Stiglitz suggested that 

the question was badly posed, and introduced a game theoretic framework in 

which both were simultaneously determined. In their model there are three 

stages3. In the first, firms decide whether or not to enter, on the basis of their 

(correct) expectations of the profits they will earn if they do. In the second 

stage those firms which entered in the first invest in R&D which reduces 

marginal costs, making the best decision given the number of firms which 

entered. In the final stage firms compete in the market place, making the 

best decision given the marginal costs which result from the previous R&D 

investment.

What matters here is that fixed investment in R&D leads to a higher

2the Gittins index. See the references to papers by Gittins, Glazebrook, Jones and 

Nash in Chapter 2, and in Whittle’s paper [62]

3Many other authors have used 3-stage games to model market structure when firms can 

make some investment which affects short run competitiveness. See for example Shaked 

and Suttons’ 1982 paper [53].



xiv INTRODUCTION

quality, or lower production cost, for each unit sold. Sutton, as part of his 

theoretical and empirical analysis of the relationship between advertising and 

market structure in “Sunk Costs and Market Structure” [54], has noted that 

advertising investments may behave in a similar way. Sutton’s theoretical 

purpose, in this book, is to derive a constraint on the set of possible out­

comes from consideration of a broad class of feasible models. In the case of 

advertising and market structure he shows that there is a lower bound to 

concentration which will not be violated no matter how large the market. 

He shows that there is strong empirical support for such a bound.

The second chapter is concerned with the dynamic behaviour of firms 

when investments are accumulated over time, rather than made all in one 

go. The first part of the second chapter explores a modification of one of 

Sutton’s advertising models, in which firms accumulate quality according to 

a stochastic investment function. Each period firms revise their investment 

levels in the fight of their own previous successes, and those of their rivals. 

There can be many firms, and the profits a firm earns depends on its own 

and its rivals’ qualities.

Although there is no analytical solution available, simulated examples 

show that the most likely market structure is well defined, and depends on 

the model’s parameters in a way which is consistent with the behaviour of 

Sutton’s original model, so that Sutton’s results are robust to at least this 

dynamic version. These examples also highlight some novel dynamic features. 

Early in a market’s evolution many firms invest. Those which fall behind in 

the early stages stop investing and eventually drop out of the market. Later 

(should the number remaining in the market fall to the most likely number), 

firms converge: firms with lower qualities invest more. Finally, there are 

some states, in which many firms have high levels of accumulated quality,
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which axe stable should they arise, but which are unlikely to do so.

This model is an example from a general class of dynamic oligopoly mod­

els described by Pakes & McGuire [47], as part of a program initiated by 

Ericson & Pakes [18]. This program was a response to the empirical findings 

of simultaneous entry and exit within markets, and of considerable flux in 

firms’ relative positions, which sought to explain these phenomena in terms 

of stochastic research and exploration4. However, Chapter 2 also has strong 

links to a quite separate strand in the literature on R&D, one which has 

also found expression in dynamic oligopoly models: the literature on patent 

races.

In a patent race, more than one firm is trying to achieve the same 

patentable innovation. Market structure is not an issue: it is assumed that 

only one firm will win the patent. Patent races axe interesting not so much 

because competition for a single patent is an important determinant of mar­

ket structure in R&D intensive industries, but because races, or sequences of 

races, can be used as the basis for analysing the relationship between firm 

size and firm investment. In an early paper Harris & Vickers [33] assumed 

that in order to win a patent a firm must complete a number of stages5. The 

more is invested in R&D in a period, the more stages are completed that pe­

riod. They considered two firms competing, and found that whichever firm 

had fewer stages left to complete would win the patent, while its rival would 

not invest at all. The winning firm invested at the rate it would have done 

had there been no rival.

Beath, Katsoulacos and Ulph [4] use the idea of a sequence of patent

4Other models addressing the same facts include those by Hopenhayn [35], Dixit [13], 

and Lambson [40].

5 The stages are modelled as a continuum.
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races to investigate industry evolution, specifically whether the leading or 

lagging firm wins the next patent6. As with the relationship between R&D 

and concentration, investment in R&D during a patent race can be used 

as a model of more general investment. As one example, Koopmans [39] 

considers a sequence of general investment opportunities and supposes that 

two firms compete by racing each other for each opportunity in turn. He 

derives results about whether the lagging firm catches up or falls increasingly 

behind in terms of the externality between firms from growth. Another 

generalisation addressing the relative growth rate of firms is that by Budd, 

Harris & Vickers [6]. They consider a somewhat abstract problem which is 

inspired by Harris & Vickers’ original contribution but which differs from it 

in two important respects. First, a firm’s state depends not on how many 

stages it has completed, but on how many more stages than its rival it has 

completed. This reduces the number of cases which need to be considered. 

Second, firms can earn profits whatever their current states, not just when 

one gets so far ahead of its rival that it can be declared the winner.

In the second part of the second chapter a generalised patent race is also 

used to explore market dynamics, and to consider the simulation results of 

the first part in a tractable setting. In the model each of a number of firms 

must complete a fixed number of staged%efore it is able to produce, but 

whereas in a patent race the first firm to finish would get the prize and all 

other firms would get nothing, in the third chapter any number of firms can 

finish and earn profits. The more firms that finish, however, the smaller their 

profits.

Equilibrium in this model has a number of features in common with the 

dynamic advertising model of the first part: there is a well defined expected

6 See also Vickers’ paper [60].
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number of firms which complete all stages, some firms which complete the 

early stages stop investing and never finish, and for some realisations of the 

random variables in the model, more firms than expected finish. Model B  

is sufficiently simple for us to discern the intuition underlying these results. 

Firms must expect to  recover costs sunk in establishing themselves in the 

market, and since profits fall as the number of rivals rises, while the amount 

spent on becoming established is fixed, the number of firms which can prof­

itably establish themselves is restricted. Since costs are sunk incrementally 

and (in some equilibria) investment is stochastic, many firms may begin ac­

cumulating. If they are luckier than their rivals they will establish themselves 

in the market in the long run and make profits. If they fall behind early on 

they can stop investing without having lost too much.

The final, third, chapter considers a different sequential investment deci­

sion: choosing and changing location when location revision is costly. The 

empirical context is that of bus deregulation in the UK. It has long been ac­

cepted that where firms spend on R&D there will be change over time. The 

first theoretical task of the final chapter is to show that reversible choices of 

location can also give rise to change over time. Theoretical work by Foster 

& Golay [22] prior to the enactment of the 1980’s legislation deregulating 

local bus services in the UK concluded that bus operators would probably 

adhere to stable timetables. This conclusion was in spite of evidence, for 

example that given by Chester writing 6 years after the 1930 Act which first 

introduced some control into London’s bus routes [7], that before regulation 

had been introduced timetables were far from stable. Chester goes on to give 

a clear statement as to why instability would arise.

If any operator fixed definite times, rival operators will seek to 

reach stopping places a few minutes earlier and take the traffic.
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Subsequent experience of deregulation has confirmed that competition on 

urban local bus routes leads to timetable instability, and Chapter 3 of this 

thesis builds a formal model to show how it arises. The driving assumption 

is that passengers on urban bus routes tend to arrive at a bus stop at a 

convenient time and then board whichever bus arrives first. As noted by 

Chester, this means that if one company operated a fixed timetable a rival 

would choose to arrive just before, leaving no passengers waiting at the stop.

Once adjustment costs are introduced into the model a distinctive pattern 

emerges. The operator whose buses currently get fewer passengers is more 

likely to adjust its timetable than is its rival, and when it does so will tend 

to choose a new time which is just before its rival’s current one, causing 

buses to arrive bunched together. Such bunching is another noted feature of 

deregulated bus routes.

The assumption on passenger behaviour also drives the second model 

of Chapter 3, which considers the impact on fares of competition on local 

bus routes. Contrary to expectations before deregulation, fares have not 

fallen much, and in some cases have risen [41]. In the fare model presented 

in Chapter 3, duopolists charge higher fares than would a monopolist. The 

intuition is straightforward. A duopolist which lowered its fare would increase 

the number of people choosing to travel by bus. Having chosen to go by bus, 

however, the additional passengers would board whichever bus arrived at the 

stop first, so that some would board the rivals bus, giving rise to a positive 

externality, and to underinvestment in fare reductions.



Chapter 1 

Exploring a Branching 

Structure

1.1 Introduction

In many areas of human activity, an agent has to choose from a number of 

actions, each with a cost and an uncertain reward. Some of these actions are 

highly likely to produce a short-term gain, while others, such as gathering 

information to eliminate some of the uncertainty, may result in only a long­

term benefit. The classic multi-armed bandit problem is a formalisation of 

such a situation: in each period the agent pays a unit cost to pull one of a 

fixed number of arms, different arms having different, unknown, and possibly 

interdependent pay-off probabilities; the agent’s problem is to maximise the 

expected discounted sum of pay-offs.

In bandit problems currently in the economics literature, projects are 

equated with arms. There is no ambiguity about how to engage a project: 

with just one arm per project the only available action is to pull it. Further, 

taking an action leaves the number of possible actions unchanged: with still
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just one.arm per project the only available action is to pull it again. However, 

many decision environments are more complex. Here we introduce a model 

of a more general sequential search process in which, when an action is taken 

in one period, several new actions become available in the next period. The 

set of projects and the actions available within them depend on the previous 

choices of the agent.

Even the classic multi-armed bandit problem resisted any general solution 

until Gittins and his co-workers showed, in a very general setting, that if the 

arms are independent (that is, pulling one arm is uninformative about other 

arms) then the optimal strategy is given by an index policy.1 To each arm 

attach an index (known variously as a reservation price, dynamic allocation 

index or Gittins index) which depends on the current state of only that 

arm; the strategy is to pick the arm which currently has the highest index. 

Calculating the indices, however, can be a formidable task. In the economics 

literature, two notable applications of bandit problems with independent 

arms are by Weitzman [61]2 and Roberts &; Weitzman [50] ,3 in which the 

examples focus on cases where the reservation price is not so difficult to 

calculate.

Models in which the independence assumption is dropped have no simpli­

1See the references to papers by Gittins, Glazebrook, Jones and Nash here and in 

Whittle’s papers [62].

2Weitzman considers a problem where there are several substitutable single-stage 

projects, which can be sampled sequentially. When the agent decides to stop searching, 

only one option is selected, namely the one with the maximum sampled reward.

3Roberts & Weitzman look at an application to R&D in which there is a single multi­

stage project. Costs are additive (pay-as-you-go), benefits are received only at the end, 

and the choice facing the agent at each stage is whether to pay to resolve more of the 

uncertainty and bring the project closer to completion, or to abandon the project.
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fying result comparable to that of Gittins to help in determining the optimal 

strategy. Nevertheless, the paper by Rothschild [51]4 which introduced ban­

dit problems into the economics literature centres on an example of such a 

model, and he derives strong results on how much a monopolist learns about 

a stochastic demand function. Subsequent work on similar pricing problems5 

has abandoned the bandit terminology altogether, and indeed the usage of 

the term bandit now appears to be reserved for cases where the different 

arms are independent.

In this paper, we introduce a general sequential search process in which 

the possible actions belong to branching projects. This process generalises 

a standard multi-armed bandit in a number of significant ways: an action 

can reveal information about more than one reward; the pay-offs to various 

actions are correlated; and there is a natural way to talk about the diversity 

of rewards. We give a simple characterisation of when the independence 

assumption can be relaxed, but with the problem retaining the analytical 

convenience of the optimal strategy being determined by an index policy or 

reservation price rule.6

4In this well-known paper, Rothschild models the pricing decision of a monopolist 

facing an unknown stochastic demand as a two-armed bandit problem. No assumption is 

made that the parameters governing demand at the two prices are independently drawn 

and Rothschild does not derive the optimal strategies. The main result is that optimal 

experimentation may not result in adequate learning, that is, there is a positive probability 

that after some finite period the agent will settle for the inferior arm for ever more.

5 See, for example, Aghion, Bolton et al. [1, section 6], and the references in their 

introduction.

6Gittins uses the example of job scheduling with precedence constraints to motivate an 

abstract model which is a finite horizon version of that which we present in this chapter, 

but without the information revelation aspects or the reward correlation which we have 

here [28]. Our proof of the optimality of the Gittins index policy in this set-up was arrived
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A branching project is special case of a multi-action project, a project 

in which there may be several alternative actions which the agent can take 

at any one time, and where this set of available actions depends on the 

agent’s previous choices. A Gittins index can be attached to a multi-action 

project in much the same way as to a single-action project. In an extension 

of his proof of the original result (see Gittins & Jones [29] and Gittins [27]), 

Whittle gives a condition under which the Gittins index policy is optimal for 

multi-action projects [63]; note that it does not specify the optimal action, 

only the project to which the action belongs. In the special case where the 

multi-action projects are branching projects we give a condition under which 

the Gittins index policy picks out not only the optimal project to engage but 

also the optimal action within that project. Essentially, this condition is that 

taking one action gives no information about actions which do not emanate 

from it.

The optimality of the Gittins index policy for a class of branching projects 

considerably reduces the problem of characterising the optimal search strat­

egy. We use a simple model of R&D in order to demonstrate the usefulness of 

our result, deriving the optimal strategy in a generalised way and discussing 

some of its features.

In the next section, we present the example of R&D in order to illustrate 

some of the features which branching projects possess and introduce some 

notation. Then in Section 1.3 we give a formal description of the general 

model, and the central theoretical result as a corollary of Whittle’s theorem. 

In Section 1.5, we apply it to the model of R&D and provide some results 

and examples. We conclude with a discussion and some remarks. Proofs of 

the main technical results are to be found in the appendices.

at independently and adopts what we believe is a self-contained and accessible approach.
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1.2 A  simple m odel of R&D

A simple branching project is represented in Figure 1.1 by a tree, with node 

1 as its root and nodes 4 through 7 as its terminal nodes. When there is an 

arc from node p down to node q we say that node p is a parent of node q and 

that node q is a child of node p. The terms ancestor and descendant have 

the obvious meanings.

The nodes correspond to possible actions, a subset of which are available 

in any given period. There are two sorts of possible action: one is to pay a 

cost Cn to explore node n and then continue; the other is to collect a prize 

whose value is yn and which is located at an explored terminal node n, and 

stop. The actions which are available in any period depend on previous 

actions and can be summarised using the tree. We assume that initially no 

node has been explored, and now in any period the agent can (a) explore 

any node that has not yet been explored, provided that either it is the root 

or its parent has been explored, and then continue, or (b) collect the prize 

at a terminal node that has been explored and stop.

We shall often consider there being an additional fall-back option available

,C>i

O 4 O5 0 6  O 7

Figure 1.1: No nodes explored
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in any period, and if it is chosen the agent collects a prize of value m  and 

stops. For example, suppose that the situation is as illustrated in Figure 1.2, 

in which filled nodes have been explored and empty ones have not, and there 

is a fall-back. The available actions are: explore node 3, explore node 4, take 

2/5, or take the fall-back m.

P ,3, • ,2

m

Figure 1.2: Some nodes explored, & a fall-back

In an R&D setting, node 1 might represent a feasibility study, and nodes 

2 and 3 would represent two different avenues of basic research, each of which 

leads to two development opportunities. One would then think of nodes 4 

through 7 as representing substitutable technologies to produce a product. 

To take the fall-back option is to use the existing technology, and abandon 

R&D. Note that ‘production’ is also a terminating action -  it corresponds 

to stopping R&D and commercially exploiting the know-how that has been 

gained.

Exploring a node not only imposes costs on the agent and affects which 

actions are available in future periods, but also reveals information about the 

prizes at all its descendent terminal nodes: when the agent explores node n 

she receives a random signal zn, which is independent for each node. The
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value of the prize at a terminal node is the sum of the signals at that node 

and its ancestors, so, for example, y5 =  zi +  z2 +  z5. (Because the signals 

contribute additively to the prize, we sometimes refer to them as increments.) 

The implication of this for the model of R&D is that each piece of basic 

research is informative only about products which embody that research, 

and that developing one product is uninformative about the value of other 

products. This means that, whenever the agent updates the expected value 

of any product, she uses only what has been learnt at its explored ancestors.

The agent’s problem is to choose a strategy which maximises the expected 

value of the prize that she collects when she stops, net of the expected costs 

from exploring nodes before she collects the prize.

Note that the way in which actions become available leads to a natural 

measure of the diversity of prizes: those with a com m on parent are closer 

than those with only a common grandparent. Moreover, as a result of the 

specification of the prizes themselves, the values of closer prizes are more 

correlated.7 Two features of this example worth stressing are that in any 

period each available action can be considered as the root of its own separate 

and independent sub-tree. Reconsider the situation illustrated in Figure 1.2.

We can in fact represent the agent’s choice as between the projects shown 

in Figure 1.3 in which each project now contains only one available action: 

explore an unexplored root and continue, or collect a prize and stop. This 

representation is legitimate because all the ancestors of currently available 

actions have been explored, and we can use the state of each project to

7At the start, before the agent has received any signals, the values of all prizes are 

correlated random variables: they all depend on the realisation of z\. The values 2/4 and 

2/5 are closely correlated because Cov(2/4 , 2/s) =  Var(zi) +  Var(z2 ), and even when z\ has 

become known they are still correlated. Contrast this with 2/5 and 2/6 - Cov(2/s,2/6) =  

Var(zi), and once Z\ has become known they are uncorrelated.
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effectively summarise the signals received at the ancestors of its root (and 

at the root itself, if it has in fact been explored). Further, these separate 

projects are independent: nothing that is subsequently learnt in one project 

reveals anything about the prizes available elsewhere, an inherited property 

that follows from the fact that the signals received at one node are informative 

about the prizes only at terminal nodes which descend from it.

Figure 1.3: Separate and independent sub-trees

With regard to an index policy, were the agent to be in the above situation 

and treat the whole tree as a single project as in Figure 1.2, then a rule 

which selected the project with the highest index would simply tell the agent 

whether to proceed with the project or to take the fall-back. However, if she 

views the process with the perspective provided by Figure 1.3, and applies 

the rule to these separate projects, the strategy is completely characterised 

because just one action is picked out. Further, as we shall show, the fact 

that these separate projects are independent ensures that the Gittins index 

policy is optimal.
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1.3 The General M odel

9

In this section we develop more formally the central model of the paper: a 

sequential decision process in which the alternative projects are branching 

projects. We introduce our definition of a branching project and state our 

result (Claim 1) that if the agent is choosing an action from among a set 

of independent branching projects then the optimal action in each period 

is given by the Gittins index policy. This is shown to be a corollary of a 

more general result on stationary Markov decision processes (Theorem 1) 

which gives the conditions under which the Gittins index policy picks out 

the optimal multi-action project to engage in each period.

1.3.1 Branching Projects

Borrowing some notation from graph theory, we represent a branching project 

by an out-tree,8 in which the number of nodes may be infinite, but such that 

the out-degree of any node is finite, i.e. the tree can have infinite depth but 

only finite branching. The nodes are the actions within the project, and the 

arcs represent precedence constraints: an action (other than the root) can 

be taken only if its parent action has previously been taken. An action is 

available if it has not previously been taken, and either it is the root or it is 

the child of an action which has previously been taken.

We shall consider a family of branching projects, and in each discrete 

period, a risk neutral agent chooses one project and an available action within 

it. We first note that the set of alternative projects need not be the same in

8Consider a directed graph, which is a set of nodes and a set of arcs, each arc being 

an ordered pair of nodes. An out-tree is a connected directed graph with a single root, no 

circuits and in which each node has no more than one parent.
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every period.

Lem m a 1 Consider a family of N  branching projects. In every period, there 

is a partition of the actions which have not yet been taken into a set of 

branching projects in which only the root action is available.

P roof: That such a partition exists initially is clearly the case, so assume 

that such a partition exists at time t. If the agent engages project k by taking 

its root action then each of the children of that root is an action available at 

time t + 1 and is the root action of a distinct sub-tree, none of whose actions 

have been taken. Also, each of the projects which was not engaged at time t 

is still a branching project in which only the root action is available. Hence 

such a partition exists at time t +  1, and the lemma is proved by induction. 

■

When project k is engaged by taking action u, the agent receives a reward 

and observes a signal, the signal affecting what the agent knows about the 

rewards associated with actions that may be available in later periods. The 

state of the project, denoted by £*, is a sufficient statistic for the observa­

tional history. It summarises what has been learnt from past signals about 

future rewards, availability of actions, etc. and both the reward, R ^ x ^ u ) ,  

and the signal, Sk{xk,u), depend on the current state and the action taken. 

The new state of a project depends only on the old state and the action 

taken, both directly and indirectly via the signal. If signals are informative 

only about the rewards at descendent actions,9 then the branching projects 

are independent, i.e. the state of unengaged projects remains unchanged.

9Let u be the action taken, and u' be any action which is not a descendant of u. The 

agent’s expectation of the reward to be obtained from taking action u' is unchanged by 

the signal received from taking action u.
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Lem m a 2 Consider a family of N  independent branching projects. If, after 

each period, the actions which have not yet been taken are repartitioned as in 

Lemma 1, then the branching (sub-)projects remain independent.

P roof: Consider the partition at time t,  and observe that no action in 

one project is a descendant of the root action of another. So when taking an 

action is uninformative about actions which do not descend from it, engaging 

any project by taking its root action is uninformative about other projects, 

and the lemma follows. ■

The importance of the above two lemmas lies in the fact that when an 

action in a project is taken, the state of the project changes but thereafter the 

action does not affect the agent’s choices or pay-offs, so that in each period 

we need consider only those actions which have not yet been taken. The 

lemmas then imply that, if we start with independent branching projects, in 

each period we can view the agent as choosing between actions in a family 

of branching (sub-)projects which are still independent and in each of which 

there is just one action available, namely the root action. This is at the heart 

of Claim 1 below.

1.3.1.1 T he agen t’s problem

Rewards are additive and discounted in time by a factor /?, so the agent’s 

problem is to choose a strategy to maximise the expected discounted sum 

of rewards from this process, whose state at time t  is written as x(t) =  

(x1(t),X2(t) , . . . ,  xjv(t)).  The maximal expected reward over feasible policies 

7r, denoted by the value function F(x), is given by:

^ (* (0)) =  s u p e J ] T /?#(*(*), u(t)) | ar(0) l ,
ir L o J
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where R(x, u) is the immediate reward realised when action u is taken in state 

x. When the rewards are uniformly bounded, standard assumptions from 

dynamic programming axe sufficient to establish that the value function is the 

unique bounded solution to the associated dynamic programming equation 

and that an optimal policy exists.10

1.4 O ptim ality of th e G ittins Index P olicy

Following the approach of Gittins and his co-workers, it can be shown that, 

under certain conditions, all optimal policies for the general model are con­

tained in a simple class of policies, and the optimal action is that recom­

mended by the Gittins index.

1.4.1 G ittins Index Policy

Suppose that we can attach an index to any project k , that is a value nik(xk) 

which is a function only of the project and its current state. When the agent 

selects the project with the currently highest index, she is said to be following 

an index policy. The specific index we shall look at is the Gittins index, whose 

definition makes use of a fall-back option. When there is a fall-back option 

m, then the agent has a stopping problem in which in each period (given 

that the fall-back option m  has not yet been taken) the agent can either 

take the fall-back and stop, or continue the project for another period (the 

option of taking the fall-back remaining open in subsequent periods). The 

smallest value of m  which makes the agent indifferent between stopping and

10 Given that the rewards are additive, discounted in time by a factor /?, and are uni­

formly bounded, the assumption that the agent is facing a stationary Markov process, for 

example, is sufficient.
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continuation is the Gittins index of the project.

Denote the value function for the modified problem consisting of a fall­

back M  together with N  projects by $(M, x). Since the rewards are bounded, 

we see that $(M , x) =  M  when M  is large, and that <£(M, x) =  F(x)  when 

—M  is large, and so the Gittins index is well-defined. The usefulness of this 

index is shown in the following result.

1.4.1.1 O ptim ality  of th e  index policy for branching p ro jec ts

R esu lt 1 Consider a family of N  independent branching projects in which 

the rewards are uniformly bounded.

Then the Gittins index policy selects not only the best project to engage but 

also the optimal action within that project.

P roof: Using Lemmas 1 and 2, after each period we can repartition 

the actions which have not yet been taken into independent sub-projects in 

each of which just the root action is available. The claim then follows as a 

corollary of the more general result for super-processes which we present in 

the next sub-section, because the two sufficient conditions for the theorem 

hold. Essentially these are: (a) the state of unengaged projects remains 

unchanged (because signals are informative only about descendent actions); 

and (b) the optimal action within the engaged project is independent of the 

size of the fall-back (because repartitioning after each period ensures that 

there is only one action available in each sub-project). The theorem then 

tells us that the project to which the optimal action belongs is the one with 

the highest Gittins index, and so the optimal action is the root action of the 

sub-project picked out by the Gittins index policy. ■

The above proof highlights the dual role of repartitioning actions into
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projects with only root actions available: it provides a key condition for the 

theorem, and it allows us to move immediately from ‘best project’ to ‘optimal 

action’.

1.4.2 Bandit Super-processes

The proof of the above result relies on a theorem for super-processes which 

we present here.11

A super-process12 is defined by the following collection:

(1) a set of projects, indexed by k =  1 , . . . ,  TV;

(2.1) a state space, with generic element denoted by x;

(2.2) a set of available actions for each project when in state x, denoted by 

Uk(x)-

(2.3) a bounded real-valued reward function Rk(x,u) which describes the 

instantaneous reward from taking action u in project k when in state x;

(2.4) a state transition rule giving the probability of next period’s state, 

conditioned on this period’s state, the action taken &; the project it is in;

(3) a discount factor (3.

The agent discounts the future by a factor (3 and aims to maximise the 

expected discounted sum of rewards from this process.

It is a bandit super-process when the state transition rule refers to each 

project rather than the process as a whole, and also when the action set and 

the reward are functions not of the process state but of the project state. (So, 

items (2.1) through (2.4) above would be for each project, and x should be

11For a fuller treatment, see the appendices and the references cited there.

12The terminology is due to Gittins [27], though the notion is due to Nash [43]. However,

Glazebrook [30] uses ‘super-process’ to mean a multi-action project and so discusses a

family of alternative super-processes.
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replaced by xfc.)

Thus, given a bandit super-process, if project k is engaged in period t  by 

choosing action u € Uk{xk{t)), the agent receives a reward of Rk(xk(t),u); 

states of unengaged projects do not change and the state of the engaged 

project changes by a Markov transition rule: if j  f=k then Xj(t +  1) =  Xj(t), 

and the value of Xk{t +  1) is conditioned only by xk(t), u k.

We assume that the Markov process is stationary or time-homogeneous, 

i.e. the available action set, the reward, the state transition rule and the 

discount factor do not depend explicitly on time. (To give this some force, 

we do not allow time to be incorporated into the state.)

When the agent is maximising the expected reward from a super-process 

she must choose both which project to engage and which action to choose 

within that project. The theorem below shows that the Gittins index policy 

is optimal if two conditions are met: (a) projects are independent (i.e. it is 

a bandit super-process); (b) when there is a fall-back available, the optimal 

action within the engaged project is independent of the size of the fall-back.

T heorem  1 (W hittle ) Consider a super-process consisting of N  alterna­

tive multi-action projects. Assume:

(a) the projects are independent, i.e. the states of unengaged projects do not 

change;

(b) when there is a fall-back option available, the optimal action within the 

engaged project is independent of the size of the fall-back.

Then the Gittins index policy is optimal, in that it selects the best project to 

engage.

Moreover, writing (f>k{m, xk) as the analogue of$(M,  x) when only project
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k is available, the following identity holds:

Jm  d m

where B  is the bound on the reward functions.

P roof: The proof is outlined in the appendices. Appendix A. 1.1 gives 

the proof for simple bandit processes (for which the second condition is vac­

uous), and Appendix A ̂  ̂ generalises it to bandit super-processes for which 

the second condition is crucial. The approach is essentially due to Whittle 

[63] and the proof elaborates on that in Whittle [62]. ■

It should now be clear from the definitions that a branching project is a 

super-process, and that a family of independent branching projects consti­

tutes a bandit super-process, so the first condition for the theorem is met. 

Moreover, the lemmas show that it is legitimate to reorganise the available 

choices in a convenient way, so that not only is the second condition for the 

theorem met, but also the result is strengthened from the Gittins index se­

lecting the best project in a general bandit super-process to it picking out 

the optimal action from a family of independent branching projects.

1.4.3 Discussion

The index result reduces the original problem significantly: the index is 

calculated without reference to any other outside option or project, and the 

optimal action emerges from a comparison of the indices mk(xk) attached to 

the various projects; further, the index of any unengaged project does not 

change, and so need not be recalculated. We should stress that the index 

is used to determine which project to engage next when the other projects 

will still be available in the next period. It is not the expected value of the 

project. A  brief example will illustrate this point.
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Consider two projects A  and B. You must decide which project to engage 

first, and then whether you want to stop, or to engage the other project and 

take the larger pay-off. The cost of project A  is 20 and it results in a pay-off 

of either 200 or zero, each outcome being equally likely. The cost of project 

B  is 10 and it results in a pay-off of 170 or 130, again with each outcome 

being equally likely. So, the net expected value of project A  is 80, and that 

of project B  is 140. However, the Gittins indices for the projects are 160 

and 150 respectively, so it is optimal to engage project A  first, and only then 

engage project B  if the low outcome prevails.13

It is to the calculation of the indices, or reservation prices, that we turn in 

the next section, after a few remarks on processes consisting of projects with 

variable length project stages, and on finite versus infinite horizon problems 

with discounting.

1.4.3.1 Variable length project stages

If projects have stages whose length can vary, we assume that when the agent 

engages a project she is committed to it for a possibly random number of 

periods, that number being dependent on the current state of the project but 

not on the actual period in which the stage was begun. As is indicated in the 

appendices, the proof of the optimality of the Gittins index policy continues 

to hold.

13This also demonstrates the principle that you should engage the riskier project first -  

the down-side is unimportant because you will never end up taking the low outcome from 

project A. This is shown more formally in Result 2 of the next section.
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1.4.3.2 F inite versus infinite horizon, and discounting

There are two ways of looking at the fall-back m. The first is: in any period, 

either select from the available projects, or settle for a once-and-for-all lump 

sum pay-off of m  and abandon selection for ever. The second is: in any 

period, either select from the available projects, or take a fixed reward of 

(1 — j3)m this period and continue selection next period. In the latter case, 

if it is optimal to take the fixed reward of (1 — (3)m this period, the agent 

learns nothing about the other projects, and so it is optimal to take the fixed 

reward of (l — {3)m in all subsequent periods, and the total discounted reward 

from this period forward is just m. Thus, in the infinite horizon case with 

discounting, the two views are equivalent.

Similarly, in the case when some projects have a terminating action,14 

if the agent selects such a project which is in a terminal state, this can be 

viewed as either settling for the associated lump sum reward, say y, and 

abandoning selection for ever, or as taking a fixed reward of (1 — (3)y now 

(with the state of all projects remaining unchanged) and continuing selection 

next period. If we take the former view, this may seem to imply that the 

selection of a project which is in a terminal state affects the state of other 

projects because they are no longer available. However, if we redefine the 

fall-back as the maximum of m  and y whenever a project reaches a terminal 

state with an associated lump sum reward of y, then once more the choice is 

between selecting from the available projects which have not yet reached a 

terminal state and taking the fall-back.

In the finite horizon case when all projects have terminating actions and 

there is no discounting, we are forced to take the former view (i.e. to take

14This corresponds to the notion of stoppable super-processes in Glazebrook [30]. The 

simple model of R&D presented in Section 1.2 is an example of such a process.
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the fall-back is to settle for a lump sum pay-off of m  and abandon selection 

for ever) and the last remark (i.e. redefinition of the fall-back whenever a 

project reaches a terminal state) applies.

1.5 R eservation Prices — R esults and Exam­

ples

This section returns to the example of the project that was introduced in 

Section 1.2 and employs the interpretation of it as a model of R&D. Using the 

results just derived, we characterise the optimal strategy, and then discuss 

some implications of this strategy. Figure 1.4 illustrates the project. It 

differs from Figure 1.1 in that, to be more consistent with the exposition 

of Section 1.3, the new figure also shows the actions of costless production 

(nodes 4' through 7'). Also, although the figure only ever shows two branches, 

we may wish to assume that in the project itself there are more, and denote 

the number of branches by 7 .

1.5.1 Characterising th e  Optimal Strategy — G ittins 

Indices

The project is clearly an independent branching project, in which the only 

action initially available is the root, and the out-tree which describes the 

structure is the set of arcs illustrated in Figure 1.4. As noted after Theo­

rem 1 in the previous section, this means that a Gittins index policy selects 

the optimal action, and so to characterise the optimal strategy we need to 

determine the Gittins indices for the possible branching projects which may 

arise. Then, if the value of the best available product is greater than the
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Figure 1.4: The project

highest Gittins index of the available (sub-)projects, the agent stops exper­

imenting and makes that product; else she works on the (sub-)project with 

the currently highest index, and continues.

The possible projects can be classified into four types: either a project 

contains just a terminal action (making a product), or it is a branching 

project of depth 1, 2, or 3 (corresponding to a development project, a re­

search project, and a feasibility study respectively). These are illustrated in 

Figure 1.5.

The rest of the analysis of this section concerns representative projects, 

and we adopt the convention that a representative project of type d corre­

sponds to production if d =  0, and is a branching project of depth d i f d >  0.15 

The initial state of a such project is the state when only the root action is 

available, and is a summary of everything known about the products which

15 Subscripts on parameters, variables and functions, etc. will henceforth indicate the 

project depth and no longer the node, but when discussing generic properties we omit the 

subscript.
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d = 3
Feasibility study

d=  1 d — 0
Development ProductionResearch

Figure 1.5: Four types of branching project

may emerge from that project. The sum of the signals received on taking 

actions which are ancestors of the root is such a summary, which we denote 

by y. Consider a project of type d > 0 and suppose that it is in its initial 

state y  at time t. If the agent takes the root action then she learns zj and 

updates the expected value of the products in the project accordingly. The 

root action can now be ignored, being no longer available, and the products 

can be considered as being in one of the 7  (sub-)projects of type d — 1, each 

of which is in its initial state y  -F Zd at time i +  1.

To find the Gittins index for a project, consider the process which consists 

of just that project and a fall-back m, and let y) denote the value of this 

process when the initial state of the project is y. Denote the Gittins index, 

or reservation price, of the project by r(y). By definition, if m > r(y) the 

agent stops with the fall-back m, otherwise she pays c to learn the increment 

2 and then continues. Denoting the continuation value by 4>(m,z +  y), we
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have the general formula for the continuation region:

4>(m,y) = - c  + E[4>(m,z+y) \ y .

As the Gittins index is the minimal fall-back which makes the agent 

indifferent between stopping and continuation, we see that r(y) = (j>(r(y),y), 

so r(y) satisfies:

r(y) = - c  + E[4>(r{y),z + y) \ 3/].

For the rest of the section we will make the following simplifying assump­

tion.

Assum ption

(a) there is no discounting, i.e. (3 = 1;

(b) the number of branches emanating from the root of any project of type 

d > 0 is the same, namely 7d-i, with 70 =  1;

(c) the cost of visiting the root of any project of type d > 0 is the same, 

namely cd]

(d) the signal zd received at the root of any project of type d > 0 is inde­

pendently drawn from the same continuous distribution with support [ad, bd], 

CDF Gd(-) and pdf gd(•).

It will transpire that r(y) = r(0)+y,  which is intuitively plausible: if the 

agent is indifferent between(an)project with initial value y and a fall-back of 

r(y), she will also be indifferent between that project with initial value 0 and 

a fall-back of r(y) — y.

The implication of the above remark, together with the assumption, is 

that the optimal policy in our example will be fully characterised by just four 

quantities, namely r0, 77, r2 and 7-3, the index for each of the four types of 

project when the initial state is zero. We now derive expressions for these.
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1.5.1.1 Production

As we have assumed that production is costless and its value is known, in this 

case c is zero, z is the degenerate random variable equal to zero, and so the 

continuation pay-off is simply the larger of m  and y, i.e. <j>(m, z+y)  =  m V y. 

So, subscripting the variables and functions by 0:

ro(y) = r0(y) V y

and the minimal ro(y) which satisfies this is clearly given by r0(y) = y. For 

consistency with what follows, we define ro as r 0(0), and then we have:

r0 =  0

ro(y) =  r0 + y.

1.5.1.2 Development

In the continuation region for production (m < ro +  y):

(f>o{m,y) = m  V y

and indeed in general:

</>o(ra,y) =  m  V y.

For development, we subscript the variables and functions by 1. If the 

agent reveals z\ she will be‘facing a single production project, the value of 

which will be zi +  y). So, in the continuation region for development:
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the last line following from integrating by parts. So, from indifference:

r i(y) = - C i + n ^ - b  /  ( l - G i i z ^ d z i
J r i ( y )—y

d  =  f  ( 1 -Gi ( z i ) )d z i .
J r i ( y ) - y

This implicitly defines the value of r\(y) — y  in terms of ci and the CDF 

Gi(-), and this value is therefore independent of y. As above, we define r\ as 

r i(0), and then we have:

ci =  f  (1 — G i ( z i ) ) d z i
J r  i

n{y)  = r i + y .

1.5.1.3 Research

In the continuation region for development (m < 77 +  y):

rb\
<t>i(m,y) =  - c i  +  m +  / (1 -  Gi{zi))dzi

J m —y

=  771+/ (1 -  Gi{zi))dzi -  f  (1 -  Gi{zi))dzi
J m —y J r i

=  771+/  (1 — Gi(zi))dzi
J m —y

and in general:

<l>i(m,y) =  m  V (771+  /  (1 -  Gi(zi))dzi).
v J m —y

In the case of a research project, if the agent reveals z^ she will be facing 

several development projects, the value of each of which will be </>i(ra, z2+y).  

Let <£i(M, y) denote the value of these 71 projects when the fall-back is M

and the state of each of them is summarised by y. Using the formula given

in Theorem 1, we have:

$i (M,y)  = B -  ( ^ ! ( m , y ))71 dm
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where B  is the bound on the reward functions. In the stopping region (m >

ri +  y), the partial derivative is 1, otherwise, in the continuation region,

d<j>i(m,y)/dm = G\(m — y). Thus:

(M, y) = M  V (M +  r  (1 -  G1 (zj)* ) d z \
v J M —y

So, in the continuation region for the research project:

<h(m,y) =  - c 2 +  E [$ !{m,z2 + y) | y]

= -C2+ f  m  V ( m +  T  (I — Gi(zi)11) dzi) dG2{z2)
Ja 2  '  J m —y —22,

— —c2 + m +  f  0 V (  /  (1 -  Gi(ziY' )dzi}  dG2(z2)
Ja.2 J m —y—22

— — c2 + m +  f  ( f  (1 — Cti(,zi)71) dzA dG2{z2)
J m —y —T i  '  J  m —y —22

=  —c2 + m +  f  h - G ^ m - y - z 2y tl\ ( \ - G 2(z2))dz2
J m —y —ri  L J

the last line again following from integrating by parts. Again using r2(y) = 

<fo(r2(y),y), we obtain:

c2 = f  [l -  Gi(r2(y) - y -  z2)lx](1 -  G ^ ) ) dz2
J r 2 ( y ) - y - r 1 L

This time, it is not as obvious that this equation uniquely determines 

the value of r2(y) — y. However, having observed that, say, an increase in 

7*2(2/) — V would decrease both the integrand and the range of integration 

whilst leaving the LHS unchanged, we conclude as before that r2(y) — y  is 

independent of y and so we define r2 as r2(0) to give:

c2 = f  [l — G\(r2 — 22)71] (1 — £ 2(22)) dz2
JT2—T\ L J

7*2 {y) =  7*2 + 2/.

1.5.1.4 Feasibility study

In the continuation region for research (m < r 2 + y)\

(^{m.y)  =  — c2 +  m +  f  [l — G\(m — y — z2)lx 1(1 — G2(z2)) dz2
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=  m +  f  1 -  Gi(m -  y -  z2)11 (1 -  £ 2(^2) )dz2
J  m —y —r \  Lm—y—t 1

— [  [ l  — G i ( r 2 — Z2)11 (1 — G 2 ( z 2)) dz2  
J  7*2—7*i L J

=  m +  f  [ l  -  G i (t2 -  z2)111(1 -  G 2(z2)) d z2
J  rn  — i t— L J

+  /  \Gi(r2 - z 2)11 -  Gi im -  y -  z r f 1] ^  -  G2{z2)) dz2.

The he Gittins index for a feasibility study follows the same

steps as above for a research project. As the calculations are somewhat 

laborious, we simply note that r 3 (y) = r 3 +  y 1 state the implicit formula for 

r 3, and collect the results together.

Reservation prices

1.5.2 Im plications o f the O ptim al Strategy

Much of the intuition underlying the determinants of the index and so of the 

following result is illustrated by considering how r 1? the index for a develop­

ment project, depends on the ‘riskiness’ of the pay-offs. In a development 

project (with an initial value of zero) there are two actions: the root action 

is to observe a signal z 1, and its child is to make the product whose value 

is Z\. The Gittins index is given by the formula Cj = f £ ( l  — Gi(zi))dzi.  

Notice that the Gittins index does not depend on the distribution of low 

values of z\ , because when deciding how to proceed the agent always has the 

option, exercised if z\ is low, of taking the fall-back rather than making the

0: r0 =  0

3: c3 =  [  ( l  -  [l -  f  (1 -  Gi(r3 -  zz -  z2)l l )g2{z2) dz2V 2) ( l  -  G3(z3))d
./TVj 7*0 ' L 7*0--70--7*1 -* fT " 3 —r 2 J r z  — Z z —T\r z —z z —r \
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new product. The idea that the Gittins index depends just on the likelihood 

of high outcomes is captured by the result that r i increases if we consider a 

mean-preserving spread of the distribution of z\.1%

Result 2 Let H(-) and G(-) be two CDFs such that H(-) is a mean- 

preserving spread of G(-) with the ‘single-crossing property’. The Gittins 

index of the single stage project whose pay-off is distributed according to if(-) 

is greater than that of a similar project whose pay-off is distributed according 

to G (-).17

P ro o f :  When H  and G have the same mean: 

f  (1 — H( z ) )d z=  f  (1 — G(z))dz.
J a  J a

When if(-) is a spread of G(-) with the single-crossing property: 

r { H ( z ) - G { z ) ) d z >  0
J a

with equality a t x  =  a and x  =  b and strict inequality for some a < x < b. 

Together,

f  (H(z) — G(z)) dz < 0.
V  X

Denoting the two reservation prices by rn  and we have by definition: 

c =  f  (1 — H(z ) )d z=  j  (1 — G(z))dz,
J r n  J tg

so

0 =  f  (1 — H ( z ) ) d z — f  (1 — G(z))dz
J  TJJ J  TC

=  f  (G(z) — H(z))dz — f  (1 — G(z))dz.
J r n  J tg

16This is another illustration of the difference between the Gittins index of a project 

and its expected value.

17This point is explored by Weitzman [61].
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The first integral is non-negative, and so f f " (1 — G(z))dz > 0.

This implies that > rc, and if there is some difference in H  and G 

towards the upper end of their support then the inequality is strict. ■

Thus if there is a choice between two development projects in wliich 

the expected value of the product from each project is the same, but with 

different variance, then it is optimal to do the more risky development first.

r

0.2

Figure 1.6: Reservation prices v. cost

Exam ple 1 Reservation prices as a function of cost

The above result can be used to understand the relative behaviour of the 

Gittins indexes /q and r 2 as the cost of experimentation increases. For the 

case with two-way brandling, equal costs of research &: development, and 

where the distribution is uniform on [—1, 1], the reservation prices vary with 

costs as shown in Figure 1.6.
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The indexes r\ and r2 are calculated assuming that the initial states of the 

projects are zero.18 Also note that the expected value of any signal is zero. 

Since the value of a product in a project is the sum of that project’s initial 

state and the signals about the product that are subsequently observed, then 

initially the expected value of any product in both the research project and 

the pure development project is zero. However, the values of products in 

the research project have a higher variance. When the cost of search is low, 

this difference in the variance is the main consideration, and as we would 

expect from Result 2, the Gittins index for research is higher than that for 

development. As the search cost rises, however, a new consideration becomes 

increasingly important: the agent must spend more before production if the 

product is at the end of a research project than if it is in a development 

project. Thus as the cost rises, the Gittins index for development becomes 

higher than that for research. □

The main focus of this section is on how branching affects the way that 

agents pursue R&D. The example above shows that as costs rise, the balance 

tips in favour of pursuing development before engaging in more research, and 

this remains qualitatively the case if we allow the amount of branching to 

vary. In the example below, we shall see that as branching increases the 

agent tends to do more initial research before embarking on any development.

18It is easy to show that r\ satisfies c\ =  [(1—ri)/2]2, giving 7*i =  1—2y/cx for 0 < Ci < 1.

Determining r2 is a little more complicated. For 0 < ci,co <  1, it is the positive root 

which is less than 2 of

m 4 — 24 m2 +  32(2 — 3ci -f ciy/c^m  — 48(1 — 4ci +  Ac\\fcx — c2) +  96c2 =  0 

and it is the negative root which is greater than —2 of

— 24m2 +  32(2 — 3ci +  ciy/c^m — 48(1 — 4ci +  4ciyjc1 — c2) +  96c2 =  0.
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First, note that the expected value of a project consisting of 71 identical 

development opportunities is 77 — Gi(zi)71 dzi, which is increasing in 71, 

the number of branches from their common research parent.19 Next, consider 

the effect of the amount of branching on the Gittins index for research (it 

has no effect on the Gittins index for development).

R esu lt 3 As the amount of branching increases, 7*2 increases and 77 is un­

changed.

C2 == f  [l - Gufo - 22)711 (1 - G 2(z2))dz2
J t 2 —t \  L J

P roof: The expression giving r2 implicitly is

1*62
fr2—ri

If we hold 7*2 fixed and increase 71, then the right-hand side increases. To 

restore the equality with C2, we must increase r2 thereby decreasing the range 

of integration and also the term [1 — G\(r2 — zf)11].

The expression for 77 is independent of the amount of branching. ■

Now, what is the probability that, having explored one research avenue, 

the agent prefers to explore a second research avenue before pursuing any 

development of the first? Assume, without loss of generality, that the signal 

received from the feasibility study was zero. If the signal received from the 

first piece of research is z, then the Gittins index for developments of that 

research is 77 -j- z. Thus the agent will undertake a second piece of research 

if 7-2 > z +  77 so that the probability of doing the second piece of research

19This leads to the final illustration of the difference between the reservation price for a 

project and its expected value. The reservation price for a project consisting of 7 1  iden­

tical development opportunities is simply the reservation price for just one development 

opportunity, namely 7 7 . This is strictly greater than the project’s expected value noted 

above, which approaches the reservation price as the amount of branching tends to 0 0 .
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first is given by Pr(r2 > 2 +  ri), which is just G(r2 — ri). As we would 

expect, this is increasing in the reservation price of research and decreasing 

in the reservation price of development. The final example presented here is 

a direct consequence of Result 3.

Exam ple 2 As the number of ways of developing a single piece of research 

increases, the agent is more likely to do a second piece of research before 

pursuing any development of the first.

The intuition behind this is that the larger the number of development 

opportunities from a single research avenue, the higher are the expected 

rewards from after the development phase, and so it becomes more attractive 

to learn about these expected rewards before pursuing existing development 

opportunities. □

1.6 Conclusions

The central innovation of the chapter is the introduction of a sequential 

search process which can be represented as a family of trees, and the central 

theoretical result is that the optimal action to take in this process is given 

by a Gittins index policy. This result extends the existing work on multi­

armed bandits in the economics literature in two important ways. In existing 

models, either projects are fully independent and the Gittins index policy is 

optimal, or they are not independent and the models have no such simplifying 

result. In our process the stochastic specification means that actions can have 

correlated rewards, so that independence is relaxed, yet the index policy 

remains optimal.
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The second generalisation is that in existing multi-armed bandit models 

there is just one action available in each project in any one period, whereas in 

our process, the agent constantly faces choices about the direction in which 

to advance a project. The technical device which allows us to do this, while 

maintaining the result that the Gittins index policy identifies the optimal 

action and not just the optimal project, is to recognise that the way that 

actions are grouped into projects need not be the same in every period.

The final part of the chapter turns to economic applications. The repre­

sentation of the process as a family of trees reflects the notion of precedence: 

some actions follow on from others; and it gives a measure of the diversity 

of rewards: close rewards have a nearer common ancestor than distant ones. 

The process also generates the feature that close rewards are more highly 

correlated than distant ones. This structure is clearly a natural one within 

which to study R&D and technological change20 [59] and we investigate a very 

simple model of R&D in order to illustrate the main technical result. We find 

that as costs rise the agent expects to pursue development before engaging 

in more research, but that as the amount of branching increases, the agent 

expects to do more research before embarking on any development.

There are several ways in which this work could be extended. As men­

tioned in the introduction, modelling R&D as searching a branching structure 

provides a means of investigating the diversity of products that are devel­

oped and marketed, and how this depends on the nature of competition in 

R&D. Branching projects also provide a framework within which to examine

20Vega-Redondo [59] develops a similar model, though there the authors focus is on 

industry turnover rather than optimal search. Furusawa [25] also employs a branching 

structure to aid a game-theoretic analysis of the costs and benefits of Research Joint 

Ventures.
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the dual role of patents as not simply conferring monopoly rights over some 

products, but simultaneously revealing information about related products 

not covered by the patent.
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Chapter 2

Accum ulation Games:

Increm ental Sunk Costs 

and Market Dynam ics

2.1 Introduction

John Sutton in his book “Sunk Costs and Market Structure” [54] explores in 

some depth the idea that in many markets concentration can be understood 

by supposing that in a first stage firms choose to enter a market and, if 

technology and preferences allow, invest in a private stock of some non-price 

strategic variable which we call a state (Sutton focuses on advertising to 

increase customers’ willingness to pay). In a final stage firms compete and 

receive profits which depend on the number of rivals, and on the state of each 

according to a profit function. Concentration is constrained by the need for 

final stage profits to cover costs incurred in the first stages. Since spending 

in the first stages is assumed to be unrecoverable in the last, this approach 

can be dubbed the sunk cost view of concentration. In his book Sutton [54]

35
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considers properties which hold over one of two very general classes of n-stage 

game and showed that the model predicted various features of concentration 

in 20 4-digit industries across 6 countries. Others have since found empirical 

support for his theoretical findings (see references in [55])

These sunk cost models of concentration form one starting point for the 

work presented in this chapter. The second starting point will be Pakes’ 

response to the heterogeneity and variability that has been documented in a 

number of recent studies of firm level panels ([20], [21], [17], [45] and [12]). 

This response, developed in several papers with various co-authors, ([18], [45], 

[47]) has been to build an empirical program in which a model market with 

heterogeneous firm histories can be calibrated against a real market. This 

calibrated model might then be used to asses the expected impact of a policy 

intervention. The basic model on which the program is based is presented 

by Ericson and Pakes in “Markov-Perfect Industry Dynamics: A Framework 

for Empirical Work” [18]. They describe their work as considering

the impact of uncertainty arising from investment in research and 

exploration-type processes. It analyses the behaviour of individ­

ual firms exploring profit opportunities in an evolving market 

place.

Their actual model takes a more restricted view of the actions available 

to firms, and the way the market can evolve. It does however allow a broad 

interpretation of what constitutes research and exploration. The present 

chapter observes that implicit in Ericson and Pakes’ model is a particular 

hypothesis concerning the dynamic behaviour of the market, viz: each firm 

has a stock of some strategic variable, called its state, a firm’s profit at any 

time depend on the state of each firm, changes to a firm’s state in one period
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compared to the previous one depends on that firm’s previous investment, 

and large expected changes in the strategic variable cost proportionately 

more than small changes.

According to this hypothesis the dynamic behaviour of a market and 

the level of concentration are related. Both derive from the dependence of 

one firm’s profits on all firms’ states, i.e. from the profit function. However, 

whereas concentration can be understood by thinking that the state is a stock 

accumulated in a single step, market dynamics derive from the accumulation 

of stocks over time. We dub this hypothesis the incremental sunk cost view 

of market dynamics, and begin an exploration of its implications using a 

number of particular examples.

The central sections of the chapter deal with two incremental sunk cost 

models, Model A  and Model B, in which firms compete over an infinite 

number of periods. In both models a firm’s state is measured by a stock 

which can be accumulated over time through investment. Firm’s earn profits 

in each period, which are related to the state of firms in that period by the 

profit function. Each incremental sunk cost model has a corresponding sunk 

cost model of concentration, with which it shares the profit function. Both 

give similar results, summarised by the following claims.

Claim  1 . There is a well defined number of firms in the incremental sunk 

cost model in the long run. This number of firms behaves in the same 

way as the number of firms in the corresponding sunk cost model of 

concentration.

Claim  2 . Firms in the incremental sunk cost model converge in the long 

run: firms with lower stocks invest more.

Claim  3. There can be excess entry in the incremental sunk cost model,
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where more firms enter and accumulate early on, than persist in the 

long run. Firms which fall behind early on, invest more slowly or stop 

investing altogether.

C laim  4. There may be states in the incremental sunk cost model which 

are stable should they arise, but which are unlikely to do so. These can 

be related to market structures in the corresponding sunk cost model 

in which some equilibrium conditions are satisfied, but in which final 

stage profits do not cover investments made at earlier stages.

Model A describes a branded goods market where market shares depend 

on customers’ perceptions of the quality of the various products on offer. 

The profit function is taken from the sunk cost model of concentration in 

advertising intensive industries given in Sutton’s book [54, chapter 3]. The 

incremental sunk cost model embeds the profit function from the sunk cost 

model into a dynamic framework developed by Ericson, Pakes and McGuire 

([18], [47]). The dynamic behaviour of firms in the model is very rich. How­

ever the mechanisms underlying this behaviour are somewhat obscure; no 

analytic solution is available and all results relate to numerically specified 

examples.

We propose that the dynamic behaviour is driven by two things. First the 

number of firms which can be supported in the long run is governed by the 

same structural features as equilibrium market structure in the corresponding 

sunk cost model. This corresponding market structure is symmetric, which 

has as its counterpart the convergence of firms in the incremental sunk cost 

model in the long run. Second, firms which establish themselves as long run 

participants in the market earn profits. Early in the market’s history, when 

all firms have low qualities, many firms enter in the hope that they will be 

luckier than a t least some of their rivals, will outlast them and so become
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one of the profitable firms supported in the long run. Model B is introduced 

in order to examine this proposal in a tractable setting.

Model B corresponds to the exogenous sunk cost model described by 

Sutton [54, chapter 2], in which firms pay an exogenously given cost in the 

first stage if they choose to enter. Model B displays all the behaviour dis­

cussed for Model A; convergence of firms in the long run, excess entry and 

divergence of firms early on and the possibility of stable fragmented states. 

Yet here the model is simple and the behaviour manifestly derives from the 

constraint placed on market structure by the corresponding sunk cost model.

The next two Sections deal with the two central models. Section 2.4 

concludes.

2.2 M odel A: A dvertising

One approach to modelling the impact of advertising on market structure 

supposes that consumers perceive the quality of more heavily advertised 

goods as being higher. In these vertical differentiation models all consumers 

agree on the ranking of products by quality, and would buy the best one, 

all other things, including price, being equal. A firm’s profits depend on the 

quality of every firm. This is the approach to advertising that Sutton adopts 

using sunk cost models, and tests with some success against data from the 

food and drink industry [54]. We consider one of Sutton’s examples from 

this study and describe behaviour in an incremental sunk cost version where 

the profit function is the same, but where firms accumulate quality over time 

through investment.

It is the contention of this chapter that dynamic behaviour in an incre­

mental sunk cost model is driven by the same factors constraining concen­
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tration in the sunk cost model with which it shares a profit function. We 

begin with an analysis of the sunk cost model. Sutton [54] has already given 

a treatment of the central result of this m odel, that no matter how large the 

market, the number of firms is bounded above. Our reason for analysing the 

model yet again is to consider four aspects of equilibrium that we will later 

compare to the behaviour of the incremental sunk cost model; equilibrium 

is symmetric, and when the market is large the number of firms does not 

depend on market size, the amount spent on advertising is proportional to 

market size, and the number of firms is lower at higher elasticities. We will 

show that all four are preserved as features of equilibrium in the incremental 

sunk cost model, and suggest that the same mechanisms are at work in both 

cases.

2.2.1 The sunk cost m odel o f concentration

Consider a three stage sunk cost model between countably many firms, in­

dexed by i =  1 ,2 ,__

enter: pay a choose Ui : 
pay A(ui)

Competiton: 
receive Ki(u)

Stage 1 Stage 2 Stage 3

Figure 2.1: 3-stage model

In the first stage each firm chooses whether or not to enter. If firm i 

enters it pays a sunk entry cost cr, otherwise the firm plays no further part in 

the game and is ignored henceforth. In the second stage, firms observe the 

entry choices of the first stage. Let N  be the number of entrants. Each firm
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1 chooses how much to spend on advertising, Advertising determines the 

perceived quality of the firm’s product, a*, according to:

h  = A(ui) =  - { u l  -  1), 7  > 1 (2.1)
7

In the final stage each firm i supplies a chosen quantity qi to the market, 

knowing the number of rivals and the quality of each firm’s product. Each 

firm’s marginal cost of production is c.

If a consumer buys an amount a: of a product with quality it, and consumes

2 of an outside good, her utility is:

U =  (u x ^ z1- 6

As a result each consumer spends 6 of her income in the market. Denote 

the total value of sales in the market by S. If the market clearing price of 

product i is pf, each consumer buys a product which maximises the quality 

price ratio itj/pi.

Subgame perfect Nash Equilibrium is found by solving Stage III first, 

taking the choices made in earlier stages as given. This leads to a character­

isation of a firm’s profits as a function of the vector of qualities of each firm 

in the market. Re-label firms so that they are in descending order of quality. 

The number of firms producing positive quantities is given by1 the largest n 

for which:
n

Y  un/u j > n  — 1 and un >  0
3=1

1Not all firms may find it profitable to produce. Firms which have a lower quality must 

charge a lower price if they are to make any sales. If a firm’s quality is low enough the 

price it would need to charge may be lower than the marginal production cost, in which 

case it does better not to produce at all. In the equilibrium stated here a firm will not 

produce if any firm with a higher quality does not produce. There may be other equilibria 

corresponding to other orders.
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And profits axe given by2:

7Ti(u) =
S  (1 — 1 , ^ i f z < nV E i - i  « * / « # /  ( 2 . 2 )
0 otherwise

It is easy to confirm that if all firms had the same quality the final stage 

profits of each would simply be S /N 2.

Turning to the second stage, consider the choice of advertising level, tak­

ing the number of entrants N  as given. In any equilibrium no firm must 

be able to improve its total payoff through marginal adjustments to its ad­

vertising level. In other words, the marginal increase in final stage profits a 

firm earns from a marginal change in perceived quality must equal the cost 

of that change. Call this the marginal profit condition. Restricting attention 

to symmetric equilibria, it defines a unique quality for each N . It is clearer 

to state the result in terms of the amount spent on advertising rather than 

the resulting level of perceived quality3:

2 ( N —1)2 a
Marginal Profit Condition k /S  = —-— -------- -

7 N 6 7 S

The quality at which this marginal profit condition is satisfied is larger, and 

so firms must spend more on advertising, when the size of the market is 

larger. This is not surprising. Advertising a product makes all consumers 

more willing to pay for it. When there are more consumers, or each spends 

more, the same amount spent on advertising yields a greater final stage profit. 

Quality will now need to be higher before the net gains from marginal in­

creases in advertising are exhausted. Note that when the market size is very

2 A derivation of this equation is given in Sutton’s book “Technology and Market Struc­

ture” [56].

3The result is found by setting the marginal profit, derived from 2.2 equal to the

marginal cost of quality derived from the definition of A(u{), and then requiring that

quality be the same for all firms.
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la rg e , th e  a m o u n t s p e n t o n  a d v e r tis in g  b e co m e s p ro p o r tio n a l to  5 ,  so  th a t  

k / S  b e c o m e s  in d e p e n d e n t o f S .

T h e  f in a l s te p  is  to  c o n s id e r f irm s ’ e n tr y  d e c is io n s . In  a n y  e q u ilib r iu m , 

e a c h  f ir m  m u s t g e t a  n o n -n e g a tiv e  o v e ra ll p a y o ff, o th e rw is e  i t  w o u ld  h a v e  

d o n e  b e tte r  n o t to  e n te r . M o re o v e r, a n y  a d d it io n a l f ir m  m u s t g e t a  n e g a tiv e  

p a y o ff i f ,  in s te a d  o f  s ta y in g  o u t o f  th e  m a rk e t, i t  chose to  e n te r. W e  sa w  th a t  

in  a  s y m m e tr ic  e q u ilib r iu m , e a ch  f ir m  g e ts  f in a l s ta g e  p ro f its  o f  S / N 2 . T h e  

m o s t th a t  e a ch  o f  N  e n tra n ts  c a n  th e re fo re  in v e s t o n  a d v e r tis in g , a n d  s t i l l  

g e t a  p o s it iv e  p a y o ff o v e ra ll, is  S / N 2 — cr. T h is  d e fin e s  a  z e ro  p r o f it  c o n d itio n :

Z e ro  p r o f it  c o n d it io n  k / S  =  ^

T h e  la rg e r  th e  m a rk e t, th e  g re a te r th e  f in a l s ta g e  p ro f its  a n d  so th e  m o re  

e a ch  f ir m  c a n  a d v e rtis e , g iv e n  N .  T h e  m o s t th a t c a n  b e  s p e n t b e co m e s  

p ro p o r t io n a l to  S  as th e  m a rk e t g e ts  la rg e  a n d  k / S  b e co m e s  in d e p e n d e n t o f

T h e  tw o  l im it in g  c o n d itio n s  w h e n  7  =  2 a re  sh o w n  in  F ig u re  2 .2 .

T h e  e q u ilib r iu m  n u m b e r o f f irm s  is  N  =  2. F o r a n y  in te g e r N  >  2 ,

m a rg in a l p r o f it  c o n d it io n , a n d  so  th e ir  p ro f its  d o  n o t c o v e r to ta l s p e n d in g  

o n  a d v e r tis in g . T h is  e q u ilib r iu m  n u m b e r is  in d e p e n d e n t o f th e  s iz e  o f  th e  

m a rk e t ( fo r  la rg e  e n o u g h  m a rk e t s iz e s ). A lth o u g h  firm s  e a rn  h ig h e r f in a l 

s ta g e  p r o f its  w h e n  th e  m a rk e t is  la rg e r, th e y  a ls o  s p e n d  m o re  o n  a d v e r tis in g , 

a n d  th e  n u m b e r o f  firm s  w h ic h  f in d  i t  p ro f ita b le  to  e n te r re m a in s  th e  sa m e .

A lth o u g h  th e  n u m b e r o f f irm s  in  th e  m a rk e t does n o t d e p e n d  o n  m a rk e t 

s iz e , i t  d o e s  d e p e n d  o n  th e  p a ra m e te r 7 . T h is  p a ra m e te r is  re la te d  to  th e  

e la s t ic ity  o f q u a lity  to  s p e n d in g  o n  a d v e rtis in g :

5 .

f irm s  h e  a b o v e  th e  z e ro  p r o f it  c u rv e  w h e n  th e  le v e l o f  s p e n d in g  s a tis fie s  th e
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Figure 2.2: Marginal and zero profit conditions
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We might expect that when I /7  is high the number of firms in equilibrium 

is low. The reason for this is that if consumers’ perceptions of the quality of 

a good are easy to change, advertising is an effective means of raising final 

stage profits. Firms’ qualities will need to be correspondingly high before 

the net benefits of further marginal spending on advertising are exhausted. 

Certainly at large market sizes this intuition is correct. From the limiting 

marginal and zero profit conditions we can derive the limiting equilibrium 

number of firms as the largest integer N  which satisfies:

N  < 1 +  7 /4  +  y/(1 + 7 / 4)2 -  1 

Here N  falls as 1 /'y rises.

2.2.2 The increm ental sunk cost m odel

In the sunk cost model firms achieved their chosen level of perceived quality 

in a single step and in a final stage earned profits which depended on the 

quality of each firm. This was sufficient to analyse market concentration but 

in order to analyse market dynamics we need a model where firms can differ 

from period to period. Here we consider an incremental sunk cost model in 

which firms compete over an infinite number of periods, in each period they 

earn profits which depend on all firms’ state according to the profit function 

(from the sunk cost model) in Equation 2.2, and can invest in accumulating 

additional quality. The rules governing the accumulation of quality are taken 

from a model which has been developed by Pakes and his co-authors [47], [46]. 

We describe the model in detail for clarity; it is only presented elsewhere as 

a special case of a more general model.
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2.2.2.1 The M odel

The model is an infinite period game in which a firm’s current profits depend 

on the perceived quality of its own and its rivals goods. In each period, not 

only does a firm earn profits, but it has the opportunity to exit, sometimes 

to enter (if not already active), or invest, such investment giving a proba­

bility that its quality next period is one unit greater than the current level. 

Technically the model is a stochastic game and the solution concept we use 

is Markov Perfect Nash equilibrium4.

The model is a stochastic game between I  firms. Time is discrete. The 

state at time t, denoted &*, is a vector fisting the quality of each firm’s 

product, k1 =  {/c$, k\ , ...}. In period t  each firm i takes an action a\ from a 

set which depends on the state of the industry. In each period a number of 

events and decision points take place. In the order in which they occur the 

are:

1 State realised

2 Exit

3 Competition

4 Investment

5 Entry

6 Quality depreciates

We take each event in turn and describe it in detail.

1. State Realised

Firm z’s quality in period t  is a non-negative integer which is no more 

than some upper limit. k\ 6 { 0 ,1 ,..., k}. If a firm is not currently

4Stochastic games axe described by Fudenberg and Tirole in chapter 13 of “Game 

Theory” [24]. We adopt their notation.
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active in the market its quality is zero and it is referred to as a potential 

entrant.

The industry’s state, which we sometimes refer to as its structure, is 

observed by all firms at the beginning of the period. It is a random 

variable whose distribution depends on the state in the previous period, 

and on the actions taken by firms in the previous period. We will 

consider Markov strategies, so that firms’ actions are time stationary 

functions of the state. As a result, state transition probabilities will 

also be time stationary, and the state will be a Markov Process [32]. 

We will return to describe these state transitions once we have looked 

at all of the events within a period.

2. Exit

After observing the state, each active (i.e. having positive quality) firm 

i chooses whether to exit. If so its action is denoted a\ =  X . It sells its 

assets to get a current reward gi(kl, X )  = </>, and its state in the next 

period is =  0.

3. Competition

Active firms which did not exit now compete in the marketplace, taking 

their own and their rivals’ qualities as given. The rewards to firm 

i from this competition are given by a reduced form function r^/c), 

which depends only on the current state. Later we will enter the profit 

function given in Equation 2.2 as the reward function.

4. Investment

Any active firm which has not exited also invests in advertising. In­

vestment levels are chosen simultaneously and affect the distribution
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of a firm’s quality next period. If firm i chooses investment aj, its total 

reward in the period is:

g i(k \ a\) = r ^ k 1) -  a\, a\ G 11+

Investment buys a firm specific random increment to quality, £*, which 

has distribution (with parameter m):

Xi  =  <
1 with probability px(a\) =  m a \/(1 +  ma|), a\ G 1Z+

(2.3)
0 otherwise

5. Entry

At the end of the period a single potential entrant can choose whether 

or not to  enter the market. Before deciding whether to enter, the firm 

observes the sunk entry cost a1, which is a random variable5 and is 

uniformly distributed over the interval [07, 071]. If the firm enters, its 

action is a\ — E, it pays the sunk cost immediately, though it will 

not be able to earn profits or invest until the next period, so its total 

reward in the current period is <&(&*, E) =  —a1. The entering firm Vs 

quality is set at k\ — ke. Since the entrant has had no chance to invest, 

it cannot win a firm specific increment to quality and so Xi = 0. All 

potential entrants which did not enter have actions a\ =  E.

6 . Market wide depreciation

All firms which are active at the end of the period are subject to a

5The stochastic sunk cost is just a device to introduce noise and so help the numerical 

algorithms converge. See Pakes & McGuire [47] for details.
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common negative stochastic increment to their qualities, ?/, whose dis­

tribution is given by:

V1 =
—1 with probability py 

0 otherwise

We interpret y as random depreciation. It is certainly reasonable to 

suppose that a branded good must be advertised continuously to main­

tain its high profile and perceived quality. It is not at all clear though 

that all brands within a product group should depreciate together. 

Pakes and McGuire interpret y  =  — 1 rather as a random increase in 

the quality of some outside good which consumers use a benchmark [47]. 

Under this interpretation it is the difference between a good’s quality 

and that of the benchmark which enters consumers’ utility functions. 

Unfortunately this interpretation cannot be maintained6. We will refer 

to y  as (brand) depreciation, since this seems the most natural reason 

why firms in branded goods markets must keep investing to maintain 

quality. However, nothing important is likely to turn on the interpreta­

tion of y: assuming that all firms share a common negative shock will 

affect the correlation of firm profitability, but should have little impact 

on the features of equilibrium we consider here.

6Index the outside good by 0. They claim that the real intrinsic quality of a good i 

is Vi and what enters the demand functions is Ui =  Vi — v$, Furthermore when y 1 — —1 

then vl+l =  vfc +  1. However, having taken such care to derive the demand functions, 

it would be gratifying if this interpretation resulted from a well specified maximisation 

problem. It does not seem to in this case. Pakes and McGuire provide an example of a 

vertical differentiation model where demands can be written in these terms, but even here 

they cannot sustain their interpretation since the shocks axe not to w*, but to ki =  c(u{), c 

strictly convex. There is no Vq, cstrictly convex, such that fc*+1 =  k\ — 1 Vi, Vfc E K , 

when y l =  —1.
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7. State transition

Firm z’s state in the next period will be k\+l =  0 if i exited, or if i 

was a potential entrant which did not enter. Otherwise its state will be 

the sum of k\ and the specific and industry-wide increments Xi and y. 

The only exception is when this would specify a state higher than the 

upper bound k. In this case the state is set to k. This is summarised 

in a state transition function q{kt+11 /cf,a*).

Firm i ’s payoff from period t onwards is the discounted sum of its rewards 

in each period:
oo

«(*•) =  W X )
T = t

Each firm i chooses a strategy s* which we restrict to be functions only 

of the current state, i.e. to be Markov, and we look for Nash Equilibria, s* 

of this game. Any Nash Equilibrium will necessarily be Markov. In addition 

we will restrict attention to those equilibria which are perfect, symmetric, 

and have the property that if, in a state, one firm finds it optimal to exit, 

then so do all other active firms with a lower quality.

At this point we can derive the incremental version of the sunk cost model 

analysed above simply by using the final stage profit functions tt(«) from 

Equation 2.2 for the reward function r(k). To do so, however, it is impor­

tant that the final stage profits are given as functions of advertising outlays, 

that is r(k) = 7r (A~1(k)). To see why, consider the cost of accumulating an 

additional unit of quality with a given probability in the incremental sunk 

cost model. This is derived from Equation 2.3 and is independent of the 

firm’s current quality. In contrast, in the sunk cost model the marginal cost 

of quality, derived from Equation 2.1, is increasing. To improve the ‘fit’ to 

the incremental sunk cost model we will simply rename some quantities in
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the sunk cost models. Advertising outlays become quality, and the measure 

of quality which enters consumers’ utility function becomes effective quality. 

This renaming has no impact at all on the sunk cost model. We have already 

anticipated this renaming by using the same symbol, k for advertising out­

lays in the sunk cost model and quality in the incremental sunk cost model. 

Since in the latter game there is no deterministic relationship between the 

amount spend by i and the quality hi, we are not free to rename quantities 

in the same way in the incremental sunk cost model.

2.2.2.2 The Example Markets

No analytic solution is available for the model. However Gowrisnakaran has 

encoded an algorithm which, if the user inputs the profit earned by firms 

in all possible states, and the values of the parameters of the accumulation 

process, will compute an equilibrium. The algorithm is described by Pakes, 

Gowrisankaran and McGuire [46] and the code is available (see Pakes and 

McGuire’s paper for details [47]). The algorithm is computationally burden­

some and convergence to equilibrium is slow, if it occurs at all7. This places 

practical restrictions on the examples we can consider. Ericson and Pakes 

showed that in this type of dynamic model, firms’ equilibrium strategies may 

be independent of the maximum quality, &, and the number of firms, J, so 

long as k and I  he above some bounds [18]. Ideally we would like to set k and 

I  beyond these theoretical bounds in the examples; they are, after all, intro­

duced to make numerical solution possible rather than as reasonable features 

of the model. In practice we need to restrict the state space to a manageable

7The algorithm essentially iterates the Bellman equations. In single agent problems this 

iteration is a contraction mapping and is garanteed to converge on the optimal solution. 

This is not the case in multi-agent problems.
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size. However in all the examples reported firms only invested a little, if at 

all, in high states, which suggests, though it does not prove, that the results 

would be substantially the same if the maximum quality were raised. Also 

we have concentrated on cases where, loosely, the industry spent most of the 

time with at least one firm inactive. We would expect that in these cases 

behaviour would not be much different if the number of firms were increased.

We have not reported all, or even most, of the markets we began to 

examine. Those that looked as though practical values for k and I  would 

constrain equilibrium too much were abandoned early on. Of the remaining 

ones we have included just those which relate to the comparisons on which the 

claims here are based. We cannot make direct comparisons between market 

structure in the sunk cost and incremental sunk cost models, but we can 

compare the comparative statics behaviour of market structure in both. The 

examples we have reported allow a comparison of equilibrium when market 

size changes, and when the effectiveness of advertising increases.

Clearly interpreting simulations is something of an art. However the 

claims support an intuitive story, and one that matches the results of the 

simple analytical models in the rest of the chapter. No example that we 

considered, reported or not, gave us reason to doubt that, were computer 

resources and time available, the claims we make here would prove substan­

tially true over a wide class of possible markets. Table 2.1 lists the parameters 

for the numerical examples we discuss.

2.2.2.3 R esults

Once we have found equilibrium strategies it is a simple matter to derive 

sample market histories8 which chart the state of the market over time for

8The matter is simple not least because Gowrisankaran provides the basis of the routine.
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P a ram e te r Sym bol Com m on A1 A2 A3

No. of firms I 3

Highest quality k 20

Quality of entrants kg 2

Entry cost (low) cri 0.95

Entry cost (high) 07* 1.05

Scrap Value <t> 0.1

Parameter in px{o>i) m 0.5

Pr(depreciation) Py 0.7

Effectiveness of advertising 1 2.2 2.2 1

Parameter in A(ui) a 0.4

Discount Rate 6 0.925

Market size S 200 100 100

Table 2.1: Example Markets
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so m e  re a lis a tio n  o f th e  ra n d o m  v a ria b le s . F ig u re  2 .3  g iv e s  o n e  s a m p le  h is to r y  

o f e x a m p le  A 1  in  w h ic h  a ll firm s  in it ia l ly  h a d  z e ro  q u a lity . T h e re  a re  th re e  

tim e  lin e s , e a ch  s h o w in g  h o w  th e  q u a lity  o f  o n e  f ir m  v a rie s  o v e r th e  f ir s t  2 0 0  

p e r io d s  o f th e  m a rk e t’s h is to ry .
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F ig u re  2 .3 : S a m p le  h is to ry : e x a m p le  A 1

T h e re  is  v a r ia tio n  in  m a rk e t s h a re s , in  th e  n u m b e r o f firm s  in  th e  m a rk e t, 

a n d  th e ir  id e n tit ie s . A lth o u g h  P a ke s  d e v e lo p e d  th e  m o d e l s p e c ific a lly  to  

e x h ib it  th is  f lu x , w e  a re  m o re  c o n c e rn e d  w ith  th e  s ta b le  fe a tu re s  o f th e  m o d e l, 

w ith  w h a t is  lik e ly  to  h a p p e n , a n d  w e  d e v e lo p  so m e  to o ls  w ith  w h ic h  to  

e x a m in e  v a r io u s  a s p e c ts  o f e q u ilib r iu m , s ta r t in g  w ith  m a rk e t s tru c tu re . W e  

w il l  o rg a n is e  th e  re s u lts  u n d e r h e a d in g s  re la te d  to  th e  fo u r  g e n e ra l c la im s  s e t 

o u t in  th e  in tro d u c t io n .

Claim  1(A). M arket S tructure

I t  is  c le a r fro m  F ig u re  2 .3  th a t m a rk e t s tr u c tu re  ch a n g e s  o v e r tim e . T h e
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first question is whether the industry spends more time in some states than 

others, and if so what can be said about the likely states. We take a long 

sample history (3 million periods) and find the proportion of all periods spent 

in each state during that history9.

Result 4 In each market there is a clear mode, and at the mode all active 

firms have the same quality.

The modal state for example A l  is shown in Figure 2.4. This shows the 

frequency distribution over states in which a nominated firm, the third firm, 

is not active.

This slice through the distribution is symmetric and single peaked. More­

over, 93% of the total distribution covers states in which at least one firm 

is not active. An indication of the extent to which this peak dominates the 

distribution is given by looking at a slice in which the third firm is active 

and has quality 16. This is shown in Figure 2.5. The distribution here 

is concentrated at the boundaries where one of the two remaining firms is 

inactive.

For most of the time this market is at or near the mode. This state has a 

strong claim to be a point description of market structure in the model and 

there is a strong sense in which the market supports 2 firms.

In example A3 the frequency distribution is very different. Figure 2.6 

shows the frequency distribution when one firm is inactive. Here the prob-

9This procedure approximates the time limiting distribution over states. Suppose that 

the Markov chain described by the state transition function has a unique irreducible subset. 

This will be finite and so have a unique stationary distribution /(•) which is the time 

limiting distribution. Let fik be the mean time between successive visits to state k. Then 

f(k)  =  1//Xfc. See for example Grimmett and Stirzaker’s simple treatment of Markov 

chains [32, chapter 6].
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F ig u re  2 .4 : F re q u e n c y  d is t r ib u t io n  w h e n  th e  th ir d  f ir m  is  in a c tiv e : e x a m p le  

A 1
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F ig u re  2 .5 : F re q u e n c y  d is t r ib u t io n  w h e n  k$ =  16 : e x a m p le  A 1
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ability is concentrated on those states in which just one firm is active: the 

market supports 1 firm.

There is no simple relationship between a modal state and the equilibrium 

of the sunk cost model for any particular example10. However, we have 

comparative statics results for the behaviour of concentration in response 

to changes in market size and the responsiveness to advertising. We can 

examine whether the modal state behaves in the same way. The result of 

this comparison is the important and reassuring one that the understanding 

of concentration developed using a 3-stage sunk cost model is preserved in 

the dynamic incremental sunk cost one.

R esult 5 (i) The number of firms in the modal state does not change with 

increases in market size, but quality in the modal state rises roughly in pro­

portion to market size.

(ii) I f l / j  rises, the number of firms in the modal state falls.

Table 2.2 gives the number of active firms and their quality in the modal 

state.

A1 A2 A3

n 2 2 1

k 13 7 14

Table 2.2: The number and quality of firms in the modal state

10This is not at all surprising. For example Fudenberg and Tirole [24, chapter 13] 

describe work by Hanig who, in a differential capital accumulation game between two 

firms, found that steady state capital stocks reflected the replacement cost of depreciated 

capital, the discount rate, and the incentive of firms to increase current capital levels in 

order to reduce the rival’s future levels. None of these factors play a part in a 2 or 3-stage 

sunk cost model.
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From the above table we see that though the size of the market in A l  

is twice that in A 2 , the number of firms in the modal state is 2 in both 

cases. Moreover the quality of active firms in the modal state is (roughly) 

proportional to market size. In these two respects the modal state behaves 

in the same way as equilibrium in the sunk cost model. Markets A2 and 

A3 differ in the effectiveness of advertising, I /7  and the number of firms in 

the modal state is greater when advertising is less effective (and so 1 /7  is 

smaller). Again, this accords with the behaviour of equilibrium in the sunk 

cost model.

In the sunk cost model the number of firms is the largest number which 

can enter and still earn enough profits to cover their advertising costs. As 

market size is larger, final stage profits, all other things being equal, are 

larger. However, another firm would nevertheless not find it profitable to 

enter the larger market because the amount spent on advertising is also 

larger. The results here suggest that a basically similar mechanism dominates 

the determination of concentration in the dynamic model, despite the added 

complexity that costs are accumulated over time at a variable rate, and that 

firms earn profits in all states.

C laim  2 (A). Convergence in  th e  long ru n

Another way to look at equilibrium is in terms of the likely evolution of 

the state over time. We look first at states close to the modal one. Figure 2.7, 

illustrating example A l, shows all states in which the third firm is inactive.

The arrows show the expected change in the qualities of the remaining 

two firms. Specifically consider an arrow whose base is at (£1,^ 2). The 

horizontal (vertical) length of the arrow gives the difference between the 

probability that firm l ’s (2’s) investment is successful, minus the probability 

of depreciation. For clarity, the probabilities are shown scaled up by a factor
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10, if the distance between states is 1. The state’s evolution does not depend 

just on investment and depreciation, but also on entry and exit decisions: we 

ignore these for now.

The arrows seem to be converging on a single point that lies somewhere 

between (13,13,0) and (14,14,0). What is more the arrows are shorter closer 

to this point. A state transition arrow with no length would indicate that 

the expected change in quality from an investment would exactly offset that 

from depreciation. The state would be stationary11. Though no actual state 

is stationary, it seems reasonable to say that the there is a stable stationary 

state between (13,13,0) and (14,14,0). The smaller of these two, (13,13,0), 

is the modal state. Figure 2.8 shows the corresponding state transitions for 

example A3.

R esu lt 6 (%) The modal state is either stationary or one of the states closest 

to the stationary one.

(ii) Active firms converge12 when the market is close to the modal one: the 

firm with the lowest quality invests more.

Since the market is close to the modal state most of the time in examples 

A l  and A2, most of the time firms are converging.

Finding that the modal state is stationary is no surprise. A state which 

persists is a good candidate as the most likely state. Neither is it a surprise

11There axe states which are close to stationary at (18,1,0) and (1,18,0). However, 

they are not stable, and their appearance is probably due to such considerations as the 

positive scrap value for exiting firms and the fact that entrants start with quality 2.

12 Convergence here is /^-convergence: smaller firms grow faster. As pointed out by 

Quah, this does not necessarily imply that the difference between firm’s states shrinks (it 

does not imply ^-convergence). If the two firms began in a symmetric state, we would 

be surprised, given the stochastic nature of investment, if they remained in a symmetric 

state forever. Quah has discussed these and other notions of convergence [48].
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to find that many trajectories in the state space end on the modal state, since 

this indicates that it is likely to arise. Stationary states in the dynamic game 

can be related to market structures satisfying the marginal condition in the 

sunk cost model: in both cases small changes to the state are unprofitable. 

States towards which the market moves, even when it starts far away, can be 

related to states in the sunk cost model which satisfy the zero profit condition: 

firms a t the start of a trajectory must expect that their investment costs 

will be covered by their profits, otherwise they would exit. This reasoning, 

together with the finding that the comparative static behaviour of the modal 

state is the same as that of equilibrium market structure in the sunk cost 

model, suggests that in both cases the number of firms that the market will 

support is governed in the same way by structural features of the market: 

the ability of firms to increase their share of a market of fixed size through 

spending on advertising.

Claim 3(A ). New markets: excess entry and divergence

Although firms converge most of the time in examples A l  and A2, since 

in the long run these markets are mostly close to the modal state, there are 

situations where we have a priori reasons to think that the market starts out 

far from the modal state. One example is the new market. Suppose that a 

new market for branded goods opens. To examine the expected early history 

in such a case we took a large number (6000) of sample histories of example 

A l, each with an initial state (0,0,0), and then found the average state of 

each of the highest, middle and lowest quality firm in each period. The result 

is shown in Figure 2.9.

What we see in the figure is excess entry. All firms initially enter and, 

initially, all begin to build up their quality. After a while, however, the 

lowest quality firm starts to fall increasingly behind the other two. It stops
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Figure 2.9: The expected early history of a new market: example Al

investing enough to counteract the depreciation of its brand and its quality 

falls. Eventually it exits: in the long run the average quality of the third firm 

is less than 1, which means it spends most of the time out of the market.

To see the expected industry dynamics underlying this process we also 

looked at the average probability that investment is successful for each of the 

highest, middle and lowest quality firms in each period. These are shown in 

Figure 2.10. The time line which is the first to be positive is the high quality 

firm, the last is the low quality firm.

Certainly after 450 periods, when the expected quality of the third firm is 

less than 1, the remaining active firm with the highest quality invests least: 

this is the convergence in the long run discussed in the previous section. 

However, while three firms remain active, before the third has exited, the 

firm which invests least overall is the one with the lowest quality: early on 

there is divergence of low quality firms from those that will remain in the 

market in the long run. This early divergence can also be seen in the state
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Figure 2.10: Expected probability that investment is successful over the early 

history of a new market: example A l

transitions. Figure 2.11 shows the state transitions of two of the firms in 

example A l  when the third firm’s quality is 8, which Figure 2.9 indicates 

is the expected quality of the leading firm when the trailing firm’s expected 

quality reaches its maximum.

This clearly shows that when the two other firms both have low qualities 

they diverge. Similar analyses for the other markets yields:

R esu lt 7 Suppose that, initially, no firm has positive quality. In the expected 

industry history:

(i) more firms accumulate early on than are in the modal state.

(ii) early on the lowest quality firm invests least and diverges from its rivals.

One explanation for this excess entry is that additional firms enter early 

on and exit later because profits are high when no firms have high qualities, 

and fell when qualities rise13. A second explanation, and the one we support

13 This is the basic mechanism generating excess entry in the models developed by Klep-
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here, is that an extra firm enters early on in the hope that it will be luckier 

than its rivals and will overtake and outlast at least one. In this view the 

number of firms which the market can support is restricted by structural 

features of the market, in much the same way as the number of firms in the 

concentration model. Excess entry represents rent dissipating competition to 

become one of the supported firms. Firms which fall behind are more likely 

to be among those that exit14, and so have less time to recoup the benefits 

of their investments and invest less.

Claim 4(A ). Fragmented stationary states

One possible consequence of there being more firms than the market 

will support is, as we have just seen, that the lagging firm diverges from 

the others and eventually exits. This result arose in the context of new 

markets where not only did too many firms enter, but they all began with low 

qualities. Another case where too many firms may be in the market is when 

an exogenous increase in the effectiveness of advertising makes advertising 

more attractive, increases a firm’s willingness to invest, and so reduces the 

number of firms which can afford to be in the market. Again, “too many 

firms” is associated with “too low a quality”, and we might expect much the 

same behaviour as firms compete to remain as one of the reduced number

per and his co-authors ([31], [38] and [37]) except that in his models it is capacity (and, 

in the paper with Gort, experience) which is accumulated over time rather than quality. 

Geroski has raised the related possibility that the reason many entrants do not establish 

themselves as long run players in the market may be that they are only exploiting finite 

lived profit opportunities, though he quickly dismisses this as unable to account for the 

fact that de novo entrants have higher failure rates than entrants who are diversifying into 

the market from elsewhere [26].

14This is practically guaranteed by the restriction of equilibria to symmetric ones in 

which, if a firm exits, so do those with lower qualities.
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that the market will support, and invest less when it looks as though their 

efforts have been unsuccessful and that they will soon be forced to exit. Not 

all fragmented states, however, are unstable.

Figure 2.12 shows the transition probabilities of two firms when the 3rd 

has quality 16 in example A l. The two firms are stationary when each has
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Figure 2.12: State transitions when k$ =  16: example Al

quality 15. Since equilibrium is symmetric this suggests that all three are 

stationary at some notional state between (15,15,15) and (16,16,16). What 

is more, firms converge on this state from nearby. We might wonder whether 

the industry spends much time in this stable, locally convergent state. In 

fact there is a local mode close by as we see below. However, we have already 

seen that since all three firms are active for only 7% of the time, this local 

mode arises much less often than does the modal state discussed above. We
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have already seen the frequency distribution over states in which the third 

firm has quality 16, in Figure 2.5. The frequency is dominated by states 

where one remaining firm is inactive and to see the local 3-firm mode we 

must look at the Figure without these states. This is shown in Figure 2.13, 

and for clarity the same distribution is shown again in Figure 2.14, but using 

a contour map.

Figure 2.13: Frequency distribution when k$ =  16, excluding k\ or k<i =  0: 

example Al

There is a stable fragmented state in each of the example markets, though 

it is not locally convergent in example A2.

R esu lt 8 There is a symmetric stationary state with more active firms than 

in the modal state. Table 2.3 shows the number of firms and their qualities
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in these states.

A l A2 A3

n 3 3 2

k 1 5 -1 6  8 - 9 9 - 1 0

Table 2.3: The number and quality of firms in the fragmented stationary 

state

We previously argued that the modal state can be related to equilibrium 

market structure in the sunk cost model. In both cases marginal changes 

to quality are unprofitable (the marginal profit condition of the sunk cost 

model) and in both cases firms expect to make enough profit to cover their 

investment costs (the zero profit condition of the sunk cost model). The 

fragmented stable states of Result 8 can be related to market structures in 

the sunk cost model in which the marginal condition, but not the zero profit 

condition, are satisfied. Once the state has arisen in the dynamic model 

no firm wants to make small changes to its state. We suggest, however, 

that firms never meant the state to arise in the first place; it just happened 

that, for example, while they were competing to see which of them would 

remain to be supported in the market no clear winner emerged until they had 

all accumulated high qualities. Since investment costs are sunk, once firms 

have high qualities, the requirement that firms earn enough profits to cover 

their total investment costs has no bite. Comparing examples A l  and A2 

in Table 2.3 shows that when market size doubled, the quality of the three 

firms in the fragmented stable state (roughly) doubled, just as the quality 

doubles in the market structure which satisfies the marginal condition for n 

firms in the sunk cost model.

The market spends very little time in these fragmented states, and unless
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there are good a priori reasons to believe a market starts with too many 

firms, but with high enough qualities, they are not likely to be empirically 

relevant. The existence of these states, however, lends support to the view 

that market dynamics can be understood by referring to the sunk cost model.

2.2.3 Conclusions

There are severe constraints on the number of firms and set of possible qual­

ities which it has been practical to consider. We can say, nevertheless, that 

the examples explored support the following claims.

C laim  1(A ). There is a well defined modal state which is symmetric. The 

number of firms in the modal state behaves in the same way as the 

number of firms in the sunk cost model. The number of firms does 

not change as the market size is increased, but hi rises proportionately, 

while the number of firms is lower as the elasticity is higher.

Claim  2(A ). Most of the time the market is converging on the modal state, 

so that firms with higher qualities invest less.

Claim  3(A ). There is a significant exception to convergence: the new mar­

ket. Suppose that a new market for branded goods opens up. A related 

situation arises when there is a sudden increase in the effectiveness of 

advertising in an established market which means that existing levels 

of quality are too low. We find that there may be a competition to 

remain in the market during which more firms advertise than are in 

the market in the long run. Firms which fall behind diverge from their 

rivals: they invest less.

Claim  4(A ). Finally there may be states which are stable, and so persist 

at least for a while should they arise, but which were unlikely to arise.
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These correspond to market structures in the sunk cost model which 

satisfy the marginal profit conditions but in which firms earn negative 

profits overall.

We propose that these results can be understood as consequences of an 

accumulation race between firms, which compete by investing in quality, to 

remain as one of the firms supported in the market in the long run. Because 

the model is so intractable, the mechanisms are somewhat obscure, and we 

will examine our proposal in the context of a simple tractable model which 

shows the same features as this one.

2.3 M odel B: Exogenous Sunk C osts

Equilibrium in the dynamic model in this section can have all the features 

we noted in model A: a well defined market structure, convergence of firms 

in the long run, excess entry, and unlikely but persistent, fragmented states. 

Here these features are related in a transparent way to the restriction that 

the underlying sunk cost model places on the number of firms which the 

market will support, as well as the need for firms to accumulate their strategic 

variable over time, rather than all a t once. This transparency allows us to 

understand some of the forces at work in the advertising game in particular, 

and in incremental sunk cost models in general.

The profit function is taken from an exogenous sunk cost model in which 

firms pay to enter in a first stage. They compete in the product market in the 

second, earning profits which depend on the number of first stage entrants. 

The strategic variable here is just the ability to produce, and it is paid for 

all at once in the first stage, or not at all. We construct an incremental sunk 

cost model in which the ability to produce must be acquired in a number
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of stages, rather than just one. For concreteness consider the following two 

stage story.

Market research has confirmed that there is a demand for a bicycle 

with automatic gears. Before being able to make such a bike, 

a firm would need to conduct R&D to discover an engineering 

principle which would allow gearing to alter as the torque applied 

to the pedals increased, and then to construct a prototype which 

would be cheap enough for consumers to buy. These tasks can 

only be done sequentially.

In this model there is only one reason to invest: firms want to reach the 

end of the project, and cannot earn any profits until they do. The number 

of stages they must complete is fixed and in particular does not depend on 

the number of rival firms which are also active in the market. In these two 

respects it is simpler than the advertising game where firms eamt profits in all 

states. Moreover in the advertising game the quality of firms in the stationary 

states, those states where firms stopped, was endogenous and depended on 

the number of active firms, as well many other factors. In the exogenous 

sunk cost model the restriction that profits cover sunk costs constrains the 

number of firms the market can support in an obvious way. The simplicity 

of this incremental exogenous sunk cost model allows us to consider the pure 

effects of this constraint on market dynamics.

We first confirm that there is always an equilibrium in which exactly the 

same number of firms begin and complete the project in the incremental sunk 

cost model as enter the sunk cost model, and typically these firms have a 

strictly positive payoff overall. However, in the case where the market sup­

ports 1 firm, we also analyse a second equilibrium in which there is excess
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entry. Here 2 firms compete to remain in the market in the long run. Both 

firms initially invest, but if early on one firm falls behind, it stops investing 

and never finishes. During the competition to remain in the market both 

firms invest and hope that they complete stages faster than does their ri­

val. However, sometimes neither gets ahead of the other until both have 

completed so many stages that the cost of completing the remaining ones is 

bound to be less than the profits from producing, even if the rival produces 

as well. In this case both firms complete the project: deciding which firm 

will stay in the market through a competition to accumulate the strategic 

variable fastest leads in a natural way to the emergence of fragmented stable 

states if the competition does not produce a winner early on. We cannot say 

whether active firms converge or not if just one firm remains in the long run. 

For this reason we also analyse a particular 3-firm example in which at least 

2 always finish. Even if the finishing firms have different numbers of stages 

to complete at some point, they are bound to end up with the same number, 

i.e. none.

The incremental sunk cost model does not directly model market dynam­

ics in homogeneous goods industries, which are those industries where the 

exogenous sunk cost concentration game has been most successfully applied. 

The problem is that dynamics in the model relate to behaviour before firms 

are able to produce, whereas in the world firms will only enter our data sets 

once they are producing. In a later section we give an example which is more 

relevant for market dynamics in homogeneous goods markets.

2.3.1 The sunk cost m odel o f concentration

The profit function is taken from a simplified version of what Sutton [54, 

chapter 2] characterises as the exogenous sunk cost model of concentration.
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The market is one where firms offer an identical product and where, before 

being able to produce the good, firms must incur an unrecoverable cost a. 

Once in the market firms engage in some form of competition which generate 

profits which are a function of the number of firms in the market, n, and 

are denoted II (n). Here we assume that the final stage competition yields 

symmetric profits. The situation is modelled as a 2-stage game. In the first 

stage a large number of firms each choose whether to pay a  and enter the 

market. If n choose to do so, then in the second stage each firm receives 

II(n). These profits are discounted in the first stage by a factor 6.

“Price
Competition5
Profit II(n)Sunk cost a

Entry
Decision

Stage 1 Stage 2

Figure 2.15: The Exogenous Sunk Cost Model of Concentration

In any pure strategy equilibrium both entrants and those that stayed out 

of the market must have chosen optimally. The final stage profits must cover 

the sunk entry cost for those that did enter, but would not have done so had 

an additional firm have entered. If N(cr) is the number which enter in pure 

strategy equilibrium when the sunk cost is <r, N(a) is the largest n for which 

OT(n) > <r and firms which enter earn profits <511 (n) — a.

There are also many equilibria in mixed strategies15. For example there

15Equivalently, suppose that firms can invest in a probability of successful entry, say by 

searching for suitable premises, and that when the probability of success is p, the cost is
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is one where firms i = 1 , . . . ,  N(a) + 1  all choose a probability q* € (0,1) and 

no other firms enter with positive probability. To see this, suppose that firms 

i =  1 , . . . ,  N(cr) choose q and consider the optimal reply of firm i =  N(a) +  1. 

Each firm’s final stage payoff if it enters, net of entry cost, is (omitting the 

dependence of N  on cr):

+ E  ( I f W  -  9)N_n«n(n+1)^0 W

The definition of N(cr) implies that this is negative when q — 1 and positive 

when <7 =  0. Since the payoff is continuous in q there will exist a q* for which 

the payoff is zero and the final firm is indifferent over entering or not, and so 

entering with probability q* is a best reply. Hence all N(tt) + 1  firms entering 

with probability q* is an equilibrium. The number of firms producing in the 

final stage is a binomial random variable which will sometimes be greater 

than N(a) and sometimes less. Of course we can easily imagine repeating 

the entry stage, so that if fewer than N(a) initially entered, others would 

enter later on, but even if we added an exit stage, once too many firms had 

entered they would not exit while their final stage profit was positive (gross 

of entry cost).

Even in this trivial example we see some of the features that arose in the 

advertising game: excess entry (more firms are initially active in the market 

than produce in the long) which dissipates the rents from the pure strategy 

equilibrium, and the possibility that fragmented stable configurations can 

arise. The basic mechanism in the dynamic model we present is essentially 

the same, but the dynamic features that it gives rise to are more strongly 

drawn.

ap. There are many equilibria where firms choose interior probabilities.
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2.3.2 T he increm ental sunk cost m odel o f market dy­

namics

In the story about developing a new bicycle randomness entered the model 

through the stochastic investment function. In the incremental sunk cost 

model we investigate here, we suppose that firms either invest or not, that 

investment yields a deterministic outcome, and randomness enters through 

the choice of mixed strategies. This supposition simplifies the exposition of 

the model and results, though much would remain unchanged were we to 

interpret the model in terms of a linear, stochastic investment function.

2.3.2.1 The M odel

The model is an infinite period stochastic game [24] in discrete time between 

I  firms. Firm €s state in period i, denoted A:-, is the number of stages i has 

yet to complete before it can produce, and lies in the set k\ £ { 0 ,1 ,..., d}: 

firms produce in state 0. The industry’s state at t  fists the state of each firm,

** = (*5,... *}).
In each period firm z’s action a\ is either to invest, a\ =  1, or not, a\ =  0, 

and i receives a reward gi(kt,a ti). If k\ =  0 firm i’s only feasible action 

is to do nothing: a\ =  0. It earns profits which are non-increasing in the 

total number of producing firms. Let the number of producing firms be: 

n(A;t) =  #  {k\ =  0}i=1 7, then each earns a profit 7r (n(fcf)). In other states 

i earns no profits. It can invest in completing a stage, however, in which case 

its action is a\ =  1 and it incurs an investment cost c. Otherwise a\ = 0. To 

summarise, the reward function is:

7r (n{k1)) if k\ =  0 

—ca\ otherwise
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The evolution of each firm’s state depends on its own investment. Specif­

ically:

fc‘+1 =  k\ -  a\
Firm i ’s payoff at t is the discounted sum of rewards in all subsequent 

periods:

uti = Y iSrgi (kT,aTi )
T—t

Each firm i chooses a strategy Si(k) which specifies the probability of 

investing as a  time stationary function of the current state, i.e. strategies 

are Markov. The strategy is pure if Si(k) =  1 or 0 for all fc, and mixed 

otherwise16. We look for Markov strategies s* =  (5*(/c),. . . ,  s}(k)) which 

form a Perfect Nash Equilibrium17.

We will consider a family of incremental sunk cost models parameterised 

by the number of stages d. Suppose a firm invests in every period until it 

completes the project, and thereafter shares the market with n — 1 others. 

We require that the values of the profit and investment streams, evaluated 

at the start, be the same for all members of the family, and the same as in 

the sunk cost model. A family which satisfies this requirement, and the one 

we analyse, is:

8d = 6
^(n) ,-r/ \ / «  .X
^  =  n(n) (2.4)

c a
~ 8  = ITI

16This is not standard notation, but there should be no ambiguity.

17Equilibrium in this game is identical to that in a related one where a firm’s action 

specifies the probability that its investment is successful, the firm incurs cost c o a n d  the 

firm’s state evolves according to: /c*+1 =  /cf — 1 with probability a*, and is unchanged 

otherwise.
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2.3.2.2 Results

A firm which had x  stages yet to complete and which invested in every 

period until it completed the project, and thereafter shared the market with 

ti — 1 others would get a prize worth SxTr(n)/(l — 6) and would incur costs 

c(l — 6X)/  (1 — 6 ) . Define the u(x, n) as the net payoff in this case:

6X 1 - 6 X 
«(* ,n) =  j— -  y z y c

If the firm starts at d, this gives u(d, n) =  <£Q(n) — cr, exactly what it would 

have received-if the concentration had it entered when n — 1 others did. This 

means in particular that N(<r) is the largest n  for which u(d, N(<j )) > 0. We 

will later use the properties that u(x, n) is non-increasing in n (because 7r(n) 

is non-increasing in n) and non-increasing in x. We first consider equilibrium 

in pure strategies. Here whether or not a firm finishes the project is deter­

ministic, and the number which do so is the number which the market can 

support.

Claim 1(B). Market Structure

Suppose that initially no firms had completed any stages, and so h® =  

d, \fi. Since the outcome is deterministic no firm will invest unless it fin­

ishes, otherwise it is bound to make a loss. Intuition suggests that along the 

equilibrium path those firms that finish at all will do so by investing in each 

of the first d periods, since waiting one period means that the payoff will be 

discounted. If this is so, and n firms finish, each gets a payoff u(d, n), and 

since N(a) is the largest number of firms for which this is positive, exactly 

N(cr) will finish, the same number as entered in the sunk cost model. This is 

indeed what happens in any equilibrium. What is ruled out in equilibrium is 

that, in the continuation from any state fc, one firm will eventually complete 

the project while another, which at k was closer to completion than the first
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one, will not. Essentially, if only one of two firms can profitably finish, the 

firm which is ahead can guarantee that it is the one by investing until a state 

is reached in which it would continue to invest even if the other did18.

For each state k we define a boundary distance x b(k) which is the furthest 

a firm can be from the end and still make a profit if it and all firms closer 

to the end invest fully in every period until they have completed the project. 

More formally, the largest number of firms which would be able to profitably 

complete the project, if all firms were at a distance x, is max {n | u(x, n) >  0}. 

The boundary xb(k) is the furthest distance x  from the end for which this 

number is greater than the number of firms closer than x. The only exception 

to this is when all firms would be able to profitably complete the project 

when none have yet completed any stages, i.e. when N(cr) is greater than 

the number of firms in the market, in which case xb(k) is set to d +  1, V/c. 

Formally:

,*w.
I max {x  | max {n | u(x , n) > 0} > #  {i \ ki < x}} otherwise

Result 9 I f  N(cr) > I , all firms invest in every period unless they have 

completed the project. Otherwise, in any equilibrium, if the state at time t is 

kl, the continuation satisfies the following characterisation, for all possible 

kf:

(i) all firms which are closer to the end than xb(kt) invest in every subsequent 

period until they have completed the project

(ii) i f  there are any firms at x b(kt), some or all will invest in every subsequent 

period until they have completed the project. The number which invests is the

18This sort of reasoning is familiar in the literature on patent races. In particular 

Fudenberg et al. discuss the conditions under which a firm with a small advantage can be 

sure of winning the race [23].
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smaller of all firms at the boundary, and sufficient firms to bring the total 

number of firms which complete the project, and which are at xb(kt) or closer, 

up to the largest number of firms which could profitably complete the project 

were all firms at xb(kt). In other words the number of firms at the boundary 

which invests is:

min jz | k\ < xb(kt)} ,max jn  | u(xb(kt),n) > o}} — #{z | k\ < xb(kt)} 

(Hi) no other firm invests in any subsequent period.

P r o o f :  See Appendix A.2.1 ■

We illustrate equilibrium for an example.

E xam ple 3 d =  3, /  =  2 and the signs on u(x , n) are as in Table 2.4

x
3 2 1 0

n 1 + + + +
2 — — + +

Table 2.4: The sign of u(x, n) in Example 1

Equilibrium for Example 3 is given in Figure 2.16. The Figure shows the 

state space, and arrows between states show the transitions implied by firms’ 

investment behaviour. Consider, for example, the state k =  (3,2). Recall 

that the boundary distance xb(k)^whieh is the furthest a firm can be from 

the end and still make a profit if it and all firms closer to the end invest 

fully in every period until they have completed the project. The boundary 

when k =  (3,2) must be xb(k) = 2. The boundary cannot be at 3: if the 

firm at 3 invested in every period until it completed the project, and so 

did the firm at 2, the firm at 3 would get a payoff of u(3,2), which from
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Table 2.4, is negative. However, if just the firm at 2 were to invest until 

it had completed the project, it would get u(2,1), which is positive. As a 

result, in the equilibrium path subsequent to k = (3,2), firm 2 invests for 2 

periods, while firm 1 never invests, as illustrated in Figure 2.16.

Not all strategies which satisfy Result 9 form an equilibrium, however. 

As an example, consider the strategies illustrated in Figure 2.17. The con­

tinuation from any state satisfies Result 9. Nonetheless, in state (3,3) firm 

2 can profitably deviate by investing for one period, causing the market to 

enter a state where it, rather than 1, finishes the project.

Our original concern was with the number of firms that would finish the 

project and we now turn to the equilibrium path when all firms begin with 

d stages to complete. A simple implication of Result 9 is that exactly N  (a) 

firms finish, the same number that entered the sunk cost model, and these 

earn the same profits as did entrants in the sunk cost model.

R esu lt 10 Suppose initially k f = dV i and that I  > N(a) > 0 . I n  any pure 

strategy equilibrium exactly N(cr) firms invest in each of the first d periods. 

Each of these firms has an initial value of6TL(N((T)) — <j > 0 .N o  other firms 

invest at all.

P roof: This follows straightforwardly from Result 9. The boundary 

x b(k°) is the furthest from completion a firm can be and still be 

sure of a profit if just it and all firms closer to completion invest 

in every period until they have reached the end. Since no firms 

are closer than d, and since N(a) > 0, we must have x b(k°) =  d. 

Result 9 then gives that exactly max {n | u(d, n) > 0} =  N  (cr) 

firms invest in each of the first d periods, and no other firms 

invest at all. The initial value of each of the investing firms is 

u(d, N (a )) =  SlI(N(a)) -  <r > 0 m
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o

Figure 2.16: An example of pure strategy equilibrium

3

k2
3 2 1 0

\

k2
3 2 1 0

\ \ l

Figure 2.17: An example of strategies which satisfy Result 9 but which do 

not form an equilibrium.
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This result confirms that concentration in the dynamic model is governed 

by the same need to cover entry costs as in the sunk cost model and, as in 

the sunk cost model, firms typically have positive values in pure strategy 

equilibrium.

Claims 2(B ), 3(B ), and 4(B ). Convergence in the long run, ex­

cess entry and stationary fragmented states.

Also as in the sunk cost model there are other equilibria where firms 

sometimes choose mixed strategies. The general case is hard to analyse: later 

we consider a particular 3 firm example which, amongst other things, shows 

the kinds of problem we can expect to arise in the I -firm case. Most of the 

results here will relate just to the 2-firm case where the market supports only 

1 firm. Here there is a unique symmetric equilibrium which is the same as the 

pure strategy one except in those symmetric states where, in pure strategy 

equilibrium, just one firm invests. In the symmetric equilibrium both firms 

choose mixed strategies in these states. Thus if one firm is strictly closer to 

completing the project it invests. If both firms are so close to completing 

the project that investing to the end is profitable, even if the market must 

subsequently be shared with the rival, then both invest. Finally if investing 

to the end is profitable only if the rival does not finish, firms choose mixed 

strategies.

To make the following expressions clearer we define um(x) := u(x, 1) and 

ud(x) := u(x, 2). Also denote Vs rival by j .  We are able to give the value 

function for this case, which greatly simplifies the proof that what is proposed 

is indeed an equilibrium, though the proof that it is the only symmetric one is 

just as laborious as in the pure strategy case and is relegated to an appendix.
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R esu lt 11 Suppose that N  = 1 and 1 = 2 and consider the symmetric 

strategies s*(k) and value function V(k) given by:

si W  =  0 i f  ki = 0, otherwise 

1 i fu d(ki) > 0  o rk i<  kj

i-ud(ki)/um(ki) ^  ud{ki — 1) > 0 and ki = kj

i fu d(ki — 1) < 0 and ki = kj 

otherwise

«?(*) =
l+ c /u m (fci)

0

v,(k) =

' um(ki) -  6ki (um(0) -  ud(0)) i f  ud{kj) > 0  and k i<  kj

ud(ki) i fu d(ki) > 0 and ki > kj

um(ki) i fu d(kj) < 0 and ki < kj

0 otherwise

(i) s*(k) is a perfect Nash equilibrium, and V(k) is the corresponding value 

function.

(ii) s*(k) is the unique symmetric equilibrium.

P r o o f :  For part (i) we only need to confirm that the expressions form 

a fixed point of a set of Bellman equations19 as follows. Let:

U*(k,ai) =  - a i C  (2.6)

+s*j (k ) 6V i(k i — ai? kj -  1)

+  ( l  -  S j ( k ) ) 6 V i ( k i -  a i?kj )

then the Bellman equations are, for each state and each firm:

Vi(k) = max U*(k,ai)

s*(k) € jargm ax U*{k,Oi) j  

We just give a couple of examples. First suppose ki — kj = k! and 

ud(kr — 1) < 0 . The two firms are in the same state, but if both

19Tirole gives a simple justification for the one period deviation criterion underlying this 

approach [58, Page 265].
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invested in each period until the project was complete, each would 

make a loss. According to Result 11, the only possible successor 

state in which firm i ’s value is not zero is k =  (k! — 1, k'), where 

i has completed another stage but j  has not. The value of i in 

this state is given as:

Vi( k ' - l , k ,) = um(k, - l )

The Result also gives f  s strategy as to invest with probability:
1

1 -I- c/um(kf)
Substituting into Equation 2.6:

V - « f ,*■), 1) -  - c  +  ( l  -  1 + c /^ (t,) )  « .-(«?  -  1)

and

U* ((*!,*!), 0) =  0

Since um(k') =  —c +  8 um(kf — 1) this implies that U*(k, a,) =  0 

whatever action i takes. In particular i can choose any mixed 

strategy, including the equilibrium one, and its value will be 0 as 

stated.

As a second example consider a state k =  (ki, kj) and suppose 

ud(kj) > 0 and ki < k j , so i has fewer stages left to complete, but 

both would have a positive payoff if both completed all stages. 

According to Result 11, f s  equilibrium strategy is to invest. Sub­

stituting f  s strategy and i ’s value in possible future states, as 

given in Result 11, into Equation 2.6, gives:

U*{k, 1) =  - c  +  Sum (A* -  1) -  S’* (itm(0) -  u^O))

U?(k, 0) =  8um (ki) -  S’* (um(0) -  ud(0))
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Since um(kf) = —c+6um(kf—l) and 8 < 1, U*(k,a,i) is maximised 

when di =  1. In other words, i’s optimal strategy is to invest, as 

stated in Result 11

The proof of part (ii) is the same as the proof of Result 9, except 

in those states where firms have the same state but only one 

invests in the pure strategy equilibrium. In these states firms 

choose mixed strategies. The full proof is in Appendix A.2.2. ■

Figure 2.18 illustrates the state transitions implied by the symmetric 

equilibrium strategies for Example 3 on Page 83. A full arrow indicates that 

the transition is certain, a dotted one that the transition occurs with some 

probability. Firms choose mixed strategies in two states, when both have 3

3

2

h

l

o

Figure 2.18: Mixed strategy equilibrium

k2
3 2 1 0

—

V
— —

♦ V

\ \ l

and 2 stages yet to complete. The probabilities chosen in these states are:
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fc2

3 2 1 0

3 0 0 0 0

2 u( 2,1) 0 0 0

1 «(1,1) u ( l , l ) u(1,2) u(l,2 )

0 u(0 ,1) w(0,1)
it(0,2) 
+ tt(1) 
- tt(2)

ti(0,2)

Figure 2.19: Firm l ’s value function in mixed strategy equilibrium

Figure 2.19 shows the value function for firm 1. This equilibrium has the 

excess entry and the possibility of stationary fragmented states that we noted 

were features of equilibrium in the dynamic advertising game in the previous 

section. It also has convergence of firms in the long run, though in a very 

trivial sense.

C laim  3(B ). Excess E n try

In equilibrium we can see excess entry, in which both firms initially invest, 

though only one completes the project. Consider the symmetric equilibrium 

of Example 3, discussed above. With probability (s*(3,3))2 > 0 both invest 

in the first period, though the probability that both finish is less than unity. 

Denote the probability that both complete the first stage by p(3). If both 

complete this stage one of two things must happen. Either both complete 

the stage in the first period, which happens with probability (s*(3,3))2, or 

neither complete the stage in the first period, and they subsequently both 

complete the stage, which happens with probability (1 — s*(3 ,3))2 p(3). On
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rearranging this gives the probability that both firms complete the first stage 

as:

p(3) =  (si (3,3))2 +p(3) (1 — s*(3,3))2

=  •, . 2c €  (°> ! )
1 u™( 3)

Likewise the probabihty that both firms complete the second stage together, 

given that they complete the first together, is:

2ud(2) ^ 
um(2)

If both firms complete the second stage together, the state will be k =  (1,1), 

and subsequently both will certainly invest and complete the project. The 

probability that both finish is therefore p(3) • p(2) <  1.

The excess entry in this example is associated with rent dissipation: 

whereas in pure strategy equilibrium the firm which entered had an initial 

value of 611(1) — a > 0, here both firms have an initial value of 0. Excess 

entry arises as the two firms compete to be the one firm that the market 

will support. Early on a firm invests in the hope that it will become the 

only firm which completes all stages and produces: as we saw in the pure 

strategy equilibrium. Were a firm certain that its rival would finish, it would 

not invest. In the symmetric equilibrium a firm which falls behind early on 

cannot catch up to its rival, and so cannot be the sole producing firm. A 

lagging firm will therefore stop investing and fall increasingly behind, as in 

asymmetric states when at least one firm has two or more stages to complete 

in Figure 2.18.

Claim 4(B ). Stationary fragmented states

Although both firms enter in the hope that their rival exits, there is some 

probabihty that their competition never produces a winner and both finish

P( 2) =  -
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the project. This probabihty was calculated above as p(3) • p(2). Of course 

once both firms are producing they stay producing forever. We see here that 

it is possible for stationary fragmented states to arise: they are a natural 

outcome when firms compete to remain in the market by hoping to build 

up stocks of a strategic variable faster than rivals. The possibility that both 

firms finish does not just result from the fact that firms complete the project 

in a finite number of discrete stages. In the limit when the number of stages 

d is countably infinite, the probabihty that both finish is bounded away from 

zero. In order that both finish, both must complete each of the stages for 

which ud(x) is negative at the same time as its rival (since otherwise the 

lagging firm would cease investing), and so the number of events which must 

all be true gets large. However, the cost of completing each stage becomes 

very small as each stage covers less ground, and the probabihty that both 

complete a stage together tends to 1 at a rate which exactly offsets the 

increase in the number of stages.

R esu lt 12 Let 4> be the probability that both firms finish the project.

0 < hm (b
d—*oo

P r o o f :  See Appendix A.2.3 ■

Claim  2(B ). Convergence in  th e  long ru n

The symmetric equilibrium has convergence of active firms in a somewhat 

forced sense. If one firm stops investing leaving a single firm active we cannot 

say whether there is convergence or otherwise of active firms. If both com­

plete enough stages then each completes ah remaining stages no matter what 

its rival does and here we can say firms are in a convergent region. In Fig­

ure 2.18 showing equilibrium strategies in Example 1 this convergent region
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is the one where both firms have completed at least 2 stages. If k  =  (1,0) 

the lagging firm will invest and catch up. However, although in the long run 

either just one firm is active or firms are in a convergent region, firms never 

actually converge: if the initial state is k =  (3,3), k = (1,0) can never arise. 

Actual convergence here could arise only in response to unforeseen shocks or 

mistakes.

A more meaningful case of convergence in the long run is seen in an 

example where the market supports 2 firms and 3 compete to be among 

them, as in Example 2 below.

E xam ple 4 d =  2, I  =  3 and the signs on u(x,n) are as given in Table 2.5

x
2 1 0

1 + 4- +
n 2 + 4- +

3 — + 4-

Table 2.5: The sign of u(x, n) in Example 2

R esult 13 The unique symmetric equilibrium in Example 2 is given in Ta­

ble 2.6

P r o o f:  See Appendix A.2.4. ■

In the first period all firms invest with probabihty q2. If, when actions 

are realised, just one firm invests, the state next period will be k( 1,2,2). 

The leading firm is now sure that it will complete the project, and invests 

and completes the project with certainty, while the lagging firms spend time 

resolving which of them will also complete the project, and each invests with
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k s*{k)
(0 0 0) (0 0 0)
(0 1 1) (0 1 1)
(0 1 2) (0 X 0)
(0 2 2) (0 9i 9i) ® — l-u (2 ,3 )/u (2 ,2 )

(1 1 1) (1 1 1)
(1 1 2) (1 1 0)
(1 2 2) (1 9i 9i) n  —  1 

Hi ~  l—ti(2,3)/u(2,2)

(2 2 2) (<?2 92 92) 0 <  q2 <  1

Table 2.6: Equilibrium strategies in Example 2

probability q\ < 1. At least one of them is bound to finish, and so to converge 

on the state of the firm which has already finished. Convergence follows 

straightforwardly from the fact that once they are sure they will remain in 

the market all firms invest until they reach the exogenously determined end 

at which they can earn profits, and so, even if a t some point finishing firms 

have different numbers of stages to complete, they are bound to end up with 

the same number of stages left, viz none.

Result 13 not only confirms that we can see firms catching up in equilib­

rium. The proof also brings to light a curious consequence of the possibility 

that stationary fragmented states can arise: a firm’s value may increase if a 

rival has fewer stages to complete. The reason is that there is some prob­

ability that two distant firms with the same number of stages to complete 

both end up finishing the project, even if a closer rival is certain to finish and 

there is only room for two firms. If one of the distant firms had fewer stages 

to complete, just it and the close firm would finish. Consider the value of 

the close firm. If the profit when two share the market is not much less than 

when one firm is producing alone, the close firm will be unconcerned that a 

rival finishes sooner if it has fewer stages to complete. However if the profits



2.4. CONCLUSIONS 95

when three firms share the market are low, the possibility that both rivals 

may finish can have a large negative impact on the close firm’s profits. The 

proof of Result 13 confirms that the value of the close firm in state (1,2,2) 

can be lower than that in state (1,1,2). This possibility means that we need 

to confirm explicitly that at the start a firm will find it optimal to  invest if 

neither rival invests, which in this case is sufficient to confirm that firms do 

initially choose non-zero probabilities. It is this complication which makes it 

difficult to generalise the symmetric equilibrium to more than one firm.

2.4 Conclusions

All of the features of equilibrium in the incremental sunk cost model of ad­

vertising discussed in Section 2 are also features of the incremental exogenous 

sunk cost model here: a well defined market structure, convergence of firms 

in the long run, excess entry and divergence of lagging firms early on, and the 

possibility that stable fragmented states arise. In the exogenous sunk cost 

case these features are clearly consequences of two factors. First firms must 

expect to recover costs sunk in establishing themselves in the market. Their 

profits fall as the number of rivals rises, yet the amount spent on becoming 

established is fixed. The result of this is that the number of firms which 

can profitably establish themselves is restricted. Second, since costs are sunk 

incrementally and, in some equilibria, investment is stochastic, many firms 

may begin accumulating. If they are luckier than their rivals they will estab­

lish themselves in the market in the long run and make profits. If they fall 

behind early on they can stop investing without having lost too much. The 

advertising model is more complicated than this exogenous sunk cost model. 

In the advertising case there is no exogenously given end. Firms earn profits
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in all states, and the states in which firms stop net accumulation of quality, 

which we can take as states in which firms are established, are endogenous. 

The similarity of the results in the two cases however, suggests that the same 

factors dominate dynamic market behaviour in both.



Chapter 3 

Reversible Location Choice: 

Bus Deregulation in the UK

3.1 Introduction

The 1930 Road Traffic Act created a bus and coach market in which all 

aspects of service were tightly regulated. In order to run a service, an opera­

tor had to meet prescribed standards of vehicle safety and driver competence 

and, more restrictively, acquire a Road Service Licence from the Traffic Com­

missioners. A licence would only be issued if the applicant could show that 

its service was in the public interest. In practice permission would often not 

be granted if existing licence holders, or British Rail1, objected, creating a 

barrier to the entry of independent operators. Permission was also required 

for changes to fares or timetables for existing services, and again the onus 

was on the applicant to prove that such changes were in the public interest. 

Since British Rail could raise objections, this restricted the ability of the

1Or, prior to 1948, the various railway companies.

97



98 CHAPTER 3. REVERSIBLE LOCATION CHOICE:

incumbents themselves to compete effectively against rail.

The 1980 Transport Act abolished the need for operators to obtain a Road 

Service Licence for express services (defined as those carrying passengers a 

minimum distance of 30 miles in a straight line), thereby allowing entrants to 

compete against what had effectively been the protected monopoly incum­

bent, National Express, a marketing arm of the publicly owned National Bus 

Company. Since the Act, operators of express services have simply needed 

to notify the Traffic Commissioners 28 days before starting a new service. 

The 1985 Transport Act which followed privatised the incumbent operators 

of express coaches, and deregulated the local bus markets. Subsequent to 

the Act an operator needed only to register its timetable and satisfy basic 

safety requirements in order to run a local bus service. The main remaining 

restriction was that the Traffic Commissioners had to be notified of all new 

services, and changes to existing services, 42 days in advance.

A survey of the secondary literature discussing the effects of these Acts 

suggests that while some effects are common to both local bus and express 

coach markets, for example both have emerged with a surprisingly concen­

trated market structure, there are also some striking differences. When com­

paring conditions in those urban local bus markets in which there was com­

petition with the situation prior to deregulation, or to those areas where one 

operator was dominant, observers have found that there was little, if any, fall 

in price, and that the frequency with which timetables were revised was very 

high. With express coaches on the other hand, when there was competition 

on the road then observers found a marked reduction in prices, and they 

made no mention of timetable instability.

This paper puts forward the hypothesis that these two differences in the 

effects of competition stem from a basic difference in passenger behaviour.
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Passengers boarding express coaches know the timetable, indeed they often 

book their trip in advance, and they arrive at the terminal in time to board 

their most preferred coach. In the local bus markets where the instability 

and high fares are most marked, the metropolitan areas where bus frequencies 

are particularly high, passengers intending to travel by bus arrive at the stop 

independently of bus arrival times and wait for a bus to arrive. They may 

have some idea about what fare they expect to pay, and how long they expect 

to wait, but they do not know the exact arrival times.

The paper constructs simple models of a local urban bus market and 

an express coach market which embody these contrasting assumptions on 

passenger behaviour. There are two main results. First, arrival times change 

from day to day when there are two competing operators in a local bus 

market. If it is costly to revise the timetable, the later bus is the more likely 

to change arrival time, and so choose a time just before the early bus. One 

consequence of this is that bus arrival times tend to be bunched together. 

Competition is vital to this result: if all buses are nm  by a single firm, arrival 

times are never changed between periods. The reason for the instability is 

straightforward. Neither operator will stick to a fixed timetable. If it did its 

rival would start to arrive just before it and would take all the passengers.

Turning to the fare level set by buses, we show that in the express coach 

market fares are lower when there are two firms rather than one. In stark 

contrast the paper presents an example model of a local bus market in which 

competing firms charge a higher price than would a monopolist. If one firm 

lowers its fare more passengers will decide to travel by bus. However, since 

they arrive at the stop independently of the arrival times of the buses, and 

then board the next bus, only some will board the bus which lowered its fare; 

the rest will board its rival. If all buses were operated by a single firm, that
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firm would gain all the additional passengers that made journeys as a result 

of a fall in fares. The monopolist therefore has a greater incentive to cut 

fares than a duopolist does.

3.2 Bus Deregulation: the Stylised Facts

3.2.1 Local Buses

In 1995 the select committee on transport produced a report on the effects 

of bus deregulation [8]. Among the many issues raised by the committee are 

four relating to the impact of competition between buses, operating the same 

route, on the performance of the market; on the stability of the timetable, 

on fare levels, on the frequency of service, and on the quality of buses used.2

It is clear from the report that the frequency with which bus timetables 

are updated is a considerable source of irritation to bus users, and that this 

instability is a feature of on-the-road competition. The rise in timetable in­

stability was the first point raised by the National Federation of Bus Users 

(NFBU) in its evidence to the committee and the Road Traffic Commissioners 

agreed that this was the problem which was of most concern to passengers.

2There are many other issues raised in the report, which we do not discuss here. For 

example, rival bus operators on the same network do not always allow through ticketing. 

The committee spent a lot of time considering whether or not bus markets are contestable, 

the issue which dominated the theoretical debate while the 1985 legislation was being 

drawn up, and which is relevant to the policy question of whether the government should 

view consolidation in the industry with equanimity. Another feature of the deregulated 

market which had surprised observers is the relative failure of high quality minibus services 

to develop alongside full size bus services. Such differentiated markets are common in 

South East Asia. The committee also considered the vexed question of whether or not 

there has been predation in local buses.
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Indeed those Commissioners questioned by the committee would have liked 

powers to restrict the frequency with which changes to the timetable could 

be made. In many places the cost of keeping passengers informed about 

timetables is borne by the local authority and those councillors from the 

metropolitan areas, where on-the-road competition is most common, testi­

fied to the committee that the frequent timetable changes were very expensive 

to them. Councillor McLellan from Strathclyde, where four large operators 

and numerous small ones competed, testified that whereas before deregula­

tion timetables were produced at 3 or 6 month intervals, since deregulation 

5 timetable changes had been notified to the Strathclyde Traffic Commis­

sioners every working day. The NFBU observed that frequent changes to 

the timetable are associated with another feature: bus departure times tend 

to be bunched together, and they added that two operators running practi­

cally identical timetables hardly increased customer choice. In its final report 

the committee made a similar point, stating that entrants into bus markets 

typically registered times just before those of the incumbents.

There is anecdotal evidence from previous periods of unregulated bus 

services of similar behaviour. Glaister, in his evidence to the committee, cites 

the example of the horse bus Associations in 19th century London, which had 

to make great efforts to enforce service regularity on their members in order 

not to alienate their passengers. Another example is given by Chester [7]3 

in a book written 6 years after the 1930 Act which first introduced some 

control into London’s bus markets. There he described the ills of “unfettered 

competition” , and argued that such competition means

the running of vehicles to a regular timetable will become impos­

sible.

3Cited by Mackie & Preston [41]
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A number of witnesses to the select committee commented that fares in 

the deregulated bus industry have not fallen, as might have been expected, 

but have risen(for example see Glaister’s evidence). In a recent book on the 

effect of deregulation on the local bus market Mackie &; Preston [41], using 

data supplied by the Department of Transport, confirm the rises in fares 

and give the following table comparing the rise between metropolitan and 

shire counties. On-the-road competition is more common in metropolitan

Fares

English metropolitan counties +49 

English shires +8.8

Table 3.1: %change 1985/86 - 1993/94

areas, so that the fare increases are greatest where competition is greatest. 

Both Glaister and the NFBU, in their evience to the select committee, noted 

that fares have been affected not just by the changes in entry conditions, 

but also by other changes in market conditions; the removal of subsidies 

at the time of deregulation and subsequent increases in the duty on diesel. 

However, the evidence from previous periods of unregulated competition in 

local buses supports the view that competition does not result in low fares. 

Barker &; Robbins, in their “History of London Transport” [2] discuss the 

fierce competition on London’s roads in the 1920’s and note that:

Perhaps the most interesting feature of the bus competition... 

is the fact that there was very little attempt at competition in 

fares..

Instead of cutting fares, various commentators have noted that competing 

local bus operators put on more buses, leading to very low bus loads and a 

great deal of city congestion.
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A  central concern of the Select Committee was safety, and in particular 

whether there was adequate investment in new buses. This concern can be 

seen as part of the wider question of the impact of deregulation on the quality 

of service. In much of the existing literature on bus deregulation, quality was 

identified with service frequency [14]. However, the actual behaviour in the 

deregulated markets suggests that service frequency and bus quality behave 

differently. Frequency has been mentioned earlier; here we just consider bus 

and service quality. There seems to be a basic disagreement about the effects 

of competition on the quality of service. On the one hand in MMC report 

Cm2423 we find

competition and potential competition, in our view, are the main 

safeguards against ... lower services.

And on the other hand the view of the NFBU, given in its evidence to 

the select committee [8], is that

on the whole, competition is wasteful. Bristol, with a dominant 

operator, probably has the best service...

a view which White endorses in his evidence.

Looking specifically at the issue of investment in new buses, much of the 

evidence suggested that investment was highest where on-the-road competi­

tion was absent. The NFBU noted that the lack of modem buses is most 

marked in Sheffield and Manchester, where competition is very fierce, and 

Glaister pointed out that the original 1930’s legislation introducing regula­

tion was brought in specifically to create barriers to entry in order to improve 

the then poor safety standards4. A dissenting voice is that of Norris, then a

4It should be noted that this poor record was due in part to bad behaviour by drivers, 

and not just to inadequate maintenance.
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junior Minister for Transport. He claims that there is no evidence that new 

buses are only being bought by de facto monopolies. Finally, White considers 

a wider notion of quality and notes that service innovation has occurred in 

areas of relatively little inter-operator competition, and has probably arisen 

as bus companies compete against other methods of transport, such as walk­

ing or the car, rather than competing with other operators. In summary, the 

majority view seems to be that quality is higher when there is no competi­

tion.

3.2.2 Express Coaches

One of the purposes behind the 1980 legislation was to introduce institu­

tional changes that would lead to improvements in transport services [11] and 

it does seem that since 1980 there have been significant changes to prices, 

quality, frequency and the coverage of the coach network, and these changes 

have on the whole benefited passengers. Deregulation has led to changes 

in both the level and structure of prices. The structures of concessionary 

fares and of different types of ticket available from National Express have 

seen changes that Thompson &; Whitfield [57] characterise as making prices 

simpler and more customer friendly. Price levels have also changed: they 

have fallen. The initial fall was dramatic, and even though prices began to 

rise again from 1982 onwards, in 1990 they remained below the 1980 levels 

in real terms [57]. Prices could have fallen for a number of reasons, among 

th^n) that the pre-deregulated prices were higher than even a protected mo­

nopolist would want, that coaches were trying to take market share from 

rail, that operators kept prices low so as not to attract entry, or that low 

prices resulted from competition between operators. Of course all of these, 

and other, mechanisms could have contributed something to the fall in prices,
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and various writers, particularly Thompson and his co-authors [57] [36], have 

attempted to disentangle their effects. The main conclusion to emerge from 

this work is that the fall in prices is greater when there is actual competition.

As well as its effects on prices, deregulation led to a dramatic increase 

in frequencies on routes, and an extension of the coach network. Before the 

1980 Act the coach network had been declining [3], yet 4 years after the Act 

Barton & Everest [3] found that an extra 48 million vehicle kms were being 

operated by new express services. The frequency of services has also seen 

important changes. Although Robbins & White [49] found, in 1986, that 

frequencies had fallen on some minor provincial routes, frequencies have on 

the whole seen dramatic increases. Thompson & Whitfield [57] examined how 

the frequency rise depended on the amount and success of entry. They found 

that frequencies rose by over 700% on routes within Scotland, where entry 

was most successful, whereas on UK trunk routes, where National Express 

has maintained dominance, frequency rose by just 179%. The picture is not 

entirely clear, but it does seem that competition pushes frequencies up.

There have been a number of innovations in the type of service offered, 

including a large expansion of airport linked services, and the introduction of 

luxury services offering such facilities as videos, refreshments, hostesses and 

the like [11]. Many of these innovations were introduced first by entrants, and 

indeed those entrants which did survive often did so by offering upmarket 

services [57]. Journey times, another indicator of passenger convenience, have 

also fallen [57].

Thus far the behaviour of deregulated express coach markets is roughly in 

line with what was expected: removing barriers to entry and allowing oper­

ators to compete against British Rail led to lower prices, higher quality (and 

vertically differentiated products) and more travel. However, the market has
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provided one major surprise. It was widely expected that the dominance of 

National Express would dissolve on deregulation [11], yet despite an initially 

high rate of entry it has remained dom inant, and has thrived.

3.2.3 Com paring Local Buses and Express Coaches

Some effects are common to both markets, most notably that both have 

emerged with a surprisingly concentrated market structure, and that in 

both cases, when operators competed on the road, then the number of 

buses/coaches rose dramatically. There are also some striking differences. 

Briefly, when comparing conditions in those urban local bus markets in which 

there was competition with the situation prior to deregulation, or to those 

areas where one operator was dominant, observers have found that there was 

little, if any, fall in price, that buses were old and badly maintained, that, 

despite the prediction of many writers that deregulation would lead to the ap­

pearance of services of differing qualities, no vertical differentiation emerged, 

and that there was a very considerable amount of timetable instability. With 

express coaches on the other hand, when there was competition on the road 

then observers found a marked reduction in prices, they made no mention of 

timetable instability, or of a fall in the cleanliness and newness of coaches, 

and they commented that entrants often introduced higher quality services 

than those of the incumbent, although in some cases the incumbent itself 

offered a differentiated service, even in the absence of competitors.

Two particularly striking and clear cut differences in the effects of on 

the road competition between urban local buses and express coaches stand 

out from this summary: first, competition leads to substantial instability in 

the arrival times of local buses, but not of express coaches, and second that 

prices remain surprisingly high under competition in local bus markets, but
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fall markedly when express coaches compete. The rest of this paper seeks to 

support the hypothesis that both differences arise from the same difference 

in passenger behaviour between the two markets. Before turning to this 

hypothesis a few words are in order to clarify the phenomena the paper seeks 

to explain.

It is clear what is meant by timetable instability: it arises when operators 

frequently change the arrival times of their buses. However, there are different 

senses in which buses could be bunched. It seems clear that congestion and 

random variations in journey times can cause buses to bunch together, even 

if their published arrival times at a stop are well spaced. Also, bus arrivals 

may be concentrated at particular times of the day simply because there 

are peaks in demand. This chapter will be concerned with neither of these 

types of bunching. Rather it will seek to explain the kind of bunching which 

the NFBU complained of when it pointed out that two operators running 

timetables which were almost identical, for example where both ran an hourly 

service, with one arriving on the hour and one arriving 5 minutes past, hardly 

increased passenger choice.

3.3 Explaining the Differences

There are some similarities in the impact of competition on market perfor­

mance between express coaches and local buses. In both cases competition 

is associated with higher frequency, though this is perhaps more marked in 

local buses, and in both the level of concentration is surprisingly high. There 

are also some differences between the two markets. Competition is associ­

ated with frequent changes to the timetable on local bus, but not express 

coach, routes, and competition leads to reduced fares on express coach, but
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not local bus, routes. There is also a difference in the impact of competition 

on the quality of bus services. Competition in local bus markets seems to 

reduce the quality of buses used, while competition on express coach routes 

leads to innovation and improved service. Timetable instability, high fares 

and low quality buses are particularly marked features of local bus routes in 

metropolitan areas and for the rest of the chapter we focus on high density 

urban local bus routes.

This paper puts forward the hypothesis that these differences arise from 

a basic difference in passenger behaviour. On the one hand the time at 

which passengers on urban local bus routes arrive at the stop is taken to be 

independent of the arrival times of buses, while on the other hand passengers 

on express coach routes are assumed to arrive just in time to board their 

most preferred coach.

The assumption that on urban local bus routes passengers arrive at a 

bus stop independently of the arrival time of buses has independent support. 

Savage [52] cites work on passenger waiting times in Greater Manchester. It 

was found that when the intervals between buses are comparatively short 

there is a random element in the arrival patterns of potential passengers at 

stops, so that as frequency increases the average waiting time falls. In fact 

if the intervals are less than around 12 minutes, then arrivals become totally 

random. Savage in his own empirical work on competition on selected bus 

routes assumes that a bus arriving just before its rival will get all the mar­

ket. This behaviour on the part of passengers has also been put forward by 

others as important to understanding the effect of competition on timetable 

stability and low reductions in fares on local bus routes. Chester, who, as we 

saw above, argued that ‘unfettered competition’ on local bus routes would 

undermine regular timetables [7] went on to give the reason for this as that
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if any operator fixed definite times, rival operators will seek to 

reach stopping places a few minutes earlier and take the traffic.

Despite the obvious appeal of this mechanism, early attempts to formally 

model timetable instability were structured so as to exclude the mechanism’s 

operation. Foster &; Golay [22] used a Hotelling framework in which passen­

gers have an ideal departure time. One component of the cost of making 

a journey is an item which increases as the difference between the actual 

departure time and the ideal gets larger. To the passenger it is unimportant 

whether a  bus arrives before or after its ideal time. It follows that the benefit 

to be gained by pre-empting the rival is offset by the loss incurred as a result 

of the increased separation from the preceding service. They identify insta­

bility with lack of equilibrium, and since an equilibrium does exist in this 

location model5, they conclude that there will not be instability. Subsequent 

work on the choice of arrival time has used a similar framework6. A slightly 

different perspective on timetable choice is provided by Glaister in his evi­

dence to the Select Committee. He suggests that irregularity arises because 

there are revenue benefits from service regularity which are external to the 

individual operator but internal to the market as a whole. Presumably there 

is a market benefit because demand is higher for a regular service, and this

5The authors assume sequential entry. Moreover in proving the existence of equilibrium 

the authors rely on the modified zero conjectural variation introduced in Novshek [44], so 

that they do not show that a pure strategy Nash Equilibrium necessarily exists. Their 

result can be seen as part of the debate about the conditions under which a pure strategy 

Nash Equilibrium exists in Hotelling location games, when firms choose both price and 

location. d’Asprement et al [10] pointed out that when transport costs are linear there 

is not neccessarily a pure strategy price equilibium when locations are too close together, 

but there is an equilibrium when costs are quadratic.

6See the papers by Foster &; Golay [22], Evans [19], Dodgson et al [15], [16].
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demand benefits all operators, not just the one whose choice of timetable 

led to a more stable and regularly spaced service. This observation will only 

imply an underprovision of regularity, however, if there is a private gain to 

creating irregularity. Glaister leaves the source of this gain unexplained.

The hypothesis examined in this chapter is that timetables are unstable 

when there is competition on local bus routes for exactly the reason set out by 

Chester. The formal model we consider also predicts that bus arrivals will 

be bunched together. The select committee concluded that this bunching 

did occur on local bus routes. Finally, the model predicts that the operator 

most likely to update its timetable is the one whose buses currently collect 

least passengers. Many witnesses7 testified to the select committee that 

passengers on high density bus routes take the first bus to arrive, regardless 

of price differentials, and that this undermines attempts by bus operators 

to win market share through cuts in fares. This explanation was also put 

forward by Mackie & Preston [41] as a reason why fares remained so high. 

Many go on to note that competition on local bus routes focuses on being 

first rather than cheapest, and as a consequence operators put many buses 

on a route.

This chapter explores the fares set on local bus routes. Passenger be­

haviour in the model we develop has two important features: passengers ar­

rive at the stop independently of bus arrival times, and passengers will board 

the first bus to arrive even if its fare is a little higher than that charged on 

the next bus. We show that when passenger behaviour has these features, 

not only is the incentive to cut fares reduced, competition between two op­

erators can lead to higher fares than a monopolist would set. The reason for 

this is two-fold. First, as noted by previous commentators, if a bus company

7See the evidence of White and the TGWU
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cuts its fares it does not increase its share of passengers. However, the the 

number of passengers which make bus journeys will increase. Some of these 

additional passengers will board the rival bus, giving a positive externality 

which leads to under-investment in fare reductions.

The reasons put forward in the Select Committee report to explain why 

investment in new buses is low when there is competition rely on financial 

constraints: essentially the profits which firms earn when there is competition 

are too low to cover the investment costs. However, in the concluding section 

of the chapter we suggest that when passengers board the first bus to arrive 

competition will lead to under-provion of investment in much the same way 

as it leads to under-provision of fare reductions.

3.4 T im etable Instability and Bunching

3.4.1 Local Buses

In the model in this section frequent changes to the timetable are a natural 

result of on-the-road competition when passengers arrive evenly throughout 

the day and board the first bus to arrive. This behaviour means that two 

competing operators running alternate buses will try  to  schedule their buses 

to arrive as late as possible after their rival’s, as the later after one bus 

the next one arrives, the more passengers will be waiting. Both operators 

cannot simultaneously choose arrival times just before those of its rival. Each 

operator will keep its rival guessing as to its arrival time since, if it chose any 

time with certainty, its rival would arrive just before it and leave it with no 

passengers.

That each bus operator will keep its rival guessing would, on its own, 

induce bus operators to choose all possible arrival times with equal probabil­
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ity. We also assume, however, that there is a cost to revising the timetable. 

This is in fact likely to be the case. Timetable changes must be registered, 

giving rise to at least some administrative costs. Other costs arise from the 

managerial time needed to decide on a change, and on the form of the new 

timetable. Moreover, since timetables do not come into effect until 42 days 

after initial registration, deciding on a change will involve planning and re­

search into the rival’s planned actions. The cost has a striking effect on the 

pattern of timetable changes: the bus operator whose bus, yesterday, arrived 

just before its rival’s, and so had most passengers, is more likely not to revise 

its timetable today at all, while the other is more likely to change so that its 

buses arrive just before the time its rival’s arrived yesterday. The tendency 

is for buses to leapfrog each other in order to arrive earlier and earlier. One 

result of this behaviour is that bus arrivals tend to be bunched together as 

each bus operator, if it revises its timetable at all, will choose a new time 

just before its rival’s old one.

The model is highly stylised in order to draw out the effects on timetable 

stability of the twin assumptions that passengers board the first bus to arrive, 

and timetable revision is costly. In particular we do not endogenise passenger 

boarding behaviour, it is just taken as a primitive of the model. Also we will 

treat a day as circular in order to focus attention purely on the question of 

whether firms want their buses to arrive before or after those of their rivals, 

without the complications caused by end effects.

We first give a simple discrete example which shows instability, bunch­

ing and leapfrogging. The full continuous model draws out the underlying 

mechanisms more clearly.

As in the earlier work on timetable choice, instability in the model here 

will arise when a pure strategy equilibrium does not exist. However, the
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lack of such an equilibrium here is more fundamental than that discussed 

in early formulations of the Hotelling location game. In those cases the 

lack of equilibrium arose because of problems in optimal pricing when firms 

were located too close to each other, and the problem could be resolved 

through a suitable choice of cost function8. Here there is no pricing problem. 

Instability results directly from a lack of pure strategy equilibrium in the 

choice of location.

3.4.1.1 An Example

Two buses, A  and B, compete to pick up passengers during each of an infinite 

number of days. Each day has 4 minutes arranged around a circle, so that 

minute 3 is just before minute 0. Figure 3.1 illustrates a day.

0 1
• ---------------- •

• ----------------•
3 2

Figure 3.1: A day

In period t  bus z, i = A, B , picks an arrival time a*, a\ G {0 , . . . ,  3}. The 

state in period t, denoted k1, is the arrival times of buses in the previous 

period, kl =  al~l =  (a^-1, ^ 1).

One unit of passengers arrive every minute and if a bus arrives in the 

same minute they board it, otherwise they board the first bus to arrive. Two 

buses arriving at the same time share the waiting passengers equally.

8See Footnote 5.
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A bus gets a gross profit of 1 for every unit of passengers which board. 

Let 7Ti(aAi aB) be the gross payoff of bus i when arrival times are a a , aB. 

The complete gross profit matrix is given in Table 3.2 which shows the pair 

7Tj4, 7tb for each possible combination of arrival times.

aB

0 2 2

CO 1 2 2 1

CO

aA 1 1 3 2 2 3 1 2 2

2 2 2 1 3 2 2 3 1

CO 3 1 2 2 1 3 2 2

Table 3.2: Table of values of tta, kb

Buses also incur a cost of c if they revise their timetable. Let Ci(a*) be 

the cost bus i pays if it arrives at a\ in period t. Then:

C M )  =
0 iial = kt 
c otherwise

For simplicity we assume that each bus i is myopic: it seeks only to 

maximise the expected current profit net of any revision cost. However, we 

will see that this assumption is not as restrictive as it appears: even if buses 

maximised the sum of discounted future net profits the equilibrium strategies 

would be the same as the ones we find here. The problem is essentially a 

one period one (though the past influences the present through the state) 

and we now drop the time superscript. A strategy for bus i, denoted 

specifies the probability that i chooses each arrival time, so that S j ( r a )  is the 

probability that a* =  m. Strategies can be conditioned on the state, but on 

nothing else. In any equilibrium s* = (s*A, s*B) any arrival time chosen with 

positive probability must maximise expected profit net of cost, given the 

rival’s strategy, i.e. if s*(m) > 0 then m  maximises E  n (m, a,j) — C(m) \ .
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It is easy to see that if the revision cost is less than 1 firms will never 

choose a pure strategy in equilibrium, no matter what the state. Suppose A  

arrived in minute 0 with certainty. If B  arrived at 3 it would collect 3 units 

of passengers, and pay a maximum cost of c, giving a net profit of more than 

2. If B  arrived at any other time it could collect at most 2 units, and so 

it will certainly arrive at 3. But if £  is arriving at 3, A  does best to arrive 

just before at 2, and so on. When c <  1 the only equilibrium is in mixed 

strategies. Each bus randomises to keep its rival guessing as to exactly when 

it will arrive. Equilibrium strategies are shown in Tables 3.3 and 3.4 below.

ks 4 (0 )  4 (1 )  4 (2 )  4 (3 )
0 1_ _ _1 _ c c

1 1 1 c 1 c
2 _r 4 2 4

2 2 c 1 _ c _

3 3 c 1 I c 
2 4 2 4

Table 3.3: A’s equilibrium strategy

ks 5b (0) 5js(1) 5n(2) sb $ )
0 i _ 1 _ c c

1 1 c
2 4 -  1 4- -2 4

2 1_ _ c _ 1 c o o
3 1 c

2 4 1 +  C2 4

Table 3.4: £ ’s equilibrium strategy

In both tables we assume that A  arrived in minute 0 yesterday, i.e. kA =  0. 

The state is therefore summarised just by fcjg. We can always ensure that 

kA = 0 simply by relabelling the minutes at the start of the current period.

Before examining what these strategies imply for the pattern of timetable 

revisions, we first confirm that they do form an equilibrium. To do this we 

need just show that each firm only chooses an arrival time with positive 

probability if arriving at that time maximises its expected net profit given
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its rival’s strategy. Table 3.5 sets out the expected net profit of A  when B  

plays the strategy given in Table 3.4. Denote A’s expected profit when it 

arrives at m  and B  plays s*B by 11  ̂(m). It is clear by inspection that, given

fcb  n A(o) r u (i)  nu(2) ru(3)
n  o c o 3 c o c  o c0 2 — £  2 -  #  2 — £ 2 — £ 2 2 2 2
1 2 - f  2 — c 2 - f  2 — c

to e) C e\ C ry C c\ 3c 
z 2 Z 2 Z 2  ̂ 2CO 2 - f  2  — c  2 - f  2 — c

Table 3.5: A s expected profit, given sB

the state kB, the strategy given in Table 3.3 only assigns positive probability 

to those arrival times which maximise A’s expected profit. A similar table to 

Table 3.5 could readily be found for B  and this would show that the strategy 

given in Table 3.4 likewise only assigns positive probability to those arrival 

times which maximise B ’s expected profit. This confirms that Tables 3.3 

and 3.4 do specify an equilibrium in mixed strategies. Moreover this is the 

only equilibrium when 0 < c < 1, though to check this requires an exhaustive 

search of other possibilities and the results of this search are not repeated 

here. One final general feature of the equilibrium is that a bus operator’s 

expected net profits do not depend on the state: they are always 2 — c/2. 

Since the current period can only affect the future through the state, this 

means that the current period has no effect on future net profits and firms 

would not change their behaviour if they were not myopic9.

Turning to the implications of these equilibrium strategies for the pattern 

of timetable revision, the case that is of particular interest is when the buses 

arrived in two successive minutes yesterday, so either kB =  1 if B  arrived just

9Suppose buses maximise the discounted sum of net profits, the discount rate is 6 and 

the revision cost cS, then there is a perfect eqilibrium in which strategies are identical to 

those found here.
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after A, or kB =  3 if it arrived just before. The strategies of the two buses are 

shown diagrammatically in Figure 3.2 for the case where kB = 1. According

0.7 -

0.3 -

-  0.7

-  0.3

Figure 3.2: Strategies when kB = 1 and c =  4/5

to equilibrium strategies either A  arrives at a particular time with positive 

probability, or B  does, but not both. In the Figure there is a bar at each 

minute whose height is proportional to the probability that a bus arrives at 

that minute: if it is bus A  the bar has vertical stripes, if B  horizontal. We 

assume that c =  4/5.

The reason why this case is the most important is that whatever the 

actual realisations of firms’ random strategies, they will never arrive at the 

same time, and neither will they arrive evenly spaced: if buses arrived one 

after the other in the previous day, they are bound to arrive one after the 

other in the current day, and so in all future days. When kB = 0 or 2, the 

only other possible cases, firms randomise over three possible arrival times, 

and so with positive probability arrive one after the other in the current day, 

and if not in the current day, then with positive probability in the next day,
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and so on. In the long run, buses will always arrive one after the other every 

day. This phenomenon resembles the bunching of bus arrivals that many 

commentators have noted is a feature of deregulated local bus markets.

In the long run not only do buses always arrive one after the other, but we 

see a tendency for buses to leapfrog each other backwards round the day. In 

Figure 3.2 bus A, which arrived just before B  and collected most passengers 

yesterday, was most likely to arrive at the same time today, whereas B  was 

most likely to revise its timetable in order to arrive just before A s arrival 

time yesterday. The continuous time model in the next section explores the 

mechanisms underlying this leapfrogging and bunching more fully.

3.4.1.2 The M odel

Two buses, A  and B, compete to pick up passengers during each of an infinite 

number of days. Each day has length 1, and is circular, with later times being 

further clockwise round the circle. In each period t  each bus z, i =  A, B, picks 

an arrival time aj, a\ G (0,1]. At the start of period t  all times are relabelled 

so that A s arrival time in period t — 1 is at 0, which just has the effect that 

all times in t are measured in terms of minutes later than A s  arrival time 

in the previous period. The state in period t, denoted kf, is the (relabelled) 

arrival time of B  in the previous period. We will assume henceforth that A  

arrived ‘before’ B  in the sense that k < 1/2. By symmetry, this is without 

loss of generality.

Passengers arrive at a uniform rate throughout the day, with a total mass 

of 1 per day, and board the first bus to arrive after they do, unless both 

arrive at the same moment, in which case half board each bus.

A bus gets a gross profit in the day equal to the mass of passengers which 

boards and the mass boarding a bus is just the minutes after the previous
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bus that this bus arrives. Let 'Ki (atA,a tB) be the gross profit of bus i when 

arrival times are a^, alB. Then:

if atA > a %  

if a \  =  a%*A(atA,a tB) = < 1/2

1 +  (aA ~  a t)) ^  aA <  aB\
and similarly for 7rB .

If buses must pay when they update their timetable different arrival times 

will entail different costs. Denote the updating cost incurred by i should it 

arrive at x  when the state is k by Ci(x, k).

We assume that buses are myopic and seek only to maximise the ex­

pected current profit net of any revision cost. The problem is essentially a 

one period one (the past is summarised by the state), and we now drop the 

time superscripts. We restrict attention to Markov strategies which depend 

only on the state. A pure strategy for bus i is a function Si(k) which gives 

the arrival time chosen when the state is k. A  mixed strategy is a distribu­

tion function Fi(x, k) which gives the probability of arriving in the interval 

[0,x]. We consider Nash Equlibria where each bus chooses a strategy which 

maximises its expected net profit given the strategy chosen by its rival.

The first point is that for updating costs sufficiently low there is no equi­

librium in pure strategies. Consider the extreme case where the updating 

cost is everywhere zero. In this case the state does not affect current payoffs 

and Markov strategies will not depend on it. The best reply function is not 

even defined here. If B  chooses sB =  clb, A  will maximise the profit from 

boarding passengers by arriving as late as possible while still arriving before 

aB, i.e. by setting its arrival time as the largest aA such that aA <  aB. 

When time is continuous there is no aA which satisfies this. However, even 

without this technical problem there would be no equilibrium in pure strate­
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gies. Consider whether an ^-equilibrium (sa>*b ) exists, where if j  arrives at 

5*,no arrival time gives i a payoff of e more than ^(s*), for an arbitrarily 

small e. No such ^-equilibrium exists. To see why, simply note that in any 

^-equilibrium A  will arrive no more than e minutes before B, and B  will 

arrive no more than e minutes before A. When e is small, these conditions 

cannot both be met.

From now on we will consider only mixed strategies. Denote the average 

arrival time of bus i by a*. Let Eh (a;, Fj) be the expected gross profit of bus 

% when it arrives at x  and its rival’s strategy is Fj. This will be given by:

Ili(a:, Fj) =  lim [a; — (dj\aj <  a;)] Fj(x — e)

+  [1 +  x -  { f l j |CLj > x)] (1 -  Fj(x))

+ \  (Fj(x) -  F3(x -  e))

Let lim€_o (Fj(x) — Fj(x — e)) = Pr^ (x) (this will be zero when there is no 

atom in the distribution at x). Then:

n i( i, Fj) =  [ x -  {aj\a,j < x)] (Fj(x) -  Pr j(x))

+ [1 +  x  — {a.j\a.j > x)] (1 — Fj(x))

+  [x — (Sj|a.j =  x)] Pr j(x)

+ \ P i j ( x )

which rearranges to:

II i(x, Fj) = l -  a j + x -  Fj(x) +  |  Pr j(a?) (3.1)

Using these expressions we first find equilibrium when timetable revision is 

costless.

When there is no cost to revising the timetable, so that in the absence of

other considerations all arrival times are equally attractive, there is an equi­
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librium in which both operators choose arrival times according to a uniform 

probability distribution:

F*(x) = x , i  = A , B

To confirm that these strategies do form an equilibrium, substitute into the 

expression for expected profit above to give:

n*(x,F/) = 1/2 Var, i = A ,B

Since, when its rival chooses arrival times according to a uniform distribution 

over all times, an operator earns the same expected profit no matter what 

time it chooses, it is indifferent over all possible strategies, including arriv­

ing according to a uniform distribution. Here we see a radical instability in 

the timetable. Buses choose any arrival time with equal probability, inde­

pendently of their rival’s or their own previous arrival time. This instability 

arises from the desire on the part of both buses to arrive just before their 

rival, when there will be many passengers waiting at the stop.

Once we assume that it is costly to adjust the timetable more structure 

on the probability distribution chosen by firms emerges.

For technical reasons we assume that the cost of choosing different arrival 

times changes continuously. In particular we assume that if the arrival time 

is the same as in the last period there is no updating cost, and that the 

cost rises linearly at a rate m with the absolute change in the arrival time 

until a maximum updating cost of c is reached, at which point the updating 

cost remains constant. When m  is large this function will approximate the 

situation where a firm pays c for every arrival time except that at which it 

arrived in the previous period, for which it pays nothing, and henceforth we
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assume m  > 1. The updating cost functions are:

mx if x  € [0, c/m]

CU(x, k) =  < c if x € [c/m, 1 — c/m] (3.2)

CB(x,k) =  <

m (l —x) if x € [1 — c/m, 1)

c if x € [0, fc — c/m]

m(/c — x) if x € [fc — c/m, k]
(3-3)

m(x — fc) if x 6 [&, A: +  c/m] 

c if x € [fc +  c/m, 1)

An example of these costs are illustrated in Figure 3.3 below. In writing and 

illustrating CB(x,k)  we have assumed that the interval between bus arrivals 

in the previous period, k , was not too small, specifically that k > c/m. In 

the limit where m —*• oo this will almost always be true, but in any case what 

is at issue is notation rather than results. Looking at the illustration of CB in 

the second panel of Figure 3.3, note that the circular day has been mapped 

to a line in the diagrams by cutting it at the point where 1 and 0 meet up and 

placing 0 at one end and 1 at the other. If k < c/m  the diagram is essentially 

the same, but the two ends of the fine will he in a region where the updating 

cost is less than c. The exact expression for CB would differ from the one 

given in Equation 3.3, though the function is, in essence, the same. We will 

ignore this notational complication in what follows. The reader should be 

able to construct the exact expressions relevant to the case k < c/m  from 

the results that follow.

Now that the cost of arrival times varies, there can no longer be a com­

pletely mixed strategy equilibrium in which A  chooses to arrive according to 

a uniform probability distribution. If A  did so, B  would choose to arrive at 

the same time in one period as it did in the previous one, i.e. a t k, since 

all times give the same expected profit from boarding passengers, and by
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CA(x, k)

c —

1 — c/m  ;c m

Updating cost function: bus A

CB(x , fc)

c

0
k — c/m k k + c/m

Updating cost function: bus B

Figure 3.3: An example of the updating cost as a function of arrival time x  

for a given k
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arriving at k  bus B  avoids all updating costs.

There are two cases, depending on whether the buses were bunched to­

gether in the previous period or were evenly spaced, specifically on whether 

k > c or not. We consider the simpler case first where buses were fairly 

evenly spaced and k > c (this case is only possible when c > 1/2). We will 

first formally state and prove the result before describing its implications and 

providing some intuition as to why it is true. We have:

R esult 14 There is an equilibrium in which for k € (c, 1/2].

FX(x,k) =

c a; € [0, c]

x  x  £ [c, k — c/m]

(1 +  m)x  — mk  -l-c x  E [A; — c/m, k]

k + c x  E [k, k  +  c]

x  x E [k +  c, 1)

0 x  E [0, c]

x — c x  E [c, k)

k x  E [k, k +  c]

x  — c x  € [fc +  c, 1 — c/m ]

(1 +  m)x — m x  € [1 — c/m, 1)

Proof. To show that these strategies form an equilibrium, we need to show 

that the net profit a bus operator expects to earn is the same, no matter 

what time in the support its bus arrives, and that this net profit is no less 

than that from arriving at any time not in the support. Substituting B ’s
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strategy into the expression for A s profit from boarding passengers gives:

x G [0, c] 

x € [c, &) 

x = k
Ha (x ,Fb ) = l - a B +

x

c
c/2 

x — k 

c
x G (&, k 4- c] 

x € [£ +  c, 1 — c/m]

771 (1 — x) x G [1 — c/m , 1) 

which gives an expected net profit for A as a function of its arrival time of:

x (l — m) x G [0, c/m]

UA(x, Fg) -  CA(x) =  1 -  aB + <

x — c x G [c/m, c]

0 x G [c, £)

—c/2 x = k
x — k — c x G (fc, fc +  c]

0 i G [ H c,1)

Similarly the expected net profit of B  as a function of its arrival time is:

x — 3c/2 x =  0

n B (x, FJ) -  Cj5(x) =  1 -  +

x — 2c x G (0, c]

—c x G [c, fc]

(x — fc)(l — m) — c x G [&, & 4- c/m]

x — 2c x G [fc +  c/m, fc +  c]

—c x G [& +  c, 1)

This net profit is shown in Figure 3.4 below. Inspection of the expressions 

and the Figures reveals that the expected net profit is 1 — aB if A  arrives at 

any time in the support of FJ(x), and is less than this should A  arrive at any 

other time. This confirms that F J is a best response to F£. Similar reasoning 

confirms that Fg is a best response to FJ and so that these strategies are an 

equilibrium. ■
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n A(x,F£) -  CA{x)

1 —  a s

1 -  aB -  c —

k + cm

Expected net profit: bus A

n s ( x ,F ; )  -  c B(x)

■ih- 1 — a A ~  C

1 — a a — 2c — 1 — a a — 2c

Expected net profit: bus B

Figure 3.4: Expected net profit as a function of arrival time: k < c
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Figure 3.5 below shows the equilibrium strategies. Since marginal prob-

I a ( x )

1 +  m—

1 -\ 
0

0

Q-Q

0——o G—

? T ?c k k 4- c
k - c

m
Marginal probability of arriving: bus A

1 +  771-

I b ( x )

o-o—l m

Marginal probability of arriving: bus B

Figure 3.5: Equilibrium marginal probabilities of arrival time for given k

abilities are simpler to interpret than the related distribution function, the 

figures give the marginal probability chosen by each firm in equilibrium, 

where this is defined. A filled square at the top of a line means that there is 

a probability mass at that point, and the probability in that mass is marked. 

The probability mass of c in the distribution means that each bus arrives at
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the same time as it did in the previous period with probability c. Thus, not 

surprisingly, the higher the updating cost, the higher the probability that a 

bus chooses not to incur it. If a bus does update its arrival time, it never 

chooses to arrive a little later than previously, but may arrive little earlier. 

Also we see that a bus never arrives a little later than its rival’s previous 

arrival time, but may arrive a little earlier. In particular with probability 

c+ c/ra  it will arrive in an interval of width c/m immediately before its rival’s 

arrival time in the previous period10. The implication of these strategies is 

that buses tend either not to update their arrival times, or if they do, to 

arrive just before their rival’s previous arrival time. They never arrive later 

than either their own or their rival’s previous arrival time. Since a lot of 

probability is concentrated close to the same two arrival times for each bus, 

this behaviour will cause a tendency for buses to choose close arrival times 

this period and so to bunched arrival times. Moreover we see some leapfrog­

ging to earlier and earlier times as bus operators avoid arrival times later 

than their rival’s previous time, but sometimes choose an arrival time before.

As stated in the proof, to show that these strategies do form an equilib­

rium we need to show that the expected net profit of each bus is maximised 

by its arriving at any time in the support of its equilibrium distribution func­

tion. Suppose A  arrives according to F)J and consider B ’s expected payoff. 

All other things equal B  would arrive at k  and avoid all updating costs. How­

ever, with a relatively high probability A  arrives just before k which increases 

B ’s expected payoff if it arrives a little earlier still. A’s distribution function 

is such that this inventive exactly offsets the disincentive from having to pay 

an updating cost. Also the atom in A’s distribution at 0 makes the expected 

profit from arriving just before this higher so that these times also he in H’s

10c +  c / m =  (k — (k — c/m))  (1 +  m)
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support.

So far we have just considered the case where the buses were not too 

bunched together in the previous period. Now we turn to the case where 

their arrival times were separated by less than c in the previous period and 

so k < c. In this case:

R esu lt 15 There is an equilibrium (F^,F^) which, when k < c, has the 

form:

F*a (x , k)  -
k + c x  € [0, k +  c] 

x x  € [k ■+■ c, 1)

F£(x,k) = <

0 x  € [0, k)

k x  € [/;, k +  c)

x  — c x  € [fc +  c, 1 — c/m]

(1 +  m)x — m x  € [1 — c/m, 1)

P roof. To confirm that these form an equilibrium we can calculate the 

expected net profit from arriving at different times, assuming the rival’s 

times are given by these distributions, the same way as above. This gives:

n*(x ,*S) -  CA(x) =  1 -  aB +

x(l — m) x  € [0, c/m] 

x — c x £ [c/m,k\ 

k/2  — c x  = k 

x — k — c x  E (k, k  +  c] 

0 x  G [k +  c, 1)
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IlB( x ,F Z ) - C B(x) = l - a A +

—kj 2 — Sc/2 x =  0

x — k — 2c xE(0,k — c/m]
(x — k)( 1 +  m) — c x E[k — c/m, &]

(x — k)(l — m) — c x E [k,k c/m] 
x — k — 2c x E [k-\-c/m,k + c]
—c [fe +  c, 1)

These expected net profits are illustrated in Figure 3.6 below. Inspection 

of the Figure and the expressions confirms that each bus’ expected net profit 

is maximised at any point on the support of its equilibrium distribution 

function. ■

These equilibrium strategies are illustrated in Figure 3.7: When bus ar­

rivals were close together in the previous period, the bus which arrived just 

before its rival and so had more passengers, i.e. bus A , is less likely to have 

its timetable updated this period than is bus B  which had fewer passengers. 

This is shown by the fact that the atom at 0 in A s equilibrium strategy 

has mass k +  c, whereas the atom in B ’s equilibrium strategy at k only has 

mass k. Moreover if bus A  does have its timetable updated, it will arrive 

earlier than its own previous arrival time, but will avoid/time either a little 

earlier or later than B ’s previous arrival time. Bus B  on the other hand 

will, with relatively high probability, arrive in the interval c /m  just before 

A*s previous arrival time. The leap-frogging to earlier and earlier times first 

seen for the case when buses were fairly evenly spaced previously, k> c, is a 

much stronger feature of the equilibrium when buses were bunched together 

previously. The later bus is both more likely to have its timetable revised 

than its rival, and if it is revised at all, is relatively likely to arrive just before 

the previous arrival time of the early bus.
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n A(x) -  CA

1 —  a s  —

1 — a s  — c +  k  — — 1 — a s  — c +  k

1 -  aB -  c —

Expected net profit: bus A

nB(x) - c B

1 — a a — c —

— 1 — a a — 2c — k

Expected net profit: bus B

Figure 3.6: Equilibrium marginal probabilities of arriving: k < c
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/a (x )
k + c

1 +  771— —1 + 7 7 1

Marginal probability of arriving: bus A

M * )

1 +  771— 0 -0 —1 +  771

Marginal probability of arriving: bus B

Figure 3.7: Equilibrium marginal probabilities of arriving: k < c
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3.4.2 Express Coaches

133

Passengers travelling by express coach know the timetable and travel on 

that coach which they most prefer. Although preferences are not modelled 

explicitly in this section, the assumption underlying the demand function we 

will use is that what matters to passengers is the absolute difference between 

the arrival time of the bus they board and the passenger’s most preferred 

time.

The results of the model express coach market are much more straight­

forward than those for urban local buses, and the whole analysis can be dealt 

with informally. Consider a model identical to the one for urban local buses 

above except that the specification of demand differs. Assume that passen­

gers are located evenly over the day and that the mass of passengers boarding 

a bus is equal to the mass which is closer to that bus than to its rival. For 

both buses this will be 1/2 no matter what the arrival times chosen. So long 

as the updating cost is at a minimum when buses do not update their arrival 

times, there will be an equilibrium in which both buses arrive at the same 

time from day to day.

3.4.3 Conclusions

This section has considered the pattern of timetable revisions that result 

when passengers just turn up at a bus stop and board the first bus to arrive, 

and when there is a cost to updating the timetable, and compared this pattern 

to that when passengers choose their most preferred bus. The results provide 

an explanation for the difference in timetable stability, and in the bunching of 

bus arrival times, which has been noted as between urban local bus markets 

and express coach markets. The next section considers the impact of the
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same passenger behaviour on fare levels.

3.5 Fares

The difference in the impact of market structure on fare levels between local 

urban bus and express coach markets can be investigated by comparing fares 

under monopoly and duopoly in each of the two market settings. In the basic 

model buses of a fixed quality arrive a t fixed, regular times. Operators have 

no choice over quality and frequency. At the end of the analysis we discuss 

relaxing this assumption and argue informally that the results may well be 

robust. Neither do operators have a choice over exact arrival times: work 

in previous sections suggests that in local bus markets competition can lead 

to a fundamental instability in choosing arrival times which would quickly 

make the model intractable. We sidestep the issue here by imposing regular 

arrival times. Varying the assumption on market structure in the model is 

effected by imposing different ownership patterns on the buses.

The results of this section rely on passenger responses to different fare 

levels and, unlike in the previous section, here we explicitly model the pref­

erences underlying their behaviour.

Passengers differ in the cost of walking to the stop/station, which is ex­

actly equivalent in the model express coach market to supposing that they 

differ in the value they put on a coach trip. Waiting at the stop/station is also 

costly and, all other things equal, passengers have a preferred time at which 

they would like to travel. In standard location games the cost of travelling 

at a time different from the most preferred one plays a central role, rather 

than the marginal one ascribed to it here. After the analysis we discuss the 

implications of a significant ‘inconvenience’ cost for the results, and suggest
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informally that the results would largely carry through.

Finally, passengers are assumed always to know the frequency of buses 

and the fares charged by different operators. However, in the model urban 

local bus market we assume that they do not know the exact bus arrival 

time, whereas in the model express coach market they do11. This difference 

generates very different effects of competition on price. In the express coach 

market the duopoly fare is lower than the monopoly one, but in the urban 

local bus the duopoly fare is higher. The basic mechanisms underlying this 

difference are straightforward. Starting with the more familiar case, with 

express coaches, where passengers know in advance when buses arrive and 

what fares they charge, those passengers choosing to travel at all choose 

that coach from the set charging the lowest fare which leaves at the most 

convenient time. The number of passengers travelling by coach is higher the 

lower is the lowest fare. A monopolist, running all coaches, is sure to carry all 

passengers deciding to travel and is able to set fares to trade off the numbers 

travelling against the revenue earned from each. Competing duopolists on 

the other hand get an additional benefit from cutting fares: they get half the 

passengers if they charge the same fare as their rival, but will capture all of 

them if they charge marginally less, giving rise to an over-incentive to cut 

prices compared to the monopolist. In equilibrium both operators set fares 

to zero, which is surely lower than the monopolist’s fare.

In urban local bus markets where passengers do not know the exact arrival 

times of buses, passengers will walk to the stop at the most convenient time. 

Once at the stop, however, they will board the first bus to arrive, even if

11 In the context of express coaches, it makes more sense to talk about “departure times” 

than “arrival times”. However, we will continue to use “arrival times ” to highlight the 

comparison with local buses.
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it charges (not too much) more than the next one, since waiting at a bus 

stop is costly. Consider then a duopolist lowering its fare. More passengers 

will walk to the stop on the expectation of lower fares on average. However 

half of the extra passengers will then board the rival bus, so the duopolist 

gets only half the benefits of the lower fare. A monopolist on the other hand 

always picks up all passengers and so has a greater incentive to cut fares, 

leading to lower fares under monopoly.

3.5.1 T he M odel: Com m on Assum ptions

B uses and Operators

The first part of the description sets down the assumptions on the arrival 

pattern of buses. This is taken to be fixed; what the model investigates is 

the effect of varying the ownership pattern of the buses.

During an infinitely long day, one bus arrives at time ti  and thereafter 

one bus arrives every A minutes. The arrival time of the first bus, ti, is 

drawn from a distribution which represents a uniform distribution on 

[0,A), before the day begins. If an agent knows t\ and A then it knows 

the arrival time of all buses and, conversely, if the agent knows A but not 

t\ then it does not know the exact arrival times of any buses. The identity 

of the operator of the s’th  bus is given by ms. Different market structures 

can be investigated through varying the assumptions made on m s. The two 

with which the analysis of this paper will be concerned are first, a duopoly in 

which each of two operators runs alternating buses, and second a monopoly 

in which all buses are run by the same operator.

In addition we need an assumption on the action set of operators. The 

fare charged on the $’th  bus is given by ps. For most of the section we will 

assume that operators set their fares before the day begins (though after
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t\ is drawn). This is, in fact, what happens: bus drivers do not have the 

authority to start bargaining with passengers waiting at the stop over the 

level of the fare. However, there are no obvious formal constraints which 

dictate why this is so, and at the end of the section we will instead assume 

that prices are set only when a bus arrives at a stop. We find that under this 

alternative assumption prices are so high under all market structures that no 

one ever travels by bus. The main body of the section assumes that before 

the day begins, each operator i chooses the fares on its buses, that is operator 

i chooses ps Vs € {s | ms =  i}. Operators choose simultaneously. This action 

set is further restricted by requiring that a duopolist charge the same fare 

on all its buses, and a monopolist charge the same fare on every other of 

its buses. The first restriction is standard and it will become clear that the 

fares chosen under the restriction would remain optimal, given passenger 

behaviour, were the restriction removed. The reason for requiring that a 

monopolist charge the same fare just on every other of its buses is that this 

makes comparisons of monopoly and duopoly behaviour more transparent. It 

means that the monopolist’s strategy set contains all the options that would 

be available to a colluding duopoly. In fact, and not at all surprisingly, we 

find that it is optimal for the monopolist to charge the same fare on all its 

buses.

Assumptions 1 and 2 below set out the two alternative assumptions for 

the ownership of buses and the additional restrictions on the action sets of 

operators.

A ssum ption  1 Monopoly:

(i) m s =  1, Vs

(ii) ps = Pi, s odd, andps = p2, s even
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A ssum ption  2 Duopoly:

(i) m s =  1, s odd, and m s =  2, s even

(ii) ps = pi, s odd, andps = p%, s even

Under both assumptions, operator behaviour is fully specified by the fares 

on the first two buses, p\ and p2, and we can refer to two types of buses, odd 

and even, indexed by 1 and 2 respectively.

There are no costs to accepting a passenger on board and, if necessary, 

a bus could accommodate any number of passengers. Bus operators aim to 

maximise their average revenues per bus. If a bus charges p  and n  passengers 

board, the revenues earned by the bus is just pn.

Passengers

The second part of the description concerns passenger behaviour.

Each passenger is identified by a pair ( t ,  k ) ,  t  E  R ,  k  e  [ / £ , « ] .  The 

first variable is the time at which the passenger would most like to leave the 

house. The second is the cost a passenger pays should he walk to the bus 

stop/station. The mass of passengers with preferred leaving times in any 

interval St is constant and is just St. Sampling passengers with preferred 

leaving times in any time interval, the proportion with walking cost k  or 

less is given by the distribution function F(k) which represents a uniform 

distribution over [«,7c], and so:

A passenger (r, k) chooses whether to walk to the bus stop, or to stay 

at home and exit the game on the basis of its information set $ a, which is 

the same for all passengers. Assume that passengers know the prices set by

1 if K> K

(3.4)

0 if  K <  AC
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firms, and the interval between firms, and so $ 0 D {ps, A}, but they do not 

necessarily know the exact arrival times of buses. If he chooses to walk to the 

stop, he must also choose a time t. More precisely, each passenger chooses an 

action a from the set A  = {X} U 7Z, where passengers may choose different 

actions, and:

a =  <
t  if the passenger walks to the stop at t 

X  if the passenger stays at home and so exits the game

Here we make what is largely a technical assumption. Passengers suffer a 

small inconvenience cost if they leave the house at a time different from r . 

Specifically, the cost if a passenger leaves the house at t  is:

/(£, r) = e\t — t |

It is reasonable to suppose that passengers incur a cost through either rushing 

to be ready before they would want, or from waiting around with nothing to 

do because they are ready to leave before they need to be. However, such a 

cost is unlikely to be of first order importance and it would be a problem for 

the model if the results rested on this assumption. In fact the assumption is 

made for technical reasons: it means that when a passenger (r, •) is otherwise 

indifferent over leaving the house at any time t in some set T, he will prefer 

the time in T  closest to r .  We will be looking at limit economies as this 

inconvenience cost e goes to zero, its effect in picking between otherwise 

indifferent leaving times will be its only impact.

If passengers stay at home then they get zero payoff. Passengers choosing 

to walk to the bus stop arrive there instantaneously. Assume that they 

learn nothing new at the stop and that once there they wait for the next 

bus. A more realistic assumption might be that passengers learn the arrival 

times t\ once they arrive a t the stop, since bus stops often carry timetables,
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and arriving passengers may infer when the last bus left from the number 

of passengers waiting at the stop. The assumption that, on the contrary, 

passengers learn nothing at the stop is made to simplify the analysis: even if 

some passengers arrive at the stop so long before a bus is due to arrive that 

the passenger would do better to go straight home again, the passenger is no 

better informed about this than when he walked to the stop in the first place, 

so that he has no basis on which to update his decision to be at the stop, 

and we can legitimately ignore such considerations. Waiting at the stop is 

costly, with instantaneous cost c, and costs are paid as they arise. Therefore 

a passenger waiting at the stop for t  minutes will incur a waiting cost C(t) 

given by:

C(t) =  ct

When a bus arrives, passengers at the stop learn the arrival times of 

all buses, and so the information set becomes =  {ps,A ,t i } .  Waiting 

passengers then decide whether to board, go home, or continue waiting. More 

specifically each passenger at the stop chooses an action bs when the s ’th  bus 

arrives, from the set B = { B ,S ,X }  where:
f

B  if the passenger boards 

bs =  S  if the passenger stays at the stop 

X  if the passenger goes home 

We make the additional restriction that passengers always behave in the same 

way when the same type of bus arrives. That is we impose that:

bs = bi if s odd 

bs =  62 if s even 

A passenger boarding bus s payoff associated with the bus trip of:

gs = u - p s, s = 1, 2, . . .
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Note that under either of Assumptions 1 or 2 trip payoffs on all buses are 

either g\ or <72 depending on whether the bus in question was an odd or an 

even one. The variable u can be thought of as the value to a passenger of a 

trip on a bus.

In summary, a passenger can receive four payoffs; the trip payoff, and the 

costs (which are negative payoffs) associated with leaving at an inconvenient 

time, walking to the stop and waiting for a bus. These payoffs are assumed 

to be undiscounted and additive.

Equilibrium

If operators choose their fares before the day begins, then there are no 

decisions for them to make during the day. The only decisions are those 

made by passengers over whether to walk to the stop, and whether to board 

a bus. We look for strategies;

gi e K, 2 = 1,2, 

a(r, k | $ a) : x  [«,7c] —► A ,

bi{$b) G £ , i =  l, 2

which form a PNE. One such equilibrium is derived below. Equilibrium is 

derived by first finding how passenger behaviour depends on the fares set by 

operators, and then finding optimal operator choices of these fares.

3.5.2 Local Buses

Passenger behaviour will be dictated just by the fares offered by buses, not 

on bus ownership, and so the questions of whether passengers board arriving 

buses, and how many of them walk to the stop in the first place, can be dealt 

with independently of market structure. Passenger behaviour is accordingly 

dealt with first, and the findings are summarised in Result 16 on Page 149.



142 CHAPTER 3. REVERSIBLE LOCATION CHOICE:

The analysis then turns to compare fare setting under monopoly and duopoly, 

and the findings are given in Result 18 on Page 157-

Passenger Behaviour

Here we examine the implications for passenger behaviour of the assump­

tion that they do not know the exact arrival time of buses. The section shows 

first that lower fares on alternate buses will increase the total number of pas­

sengers walking to the stop. Second it shows that so long as the difference 

in fares between alternate buses is not too large then passengers board the 

first bus to arrive, and the share of passengers boarding each bus is just 1/ 2. 

Cutting fares on alternate buses, then, will mean that more passengers board 

all buses, and it is this fact that will lead to competing duopolists charging 

higher fares than a monopolist.

In markets for urban local bus services we take Assumption 3 below to 

hold. This asserts that passengers know the interval between buses, A, the 

fares charged on all buses, ps, V$, but not ti and so not any actual arrival 

times. Passengers believe that ti could be any time in the interval [0, A] with 

equal probability

A ssum ption  3 Urban Local Buses:

=  {Psj A, -Ff}

We also make Assumption 4, which is a technical assumption on param­

eter values that ensures both that even if all buses were free, not every pas­

senger would find it worthwhile walking to the stop, and that if every other 

bus were free, at least some passengers would find it worthwhile walking to 

the stop. It means that there are no reasonable circumstances under which 

all passengers walk to the stop, and that there is always a fare which is suf­

ficiently low that, if charged on alternate buses, some passengers walk to the



3.5. FARES 143

stop. This reduces the number of different cases that need to be considered 

during the following analysis.

A ssum ption 4 k  — cA  < u < k  — cA /2

Passenger boarding behaviour bi

Boarding behaviour is restricted to depend on whether the bus number 

is odd or even (though we confirm below that passengers would behave no 

differently were they able to condition on additional variables). This means 

that a passenger at a stop will either wait at the stop forever, if b\ =  62 =  S, 

or will wait a t the stop for no more them two buses to arrive, one from each 

operator. It is easy to see that waiting at the stop forever cannot be optimal 

since a passenger which did so would never get a trip payoff, but would incur 

an infinitely large waiting cost. Moreover, if a passenger stays at the stop 

when a bus of type i arrives, i.e. if 6* =  S', then he will surely board a bus of 

type j ,  i.e. bj =  B. This follows because, as we have already seen, it cannot 

be optimal to also stay at the stop when both i and j  arrive, and if the 

passenger goes home, i.e. bj = X ,  then he has incurred an unnecessary wait, 

and would have done better to leave when i arrived. The only remaining 

choice is to board j .

Passengers’ boarding behaviour depends, then, on a simple comparison of 

the payoffs accruing from; exiting, boarding the bus, and staying at the stop 

and boarding the next bus. These depend on the trip payoffs, the waiting 

costs, and the fall-back payoff of zero that the passenger gets from exiting. 

As an example, it will be optimal to board a bus i when it arrives if this 

gives a higher payoff over the rest of the game than exiting or waiting and 

boarding the next bus. This will be so when the trip payoff on i is positive, 

and greater than the trip payoff on j  net of the cost of waiting for the next
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bus to arrive, which will be in A minutes The full description of passengers’ 

optimal behaviour is given in Equation 3.5. Note that optimal behaviour is 

uniquely defined over almost all combinations of trip payoffs, the exceptions 

being just those boundary cases where more than one action gives passengers 

the highest payoff12.

=  <

B

0A
l and 9i > Qj -  cA

< S if Qj — c A >  0 and 9i

<101V

X if Pi < 0 and 95 -  cA < 0

1,2, i € { i ,2 } , i /  i

(3-5)

A number of cases arise, depending on the fares of the two types of buses. 

Passengers at a stop may board the first bus which arrives, they may board 

those of just one type and either stay at the stop or go home should one of 

the other arrive first, or they may go home whichever bus arrives first. These 

cases are shown in Figure 3.8 which splits up the space of trip payoffs (pi 

and P2) according to passenger boarding behaviours. The boundaries of the 

Figure are given by the equations in Equation 3.5.

Behaviour of arising passengers, a(r, k)

Next consider the choice arising passengers make over whether or not to 

walk to the bus stop. Whether this is in a passenger’s interest depends on

12 Although we have restricted possible strategies to depend just on the identity of the 

operator of an arriving bus, it is worth pointing out that even if passengers were free to 

condition behaviour on other observable factors, such as time or the number of passengers 

at the stop, it is not optimal for them to do so. To see this, note that if a passenger 

eventually boards a bus i then it is always better to board the first bus i that arrives, 

so if passengers board a bus it will always be one of the first two to arrive, and optimal 

behaviour will be given by just the comparisons set out in Equation 3.5.
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(S,B)

(B,B)

(X,B) (B,S)

cA

( * , * ) (B , X )

Figure 3.8: Regions of passenger boarding behaviour, (&i, 62)? depending on 

trip payoffs. Regions are delineated by the heavy lines.

the expected trip payoff, net of the cost of waiting at the stop. Denote the 

expected trip payoff net of waiting cost of a passenger who walked to the stop 

by k*. This k* will depend on the prices, qualities and arrival intervals of 

the buses, but whatever its value the optimal behaviour of arising passengers 

is simply to walk to the stop at their preferred time if k* is greater than 

their particular walking cost, and to stay at home otherwise. When e > 0 

this optimal behaviour is uniquely defined for all passengers except those for 

which k* =  k. However, when there is no cost to leaving at an inconvenient 

time, although leaving at the most preferred time is still optimal, so is leaving 

at any other time, given that the net trip payoff exceeds the walking cost.
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In the rest of the analysis we take optimal walking behaviour as given in 

Equation 3.6 below, which assumes that passengers leave at their preferred 

time, whatever e.

T he num ber of passengers walking to  th e  stop , F (k*)

Bus operators choosing prices and qualities before the day begins are 

more interested in the total number of passengers walking to the stop than 

in the behaviour of individual passengers, that is they are concerned with 

E(k*) and how their choices will affect this. The way that k* is affected 

by price and quality will depend on which buses passengers may board once 

they get to the stop: for example if passengers do not board odd buses 

then small changes in pi will have no impact on the number of passengers 

who find it worthwhile walking to the stop. In other words, the expression 

for /c*(<7i, <72) will depend on the region of boarding behaviour in Figure 3.8 

above that operators’ choices place passengers in. As an example, consider 

region (23,22), where passengers always board the first bus to arrive. A 

passenger walking to the stop will arrive before bus of type i with probability 

1/2. Given that he arrives before i he expects to wait A /2 minutes, and to 

get a trip payoff of gi. Writing out the expected trip payoff net of waiting 

cost gives k* = l/2(gi — cA/2) -f 1/2 (^2 — cA/2), which simplifies to k* = 

l/2(gi -f£2) — cA/2. Consider next region (61, 62) =  (23,5), where passengers 

will always wait for bus 1 to arrive before boarding. The trip payoff is always

X  if K < K*

if K < K*
(3.6)
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gi and the expected wait is A minutes, giving the expression above.

Note that if any passengers who were at the stop found it optimal to 

go home, i.e. if (&*, bj) = (B ,X )  or (X, X), then no passengers would find 

it worthwhile walking to the stop in the first place. It is easy to see why. 

Suppose first that passengers a t the stop go home whatever bus arrives, so 

(&i, bj) =  (X ,X ). In this case passengers never get a trip payoff, and cannot 

recover the cost of walking to the stop. Suppose now that (6*, bj) =  (B, X )  

so that passengers at the stop go home when bus j  arrives. The trip payoff 

from i must therefore be less than cA, or it would be better to wait for i. 

However, a passenger walking to the stop expects to wait at the stop for cA/2 

minutes, and yet only gets a trip payoff of gt with probability 1/2 (otherwise 

he gets zero). Consequently the expected trip payoff, net of waiting cost, is 

negative, and it is never worthwhile walking to the stop. This result is shown 

formally in Lemma 3.

L em m a 3 I f  (6*, bj) =  (£ , X) or (X, X) then k* < k.

P roof. Prom Equation 3.7, k* <  0 if (b^bj) = (X ,X ) and since k > 0 

by assumption, k* < k. Also, from Equation 3.7, k* = 1/2& — cA/2 if 

(&i, bj) =  (B ,X ). But from Equation 3.5, boarding behaviour will only be 

(£ , X) when gi < cA and so k* <  0, and hence k* < k. ■

The boundaries where k* =  k and k will depend on the boarding be­

haviour of passengers. As an example, suppose that (6*, bj) = (£ , B), so 

that trip payoffs are in the region where passengers take the first bus to

1/2(9! + g2) - c A / 2  if (b1,b2) = (B,B)

if (bi,bj ) = (B,S)  

if (bi,bj ) = (B ,X )  

if (bi,bj ) = (X ,X )

(3.7)
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arrive. In this case the expected trip payoff, net of waiting at the stop, is 

k* =  1/2(#i +  <72) — cA/2. Then ac* =  k, when l/2 (^ i+ p 2) =  ft +  cA/2. Simi­

larly, k* = k  when 1/ 2(<7i + £2) =  ac+ c A / 2 .  Figure 3.9 shows the boundaries 

between the different regions of ac* , superimposed on the boundaries of dif­

ferent boarding behaviour. The Figure is for parameters where the support 

of the passenger distribution is large relative to the waiting cost, specifically 

cA <  7c — /c, although it looks much the same for other parameter values: 

the only difference being in whether or not point X  is at a higher value of <72 

than point Y.

cA

K -

0 £ c A k+cAk

Figure 3.9: Regions of <72)- Region boundaries are given by the heavy 

fines.
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The proportion of passengers walking to the stop is given by F (k*) which 

is zero whenever k* < k and equal to 1 whenever k* >  7c, and given by 

(k* — /c)/(7c — k) otherwise. The full dependence on trip payoffs is given 

below in Equation 3.8. As before, in reading the equation, expressions such 

as “if (B ,B )n should be read as “if (bi,bj) = (B ,B )” . The more compact 

notation has been used to make the various cases clearer.

( |(S i + 52) -  ^  if K* e  [k,k] and =  (B

F (k*) =  < ^ 5  (9i - cA - k) if k*€  [k,k] and (&*,bj) = (B
1 if ac* > 7c

0 if k > K*
V

Sum m ary o f passenger behaviour in local bus m arkets

The central findings of this section on passenger behaviour, which will 

be used below, are gathered into Result 16. The result states first, that if 

the trip payoffs do not differ by too much then passengers board the first 

bus to arrive. Second, when passengers are boarding the first bus to arrive, 

then increasing the trip payoff on alternate buses increases the number of 

passengers walking to the stop.

R esult 16 Passenger behaviour in local bus markets, 

ft) U 19i - 9 j \ <  cA then (&*, bj) =  (£ , B).

(ii) I f  {bi, bj) =  (B,B)  and k* € [/c,7c] then F (k*) = =zg{^(gi +  <fe) — ^

The next section turns to the choice of trip payoffs by operators.

3.5.2.1 M onopoly

The analysis begins by considering the fares offered by a monopolist and so 

Assumption 1 will hold throughout this section.

Characterising Optimal Fares
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n.

When choosing the optimal fares to set in order to maximise average 

revenues per bus, the monopolist must trade off the increase in the number 

of passengers boarding when the fare is reduced against the cut in the amount 

some passengers pay.

Denote by ra* the number of passengers which board buses of type i, given 

the trip payoffs offered on the two types of bus. Then, except for the first 

bus, which will have no impact on average revenues:

i F ( K*) if (bi,bj) =  (B, S) 

i = \ if (h,bj) = {B, B) (3.9)

0 otherwise

The monopolist will then choose a pair (g*,g2) to solve:

(91 ,92) =  max [u -  g^m  +  [u -  g2]n2 
(9 1 ,9 2 )

The task of characterising optimal fares is greatly simplified by an initial 

observation, set out in Lemma 4, which states that the monopolist’s optimal 

fares will always put boarding behaviour in (£ , B). If this were not so, 

passengers would board some of its buses, but not others. The operator 

would do better to cut fares on the expensive buses to the level of those on

the cheap ones so that passengers boarded all buses. This would not affect

the revenue per passenger, and would encourage more passengers since the 

expected wait a t the stop would be cut.

Lem m a 4 There exists a solution to the monopolist’s problem and it satisfies 

(&!, 62) =  ( £ ,£ )

Proof. Suppose first that a solution exists. By Assumption 4 there is a 

positive fare at which the monopolist can attract some passengers to the 

stop. Clearly it cannot be optimal to set fares so that no one walks to the
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stop and so by Lemma 3, boarding behaviour will be either (B, B ) or (B , S'). 

Suppose it is (6*, bj) =  (B, S) and so all boarding passengers pay p*. if 

the operator lowered pj so that p'- =  pi then boarding behaviour would be 

(B ,B), all boarding passengers would still pay p*, and more would board 

since the expected waiting cost would be lower. Thus (B, S) cannot result 

from optimal fare setting. A solution, if it exists, will thus lie in (B, B). But 

the set of trip payoffs for which boarding behaviour is (B, B) is compact, 

from Equation 3.5, and [u — g\]n\ + [u — p2]^2 is continuous over this region, 

so that a solution exists. ■

The importance of Lemma 4 is that optimal fares can be characterised us­

ing a modified problem in which the monopolist maximises per bus revenues 

as though passengers always boarded the first bus to arrive. We will then 

confirm that at this modified optimum the monopolist chooses fares which 

do indeed cause passengers to board the first bus, which is enough to con­

firm that if the optimum exists, it will be the modified one. In the modified 

monopolist’s problem revenues are calculated as though passengers always 

board the first bus and make their walking decisions accordingly. Specifi­

cally we can define a modified function n' which will be identical to rii when 

boarding behaviour in the original problem is (B, B) and is given by:

n'i =  (|(ft +«#) ’ 3i,9j € M  (3.10)

Then let R (gj)  be i ’s best response in the modified problem, so it is that trip 

payoff of Vs which would maximise its per bus revenues were the numbers 

boarding given by nf rather than n.

fail 92) =  arg max [ti -  gi]n\ + [ u -  P2K 2, 9i,92 € [0, u] (3.11)

It is easy to confirm that (p^, gQ will satisfy the first order conditions for
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Equation 3.11 which are found to be, by standard calculations:

91 =  ^ (2 (u -g '2)+ c A  + 2K)

92 = ^ ( 2 ( u - 0 i ) - f  cA +  2/c)

These will be solved simultaneously at a unique symmetric pair g[=  g'2 =9*, 

which implies an equilibrium fare p* = u — g* where:

p* =  -  (2u — cA — 2k )

Since, in the modified problem, it is optimal for the monopolist to set 

fares equal on all buses, passengers will indeed board the first bus to arrive, 

so that optimal fares are in the region in which the modified and original 

problems are identical. Therefore, if optimal fares exist, they will be the 

modified ones.

The reader can easily confirm that these are exactly the results that would 

have been found from imposing that the monopolist charge the same fare on 

all buses.

3.5.2.2 D uopoly

Now consider the trip payoffs offered on buses when alternate buses are run 

by competing operators, i.e. when Assumption^ holds. The analysis will 

closely follow that for monopoly.

Characterising Equilibrium

As under monopoly, when choosing the optimal fare to set in order to 

maximise average revenues per bus, operators must trade off the increase in 

the number of passengers boarding when the fare is reduced against the cut 

in the amount each passenger pays.

g

1
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The number of passengers which board Fs bus, given the trip payoffs 

offered by the two operators, will be the same as the number of passengers 

boarding buses of type i under monopoly, viz. the function ti* given in 

Equation 3.9.

Operator z’s problem is to choose its best response R{gj) to the trip payoff 

offered by its rival, that is to solve the problem:

R(gj) =  argmax[w -
9i

As with monopoly, the task of characterising equilibrium is made signifi­

cantly easier by the observation that if there is an equilibrium then it must be 

the case that passengers board the first bus to arrive. The reason is simple: 

any operator which finds itself with no passengers is earning no revenues and 

could have done better by cutting price until passengers wished to board. 

Lemma 5 states this more precisely.

Lemma 5 I f  a price equilibrium in pure strategies exists, in which F(-) > 0, 

then (bi,bj) = (B ,B ).

Proof. Note first that there can be no price equilibrium in which one oper­

ator earns positive revenues while the other does not. Suppose the contrary, 

and suppose, w.l.g., that pi > 0, k* > k  and (6i, 62) =  (B, S) which implies 

Pi < P2 — cA. Operator 2 is getting no revenue. If it charged p'2 =  pi then 

the number of passengers would not fall (k* is monotonically non-decreasing 

in gi), and half of them would board bus 2, giving operator 2 positive rev­

enues. Thus it cannot have been an equilibrium to have (61, 62) =  (5 , S). 

By Lemma 3 the only other region giving positive flows of passengers is 

(bi,bj) =  (£ , B). This proves the first part. Now note that if F(-) > 0 

then prices must be strictly positive. If not then neither operator is earning 

positive returns, while at least the one charging the lower price is making
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positive sales. This one could raise price a little, still get positive sales (F(-) 

continuous, and the firm gets at least half the market so long as it charges a 

fare no greater than its rival’s plus cA) and so get strictly positive returns.*

Again, as with monopoly, Lemma 5 allows us to characterise equilibrium 

using a modified problem in which operators maximise fares as though pas­

sengers always boarded the first bus. We then confirm two things. First we 

show that in this modified equilibrium operators choose fares which do in­

deed cause passengers to board the first bus. This is enough to confirm that 

if equilibrium exists, it will be the modified one. Second, however, we show 

that there are parameters for which, even if operators assumed the correct 

functions for passenger boarding behaviour, their choice of fare would be the 

same as in the modified equilibrium, which means that there are parameters 

for which equilibrium exists.

In the modified problem operator i aims to choose its best response R (gj) 

to the trip payoff offered on f s  buses as though passengers always boarded 

the first bus, and make their walking decisions accordingly. If n' be as given 

in Equation 3.10, the modified problem is to solve:

R(gj) =  argmax[w -  (3.12)
9i

It is easy to confirm that K (gj) will satisfy the first order condition 

d/dg([u — g]n') =  0 and is found to be:

& ( 9 j )  = ^ { u ~ 9 j + c A  + 2k ) (3.13)

If p' is the fare corresponding to a trip payoff of g' then

P1 =  |(2 u  -  v, -  cA -  2k)

Since the modified best response functions are the same for both oper­

ators, are linear and have slope different from 1, the modified equilibrium
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foi 5 #2) which Rf{g*) = g*, i = 1,2, j  ^  i, is unique and symmetric, and 

so let g* = g2 = an(i let p* = u — g*. Substituting R(g*) = g* into 

Equation 3.13 and rearranging gives the modified equilibrium trip payoffs 

and fares:

g* = ^  (u -f cA + 2 k ) 

p* =  ^  (2u — cA  — 2«)

Since operator fares in the modified equilibrium are equal, passengers will 

board the first bus to arrive, i.e. the equilibrium lies in (£ , £ ) , the region in 

which the functions n' and n are identical. Moreover, if equilibrium exists in 

the original problem it will lie within this region, and so if equilibrium exists 

it will be the modified one.

Having characterised equilibrium, the analysis turns to consider when an 

equilibrium exists.

E xistence

This section examines the conditions under which equilibrium exists. The 

reason why equilibrium sometimes fails to exist is that at the modified equi­

librium outlined above, each operator may have an incentive to cut fares to 

such a low level that all passengers waiting at the stop board its buses. As 

an example Figure 3.10 illustrates the number of passengers boarding l ’s bus 

as a function of g\ for the case g2 > cA  and K — k >  cA.

Three distinct regions are clear from Figure 3.10, corresponding to dif­

ferent regions of boarding behaviour. At low trip payoffs, specifically 

gi < P2 — cA, no passengers board bus 1. The trip payoff is so low that 

either none walks to the stop, if g2 is also low, or if some do walk to the stop 

then all wait for a bus 2 to arrive, rather than board bus 1. At intermediate
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A n

K—K

K—K

Figure 3.10: n\ when g2 <  cA and k — k > cA

prices, when g2 — cA < gi < g2 +  cA, the trip payoff on l ’s buses is suffi­

ciently high that passengers at the stop when a 1 arrives will now prefer to 

board than wait for the next bus, and so boarding behaviour is (B, B). At 

9i =  <72+ cA there is a sudden doubling of the number of passengers boarding 

bus 1 since once the trip payoff exceeds g2 +  cA then all passengers at the 

stop prefer to wait for a bus 1 to arrive than board a bus 2.

There are two candidate best responses. There is a local maximum which 

maximises profit given that boarding behaviour is (B, B), and so the operator 

gets just half of the passengers walking to the stop. This is the modified 

best response analysed above. However, there is also a local maximum at a 

discretely higher trip payoff, and so lower fare. This maximises profits given
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that boarding behaviour is (B, S), so that the operator has undercut its rival 

and all passengers now board its buses.

Equilibrium may fail to exist, therefore, because of the possible incentive 

of operators at the modified equilibrium to undercut their rival by a large 

margin, thus winning all waiting passengers. However, it is only possible to 

undercut if fares in the modified equilibrium are sufficiently high, since in 

order to win all passengers one operator must charge at least cA less than its 

rival. Clearly then, undercutting is impossible if p* < cA. This will happen 

when:

^ (2u — cA — 2 k )  < cA

or it < k  +  2cA

R esu lt 17 I f  u < k  4- 2cA then equilibrium exists.

Note that this is a strong condition guaranteeing existence: it guarantees 

that it is not possible to undercut and steal all passengers at the modified 

equilibrium. A weaker condition would rule out only those cases where un­

dercutting was profitable.

3.5.2.3 Fares in  local bus m arkets.

For convenience, we summarise the results on fares in local bus markets in 

Result 18 below, which shows that fares are lower under monopoly them 

duopoly.

R esu lt 18 Fares in local bus markets.

(i) Optimal fares under monopoly exist, are the same on all buses, and are: 

p* =  j(2w — cA — 2k )
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(ii) Equilibrium fares under duopoly exist i f  u < k  +  2cA, are the same on 

all buses, and are:

p* = \{2u  — cA — 2 k ) 
o

(Hi) Fares are lower under monopoly than duopoly

3.5.2.4 Comparing M onopoly and D uopoly w hen fares are set at 

the bus stop.

There is an obvious institutional reason why we can take arrival times as 

fixed before the day begins: arrival times are fixed by the legal requirement 

that operators register their timetables. There are no corresponding formal 

constraints which dictate that faxes on buses are set before the day begins, 

although in practice this is what happens. Here we drop this assumption and 

no longer require fares to be equal on alternate buses, so that we no longer 

restrict ps =  pi, s odd, and ps — p ^  s even. Instead we examine fare setting 

when fares are set when a bus is at the stop and look for strategies for each 

type of bus, pi(•), i =  1,2. In analysing behaviour in the model we will 

look for an equilibrium described by strategies for all players which satisfy 

a number of conditions. First, a player’s strategy will specify an action, at 

each time at which the player can make a decision, which maximises the 

players expected payoff during the rest of the game, given the strategies of 

its rivals. In other words equilibrium is Perfect and Nash. Second, strategies 

are conditioned only on the current environment, and not on the past history 

of the game, or on time, i.e. strategies are Markov. Let x  be the number of 

passengers at the stop when a bus arrives. We seek a set of Markov strategies;
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Pi(x) : R  —>R, i = 1,2,

which form a Perfect Nash Equilibrium (PNE). The following Result charac­

terises such an equilibrium.

R esult 19 There exists a MPNE in which no one travels by bus. Specifically, 

the strategies;
f

B  if  p < u
<

X  if  p >  u 
a(r, k) = X , Vr, k

Pi (x)  = u, i =  l ,2  

form a MPNE.

Proof. Consider first b(p), the choice made by waiting passengers when a bus 

arrives and offers fare p. If all buses in the future charge a price equal to their 

quality, the trip payoff in the future is zero. Therefore, passengers always do 

better to exit now rather than stay at the stop and incur additional waiting 

costs before exiting later or boarding a later bus. Passengers prefer to board 

now than exit if boarding gives a positive trip payoff, confirming b(p) = B  

when p < u. If the trip payoff is negative, so p > it, then it is better to exit, 

so b(p) =  X  in this case, and, finally, if the trip payoff is zero then passengers 

are indifferent between boarding and exiting, so that b(p) = B  when p = u 

is one best response. Now consider the price offered by a bus of type i. All 

passengers board so long as p < it and since, if there are any passengers at 

the stop, revenues rise with price, the bus charges P i ( x )  =  it, Vx > 0. If there 

are no passengers then revenues will always be zero and P i(0 )  =  it is a best 

response. Next consider a(r,/c). Since all passengers earn zero trip payoff, 

the cost of walking to the stop is never recovered, and so it is always better 

for passengers to stay at home. ■
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In equilibrium no passengers ever walk to the bus stop. Bus fares are 

always set at w, which is the full value of a bus trip to passengers. Passengers, 

knowing this, will board any bus with a fare of u or less, rather than wait at 

the stop and incur additional waiting costs. Given this behaviour on the part 

of passengers buses maximise revenues by charging the highest fare consistent 

with all passengers boarding. However, if passengers pay u to board a bus, 

then it is never worthwhile incurring the cost of walking to the stop.

The result rests on the type of hold-up problem that is explored in the 

literature on property rights13. By the time passengers and bus drivers come 

to trade over the level of bus fares, passengers have already sunk the costs 

associated with walking to the stop and waiting for the bus. Bus drivers 

can make a take it or leave it offer over the fare level and extract the full 

value of the ride from passengers, leaving them with no surplus to cover 

their sunk costs. Of course operators would be better off if they could assure 

passengers that they would set a lower fare, thus enticing them to walk to 

the stop and providing positive sales, albeit at the lower fare. However, in a 

Perfect equilibrium they cannot do so.

In fact, of course, people do travel by bus. It might be argued that reality 

differs from the model’s result because opportunistic behaviour on the part 

of bus operators drives only some, and not all, potential passengers to stay 

at home: it might be thought for example that the starkness of the result 

arises from the simplifying assumption that all passengers make the same 

choice so that an operator which raises its fare will either keep all passengers 

or lose them all, or that the bargaining assumption, that buses make a take 

it or leave it offer to passengers, might also contribute to the starkness of the

13 See, for example, the paper by Hart and Holmstrom on “The theory of contracts” 

[34]and the references therein.
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result. More importantly, it might be observed that operators and passengers 

in fact interact over many days, and that current prices somehow affect the 

number of future passengers: if passengers regretted walking to the stop on 

one day, they may stay at home the next. In this case, operators would be 

concerned with the effect of their fares on the number of future passengers. 

What is certain is that in the real world the operational structure of bus 

companies rules out any opportunistic behaviour in the first place. Fares are 

in fact set centrally, and individual bus drivers do not have the authority 

to start renegotiating the fare with waiting passengers14. This operational 

structure may be chosen as a device to allow operators to credibly set their 

fares before the day begins, though it more likely results from factors outside 

those considered here. All that is important here is that the more appropriate 

assumption for modelling bus behaviour would seem to be that prices are set 

before the day begins, so that operators consider the effect on passenger 

numbers of their pricing decisions.

3.5.3 Express Coaches

The simpler market to analyse, and the more familiar, is that for express 

coaches in which passengers know the arrival time of buses. As before, pas­

senger behaviour can be analysed before moving on to consider the fares set 

by operators under different market structures.

Passenger Behaviour

Passengers now know the timetable and so there is no reason for them to 

spend costly time waiting at the bus stop: they can time their departure to

14This is in contrast to the case of minicabs, where individual drivers do have some 

discretion over the fare. Minicabs, note, drive up to the door so passengers have not sunk 

a walking cost by the time they negotiate over fare.
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arrive at the same time as a bus. Moreover, they know bus fares, and so if 

one bus is cheaper than the other they can make sure that they always catch 

the cheap one.

The distinguishing assumption for express coach markets is Assumption 5 

below that passengers’ information sets contain the exact arrival times of 

coaches.

A ssum ption  5 Express Coaches 

$ a = {Ps, A ,ti}

We also make a technical assumption on parameters: passengers would 

always prefer to leave the house at an inconvenient time and arrive just in 

time to catch a coach than wait at the bus station for a coach to arrive.

A ssum ption  6 e < c

In fact for much of the analysis, we take e =  0, but we decide between 

multiple optimal strategies by taking the limit e —> 0.

P assenger board ing  behaviour, bi

Once at the stop, boarding behaviour is as with local buses, and so is 

given by Equation 3.6. The difference in behaviour between express coaches 

and urban local buses lies in the decision to walk to the stop, and the time 

at which to leave the house.

Passenger travelling  behaviour, a(r, k)

In the case of express coaches, where passengers know bus times in ad­

vance, and where it is more costly to spend time at the coach station than to 

leave home at an inconvenient time, they will, in equilibrium, never wait at 

the stop, but will arrive at the same time as the coach they intend to board.
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Passengers choosing to travel will therefore always choose a leaving time to 

coincide with one of the coaches.

Note that, for any positive inconvenience cost, passengers will only ever 

board either the closest odd coach or the closest even one (if any), since any 

other choice would involve unnecessary inconvenience. This means that a 

travelling passenger (r, k), where r  lies between the arrival of the s ’th  and 

s +  l ’th  coach, will travel at either ts or ts+\. When the inconvenience cost 

is zero, travelling on one of theses two coaches is still optimal, but so is 

travelling on many others.

When contemplating which, if any, of the two closest coaches to board, 

passengers are aware of the fares. If the two sorts of coach charge the same 

fare, passengers do best to board the closest one, and so minimise the cost 

of travelling at an inconvenient time. This behaviour is uniquely optimal 

for any positive inconvenience cost (though when e =  0, catching any other 

coach is also optimal). If the two sorts of coaches charge different fares, 

however, passengers will board that coach charging the lowest fare, if the 

fare difference is sufficiently high to compensate for the inconvenience. If the 

inconvenience cost is zero, any fare difference is large enough (though now 

it is also optimal to board any coach charging the lower fare). For example, 

a passenger (r, k) where r  lies between the arrival of the s’th  and s -b l ’th 

coaches, who intends to travel, will use the s’th  coach if:

u - p s - e ( r - t s) > u -  ps+1 -  e(ts+i -  r) 

or ps+i - p a > e(ts+1 +  ts -  2t)

Suppose that the above inequality is true, so that it is better for the passenger 

to travel at ts than ts+\. It will be worth making the journey at all if trip 

payoff on s, net of inconvenience cost, is greater than the agent’s walking
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cost, i.e. if:

u — ps — e(r — ts)> K

Writing the optimal travelling behaviour of passengers when the inconve­

nience cost is e as ae(r, k) gives:

if t  €

a£(r, k)

( t s , ts+l]

ts If Ps+1 Ps ^  ^{ts “I- ts-1-1 2t)
and u — ps — e{r — ts) > k

ts+i If Ps+i Ps — e(ts ^s+i
and u -  ps+i -  e{ts+1 -  r) > «

X  otherwise

There are a few points to note here. First, when fares are different and 

when the inconvenience cost becomes small, passengers travel on the cheaper 

coach, regardless of which is closer. The second point is that as the fare 

differential gets very small behaviour depends only on whether (ts+ ts+i — 2r) 

is positive or negative, i.e. on whether r  is closer to ts or ts+\. In other 

words, as fares on alternate buses become equal, passengers need take into 

account only the cost of travelling at an inconvenient time. Here we take the 

view that the cost of travelling at an inconvenient time is not a driving force 

underlying whether or not fares are higher under monopoly than duopoly, and 

accordingly we henceforth assume that e =  0 and take passenger travelling 

behaviour a(r, k) to be the limit of ae(r, k) as e —► 0 .

A ssum ption  7 e = 0

Let s satisfy r  € (ts, t s+i] for passenger (r, k). Then if max{<7i, <72} < «'•

a(r, k) = X
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otherwise:

a(r, k) =
t s if ps > Ps+i

or =  ps+1 and |is -  r |  < |ts+i -  r\ (3.14)

ts+1 otherwise

T he num ber of passengers walking to  th e  stop , F (k*)

As described above, passengers always board a coach offering the highest 

trip payoff and so the payoff of a passenger travelling by coach is k* = 

max{<7i, £2} and the number of passengers walking to the stop is then:

F (k*) =  - 1 - (max{ffi,g2} -  «) (3.15)
K  ~ ~ ~ K

3.5.3.1 M onopoly

Suppose now that Assumption 1 holds and so all coaches are run by a single 

monopolist. The number of passengers boarding its coaches is F (k*) and 

depends only on the largest trip payoff offered. Moreover by Equation 3.14 

passengers will board only those buses with the highest trip payoff and so 

revenues per passenger also depend just on this. Therefore the monopolist’s 

problem is to choose a pair of trip payoffs {g*:gr) to solve:

g- = a r gmax( l l -  «)

9' < 9’

Standard calculations show that any solution satisfies:

l t \9 =  2

9' <

and so the lowest fare offered, p* = u  — g*, will be:
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3.5.3.2 D uopoly

Now suppose that Assumption 2 holds so that alternate coaches are run 

by two different operators. From Equations 3.14 and 3.15, the number of 

passengers boarding operator €s coaches given the trip payoffs offered by 

both operators, will be:

If its rival charges a positive fare, it can never be optimal for an operator 

to charge a higher fare: no one would board the operator’s coaches, whereas 

charging the same or a lower fare as its rival gives positive numbers boarding 

at a positive revenue per passenger. Moreover, charging the same fare cannot 

be optimal since charging infinitesimally less leads to a negligible fall in per 

passenger revenues, but at least doubles the number of passengers boarding. 

The best response, then, must be to charge less than the rival, if the rival 

charges a positive fare. Clearly there is no set of fares which either

is positive and both are charging less than their rival. If the rival charges a 

zero fare, then charging anything gives zero revenue and is a best response 

and so pi = p2 = 0 is the unique equilibrium fare, and g\ — pj =  u the 

unique equilibrium trip payoff.

R esu lt 20 Fares in express coach markets.

(i) Optimal fares under monopoly exist, are unique, are the same on all 

coaches, and are:

1 9i~K  
A K—K if  9 i > 9 i
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(ii) Equilibrium fares under duopoly exist, are unique, are the same on all 

coaches, and are:

p* = 0

3.5,4 R obustness

The model analysed here has been designed to make transparent the pri­

mary impact of assuming that potential bus passengers do not know the 

exact arrival times of buses. This transparency leads to stark results. When 

passengers do not know the timetable, fares are higher under duopoly than 

under monopoly. When, on the other hand, they do know when buses arrive, 

fares are higher under monopoly. Here we consider, informally, the likely 

effect on the results of relaxing some of the assumptions.

First, suppose that frequency, instead of being given as is assumed so far, 

were endogenous. In fact, when there is competition both in real express 

coach markets and local bus markets, frequency appears to be higher, and so 

the interval between buses, A, smaller. In the results for the model local bus 

market, the duopoly and monopoly fares are higher as A is smaller. To see 

why note that if A is high, not many passengers walk to the stop because the 

waiting cost is so high. But then, cutting fares is not very costly in terms of 

loss of revenue from existing passengers, while the gain in numbers walking 

to the stop is the same. If endogenising frequency in the model did result in 

higher frequency under duopoly, this would only serve to reinforce the finding 

that duopoly fares are higher than monopoly ones in local bus markets. In 

the model express coach market the interval between buses has no effect on 

prices in either market structure, so that endogenising market structure will 

not affect the finding that monopoly fares are higher than duopoly ones. It 

is worth noting, incidentally, that a monopolist in the express coach market



168 CHAPTER 3. REVERSIBLE LOCATION CHOICE:

would only choose to run one bus over the whole day, so frequency could 

only rise under duopoly (so long as there was some positive cost to running 

a bus).

Another stark assumption that has been maintained in the express coach 

market is that the inconvenience cost s  is zero. It is certainly plausible that 

passengers suffer a cost if they travel at a time which differs from their most 

preferred one, and introducing this would give duopolists some market power 

over close passengers, so that they would likely be able to charge a positive 

fare. It would remain the case, however, that if an operator cut fares on one 

type of coach, those coaches would gain market share from the other type, 

giving each duopolist excessive incentives to charge low fares compared to a 

monopolist.

It was noted earlier in the model local bus market that passengers arriving 

at the stop learnt nothing about the timetable. Suppose, on the contrary, 

that they did. There may then be some passengers who walked to the stop 

and, on learning how long was the wait until the next bus, and how much 

the fare would then be, decided to go straight home again. Cutting fares on 

one type of bus would then affect that type’s market share, as well as the 

number of passengers walking to the stop. However, the additional market 

share would be gained not from the other type of bus, but just from affecting 

the number of passengers going straight home from the stop, and so it would 

still be the case that cutting fares on one type of bus increased the number of 

passengers boarding the other type, creating an under-incentive for duopolists 

to cut fares compared with a monopolist.

The final question concerns the robustness of the results in the situation 

where quality is a choice variable. This must remain an open issue: there 

seems to be no compelling way to model quality choice. Different ways could
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be appropriate in different markets. In local bus markets it seems that the 

main determinant of quality is the newness and maintenance levels of buses, 

and there is little evidence of differentiation in quality. In express coach 

markets operators on both duopoly and monopoly routes have introduced 

vertically differentiated services, with quality being such factors as journey 

time and whether or not drinks are available. Also marketing has been cited 

as playing a large role in determining market shares in express coach markets, 

which can be taken as a measure of spending on perceived quality and is a 

fixed cost with respect to the number of coaches.

3.6 Conclusions

In this chapter we have made a simple, well motivated assumption on the 

way that passenger behaviour differs between local bus routes on which the 

frequency of buses is high, and express coach routes where there are fewer 

departures. This assumption is that passengers travelling on high density 

routes tend to arrive at the stop independently of bus arrival times, and 

to board the first bus to arrive, whereas passengers using express coaches 

will arrive in time to board their preferred coach. We have shown that 

this assumption can provide an explanation for two different aspects of the 

experience of competition in the deregulated bus and coach markets of the 

1980’s and 90’s. In the first model of a local bus market, there are frequent 

changes to bus timetables, bus arrival times bunched together, and the bus 

with least passengers being the most likely to make a revision. The first 

two of these results have been observed in local bus markets in which there 

is competition. In the second model local bus market we found that two 

operators competing set a higher fare than did a monopolist. Again this
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accords with what has been observed in local bus markets, where fares have 

risen since deregulation, and risen by most in those metropolitan areas where 

competition is most comm on.

Finally we will make a few remarks about quality. We have already 

noted in the discussion of the robustness of the results on fare levels that 

quality should properly be modelled in a different way in the two types of 

market. Here we will mention local bus markets where the main determinant 

of quality is the newness and maintenance levels of buses. The dominant 

view of those giving evidence to the Select Committee was that quality was 

lowest where there was most competition. This is not particularly surprising: 

competition reduces a firm’s market share, and so the number of customers 

from which it can recoup any investments in advertising. The contrary would 

not have been surprising either: if advertising affects only market share, and 

not the size of the market, a monopolist will not advertise at all, though 

competing firms may well do so. However, there is additional evidence in 

the Select Committee Report that part of the explanation for the low quality 

is that passengers arrive independently of bus arrival times, and board the 

next bus to arrive. This additional evidence is the experience of Stagecoach 

in Manchester, related by the Traffic Commissioners in their testimony to 

the Committee. In Manchester, Stagecoach entered a market with new, high 

quality buses, while the incumbents used old poorly maintained ones. The 

Commissioners were surprised that the quality of Stagecoach’s buses did not 

enable them to win greater market share (Stagecoach eventually withdrew 

from the market), and they attributed this failure to customer loyalty. While 

some customers may have been locked into using the incumbent’s services 

through discount cards, if passengers turn up at the stop and board the 

first bus we would not expect higher quality buses to get higher markets.
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This in turn suggests that one reason for the lower quality of buses on those 

local bus routes with competition is essentially the same as that for high 

fares. The mechanism would operate somewhat as follows: as the average 

quality of buses rises, consumers make more journeys by bus. However, once 

a consumer has made the decision to take a bus, he then arrives at the stop 

and takes the first bus to arrive, regardless of its quality. Firms investing 

in newer or better maintained buses do not, therefore, gain all the extra 

customers that result from this investment, leading to under-investment in 

quality.
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Appendix A

Proofs

A .l Exploring a branching structure

A . l . l  Optim ality o f  th e G ittins index policy for sim ple 

bandit processes

We give an outline of the proof of the optimality of the Gittins index policy 

for multi-armed bandits; it is essentially from W hittle’s [63] and also used 

by Berry and Fristedt [5]. It is included here for accessibility, and contains 

some notational changes and expository material due to the present authors.

There are N  projects1 and in each discrete period you can work on only 

one project. The state of project k at time t  is denoted by £&(£), and the 

project engaged at time t  is denoted by k(t). The state variable at time 

t is written as x(t) = (xi(t),X2(i) ,. . .  and the information at time

£, namely past and current states and past actions, is written as I(t). If

1Here, we are dealing with single-action projects. At any stage, each of the 
fixed number of projects has a single action (i.e. there is no branching) so that the 
notions of engaging a project and selecting an action are interchangeable.

173
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project k  is engaged at time t  then you get an immediate expected reward of 

Rk{xk{t))- Rewards are additive and discounted in time by a factor (3. States 

of unengaged projects do not change and the state of the engaged project 

changes by a Markov transition rule: if k(t) ^  k then x k(t +  1) =  x*;(f), and 

if k(t) = k then the value of x k(t +  1) is conditioned only by k k, x k{t). 

Assume that rewards are uniformly bounded:

—oo <  —B (  1 — (3) < Rk(x) < B(1 — (3) < oo .

Writing R(t) for the reward R k(t) (xk(t)(t)) realised at time t, the total 

discounted reward is then X]o° with a maximal expected reward F(x)

over feasible pohcies 7r given by:

F(x(0)) =  s u p E j f ; ^ ( t )  | 7(0)1.
7T «■ o J

F  will be the unique bounded solution to the dynamic programming equation: 

F  =  max L kFk

where L k is the one-step operator if A: is the project engaged:

L kF(x) = R k{xk) +  /3E^F(x(t +  1)) | x(t) =  x ,k(t) =  k .

Introduce a fall-back M , where the option of taking the fall-back remains 

open at all times. The maximal expected reward of the modified process, 

conditional on x(0) =  x, is 4>(M, x) and solves

<$ =  M  V maxLfc<£. (A.l)k

Let 4')k{m,Xk) be the analogue of $(M ,x) when only project k is available; 

<j>k solves

(j>k = m  V Lk<j>k• (A.2)
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(Lk changes only x k, so Lk<j>k is well-defined.)

The Gittins index, denoted by m k(xk), is the infimal value of m  such 

that m = (f>k(m ,xk), namely the alternatives of stopping with m k and of 

continuing project k (with the option of taking the fall-back staying open) 

are equitable, and so m k =  L k<f>k.

It is fairly easy to show that $(M , x), as a function of M, is non-decreasing 

&; convex (convexity following from the fact that we are dealing with the 

supremum of expressions which are linear in M), and that $(M ,x) =  M  

when M  > B. Also <£(M, x) =  F(x) when M  < —B.

Similarly, <f>k(m ,xk), as a function of m, is non-decreasing & convex, and 

4>k(m, x k) =  m  when m  is large, certainly if m  > B ,  and more precisely for 

I'Ti > m k, so m k < B. Note that, since 4>k(m, x k), as a function of m, is 

convex, the derivative d(pj(m^Xj)/dm exists almost everywhere.

We “guess” the form of the value function:

and proceed to verify it by showing two things:

•  0  satisfies (A.l), that is 0  =  M  V max*; LkS;

•  the action recommended by the Gittins index maximises the RHS of 

the above equation, i.e. when M  > maxfc L kO it selects the fall-back, 

and when M  < max* LkQ it selects the project which maximises LkO.

So, define Pk(m ,x) =  TJ
d m

and m-jg =  rnaxm,.
3
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Pk(m ,x ), as a function of ra, is non-negative and non-decreasing, and 

Pk(m ,x) = 1 for m > m^k- (These follow directly from the properties of 

4>j.) Note that

dmPk(m,x) > 0 V ra, and dmPk(m, x) =  0 for ra > m ^k.

Rewrite 0(M , x) as

noting that <f)k(B ,x k) =  B  because ra* < B, and Pk(B ,x)  =  1 because 

m-,k < B. Also, dmPk(m, x) =  0 when m > B, so we can amend the range 

of integration:

0(M , x) =  (/>k{M, x k)Pk(M , x) +  <j)k(m , xfc) dmPk(m , x). (A.3)

Now fix x, so we can focus on the dependence of various function on m 

or M. We want to show that:

(A.5) ‘if’ & part of (A.4): Consider M  > maxj

In this case, <fik(M) = M , Pk(M) = 1; and dmPk(m) =  0 for m >  M . So 

from (A.3):

O (M) =  M.

and use integration by parts to obtain

O(M) >  M  for any M, 

and S (M ) — M iff M  >  maxra7;
3

and that 0(M ) >  LkQ(M) for any M,

(A.4)

(A.5)

(A.6)

and 0(M ) =  LkO(M) iff =  m a x a n d  M  < m k. (A.7)
j



A .L  EXPLORING A  BRANCHING STRUCTURE 177

(A.5) ‘only if’ & rest of (A.4): Consider M  < max, rrij.

Let k  =  argm axjm j. So M  < m k, and we have <j>k(M) > M. When 

M  < m  < 771*;, <j>k(m) > M, and when m  > m k, dmPk(m) =  0. So from 

(A.3):

©(AO > M  (p k(M) + £ "  dmPk(m )j 

= M P k(mk)

=  M, because Pk(mk) =  1.

So from (A.4) and (A.5):

M  < maxTRj => 0(M ) > M
j

M  = maxrrij => 0(M ) =  M  (A.8)
j

M  > maxmj => 0(M ) =  M.
j

Now, define 6k(m , xfc) =  ^ ( m ,x fc) -  Lk<f>k(m , xfc).

Fixing x again, note that 6k(m) > 0 V m, and 6k(m) =  0 for m < ra* and 

that

©(AO -  LkQ(M) = Sk(M)Pk(M) + f°° 6k(m) dmPk(m) (A.9)
J M

which follows from applying the one-step operator L k to each side of (A.3), 

subtracting the result from (A.3), and applying the definition of 6k to the 

RHS.

(A.6): Sk(m) > 0, and Pk(m) is non-negative and non-decreasing, so from 

(A.9) we have

0(M ) > LkB(M ).

(A.7): When m k > M, 6k(M)  =  0, so the first term on the RHS of (A.9) 

is 0.
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When m k > M  and m k =  max, mj,  the integral on the RHS of (A.9) is 

0, because either 6k(m) =  0, or dmPk(m) =  0, or both. So we have

e(M) =  Lke{M ).

(If either m k < M  or m k < m^k: then at least one term on the RHS of (A.9) 

is positive.)

Now using (A.6) & (A.7) with the implications from (A.8), and with 

k =  argmaxj m f

M  < max rrij = m k => 0(M ) =  LkO(M) and 0(M ) >  L^fc0(M )
j

=> m axL j0  =  Lk0  =■ 0  > M, so {M  V maxL jO }  =  Lk0;
j  3

M  =  maxrrij = m k => 0(M ) =  LkQ(M) and 0(M ) >  L~,kQ(M) 
j

=> maxLjQ = LkS  =  0  =  M , so {M  V maxLj-0} = M  = U
j  3

M  > max rrij = m k => 0(M ) >  LkQ(M)  and 0(M ) > L~,kQ(M)
3

=> maxLj-0 < 0  =  M, so {M V m axLj0} =  M.
i  3

So 0  satisfies (A.l), that is 0  =  M  V max.,- LjQ, and the Gittins index 

policy is optimal. ■

Thus, 0  =  $  and the following identity holds:

$ (M ,x )  = B -  f B T[ dm. (A. 10)
J m dm

Whittle [63, section 9] indicates that the proof can be modified to incor­

porate variable length project stages.

Assume that when one engages project k in state xk then one is com­

mitted to it for a stage of length s =  s(k, x k). We shall suppose that s and 

x k(t +  s) are conditioned only by k and xk, and not by t. The dynamic
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programming equations become recursions between discrete stages instead 

of between discrete periods, and we modify the definition of the one-step 

operator Lk'.

L kF(x) = Rk{xk) +  E [psF (x(t 4- s)) | x{t) = x , k(t) = fc]

where R k(xk) is now the reward from the stage starting from state x k.

The single project return (j>k(m , xk) defined in (A.2) is now in terms of the 

modified Lk, and the identity (A. 10) after the end of the proof of the main 

result still holds between $  and the <f>k\ the Gittins index policy is optimal. 

■

A .l .2 Optim ality o f th e G ittins index policy for bandit 

super-processes

We now show how Whittle’s proof (outlined above) of the optimality of 

the Gittins index policy for simple processes (consisting of single-action 

projects) can be generalised to cover super-processes (consisting of multi­

action projects).

Remember, a super-process is one in which, after a project has been 

chosen, there is a further decision to be made as to how to proceed, and this 

affects both the reward and the state transition of the chosen project. The 

proof of the optimality of the Gittins index policy for super-processes fails 

except in one special case, which is when the following condition holds: the 

optimal subsidiary decision as to how to proceed with the chosen project is 

independent of the size of the fall-back. (In other words, if a project is the 

only one available then your optimal action does not change when the fall­

back varies over the range in which you prefer to continue with the project.) 

The proof below that this condition is sufficient elaborates on that in Whittle
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[62]. That this condition is also necessary can be found in Glazebrook [30].

There are N  projects, each project having possibly more than one avail­

able action when in a given state, and in each discrete period you can take 

only one action and thus work on only one project. The state of project 

k at time t is denoted by Xk(t) and the state variable at time t is written 

as x(t) = (xi(f),Z2( t) ,. . .  ,Xjv(t)). The set of available actions for project k 

in state x k is denoted by Uk(xk), and the set of all available actions is the 

union over k of these, denoted by U(x). Let «(•) be the indicator function 

mapping available actions to projects, i.e. k ( u )  = k for u € Uk. The action 

taken at time t  is denoted by u(t), and thus the project engaged at time t is 

K,(u(t)). If action u is taken at time t  then you get an immediate expected 

reward of w). Rewards are additive and discounted in time by

a factor (3. States of unengaged projects do not change and the state of the 

engaged project changes by a Markov transition rule: if K(u(t)) ^  k then 

Xfc(t-l-l) =  xk(t), and if «(it(£)) =  k then the value of xk( t + 1) is conditioned 

only by u(t), k k  x k(t).

Continue to assume that rewards are uniformly bounded:

—oo  < —B( 1 — (3) < Rk(x,u) < B ( 1 — (3) < o o .

When m  is the available fall-back, <f)k(m ,xk) now solves 

(j>k = m  V sup L k>u<f>k
u€Uk

where

LK{u)tU$ (M ,x) = R K(u)(xK(u),u )+ (3 E [$ (M ,x(t + l)) | M ,x(t) =  x,u(t)

As usual, the Gittins index of project k , denoted by m k(xk), is the infimal 

value of m  such that m  = <pk(m, x k), namely the alternatives of stopping with

(A-11)



A .l. EXPLORING A  BRANCHING STRUCTURE 181

m k and of embanking on project k (with the option of taking the fall-back 

staying open) axe equitable, and so m k =  snpuGUk LkyU<f>k.

0(M , x) is defined as before, and we still have (A.3):

roo
0(M , x) = <pk(M , xk)Pk(M , x) +  /  <j>k(m , x k) dmPk(m , x)

J  M

so, having fixed x, the following ((A.4) & (A.5)) still hold:

0(M ) >  M for any M, 

and 0(M ) =  M  iff M  > max rrij.

The function <§(•) is now action-specific not merely project-specific, so, for 

u € C/jfe, define

<5M (m ,xfe) =  <j>k(m ,xk) -  L Ku<i>k(m ,xk).

Fixing x as before, to focus on m  or M , note that

0(M ) -  L m 0 ( M )  =  6k,u(M)Pk(M) +  f "  6ktU{m) dmPk(m)
J  M

so 0 (M ) — sup Lk ûS (M )

=  inf (Sk,u{M)Pk(M ) +  f°° 6k,u{m)dmPk{m))(A.12)

We want to show that:

0(M ) >  sup Lk&(M ) for any M, (A.13)
UGUic

and 0(M ) =  sup LkO(M) iff mfc =  maxm^ and M  < mfc. (A.14)
u€U k •?

It is still the case that, for any u € Uk, 6kjU(m) > 0 for all m, so inequality 

(A.13) still holds, and if we are able to assert that, for some u G Uk, 6k,u(m) =  

0 for m < mfc, then equality (A.14) also holds, by considering the RHS of 

(A.12). The assertion that such an action u G Uk exists is the same as saying
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that in the continuation region for the single project the optimal action is 

unique. ■

However, if there is not a unique optimal action u € Uk when m < m k, 

then the RHS of (A. 12) might be strictly positive for some M  < m k, in which 

case equality (A. 14) would not hold, and the remainder of the proof would 

not go through.2 To see this, suppose that a switch of actions occurs when 

the fall-back is m, i.e. when m  is such that m < m  it is optimal to take 

action v!, and when m  is such that r h < m <  m k it is optimal to take action 

u". For action v! this implies that Sky  (rn) =  0 when m  < m, & 6ky (m ) > 0 

when m  < m < m k, and for action u" this implies that Sky/{m ) >  0 when 

m  < m, &; 6k,u"(m) =  0 when m  < m  < m k. Consider M  < to, and suppose 

that the other projects under consideration are such that Pk(M) > 0 and 

dmPkim) > 0 for M  < m < m k. Looking at the RHS of (A. 12) for the two 

actions in turn we see that (a) the first term is zero because 6ky (M )  = 0, 

but the integral is non-zero because neither Sky (m )  nor dmPk(m) is zero over 

[m, 771*;], and (b) Sky> (M) > 0 and also the integral is non-zero (over [M, m]). 

So the expression in parentheses on the RHS of (A. 12) is strictly positive for 

either action, hence the infimum over the two actions is positive.

As in Appendix A. 1.1, when the number of periods required to complete 

an action in a project is different for different actions and different projects,

2 As an informal example of the second condition failing, consider a project with 
two actions: one leads to a state with a low mean value and a high variance; the 
other one leads to a state with a high mean value and a low variance. Taking 
either action renders the other unavailable. When the fall-back is high enough, it 
is optimal to take it. When the fall-back is lowered, it becomes optimal to take 
the more risky action, because if a poor outcome is realised there is always the 
fall-back. However, as the fall-back is lowered even further, it is no longer a good 
enough guarantee and so the optimal action switches to the less risky one.
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the definition of the action of L* can be suitably modified so that the above 

result remains valid.

Assume that when one takes action u in project k =  k ( u )  in state x* then 

one is committed to it for a stage of length s =  s(k, Xk, u). We shall suppose 

that s and Xk(t +  5) are conditioned only by k , x*;, and u, and not by t. The 

definition of the one-step operator Lk becomes:

t),v,F(x) — Rk(u)(PCk,(u)i'U) d" E[/3 F (x(t ■+■ s)) | X , l l ( t )  u\

where R K(U) (xK(u), u) is now the reward from the stage starting from state xjt 

when action u is taken.

As before, the single project return </>fc(m,xfc) is now defined in terms of 

the modified Lk, and the identity (A. 10) still holds between $  and the fa, 

the Gittins index policy is optimal. ■

A .2 Increm ental sunk costs

A.2.1 P roof o f Result 9

Suppose first that the Result is true in all possible successor states to k l. We 

show that it is then true for kl . This implies, by backward induction from 

the state where all firms have completed the project, that the Result is true 

for all states.

The proof is broken down into a number of intermediate steps.

S tep  1: T he boundary  in  period  t +  1 will be  e ith e r xb(kt) or 

xb(A:t) — 1, no m a tte r  w hat actions firm s tak e  in t .

The boundary in t +  1 cannot be further from the end than x b(kt) since 

the number of firms at xb(kt) or closer can only be higher in t +  1 than in t. 

Moreover the boundary in t  + 1  is at least as far from the end as x b(kt) — 1:
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the number of firms which could profitably finish were all firms at x b(kt) is 

more than the number of firms at x b(kt) — 1 or closer in period f, and so is 

more than the number of firms at xb(kt) — 2 or closer in period t + 1. This 

implies that the number of firms which could profitably finish were all firms 

at x b(kt) — 1 in period t  + 1  is more than the number of firms at x b(kt) — 2 or 

closer, and so that the boundary in period t+ 1  is at least as far as x b(kt) — 1.

S tep  2: A ssum e th e  R esu lt is t ru e  in  all possible successor s ta te s  

to  kl. T hen  all firm s a t x b(kt) — 1 o r closer in  period  t  will invest in 

£, in  any equilibrium .

Recall that the Result is assumed true in all possible successor states to 

kl, and that we have just shown that the boundary in period t +  1 will be 

either x b(kt) or x b(kt) — 1. Together these imply that the largest possible 

number of firms which will finish subsequent to t  is the number which could 

profitably finish were all firms at xb(kt) — 1. They also imply that all firms 

at xb(kt) — 2 or closer in period t +  1 will invest fully in each subsequent 

period until they have completed the project. Any firm at xb(kt) — 1 or 

closer in period t can thus guarantee that it will be among those completing 

the project, and that it will make a profit, by investing in period t  so that it 

is at x b(kt) — 2 or closer in period t +  1. If any of these firms waited instead, 

they would not reduce the number of firms that finished in total, they might 

find a rival finished in their stead, and their payoff would be discounted, so 

that in any equilibrium, all firms at x b(kt) — 1 or closer will invest in period 

t.

Step 3:Assum e th e  R esu lt is t ru e  in  all possible successor s ta te s  

to  kl and  suppose th a t  a t  t  som e firm s a re  a t  th e  bo u n d ary  xb(kt). 

If  th e  num ber a t th e  bou n d ary  o r closer is less th a n  th e  num ber 

th a t  could profitab ly  finish w ere all firm s a t th e  boundary , th e n  all
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firm s actually at th e boundary invest in period t in  any equilibrium , 

otherw ise exactly max jn  | u(xb(kt), n) > o} — # { i  | k\ < xb(kt)} of them  

do so.

Suppose instead that fewer than this invest. In period t +  1 the boundary 

will remain a t xb(kt), and since the Result is assumed true in all successor 

states, at least one firm at the boundary in t+ 1  will invest in each subsequent 

period and complete the project. If this firm had been at the boundary at t it 

would have done better to invest in t rather than wait for a period. If not, one 

of the firms which was a t the boundary at t  and which never invested would 

have done better to invest a t t and so ensure that it was among the finishing 

firms. Suppose now that the number of firms at the boundary or closer is 

more than the number which could profitably finish were all firms at the 

boundary, and that more than max |n  | u(xb{kt)1 n) > 0 } - # { *  i *}<**(**)> 

of the firms actually at the boundary at t  invest. Subsequently either all 

of these firms, and all those which were closer than the boundary at £, will 

complete the project, and the firms which were at the boundary at t  will make 

a loss. Alternatively at least one of the firms which was at the boundary at 

t  and which invested does not invest further, in which case it cannot have 

been part of an equilibrium for that firm to invest at t.

Step 4. Assum e the R esult is true in all possible successor states 

to  kt. Then the R esult is true in kl.

This follows directly from steps 2 and 3 above.

Step 5. The R esult is true in all states.

This follows by backward induction from the state in which all firms have 

completed the project. In this state, the Result is clearly true. Suppose 

all firms but one have finished the project, and the exception has just one 

stages to complete. The Result is true in all possible successor states, and so
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is true in this one by step 4. Suppose that all firms but one have finished the 

project, and the exception has two stages to complete. The Result is true in 

all possible successor states, and so is true in this one, and so on. Suppose 

all firms but two have finished the project, and the two exceptions have just 

one stage each to complete. The Result is true in all possible successor states 

and so is true in this one, and so on. In this way the Result is proved in all 

possible states. ■

A .2.2  P roo f o f R esult 11

The proof that these strategies form the only symmetric perfect Nash equi­

librium can be taken from the proof of Result given in Appendix A.2.1 

for all states except those where firms have the same number of stages to 

complete but if both invest fully to the end they would each make a loss, i.e. 

those states where k* =  kj and ud(ki) <  0 in Appendix A.2.1. We now show 

that in these states the only symmetric perfect Nash equilibrium has firms 

choosing mixed strategies.

Define x? as the greatest number of stages a firm can complete and be sure 

of a positive payoff, no matter what the rival does: x^ =  max jx  | ud(x) > o j. 

Start with kj = kj = xd 1. In the pure strategy equilibrium just one firm 

would invest but this cannot be so in a symmetric equilibrium. If one firm 

invests while its rival does not its value in the state next period will be u7n(z?i) 

and so its value this period is ?xd(xd + 1 ). If both invest both get ud{p^ 4-1). 

If a firm does not invest its value will be zero whether its rival invests or 

not (as strategies are time stationary). In a mixed strategy equilibrium the 

firm will be indifferent between investing and not. If its rival invests with
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probability s * ^  +  1 ,^  +  1) then:

0 =  S j(x ,x )u d(x) + ( l  — S j(x ,x fj  um(x), x = a? +  1

which rearranges to give:

Sj (x , x)  = ------ -77 - 7 7 — 7- 7 , x  =  x d +  l
J 1 —  ud(x) /um(x)

as given in Result 11. The value of each firm in (x^ 4- 1,2?* +  1) is clearly 0.

When ki = kj > 5 ^  +  1 then if one invests while the other does not it gets 

um(ki) while if both invest each gets — c. This gives:

*’ ( l ’x ) = l + c / W ) ’ * =  - 1 .  •••** + 1

and the value is again 0. ■

A .2.3 P roof o f Result 12

In order to find the probability that both firms complete the project, we first

examine the conditions under which both finish. According to the equilibrium

in Result 11 there is a bound x** such that if both firms have x** or fewer stages

to complete both will certainly finish the project. If at least one has more

than x^ stages to complete either both have the same number and choose

mixed strategies, or one has fewer stages and it alone finishes. Therefore both

firms complete the project if and only if they complete each of the symmetric

states outside the boundary, (x, x), x =  d, d — 1 , . . . ,  x** 4-1, at the same time

as each other. As is clear from the equilibrium strategies the boundary x** is

defined by the condition that a firm completing x^ or fewer stages and then

producing has a positive payoff even if its rival finishes first, but a negative

payoff if it has to complete more than x** stages and then share the market

with its rival. In other words x^ is the largest x for which:
1 — f)x

ud(x ) = -  Y ^ ~ 6 C ~  0
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or in terms of the parameters of the sunk cost model of concentration, it is 

the largest x for which:

1 — fixld
ud(x) =  6x/dU (2)---------- —a > 0 (A. 15)

1 —  6

We have seen that both firms complete the project if and only if each 

completes every stage x, x = d,d — 1 ,. . .  ,3d -I-1, at the same time as its 

rival. Denote the probability that both firms complete stage x  together given 

that the market has arrived at state (x, x) by p(x). Both choose probability 

s*(x, x). If both complete the stage at the same time this is either because 

both invested in the first period in which the state was (x,x), or because 

neither finished, in this period and both finished together at a later time. 

Thus:

p(x) = (a4*(x,x)) +  (l -  s* (x ,x ) f  p(x) 

which rearranges to give:

P(X) =  2 /s '(x ,x )  -  1 (A'16)

Inspecting this expression, and that in Result ( | giving the optimal strategies 

s*, confirms that p(x) is non-increasing in x: a firm is less likely to complete 

a stage at the same time as its rival when it has more stages left to complete.

The probability that both firms finish the project is denoted <p and is the 

product of the probability that they complete each of the stages (x,x), x = 

d, d — 1 , . . . ,  +  1 together.

x d+ l

<t>= n  p (x)
x= d

We can place a lower bound on this product by considering just the smallest 

possible value of p(x), i.e. p(d). Denote this lower bound by:

4> =  W ) f +2-d < 0
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Substituting for p(x) using Equation A. 16 and the strategies given in Re­

sult 11 gives:
1 x d+2—d

- =  l  +  2c

and we will consider the limit of this expression in the limit as d —► oo.

Two parts of the expression for 0 above depend on d: the power of the 

expression, 3^ +  2 — d, and the cost c in the bracket (from the definition of 

the parameters in Equation 2.5 we have um(d) =  <513(1) — a, no matter d). 

We consider each in turn.

Consider first the term xd+ 2—d. The boundary a?* is the furthest integer 

distance from completion, ar, satisfying Equation A.15. Define £ as the real 

value satisfying:

udm  = fl«n(2) -  =  0
1 — 0

Note that £ is independent of d. In the limit as d —» oo there is always a 

distance x  such that x /d  is arbitrarily close to any real value, so that:

lim xd =  d£
d—► oo

Turning to the cost c we have, from Equation 2.5:

1 -  PI*c =  —cr
1 - 8

We can find the limit of this as d becomes large by taking a binomial 

expansion of 8l/d — ( l  — (1 — Sfj  ̂ and ignoring all high powered terms in 

1/d. This gives:

Jim ( l -  (1 - i ) ) Xli =  1 -  1(1 - 6) +  M ( M (i - S f

" "  (1/1) (1 /d - 1 )  (1 / d - 2) (1 -s)3
3!
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where:

(1 - 8?  (1 - 6?  
k ~  2 3

which converges. Thus: 

lim c =  ^  ( l -----
<*—  OO d  \  1  _  S  I

(A.17)

We are now able to consider the limit of the lower bound to the probability 

that both firms complete the project as the number of stages becomes large.

d(€-1)i
lim <f> =  limd—►oo — d—*-oo

exp

1 4 - 2 ( 1  _  _ k _ \  g (g - l)
_ A  ^  u™(d) V \ - 6 j

2<r({ -  1) fc
um{d) 1 -

l-<5.
> 0

A .2.4 P roof o f R esult 13

The state space is sufficiently small that we can construct equilibrium back­

wards state by state starting at (0,0,0) in which no firms can take any action. 

In (0,0,1) a single firm can choose to invest and get u(l, 3). Since this is pos­

itive investment is optimal. In (0,1,1) two firms can choose to invest. Both 

will finish since if either finishes it gets a positive payoff no matter what its 

rival does. There is no incentive to wait and both invest straightaway. In 

(0,1,2) the firm with 1 stage to complete has a dominant strategy: since 

w(l,3) > 0 it will invest no matter what the other firm does. Given this the 

firm with 2 stages to complete does not invest since the best it can hope for 

is a payoff of u(2,3) which is negative. In (0,2,2) there is no symmetric pure 

strategy equilibrium: it is profitable for one firm to finish but not both. If 

one invests while its rival does not the state next period will be (0,1,2), it
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will invest again, and so its payoff is u(2,2). If both invest both get u(2,3). 

If a firm does not invest its value will be zero: it will never arrive at a state 

in which it invests. Each firm will be indifferent between investing and not 

when its rival invests with probability q\ and if it invests it also gets an 

expected payoff of zero:

0 =  qi u(2,3) +  (1 -  gi) u(2,2)

which rearranges to give:

u(2,2)
91 -  it(2,2) - ti(2 ,3 )

Both will invest with this probability in any symmetric equilibrium. Strate­

gies in the other states follow in a similar way, except k = (2,2,2).

It is straightforward to show that in (2,2,2) in any symmetric equilibrium 

all invest with a probability <72 which is strictly less than 1. They must choose 

the same probability since strategies are symmetric by assumption. Moreover 

they cannot all invest with certainty since if they do the state next period 

will be (1,1,1), all will invest again, giving an initial value u(2,3) which is 

negative. The difficulty is in showing that firms invest with a strictly positive 

probability. As we have seen, when two firms invest the third gets a negative 

payoff if it invests as well. It is a sufficient condition for <72 > 0 that when two 

firms do not invest the third has a positive payoff if it does. This sufficiency 

follows simply from the facts that (a) any interior probability is optimal if 

and only if the payoff from investing is zero, (b) a firm’s payoff if it invests 

is a continuous function of its rivals’ investment probabilities.

Next we confirm that if two firms do not invest the third does indeed get 

a positive payoff from investing. If one of the other two invests the third 

firm will certainly get a positive payoff from investing itself: the state next 

period will be (1,1,2), the two lead firms alone will invest and so its payoff
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is u(2,2) >  0. However, a firm with one stage to go may prefer that one 

rival also has just one stage to go that both still had two stages to complete.

This can arise because if two still have two stages to go they will choose 

mixed strategies and both may end up completing the project, reducing the 

profits earned by the third. We need an explicit expression for the value 

of a firm when it has one stage to go and the other two have two, i.e. for 

V i(l,2 ,2). Suppose that initially the state is (1,2,2). The first firm invests 

with certainty and the two rivals invest with probability q\. If neither rival 

completes the first stage before t and at t  just one completes the stage, the 

first firms payoff, evaluated initially, is:

u( 1,1) — St Pr (1 firm completes first stage at t) (u(l, 1) — it(l, 2))

and similarly if two firms complete the first stage at t. The first firm’s initial 

value is thus:

Vi(l,2,2) =  «(1,1)
O O

— ^2  ̂  Pr (1 fi1111 completes the first stage at t ) (u( 1,1) — u( 1,2)) 
t=o
oo

— ^2  6* Pr (2 firms complete the first stage at t) (u(l, 1) — u( 1,3))
t=o

The probability that neither rival completes the first stage before t and at t 

just one completes the stage is:

( l - S l f - 1*!

and similarly for the probability that both rivals complete the first stage at 

t. Substituting these and rearranging gives:

Vi(l, 2,2) =  «(1 ,1) -  ■■ _  ((“ (1,1) -  “ (1- 2)) +  ?1 M l , 2) -  «(1,3)))

Note first that this can be less than Vi(l, 1,2) =  u( 1,2). The second term 

is always positive and so Vi(l, 2,2) is less than u( 1,1). If the first firm to
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finish does not mind when a second firm finishes because u(x, 1) =  u(x, 2) 

then it will also be less than Vi(l, 1,2). For our purposes, this means that we 

need to show explicitly that the third firm will invest in (2,2,2) if the other 

two do not as we cannot rely on the fact that it(2,2) =  <5Vi(l, 1,2) — c > 0  

to argue that <5Vi(l, 2,2) — c is likewise positive. Writing out the payoff from 

investing when the other two do not gives:

<5Vi(l,2,2) — c =  < 5 u (l,l)-c

^  +  91 ^ 1’ ^  3^

= u (  2, 1)

~ 1 - £ (1 - ^  ((“ (2’1} “  “ (2> 2)) +  91 (“ (2’2) “  “ (2,3))) 

Note that the expression for q\ found earfier gives q\ (u(2,2) — u(2,3)) =  

u(2,1) so that:

<5^(1, 2 ,2 )- c  = u{2,1) ( l  -  f S S{l -

This is positive when qi < 1 — <5(1 — <?i)2, i.e. when <5(1 — qi) < 1, which is 

always the case.

This concludes the proof. ■
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