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Abstract

In this work we develop a Markov Chain Jump-Diffusion (MCJD) model, 

where we have a financial market in which there are several possible states. 

Asset prices in the market follow a generalised geometric Brownian motion, 

with drift and volatility depending on the state of the market. So for example, 

one state may represent a bull market where drifts are high, whilst another 

state may represent a bear market where where drifts are low. The state 

the market is in is governed by a continuous time Markov chain. We add to 

this diffusion process jumps in the asset price which occur when the market 

changes state, and the jump sizes are dependent on the states the market is 

transiting to and transiting from. We also allow the market to transit to the 

same state, which corresponds to a jump in the asset price with no change 

to the drift or volatility.

We will develop conditions of no arbitrage in such a market, and methods 

for pricing derivatives of assets whose prices follow MCJD processes. We will 

also consider Term-Structure models where the short rate (or forward rate) 

follows an MCJD process.
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Notation

During the course of this work there will be the need to define many terms 

and symbols in order to develop all the theory. In order to assist the reader 

we have listed below some of the most commonly used terms, as well as the 

page number where they are first defined and a brief description of what they 

are used to represent. We have also included a list of matrices.

Term Page no. Description

Yt 5 Markov chain representing the state of the market at time t.

S  5 The set of possible states the market can be in which
can take values 1 , . . . ,  n .

n 5 Total number of states in the market .

j  5 Subscript denoting the state of the market, j  Ç: S.

k 5 Subscript denoting the state of the market, k E S.

5 The transition intensity from state j  to state k.

IV



Term Page no. Description

6  The total number of times the market has transited from 
state j  to state k up until time t.

Nt 6  The total number of transitions of the state up to time t.

1} 7 Indicator variable taking the value 1 if the market is
in state j  at time t and 0  otherwise ,

8  The probability at time 0 that the market is in state k
at time t, given that at time 0 it is state j  .

8  The total expected time spent in state k in the interval
[0 , t], given that at time 0  the market is in state j .

J  9 An T +  1 dimensional row vector representing the jump
sequence of the first x  jumps.

Dt 9 Markov chain used for phase-type distributions.

w 1 1  Subscript denoting the state of the Markov chain Dt-
w = 1 ,.. .  ,x  1 .

pii-jx+içp^ 12 The probability of observing jump sequence J ' in time T.

13 The probability of transiting from state j  to state k
conditional on a transition occurring.

r 15 Total number of Brownian motions.

b 15 Subscript denoting number of Brownian motion. 6 =  1 , . . . ,  r.

W} 15 Value of Brownian motion number b at time t  .

17 The jump size of asset i when transiting from state j  to
state k. The i may be suppressed when there is only one 
asset.

Bt 18 Bank-account process.



VI

Term Page no. Description

Tj 19 The rate of interest whilst in state j .

Si t̂ 20 The price of asset i at time t. The i may be suppressed
when there is only one asset .

Si t̂ 20 The discounted price of asset i.

fiij 20 The drift of asset i whilst in state j .  The i may be
suppressed when there is only one asset.

ai^bj 20 The volatility of asset i due to Brownian motion b
whilst in state j .  The i may be suppressed when there 
is only one asset. The b may be suppressed when there 
is only one Brownian motion.

fiij 22 Drift of asset i in state j  under transformed
(risk-neutral) measure.

$bj 22 Addition to the drift for Brownian motion 6 in state j .

25 Transformation to transition intensity from state j  to
state k under transformed (risk-neutral) measure.

rt 108 The value of the short rate at time t.

108 The drift of the short-rate process at time t.

a{t,Y t-) 108 The volatility of the short-rate process at time t.

7 ’’(t, Yt-,Yt) 108 The size of the jump in the short-rate process at
time t.

p(t, T) 108 The value of a zero-coupon bond at time t  expiring at
time T.

m{t, T, Yt-) 108 The drift of the zero-coupon price process.

v{t,T, Yt-) 108 The volatility of the zero-coupon price process.

7 ^(t, T, Yt-,Yt) 108 The size of the jump in the value of the zero-coupon
price process.



vil

Term Page no. Description

108 The forward rate between times t and T.

a{t,T ,Y t-) 108 The drift of the forward-rate process.

b{t,T ,y t-) 108 The volatility of the forward-rate process.

't / i t ,T ,Y t.,Y t) 108 The size of the jump in the forward-rate process.

A {t,T ,Y t-) 113 Minus the integral of a{t,T ,Y t-).

B {t,T ,Y t-) 113 Minus the integral of b(t,T, Yt-).

r f{ t ,T ,Y ,.,Y t) 113 Minus the integral of Yt-).

P{0,T) 124 Empirical bond prices.

f{0 ,T ) 124 Empirical forward rates.

We will now include a table of matrices.
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Matrix Page no. Description

D(a) 2 1 m x m  matrix with elements of a  down the principal 
diagonal where a  G

gmxl 2 1 Vector of discounted stock prices.

UJixl 2 1 Vector of drifts.

^mxr 2 1 Matrix of volatilities.

w r ' 2 1 Matrix of Brownian motions.

T'TTixn
'■j 2 1 Matrix of jump sizes.

N i 2 1 Vector of counting processes.

ÛJixl 2 2 Vector of drifts under transformed (risk-neutral) measure.

© f ' 2 2 Vector of additions to the drifts for each Brownian motion.

w r ' 2 2 Vector of Brownian motions under the changed 
(risk-neutral) measure.

Anxl 27 Vector of transition intensities.

^nxl 27 Vector of transformations to transition intensities under
changed (risk-neutral) measure.



Chapter 1

Introduction

1.1 G eneral Introduction

Over 30 years ago Black and Scholes produced their seminal paper Black 

and Scholes [1973], which together with Merton [1973] paved the way for the 

development of mathematical finance as we know it. Their papers were based 

on the assumption that the price of the underlying asset follows the behaviour 

of a diffusion process, most notably a geometric Brownian motion. Another 

watershed was the development of the Arbitrage Pricing Technique in Ross 

[1976] and Ross [1978], and the martingale approach to arbitrage pricing 

developed in Harrison and Kreps [1979] and Harrison and Pliska [1981].

The Black-Scholes model has become very popular due to its simplic

ity in that it quantifies risk through a single constant volatility parameter. 

However, it is clear that this assumption of constant volatility will not be
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totally adequate when attempting model the behaviour of today’s complex 

financial markets, and this accusation has been supported by various empir

ical studies (for example see Bakshi et al. [1997]). There have subsequently 

been many attempts to modify this model and relax its over-simplistic as

sumptions. Stochastic volatility models have been extensively studied where 

the volatility is allowed to evolve over time (see Hull and White [1987], Stein 

and Stein [1991] and Heston [1993], or alternatively for a synopsis see Fouque 

et al. [2 0 0 0 ]).

On an alternate front, there have been attempts to develop models which 

incorporate jumps into the asset price behaviour. Such jumping behaviour 

in asset prices has been supported by empirical evidence such as in Ball and 

Torous [1985] and Jorion [1988]. Pure jump processes were developed in pa

pers such as Merton [1976] and Bjork et al. [1997]. A natural extension to 

these models are processes that include both a diflFusion part and a jump 

part, known as jump-diffusion processes, such as in Andersen and Andersen 

[2000] and Madan [2001]. Many other varying models have been developed 

to try to improve on the Black-Scholes model, although in their increased 

sophistication they sacrifice a lot in terms of ease of calculation, as well as 

intuitiveness of the models. This last factor is fairly important, as any model 

which requires a so-called ‘rocket scientist’ to understand is unlikely to be 

used widely by practitioners. They prefer to employ more simplistic models 

they can understand even though they may not be as accurate.
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In this work we shall develop a different type of Jump-diffusion model which 

we shall call a Markov Chain Jump-Diffusion Model (MCJD). The motiva

tion for this lies behind two papers where totally different models have been 

developed. Firstly, in Norberg [2003] a pure-jump process is considered where 

the market is driven by a continuous-time homogenous financial market. Al

ternatively, in Runggaldier [2003] a jump-diffusion process is developed where 

the jumps are modelled by a marked point process.

In our MCJD model we consider a market in which there are several states 

of the market. Asset prices in the market follow a generalised geometric 

Brownian motion, with drift and volatility depending on the state of the 

market. So for example, one state may represent a hull market where drifts 

are high, whilst another state may represent a bear market where drifts are 

low. The state the market is in is governed by a continuous-time Markov 

chain. We add to this diffusion process jumps in the asset price which occur 

when the market changes state, and the jump sizes are dependent on the 

states the market is transiting to and transiting from. We also allow the 

market to transit to the same state, which corresponds to a jump in the 

asset price with no change to the drift or volatility.

This model constitutes a stochastic drift and volatility model as these 

parameters are allowed to change, as well as being a jump process. It is 

very intuitive to see how this model may represent the behaviour of financial 

assets, as it is widely recognized that there are trends in the market, and 

periods where asset prices behave in different ways. This model provides
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the advantages of stochastic volatility models and jumps processes in that 

it should describe more accurately the behaviour of financial assets, and at 

the same time regulates these features in a restricted sense so as to facilitate 

pricing, and hopefully making intuitive sense.

1.2 Order o f W ork

In the conclusion of this chapter we will describe the market characteristics 

common to all the subsequent models, and develop several results concerning 

Markov chains which will prove useful in our subsequent investigations.

In chapter 2 we develop the Equity model where asset prices follow our MCJD 

model. We will deal with issues of completeness, replicating contingent claims 

and finally pricing derivatives.

In chapter 3 we shall develop and compare various numerical methods for 

pricing derivatives on the assets described in chapter 2. We will look at a 

particular example and see how all the methodologies had priced call options 

on this asset.

Chapter 4 sees us turning our attention to Term-Structure models where 

we will use our MCJD model to describe the behaviour of the short rate for 

short-rate models, or of the forward rate for HJM models. We again discuss
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issues regarding completeness and derivative pricing for these models, as well 

as parameter estimation.

Finally in Chapter 5 we will develop numerical methods for pricing the 

interest-rate derivatives developed in chapter 4.

To try to make reading this thesis as easy as possible for the reader, we 

have also included a notation page which includes many of the terms and 

symbols that are used repeatedly throughout this work.

1.3 Prelim inaries

1.3.1 The Markov Chain Market

As mentioned above, in this work we shall be considering a market in which 

there are n  states represented by the continuous-time Markov chain (lt)t>o 

with finite state space «S =  {1. . .  n}. The process Yt transits between states j  

and k where j , k  E S  with intensity A-̂ *, so that the generator of this process 

is given by

G  =

-Â 1 . . A'" \

■ -Â " /

(1.3.1)
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where This process is time-homogeneous, so that for j  ^  k

we have that

Pr[y(+rf( =  k\Yt=i \  =  + o{dt). (1.3.2)

We also have that

>  0 ,

and we are assuming there can be at most one transition for any small length 

of time dt.

Let us add to the above Markov chain the ability to tra n s it  to the same 

state, the probability of which is given by X^^dt. This should not be confused 

with the probability of rem ain ing  in the same state which has probability 

equal to 1 — +  o{dt). The motivation for doing this will become

clear in section 2.2, We can therefore regard this extended process as being

a multivariate point process, with state-dependent intensity vector Aj given

by

=  V j € S .

Define Nl as being the number of transitions from state j  to state k up to

time t, so that for j  ^  k

= |{^; 0 < 8 < t , Yg = k , Yg- = j} \,

whilst is the number of times the process was in state j  and tra n s ite d

to the same state. Nt denotes the total number of transitions up to time t:

jes keS
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where we set N q = 0. We shall call this point process the jump process and 

its intensities the jump intensities, as opposed to the transition process given 

in 1.3.1.

We make the assumption of non-explosion, so that iVt < oo for t >  0 

(similarly < oo V j ,k ) ,  and assume Nt is defined on some probability 

space (n, P ) with filtration to which Nt is adapted. This process can 

be characterised as a doubly stochastic Poisson process with state-dependent 

intensity At, where

A. =  A(y,) =  ^ l A , / / ,  (1.3.3)
jes

1 is a 1x4 row vector with all entries equal to 1, and l} is the indicator 

variable which takes values

{ 0  otherwise.

The expected time spent in state j  before transiting out is therefore expo

nentially distributed with parameter (lAj — A-̂ -̂ ). We shall denote the times 

at which each of these Nt jumps occur by t i , . . .  ,tN^. Finally, we shall set the 

process Yt to be left continuous and hence it will also be prévisible. In the 

remainder of this work we shall denote prévisible state-dependent processes 

as functions of Y t- .
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1.3.2 Properties of the M odel

We will now derive some properties of this model which we will make use 

of in the forthcoming chapters. In order to do this, let us first write the 

following definition (for example see Grimmett and Stirzaker [2 0 0 1 ]):

D efinition  1.3.1. Given a Markov chain setting described in section 1.3,1, 

the probability of being in state k at time t given that at time 0  we were in 

state j  for j , k  e  S  is given by

=  P[yt = k \Y o=  j].

The probability pj*' is then given by

pI^ = P  'exp {tG^} I*’

°° ty

where 1  ̂ is the n-dimensional column vector with the entry equal to 1 

and all other entries equal to 0, and G is the generator defined in (1.3.1). We 

denote the transpose by '. Let us also define the expected total time spent 

over the interval [0 , t] in state k, given at time 0  we are in state j ,  by

J 3 = 0
p t  =  I v>;ds.
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We therefore have

In order to perform many of the calculations in subsequent chapters, we 

will need to condition on the path taken by the Markov chain Yt. We will 

now derive some results when conditioning on this path, which we will make 

use of when pricing derivatives later on.

Let us condition on the Markov chain Yt following a given path. Suppose 

the Markov chain starts in state j i ,  and that the first x + l  transitions of the 

Markov chain (where a jump to the same state is considered a transition) are 

at times t i , . . . ,  tx+i- Let the jump sequence (and hence state of the Markov 

chain) of the first x  of these jumps be represented by the x  +  1-dimensional 

row vector J" = { j i , . . .  ,jx+i}- Under this setup, we shall now calculate the 

probability the Markov chain is in each state at any time t  G [0, T]. In order 

to do this we shall set up our model as a phase-type distribution (see As- 

mussen [2000] or O’Cinneade [1990]).

Constructing a phase-type distribution involves representing this condi

tional Markov chain as a different Markov chain Dt which has generator Qj-, 

where the subscript shows dependence on the path we are conditioning on. 

We shall use the subscripts j  and k to denote states of the original Markov 

chain Yt, whilst the subscript w is reserved for the new Markov chain Dt.
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Whilst Yt is in state j i ,  it transits to state j 2 with intensity . Similarly, 

whilst in state j '2 it transits to state js  with intensity and so on, until 

Yt arrives at state jx+i- Since we are not conditioning on any subsequent 

transitions, the transition intensity out of state jx+i is the total intensity for 

transiting out of state jx+i given by where Â =+̂  ̂ This

conditional Yt process can be represented by the continuous-time Markov 

chain Dt where Dt G { l , . . . , x - | -2} ,  which has generator Q j  given by the 

X  -f- 2-dimensional square matrix below:

Q j  =

.\h32 \h h  0 0
0  Â'2J3 0
0  0  -Â =̂ 4

0
. \ 3 x j x + \  ^ i x j ’x + 1  Q

0 0 0

If all transition intensities are different then Qj- can be diagonalised, 

which would simplify many of the calculations below. Let us now write the 

following lemmas:

Lem m a 1.3.2. We will now calculate the value of conditional on the 

jump sequence J .  Suppose we have Dq = 1. Using (1.3.5) the probability 

that Dt  =  a; 4-1 , i.e. that we have had exactly x  transitions up until time T  

(and so are in state x -h l  as every transition increases the value of Dt by 1),
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is given by
°° 'T'y

=  z +  =  (1.3.7)
y=0

where once again V  is the x  +  1-dimensional column vector with all entries 

equal to 0 and thej^^ entry equal to 1. Conditioning on Dt  =  x-\-l being true, 

we can further see that the probability of being in state w for w = 1 ,.. .  ,x-{-l 

at time t where t G [0, T] is given by

_  (E” o

(1.3.8)

P[Dt — w \Dt  — X 1] — v^oo Ty-iifrïV

We can re-write (1.3.8) as

P[D, = w \Dt = x + 1] = . L i ^ ------   (1-3.9)

where
tvi (T -

y iW

We now have that the conditional probability at time t of being in state k 

of our Markov chain Yt, given that we start in state j  at time 0 is given by

p i^ \J  =  ^ 2  ~  = x -\-1]. (1.3.10)
{ w : jw = k }

Using equation (1.3.9) this becomes
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K M -  2 ^  v “  ï ï i i ' o i ' i * + i  ■
{ w : jw = k }  2 - /J /—0 y l

We now also define to be the expected total time spent in state k so 

that

Pt \ J =  f  (1.3.12)
Jt=o

We can integrate (1.3.11) to get

{ w : jw = k }  2 - ^ y —O y \  J

where
j ’Cyi+w+i)

Z  =
f o i  + 2 / 2  + 1 ) ! ’

□

Lem m a 1.3.3. We will now calculate the probability of observing jump se

quence J  = ( j i , . . . ,  jx+i) an interval [0,T], which we will denote by 

pji-jx+içp^^ f)y setting up a phase-type distribution as follows. We set
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Q j  =

-Âj 0 0

0  -Â^ 0

0  0  -X i  AJ3J4

0 0 

0 0 

0 0

0 0 0 0 

0 0 0 0 

0 0 0 0

-A  ̂ ^jxjx+i

0  —X̂ ^+̂  Â '+̂

0 0 0

where as previously we have X̂  = Y!!k=i weZZ as X^  ̂ =  X̂  — Â *. We

therefore have

j y

U y '
(1.3.14)

□

Finally, we have the following definition:

D efinition 1.3.4. When in state j  and given that a transition will occur, 

the probability that the process will transit to state k is given by

=  P[lt+df =  k\Yt =  j. Transition has occurred]

(1.3.15)
\jk

AJi 4-. . .  4- A;" 

for &== 1, . . .  ,n, so that we also have that Ylk=iP^^ ~  1 -

The usefulness of these lemmas will soon become apparent. We shall now 

begin to develop the Equity Model.



Chapter 2

The Equity Model

2.1 Introduction

In this section we will begin by introducing the model, and then use the Black- 

Scholes methodology to price derivatives whose underlying is represented by 

this model. We will obtain a risk-neutral measure under which our model 

will be a martingale, find a self-financing replicating strategy, and then finally 

develop an equation to price the derivatives.

2.2 T he M odel

Our market contains assets whose price processes are dependent on the state 

of the Markov chain market described in the previous chapter. Suppose we 

have an asset whose price process, denoted by St (where S t> 0  Vt), follows

14
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a generalised geometric Brownian motion so that

r

dSt =  ti{Yt.)Sidt +  ^  ci,(Yt-)StdW^, (2.2.1)
6=1

where the W} for 6 =  l . . . r  are independent Brownian motions under the 

probability measure P , and the drift function /x(-) and volatility functions 

CTb(') are deterministic functions of the state variable Yt-. Note that the 

mean and drift functions are dependent on t — as they are predictable. The 

price process of an asset behaving according to this model will therefore have 

constant drift and volatilities until a transition occurs in our Markov chain.

We so far have the Markov chain and the diffusion part of our model, 

and we will now add the jump part. We shall add to equation (2.2.1) a jump 

process as follows. Suppose the Markov chain Yt has transited from state j  to 

state k. Let 7 *̂̂ be a random variable representing the size of the jump in the 

asset price due to this transition, such that 7 /*̂  > — 1 Vt. Being dependent 

on t and not t — means that 7  ̂ will not be predictable. Adding this random 

variable to (2 .2 .1 ) we get

dSt =  St
6=1 j = l  fc= l

(2 .2 .2)

where the counting process is defined as in section 1.3.1. This implies 

that the jumps occur only when has increased for any j  and fc, i.e. a
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transition of the Markov chain has occurred (which includes a transition to 

the same state). We shall assume that the jumps and the Brownian motions 

are independent. Note that forcing 7 /*̂  to be greater than or equal to —1 

ensures that the asset price will never jump to a negative value. We also 

have that

Pr[St2 — =  0 ] =  1 Vt2 > ti;

so that once the asset has lost all of its value it can never regain it.

We are now left with the task of assigning a distribution to 7 /*̂ . We will 

confine ourselves to using a distribution with a finite event space, because 

should the event space be infinite we would then need an infinite number of 

assets to obtain a risk-neutral measure, as shall be seen later on.

Consider a model under which for each transition from state j  to k there 

are I possible jump sizes given by where all the jump sizes

are finite and greater than -1. So given that a jump from state j  to state k 

occurs, the jump size is represented by 7 /^ which has distribution

with probability pj*

i t  =
P t  with probability

for all j , k  £ S  and where = 1 Vj, k. With this setup we can

replicate practically any distribution for 7 /^ with a suitable choice of I.

We are also able to represent this model in a different way. Our model 

thus far consists of n states, and for every transition between states there are
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I possible jump sizes in the asset price. We could however represent each of 

these jump sizes as their own state in the market, all of which have the same 

drift and volatility but only with differing jump sizes. We would then be left 

with a model where there are n  x I states, with only one possible jump size 

between any two given states. For the rest of this work, we will therefore 

consider models where there is only one possible jump size when transiting 

from state j  to state k so that 7 ^̂  =  7 -̂ .̂ All the results which will be devel

oped will therefore also hold true for models where there are more possible 

jump sizes between any two states, since this would simply correspond to a 

model with more states in the market.

Now that we have all the components of our model we can write the fol

lowing proposition:

P roposition  2.2.1. Assume that between times [0, t] jumps occur at times 

£1 , . . .  ,tjVf The solution to (2.2.2) is given by the following exponential for

mula:

St =  Soexp ^ « tK F ,- )  j ds + ^ M Ys-)dW ^

+  /*  è  è  I . (2-2.3)
•/»=<> j=i k=i J

Proof. The result can be obtained by applying the standard Itô formula 

for the diffusion part, as well as the exponential formula of Stieltjes-Lebesgue
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Calculus (see Appendix A4 in Brémaud [1981]). Alternatively, it can be ob

tained from the generalised Itô formula as in Runggaldier [2003] or Apple- 

baum [2004].

□

This model has a lot of appeal because it is describes the manner in 

which many of the world’s financial markets behave: a stable period of fluc

tuation and drift, followed by a sudden change in the market conditions. 

This shock to the system causes asset prices to jump and there to be new 

levels of drift and volatility. It is particularly apt to fit such a model to less 

liquid markets, where price behavior is generally stable until external stimuli 

cause temporary shocks to the system, whereby a new equilibrium is reached.

We shall now introduce into our market a numéraire in the form of a bank 

account process Bt, which grows by a predictable state-dependent interest 

rate r{Yt-). We will assume r{Yt-) > 0 Vt. This bank-account process has 

dynamics

dBt =  r{Yt-)Btdt,

which has solution

Bt = exp r (y ;_ )d s |

with condition B q = 1.
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We can now define the discounted asset price process St as

St =  St /Bt ,

which has dynamics

dSt = St H Y t-)  -  r ( y , . ) ]  dt +  J 2  +  Ë  Ë

6=1 j=l fc=l

(2.2.4)

Since the drift, volatility and interest-rate functions are only dependent 

of the value of Yt-, we can therefore denote them whilst in state j  as being 

/ij, (Tb,j and rj respectively for all j  E S. We can therefore write equation

(2.2.4) more simply as

dSt = S t ^ i i
;=i

(% - r i ) d t  + J 2  +  É
6=1 fc=l

(2.2.5)

where 1} is the indicator variable that the market is in state j  at time t, and 

is the number of times that the Markov chain has transited from state 

j  to state k as described in section 1.3.1.

We can now write the following corollary:

C orollary 2 .2 .2 . The dynamics of the discounted asset-price process which
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is the solution of (2.2.5), can he obtained using the same manner as for the 

undiscounted price process in proposition 2.2.1 to give

St = S^exp}^ /
^ = 0  j=\

{ fJ'j ~ '̂ 3 -  ^bjdWt
A 6=1 / 6=1

k = l

(2 .2 .6)

□

Finally, our market consists of a set of m  assets M. = ,m }, whose

discounted price processes are all described by equations similar to (2.2.5), 

although with different drift, volatility and jump sizes. For asset z G A^, let 

the price process be denoted by Si t̂ and the drift and volatihty functions by 

Uij and (Tî bj respectively, as well as the jump sizes by for and all j, k G S. 

We can now re-write the discounted asset-price dynamics equation (2.2.5) for 

all assets z G Ad as

3= 1

ilJ'ij -  '>̂ j)dt + (JifijdWt + dN(^
6=1 fc=l

(2,2.7)

or alternatively in matrix form

dS, =  //D (S ,) [(Uj -  V"Tj)dt + S jdW , +  Tj-dNl] , (2.2.8)
J = 1
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where D(a) is an m x m diagonal matrix when a  E with the elements 

of a  down the principal diagonal and 0  elsewhere, 1 ”̂  is an m x 1 column 

vector of I ’s, and we also define the following matrices:

g m x l

I j m x l

y^m xr
~  6= l.,.r

•pm xn
~  {"Ti } i= l .. ,m  fe=l,„n

N J  "XI
=  { N t } k = l . . . n -

2.3 R isk-N eutral M easure

We will now establish the set of price processes which do not permit any arbi

trage opportunities. In order to do this, we will first develop a Girsanov-type 

change of measure. We will then proceed to finding the necessary conditions 

under which this change of measure is a martingale measure, that is a mea

sure under which the discounted asset-price processes in equation (2,2,7) are 

martingales. It was shown by Dybvig and Huang [1988], as well as Harrison 

and Kreps [1979] and Harrison and Pliska [1981], that the existence of such a 

measure is equivalent to a lack of any arbitrage opportunities in a finite-state 

finite-time economy like ours, by the fundamental theorem of asset pricing.
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2.3.1 Change of M easure

The main tool for transforming processes into martingales is Girsanov’s the

orem (or Cameron-Martin-Girsanov theorem), which is discussed in the con

text of stochastic differential equations in 0 ksendal [2 0 0 0 ], or for its use in 

mathematical finance see Bingham and Kiesel [2004] . This is done by induc

ing a change in the drift of a Wiener process by choosing a suitably different 

probability measure. We will need to adapt the standard version of this the

orem for use in our model, but let us begin by stating this classic theorem 

for when St follows the process defined by equation (2 .2 .1 ), that is without 

any jumps.

T heo rem  2.3.1 (G irsanov). Suppose we have a financial market as de

scribed in section 1.3.1 where there are no jumps. The prices of the m  assets 

in this market S{t) G follow an ltd process defined on the probability 

space (ÇI, 1F,P) of the form

n

dS, =  J 3 //D (S ,) [U jd t +  S ,dW ,], t < T ,  (2.3,1)
J=1

where the notation is as defined above. Suppose predictable processes mxl

and exist where

such that
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-  Uj -  \Jj, 

and where Qj satisfies Novikov’s condition

Let

E exp
1 r'^ ”

- d
< oo.

d it  = liLtQ'jdNVit), Lo = 0,
j = i

(2.3.2)

(2.3.3)

where

and

dQt = LtdPt

on T . We can now define

n t  n

' - i sW t . =  y  I^.Qjds-\-Wt] t < T ,

(2.3.4)

where W t is a b-dimensional Brownian motion w.r.t. the equivalent proba

bility measure Q. We can now represent the process Sf in terms of this new 

Brownian motion under Q as follows:

n

dSt = 5 3  [d jd t + S jdW (i)] .
J=1 □
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Note that if m  = b and 2^^"^ is invertible, then the process Qj defined 

in equation (2.3.2) is uniquely given by

e ,  =  s - i u , -  Û , ] .

We can now set the process St to be a martingale by letting Ûj = 0 for 

all j  G S. For the above model to be complete we require the existence of a 

unique martingale measure, and hence a unique Qj for all j  G S. For this to 

be achieved in the no-jumps case above, we require that the number of assets 

to be equal to the number of Brownian motions, as well as the invertibility 

condition above to be fulfilled. Having fewer assets than this means that 

there will be an infinite number of such measures, and more assets than 

this could mean no risk-neutral measures. Either case will leave us with a 

market which is either incomplete, or where there potentially exist arbitrage 

opportunities.

It is interesting to note that the number of states of the Markov chain 

does not affect the number of assets required for the market to be complete. 

This is because since there are no jumps in the asset prices, we can regard 

the process as being a standard generalised geometric Brownian motion with 

constant drift and volatilities whilst it is in a particular state.

We shall now try and extend the above theorem to include the jump process 

as in model (2.2.7). To remind ourselves, when in state j  the process can 

transit to any of the other n states or to itself, and for simplicity (although
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it can easily be generalised) for each such transition we will take there to be 

only one possible jump size in each of the asset prices. The probabihty of a 

transition from state j  to state k at any time t < T  is X^^dt.

We will now develop a similar measure transformation as performed above 

to include the jump process as in Runggaldier [2003] (see also Brémaud [1981] 

and Bjork et al. [1997]):

T heorem  2.3.2. Consider a financial market described by equation (2.2.7). 

Let . . . ,  be an J^t-P'f'^dictable process where > 0  y  j , k  E S  so 

that y  t < T  we have

n n

i = l  fc=l

Define

where satisfies equation (2.3.3) above and is given by

dLf> = -  l )L f} { d N t -  X^^dt). (2.3.5)
fc=l

Noting that we can have at most one jump in a time period of length dt, then 

from equation (1.3.2), where we ignore the negligible term we have

E d N t = =  k\Yt = i]

= \^’‘dt.
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IVe therefore also have that

L\(2) =  Ij = 1 ,

which together with equation (2.3.4) gives us

E^lLt] = l,

where Lq — as the jump process and the Brownian motions are assumed 

to be independent. Using (2.3.3) and (2.3.5) and this independence property, 

we get for the Radon-Nikodym derivative Lt

dLt =  • Lf>) = L f}dL f^  + L ? d L l^ \

which becomes

dLt =  U ' E  +  L t-  -  l ) ( d N t  -
j=\ fe =  l

and which can then be solved to give

Lt = exp
s=0 j=i

Ê (1 -  -  i l l © j i r  )  ds +  & ,d W is)
.k=l

jk

k=l

We now have an equivalent probability measure Q given by

dQt = LtdPt
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under which not only do the drifts in each state change from \Jj to \Jj such 

that

Û ; =  U j  -

but the intensities of the jump process also undergo the transformation

Vj.fc.

□

Using this Girsanov-type transformation we thus have:

C orollary 2.3.3. Under Q, the discounted asset-price processes given in 

equation (2.2.8) become

n

dSt = //D (S J  [(U,- -  2 , 0 ,  -  l ^ r j ) d t  +  2,dW ( -k r,dN j] , (2.3.6)
i=i

where W* is a b-dimensional Q martingale, and where we also have that

E  [dNJ] =

where

A f i  =  (2.3.7)

(2.3.8)

and once again D(a) denotes the diagonal matrix with the vector a  down the 

principal diagonal.

□
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2.3.2 M artingale Measure

We will now look at the conditions necessary for Q to be a martingale mea

sure, that is that under Q we have

Efi[dSt] =  0 Vt.

Taking expectations of equation (2.3.6) we can see that this condition be

comes that for each state j  we must have

Uj -  SjG j -  l ^ r j  -k =  0. (2.3.9)

Let us define the m x (r +  n) augmented matrix Bj as having entries for 

X = 1 ,.. .  ,m , y = 1 ,...  ,{r -h n) where

SO t h a t

B;
m x ( r + n )

- E j  : r jD (A j) (2.3.10)

Similarly define the (r-l-n) x 1 augmented column vector V j as having entries 

V jîo r x  = l , . . . ,{ r - \ - n )  where

I _  f ^x,j I < X <
j y r < X <

r
r- l-n  ’
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so that

—

( r + n )  X 1

r x l

n x l

We can now re-write equation (2.3.9) as

B ;V , =  -  Uj].

In order for there to be unique values for and ^ j ,  and hence a unique 

V j, we therefore require that for all j  E S  the matrix be invertible. Given 

that Bj is an m X (r -f n) matrix, this will clearly only be possible if we have 

exactly r -hn  assets so that m =  r  -f- n, and that

R ank  (Bj) = r-j-n. (2.3.11)

This result is rather intuitive as it is requiring that we have one asset for 

each source of risk - the r Brownian motions and the n states that the model 

could jump to. Should the above conditions hold, this would then give us

(2,3.12)

We are then left with a unique martingale measure Q, where by substituting 

(2.3.9) into (2.3.6) we see that under Q, Sf follows the process
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n
dSt =  -fi D(S,) S jdW t +  r ,  (dNi -  . (2.3.13)

J = 1

Defining

equation (2.3.13) then becomes

" r 1
dSt = ^ / /D C S ,)  S jdW , +  Tj-dNJ

i=i
(2.3.14)

where W* and NJ are both Q martingales for all j  E S.

We shall now look at an example of this model.

Exam ple 2.3.4. Consider a market where there are two possible states; a 

bear market represented by state 1 in which drifts tend to be lower, and a 

bull market represented by state 2 in which drifts tend to be higher. We shall 

set the interest rates =  T2 =  0.03. There are three assets in this market, 

whose price processes have dynamics given by (2.3.6) where there is only one 

Brownian motion. The drifts and volatilities under Q given by Uj and S j 

for j  =  1 , 2 , as well as the jump sizes given by Fj are shown in table 2 .1  

below. Suppose that we also have the jump intensities between each state 

(not transition intensities as explained in section 1.3.1) shown in table 2.2.
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Peiram eters

A sset 1  

S ta te  1  S ta te  2

A sset 2  

S ta te  1  S ta te  2

A sset 3 

S ta te  1 S ta te  2

D rift

V olatility

-0 .2 0 0  0.060 

0.070 0.090

0.065 0.070 

0.052 0.100

0.128 0 .0 2 0  

0.070 0.120

Ju m p  Sizes A sset 2 A sset 3 A sset 4

S ta te  1  

S ta te  2

S ta te  1  S ta te  2  

-0.170 0.800 

-0.450 0.600

S ta te  1  S ta te  2 

-0 .0 1 0  0 .2 0 0  

-0.315 0.270

S ta te  1  S ta te  2  

-0.410 0.600 

-0.350 0.390

Table 2.1: Asset parameters and jump sizes under ‘real-world’ measure.

Using these parameter values and employing equation (2.3.12), we then 

have a risk-neutral measure where the drifts and the jump intensities are 

transformed to the figures shown in table 2.3, where we have

01 =  3.3620

0 2  =  -1.3846.

□

Ju m p  In tensity S ta te  1  S ta te  2

S ta te  1 

S ta te  2

1 .0 0 0 0  1 .0 0 0 0  

1 .0 0 0 0  1 .0 0 0 0

Table 2.2: Jump intensities between each state (A^ )̂.



2.4 Replicating Portfolios 32

D rift A sset 1 A sset 2 A sset 3

S ta te  1  

S ta te  2

-0.435

0.185

-0 .1 1 1

0.208

-0.107

0.186

Ju m p  In ten sity S ta te  1  S ta te  2

S ta te  1  

S ta te  2

0.7500 0.7412 

0.9678 0.4682

Table 2.3: Risk-neutral drifts and jump intensities between each state.

Once the market is complete in the sense that there is a unique martingale- 

measure, we can invoke the completeness theorem which would imply that 

every contingent claim can be hedged by a self-financing portfofio, since there 

are only a finite number of jump sizes.

We shall now proceed to show the existence of such a portfolio in our 

market.

2.4 R ep licating  Portfolios

Let X t be a contingent claim at time T, that is an measurable random 

variable with finite expected value. Denote the price process of this claim by

Ct = BtEqlBrj}Xt  | 

or alternatively the discounted price process
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Ct = E q IB^^Xt  I Ĵ t] = Eq[Xt  I Tt]. (2.4.1)

Suppose that at time t the model is in state j ,  and we hold a portfolio 

consisting of rjtj units of the cash bond and units of asset i for all i = 

1, . . . ,  m. Let be the m x l  vector of asset holdings, so that

and T]tj must be T t— predictable. The value of the portfolio under this 

strategy would then be given by

3= 1

I tjB t  +  ^
i = l

The value of the discounted portfolio is

m

j=l i = l

The strategy 0  is said to be self-financing if

m

d v , * = Y , i i
j=l

L t

i = l

or alternatively in matrix form

3= 1

(2.4.2)
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A contingent claim X t  is said to be attainable if there exists some self- 

financing replicating portfolio $  for which

Vÿ =  X t .

If any such contingent claim is being traded in the market, then in order to 

avoid arbitrage we must have that the price of this claim and its replicating 

portfolio are equal, i.e.

V?  =  C f  (2.4.3)

By inserting equation (2.4.3) into (2.4.2), we therefore have that in order for 

the claim to be replicable by a self-financing portfolio we must have that
n

d C t^ Y ^ P M jd S t .  (2.4.4)
i=i

Replacing (2.3.14) into (2.4.4), the strategy $  is a self-financing replicating 

portfolio of the discounted claim Xt if and only if

dCt =  4 $ L D (S J [S ; d W , +  TjdN i] .  (2.4.5)
J=1

Once the values of $  have been obtained, equation (2.4.5) can be used to 

determine the amount held of the cash bond by

n

In section 2.5 we will calculate explicit formulas for the asset and bond hold

ings.
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The market is said to be complete if every contingent claim is attainable. 

Noticing that the process (2.4.5) is also a Q-martingale, the n-factor mar

tingale representation theorem tells us that we can represent the process Ct

as

Ct = Efi[Ct]+ f  ^
Ja=0 =1

jk
. 6=1 fc=l

or similarly

dC, = ' £ l i
j=l

jk
. 6=1 k=l

(2.4.6)

where and are T t— predictable for all b, j  and k, and where Wt and 

iV/  ̂ are Q martingales. Let the (r +  n) x 1 column vector H tj  have entries 

TT® for a; =  1 , . . . ,  (r +  n), where

X  < r

r <  X <  r -\- n.

To determine the values of ejj and we can compare coefficients in equation

(2.4.5) to those in (2.4.6) to give us for all j

=  g ; d (s , (2.4.7)

where ' denotes the transpose, and Gj is the m x (r +  n) augmented matrix
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' Tj (2.4.8)

For there to be a unique replicating portfolio for the contingent claim Q , 

we therefore require the existence of a vector for every given TLtj such 

that the above equation holds. For that to be the case, we require that Ilf j  

to be in the row space of G ' D (S J, or alternatively

R ank  =  r  +  n. (2.4.9)

As D(Sf) is an m X  m diagonal matrix it clearly has rank m. When

exploring the existence of a risk-neutral measure in section 2.3.2, we required 

that m =  r  -1- n, as well as the matrix Bj given in equation (2.3.10) to be 

invertible and hence to be of full rank. This therefore necessitates that

R an k (S j)  =  r (2.4.10)

R ank  (rjD (A j)) =  n. (2.4.11)

Noting that D(A^) is an n x n diagonal matrix and thus has rank n, equation

(2.4.11) therefore implies that

R ank  (Fj) =  n. (2.4.12)

Equations (2.4.10) and (2.4.12) therefore also imply that the rank of Gj 

is indeed equal to r  -f n. Condition (2.4.9) is therefore satisfied which tells us 

that a unique solution for $ f j  exists, and hence a unique replicating strategy.
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So we can see that completeness in the sense of the existence of a unique 

martingale measure stipulated in section 2,3.2, necessarily implies complete

ness in the form of the existence of a unique replicating portfolio of any 

contingent claim.

2.5 D erivatives Pricing

Now that we have calculated the conditions necessary in order to have a 

complete market in which every T-claim can be uniquely replicated, we are 

left with the task of deriving equations to price them.

From equation (2.3.14) we can write the asset-price process for asset i, 

z =  1 , . . .  m, as

dSi,t =
j=i 6=1 fe=l

(2.5.1)

If the market is arbitrage-free and complete, then the price of a contingent 

claim is given by (2.4.1). Let us consider T-claims represented by X t  that 

are a function of the state Yr and the price of the single asset Si^r, that is,

X t  = fiXT^Si^r)-

We can re-write (2.4.1) as

n

à  =  (*’«)’ (2.5,2)
j=l
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where

c^(t, s) = B iEq X t  I Ff =  j  , Si t̂ =  s] - 

Assuming that the functions c?{t, s) are twice continuously differentiable and 

recalling that

d N t  = d N t  -

we can use Itô’s lemma on (2.5.2), as well as an analogous lemma for the 

jump part, to obtain the following equation for whenever the process is in 

state j:

N  , 1dCt =  Bl- 1

6=1

dt

-\-Bt
6=1

 ̂ (1  +  7i^)s) -  c>(t, s)]dNi^
fc=l

+ B f '  (1 +  ' r i ' »  -  «)] V ’di- (2.5.3)
fc=l

It was shown from equation (2.4.5) that this process is indeed a martin

gale, and so the drift term vanishes, leaving us with the partial differential 

equations

6=1

+  «(1 +  i f ') )  -  C(t, 5)1 =  0 (2.5.4)
k=l
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for j  =  1, , .  n. These equations are simply the standard generalised Black- 

Scholes formulas with an added term for the jumps. Solving these equations 

for the (y ’s with the conditions

c^iT,s) = f{ j ,s )

for j  =  1. . .  n will then leave us with the arbitrage price for the derivative. By 

replacing (2.5.4) into equation (2.5.3) we are left with the following stochastic 

differential equation when in state j:

dCt = Bl- 1

. 6 = 1  fc=l

(2.5.5)

We can identify the replicating strategy by comparing the coefficients in

(2.5.5) to those in (2.4.5), leaving us with the following equations when in 

state j:

G ;.D(S,)'$,j =  Zj, (2.5.6)

where is as defined in equation (2.4.8) and Zj is the (r +  n) x 1 column 

vector with entries for T =  1 , . . . ,  (r +  n), where

X < r
z =

(f r(Z, (1 + '̂ )̂'S'i,f)) -  o'(t, 5i,f) r < a: < r + n.
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It was shown in section 2.4 that since condition (2,4.9) holds, we are therefore 

able to find a unique solution for from equation (2.5.6) and hence the 

replicating strategy.

In order to solve the set of stochastic differential equations (2.5.4) we will 

need to employ numerical methods as will be done in the next chapter. We 

will now try to the price the derivative using an alternative method.

Suppose that within the interval [0, T] we start off in state j i  and that 

there are x  jumps. The jump sequence is represented hy J  = { j i , . . .  ,jx+i), 

and the jump sizes are given by • ,'Ti*^*'''̂ ). Conditioning on this

jump sequence, and noting that the times at which these jumps occur do not 

affect the asset price at time T, we can therefore drop the jumps part from 

equation (2.5.1) to give us in exponential form

S i , t  =  5'i,o e x p } ^  j
6=1  6=1

, (2.5.7)

where Si^ = In appendix A corollary A.0.5 we show a

methodology to derive the moment-generating function of the final stock 

price Si^T given the jump sequence J ,  which will be denoted by [Msij,(r)\J’].

The probability of observing jump sequence within a time T  is given 

in corollary 1.3.3 as being

P[J]
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P a ram ete rs

A sset 1  

S ta te  1  S ta te  2

D rift

V olatility

-0.435 0.185 

0.070 0.090

Ju m p  Sizes

A sset 1  

S ta te  1  S ta te  2

S ta te  1  

S ta te  2

-0.170 0.800 

-0.450 0.600

Table 2.4: Asset 1 parameters and jump sizes in each state.

Summing over all the possible jump sequences and number of jumps, we can 

calculate the unconditional moment generating function of St  as

=  E[exp{rSi,T}]
oo n  n

=  E E  "  E  (2.5.8)
x = 0  j i = l  j z + i = l

Let us now look at an example of this methodology:

E xam ple 2.5.1. Let us consider Asset 1 in example 2.3.4, which has risk- 

neutral parameters shown in table 2.4.

The interest rates for this model are ri = V2 = 0.03, and the risk-neutral 

jump intensities are as shown in table 2.5.

The moments of the price of this asset after a time of 1 year calculated

S ta te  1  S ta te  2

S ta te  1 

S ta te  2

0.7500 0.7412 

0.9678 0.4682

Table 2.5: Jump intensities between each state.
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M om ent 1 2 3 4 5

Value 1.030455 1.590614 4.5790747 29.32724 362.5219

M om ent 6 7 8 9 1 0

Value 6382.791 132195.7 2962521 69352123 1669148415

Table 2.6: Moments of price of asset 1 after 1 year starting in state 1.

using the above methodology, given that at time 0  we are in state 1 , are 

shown in table 2 .6 .

□

In order to price the derivative we need to calculate the expectation

E q IB^^Xt  \J],

and for this in turn we will need to find the distribution of Si^r of which X t 

is a deterministic function. To this end, we will be able to use the moments 

of Si^T to approximate its distribution^. In the following chapter we shall 

compare methods of doing this with varying numbers of moments.

However, since and Si^r are both dependent of the path of the Markov 

chain they will therefore be dependent, which means we will also need to

^Even though not every distribution may be uniquely determined by its moments (as 

first shown by Hausdorff [1921]), nevertheless with any set of moments we are still able to 

approximate its distribution.
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derive the distribution of conditional on Si^r- Rearranging (2.5.7) we 

get

f /"T ^
1

- I
Ju=Q

= exp { -  I ^ l i v j d u

C I ft m

I J  u=0
exp{ I

"  j=i
\  è  - è

6=1  6=1

and once again using corollary A.0.5 we can derive the moment-generating 

function of conditional on St , and then too approximate its distribution. 

We are now in a position to write the following:

C orollary  2.5.2. The price of a derivative on asset number i with time 0

price s, where the contingent claim is X {S t ) is given by

poo poo
c(o,s) =  /  /  yX(z)fB-i^s,^{y)fs.,T{^)dydz

Jyz= 0  J z=0

where fn-^iSir distributions of the time T  stock price

and the time T  discout rate conditional on the stock price. When the interest

rate has constant value r in each state this simplifies to:

poo
c(0,s) =  / X { z ) f s , ^ . j . { z ) d z .

J  z=0

□
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Even though the above methodology is not of closed form, it does allow for 

as much accuracy as required depending on how well we are able to approx

imate the distribution from its moments. How fast it will converge however 

is a potential problem, as an obvious drawback of the above methodology is 

the number of calculations that need to be performed in order to calculate 

the moments in equation (2.5.8), which as can be seen in corollary A.0.5 will 

be large. So whether or not such calculations can be performed in reasonable 

time will depend on the value of n, but more importantly the sizes of the 

transition intensities and the duration T. Also, for the case where the in

terest rate r is dependent on the state, we have the undesirable requirement 

that the density function will need to be calculated for all values of

'S't.T-

2.5.1 Interest-R ate Derivatives

We shall be considering more elaborate interest rate derivatives when we 

look at Term-Structure Models in Chapter 4. However, within our current 

framework we can calculate an explicit formula for a simple class of interest 

rate derivatives.

Consider an asset with price Vt such that 

Vt = E Bt Bt Bt
— I- ^ 2 - ^  +  . . .  +

-Dfi nt2 ^th
(2.5.9)



2.5 Derivatives Pricing 45

This payout represents that of a coupon bond which pays h coupons of value 

£ x i  at time £ x 2 at time Î2 and so on, where we have that ti < Î 2 < . . .  < 

th and that t < ti .  The final coupon at time th will normally also include the 

nominal amount of the bond. The value of this bond is calculated by taking 

the expectation of the sum of the discounted coupon payments to the current 

time t. Let us denote the value of this bond given that we are currently in 

state j  by . We therefore have

U=1

exp
- / ’. è

fc=l

I^Tkds  ̂ \ Yt = j (2.5.10)

Applying Taylor’s expansion to (2.5.10) we get

V i =

U=1 £  - / ; è.y=o \  k=i
I ^ d s ]  \ Y t = j

h  (  oo  /  n  \

=  j I ,
L y=0 \  k=l J )

(2.5.11)

where is defined in equation (1.3.6). For (2.5.11) to converge we require 

that

V«,*.

Even though (2.5.11) is not of closed form, it does allow for as much accuracy 

as required by summing to a suitable value of y.
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We will now try to price a call option on this bond at time T  where 

ta < T  < ta+i such that 0 < a < h and where to — t. The value of the bond 

at time T will therefore be the expect discounted value of the remaining 

h — a coupons. The strike price of this option is K ,  and we will denote the 

discounted value of the option by Ct, so that

where

3= 1

4  = B tE[B^^XT\Y t= j] ,

(2.5.12)

(2.5.13)

as well as

and

j=l

= max[Vÿ — K^O].

Applying Itô’s lemma to (2.5.12), we find

dCt = B r ^ ' £ i i
i=i fe=l

dt. (2.5.14)

For C( to be a martingale we therefore require the right-hand side of (2.5.14)
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to be equal to zero, so that

fc=l

=  (r, +  cf A-"'
fc= l

for j  =  1 ,...  n, subject to =  X^.  Writing in matrix form, and noting that 

cj is now only a function of t and hence it is not necessary to use partial 

derivatives, we therefore get that

^  =  (D(R) -  A ,* ') c ,

with side condition

Cj- =  Xj",

where Aj  and are defined in equations (2.3.7) and (2.3.8), and 1” is an 

n x  1 column vector of I ’s. D (R) once again represents the diagonal matrix 

with the elements of R  along the principal diagonal, where R  has entries

R  =  {rj +

We can solve this to get

Ct = exp{{Aj^'. -  D (R ))(T  -  t)}X r. (2.5.15)



Chapter 3

Numerical M ethods for the

Equity Model

3.1 Introduction

In chapter 2 we looked at assets with price processes given by

j=l
iijdt +  Y ,  +  Ÿ  ' f ' d N t

6=1 k=l
(3.1.1)

where we have state-dependent means and drifts fij and (j^j, and jump sizes 

7 -̂  ̂ when the model jumps from state j  to state k. We saw in section 2.5 

that in order to price most derivatives of assets whose price processes fol

low this MCJD model, it is necessary to employ numerical methods. In this 

chapter we shall look at various methods of doing this. We shall begin by

48
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trying to numerically solve the partial differential equations given in (2.5.4) 

using finite-difference methods. We will then move on to consider paramet

ric methods to approximate the distribution of St  to price the derivatives, 

followed by tree-based methods and Monte Carlo simulation.

In the numerical work of this chapter, we will only be considering deriva

tives of one asset, and we therefore suppress the subscript i in equation (3.1.1) 

which was used in the previous chapter to denote the asset number. We can 

also reduce the generalised model in equation (3.1.1) to the following;

dSt = S t ' £ , i i
j=i

lijdt +  <jjdWt + 5 3
k = l

(3.1.2)

where

(Ji =
6=1

so that we then have

OjdWt ~  ^  (JbjdW^,
6=1

where Wt is a Q Brownian motion. We can do this because the generalised 

model is needed only when we consider the relationship between different 

assets, but since we will now only be considering the behaviour of the price 

of one individual asset, the generalised model can be reduced to equation 

(3.1.2). For the rest of the chapter we shall assume that the parameter val-
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P aram eters

A sset 1 

S ta te  1 S ta te  2

D rift

V olatility

-0.435 0.185 

0.070 0.090

Ju m p  Sizes

A sset 1 

S ta te  1 S ta te  2

S ta te  1 

S ta te  2

-0.170 0.800 

-0.450 0.600

Table 3,1: Asset 1 parameters and jump sizes in each state.

ues of (3.1.2) are under a risk-neutral measure Q, the existence of which was 

explored in section 2.3.2.

We shall be comparing the performance of each of the numerical methods on 

a particular example, the summary of which can be found at the end of the 

chapter in section 3.6. The example we will be calculating is the price of call 

options with strike price K,  such that the payoff at time T  is given by

X t = maxf^T — K,0],

where we will take T =  1 year. We will assume that the model is in state 1 

at time 0 and that Sq = 1. For the asset-price process we will take Asset 1 

in example 2.3.4, which had risk-neutral parameters in the two state market 

shown in table 3.1.

Ju m p  In tensity S ta te  1 S ta te  2

S ta te  1 

S ta te  2

0.7500 0.7412 

0.9678 0.4682

Table 3.2: Jump intensities between each state.



3.2 Finite-Difference Methods 51

The interest rates for this model are ri = V2 = 0.03, and the risk-neutral 

jump intensities are as shown in table 3.2. The moments of S t  where T  = 

1 year were calculated in example 2.5.1.

3.2 Finite-DifFerence M ethods

In section 2.5 we derived the partial differential equation for pricing a deriva

tive whose discounted price is given by Ct, where

j=i

and

c^(t, s) =  BtEg \Y t=  j  , Si t̂ = s] .

To obtain the price of this derivative, it was shown in section 2.5 that we 

need to solve the following partial differential equation (where will abbreviate 

c>it,s) to eg):

J  del 1 2 ^4,

+  ^  [c‘ (t, s{l +  -yf")) -  (t, «)] A^v*' =  0 (3,2.1)
fc=l

for J =  1 , . . . ,  n, with the conditions

(T, s) =  max [s — 0].
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We will now proceed to develop a numerical technique for solving this par

tial differential equation using finite-difference methods. As was mentioned 

in section 3.1, we will be valuing a time T  call option with strike K.  We 

shall follow the methodology set out in Hull and White [1990b],

We begin by dividing up the interval [0, T] into h equal periods of length 

A t  so that At =  ^ , and so we can now consider our interval as consisting of 

h 4-1 discrete time points

0, At, 2 At, . . . ,T .

Let us assume that we can subdivide the possible stock prices over this pe

riod into d values as follows. Firstly, for this model we need to specify the 

maximum value we will allow the stock price to have. Denote by Smax the 

maximum realistic value that the stock can take during this interval, so that 

the probability

> Smax]

is so small that if we were to exclude the possibility that St  is above this 

value, the effect on the value of the derivative would be negligible. Let us 

now set

A S  = Smax
d ’

so that we now are left with the d 4-1 possible values for the stock

0, AS, 2AS, . . . , Smax’
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State

/  0 A t T
Time

Figure 3.1: Cube for finite-difference approach

Finally, we recall that the derivative price will also depend on which of the 

n states the market is currently in. We can represent this by the three- 

dimensional diagram in figure 3.1. This cube consists of (h 4-1) x (d 4-1) x n 

points, each of which we can label as point {x,y,z), where x = 0, . . . , / i ,  

y = 0 , . . .  ,d  and z =  1 , . . . , n. Therefore x  represents the time, y the state, 

and z represents the stock price. We will denote the value of the call option 

at each of these points by



3.2 Finite-DifFerence Methods 54

There are two ways we can now proceed, the implicit finite-difference 

method and the explicit finite-difference method. We choose to follow the 

implicit finite-difference method, as fewer assumptions are made about the 

values of the partial derivatives.

Let us firstly begin by stating the fact that when the stock price hits 0 

it cannot ever regain any value, and so the value of the option is therefore 

going to equal 0. For any other point (x, y, z) on the grid where y > 0, we 

can make the following approximation for the partial derivative

ac.y __  Z .Î /+ 1  ^x,y / o  o  o \

~dT ~ AS ’  ’

where (3.2.2) is known as the forward-difference approximation. When y = 

d the stock price has reached its maximum realistic value Smax and can 

therefore not increase, and so in this case we shall set

^ x , y + l  ^ x , y

We may use as an alternative to the forward-difference approximation the 

backward-difference approximation given by (3.2.3) below

~dT -  AS •

A third alternative would be to use an average of the two to give
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_  ^ x ,j /+ l  ^ x , y - l  / o  o  /I\

~  2Â5 •

We can similarly approximate using the forward differential equation

a:,y _  ^ x + l,y  ^x,y /g  O

" â T  -  Â( •

The backward-difference equation for at the point {x, y, z) is given

by (3.2.3). The backward difference value at the point (x ,y  -j- l , z )  is given 

by
^^,y+l _  ^,y+l ~  ^,y

ds ~  A S  '

We can therefore write the forward difference equation to approximate 

at the point {x,y,z)  as

^  ^ , y  _  f  ^ , y + l  ~  ^ , y  _  ^ , y  ~  ^ , y - l )  \  /  a  c

ds^ \  A S  A S  '

which can be re-written as

(3.2.6)

Substituting these approximations into (3.2.1), and noting that s = y A S  we 

then get
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(3.2.7)

Using this methodology, we will need to represent any jump in the stock 

price as a vertical jump in the grid in figure 3.1. Therefore, we will assume 

that we have values for all y, z, k, such that we can make the following 

approximation:

yA S { l  + Y ' ‘) = ql'’AS,

i.e. the effect of a jump from state z to state k is to cause the value of the 

stock to jump from y A S  to Qy^AS where gj* G {0,1, . . .  ,d}. We can thus 

re-write (3.2.7) as

n y ^ z { ( ^ x , y + l  ~  ^ x , y - l )  d" i p x , y + l  ^ , y - l  ~

+  Ê =  0
fc= l t = l

(3.2.8)

for X =  0 , . . . ,h ,  y = and z  =  Equation (3.2.8) can be
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written as

=  « y  + + « y - i  +  At Ê  (3.2.9)
k=l

where

al = l  +  At(yV2 +  r ,  +  5^A^V**‘),
k=l

bl = ~A t{y^a^-\-yr^) ,

K =

We have now set up the framework of the implicit finite-difference method 

and will proceed to price the derivative.

We shall begin by gathering all the values of the grid in figure 3.1 that 

we know from the outset. At time T  (i.e. x = h) we have that

cl y = max[yAS -  K, 0] Vi/, z , (3.2.10)

which is known at time 0. We also know that when the stock price has hit 0 

it cannot change, hence we have that

0 ^ 0  = 0 Vx,z. (3.2.11)

The values known at time 0 are shown in figure 3.2. Equation (3.2.10) gives 

us the outer vertical plane of the cube, whilst (3.2.11) gives us the values
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Stock
Price
Smax

Time T values

State

A S

0
/  0 At T

Figure 3.2: Values known at the beginning of the calculation
Time

on the base of our cube. Using these starting values, we are now able to 

calculate all the values of the cube as follows. Firstly, we can calculate all 

values of the cube where x = {h — l)A t as shown in figure 3.3, by using 

equation (3.2.9) and setting x = h — 1. We thus have

^h,y ~  ^y^h-l,y +  ^l^h-l,y+l + ^  (3.2.12)
k—1

for 2/ = 1, . . . ,  d and z =  1, . . . ,  n. We therefore have d x n unknowns and
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Stock
Price

State

2AS

A S

/  0 A t 2At T - A t  T
Time

Figure 3.3: Estimating values at time T  — A t  from values at time T.

d x n  equations with which to solve for them, which should provide a unique 

solution providing the equations are linearly independent. Once this has been 

done, we can then do the same to calculate the values for a: =  h — 2, and 

then for a: =  h — 3 and so on until all the values at time a: =  0 are calculated. 

The value of the derivative would then depend on selecting the appropriate 

time 0 value for the starting state.

We can re-write (3.2.12) in matrix form as follows. Let us define the
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(d +  1) x n  column vector Ch with entries

(Oj C/j 2) • • • ) ' 5 /̂i,d) • • • ) ^h,d)’

Let US also define the following {d +  l)n  x ( d  4- l)n  square matrices A and 

B with entries

A
( d + l ) n x ( d + l ) n

/  1 0
a\ b\

’d - i * d - l feJ-1
^d +  bd 

0
bî

' d - l  “ d - 1 ' d - 1

eJ Od +  d̂ /

B
( d + l ) n x ( d + l ) n

( 0 0  . . 0 0 0  . . 0
,•11 ,•11 ,•11 ,1 2 ,1 2 ,1 2
h i *12 ' • * ld *11 *12 • • * ld

,•11 ,•11 ,1 1 ,1 2 ,1 2 ,*12
*dl *d2 • • *dd *dl *d2 • • *dd
0 0  . . 0 0 0  . . 0

,•21 ,•21 ,•21 ,•22 ,•22 ,•22
^11 *12 • • * ld *11 *12 • • * ld

1 -•nl .•nl x n l ,•7x2 ,•7x2 ,•712
\ *dl *d2 • • *dd *dl *d2 • • *dd

0 \
i\2

: l nd̂d
0

: 2 n
h d

*dd

where entries other than those shown are 0, and where
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•zk _  f  if = w
I 0 otherwise.

Finally, let us define the dn x dn matrix K as

K  =  A +  B.

We can now write equation (3.2.12) for ?/ =  1 , . . . ,  d and z = 1, . . .  n in matrix 

form as

Ch = KC/i-i,

and so given the derivative prices for time period hùd we are able to calculate 

the time {h — l)A t values using the following recursion equation:

Ch_i =  K -'C ft, (3.2.13)

provided that K  is indeed invertible.

We shall now look at an example of this method.

E xam ple 3.2.1. Suppose we wish to price call options on Asset 1 whose 

parameters are given in section 3.1. We shall take d =  25 and As =  0.2 so 

that Smax =  5, which is over 5 standard deviations above the mean. We will 

also set A =  12 so that At =  0.0833. The value of call options with various 

strike prices are shown in table 3.12 in section 3.6. The value of the call 

option with strike price £1 at each time period and state are shown in the
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tables 3.3 and 3.4 below. Reading off the tables, this method gives us the 

time 0 price of a call option with strike £1 as being ^0.24 in state 1 and 

<£0.21 in state 2. We can see the irregular behaviour of the option price when 

the price of the stock is above £4. This is due to the capping of the stock 

price at £5. This model’s usefulness is therefore limited to stock prices of 

under £4. When the stock price is greater than this we will need to raise the 

maximum stock price allowed in the model.

□



Stock  
Price (£)

5.0 6.26 6.54 6.84 7.14 7.43 7.70 7.92 8.03 7.97 7.64 6.93 5.74 4.00
4.8 0.24 0.26 0.28 0.32 0.40 0.52 0.71 1.00 1.42 1.97 2.62 3.29 3.80
4.6 3.42 3.56 3.69 3.81 3.91 3.97 4.00 3.97 3.89 3.78 3.67 3.60 3.60
4.4 1.53 1.61 1.70 1.82 1.96 2.13 2.32 2.54 2.76 2.97 3.16 3.31 3.40
4.2 2.46 2.53 2.61 2.67 2.74 2.79 2.85 2.90 2.95 3.01 3.08 3.14 3.20
4.0 1.83 1.92 2.01 2.12 2.23 2.35 2.47 2.59 2.70 2.80 2.89 2.96 3.00
3.8 2.04 2.09 2.15 2.22 2.28 2.35 2.42 2.50 2.57 2.65 2.71 2.77 2.80
3.6 1.82 1.89 1.96 2.03 2.11 2.18 2.26 2.34 2.41 2.48 2.54 2.58 2.60
3.4 1.82 1.87 1.92 1.97 2.03 2.08 2.14 2.20 2.26 2.32 2.36 2.39 2.40
3.2 1.71 1.76 1.81 1.87 1.92 1.97 2.02 2.07 2.11 2.15 2.19 2.20 2.20
3.0 1.66 1.70 1.74 1.78 1.82 1.86 1.90 1.94 1.97 2.00 2.01 2.02 2.00
2.8 1.61 1.65 1.69 1.73 1.76 1.79 1.82 1.84 1.85 1.86 1.86 1.84 1.80
2.6 1.53 1.57 1.61 1.65 1.68 1.71 1.72 1.73 1.73 1.72 1.69 1.65 1.60
2.4 1.35 1.38 1.41 1.44 1.46 1.48 1.50 1.51 1.51 1.50 1.48 1.45 1.40
2.2 1.21 1.23 1.25 1.26 1.28 1.29 1.29 1.29 1.29 1.28 1.26 1.24 1.20
2.0 1.02 1.03 1.05 1.06 1.06 1.07 1.07 1.08 1.07 1.06 1.05 1.03 1.00
1.8 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.86 0.85 0.84 0.82 0.80
1.6 0.74 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.66 0.64 0.62 0.60
1.4 0.54 0.54 0.53 0.52 0.52 0.51 0.50 0.49 0.47 0.46 0.44 0.42 0.40
1.2 0.38 0.37 0.35 0.34 0.33 0.31 0.29 0.28 0.26 0.25 0.23 0.21 0.20
1.0 0.24 0.23 0.22 0.21 0.19 0.18 0.16 0.14 0.11 0.09 0.06 0.03 0.00
0.8 0.13 0.13 0.12 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.04 0.02 0.00
0.6 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00
0.4 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2 3 4 5 6 7 8 9 10 11 12

Tim e (m onths)

Table 3.3: Call option prices with strike £1 for state 1.



Stock 
P rice  (£)

5.0 0.78 0.85 0.93 1.03 1.15 1.29 1.47 1.69 1.97 2.32 2.75 3.30 4.00
4.8 1.07 1.16 1.27 1.40 1.56 1.75 1.96 2.21 2.50 2.82 3.17 3.51 3.80
4.6 1.32 1.43 1.57 1.72 1.88 2.07 2.28 2.51 2.75 2.99 3.22 3.43 3.60
4.4 1.49 1.61 1.74 1.89 2.05 2.22 2.39 2.58 2.76 2.94 3.11 3.26 3.40
4.2 1.61 1.72 1.84 1.97 2.11 2.25 2.40 2.54 2.69 2.83 2.96 3.09 3.20
4.0 1.64 1.74 1.84 1.95 2.07 2.19 2.31 2.43 2.55 2.67 2.78 2.90 3.00
3.8 1.59 1.67 1.77 1.86 1.96 2.06 2.16 2.27 2.38 2.49 2.60 2.70 2.80
3.6 1.53 1.61 1.69 1.77 1.86 1.95 2.04 2.14 2.24 2.34 2.43 2.52 2.60
3.4 1.43 1.50 1.57 1.64 1.72 1.80 1.89 1.98 2.07 2.16 2.25 2.33 2.40
3.2 1.34 1.40 1.47 1.54 1.61 1.69 1.77 1.85 1.93 2.01 2.08 2.15 2.20
3.0 1.28 1.33 1.39 1.46 1.53 1.60 1.67 1.74 1.80 1.86 1.92 1.96 2.00
2.8 1.28 1.33 1.38 1.44 1.49 1.55 1.59 1.64 1.68 1.72 1.75 1.78 1.80
2.6 1.21 1.25 1.29 1.33 1.37 1.41 1.45 1.48 1.51 1.54 1.56 1.58 1.60
2.4 1.13 1.16 1.19 1.22 1.25 1.27 1.30 1.32 1.34 1.36 1.37 1.39 1.40
2.2 0.99 1.02 1.04 1.06 1.08 1.10 1.11 1.13 1.15 1.16 1.18 1.19 1.20
2.0 0.87 0.89 0.90 0.92 0.93 0.94 0.96 0.97 0.98 0.99 0.99 1.00 1.00
1.8 0.73 0.74 0.74 0.75 0.76 0.76 0.77 0.77 0.78 0.78 0.79 0.79 0.80
1.6 0.59 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.61 0.61 0.61 0.60 0.60
1.4 0.47 0.47 0.47 0.47 0.46 0.46 0.46 0.45 0.44 0.43 0.42 0.41 0.40
1.2 0.34 0.34 0.34 0.33 0.32 0.32 0.31 0.30 0.28 0.27 0.25 0.23 0.20
1.0 0.21 0.20 0.19 0.18 0.17 0.15 0.14 0.12 0.10 0.08 0.06 0.03 0.00
0.8 0.10 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.04 0.03 0.02 0.01 0.00
0.6 0.05 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00
0.4 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 2 3 4 5 6 7 8 9 10 11 12

Tim e (m onths)

Table 3.4; Call option prices with strike £1 for state 2.
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3.3 Param etric m ethods

We shall now develop methods for pricing derivatives by approximating the 

distribution of the 1-year stock price Si. We will assume that we have as 

many moments of the distribution that we need, where they can be calcu

lated using the methodology set out in section 2.5. We will be considering 

two different models: a translated gamma distribution where the first three 

moments will be the same as our time T  stock price, and a more general 

methodology using polynomial splines that will match as many moments as 

required.

3.3.1 Translated Gamma

A translated gamma distribution can be fitted to approximate the distribu

tion of a random variable, when we have the first three moments given by 

7711,7712 and 7713. A translated gamma distribution with translation x  has 

density function

fsj.{s]r,X,x) = : ^ l \ { s - x ) Y  s > x. (3.3.1)

To solve for the parameter values x ,r  and A we can equate the first 3 cu

mulants of the time T stock price with those of the translated gamma, so 

that
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r
a: +  -  =  mi

X 

r
Â2

2r . o
^  =  2mi +  7713 — 377li77l2,

=  m2 —ml

which gives us

X = 2(7712 -  771̂ )
(277lf +  7713 -  377li77l2) 

r  =  (7772 -  777i )Â

r
X  =  777i — — .

Pricing a call option with strike price K  when the final stock price has the 

distribution given in (3.3.1) is equivalent to pricing a call option with strike 

price K  — X where the final stock price has distribution

f e ( s ;  =  « > 0. (3.3.2)

This is apparent by noting that the price of a call option will remain un

changed when there is a parallel shift of both the distribution and the strike 

price. The price of the call option will then be given by
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/ oo

= K —x

n o o  p K —x

= I [s — +  x]ds — I [s — K  x]fsj.{s^ds
J s =0 J a =0

It can be easily shown that

sfsT{s)ds = ^ F st,{K -  a;; r  +  1, A),/.̂3=0 ^

which then gives us 

Ct = —[1 — Fsj.{K — a;; r  +  1, A)] +  {K — x)[Fsj.{K — x\ r, A) — 1]. (3.3.3)

Exam ple 3.3.1. We shall now price call options on Asset 1 whose parameters 

are given in section 3.1. We find that the distribution of S\, where we start 

in state 1 at time 0, can be approximated by a translated gamma where 

X = 0.72822, r =  0.17275 and A =  0.57157. This distribution can be seen in 

figure 3.4. The value of call options with various strike values were calculated 

using equation (3.3.3) and are shown in table 3.12 in section 3.6.

□
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Figure 3.4: Chart showing approximated distribution of the price of Asset 1 

after 1 year using a translated gamma distribution.

3 . 3 . 2  P o l y n o m i a l  S p l i n e  P D F  F i t t i n g

Using the above methodology we only took into consideration the first three 

moments of our time T  stock price. We shall now develop an alternative para

metric methodology, which will allow us to factor in many more moments to 

get a more accurate fit, and without having to make any assumptions on the 

underlying distribution of the stock price.

Suppose we have the density of r  -f 1 points of a distribution {f{x)  : x  G 

[—0 0 , 0 0 ]}, which we can represent by the set

P  =  { ( a ^ i ,  . . . ,  { X r + l ,  f ( X r + l ) ) } ,
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such that 2:1 < . . .  < Xr+i. Let us assume that Xi and Xr+i are sufficiently 

extreme so that we can take f (x)  =  0 for re ^ [xi,Xr+i\. We will need to 

interpolate from these r  +  1 densities a smooth curve to create a complete 

density function. We can do this by fitting what is known as a polynomial 

spline curve (see Silverman [1985] or de Boor [1978]). To this end, we shall 

also assume that we have the first r  + 1  moments of the distribution that we 

wish to replicate given by m i , . . . ,  m^+i.

A polynomial spline curve consists of piecewise polynomials which can 

be fitted to a series of data points, and has the property that it is the in

terpolating function which minimizes the integrated squared second deriva

tive { f  {f"{x))^dx). The piecewise portions are defined so that at the knots 

(where the piecewise portions join, so that in our case these are at the points 

X2 , . . . ,  Xr) the function and its first two derivatives are continuous, although 

the third derivatives may be discontinuous.

Within the range x G [xi,Xi+i] for 2 =  1, . . . ,  r  we can fit a polynomial 

curve (or spline) with equation

f{x)  = a\x^-\-alx^-\-alx‘̂ -\-a{x-\-aQ xi < x < Xi+i. (3.3.4)

There are r  such splines each consisting of 5 parameters, and so we are left 

with 5r parameters to solve for. To do this, we obtain 5r equations as follows.

Firstly we require that at each of the r  + 1  points the values of the spline 

curves are equal to the given densities. We therefore have the following 2r 

equations:
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f{xi) = + â f X̂i + a f̂^xf + a\~̂ Xi + af,"̂  i = 2,..., r + 1

f{xi) = a\Xi + a^Xi 4- +  â â i +  aj, z =  1 , . . . ,  r.

Next, as mentioned above we ensure the smoothness of the curve by requiring 

that the first two derivatives are continuous at each of the knots. This leaves 

us with a further 2(r — 1) equations

4- Sa'f^x^ +  2a^f^Xi +  =  4a\Xi +  Sa^xf +  2a\xi +  a\

12a4~̂ Xi +  Oâ f X̂i +  2â ^̂  =  12040;? +  Oalxi +  2o2

for z =  2 , . . . ,  r. Next we require that the first r  + 1  moments of the curve are 

equal to m i , . . . ,  mr+i, and that the density function integrates to 1. This 

can be done as follows.

We can calculate the moment of the distribution as being

rxi+i
E[x'‘̂] =  }  /  a;^(o4o;'̂  +  a\x^ +  +  a\x  +  ÜQ)dx,

=Xii=i "'®=

which can be re-expressed as

(3.3.5)
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So by setting

E[x^]  =  rriy

71

(3.3.6)

for y =  0 , . . . ,  r  +  1 where mo =  1, we now have a further r  +  2 equations 

leaving us with the 5r equations we require.

We are able to solve these 5r equations in matrix form as follows. Let us 

define the matrix Dp, where the subscript denotes dependency on the set P  

defined at the beginning of the section, as having entries

Dp
5 r x 5 r

!  XJ, XL
XL XL

XL XL

\  YL

XL” ' XL"‘
XL
YL

where entries other than those shown are 0, and where

XL
4 x 5

XL
4 x 5

/ 4 Xi 1 \
î+l î+1 î+1 ^i+l 1

12x1, Qxi+i 2 0 0
V 1 0 I
/ 0 0 0 0 0

0 0 0 0 0
—6xi+i - 2 0 0

V -W + i 2x{ î -1 0
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XÎ.
2 x 5

4x^
x:

CCt
r+1 'r+l ^r+1

Yi.
( r+ 2 )x 5

Éti:

_r+6 ^r+ 6

r + 6
<n- _r+ 5

r + 5

Cj+l-

îlS.'
, r + l

r+ 1

Now let us define the matrices

Ap
5 r x l

Bp
5 r x l

=  ( Ap Ap 

=  (B i ,  B|.

A'p )■

r,
where

A|>
1 x 5

—  ( 0.4 0.3 (%2 ^1  ^ 0  )

B&.
1 x 4

=  ( / k )  / f e + i)  0  0  ) il — 1J. . .  J T* 1 J

Bjp
1 x 2

l x ( r + 2 )
—  ̂ ??%0 7Tl\ ...........  TH/J* ^
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We can solve for the parameter values in the matrix Ap using the following 

equation:

Ap =  D ; 'B p , (3.3.7)

provided that Dp is invertible.

We now have a polynomial spline curve approximation of our density 

function given by

y =  fp(x) X i < X  <  X r + l

and y = 0 elsewhere, where once again the subscript P  denotes a dependency 

on the set P . This curve has the property that the first r  +  1 moments are 

the same as that of our time T  stock price. We shall now see an application 

of this methodology.

Exam ple 3.3.2 (S tan d ard  N orm al D istribu tion ). We applied the above 

calculations using the first 6 moments of the standard normal distribution to 

obtain its polynomial spline approximation. For the set P  we set Xi = —4, 

Xq = 4 and the rest of the r ’s equally spaced between these two values. For 

the densities we took f {xi )  = /{xq) = 0 and f ( x 2) =  . . .  =  f{x^) = 0.2. The 

polynomial spline curve obtained is shown in figure 3.5.

□

Example 3.3.2 has demonstrated to us our next obstacle in this approxi

mation, namely that even though our distribution will integrate to 1 and will
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Figure 3.5: Chart showing standard normal distribution and 6-moment poly

nomial spline curve,

have moments as required, we have not ensured that the density values given 

by our polynomial spline curve are greater than 0 for all values of x. This 

condition could not be included in the above system of equations, and so we 

will have to try to find a solution that fulfills this condition numerically. We 

can do this as follows.

Firstly, let us define an error term for our set of points P , denoted by Ep,  

to represent the total area of our polynomial spline curve where the density 

is negative, so that

Ep =
f X r + l  ^

/ /p{æ)/(/,
J x = x \

(/W<o)dx. (3.3.8)
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We therefore wish to find a set P which minimizes Ep. As there may be 

more than one possible solution, we would like our resulting curve to be 

the ‘smoothest’, with preferably only one turning point. Let us define the 

variation Vp as the integrated squared second derivative of the curve, so that

We would therefore like our set P to minimise Vp as well.

We are now left with the task of finding an algorithm which will find our 

solution. The algorithm we will use works by iteratively trying different val

ues of 3:1,..., Xr+i and /(X 2), . . ,  /(x r), each time accepting the new values 

only if the new curve generated reduces Ep and does not increase Vp. This 

is repeated until Ep =  0 or is at least minimised. This algorithm can be 

expressed by the following seven steps:

1. Initialise P by selecting values for xi  and Xr+i, and spacing out all 

other X  values equally between them. We set f{x\ )  = f{xr+i) = 0 and 

f{xi) = l/{xr+i -  Xi) for i =  2 , . . . ,  r.

2. Calculate Ap, Ep and Vp numerically.

3. Try different values of f { x 2) and calculate corresponding Ap, Ep and 

Vp to find value which minimises Ep whilst not increasing Vp.

4. Repeat 3 for /{x^)  to f{xr)  and calculate overall reduction in Ep  for 

this iteration.
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5. Repeat 3-4 until overall reduction for the iteration is less than 1%.

6 . Repeat 3-4 only changing values xi to Xr+i rather than f{ x 2) to f{xr) 

and calculate overall reduction in E'p for this iteration.

7. Repeat 3-6 until Ep is minimized.

We shall now show examples of the performance of the above algorithm 

on the standard normal distribution we attempted to approximate earlier on, 

as well as on a gamma distribution.
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Exam ple 3.3.3 (S tan d ard  norm al d is trib u tio n ). We ran the above algo

rithm using between 4 and 10 moments of the standard normal distribution. 

For the starting value of the set P , we took for x\ and Xr+i values between —4 

and —5 and 4 and 5 respectively. For each model, as well as computing the 

error value Ep, we also computed the mean square error (MSE) between the 

polynomial spline curve and the standard normal distribution. The results 

can be seen in table 3.5.

We can therefore see that using 5 moments and above gives us a very 

good fit to the standard normal curve. Our algorithm yields the best results 

when 6  moments are used. The values x  and f{x )  for each of the 6  points, 

as well as the parameter coefficients for the 5 splines are given in table 3.6.

M om ents Ep

(xlQ-S)

M SE

(xlO-5)

4 0 .0 0 3.30

5 0 .0 0 0.56

6 0 .0 0 0.32

7 0 .0 0 1 .0 2

8 0 .0 0 0.54

9 0 .0 0 0.90

1 0 0 .0 0 0.46

Table 3.5: Results for the polynomial splines simulation of the standard 

normal distribution.
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X -4 -2.4 -0 .8 0 .8 2.4 4

f(x) 0 .0 0 0 0 0 0 .0 2 2 1 0 0.29000 0.28500 0 .0 2 0 1 0 0 .0 0 0 0 0

i 4 4 4 4 4
1 0.00438 0.06566 0.37156 0.94254 0.90642

2 -0 .0 2 0 0 1 -0.14615 -0.31055 -0.02019 0.40597

3 0.04798 0.00583 -0.20686 -0.00686 0.40024

4 -0.00764 0.06659 -0.13913 -0.11799 0.43747

5 0.01134 -0.15720 0.81654 -1.88707 1.64292

Table 3.6: Densities of 6  points used in the polynomial spline curve and spline 

parameter coefficients.

□

We can see how well the polynomial spline curve has approximated the 

standard normal distribution in figure 3.6. We shall now see how it performs 

for the gamma(2,3) distribution.
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Figure 3.6: Chart showing standard normal distribution and 6 -moment poly

nomial spline curve.

Exam ple 3.3.4 (G am m a(2,3) d is trib u tio n ). As in the previous exam

ple, we ran the above algorithm using between 4 and 10 moments of the 

gamma(2,3) distribution. For the starting value of the set P , we took Xi = 0, 

whilst for Xr+i different starting values were tried between 4 and 6 . We kept 

however f{x i)  =  0 constant throughout. For each model, as well as comput

ing the error value Ep we also computed the MSE between the polynomial 

spline curve and the gamma(2,3) distribution. The results can be seen in 

table 3.7.
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M om ents 4 5 6 7 8 9 1 0

Ep(xlO-S) 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .1 1 0 .0 0 5.43

MSE(xlO-®) 92.07 1 2 .0 2 8.14 2.59 6.54 0.31 178.89

Table 3.7: Results for the polynomial splines simulation of the gamma(2,3) 

distribution.

We can therefore see that using between 4 and 9 moments gives us a very 

good fit to the gamma(2,3) distribution, the best of which is when 9 moments 

are used. The parameter coefficients for the 8  splines in the 9 moment model 

are shown in table 3.8, and the values x and f (x )  for each of the 9 points are 

shown in table 3.9. □

i 4 4 4 4 4
1 -11.91299 27.80528 -24.75174 8.89989 0 .0 0 0 0 0

2 -0.67300 3.26439 -5.08131 2.09415 0.84617

3 0.82556 -5.38413 13.30164 -15.03080 6.76203

4 0.28979 -2.77118 9.90517 -15.72577 9.40369

5 -0.11770 1.32470 -5.53282 10.13494 -6.84096

6 -0.06264 0.85106 -4.31890 9.70240 -8.14089

7 -0.03452 0.57682 -3.60617 9.99526 -10.36059

8 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0

Table 3.8: Parameter coefficients for the 9-point polynomial spline curve.
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Figure 3.7: Chart showing gamma(2,3) distribution and 9-moment polyno

mial spline curve.

Figure 3.7 shows again how we have been able to approximate the gamma(2,3) 

distribution fairly accurately. We shall now apply this methodology to our 

MCJD model.

X 0 0.625 1.25 1.875 2.5

f(x) 0 .0 0 0 0 0 0.86440 0.25700 0.05540 0.01690

X 3.125 3.7501 4.375 27.67583

f(x) 0.00080 0.00140 0 .0 0 0 0 0 0 .0 0 0 0 0

Table 3.9: Densities of 9 points used in the polynomial spline curve.



3.3 Parametric methods 82

3.3.3 Application to  the M CJD m odel

We will now look at an application of this methodology by fitting a polyno

mial spline density curve to Asset 1 , whose parameters are given in section 

3.1. The moments of this asset are given in table 2.6 in section 2.5.

Using the algorithm above, we fitted a 6 -point polynomial spline curve, 

where the first 6  moments are that of the 1-year asset price. Each of the 

points in the 6-moment model are given in table 3.10, as well as the parameter 

coefficients for the 5 splines in table 3.11.

X 0.00240 1.23041 3.05795 7.48815 8.24355 29.13993

f(x) 0 .0 0 0 0 0 0.58280 0.00520 0.00060 0 .0 0 0 1 0 0 .0 0 0 0 0

Table 3.10: Densities of the 6  points in the polynomial spline curve.

i 4 4 4 4 4
1 2.29012 -6.83373 5.13635 0.23411 -0.00059

2 0.01218 -0.23810 1.48183 -3.75568 3.37604

3 -0.00043 0.01030 -0.08901 0.32628 -0.41698

4 -0.00334 0.10657 -1.27273 6.74672 -13.39330

5 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 -0.00006 0.00043

Table 3.11: Parameter coefficients for the 5 splines of the polynomial spline 

curve.
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Figure 3.8: Polynomial spline curve fitted to 1-year ahead price of Asset 1.

The density function seen in figure 3.8 seems to resemble that of a gamma 

distribution, which is interesting as the translated gamma approximation in 

section 3.3.1 resulted in a density function looking very much like that of an 

exponential distribution. So we can see that factoring in more moments has 

radically transformed the shape of the density function.

The value of call options with various strike values were calculated using 

this density function and are shown in table 3.12 in section 3.6.

□
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3.4 T ree-B ased M ethods

Tree-based methods are a type of simulation modelling, which involves trying 

to replicate the behaviour of the stock using more simplified models, which 

however retain the important characteristics of the initial model. Once this 

is done, derivatives can be valued using this simplified model. This is nor

mally done by firstly developing a discrete-time analogue of the model, and 

then limiting the possible price movements within each time period. The 

simulation modelling techniques we shall use are tree-based methods in this 

section and Monte Carlo methods in section 3.5.

3.4.1 Trinomial Trees

When it comes to using tree-based methods to simulate the value of a stock 

or derivative, trinomial trees have probably become the benchmark tool em

ployed by the financial world. We shall now explore its usefulness in our 

MCJD model described in section 3.1.

There are different ways in which a trinomial tree may be fitted. We shall 

employ a method which specifies at each node the ability for the stock price 

to rise to one value, fall to another value or remain constant as can be seen 

in figure 3.9.

Suppose we wish to estimate the time T  value of the stock whose price 

process is governed by equation (3.1.1), where we are currently at time 0. To 

do this we shall begin by writing a discrete time analogue of equation (3.1.1).
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Figure 3.9: One-period trinomial tree for stock price.

We can divide the time period [0, T] into h time periods of length At, where 

we therefore get h = During every such time period we will assume that 

the state of the Markov chain is constant, while there is a possibility of a 

transition of the state at the end of the period. The value of the stock at 

the end of the period is therefore a combination of a lognormally distributed 

random variable and a multinomial random variable as shown below, for 

when in state k

1 = 1

St+At =  %%(! +  7 “ ) ^ ''“ . (3.4.1)

We shall now develop a useful lemma:
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Lem m a 3.4.1. In the setting described above, we have that when in state k

1=1

1 = 1

where

1 = 1

Ÿ  = ^ ( 7 “ )̂ A'=‘At.
1 = 1

Proof. This is easily shown by firstly noting that the probability of tran

siting from state k to state Z in a time A t  is equal to X^^'At, and by using 

standard results for two or more uncorrelated random variables (see for ex

ample Mood et al. [1974] chapter 5).

□

Using lemma 3.4.1 and equation (3.4.1), together with standard results 

of the cumulants of a lognormally distributed random variable, as well as the 

following results for two uncorrelated random variables:

E[XY] = E[X]E[Y],

Var[XY] = E \X fV ar[Y ] + E [Y fV ar[X \ +  Var[X \V ar[Yl
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we have that the expected value of the stock at time t +  At conditional on 

the fact that we are in state k is given by

We also have the variance being equal to

+  +  (1 +  7^1-

Denote by the indicator variable that the Markov chain is in state k at 

time t given that we start at time 0 in state j .  We have that

W t ]  =

Var[I^] =

where 0 > t < T, and is the probability we are in any state k at time t

given at time 0 we were in state j  given in equation (1.3.5). Using the above

we shall now develop another useful lemma:

L em m a 3.4.2. Suppose we have a series of random variables X i , . . . , X n  

with means /^i,. . . ,  /i„ o,nd variances cr^,. . . ,  cr̂ . Define another variable Zt 

as follows:

Zt = ItXi + . . . + If'Xn- 

The expected value of Zt is given by

E[^t] =  +  . . . +  p{̂ P"n-



3.4 Tree-Based Methods 88

The variance of Zt will be equal to 

Var[Zt] =  +

— pî )fA +  • • • +  — Pt')lJ'n

1̂1 fj'2 +  . . . +

Proof. This can be easily shown by taking expectations and squared 

expectations of each of the terms, and noting that as only one of the / / ’s will 

have a value of one and all the rest will be zero, the covariances will therefore 

be zero.

□

Using lemma 3.4.2 we therefore have that the unconditional (with respect 

to the state we are in at time t) expected value of the stock as being

E[St+At] = f  )> (3.4.2)
k — 1

and similarly the unconditional variance is equal to

fc=l

-  Ê  +  f ) ( l  +  7‘). (3.4.3)
fc=l /= 1
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Let us denote

Et =  +
k = l

V t =  ^ + f  + 2 f  -  W*(l + f  )'l
k = l

fc=i /=i

so that

and

StEt = E[5"f+A(]

S^Vt = Var[St+At]-

We will now construct a trinomial tree which will replicate the behaviour 

of the stock price given in (3.4.1). Suppose we have a one-period trinomial 

model as in figure 3.9, where at time t the time t-\-A t value of the stock price 

will be equal to Stu with probability q}, St with probability and Std with 

probability q .̂ We can combine h such one-period models to approximate 

the stock price’s behaviour in the interval [0, T] (recalling that h =  ^ ) .  A 

three-period model can be seen in figure 3.10 where u =  h.
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Su

S

Sd

Figure 3.10: Trinomial stock price tree where At =  1.

We shall now calculate the moments of the trinomial tree model at each 

step. The expected value of the stock price at time 14- At is equal to

■Ë'[-S't+Atl =  + ql +  qld). (3.4.4)

The variance of St+£ t̂ can similarly be shown to be

Var[St+At\ = S f [ { q l { l - q l ) u ^  + q‘l { l - q ^ ) - \ - q ^ { l - q f ) d ^ )

-2{qlq^u +  qlqtud +  . (3.4.5)

In order for the trinomial model to closely simulate the behavior of the
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MCJD model, at each step we thus require the MCJD model and the trino

mial model to have similar characteristics. We do this by equating the means 

and variances of both models. Starting with the means, equating equations 

(3.4.2) and (3.4.4) we get

Et = qlu -f q} -f- q^d.

A comparison of the variances in equations (3.4.3) and (3.4.5) gives us 

^  =  Qti^ — +  9?(1 — qt) +  qf{l — qf)d'^ — 2{q\^u  4- q \^u d  4- ql(^d).

Using these two equations, and given that we also know that

<ll +  (It +  (& = 1 ,

we are left with three equations to solve for five unknowns u, d, q}, çf, gf. We 

must therefore specify two of these values in order to get a unique solution. 

Let us set

2 2 
% =  3 ’

which will allow us to solve for all the other unknowns. We are then left with 

the following two equations to solve for u and qj:

I _  u[3Et — 2] — 1
3(«2 -  1) '
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and

These two equations must be solved numerically for the first time period 

t =  0. For subsequent periods t = A t , . . .  ,T  — A t we can either solve again 

the above equations which will result in a different value for u and hence the 

tree will no longer be recombining, or alternatively we can keep the same 

value of u only relax the assumption that 9? =  § and therefore solve for all 

the probabilities.

For an /i-period tree we will then be left with 2/i 4 -1 final nodes at time 

T.  The expected value of the stock can then be estimated as the weighted 

average of the stock value at each of these nodes, where the weights are 

the probabilities of the tree leading up to that node. This probability is 

calculated by taking for each path leading to that node the product of all the 

probabilities of the h one-period models, and summing over all the different 

paths. So for example, the probability of the stock price equaling Su^ after 

three periods in the model shown in figure 3.10 is equal to qlqlql- The 

variance can be estimated using similar procedures.

Derivatives of the time T  stock price can be calculated using the same 

tree. The only difference is that we replace the time T  stock values at the end 

of each node and replace it with the value of the derivative. The weighted 

average of these values is then calculated, the result being the value of the
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Figure 3.11: Pricing a three period call option using a trinomial tree.

derivative at time T. So for example, the estimate of a call option after three 

time periods with strike K  whose payoff is given by

Co =  max (St  — K, 0 )

can be calculated using figure 3.11.

In order to calculate the time 0 value of the derivative, we need to estimate
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the value of the discount factor

This can be done by simply using the approximation given by

1=0 k=l

where is once again the probability of being in state k at time iA t  given 

that we started in state j .

The advantages of this model will be its fairly easy formulation and im

plementation, However, reducing an n  dimensional process into just a three- 

branch tree will clearly sacrifice much of the original model’s characteristics. 

We shall now look at an example of this methodology.

Exam ple 3.4.3. Considering Asset 1 with parameters given in section 3.1, 

we have replicated the behaviour of this asset using a 1 2 -node tree so that 

At =  0.833. The value of call options with various strike prices were calcu

lated using this methodology and are shown in table 3.12 in section 3.6.

□
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3.4.2 M ultinom ial Trees

We shall now try and represent our MCJD model in terms of a multinomial 

tree. Using multinomial trees we will be able to create a tree which will more 

closely resemble the behaviour of the stock, although this will lead to more 

computational complexity.

Let us assume that we are currently at time 0, and are interested in simulat

ing the price of the stock at time T. We can divide this time into h sections 

of size At, so that h =

Firstly let us represent the stock price movement excluding the jumps by 

a binomial tree model as shown in figure 3.12. The probability of the stock 

price increasing by a factor u is given by and similarly the probability of 

the stock changing by a factor of d is given by (1  — g-̂ ).

Figure 3.12: Stock price movement (excluding jumps) in time At when in 

state j.
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State j 5(

*S'o(l +  State 1

5'o(l +  State 2

5'o(l +  State 3

State j (no jum p)

Figure 3.13: Stock price jumps in time A t  in a three-state model starting in 

state j .

Next we shall consider only the jumps part. For simplicity we will consider 

a model which has 3 states, although this can be easily generalised. To 

represent this we will need a 4-branch tree as shown in figure 3.13, one 

branch for each state the model can transit to and one branch representing 

no transition (this is due to the fact that when in state j  we can either transit 

to state j  in which case there is a jump, or alternatively we can remain in 

state j  with no jump). We have the following probabilities:

p>’> =  x f ’A t
n

fe=l
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We would like the variance implied by this binomial model to equal that 

implied from (3.4.1). We can see from (3.4.1) that when excluding the jumps 

St is lognormally distributed, meaning the expected value of the stock price 

after a change of time A t  when in state j  is given by

The variance of the stock price over this period is given by 

Var[5t+At] =  -  1).

Looking at the expected value and variance implied by the binomial model, 

we see that

^ [St+At] =  St[q^Uj {1 -  q^)dj],

Var[St+At] =  Si[(fu^j +  { l -q^)d^] .

In order for our binomial model to have the same mean and variance as the 

MCJD model (excluding the jumps) it is replicating, we therefore require

+  (3.4.6)

_  1 ) _  5?(î^U? +  (l-Ç^)cÇ). (3.4.7)

We now have two equations which we need to solve for three parameters, and 

so we will need to specify one of the parameters. We may set

1
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as in the Cox-Ross and Rubenstein model (see Cox and Rubenstein [1985]). 

Equations (3.4.6) and (3.4.7) now become

These equations can be solved to give

-  di
q> =  %

Uj -  dj

1 +  4- [(1 -f
T i A t

where

2e ĵ

a j  =  2 r j  4-  a ' j .

For this to provide real solutions we need the constraint

2 ln(e-^i^^ -

-----------At----------- ■

We can now replicate the behaviour of the MCJD model by combining the 

binomial model with the jumps model as in figure 3.14. We can use figure 

3.14 to calculate the expected value of Sai by taking the weighted average 

of the value at each of the end nodes, where the weights are the products of
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A t

SoUj{l +  

SoUj{l +  

SoUj{l +

S qUj

5orfj(l + 7 '̂̂ )

% ( i + 7 a

Sodj

Figure 3.14: Stock price movement in time A t  when in state j .  

the probabilities leading to that node.

We can similarly use this tree to price other derivatives of the stock price by 

replacing the values at the final nodes by the payoffs of the derivative. For 

example, figure 3.15 shows how we may use the tree to value a call option at 

time 0 on the stock at time A t  with strike value K.

So far we have calculated the expected value of the stock and valued 

derivatives of it over one time period A t. If we wish to calculate the expected 

value of the stock after a time T, i.e. over h time periods where h =  

then we simply combine h of the above single-period trees. As will be fairly 

apparent, this will mean the number of final nodes will be fairly large even
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1 -

100

e~‘̂ ^^*max[(SoUj(l +  0]

e-' ĵ^^rnax[SoUj(l + Y )̂,0]

e~‘̂ ^^^max[SoUj(l + Ŷ ),0]

e~^^^^max[SoUj, 0] 

e-^j^*max[Sodj(l 4- Y )̂, 0]

e-n^^rnax[Sodj(l 4- Y )̂, 0]

e-' ĵ^^maxlSodj(l 4- 0]

e-^j^tmax[Sodjj 0]

A t

Figure 3.15: Valuing a call option at time 0 on SAt when in state j.

for moderate values of h. The number of nodes after a time T  represented 

by N t is equal to

Nt — [2 (n 4" 1 )]^'

This methodology’s usefulness will therefore be restricted to models where 

there are small values of n and h, and hence T.

Exam ple 3.4.4. Once again considering Asset 1 with parameters given in 

section 3.1, we are able to replicate the behaviour of this asset using a 10 

node tree so that A t =  0.1. The value of call options with various strike 

prices were calculated using this methodology and are shown in table 3.12 in 

section 3.6.

□
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3.5 M onte Carlo Sim ulation

We shall now attempt to estimate the value of the time T stock price and its 

derivatives using Monte Carlo simulation. The value at time 0 of a contingent 

claim at time T  denoted by X t  is given by

Co = (3.5.1)

where the expectation is under the risk-neutral measure Q. There are many 

possible paths the stock price can take up until time T. We may generate 

randomly one of these paths and calculate the value of the derivative under 

this path. This is known as a simulation trial The simulation involves 

repeating the simulation trial say N  times and then aggregating the values. 

We shall now look at methods for simulating our MCJD model.

We shall once again divide the interval [0, T] into h subsections of length 

At, so that

h - L
A f

We can write a discrete version of our MCJD model given in equation (3.1.1) 

whilst in state j  as

n

A St = St [rjAt + a je tV Â i + ^  V ‘AATf ], (3.5.2)
fe=l

where Ct is a sample from a standardised normal distribution, and AN Î^  is a 

Bernoulli random variable with probability X’^At. We impose the restriction
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that

AiVf +  AiVf +  .. .  +  A N /" < 1

for ail j ,  i.e. at most one jump per time period. In order to simulate 

the value of St we must therefore generate each of the random variables 

Sau S2AU , ShAt successively.

To generate these random samples we assume that we have an end

less supply of uniform [0 , 1] random variables C/i, C/2,. • which can be eas

ily generated by all computers. We also assume that we have samples 

from the standard normal distribution e* Vt. To generate sample values of 

AN Î^  for A; =  1, . . .  ,n, we can divide the interval [0,1] into n -I-1 intervals 

[0, Ii],  [/i, 72],.. . ,  [7„, 1], where we have for m =  1 , . . . , n

m

fc=l

We then have that

A/yi* _  /   ̂ C/j G [ Ik-1 , Ik] ̂
* I  0  otherwise,

for all A; =  1 , . . . ,  n, and where Iq = 0 .

We are therefore able to generate ASt  using one uniform [0 , 1] random vari

able and one standard normal random variable, and hence each simulation 

trial using 2 x  h variables. In total we have N  simulations where we need to 

generate 2 x N  x  h random variables. We can already see that the number 

of calculations that need to be performed is linear in h, whilst the number
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required using the multinomial tree method was exponential in h.

In order to value the derivative price given in (5.4.1), we will also need to 

value the bank account process Bt  for each such simulation given by

Bj, =

The accuracy of the estimate given by the Monte Carlo simulation is clearly 

going to be dependent on the number of trials N  which are performed. The 

value of the derivative will be given by the mean of the values given by each 

simulation trial, and we will denote this by tt. We are also able to calculate 

the standard deviation of these simulated values which we will denote by u j . 

Since these are i.i.d. trials, the variance of t t  will therefore be given by

Var{%) =

Using a normal approximation, we can thus write a 95% confidence interval 

for the price of the derivative Ct  as follows:

1.96a; ^  1.96a;

So the accuracy of our estimate will be proportional to the number of trials 

we perform.

Exam ple 3.5.1. Once again considering Asset 1 with parameters given in 

section 3.1, we replicated the behaviour of this asset using 250,000 simulation
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trials. The value of call options with various strike prices were calculated 

using this methodology and are shown in table 3.12 in section 3.6.

□

3.6 C om parison o f Perform ances

We shall now compare the performances of each of the methodologies de

scribed in this chapter. Table 3.12 shows the price of a call option with 

strike prices ranging from to £5 using each of the above methodologies.

The tree-based methods seem to perform the worst, not being able to 

price even the zero-strike option correctly, as well as seemingly underpricing 

at higher strikes compared with the polynomial spline methodology and the 

Monte Carlo methods. The multinomal tree seems to be worse than the 

trinomial tree, although this is probably due to the fact that the the time T  

was divided into 1 2  subperiods in the trinomial model, but only 1 0  subperiods 

for the multinomial model. The finite-difference method also seems to be 

giving very low results at higher strikes, but this could be a result of the fact 

that we had capped the value of the stock price at £5.
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trik e
’rice

F in ite
Difference

T ransla ted
G am m a

Polynom ial
Spline

Trinom ial
T ree

M ultinom ial
Tree

M onte
C arlo

0 .0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 0.9929 0.9598 1.0009
0 .2 0.8254 0.8059 0.8068 0.7993 0.7662 0.8068
0.4 0.6319 0.6118 0.6218 0.6180 0.5819 0.6145
0 .6 0.4613 0.4177 0.4573 0.4680 0.4291 0.4415
0 .8 0.3176 0.2605 0.3238 0.3511 0.3012 0.3149
1 .0 0.2368 0.2035 0.2250 0.2576 0.2249 0.2322
1 .2 0.1750 0.1648 0.1579 0.2006 0.1670 0.1712
1.4 0.1294 0.1358 0.1148 0.1458 0.1195 0.1306
1 .6 0.0991 0.1131 0.0881 0.1175 0.0902 0.1042
1 .8 0.0672 0.0949 0.0717 0.0893 0.0735 0.0829
2 .0 0.0519 0.0801 0.0615 0.0673 0.0590 0.0662
2 .2 0.0432 0.0679 0.0547 0.0558 0.0461 0.0533
2.4 0.0348 0.0578 0.0492 0.0444 0.0353 0.0440
2 .6 0.0251 0.0493 0.0443 0.0329 0.0277 0.0374
2 .8 0.0179 0.0422 0.0393 0.0264 0.0224 0.0321
3.0 0.0130 0.0363 0.0344 0.0227 0.0193 0.0274
3.2 0.0092 0.0312 0.0297 0.0190 0.0167 0.0234
3.4 0.0073 0.0269 0.0252 0.0152 0.0144 0 .0 2 0 0

3.6 0.0062 0.0232 0 .0 2 1 2 0.0115 0 .0 1 2 2 0.0172
3.8 0.0053 0 .0 2 0 0 0.0176 0.0090 0 .0 1 0 2 0.0148
4.0 0.0041 0.0173 0.0145 0.0081 0.0084 0.0129
4.2 0.0030 0.0150 0.0119 0.0071 0.0070 0.0114
4.4 0.0019 0.0130 0.0098 0.0061 0.0058 0 . 0 1 0 2

4.6 0 .0 0 1 1 0.0113 0.0081 0.0051 0.0049 0.0092
4.8 0.0005 0.0098 0.0067 0.0042 0.0043 0.0084
5.0 0 .0 0 0 0 0.0086 0.0057 0.0032 0.0037 0.0076

Table 3.12: Prices of call options with various strike prices using each of the
methodologies.



Chapter 4

Interest-Rate Theory

4.1 Introduction

So far we have looked at the pricing of derivatives on assets with price pro

cesses governed by our Markov chain jump-diffusion model. We will now look 

at financial instruments whose payoffs are determined solely by the value of 

interest rates over the period of the instrument. Such financial products are 

collectively known as the Fixed-Income Market. The main difference between 

these two financial markets is that when dealing with stocks the underlying 

is directly tradable, whilst with interest-rate derivatives it is not. This will 

lead to complications regarding completeness, as we shall see later on.

The main building block in pricing interest-rate derivatives is the short 

rate which we will denote by rt- This is the interest rate for instantaneous 

borrowing at time t. From the short-rate process we can derive two other im-

106
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portant process: the forward-rate process and the zero-coupon price process. 

The forward rate given by f{t, T) is the interest rate set at time t for instan

taneous borrowing at time T. The zero-coupon price given by p{t, T) is the 

price paid at time t for receiving a fixed nominal amount, say i l̂OO, at time 

T. Unlike the short rate, forward-rate contracts and the zero-coupon bonds 

(which can be regarded as derivatives of the short rate) are freely traded on 

the market.

The Term Structure of interest rates is the name given to the relationship 

between the interest on a zero-coupon bond and its maturity. The Yield 

Curve is a graphical representation of this relationship where interest rates 

are plotted against maturity. The short rate rt is the left-most point on the 

yield curve. The main objective of interest-rate modelling is to determine 

the yield curve, which can then be used to price interest-rate derivatives.

We will first begin by describing our Markov chain jump-diffusion model 

in the fixed-income context, and derive relationships between the short rate, 

forward rate and zero-coupon bond prices. We will then look at the two most 

common classes of models used to describe the short-rate dynamics: Short 

Rate Models and HJM Models.

For the rest of this chapter we shall mainly follow the methodologies set 

out in Bingham and Kiesel [2004] and Musiela and Rutkowski [1997].
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4.2 T he M odel

We begin by assuming the following model for the short rate:

drt =  Yt-)dt +  (j{t, Yt-)dWt +  Yt-,Yt)dNt, (4.2.1)

where the drift and volatility functions fiQ and are prévisible, and we 

denote this by showing them as functions of Yt-. The jump function Y {)  

is not prévisible, but rather dependent on the state that we have transited 

from Yt- and the state we are transiting to Yt. Using the notation as in 

the previous chapters, we may also write the jump sizes as being 7 /*̂  when 

Yt- = j  and Yt = k. We have also attached a superscript r  to the jump 

function to show that it represents the jump in the short-rate process, as 

opposed to jumps in the other two process described below. Wt once again 

represent a Wiener process and Nt a counting process as described in section 

1.3.1.

We also have the zero-coupon price process given by

dp{t, T) =  p{t, T)[m{t, T, Yt-)dt + v{t, T, Yt-)dWt +  ' f { t ,  T, Yt-, Yt)dNt]

(4.2.2)

and the forward-rate dynamics given by

df{t, T) = a{t, T, Yt-)dt + b{t, T, Yt-)dWt + T, Y,-,Yt)dNt, (4.2.3)

where as above the drift and volatility functions m(), a(), vQ and b{) are 

prévisible, whilst the jump functions 7 ^ 0  and 7 -̂ () are not. We have the
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following well-known results:

dfit.T )  =  (4.2.4)

r(t) = (4.2.5)

We shall now find the relationships between the above processes. Let us 

begin with the zero-coupon price process and the forward-rate process.

P roposition  4.2.1. Ifp{t,T ) satisfies (4.2.2) then the forward-rate dynam

ics are given by

df{t, T) = a{t, T, Yt-)dt + b{t, T, Yt-)dW, + f ( ( ,  T, Yt-,Yt)dNt,

where

a(t, T, Yt-) =  vrit, T, Yt-)v{t, T, Yt-) -  m{t, T, Yt-),

K^i'd',Yt-) = —VT{t,T,Yt-),
T^{t,T ,Yt-,Yt)

'yf{t,T,Yt-,Yt) = -
l  + r { t ,T ,Y t - ,Y t y

and where by the subscript T  we denote the partial derivative with respect to 

T.

Proof. Applying Itô’s lemma to (4.2.2) as well as an analogous lemma for 

the jumps, we get

p{t,T)  =  e x p l i f  ( m { s ,T ,Y , - ) - y { s ,T ,Y , - ) ^ ) d s +  I v{s ,T ,Y ,-)dW ,
J  3 = 0  "  J  3 = 0

+  /  log{l + j ”(s, T, Yt-, Yt)dNt].
J  3 = 0



4.2 The Model 110

Taking the logarithm of the above equation and partially differentiating with 

respect to T  we get 

dlog p{t, T)
dT

= [  (m r(s, T, Y s - )  -  v t { s ,  T, y,_)u(s, T, Y s - ) ) d s
J  a=0

(4.2.6)

Inserting (4.2.6) into (4.2.3) completes the proof.

□

It is interesting to note that jumps in the zero-coupon price process only 

translate into jumps in the forward-rate process if 7  ̂ is a function of T. This 

is a direct result of equation (4.2.4).

We will now look at the second relationship; between the forward-rate 

process and the short-rate process.

P roposition  4.2.2. I f  f{ t ,T )  satisfies (4-2.3) then the short-rate dynamics 

are given by

drt = Yt-)dt -h a{t, Yt-)dWt +  7 ^(t, Yt-,Yt)dNt, (4.2.7)

where

li{t,Yt-) =  / r ( t , t ) +  a(t,t,T t_), 

a{t,Yt-) = b{t,t,Yt.),
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Proof. We can integrate the forward-rate dynamics in (4.2.3) to get

f{ t , t )  = r{ t)=  / ( 0 , t ) +  /  a{s,t,Ys-)ds-\- f  b{s,t,Ys-)dWs
J  3 = 0  J  3 = 0

+ f  (4.2.8)
J  3 = 0

Writing a(-), b{-) and also in integrated form, we get

a{s,t,Ys-) =  a{s,s,Ys-)-\- aT{s,u,Ya-)du,
J  U = 3

b{s,t,Ys-) = b{s,s,Yg-)-\- f  br{s,u,Ys-)du,
J  U = S

'y^{s,t,Ys-,Ys) =  7-̂ (s,s, Ys_,y;) + /* 'rTi^,u,Ys-,Ys)du,
J u = s

and on inserting into (4.2.8) we have

r{t) = f { 0 , t ) +  (  a {s ,s ,Y s-)d s^  f  (  aT{s,u,Ya-)duds
J  3 = 0  J  3 = 0  J  U = 3

+ f  b{s,s,Yg-)dWa (  f  bT{s,u,Ys-)dudWs
J  3 = 0  J  5 = 0  J  U = 3

+ [  J ^ { s , s , Y s - , Y a ) d s +  j  f  ' y ^ { s , u , Y g - , Y a ) d u d N a .
J  3 = 0  J  3 = 0  J  U = 3

(4.2.9)
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Noting that

/ r ( t , s )  =  / t ( 0 , s ) + / *  a T { s , t , Y s - ) d s - \ -  [  b T { s , t , Y s - ) d W s
J  5 = 0  J  5 = 0

+  [  7r(^5 Yg-,Yg)dNa,
J  5 = 0

and after inserting into (4.2.10), we get

r{t) = [  [ a { s , s , Y s - ) fT{t,s)]ds
J  5 = 0

+  [  b{s,s,Y,.)dW,+ f  jf{s,s,Y,. ,Y,)dN,.  (4.2.10)
J  5 = 0  J  5 = 0

On comparing coefficients between (4.2.7) and (4.2.10) the proof is complete.

□

Our final relationship is between the forward-rate process and the zero- 

coupon price process.

P roposition  4.2.3. If  f{ t ,T )  satisfies (4.2.3) then the dynamics for p(t,T) 

are given by

dp{t, T) = pit, T)[m(t, T, Yt-)dt +  v{t, T, Yt-)dWt + Y (t, T, Yt-,Yt)dNt],

(4.2.11)



4.2 The Model 113

where

m{t,T,Yt-) =  r{t) +  A(t,T,Yt-) +  ^\B(t,T)\\  

v(t,T,Yt.) =  B(t,T,Yt.),

Y{t,T,Yt^,Yt) =  exp{Tf{ t ,T ,Y , . ,Y t ) } - l

and

~ [  a(t,s ,Y t—)ds, (4.2.12)
J  S = t

B{t,T,Y,J) =  -  f  b{t,s,Y,-)ds,  (4.2.13)
J  S = t

r^(i,r,y;_,y,) =  -  [% f{ t , s ,Y t - ,Y t )ds .  (4.2.14)
J  a=t

Proof. Rearranging (4.2.4) we get

p{t, T) = exp[- [  f{ t, s)ds],
J  a=t

and so we can therefore re-write (4.2.2) as

p{t,T) = exp{Z{t,T)},

where

Z{t,T) =  -  [  f{t,s}ds. (4.2.15)
J a=t

Writing (4.2.3) in integrated form, we have
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f ( t ,  s) = /(O, s)+  f  a{u, s, Yu-)du+ j  b{u, s, Yu-)dWu-\- j  s, Yu-,Yu)dNu,
J  u=0 J  u=0 J  u=0

and after inserting into (4.2.15) we get

Z{t,T ) = — f  f{ 0 ,s )d s — j  f  a{u,s,Yu-)dsdu
J  s= t  J  u=0 J  s= t

- [  f  b{u,s,Yu-)dsdW u- f  f  j^{u,s,Yu-,Yu)dsdNu.
J  u=0 J  s= t J  u=0 J  a= t

Splitting the integrals and changing the order of integration gives us 

Z{t,T ) = — f  f{0 ,s )d s— (  f  a{u,s,Yu-)dsdu
J  3 = 0  J  U = 0  J  3 = U

- f  f  b{u,s,Yu-)dsdW u- f  [  j^{u,s,Yu-,Yu)dsdNu
J  U = 0  J  s= u  J  U = 0  J  3 = U

+  f  /(O, s)ds f  j  a{u, s, Yu-)dsdu
J  3 = 0  J  U = 0  J  3 = U

+  /  f  b{u,s,Yu-)dsdWu-\- f  f  'y^{u,s,Yu-,Yu)dsdNu,
J  u=0 J  s= u  J  u=0 J  s= u

which can be written as
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Z (t,T )  = Z(0,T) -  f  (  a{u,s,Yu-)dsdu
J  U = 0  J  3 = U

- [  f  b{u,s,Yu-)dsdW u- f  f  j^{u,s,Yu-,Yu)dsdNu
J  u=0 J  s= u  J  u=0 J  s= u

+  f  f{0 ,s )ds+  f  [  a{u,s,Yu-)duds 
J 3 = 0  J  3 = 0  J U = 0

+  /  f  b{u,s,Yu-)dWuds j  f  'y^{u,s,Yu-,Yy)dNuds.
J  3 = 0  J U = 0  J 3 = 0  J u=0

The last two lines of the above expression constitute the integrated form of 

the forward-rate dynamics, and since r(s) =  / ( s ,  s) we can thus write

Z{t,T ) = Z(0,T)-\- j  r{s)ds— f  f  a{u,s,Yu~)dsdu
J 3=0 J 11=0 J s= u

- [  f  b{u,s,Yu-)dsdWu~ f  f  ^^{u,s,Yu-,Yu)dsdNu.
J  u=0 J  s= u  J  u=0 J  s= u

Replacing (4.4.6), (4.4.7) and (4.4.8) into the above equation we find

dZ{t, T) =  (r(0  +  A{t, T, Yt.))dt + T, Yt.)dWt + T, Yt-,Yt))dNt,

and on application of Itô’s lemma to p{t,T) = exp{Z(t,T)}  the proof is 

complete.
□
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It is apparent from the above propositions, that knowledge of the zero- 

coupon process or of the forward-rate process is tantamount to knowing all 

three processes. The short-rate process however is not a one-to-one mapping 

of the zero-coupon prices or of the forward rates, which therefore means 

that specifying a process for the short rate in (4.2.1) will not determine the 

processes for the bond price and the forward rate in (4.2.2) and (4.2.3). This 

can be seen by noting that

= n

and so specifying for s G [t, T] will only give us the points /( s , s) and not 

the points /( s , u) for u > s. So too from equation (4.2.4) it is clear that we 

will not be able to determine the bond prices either.

4.3 Short-R ate M odels

Short rate models derive the evolution of the entire yield curve in terms of 

a single 1-dimensional state variable - the short rate. The first task that we 

are faced with is therefore the specification of the short rate.

Let consider the following model for the short rate:

drt = ii{t, n ,  Yt-)dt -f a{t, r^, Yt-)dWt +  y ( t ,  n , Yt-, Yt)dNt (4.3.1)

with the functions At(),cr() and y ( )  being sufficiently regular, that is, satis

fying (see 0 ksendal [2 0 0 0 ])

X ,  Y t - ) \ - f  \cr{t, X ,  Yt-)\ < C{1 -k  |a : l )
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and

\fi{t, X, Yt-) -  ii{t, y, Yt-)\ +  \a{t, x, Yt-) -  a{t,  y, } f _ ) |  < D\x -  y l

where x ,y  G R  and C  and D  are some constants. We also require the 

Y { t ,r t ,Y t- ,Y ty s  to be piecewise continuous. We shall begin by developing 

pricing methodologies for derivatives of this short rate, and we will subse

quently discuss the completeness of such a model.

4.3.1 Derivatives pricing

We shall assume that the short-rate dynamics are described by (4.3.1) under 

the martingale measure Q, which we assume exists. We shall discuss later the 

implications of modelling under this probability measure as opposed to the 

real-world probability measure P . We can apply the risk-neutral valuation 

principle to obtain the value Q  of a sufficiently integrable T-contingent claim 

X t as being

Ct =  Eq  [e- Ji’' ’■«■'“X rl F«]. (4.3.2)

Let us consider T-claims of the form X t  = f{Yr,r{T)). To develop the 

price process for this claim we first need to develop a modification to the 

Feyman-Kac formula as follows:
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T heorem  4.3.1. (Feyman-Kac formula modified). Suppose we have the fol

lowing stochastic differential equation:

dr, = fi{s, r„ Y,-)ds + <t ( s , r„ Y,-)dW, + r . ,  Y,-,Y ,)dN„ t < s < T ,

(4.3.3)

with initial conditions

n  = r,

Yt =  j ,

where the functions pi{s,ra,Ya-), a{s,ra,Ya-) and 'y{s,ra,Ya-,Ya) are suffi

ciently regular. The solution to the partial differential equation

+ ^  X̂ ‘‘E{F(t, r  + 'y ( t , r , j , k ) , j ) - F { t , r J ) }  = 0 (4.3.4)
fc=l

with final condition

F(T, rr, Yr) = h(rT, Yt )

has the representation

F {t,r ,j)  = E{h{rT,Yr)\ n  = r, Y t=  j).
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Proof. Consider a function of rt given by F{t, rt,Yt), and assume that we 

were just in state j ,  i.e. Yt- = j.  Using Itô’s lemma and an analogous lemma 

for the jumps, we obtain

dF{t ,rJ )  = {Ft{t,rJ)-\-f i{t,r, j)Fr{t ,r ,j)  +  ^(J^{t,r,j)Frr{t,rJ))dt

-\-a{t,r,j)Fr{t,r,j)dWt + (F(t , r- \- 'y(t ,rJ,Yt) , j)  -  F{t ,r ,j))dNt.

Define for all j
n

dNt = d N t - ' ^ X ^ ' ‘dt,
fc = l

where since

E[dNt\Yt. =  j] =  ^  (4.3.5)
fe = l

we have that dNt and hence Nt are Q martingales. We can therefore write 

dF{t,r , j)  = [Ft{t,r,j)-\-fi{t,r,j)Fr{t,r,j) +  ^cr^{t,r,j)Frr{t,r,j)

-  ^  X>^{F{t, r +  r, j, k), j )  -  F{t, r, j))]dt
fc=l

-{-(T{t,r,j)Fr{t,r,j)dWt +  [F{t,r- \-^{t , r , j ,Yt)J) -  F{t,rJ)]dNt.

If we have that

Ft{t ,r, j)-\-fi{t ,r, j)Fr{t,r, j)  +  ^(7^it,r,j)Frrit,r,j)

n

+  ^A ^*=£;{F(t,r+  7 ( t ,r ,j ,  k) , j)  -  F { t , r J ) }  = 0
k=l



4.3 Short-Rate Models 120

with boundary condition

Y t ) =  h ( r T ,  Y r )

we then get

E[dF(t, r, j)] = E[a{t, r, j)Fr{t, r, j)dWt-\-{F{t, r, j-\-'y(t, r, j, Y t))-F (t,  r, j))dNt]■ 

Writing this in integral form, we have

E[F{s,r,Ys)] = E[F(t,rt,j)-\- [  (r(u,ru,j)Fr(u,ru,j)dWu
J  u = t

+  f  {F{u, TuJ  +  Tu, Yu-, Yu)) -  F{u, ru, Yu-))dNu]- 
J  u = t

With Wt and Nu being martingales with initial values 0, we therefore have 

that

E{F{s,r,Y.)\ n  =  r, Y t = j )  =  F (« ,n , j) , (4.3.6)

and so finally

F{t, r , j)  = E{h{rT, Yr)\ n  = r , Y t =  j)

as required.

□

If we assume that X t  in (4.3.2) is of the form X t  = ^ r), we can

use the above theorem to obtain the following proposition:
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P ro position  4.3.2. (Term Structure Equation). Suppose we have a T- 

contingent daim X t  = / ( r r ,  I r ) ,  then the arbitrage-free value of price pro

cess Ct, where

is given by (4-3.2), is a solution of the partial differential equation 

- r C { t ,r , j )  -\-Ct{t,r,j) fjL(t,r,j)Cr(t,rJ) +  ^(r^{t,r,j)Crrit,r,j)

-\- 'Y^X'^E{C{t,r-[-'y{t,r,j,k),j)  -  C {t,r ,j)}  = 0
fc=l

(4.3.7)

with terminal condition C{T,r,Yr) = f{r ,Yr) for allr  Yr E S.

□

We can now write the following result:

C orollary  4.3.3. (T-bond prices) We can calculate the price of a T-bond 

p{t,T) as being the solution to (4-3.7) with terminal condition C(T,r,YT) = 

1 .

□

We will now price derivatives whose payoffs are functions of the T-bond 

prices, such as a European call option with payoff

X t  =  max{p(5, T) — K,0},
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where the maturity is S  and the strike is K.  To do this will require a two 

step-process. We must first calculate the value of the underlying T-bond by 

using corollary (4.3.3). We must then solve equation (4.3.7) for the value of 

the derivative G{t,rt,Yt), giving us

-rG (t,r , j) - \-G t{ t ,r , j) - \- f i{ t ,r , j )G r{ t,rJ )  +  ^<J^(t,r, j)G ^ ( t,r , j)

+  Y ] >^^^E{G{t, r  -f 7 (t, r, j, k ) , j)  -  G{t, r , j )}  = 0
k=l

(4.3.8)

with terminal condition

G{S, r, T) = max{p(S', T) -  K, 0}

for all r  E Yt  ^  S.

To solve these two partial differential equations may prove to be rather 

tricky. The standard way of ensuring that these equations remain solvable 

is by restricting the possible models for the short rate to those in which the 

bond prices possess an affine term structure (see Duffie [1992]). But as we 

shall see, even with models which exhibit such a structure pricing derivatives 

using the MCJD model is not totally straightforward.
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4.3.2 M odels of the Short R ate

There are many models which can be used to describe the behaviour of 

the short rate. Some of these models may allow an exact fit to the initial 

term structure or possess more preferable term structures than others. The 

advantages and disadvantages of various short rate models can be found in 

books such as Bjork [1998] or Duffie [1992]. In our Markov chain jump- 

diffusion setting, we will consider extensions of two of the most predominant 

models. We will firstly show how to price derivatives of the short rate for 

each of the models without having to solve the partial differential equations 

in the previous section, and subsequently we will discuss how to estimate 

parameter values. In this section we shall assume that we are modelling 

under the risk-neutral measure Q. In the next section we shall explore the 

ramifications of such an assumption.

T he Ho-Lee M odel

We shall extend the Ho-Lee model first introduced in Ho and Lee [1986] so 

that the short rate has the following dynamics;

drt = atdt -f ^  
j=i k=l

(4.3.9)

where Oj is prévisible and strictly greater than 0. The values of at are chosen 

so that the short-rate model fits the initial term structure.
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The Ho-Lee model is generally not the most preferred short rate model as it 

does not possess the mean-reverting property, as well as having the undesir

able property that the short rate can be negative. However, the advantage 

it does possess over the other models is its ease of computation.

We shall consider a market where we have an empirical term structure 

{p(0, T) 0 < t < T} and so too an observed forward-rate curve {/(O, t) 0 < 

t < T } .  We shall now derive the values of a* for 0 < t < T so that the model 

fits this initial term structure.

Lem m a 4.3.4. Suppose the short rate follows an extended version of the 

Ho-Lee model as given in equation (4-3.9). In order for this model to fit the 

initial term structure we require that

ô t = /'(O, t) -k M"(0, t), 0 < t < T ,  (4.3.10)

where

M (t,T ) = logE exp -  r  ( r Ê + Ë É \
I -^«=0 j=i j=i k=i J .

and where ' represents the partial derivative with respect to t.

Proof. The value of the time t zero-coupon bond p(0, t) is given by

p{0,t) = E  expi^—J  r (u )d u | . (4.3.11)
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Integrating (4.3.9), we get

r, =  ro +  f  a.ds + f ‘ +  È È (4.3.12)
Js=Q  J s= 0  j = l  k = l

and inserting this into equation (4.3.11) we obtain

p{0,t) = E exp I -  f  (ro +  r  a j s +  f  ± l i a , d W ,  + ± ± ' f > ‘N S
y J u = 0  \  J s= 0  J s= 0  j = i  k = l

du

Writing

exp{M (t,T)} = E
{ /•T /  /.u n n \

J u = t  \ J 3 = 0  ;= 1  fe=l /
du

we therefore get

p{0, t) = exp I  —rot — [  f  OLgdsdu +  M(0, t) 1 .
L J U = 0  J 3 = 0  J

(4.3.13)

(4.3.14)

We then have

dlogp{^,t)
dT

=  ro +  /* Oigds — M'{0,t). 
J s= 0

Differentiating once more, we find

f { 0 , t )  = a t - M " { 0 , t ) . (4.3.15)

Rearranging (4.3.15) gives us (4.3.10). □
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In appendix B we develop a methodology to calculate the value of M{t, T), 

the result of which is given in corollary B.0.10.

Turning our attention to the zero-coupon bond prices, we have the following 

lemma:

Lem m a 4.3.5. The time 0 value of the zero-coupon bond p{t,T) at time t is 

given by

p{t,T) =  poexp{M{t,T) -  M (0,T) -k M (0,t)}, (4.3.16)

where

and where p(0 , t) once again refers to the empirical time t zero-coupon bond 

price.

Proof. We have that

p{t,T) = E exp

and on inserting the short rate given by 4.3.12 we find

T) = E e x p l -  f  (ro+  f  asds-\- j  +
L *^«=0 *^«=0 j = l  j = l  k = l
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Calculating this expected value we get

=  exp i —(T — t)ro — f  f  agds M { t ,T ) \
L J u=t J  a=0 J

=  e x p l - { T - t ) r o -  j  f  agds-h [  [  a g d s M ( t , T ) \ ,
L J u= 0  J s= 0  J u= 0  J a=0 )

and finally on inserting (4.3.14) we get (4.3.16).

□

The H ull-W hite (Extended Vasicek) M odel

The second short-rate model we shall consider is an extension of the Hull- 

White (Extended Vasicek) model (see Hull and White [1990a]), where the 

short rate has the following dynamics:

drt = ^ I {
J=i

{at -  Ptrt)dt +  (TjdWt -t- ^
fc=l

(4.3.17)

where Oj is prévisible and strictly greater than 0. The (3t term can be set 

as a function of the current state j ,  the time t or both. We shall consider 

models where (3t is a deterministic function of the time t only. The values 

of at are once again chosen so that the short-rate model fits the initial term 

structure.

The Hull-White model is generally preferred to the Ho-Lee as it possesses the 

mean reverting property characterised above by the term /?*. We shall again
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consider a market where we have an empirical term structure {p(0, T) 0 < 

t < T }  and so too an observed forward rate curve {f{0 ,t) 0 < t  < T}. Let 

us now derive the values of o;t for 0 < t < T so that the model fits this initial 

term structure.

Lem m a 4.3.6. Suppose the short rate follows an extended version of the 

Hull-White model as given in equation (4-3.17). In order for this model to 

fit the initial term structure we require that

ctt = /'{O, t) +  A /(0 , t) +  ptM'iO, t) +  M"(0, t), 0 < t < T ,  (4.3.18)

where

M (t,T )  = logE e x p i — f  e (  f  (TjdWs
y  J u = 0  \ ^ J 3 = 0

+
• '« = 0  7 =  1 k = l  J

and where ' once again represents the partial derivative with respect to t.

Proof. The value of the time t zero-coupon bond p(0, t) is given by

e x p ^ — J  r (u )d u |p(0, t) = E  

We can re-write (4.3.17) as
n

{at -  Ptn)dt - f  ajdWt - f  ^  'ŷ d̂N{^

(4.3.19)

drt = ^  II
j=i k = l

(4.3.20)
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Integrating (4.3.20) we get (see Rogers [1995])

n = e < ro +  r  I +  T  +  T  T  f ' ' j W f
V J=1 J=1 4=1

(4.3.21)

where

k{t) = f  Pudu, 
J  u=0

which is known at time 0  as /?t is a deterministic function of t  as stated above. 

Inserting (4.3.21) into equation (4.3.19) we find

p(P,t) =  E

+

e x p l — [  e ^̂ “^(ro+ f  lie^^^^OjdWs
I Ju=0 Js=0 Va=0

ds=0 t=l

Writing

exp{M {t,T)}  =  E

+

exp

r  ^ ^ e ^ < ‘’V'''dA7 '=)du
j = l  k = l

(4.3.22)

we therefore get
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p{0 ,t) = exp I — f  — /  /  e'^^^^asdsdu-\-M{0 , t ) \  .
L J u=0 J u=0 J s= 0  J

(4.3.23)

We then have

dlogp(Sl,t)f { 0 ,t) — — ■
dT

{ro +  f  e^^^^asds} -  M'{0,t). 
J  3=0

Differentiating once more we find

/'(O, t) = -PtfiO, t) -  ptM'iO, t ) 4 - a t -  M"(0, t). (4.3.24)

Rearranging (4.3.24) gives us (4.3.18).

□

The calculation of M{t, T) in equation (4.3.22) in the Hull-White model, 

can be seen to be somewhat more complicated than that in equation (4.3.13) 

for the Ho-Lee model, and will therefore need to be calculated numerically.

Turning our attention to the zero-coupon bond prices we have the follow

ing lemma:

Lem m a 4.3.7. The time 0 value of the zero-coupon bond p{t,T) at time t is 

given by

p{t, T) = poexp{M{t, T) -  M(0, T) -b M(0, t)}, (4.3.25)
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where

y  r{u)du}]

Proof, We have that

p{t, T) = E  exp 

and on inserting the short rate given by 4.3.20 we find 

=  E i -  f  e 4- f  lîe^^^^ajdWj
^  J U = t  J 5 = 0  J 3 = 0

3=

Calculating this expectation gives us

fT fT  ru
p{t,T) = e x p l — f  e — f  f  e^^^^aadsdu-\- M { t ,T ) \

L J U = t  J U = t  J  3 = 0  J

e x p l — f  e — f  j  e^^^^agdsdu
L J u = 0  J 11=0 J 3 = 0

+  f  +  /  f  e^^^^aadsdu-\- M {t,T ) \  ,
J 11=0 J u = 0  J 3 = 0  J

and finally on inserting (4.3.23) we get (4.3.25).

□
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4.3.3 Market Com pleteness

In the previous section we assumed that the short rate was modelled under 

the risk-neutral measure Q. The drawback of such an assumption is that in 

practice we only observe data under the real-world probability measure P , 

and so we are clearly going to encounter difficulties in parameter estimation. 

An alternative would have been to assume that short-rate dynamics are given 

by (4.3,1) under the measure P . However, this would lead us into other 

difficulties, as we shall now see.

M odelling u n d er P

Let us assume now that the short rate is modelled by (4.3.1) under the 

measure P . Define as in theorem (2.3.2)

As in theorem (2.3.2), this Girsanov density will yield an equivalent measure 

P  under which equation (4.3.1) becomes

drt = (//(^, n , Yt-) -  o-(t, rt, Yt-)0{t, n , Yt-))dt 

+C7(t, rt, Yt-)dWt +  Y ( t ,  rt, Yt-, Yt)dNt, (4.3.26)
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where W* is a P  Brownian motion, and the transition intensities of the 

Markov chain undergo the transformation V k under which

the counting process Nt is defined. Using theorem 4.3.1, we can see that any 

T-contingent claim X t  = which has present value Ft{t,r,j)  given

by (4.3.2), must solve the partial differential equation

-  a { t ,r tJ)e{ t,r t , j) )F r{ t,rJ)

/e= l

with final condition

F(T,Tt ,Yt ) = f{r{T),YT).

The difficulty here arises since 6 {t,rt,Yt-) and the are not specified 

within the model. This therefore leads us to an incomplete market situation. 

This is due to the fact that the short rate is not actually tradable, which 

leaves us only with the risk-neutral bank account to try to set up replicating 

portfolios. Therefore, all we will be able to achieve when pricing bonds whose 

prices are determined by the short rate, or alternatively which are derivatives 

of the short rate, is to ensure that given we have a portfolio of bonds under 

which 6 (t,Tt,Yt-) and the can be determined uniquely, then we can 

ensure that all other bonds are priced consistently. Alternatively, we can use 

statistical methods similar to those in the next subsection to calibrate the 

‘best’ parameter values given some objective function.
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M odelling un d er Q

As mentioned earlier, modelling under Q leaves us the problem of having to 

calibrate the parameter values which are observed under P . We therefore 

need to develop methods for determining the parameter values. For this we 

shall use a similar methodology to that described in Bjork [1997] and brought 

in Bingham and Kiesel [2004].

The process of calibration of a term-structure model involves solving the 

following system of equations:

p{0,T)=p(0,T;C) (4.3.27)

for all T  > 0, where p(0, T) are the observed bond prices and p{0, T\ Ç) are the 

estimated values using the parameter vector Ç In order to solve exactly for 

C we require the number of parameters to be equal to the number of bonds in 

the market. Theoretically, (4.3.27) represents an infinite system of equations, 

and so only short-rate models with an infinite-dimensional parameter vector 

will be able to give us an exact fit. We would therefore need to find the ‘best’ 

fitting parameter vector using a given objective function.

In practice however there are not an infinite number of bonds. Suppose 

there are m  bonds in the market, and we choose to model the short rate using 

an extension of the Hull-White extended Vasicek model, where the short-rate 

dynamics are given by
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drt — ^2 
i=i

{cd -  P^r)dt +  a^dWt +  ^
fc=l

(4.3.28)

for J =  1, . . .  ,n. This means the parameter vector ^ contains 3 parameters 

for each state, a^, (5̂  and cr-̂ , as well as n  parameters for each transition 

possibility, 7 *̂̂ for k =  1 , . . .  ,n. This leaves us with a total of 3n +  

parameters to solve for. So if we have that m =  3n +  then there will be 

an equal number of parameters and assets (and so too equations), and there 

can therefore be an exact fit. If we have more or less bonds on the market, 

then the model will not even price current bonds on the market correctly, let 

alone other derivatives.

4.4 H JM  M odels

There are many well-documented drawbacks in using short-rate models, such 

as the modelling the yield curve which is an infinite-dimensional space using 

only one factor which will generally prove to be inadequate, as well as the 

assumption that the yields of all maturities are perfectly correlated. These 

deficiencies as well as others have motivated the development of models which 

contain more than one explanatory variable.

At the other extreme, the Heath-Jarrow-Morton (HJM) methodology 

tries to improve on the short rate models in the previous section by directly 

modelling the evolution of the entire yield curve simultaneously. We will now
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apply this methodology to our Markov chain jump-diflFusion model.

We will model the forward rates as having the following dynamics:

r

df{t,T) = a{t,T,Yt-)dt + ^ T ,  T,Yt-,Yt)dNt (4.4.1)
6=1

for all T  < T*, where the W^’s are Brownian motions under the objective 

probability measure P . The bond-price dynamics are then given by

dp{t,T) = p ( t ,T )
6=1

m(t, T, Yt.)dt + ^  %((, T, Yt.)dW^ + y ( t ,  T, Y,.,

(4.4.2)

where using proposition 4.2.3 we have

m{t,T,Yt-) =  r{ t)+A{t ,T ,Yt. )  + '^\\S(t,T)\\\ (4.4.3)

vt{t,T,Yt-) =  5t(i,T ,y ,_), (4.4.4)

Y{t,T,Yt-,Yt)  =  exp{Tf{ t ,T ,Yt . ,Y t)}- l ,  (4.4.5)

and

A{t,T ,Y t-)  =  — /  a{t,u,Yt-)du, (4.4.6)
J U = t

Sb{t,T,Yt-) = -  f  Sb{t,u,Yt-)du, (4.4.7)
J  U = t

rf{t,T,Yt-,Yt) =  -  ( \ ! { t ,u ,Y t . ,Y t )d u .  (4.4.8)
J U = t
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4.4.1 M artingale Measure

For a numéraire we shall take the bank account process given by

B t = exp{ / f{u,u)du} = exp{ /  r(u)du}.
Ju=0 Ju=0

We must now find a measure so that

Z{ t ,T )  = (4.4.9)
■Dt

is a martingale for every 0 < T  < T*, where p{t ,T)  is given by (4.4.2) under 

the probability measure P . The theorem below explores the existence of such 

a measure.

T heorem  4.4.1. Assume that the family of forward rates is determined by 

(4 .4 H). Whilst in state j ,  let . . . ,  AÇ"') be an n-point process with in

tensities . . . ,  where

= \{u\Q < u < t^Yu = k, Yu- = j}\.

Let , . . . ,  be an Tt predictable process where ip̂  ̂ > 0 y  j , k  so that 

y  t < T  we have

ÊÊ r < 0 0 .
j = i  k = i

Suppose there exist predictable processes 0 ( t ,T , which satisfy the usual

regularity condition (see theorem 2.3.2). Define
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Lt = e xp l  / ^ l i
'u=0

^ ( 1  -  +  ^ l |© u ir j  du  +  & ^ d W {u )
fc=l

where

E^[Lt] =  1, Lo =  1.

I f  we also have for each state j

i=l

-  ^  T, j, fc)eip{r^((, T, j ,  &)} (4.4.10)
k=l

/o r J =  1, . . .  ,72, then there exists a risk-neutral martingale measure.

Proof. Prom theorem (2.3.2) we can see that under such a measure Q we 

induce a change both in the drift and the transition intensities of the Markov 

chain. Under this probability measure we can re-write (4.4.2) whilst in state 

j  as

dp(t,T) = p{t,T) {m{t, T, j)  -  ^  Vb{t, T, j)9b{t, T, j)dt)
6=1

+  Y ,  M t ,  T, j)dWt +  y  (t, T, j ,  k ) d N t
6=1 fe=l

, (4.4.11)
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where

Defining

and similarly

E[ dNt ]  =

dNt = d N t - ' ^ Y ^
j=l k=l

we see that Nt is a martingale under the measure Q. We can now express

(4.4.11) as

r  n

dp{t,T) =  p(t,T)[{m(t,T ,j) -  ^ % ((,r ,  r J )  4- ^  A ^ ((,T , & ) ) a
6=1 fc=l

+ j 2 M t , T ,  j)dW ^  +  ^  y ( ( ,  T, j, k )d N t] .
6=1 k=l

From (4.4.9) we can see that

dZt = dBf^p{ t ,T )  +  B^^dp{t ,T),

which on applying Itô’s lemma can be written in terms of the forward coef

ficients as follows:
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dZt = Zt A{t,T ,}) + h \ s { t , T , j W
6=1

+  ̂  A^'V‘ {exp{r^(t, T, j, fc)} -  1) I dt
fc =  l

6=1 fc=l

For Zt to be a Q-martingale we therefore require that

A(t,T,j)  +  5l|S(t,r,iS)|p
6=1

k = l

and on differentiating with respect to T  we are left with the condition

r r

-a[t,  T, j)  -  ^  Sb{t, T, j)  /  Sb{t, u, j)du  +  ^  gb(Z, T, j ) 6 b{t, T, j )
b = i  6=1

fc=l

Rearranging gives us (4.4.10).
□



4.4 HJM Models 141

In the HJM model all objects are specified directly under the risk-neutral 

measure Q. In order for us to do this we must set 6 i = 0 Vz, as well as 

= 1 Vj, k. We are then left with the following model.

Corollary 4.4.2. (Extended HJM) Assume we are modelling under the risk- 

neutral measure Q, and that the forward-rate dynamics are given by
r

df{t,T)  =  a{t,T ,Y t-)d t+ ^S i{ t ,T ,Y t-)dW }+ 'if{ t ,T ,Y t- ,Y t)dN t.  (4,4,13)
6=1

We then have the necessary drift condition whilst in state j  given by 

a{t,T ,j)  = '^ S b { t ,T , j )  /  S b {t,u , j)d u - '^X ^^y^{ t ,T ,j ,k )exp {r^{ t ,T ,j ,k )} .
6=1 fc=l

(4.4.14)

Integrating the forward-rate dynamics, the short-rate process can then be ex

pressed as

rT pT r
r(T) = f{ 0 ,T ) +  / a(u,T ,Yu-)du+  / ^  st(«, T,

Ju=0 Ju—0

pT
+ /  7^(u,T,y'„_,y„)dÂr„, (4,4,is)

J 11=0

and the bond-price dynamics are given by
T n

dp{t, T) = p(t, T) [ndt +  Yt.)dW^ + j, k ) d N t ],
6=1 fe= l

(4,4,16)

□
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4.4.2 Forward R ate Measure

For interest-rate models it is often more appropriate to use a bond maturing 

at date T* with price p{t,T*) as the numéraire. The associated martingale 

measure using this bond as a numéraire is then called the T*-forward mar

tingale measure Q*, such that under Q* the process

is a martingale for all T  < T*, where p{t,T)  is given by (4.4.2) under the 

probability measure P.

To find such a measure we can amend theorem 4.4.1 as follows :

T heorem  4.4.3. 4 s  in theorem 4-4-^> Ihe Girsanov density Lt for the change 

of measure to Q* induces a change in the drift of 6 b(t,T,Yt-) for each 

Brownian motion b, as well as change in the transition intensities from 

to The necessary drift condition for the process Z*{t,T) given by

(4-4H7) to be a Qf-martingale now becomes

r

a{ t ,T, j )  =  ^ s , { t , T , j ) { S t { T , T ' , j ) + e , { t , T , j ) }  +
6=1

E  T ,  j ,  k)exp{rf{ t ,  T, j ,  k)} -
k=l

T \ j ,  k)exp{r^{t, T-, j ,  k)}). (4.4.18)
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Proof. As in theorem 4.4.1 we have

dp{t,T) = p{t,T) mit, T, j )  -  ^  Vb{t, T, j)eb{t, T, j)
6=1

fc=l

6=1 fc=l

From equation (4.4.17) we can see that

dZ; = d p -^ t ,T ')p { t ,T )  + p - \ t ,T ' ) d p ( t ,T ) ,

where on applying Itô’s lemma and writing in terms of the forward rate 

coefficients given by (4.4.3), (4.4.4) and (4.4.5) gives us whilst in state j
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dz;  = z t { A{ t , T , j )  -  A { t , T \ j )  +  - ( | | g ( ( , T , ; ) | | ^  -  | | S ( t , T ' ,  j ) ! ^

6=1

+  A ^ ' V * ( e x p { r ^ ( t ,  T,  J ,  k)} -  exp{r^{t,  T \ j ,  k)})  I  dt
fc =  l

+ ̂ {5i(t,T, j) -  S , { t , r j ) } d W t
6=1

+  ^ ( e T p { r / ( ( ,  T ,  j ,  k)} -  exp{Tf{t ,  T \ j ,
fe=l

For Z f  to be a Q-martingale we therefore require that

A{ t , T , j )  -  A { t , T \ i )  +  - ( | | 5 ( t , T ,  j ) | p  -  ||5((,r, j ) i n

-  ^ ( % ( ( ,  T ,  j )  -  5 „ ( t ,  r , T, j )
6=1

-  e x p { r f { t , T \ j , k ) } ]  =  o,
fc= l

and on inserting (4.4.6), (4.4.7) and (4.4.8) this condition can be expressed

as
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/ 1
/  a{ t ,u , j )d u  +  -  

J u = T  ^
Sb{t,u, j)du

r  -T*

~ ' ^ ^ b { t , T , j )  /  Sb{t,uJ)du  
6=1

+  ^ A > V ' ‘[exp{r^(«,T , j ,* )}  - e x p { r ^ ( t , r * , j , f c )} ]  =  0.
fc=l

Differentiating with respect to T  we are left with the condition

r  -T *  r

a(t, T, j)  +  ^  S6(t, T, j)  /  S6(t, u, j)du -  ^  S6(t, T, ;)^6(^, T, j)
6=1 6=1

+

E  Yt)exp{rf{t, T*,j, k)} -  f ( t ,  T, j, k)exp{Tf{t, T, j, A)}] =  0.
fc=l

Rearranging gives us (4.4.18).

□

Once again we assume for the HJM model that all objects are specified 

directly under the risk-neutral measure Q* so that 6 { = 0 Vi, as well as 

'ipjk — I We then have the following drift condition:
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C orollary  4.4.4. The HJM drift condition whilst in state j  under Q* is 

given by

r

6=1

+  E  T, j, k)exp{Tf(t, T, j, k)}
fc=l

- 7 ^ ( i , r , J, k )e xp {T f{ t ,T , j ,  k)}), (4.4.19)

and we are then left with the Q* -martingale

r

dZ' =
6=1

+  T, j , k ) } -  exp{Vf{t, T \ j ,  fc)})diVf ].
/c= l

□

We have developed the main mathematical machinery that we will use 

to price these interest-rate derivatives. Let us now turn our attention to 

developing pricing formulas.

4.4.3 Derivatives Pricing

The first and most important derivative that we need to price is the zero- 

coupon bond. As was mentioned earlier, we can price these bonds by the
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following formula:

p{t,T) = E exp y \ u ) d u ] (4.4.20)

where the process r{u) is given by (4.4.15). Finding the solution to this 

will often be very difficult, which will mean that we may have to resort to 

using numerical methods. Alternatively, there may be situations where the 

HJM model will correspond to a particular short-rate model, and so we may 

then use the pricing techniques developed in the previous section. We shall

now give a couple of examples which can be translated into short-rate models.

E xam ple 4.4.5. Suppose we have parameter values

Sb{t,T,j) = Sbj X exp{-K’ { T - t ) } ,  (4.4.21)

=  yi'‘ x e x p { - K ' { T - t ) } - l ,  (4.4.22)

where > 0 and «'*' > 0 so that the volatility and jump sizes are exponen

tially damped. On differentiating (4.4.5), we see that

T, y,) =  - f ( ( ,  T, Yt- ,Y, )exp{ri { t ,  T, Y ,.,  F,)}, (4.4.23)

and together with (4.4.21) and (4.4.22) we can see that that the drift in state 

j  given by (4.4.14) becomes
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r  - r

a{j,t ,T ) = Sb,jexp{-K%T -  ^)} / Sb,jexp{-K^{u -  t)}du 
6=1

fe=l

— — -  t)}[l -  exp{-K,^{T -
6=1

+K<exp{-K'{T - t ) } ( ^  A^'V‘ )- (4.4.24)
fc=l

Using proposition 4.2.1 we see that

=  - î T $ ë è ë k

= kJ.

The forward dynamics in (4.4.13) can therefore be written
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—exp{-«*(r -  ()}[! -  exp{-«’( r  -  i)}](5Z ®w)
6=1

+  K’exp {-K ’{T
k = l

dt

+  exp{—K^{T — t)} ^ 2  ^b,jdW^
6=1

+  K>dNiK

The short rate is therefore given by

Ju=0 j = l  6=1

+  KJexp{-KJ{t -  u ) } ( ^  ^  V ^ )
j = l  k = l

du

+ f  exp{-K^{t-u)}"^'^ llsb ,jdW ^
j = l  6=1

+  KJNf

Denoting
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'm{t) =  /(0, )̂+ [  [ ^ e x p { - K \ t - u ) } [ l - e x p { - K ^ { t - u ) } ] ( ^ ' ^ I i s l j ]
•̂ “=0 ^ j=l 6=1

+  KJexp{-KJ{t -  ^
j=l k=l

we get

n  =  m (t)+  f  exp{-K ^{ t  -  u ) } Y ^ ' ^ I i s b , j d W ^
•̂ “=0 j=l 6=1

+  KJNt, 

which finally gives us

r

drt = [fn{t) — K^rt\dt +  ^  SbjdW^ +  KJdNt, (4.4.25)
6=1

where

fht = +  K̂ TUt +  K^K?Nt.

We can see that (4.4.25) is an extended version of the Hull-White (extended 

Vasicek) model given in equation (4.3.17). We can therefore use the methods 

described in section 4.3.2 to price zero-coupon bonds where the short rate is 

described by this model.

□
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Exam ple 4.4.6. In this example we will set the volatility to be dependent 

only on the state on the Markov chain, but will allow the jump sizes to be 

exponentially damped. We have the following parameter values:

Sb{t,T,j) = Sbj, (4.4.26)

Y { t ,T , j , k )  =  - ( ) ] - ! .  (4.4.27)

The drift in state j  given by (4.4.14) becomes

a{j,t,T ) = { T - t ) ^ s l j  + Y ^ Y ^ e x p l - Y ^ T -  «)]. (4.4.28)
6=1 fc=l

Using proposition 4.2.1, we see that

=

The forward dynamics in (4.4.13) can therefore be written as

6=1 fc=l

+ Y s » j d W ^  + Y ' f ’‘d N t .
6=1 k = l

The short rate is therefore given by
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n  = / ( 0 , t ) +  f  ^  ^  ^
“' “ = 0  j = l  6=1 k = l

+ r  r
V u = 0  b = l  " /^ = 0  fc= l

Setting

m(t) =  /(O, t) +  /  {(^ -  “w) ^  ^  /is? j +  ^  A^'S^*ea;p[-y*(t -  n)]}dn
•^“ = 0  7 = 1  6=1 fc=l

we get that

n  = m {t)+  r  f
Ju=0 6=1 Ju=0 =̂1

which finally gives us

r  n

drt = m \t)d t  + ^  stjdW ^  +  ^  V ‘diV f. (4.4.29)
6=1 fc=l

We can see that (4.4.29) is an extended version of the Ho-Lee model given in 

equation (4.3.9), and bond prices can be priced using the methods described 

in section 4.3.2.

□
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Once we have obtained the price of a zero-coupon bond, we may then 

wish to price call options on this bond such that at time T  the payout is 

given by

X T  =  m ax\p{T ,T*)-K ,0].

The time 0 price of this derivative will be given by

C o =  E \p { 0 , T ) X t \J^o],

where the expectation is under the T-forward martingale measure Q^, We 

can then write

Co = p(0,T)E\p{T,r ) 1 a ]  -  Kp{0, T)Q^(A), (4.4.30)

where 1a is the indicator variable for event A  where A = {uj \ p{T, T*) > K }.  

We have the following proposition (see Bingham and Kiesel [2004], Geman 

et al. [1995]):

P roposition  4.4.7. Let the value of a contingent claim X t  discounted by 

the numéraire Z{t) he a -martingale. Suppose we have another numéraire 

Y{t) such that Y{t)/Z{t) is also a -martingale. There then exists a prob

ability measure defined by the Radon-Nikodym derivative

dQY Y(t)
m =  ~dQ^ y(o)x(o)

such that
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Z{t)EQi
X

m =  yW E qy
X

[Y(T)
(4.4.31)

□

Using proposition 4.4.7 we can now write the following very useful result:

C orollary  4.4.8. The time 0 price of a call option on the zero-coupon bond 

p{T,T ')  is given by

Co = p{0,T)Ct^'(A) -  Kp{0,T)d^ {A), (4.4.32)

where and are the T  and T* forward martingale measures respec

tively, and A = {(J : p{T,T*) > K}.

Proof. Using proposition 4.4.7, where we use the T and T* bonds as 

numéraires, we have that

p(0, T)E qt
p{T,T*)

[P{T,T) Ia =  p (0 ,r )E q T .
p{T,T*)

[p{T,T*) U = p{0 ,T )Q '^{A ),

where p{T,T) = p{T*,T*) =  1, and which on replacing into (4.4.30) gives us

(4.4.32).

□

We are now left with the task of calculating Q^{A) and Q^*(^). As in 

(4.4.17) we have
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Z*(t,T) = p{t,T)
p { t ,T -y

which was shown in corollary 4.4.4 to have Q^’-dynamics

155

(4.4.33)

Yt-) -  Si,{t,T \ Yt-)}dWl
. 6 = 1

+  ' ^ { e x p { r '{ t ,  T, j, k)} -  exp{rf{t, T \  j, fc)})diVf
fc =  l

(4.4.34)

We then have that

z*(T,T) =  z * ( o , r ) e x p [ - i /" V { 5 j ( t t , r , r „ - ) - s '4 ( « ,r * ,y „ - ) p d t
“'«=0 6=1

)}dW^

+ /  'Ê i 2 ^ ° s ( e x p { r ' { t ,T J , k ) }  -  e xp {T f(u ,T ', j ,k )}  + l)dN t] ,
' ^ ^ = 0  7 =  1 fc=l

(4.4.35)

Using the following manipulation:

K  
(4.4.36)
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together with (4.4.35), we are now able to calculate Q'^*{A) using the pro

cess Z*{T, T*). We shall see an example later where this result will be useful.

Similarly we can write

Z{t,T) =
p{t,T ‘) 
p{t,T) ' (4.4.37)

which has Q^-dynamics

dZ(t,T)  =  Z ( t , T )
. 6= 1

+  ^ ( e x p { r ^ { t , T \ j , k ) }  -  e x p { r f { t , T , j , k ) } ) d N t
fc = l

(4.4.38)

so that

Z{T,T) = Z{0 ,T’)exp dt

+ f  ^ { % ( « ,  r * ,  r„_ )  -  %(«, T, Y ^ j)}d w l  
■̂“=0 6=1

pT n
+  /  Y J Y L ^ ° 9 {exp{V>(t,T \i,k)} -  exp{V l{u ,T ,i,k)}  + l)dJVf 

■'““O j=l k=l

(4.4.39)
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We can also write

Q^(p(T, T ' ) > K )  = > K )  = C f{Z(T , T ) > K ) ,  (4.4.40)

and so we can once again use (4.4.39) together with (4.4.40) to calculate 

Q^(v4), only this time using the process Z{T,T).

Whether or not such calculations are easy to compute will depend on our 

choice of parameters. We shall now consider a third example where we will 

use the formula in corollary 4.4.8 to price call options on the bonds.

Exam ple 4.4.9. Suppose this time we have parameter values

Sb{t,T,j) = Sbj, (4.4.41)

(4.4.42)

We can see from (4.4.7) that

Sb{t,T,j) = -  f  Sb{ t ,u, j )du  
J U = t

~  — (4.4.43)

and similarly form (4.4.5) that

exp{T^{t,T*,j,k)} = y ( t , T J ,  A;) +  1

=  y ^ ( T - t )  +  l. (4.4.44)
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Once again we have

and replacing (4.4.43) and (4.4.44) into (4.4.38), we get that under the mea

sure Q^, the dynamics of Z(T,T*) becomes

dz(t,r) = z(«,r)Ê^//sij(T-r)dwŸ + f;f^y*(r*-r)div-'‘].
j=l 6=1 j=l k=l

Similarly we have

p{UT‘Y
where from equation (4.4.34) we find that Z*{t,T*) has dynamics 

dZ{t,T ')  = -  T)dW,^ +
j=l 6=1 j=l fc=l

In appendix C we develop a methodology to calculate the probabilities Q^(p(T, T*) >  

K) and Q'^*(p(T, T*) > K), where the result is given in corollary C.0.12. We 

can then price a call option on the zero-coupon bond p(T, T*) using equation

(4.4.32).

□

4.4.4 Market Com pleteness

We will now once again explore the question of market completeness. As 

discussed in section 4.3.3, the bond market theoretically contains an infinite
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number of bonds in which we can trade. However, unlike in the case of 

the short-rate models, HJM models have an infinite number of parameters, 

and so potentially there can be a complete market situation. In practice 

however we have a finite number of bonds, and so we will try to discover the 

conditions necessary for such a market to be complete, in the sense of there 

being a risk-neutral measure and lack of arbitrage when trading in only a 

given set of assets. To do this, we shall expand on the methodology set out 

in Bingham and Kiesel [2004].

For the market to be complete in this sense, we require there to be unique 

solutions for 6 b for b =  1, . . .  , r  and for for k = 1, . . .  , n  in equation

(4.4.12). Let us assume there are m  bonds in the market with maturities 

t < T ^  <T"^ < . . .  < T'^. We therefore have the following series of equations, 

where we use the subscript i where z =  1 , . . . ,  m to denote the bond number:

+  +  -  1) =  0. (4.4.45)

Define

2
6=1 fc=l
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n x l  __
A"
junxl

3

(gmxr

ç^mxn

M ;mxl

{^6}6=1...d

6= 1 ... r j

{ e x p { r ^ ( t , T i J , k ) }  -  l } i = i . . . m  k = l . . .n ,

Equation (4.4.45) can now be written in matrix form as

=  —M j, (4.4.46)

where once again D(a) denotes the diagonal matrix with the vector a  down 

the principle diagonal. Let us define the m x  (r +  n) augmented matrix as

u , -
mx(r+n)

Si  : G , - D ( A , )
mxr mxn

(4.4,47)

Similarly define the (r +  n) x 1 augmented column vector \ j  as

(r+n)xl

©j

( r+ n )  X1

We can now re-write equation (4.4.46) as
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V jV j  = -M ^ .

In order for there to be unique processes Gj and and hence a unique Y j ,  

we therefore require that for all j  the matrix Uj be invertible. This therefore 

necessitates that

m =  r  +  n, (4.4.48)

m  =  Rank(Uj). (4.4.49)

We are then left with

Y j  = -U T^M j. (4.4.50)

4.4.5 Replicating Portfolios

We have so far discovered the conditions necessary for the existence of a 

unique risk-neutral measure when there are a given number of assets in the 

market. We shall now consider the extent to which contingent claims can be 

replicated using these assets.

Let us try to replicate a contingent claim X t  where X t G T t  is bounded. 

We assume that we are able to invest in m  bonds with maturities t < T ^  < 

< . . .  < T*” as well as the risk-free bank-account process. We make 

the restriction that T <  T^, so that throughout the time until the claim is 

effected we can trade in all m assets. At time t we hold a portfolio 

where
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=  ivt} ) • • • >

where r]t represents the holdings of the risk-free bank account whilst (j)] is the 

holding of the bond with maturity T*. rjt and cj)\ are predictable and bounded 

for t < T and for all i. The value of this portfolio at time t  is given by

V* =ritBt + ' £ 4 p { t , T %
i = l

or alternatively the discounted value process

Vt* = rit + ' ^ 4 ‘\p i t ,T )  (4.4.51)
1 = 1

where

p { t ,T )  = s r 'p ( 4 ) -

The portfolio is said to be self-financing if

m

=  (4.4.52)
1 = 1

We can re-write (4.4.16) as

d  n

dp{ t - ,  r )  =  p{t, r )  Si{t, T,  y , _ ) d w ?  +  ^  exp{rf{ t ,  r ,  j,  & ) }  -  i ) d i v f  ] .

i=l fc=l

(4.4.53)

So in order to be able to replicate X t we need to find solutions for all the 

(/>J’s such that
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V, = Vo+ 5 ^ ,A ip ( t ,r )5 3 S i( i,r ,y ,_ )d w ?
•^«=0 i= l  i= l

pt n
+ / 53,ÿ‘p((,r)53exp{r^(t,r,j,fc)}-i)dÂffi,

•̂ «=0 k=i

=  X t ^

where

^ ji  =  BjJXj'.

Under the risk-neutral measure Q we have the following martingale:

Mt = E[Xt\Ttl (4.4.54)

which can be re-expressed using the martingale representation theorem as

Mt = Mo+ f  J2 '^ id W t+  f  ' ^ g i ^ d N t ,  (4.4.55)
J s = 0  ( , ^ 1  J s = 0  ^ = 1

where the u’s and p’s are predictable. Setting

Vo =  Mq

and

= (f) lp{s ,T)Sb{s ,T,Ys-)  b = l , . . . , r ,

= 0^p(s,T*)ea:p{r^(s,r,j,/[:)}-l) /c = l,. . . ,n,
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we therefore have a system of (r+n) equations. If we have that m =  r  +  n 

then a solution exists, and moreover if equation (4.4.49) holds, then it is 

unique.

4.5 C redit D erivatives

So far we have only considered bonds where the payoffs are guaranteed. We 

will now venture into the world of credit derivatives where the payoflFs are 

subject to default risk, and whose price will therefore be determined by the 

credit-worthiness of the institution providing the payoff. We will look at two 

such instruments: corporate bonds and credit default swaps.

4.5.1 Corporate Bonds

Corporate bonds are bonds issued by corporations much like the government 

bonds discussed in earlier sections. The main difference is that buying a 

corporate bond, one runs the risk of the corporation defaulting on the bond 

or any of the coupon payments. We will therefore need to extend the model 

derived in the above sections to encapsulate this risk.

Working within the HJM framework of section 4.4, we can model the 

behaviour of the corporate bond prices as follows:
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r { t , T )

m % T , Y t ^ ) d t  +  Y :U ,v f { t ,T ,Y t^ )d W ;  +  Y{ t ,T ,Y t^ ,Y t )dN t ,  t < T ,

1 -  R { t ,T ,Y t- ) ,  t  =  T,

0, t > T ,

for all T  < T*, where the are Brownian motions under the objective 

probability measure P . We have introduced a stopping time r  which is the 

time when the bond defaults (r =  oo if no default occurs), at which time 

the bond loses a proportion of its value given by R{r, T, Yr-), and henceforth 

remains at this value. Later on we will express this model as being similar to 

the government bonds in the previous sections, only with an additional state 

in the market corresponding to default. For now though we will continue with 

the above formulation, which will enable us to develop necessary conditions 

for the existence of a risk-neutral measure, when these corporate assets are 

introduced into our already complete bond market.

Assuming default has not occurred, we can express the dynamics of the 

corporate bond price by
r

d f{ t ,T )  = p<‘(t,T){vrf{t,T,YtJ)dt + Y ,v l{ t ,T ,Y t- )d W i
6=1

^ ^ \ i ,T ,Y t- ,Y t )d N t  -  [1 -  R{t,T,Yt-)]dUt}, (4.5.1) 

where Ut is the default indicator variable

no default.
£/< =  { Î default.
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Let the probability of default in the interval [t,t dt] whilst in state j  be 

given by

P[dUt = l\Y t=  j] = d^dt.

We can therefore write

dût = dUt — d^dt,

so that Üt is a martingale.

Let us assume we have a probability measure Q under which the bond 

market in section 4.4 is a martingale, as described in theorem 4.4.1. Define

which has dynamics whilst in state j  (assuming the bond has not defaulted) 

dZ^ = +

- r ,  + m%t, T, j )  +  ^  T, j,  fc) -  [1 -  R{t, T, Yt-)]d? \  dt
k=l J

6=1 t = l

(4.5.2)
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where Nt, Wt and Üt are Q martingales. Let us define the excess return of

the corporate bonds over the government bonds by

m(t, T, Yt-) = rrf{t, T, Yt-) -  m{t, T, Yt-),

and similarly for the jumps

r ( t , T , j , k )  = ■ y % t ,T , j .k ) - Y i t ,T , j ,k ) .

Equation (4,5.2) can now be written as

dZ"" = +  m(t, T, j )  +  fh(t, T, Yt-)

n

+  E  Î ’ .  J .  * : )  +  n t ,  T, j, k)] -  (1 -  R{t, T, Yt-)]d>}dt
fc=l

r n

+ < ( ( ,T, j)dW i + Y , n t , T ,  j ,  k ) d N t  -  (1 -  R{t,T, Yt-)dùt].
6=1 fe= l

(4.5.3)

We can re-write (4.4.12) with the HJM conditions =  0 V6 and = 1 

V j, A; to give us

n

m { t , T , j ) - n  + Y Y ( t , T ,  j, k ) d N t  = 0,
k = l

so that for (4.5.3) to be a martingale we require
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n

m(t, T, y ,-) +  X ;  T, j, A) -  (1 -  fl(t, T, =  0. (4.5.4)
fe=l

So given the excess returns and jumps of the corporate bonds over the govern

ment bonds, we can use (4.5.4) to calculate the implied default probabilities 

of the bond. Alternatively, the default probabilities may be exogenous in the 

model, and (4.5.4) can be used to derive the excess return required by the 

corporate bond over the government bond.

To price the corporate bonds and their derivatives we shall express the 

bond dynamics in a slightly different way. Our model is currently repre

sented by an n-state Markov chain which has transition intensities when 

transiting from state j  to state k. Let us add another state which we will 

enumerate as state n 4-1 and which will correspond to default. This state 

will clearly be absorbing as once defaulted the bond can no longer be paid, 

so we have that

=  0 V j.

We also have that

= - (1  -  R{t,T ,j)) .

Given this formulation, we can now readily use the methodologies developed 

in section 4.4 to price derivatives of these bonds.
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4.5.2 Credit Default Swaps

Credit default swaps (CDS) are used by companies or investors to hedge 

their credit exposure to other companies. The investor will pay a certain 

fee say annually, and in return will receive a payout should the company he 

has insured against default on their payments. Let us illustrate this with an 

example with a CDS which specifies physical settlement. For other types of 

CDS’s see Hull [2003].

Suppose Barclays is exposed to £100 million worth of exposure to the 

Ford Motor Company, and wished to completely hedge this risk. They can 

therefore buy a CDS on Ford from a CDS seller, say Lloyd’s, for which they 

will pay X basis points (hundredths of a percent) of the 100 million notional 

principal of the bond per year. Should Ford default on their payments, Bar

clays will be reimbursed for £100 million by Lloyd’s. This annual premium 

is paid at the end of the year, and should Ford default during the year then 

Barclays would have to pay the proportion of the premium accrued up until 

that time, e.g. should default occur after 1 month they would have to pay ^  

basis points. They would then also immediately get paid their £100 million, 

and Lloyd’s would receive any recovery payments Ford paid out.

To value such swaps, i.e. the annual premium charged by the seller, 

we need to calculate the expected present value of the premiums paid by 

the buyer, as well as the expected present value of the payout by seller, 

and subsequently employ a risk-neutral argument to equate the two. Let us
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define:

N  Notional amount of the CDS.

T  Length of the CDS in years.

Xi Premium charged for period year z — 1 to year i.

R  Recovery amount.

Pt Probability of default not having occurred up to time t.

We will assume that the probabilities of default are those under the risk- 

neutral measure developed in the previous section. Also, as with the corpo

rate bonds above, we will take the recovery rates to be a function of the time 

the default took place, the length of the CDS and the state the market was 

in at the time of default, so that R = R{t,T, Yt-) where we use Yt- to show

that it is predictable. We again denote Ut as the default indicator variable

given by

0 no default.
{Î^  " default.

The probability of default in the interval [t, t  +  dt] whilst in state j  is given

by

P[dUt = l\Y t=  j] = d?dt.

We can separate the expected present value of the premiums paid by 

the buyer, into the sum of end of year premiums paid where default hasn’t 

occurred and the premium payment due on default. So for year i we have
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^[End of year premium] =  Êf^piXi

for i = 1 , . . .  ,T ,  where Êt is the expected value of the bank-account process 

at time t. We also have

E[Default premium] =  /  ~ P(i+u))uxidu,
J  u=0

for z =  1, . . .  ,T. The expected present value of the payout by the seller of 

the CDS is given by

E[Payout] =  f  (1 “  P(i+u))[1 -  +  u, T, Y^i+^).)]Ndu,
J  u=0

for i =  1 , . . . ,  T, where

R{i -h u, T, Yt-) = E[R{i -H u, T, Yt-)].

Assuming that probabilities of default are under a risk-neutral probability 

measure, we get for each year i the premium is given by

^ ^  fu=o ̂ i+\iP(i-t-u)-(f -  P (w ) [ l  - R ( ^  + u,T, Y(i+u)-)]^du ^
ê~^Pi 4- -  P{i+u))udu

To evaluate (4.5.5) we firstly begin by conditioning on the jump sequence 

between times 0 and T. Suppose the model starts in state j i ,  and up until 

time T  there are x jumps, after each of which we are in state ji for I =  

1, . . .  ,37 4-1. We can express this sequence by the set ■. • ,jx+i)-
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We therefore have the probability of being in state k at time t given by 

whose value is given in equation (1.3.5). We can thus write

P t = p t- ( l  -  ^ p i ' ' ' d ' ‘dt) =  f
k=i •'“=° t=i

=  ' £ p i * d \ (4.5.6)
fe = l

where is the total time spent in state k up to time t given that we are 

currently in state j ,  and is given by equation (1.3.6). For the bank-account 

process we have

Bt = E exp
'it=0 , _

Y^PtVjdt
j = i

Specifying the recovery rates as

for J =  1 , . . . ,  n so that it is dependent on the state alone, we get

n

R {t,T ,j)  =  J 2 p i w .
3=1

(4.5.7)

Inserting (4.5.6) and (4.5.7) into (4.5.5) we obtain the value of x f ,  where the 

superscript is to denote that this is the premium conditional on the jump
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sequence To obtain the the value of the premium we must then sum over 

all jump sequences to get

oo n  n

X = O j l  =  l  j x = l

where is the probability that we obtain jump sequence { j \ . . .  jx) in

time T  as is defined lemma 1.3.3.



Chapter 5 

Numerical M ethods for 

Interest-Rate Models

5.1 Introduction

We shall now develop methods for pricing interest-rate derivatives for the 

short-rate models and the HJM models discussed in chapter 4.

In section 4.3 we developed various short-rate models and derived formu

las for pricing zero-coupon bonds, as well as partial differential equations 

that need to be solved to price other derivatives. In this chapter we shall 

develop numerical methods for pricing such derivatives. For the short rate 

we will consider both models developed in section 4.3.2. Firstly we have the 

Hull-White extended Vasicek model given by equation (4.3.17), where when

174
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in state j  the short rate given by rt has dynamics

n
drt =  {aj -  Pjrt)dt +  (jjdWt +  ^  (5.1.1)

fc=l

for j  =  1, . . .  ,n, where â -, Pj and aj are all functions of the current state

j .  Secondly, the Ho-Lee model is given by equation (4.3.9), where when in

state j  the short rate has dynamics

n

drt = Oijdt +  (TjdWt -f ^  (5.1.2)
fc=l

Derivatives of other short rate models can be priced using similar techniques 

as will be developed for these models.

In section 4.4 we developed an HJM model using our MCJD framework. It 

was shown how certain HJM models can be expressed as short-rate models, 

and so in these instances derivatives can be priced using the same method

ologies as for the short-rate models. It was also shown in section 4.4 how we 

may price derivatives using techniques involving the forward-rate measure. 

We shall now develop numerical methods for pricing these derivatives. For 

much of the numerical work on HJM models we will follow Clewlow and 

Strickland [1998].

The model we shall be considering is that described in corollary 4.4.2, 

where under the risk-neutral measure Q the forward-rate dynamics are given 

by
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r

df(t ,T)  =  a{t ,T ,Y t- )dt  +  Ylsi , ( t ,T,Yt^)dW^ +  'ff( t,T,Yt-,Yt)dNt,  (5.1.3)
6=1

and where the necessary drift condition whilst in state j  is

a{t,T ,j)  = ' ^ S b { t ,T , j )  j  Sb{t, u, j ) d u - ^  V ( t ,  T, j, k)exp{T^{t, T, j, k)}.
6=1 k=l

(5.1.4)

The short-rate process is then given by

p i  p T  r

r{T) =  / ( 0 , r ) +  /  a ( « , T , r „ _ ) d u +  /  « , , ( « ,  r , y „ _ ) d w ^

Ju=0 Ju—Q

+  f  f ( « , r ,y ._ ,% . ) m . ,  (5 .1 .5 )
J u=0

and the bond-price dynamics was shown to be

r  n

dp{t,T) =  p ( t ,T ) [ n d t+ Y ,% ((,T,Y t-)dW }+ Y^-y’’( t , T , j , k ) d N t l  (51.6)
6=1 A:=l

where all the terms are defined in section 4.4.

As outlined in Clewlow and Strickland [1998], we may value at time t a 

call option with expiry T on the bond maturing at time T*, where T  < T * ,h y  

taking discrete points on the forward-rate curve obtained from the market, 

and simulating from these their time T values. The bond price will then be 

given by

P{T, T*) =  exp I  -  f {T,  u ) d « | . (5.1.7)
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The drawback with this method is the large number of points that would 

be required. We shall therefore be working directly with pure discount bond 

dynamics given in (5.1.6). In this context, the price of a call option at time 

t  with payout at time T on a bond maturing at time T*, where the strike is 

K,  is given by

Ct = E  e x p i ^ - J  r{u)du^ max[0,p{T, T*) — K] , (5.1.8)

where the expectation is under the risk-neutral measure Q.

5.2 Trinom ial Trees for Short-R ate M odels

As was done in section 3.4 for the equity model, we may simulate the be

haviour of short-rate models using trinomial trees. Suppose we are interested 

in derivatives of this short rate at a time T  given we are currently at time 0 

and in state j .  We can divide the time interval [0, T] into h subsections of 

length A t  where A t = ^. We will assume that the market can change state 

only at the time periods At, 2 A t , . . . ,  T — At.

We will use the trinomial tree methodology to price derivatives where 

the short rate follows the Hull-White extended Vasicek model described in 

section 5.1. We shall begin by writing a discrete-time analogue to (5.1.1) so 

that when in state k we have

n

Art =  {a„ -  A r,)A t +  a^AWt +  ^ 7 “ AAT*‘ (5.2.1)
1 = 1
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for k = 1 , . . . , n and I = 1, . . .  ,n, where is the indicator variable with 

value 1 when in state k and 0 otherwise. Using the fact that the expected 

value of is given by

where is the transition intensity for transiting from state k to state I, we 

therefore have that the value of the short rate at time t A t  has expected 

value

= T fh  — PkTt +  At.

The variance of rt+^t can easily be calculated as the sum of the variance of 

the Brownian motion and the variance of the point process (as the two are 

independent), and is thus given by

Var[n+M] =  -  A“ Ai).
1=1

The unconditional mean is given by

S[n+A,l = n  + ( a k -  Pkn +  (52.2)
k=l \  1=1

where pj.  ̂ is the probability of being in state k at time t given in equation

(1.3.5), and using lemma 3.4.2 the unconditional variance of n+At is given 

by
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Var[rt+At] = 
k̂=l /=1

+ r f ‘ ( i  - r f ‘ )  | n ( i  -  A A ( )  +  ^ * 1

(5.2.3)

We shall now use the trinomial tree shown in figure 5.1 to simulate the 

short-rate dynamics given in (5.2.1), In order to do this we must calculate 

the moments of the trinomial tree model at each step and equate them to the

discrete-time MCJD model. The expected value of the stock price at time

t -f- A t under the trinomial tree model is equal to

E[rt+At] = rt{q]u -f -f q^d), (5.2.4)

where ql, qj and qf are the probabilities of an upward jump by a factor of u, 

no jump or a downward jump by a factor of d respectively. The variance of 

St+At can similarly be shown to be

-2(gt -f- qlqtUd +  g?g?d)]. (5.2.5)

By equating the means of the trinomial tree model with that of the discrete 

time MCJD model in equations (5.2.2) and (5.2.4) we get
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n u

n

Figure 5.1: One period trinomial tree for the short rate, 

n  +  [ Qfc -  Pkn +  At =  niq lu  +  q} +  q^d).
fc=i i=i

A comparison of the variances in equations (5.2.3) and (5.2.5) gives us

-  A“ Ai)} + rf*(l -  W '){n(l -  PkAt)
fc=l 1 =  1

+(«fc +  Td=i =  r^[(gj(l -  gj)u^ +  q^{l -  q )̂ +  g^(l -  ql)d^)

-2(9? +  qUlud +  qUld)].

Using these two equations, and given that we also know that

=  Ij
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we are left with three equations to solve for five unknowns u, d, q}, g?, gj. We 

must therefore specify two of these values in order to get a unique solution. 

Let us set

2
It = 3 ’

which will allow us to solve for all the other unknowns. We are then left with 

the following two equations to solve for u and q]:

1 _  u E - r t
“  3r,(tt2 -  1)’

and

ql(l -  ql)û  -  ^qlu  ̂+  (^ -  V)u^ +  ^(12gJ -  4)u +  ^ -  ql{ql +  ^) =  0,

where
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E  — 1 — [ ûîfc — A n  +  ^  j At
fc=i \  1=1

y  = E
fe=l

ri* i  a lA t  + -  A“ At)
1 = 1

- r f* )  < n ( l  -  A  At) +  I ttfc +  ) At
Z=1

These two equations must be solved numerically for each time period t =  

0, A t, . . .  , T  — At. For an h-period tree we will then be left with 2h +  1 final 

nodes at time t. More importantly, we now have 3  ̂paths the short rate can 

take, and for each such path we can calculate the value of a derivative of the 

short rate had the short rate followed that path.

After these derivative values have been calculated for each path, the over

all value of the derivative is then given by the weighted average of these 

values, the weights being the probabilities of observing those paths. These 

probabilities are calculated by taking for each path the product of all the 

probabilities of the h one-period models.

The most common derivative of the short rate is the zero-coupon bond with 

value
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ru

ru

ru

r

Figure 5.2: Three-period trinomial tree to simulate the behaviour of the short 

rate.

This can be estimated using our discrete time model by

p(0,T) =

which can be calculated using the tree in figure 5.2. For each path we calcu

late the value e" as well as the probability of observing that path

given by the product of the probabilities for each node, and then aggregate
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to find the unconditional price of the derivative. So for example, the value 

of the zero-coupon bond for the model shown in figure 5.2 is given by

p(0, T) = +  . . .  +

Other derivatives can be priced using a similar method.

The advantages of this model are its fairly easy formulation and imple

mentation. However, reducing an n dimensional process into just a three- 

branch tree will clearly sacrifice much of the original model’s characteristics. 

The number of final nodes is exponential in the number of time periods h, 

and so it may not be practical to implement models with large values of h.

5.3 M ultinom ial Trees for Short-R ate M od

els

We will now setup a multinomial tree to replicate the behaviour of r* as 

was done in section 3.4.2 for the equity model. For this we will consider 

the Ho-Lee model given in section 5.1. Assume we are currently at time 0, 

and that we are firstly interested in pricing the zero-coupon bond expiring 

at time T  denoted by p(0, T), and subsequently pricing derivatives of this 

bond. We can section the time interval [0, T] into h subsections of length A t  

where A t  = We will assume that market can change state only at the 

time periods At, 2At , . . . ,  T  — At.
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rj(l +  State 1

0 ( 1  +  7  ̂̂ ) State 2

185

State j rj

rj(l +  7 ^̂ ) State 3

State j (no jump)

Figure 5.3: Jumps in the short-rate in time A t  in a three state model starting 

in state j .

Let us once again consider a market where there are three states so that 

n =  3. We can represent the jumps part of the model for a period At by 

the four-branched tree in figure 5.3, where one branch is for each state the 

model can transit to and 1 branch represents no transition. We also have the 

following probabihties Wj,k\

n

p> =
fc= l

We will now represent the short-rate movement excluding the jumps by 

a binomial-tree model as shown in figure 5.4. The probability of the stock
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Ti 4- u

1 — çJ rj +  dj

Figure 5.4: Stock-price movement (excluding jumps) in time A t when in 

state j.

price increasing by a factor u is given by q ,̂ and similarly the probability of 

the stock changing by a factor of d is given by (1 —

We want the variance implied by this binomial model to equal that im

plied from (5.1.2). We can see from (5.1.2) that {rt+At ~  r*), when in state j  

and excluding the jumps, is normally distributed with expected value

E[rt+At] =n-{- OijAt.

The variance of the short rate over this period is given by

Var[rt+At] =  (r^At.

Looking at the expected value implied by the binomial model we have that 

E[rt+At]  =  +  q^Uj +  (1 — q^)dj ,
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and the variance is given by

Var[rt+At] = qj{l -  qj){uj -  d j f .

In order for our binomial model to have the same mean and variance as 

the MCJD model (excluding the jumps) it is replicating, we therefore require

rt +  ttjA t =  r t - \ - q ^ U j {1 -  q^)dj (5.3.1)

(j]At =  q j{ l - q j ) ( u j - d j ) ^ .  (5.3.2)

We thus have two equations with which we need to solve for three parameters, 

and so we will need to specify one of the parameters. Firstly, we can set the 

probability

(f = 0.5.

Equations (5.3.1) and (5.3.2) become

)

and this can be solved to give

Uj =  a jA t +  Ojy/Ki, 

dj = a jA t — (jjVÂt.
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Unlike in section 3.4.2 there are no restrictions on the value of aj or aj. 

Alternatively we can set

dj — Utj.

Equations (5.3.1) and (5.3.2) become

ajA t =  Uj{2qj -  1),

a] A t  = 4qj{l-qj)u^j, 

and this can be solved to give

a jA t
“< ■ — V

where

2 '(j'jAt + a’̂ jAt

Again there are no restrictions on the value of aj or Oj. We can now replicate 

the behaviour of the MCJD model by combining the binomial model with 

the jumps model as in figure 5.5.
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A t

Figure 5.5: Short-rate movement in time A t  when in state j .

The value of a zero-coupon bond is given by 

p(t,T) = E exp (5.3.3)

where the expectation is under the risk-neutral measure Q. In order to 

approximate this we shall use a discrete-time version of equation (5.3.3), so 

that

r h-i
p(t,T) = E At

s=0

(5.3.4)

We can use figure 5.6 to estimate the value of the two-period-ahead zero-
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A t

Figure 5.6; Valuing a two period zero-coupon bond.

coupon bond as follows. Firstly we note that the short rate for any time 

period is prévisible, so that the time 0 value of the short rate rj is effective 

until the time At, and the subsequent value determined at time A t  applies 

until the time 2At. To value the bond we start by calculating for each node 

the value of the zero-coupon bond price should the short rate follow the path 

leading to that node, and we then take a weighted average of these values 

where the weights are given by the product of the probabilities leading to 

that node. We thus have

p(0,2At) = g y  +  . . .  +  (1 -

where we assume that the values qj are under the risk-neutral measure Q.
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We can similarly use this tree to price other derivatives of the short rate 

or the zero-coupon bond, by replacing the values at the final nodes with the 

payoffs of the derivative. The value of the derivative would then once again 

be the weighted average of these payoffs.

So far we have calculated the expected value of the short rate and valued 

derivatives of it over two time periods. If we wish to extend this to a time 

T, i.e. over h time periods where h = we simply combine h of the above 

single-period trees, and then calculate the derivative values in the same way 

as in the single-period model. As with the equity model, the number of final 

nodes will be large even for moderate values of h. The number of nodes after 

a time T  represented by Nt  is equal to

ATt = [2(n + l)^

This methodology’s usefulness will therefore be restricted to models where 

there are small values of n and h (hence T).

5.4 M onte Carlo S im ulation  for Short-R ate  

M odels

We shall now attempt to estimate the value of derivatives of the short rate 

using the Monte Carlo simulation technique. Unlike in the case of stocks, 

the value of the derivative is going to be determined by all the values of the
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short rate over the life of the derivative, and not just the final value. We 

will consider valuing zero-coupon bonds, although this method can easily be 

extended to cope with other derivatives. The value of a zero-coupon bond 

for time T  at time 0 is given by

p { 0 ,T ) = E exp (5.4.1)

where the expectation is under the risk-neutral measure Q. There are many 

possible paths the short can take up until time T. We may generate randomly 

one of these paths and calculate the value of the zero-coupon bond under this 

path. This is known as a simulation trial The simulation involves repeating 

this say N  times and then aggregating the values. We shall now look at 

methods for simulating our MCJD model.

We shall once again divide the interval [0, T] into h subsections of length 

At,  so that

Let us model the short rate using the Hull-White extended Vasicek model 

described in section 5.1, where when in state j  the short rate given by has 

dynamics
n

dvt = {aj -  /3jVt)dt 4- OjdWt -f ^  (5.4.2)
fc= l

for j  = 1, . . .  ,n. We can write a discrete-time analogue to (5.4.2), so that 

when in state k we have
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n

Art =  {oik -  P kn )^ t  +  aketVÂi +  ^  (5.4.3)
1=1

for k = 1 , . . . ,  n and l = 1 , Also,  et is a sample from a standardised 

normal distribution, and AN}^  is a Bernoulli random variable with proba

bility X’̂ At, although we impose the restriction that

A N i ^  -f- AiVf +  ...-H A N t  <  1

for all j ,  i.e. at most one jump per time period. In order to simulate the 

value of the zero-coupon bond, we must therefore generate each of the random 

variables r^t, r 2At, • • • > ^hAt successively.

To generate these random samples we assume that we have an endless 

supply of uniform [0,1] random variables f/i, . . .  which can be easily gen

erated by all computers, as well as those from a standardised normal distri

bution. To generate sample values of AN^^ for A: =  1, . . .  ,n, we divide the 

interval [0,1] into n -h 1 intervals [0, Ii], [Ii, I2],. . .  [/„, In+i], where we have 

that

r =  J ^ k = i m < n ,
' m =  n +  l.

We then have that

 ̂ G [-ffc-lj A:]j 
*  ̂ 0 otherwise.
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for all A; =  1 , , . . ,  n, and where Iq = 0. Should the value of = 1 for any 

fc, i.e. we have transitioned to state k, then the next simulation trial will be 

as above only with parameters for state k not j .

We are therefore able to generate Art using one uniform [0,1] random 

variable and one standardised normal random variable, and hence each sim

ulation trial using 2 x h random variables. In total we have N  simulations 

and so need to generate 2 x N x h  random variables. We can already see that 

the number of calculations that need to be performed is linear in h, whilst 

the number required using the multinomial tree method was exponential in 

h.

The accuracy of the estimate given by the Monte Carlo simulation is 

clearly going to be dependent on the number of trials N  which are performed. 

The value of the derivative will be given by the mean of the simulation values, 

which we will denote tt. We are also able to calculate the standard deviation 

of these simulated values which we will denote by w. Since these are i.i.d. 

trials, the variance of tt will therefore be given by

Var{n) =

Using a normal approximation, we can thus write a 95% confidence interval 

for the price of the derivative Ct as

1.96a; _ 1.96a;
v r -

So the accuracy of our estimate will be proportional to the number of trials 

we perform.
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5.5 M onte Carlo S im ulation  for H JM  M odels

We shall now use Monte Carlo methods to price derivatives under the HJM 

model described in section 5.1. Using a similar methodology to Carverhill 

and Pang [1995] we can write the following lemma:

Lem m a 5.5.1. The price of a call option on a pure discount bond given in 

(5.1.8) can be written as

Ct = E [ m a x ( 0 ,p ( t , r ) ^ ( t ,T ,r )  -  K p {t,T )H { t ,T ,T )) l  (5.5.1)

where

H {t,T ,r )  = e x p { V  /* [Sb{u,T,Yu-)dW^ -  ^S^{u,r,Yu-)du]
6=1 ^

+  è è  /  log(l +  y (u,T,j,A))d7%'=}.
j = l  k = l

Proof. We can immediately see that (5.1.8) can be written as

Ct =  E[exp{— f  r{u)du} max(0, p(T,T*) — K)]
J  u = t

= E[max(0,p(T,T*)exp{— f  r{u)du} — Kexp{— f  r(u)du})].
J  u = t J  u = t

(5.5.2)



5.5 Monte Carlo Simulation for HJM Models 196

Applying Itô’s lemma to (5.1.6) as well as analogous lemma for the jumps 

we get

p(T,T*) = exp

+ r  iog(i+y(«,r,j,A:))djvf i.
3=1 1=1 ■̂“=r J

It is therefore straightforward to show that

p {T ,T ')e xp {- f  r{u)du} = p{t ,T')H{t ,T,r)  (5.5.3)
J  U = t

e xp {- f  r{u)du}) = p {t,T )H {t,T ,T ). (5.5.4)
J U = t

Inserting (5.5.3) and (5.5.4) int (5.5.2) completes the proof.

□

Using lemma 5.5.1 we can value the price of the call option using Monte 

Carlo methods with I = 1 ,...  ,M  simulations by

1 ^
G  =  p { t,T ')H i{ t,T ,T )  -  K p{t,T )H ,{t,T ,T )), (5.5.5)

1— 1



5.6 Binomial Trees for HJM Models 197

where when in state j  we have

N r  ^
H i{t,T ,r) = e ^ ( ^ '^ [ S b ( t - \ - iA t ,T , j ) e i^ b V A i- - S l { t - \ - iA t ,r , j ) A t]

i=l 6=1

N  n

+  ^  ^  log(l +  +  iA t, r, j, k))AN^^},
1=1 k=l

where Æ €î b ~  AT(0,1) and AN^^ are Bernoulli random variables with 

probability X^^At. We once again impose the restriction that

A N t  +  AN i^  +  . . .  +  A N t  < 1

for all j ,  i.e. at most one jump per time period. We may generate these 

values as we did in the short rate simulations in section 5.4.

5.6 B inom ial Trees for H JM  M odels

We shall now discuss the pricing of Derivatives under the MCJD HJM frame

work using binomial trees. We have the bond-price dynamics given by (5.1.6), 

only now we shall be taking the savings account as numéraire to avoid hav

ing to maintain the short rate at every node. We can write a discrete time 

analogue for this process as follows:

Ap{t,T ) = ^ l i p ( t ,T ) [ Y ,S t ( t ,T J ) A W }  + Y l ' t { t ,T J ,k ) A N t] -  (5-6.1)
j=l 6=1 fc=l
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We can see from 5.6.1 that Ap{t,T ) clearly has expected value 0 as it is a 

martingale. Its variance is given by

SUt. T, j )  +  T, j,
j = l  L 6 = l  & = 1

(5.6.2)

In our binomial model, the bond price can either go up to value + A t, T)

or down to pd(t+A t, T) with equal probability p =  0.5. For this to accurately 

represent our model we must equate mean and variance to get

p„(t +  A t,T )+ p d (t +  A t,T ) =  p{t,T)

and

i[p.(« +  A , r ) - p j ( i  +  A,T)]2 =  Var[Ap{t,T)].

Solving this we get

p„(« +  A,T) =  + .yVar[Ap(t,T)]

p ^ t +  A.T) =  -  s/Var[Ap(t,T)].

The bond price is then evolved over the N  periods, where N  = until the

all the 2^  final node values are calculated and the derivative may be priced 

as in section 5.2.



Appendix A

A Distributional Result for the

Equity M odel

In this appendix we will derive the moment generating function of the time 

T  stock price St defined in section 2.5.

We shall begin with the following lemma (see Whittaker and Watson [1946]).

L em m a A .0.1 (D irich let’s in tegral). Suppose we have the following in

tegral:

S - x \ . . . X z /  . . .  {X2 — . . . {Xz  — X z - i y ’‘dX2 . . .dXz
Jx2=Xl Jxz=Xz-\

where all the superscripts are integers. We find that

199
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Proof. We shall use a proof by induction. Suppose (A.0.1) is true for a 

given value of Xi and z. We can calculate Rxq...xz as follows:

Rxq...x, = f  R z ix i-x o Y ^ d x i  
J XI =10

(A.0.2)

It can easily be shown by taking recursive integrals that 

and so on inserting (A.0.3) into (A.0.2) we find

Taking trivial values for Xi for and z completes the proof. Note that we have 

shown that for a given value of Xi and z the result holds true for Xq and z as 

well. However, as the symmetry of the integral will suggest, this is equivalent 

to taking values of rci and

□

C oro llary  A .0.2. Using lemma A.0.1 we can now easily calculate the fol

lowing integral

R =  f  f  • • • /  x \ ^ { x 2 - X i y ^ . . . { X z — X z - i Y ^ { T —X z y ^ ' ^ ' ^ d X i d X 2 . . . d X 2
J x \ = t J x 2 = X \  J x z = X z - l
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by taking successive integrals to be equal to

I/l * I I I
—  \  " '  '  V z + l ' ___________________________________________ ( i + 3 / 2 + . . . + 3 / z + i + z )

^  ( î  +  2/2 +  • • • +  Vz+1  +  ^ )!

This result will be usefull in the following lemma.

□

Lemma A .0.3. Suppose we have a Markov chain process Yt where we con

dition on the path J  as described in section 2.5. Let us define

f T  pT rT■••*=• = £[ / / ... r ,l l '^ .. .r ,‘dsi...ds,\ (A.0.4)
J  S \  = 0  J 3 2  = 0  J  S z  = 0

where is the indicator variable that Yt = j .  In terms of the Markov chain 

Dt given in the section 1.3.2 with generator Q j,  and defining the set G such 

that

G = {w i, . : {jwi, • • • ,jwz} = W i  < lüi+i i = l , . . . , z } ,

we then have

{A.0.5)

where
'p{yi+y2+-+yz+i+z)

A =
(2/1 +  2/2 + • • • +  2/z+i +  -2:)!
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Proof. Let the indicator variable be such that

r i  ii\ 0 02 r : i l '

We can therefore rewrite (A.0.4) in terms of the Markov chain Dt rather than 

Yt as follows:

=  £ [5 ^  /  [  ■■■ r  U ^^'U ^...U Z ‘d s i...d s ,] . (A.0.7)
g  J S l= -0  J 32=0 J S z = 0

Take successive conditional expectations of (A.0.7) and note that since W{ <

Wi+i  therefore Sj <  S j+ i Wi so that

Y  r  f  • ■ ■ r  • ■ • P ^ -T - 'iP r-r*  • ds.
V t  Q j S \ = 0  j S 2= S \  j Sz = 3 z - \

where once again

^  =  Wi+i \ Do = Wi],

and set wq = 1 and Wz+i = Using corollary (1.3.2) we get

j k r k 2 . . . k z  r  ^ d s i . . .  dsz, (A.0.8)
Q  J  S \ = 0  J  S z = S z - \

where
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(E “ 0 • • • (Er=o 'Q^i”-)(Er=o 2^ 1”"

This can be re-written as

E ^ = o  • • ■ E ^ + .= o ^ ( i ' 'Q j i “'‘) ■ • ■ 'Q ÿ i" " ) ( i“'- 'Q ÿ i"+ ')

( E ^ o ÿ i ' 'Q ^ i - + ')

where

y d  • • » 2 /z+ i*

Using corollary A.0.2 we have

(A.0.9)

çT pT 'p(yi-\-y2+—+yx+i+z)
/  . . .  /  AdSi .. .dSz = ------------------------------ rr. (A.0.10)

A =0 (î/1+2/2 +  . . .+ 2 / z+1+^)!

On inserting (A.0.9) together with (A.0.10) into (A.0.8) we obtain (A.0.5), 

noting that since we have assumed 5* < Si+i for % =  1, . . .  z we therefore need 

to multiply by z\ to obtain all combinations.

□

We are now in a position to write the following lemma:
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Lem m a A .0.4. Suppose we have a stochastic process whose time t value is 

given by X t for 0 < t  < T , and has dynamics
n

dXt = ^ 2  [f^jdt +  cTjdWt] , (A.0.11)
j = i

where Wt is a standard Wiener processes, pj and aj are the drift and variance 

respectively both of which are dependent on the state of Markov chain Yt. We 

also have that / /  is the indicator variable that Y t=  j .  Even though the models 

looked at in section 2.5 had multiple Brownian motions, the model for each 

asset individually can be expressed using a single Brownian motion as shown 

in section 3.1. We condition on the path of the Markov chain following the 

jump sequence J  in the time [0, T] as described in section 2.5. Given Aq =  0 

we have that the moment generating function of X t is given by:

JT] =  1 +  ruir 4- —?7i2r̂  +  . . .  (A.0.12)

where

I  w

n
C = 1

for d = 1 , . . . ,  oo, where all the subscripts above are integers and we denote 

by ||z /2 || the smallest integer above z.
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Proof. The moment generating for X t  is defined as

M xrir) =  E exp j  ^  r l i  [pjdt +  (TjdWt]
" 3=1

Conditioning on the path of the Markov chain, i.e. assuming that IÎ are 

known for all s, we find that

[Mxr(r) \ J , I l ' i s ]  = exp j  ^ y i d t ) [ p j r  +  - r  a j] j  ,

where once we uncondition we have

[M x A r)lJ ]  = E exp

Applying Taylor’s expansion and using lemma A.0.3 we get
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k i = l

2 fci=lfc2=l

+

+  7i ifJ'kir +  . . .  {p-k^r +zl
fc i= l k z = l

+ .......................

On rearranging we obtain (A.0.12).

□

C orollary  A .0.5. Suppose we have a random variable X t  with Xq =  0 and 

which has dynamics given by (A.0.11). Let us define the variable St

St  =  SqCxpIX t }. (A.0.13)

We can derive from this the moment generating function of St using Taylor’s
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expansion as follows:

MsxW =  E[exp{Sore^'^}] 

= E i + W ' + ® ÿ ï : +

where the values M x^iu) are given by equation (A.0.12).

□



Appendix B 

A Distributional Result for 

Short-Rate Models

In this appendix we shall develop a methodology to calculate the value of 

M (t, T) and M (t, T) used for pricing derivatives of the short rate in section 

4.3.2.

Let us begin by writing an extended version of lemma A.0.1:

Lem m a B .0.6. Suppose we have the following integral:

nu2 ruz
Rxi...xz =  /  { X 2 -  . . . { X z -  X z - i Y ‘dX2 . . . d X z

J X2=Xi Jxz=Xz-l

where u* < Ui+i for i = 2 ,.. .  ,z  — 1 and all the superscripts are integers. We 

find that

208
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"  è ' o " ' è ' o i 3  t o +  / » . - / * «  +  !)! ' (î/ 2 - M !

(B.0.1)

where hz+i = —I.

Proof. We shall use a proof by induction. Suppose (A.0.1) is true for a 

given value of xi and z. We can calculate R xq...xz as follows:

Rxo...x,= [  R z (x i-x o Y ^ d x i. (B.0.2)
J x i = X Q

It can easily be shown by taking recursive integrals that

(B.0.3)

and so on inserting (B.0.3) into (B.0.2) we find

Taking trivial values for xi for and z completes the proof. Note that we have 

shown that for a given value of Xi and z the result holds true for xq and z as 

well. However, as the symmetry of the integral will suggest, this is equivalent 

to taking values of x i and z +  1. □
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C orollary B.0.7. Using lemma B.0.6 we can now easily calculate the fol

lowing integral:

ru\ pu2 nuz
R =  /  /  X i { x 2  — X i Y ^  . . . { X z —  X z - l Y ‘ d X 2  . . . d X z

J x i = 0 J X 2 = X l  J x z = X z - l

where Ui < Ui+i for i = 1 ,...  ,z  — 1 to be equal to

vz yi
I ]  -IZ

h z = 0  h i = 0
n

Ld=2

yd!(ud -
{Vd + hd — hd+i +  1)!

- h i

iVi — hi)\

Moreover, using corollary A.0.2 we have

I  j  . . .  j  R d u \ . . .  duz ~~
J u i = t  J U 2 = U l  J U z  = U z - 1

yi

E - E E
/ i i = 0  h z = 0  Hq= 0

^  {ho\yi\ . . .  yz\)ty^~^^-^°{T -  t)^o+h2+y2+...+yz+2z-2

{yi ~  hi)\{ho +  /i2 +  2/2 +  • ■ • +  2/z +  2 ;̂ — 2 )!

□

We can now derive the following lemma:

Lem m a B.0.8. Suppose we have a Markov chain process Yt, where we con

dition on the path J  as described in section 1.3.2 when there are x  jumps. 

Let us define

nT pT pu\ puz
= E[ . . .  /  . . .

J U l = t  Juz=0Jsi=0 J Sz=0
^s\ ’ ’ ' Ŝz ' • • dNg^^dSj.^. . .  dsj.^_^du\. . .  du^,

(B.0.4)
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where

{̂ 1} ' • • 5 i'e\ ^  ̂1 ) • • • )

and

• • • } ê} U • • • ) 'f'z—e} {ij • ' • j >

and where II is the indicator variable that Yt = j .  In terms of the Markov

chain Dt as also described in section 1.3.2 with generator Q j ,  and defining

the set Q such that

Q = {w i, . . . ,  Wz+i : {jwi, . . . Jw A  =  { h ,  • • -,kz},  W i  < W i + i i  =  1, . . .  ,Z4-1},

where can take any value in [ l,x +  1]. We then have

=  (B.0.5)
G

where
oo oo

J/i=0 2/*=0 d=l h=\
3h¥̂ z

and
oo

y=0

as well as

A - ' ^  (/tplÿi! ■ ■ ■ -  t)'-o+'»2+!i2+-+i>.+2»-2
i^ o  i ^ o ^ o  ( y i - h i ) ’.(ào +  à2 +  y2 +  . . .  +  y  ̂+  2 z - 2 ) !
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Proof. We again have the indicator variable where:

=  (B O G)

We can therefore rewrite (B.0.4) in terms of the Markov chain D t  rather than 

Y t  as follows:

rT  p T  pu\ ruz

/ . . . /  /  . . . /
Ç J u i= t  J u z = t J s i = 0  J  3z=0

. . . d N s i ^ d S r i . . .  d s r ^ _ ^ d u i . . .  d u z \ .

(B.0.7)

Taking successive conditional expectations of (B.0.7) and noting that since 

Wi < Wi+i Vi therefore Si < Si+i Vi, we have that

p T  p T  p T  pu\ pu2 puz

= Y  /  ■ ■• /  /  /  •■■/
ft J u \ = t J U 2 = U \  J U z —Uz — l  d 3 1 = 0  J 3 2 = S l  J 3 z = 3 z —l

p j - .  ■■■du.,
d = l  h = l

where once again

=  P [ D t  =  W i + i  \ Do  =  Wi] ,



Appendix B A  Distributional Result for Short-Rate Models 213

and setting wq = 1 and = 1, and where finally

yjjWk yjjWk _  
ŴQWx+1 •

P t

Using lemma (A.0.3) we get

• T  nT rTr i  r i  r i  rui ru2 ruz ^
y   ̂ / / . . .  / / . . .  — d s i . . .  dszdui . . .  duz,

g  J u \ = t J u 2 =U \ J U z = U z - l  J S l = 0  J S 2 = 9 i  J 3 z = 3 z - 1

(13.0.8)

where

$ = I i TT I 'OS'l“"d+i I .
 ̂ \H  y'- J

f f  f f "  'Q» ]
L i  J
jh¥=z

We can re-write ^  as

oo  oo

\  z + e

2/1=0 2/*=0 d = l  / i= l

(B.0.9)
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where
^  ^  a i* ' . . .  k  -

2/i* • • • 2/z-

Using corollary B.0.7 we have

Jr T  n T  nT  nu\ nU2 nuz

' / . . .  / / . . .  K  d s i . . .  dSzdui. . .  dUz =
U \= tJu 2 = U l  JUz=Uz—l JS\=Q JS2=S\ JSz=Sz — l

n  _  ()fco+/i2+M+...+!/.+22-2

).,=0 (% -  WK/io +  +  % +  . . .  +  % +  2z -  2)1

(B.0.10)

where on inserting (B.0.9) together with (B.0.10) into (B.0.8) the proof is 

complete.

□

Lem m a B .0.9. Suppose we have a stochastic process whose time t value is 

given by H{t, T) for 0 < t  < T ,  where

p T  nu nH { t , T ) = E ^ p \ -  f  j  Ÿ.^i(<Tjdw, +  )d«
I  j = l  fc=l

and where we condition on the path J  as described in section 1.3.2. We 

therefore get

d = o
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where

X \ t , T) = Ê  ■ • ■ è  E E E  •. • 4 -
fci=l fcd=l e=0 c= g

(B.0.12)

where A and the set Q are as defined as in lemma B.0.8, and where

C® = {%!, . . . f i e ' -  {%!,..., ie} € {1,..., d}, ir < r + 1, r = 1,..., d -  1}

and also

{j'l5 • • • J j d —e • > • • • J j'd— j • • • > ê} • ’ • > ^  Jr+1 j  ̂ 1 j • • • > ^  ̂ !}•

Proof. Conditioning on the state of the Markov chain during the interval 

[t, T], i.e. that we know for t < s < T ,  we have

=  exp I  -  r  r  f ^ P . iU ^ d s  +  E y ^ d A T f  ) d « | ,
L J3=0 ^ k=l J

and once we uncondition we get 

f f ( t ,T)  = E e x p l -  f  /  +
I Va=0 ^ k=l

Let us write

.T /•It ^
X (t,T ) = f  f  ^ p f i a ] d s  + ^ ' f ' ‘dN i'‘)dn,

J u = t  J 3 = 0  ^ t = l
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so that on applying Taylor’s expansion we get

H(t, T)  =  E[1 -  X{t ,  T)  +  i x ( t ,  T f  -  !% ((, T f ...].

Denote by X^{t, T) the following expectation;

X % T )  = E[X(t ,TY],

so that H{t,T)  is now given by (B.0.11). We can now calculate the value of 

X ‘̂ {t,T) as follows:

X^{t ,T)  = E
rT  rT  ru\ rUd (  ^  ^

J u i = t  J u d = t J s \=0  JSd=Q l j f c i = l  Jfcd=l

. . .  à a l d s ,  +  du,
1=1 1=1 J

Using the definition of C® given above as well as employing lemma B.0.8 we 

can see that X^{t ,T)  is given by (B.0.12).

□

C orollary  B.0.10. Using lemma B.0.9 The value of M{t ,T)  used in section 

4 .3 . 2  is then given by the sum of logH(t,T) over all jump sequences J ,  so 

that
00 n  n

M{t ,T)  = Y , ' E - - -  E  (T),
x=0 j i = l  j i + i = l

where is given in corollary 1.3.3.

□



Appendix C 

A Distributional Result for 

HJM Models

In this appendix we shall develop a methodology for calculating Z(T, T) and 

Z*{T,T)  in Example 4.4.9.

We have the following lemma:

Lem m a C.0.11. Let us use the same parameter values as in Example 

i.e.

Sb{t,T,i) =  S i j ,

Conditioning on the path J  = { j i , . . . ,jx+i} ofYt as described in section 2.5,

217
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we have that the moment generating function of Z{T,T)  is given by

OO OO 71 71 y-JX / J  ̂\ jr;
^[Z{T,T) |J ] W  ^  ^  ^  . . . sl r̂"̂ ,2^x\

d = 0  x = 0  fc i= l k j = l

where ig given by lemma A.0.3, T  = T  — T*, and where we have that

X

_  yoW if). (C.0.1)
1=1

Proof. We can see from (C.0.1) and (4.4.7) that

Sb(t ,T, j )  = -  [  Sb{t,u,j)du 
J u = t

and

e x p { r ^ t , T , j , k ) }  =  Y ( t , T , j , k )  +  l  

= y*^(T-t) +  l.

Inserting this into (4.4.39) we get

Z(T, T)  =  g ( 0 , r ) e i p { f  r  +

Ju=0 ^  6 = 1  6 = 1

+ E  E  (c.0 .2 )
j = l  k = l
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where T = T  — T*. Let us define Sj for all j  such that

219

Si = E
6=1

SO t h a t

S jd W tr^ '^S b jd W t^
6=1

where is a Q brownian motion. Equation (C.0.2) then becomes

Z(T,T)  =  Z(0,T)exp{T  f  f ' l i l A ' ^ s ^ d u  + SjdW^]
J u = 0

j = i  f c= i

Conditioning on the path J", we have that

\Z{T,T) \ J]  = ^ ( 0 , r ) V '  --^'exp{f /  +
Ju=0

where is given by (C.0.1). Conditioning now also on the path f l  0 <

s < T, we can calculate the following expectation:

E[Z{T ,T)‘‘ \J , l i ]  =  Z{0,T)'‘-f^ -̂ ''‘E [exp{df f  l l [ U d u  -  s^dW^]}]
Ju=0

Ju=0
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Unconditioning, we find

E [ Z ( T , T f  \J \  =  Z ( 0 , f  ^ lis^du}].
Ju = 0

(C.0.3)

Using Taylor’s expansion as well as lemma A.0.3, we have

E [ e . p d - ^ P  f  ±  Hs^du}] = ±  f -  ± . . . ±  . . . s i ,
J u = 0  .̂=1 37=0 ^  fc l= l k j = l

(C.0.4)

where is given by (A.0.5). Inserting (C.0.4) into (C.0.3) completes the

proof.

C oro llary  C.0.12. IVe can derive the density function o/[Z (T ,T) \J \ given 

by f[z{T,T)\j](^) lemma C.0.11, and hence calculate the probability

Q^(p(T, T*) >  K ) using equation (4-4-40) so that

noo oo

C f( p { T ,  T ' ) > K ) =  Y .  /|Z(T,T) i d ^ ) d z -  ( C 0 5 )
Jz=k /T-

It can be shown in a similar manner using (4.4-36) that Q^'(p(T,T*) >  K ) 

is given by

r ï  °°
Q -^(p{T ,T ') > K ) = T,flz-(T.T)iJi(>‘)dz, (C.0.6)

J  z = —oo  J
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where the moment generating function 0/  |j] giv^n by

00 00 71 71 J x  /  J  ^  \

^[Z*{T,T) |J1 W ̂  è  ' • ' è
d = 0  x = 0  & i= l fe(j=l

where all the terms are as in the previous lemma as well as T  = T* —T.

□
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