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Abstract

In this work we develop a Markov Chain Jump-Diffusion (MCJD) model,
where we have a financial market in which there are several possible states.
Asset prices in the market follow a generalised geometric Brownian motion,
with drift and volatility depending on the state of the market. So for example,
one state may represent a bull market where drifts are high, whilst another
state may represent a bear market where where drifts are low. The state
the market is in is governed by a continuous time Markov chain. We add to
this diffusion process jumps in the asset price which occur when the market
changes state, and the jump sizes are dependent on the states the market is
transiting to and transiting from. We also allow the market to transit to the
same state, which corresponds to a jump in the asset price with no change
to the drift or volatility.

We will develop conditions of no arbitrage in such a market, and methods
for pricing derivatives of assets whose prices follow MCJD processes. We will
also consider Term-Structure models where the short rate (or forward rate)

follows an MCJD process.
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Notation

During the course of this work there will be the need to define many terms
and symbols in order to develop all the theory. In order to assist the reader
we have listed below some of the most commonly used terms, as well as the
page number where they are first defined and a brief description of what they

are used to represent. We have also included a list of matrices.

Term Page no. Description
Y: 5 Markov chain representing the state of the market at time ¢.
S 5 The set of possible states the market can be in which
can take values 1,...,n .

n 5 Total number of states in the market .

J 5 Subscript denoting the state of the market. j € S.

k 5 Subscript denoting the state of the market. k € S.
Nk 5 The transition intensity from state j to state k.

iv



Term Page no. Description

Ni* 6 The total number of times the market has transited from
state j to state k up until time ¢.

N 6 The total number of transitions of the state up to time .

bel 7 Indicator variable taking the value 1 if the market is
in state j at time ¢ and 0 otherwise .

p{k 8 The probability at time 0 that the market is in state &k
at time ¢, given that at time O it is state j .

pi* 8 The total expected time spent in state k£ in the interval
[0, ], given that at time O the market is in state j.

J 9 An z + 1 dimensional row vector representing the jump
sequence of the first  jumps.

D, 9 Markov chain used for phase-type distributions.

w 11 Subscript denoting the state of the Markov chain D;.
w=1,...,z+1.

pr-I=+1(T) 12 The probability of observing jump sequence J in time T'.

p* 13 The probability of transiting from state j to state k
conditional on a transition occurring.
r 15 Total number of Brownian motions.
b 15 Subscript denoting number of Brownian motion. b=1,...,r.
we 15 Value of Brownian motion number b at time ¢ .
'yfk 17 The jump size of asset ¢ when transiting from state j to
state k. The 7 may be suppressed when there is only one
asset.

B, 18 Bank-account process.



vi

Term Page no. Description
T 19 The rate of interest whilst in state j.

Sit 20 The price of asset ¢ at time ¢. The ¢ may be suppressed
when there is only one asset .

S',-,t 20 The discounted price of asset .

i j 20 The drift of asset ¢ whilst in state 5. The 7 may be
suppressed when there is only one asset.

Oidj 20 The volatility of asset ¢ due to Brownian motion b
whilst in state j. The ¢ may be suppressed when there
is only one asset. The b may be suppressed when there
is only one Brownian motion.

i 22 Drift of asset i in state j under transformed
(risk-neutral) measure.

Os,; 22 Addition to the drift for Brownian motion b in state j.

d 25 Transformation to transition intensity from state j to
state k under transformed (risk-neutral) measure.

Tt 108 The value of the short rate at time ¢.
u(t,Y:) 108 The drift of the short-rate process at time t¢.
o(t,Y:-) 108 The volatility of the short-rate process at time ¢.
v (¢, Y-, Yz) 108 The size of the jump in the short-rate process at
time t.
p(t,T) 108 The value of a zero-coupon bond at time ¢ expiring at
time T'.
m(t,T,Y;-) 108 The drift of the zero-coupon price process.
v(t, T,Y:-) 108 The volatility of the zero-coupon price process.
"¢, T,Y:—,Y;) 108 The size of the jump in the value of the zero-coupon

price process.



Term Page no. Description
f(,T) 108 The forward rate between times ¢ and T.
a(t, T,Y:-) 108 The drift of the forward-rate process.
b(t,T,Y;-) 108 The volatility of the forward-rate process.
(¢, T,Y_,Y;) 108 The size of the jump in the forward-rate process.
A, T,Y;-) 113 Minus the integral of a(t, T, Y;-).
B(t,T,Y;-) 113 Minus the integral of b(¢, T, Y;-).
r(¢,T,Y;_,Y;) 113 Minus the integral of v/ (¢, T, Y;_).
p(0,T) 124 Empirical bond prices.
f (0,7 124 Empirical forward rates.

We will now include a table of matrices.



Matrix Page no.

viii

Description

D(a)

g;nxl

U;nxl
E;nxr
W:xl
P;nxn
Ng nxl
'["J';nxl
e;xl

rx1
W;

nxl
A;

nx1
W

21

21

21

21

21

21

21

22

22

22

27

27

m X m matrix with elements of a down the principal
diagonal where a € R™.

Vector of discounted stock prices.

Vector of drifts.

Matrix of volatilities.

Matrix of Brownian motions.

Matrix of jump sizes.

Vector of counting processes.

Vector of drifts under transformed (risk-neutral) measure.
Vector of additions to the drifts for each Brownian motion.

Vector of Brownian motions under the changed
(risk-neutral) measure.

Vector of transition intensities.

Vector of transformations to transition intensities under
changed (risk-neutral) measure.



Chapter 1

Introduction

1.1 General Introduction

Over 30 years ago Black and Scholes produced their seminal paper Black
and Scholes [1973], which together with Merton [1973] paved the way for the
development of mathematical finance as we know it. Their papers were based
on the assumption that the price of the underlying asset follows the behaviour
of a diffusion process, most notably a geometric Brownian motion. Another
watershed was the development of the Arbitrage Pricing Technique in Ross
[1976] and Ross [1978], and the martingale approach to arbitrage pricing
developed in Harrison and Kreps [1979] and Harrison and Pliska [1981].
The Black-Scholes model has become very popular due to its simplic-
ity in that it quantifies risk through a single constant volatility parameter.

However, it is clear that this assumption of constant volatility will not be
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totally adequate when attempting model the behaviour of today’s complex
financial markets, and this accusation has been supported by various empir-
ical studies (for example see Bakshi et al. [1997]). There have subsequently
been many attempts to modify this model and relax its over-simplistic as-
sumptions. Stochastic volatility models have been extensively studied where
the volatility is allowed to evolve over time (see Hull and White [1987], Stein
and Stein [1991] and Heston [1993], or alternatively for a synopsis see Fouque
et al. [2000]).

On an alternate front, there have been attempts to develop models which
incorporate jumps into the asset price behaviour. Such jumping behaviour
in asset prices has been supported by empirical evidence such as in Ball and
Torous [1985] and Jorion [1988]. Pure jump processes were developed in pa-
pers such as Merton [1976] and Bjork et al. [1997]. A natural extension to
these models are processes that include both a diffusion part and a jump
part, known as jump-diffusion processes, such as in Andersen and Andersen
[2000] and Madan [2001]. Many other varying models have been developed
to try to improve on the Black-Scholes model, although in their increased
sophistication they sacrifice a lot in terms of ease of calculation, as well as
intuitiveness of the models. This last factor is fairly important, as any model
which requires a so-called ‘rocket scientist’ to understand is unlikely to be
used widely by practitioners. They prefer to employ more simplistic models

they can understand even though they may not be as accurate.
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In this work we shall develop a different type of Jump-diffusion model which
we shall call a Markov Chain Jump-Diffusion Model (MCJD). The motiva-
tion for this lies behind two papers where totally different models have been
developed. Firstly, in Norberg [2003] a pure-jump process is considered where
the market is driven by a continuous-time homogenous financial market. Al-
ternatively, in Runggaldier [2003] a jump-diffusion process is developed where
the jumps are modelled by a marked point process.

In our MCJD model we consider a market in which there are several states
of the market. Asset prices in the market follow a generalised geometric
Brownian motion, with drift and volatility depending on the state of the
market. So for example, one state may represent a bull market where drifts
are high, whilst another state may represent a bear market where drifts are
low. The state the market is in is governed by a continuous-time Markov
chain. We add to this diffusion process jumps in the asset price which occur
when the market changes state, and the jump sizes are dependent on the
states the market is transiting to and transiting from. We also allow the
market to transit to the same state, which corresponds to a jump in the
asset price with no change to the drift or volatility.

This model constitutes a stochastic drift and volatility model as these
parameters are allowed to change, as well as being a jump process. It is
very intuitive to see how this model may represent the behaviour of financial
assets, as it is widely recognized that there are trends in the market, and

periods where asset prices behave in different ways. This model provides
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the advantages of stochastic volatility models and jumps processes in that
it should describe more accurately the behaviour of financial assets, and at
the same time regulates these features in a restricted sense so as to facilitate

pricing, and hopefully making intuitive sense.

1.2 Order of Work

In the conclusion of this chapter we will describe the market characteristics
common to all the subsequent models, and develop several results concerning

Markov chains which will prove useful in our subsequent investigations.

In chapter 2 we develop the Equity model where asset prices follow our MCJD
model. We will deal with issues of completeness, replicating contingent claims

and finally pricing derivatives.

In chapter 3 we shall develop and compare various numerical methods for
pricing derivatives on the assets described in chapter 2. We will look at a
particular example and see how all the methodologies had priced call options

on this asset.

Chapter 4 sees us turning our attention to Term-Structure models where
we will use our MCJD model to describe the behaviour of the short rate for

short-rate models, or of the forward rate for H/M models. We again discuss
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issues regarding completeness and derivative pricing for these models, as well

as parameter estimation.

Finally in Chapter 5 we will develop numerical methods for pricing the

interest-rate derivatives developed in chapter 4.

To try to make reading this thesis as easy as possible for the reader, we
have also included a notation page which includes many of the terms and

symbols that are used repeatedly throughout this work.

1.3 Preliminaries

1.3.1 The Markov Chain Market

As mentioned above, in this work we shall be considering a market in which
there are n states represented by the continuous-time Markov chain (Y;):>0
with finite state space S = {1...n}. The process Y; transits between states j
and k where j, k € S with intensity M\¥, so that the generator of this process

is given by

ec=| . . .. .| (1.3.1)

D
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where M = Z;.’# Xk, This process is time-homogeneous, so that for j # k
we have that

Pr[Yiya = Kk|Y; = 5] = M*dt + o(dt). (1.3.2)

We also have that

MF >0,

and we are assuming there can be at most one transition for any small length
of time dt.

Let us add to the above Markov chain the ability to transit to the same
state, the probability of which is given by M7dt. This should not be confused
with the probability of remaining in the same state which has probability
equal to 1 — Y>"p_, M*dt + o(dt). The motivation for doing this will become
clear in section 2.2. We can therefore regard this extended process as being
a multivariate point process, with state-dependent intensity vector A; given
by

Aj={N . 0T Vies.

Define N7* as being the number of transitions from state j to state k up to

time ¢, so that for j # k
NFf=|{s0<s<t, Y=k, Y, =3},

whilst N7 is the number of times the process was in state j and transited

to the same state. /V; denotes the total number of transitions up to time t:

Nt ‘—"ZZN}?I‘:

jeS keS
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where we set Ny = 0. We shall call this point process the jump process and
its intensities the jump intensities, as opposed to the transition process given
in 1.3.1.

We make the assumption of non-explosion, so that N; < oo fort > 0
(similarly M* < 0o V j,k), and assume N, is defined on some probability
space (Q,F,P) with filtration F; to which NN, is adapted. This process can
be characterised as a doubly stochastic Poisson process with state-dependent
intensity \;, where

A= MY) = 1AM, (13.3)

j€s
1 is a 1x4 row vector with all entries equal to 1, and I{ is the indicator

variable which takes values

; 1 ifY;=3
j _
I = { 0 otherwise. (1.34)

The expected time spent in state j before transiting out is therefore expo-
nentially distributed with parameter (1A; — A/). We shall denote the times
at which each of these N; jumps occur by 2, ...,ty,. Finally, we shall set the
process Y; to be left continuous and hence it will also be previsible. In the
remainder of this work we shall denote previsible state-dependent processes

as functions of Y;_.
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1.3.2 Properties of the Model

We will now derive some properties of this model which we will make use
of in the forthcoming chapters. In order to do this, let us first write the

following definition (for example see Grimmett and Stirzaker [2001]):

Definition 1.3.1. Given a Markov chain setting described in section 1.3.1,
the probability of being in state k at time ¢ given that at time 0 we were in

state j for j,k € § is given by
" = PlY, = k| Yo = j].
The probability pi* is then given by

pi* = 1exp{tG¥}1*

© Ly ,
= Zt—'v GY1k, (1.3.5)

y=0 ¥’

where 17 is the n-dimensional column vector with the j%* entry equal to 1
and all other entries equal to 0, and G is the generator defined in (1.3.1). We
denote the transpose by ’. Let us also define the expected total time spent

over the interval [0, ¢] in state k, given at time 0 we are in state j, by

i
Pi* = / pi¥ds.

=0
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We therefore have

IR S NI
P =Z(y+1)!1 GY1*. (1.3.6)

y=0

In order to perform many of the calculations in subsequent chapters, we
will need to condition on the path taken by the Markov chain ¥;. We will
now derive some results when conditioning on this path, which we will make
use of when pricing derivatives later on.

Let us condition on the Markov chain Y; following a given path. Suppose
the Markov chain starts in state j;, and that the first 4+ 1 transitions of the
Markov chain (where a jump to the same state is considered a transition) are
at times #;,...,tz41. Let the jump sequence (and hence state of the Markov
chain) of the first  of these jumps be represented by the z + 1-dimensional
row vector J = {j1,...,Jz+1}. Under this setup, we shall now calculate the
probability the Markov chain is in each state at any time ¢ € [0, T)]. In order
to do this we shall set up our model as a phase-type distribution (see As-

mussen [2000] or O’Cinneade [1990]).

Constructing a phase-type distribution involves representing this condi-
tional Markov chain as a different Markov chain D; which has generator Q 7,
where the subscript shows dependence on the path we are conditioning on.
We shall use the subscripts 7 and k& to denote states of the original Markov

chain Y;, whilst the subscript w is reserved for the new Markov chain D;.



1.3 Preliminaries 10

Whilst Y; is in state ji, it transits to state j, with intensity A2, Similarly,
whilst in state j; it transits to state j; with intensity A2 and so on, until
Y; arrives at state jy4+1. Since we are not conditioning on any subsequent
transitions, the transition intensity out of state j;+1 is the total intensity for
transiting out of state j,41 given by M=+ where M=+1 = Y7 M=+1!, This
conditional Y; process can be represented by the continuous-time Markov
chain D; where D, € {1,...,z + 2}, which has generator Qs given by the

z + 2-dimensional square matrix below:

[ )iz )iz 0 0 0 0 0
0 —)\z2i3  )\Jj2is 0 0 0 0
0 0 —)\J3da  )\Jsja 0 0 0
Qs = 0 0 0 0 0
0 0 0 0 —Mzdz+1  )\Jzdz+1 0
0 0 0 0 0 .__:\.7'=+1 ijﬂ
i 0 0 0 0 0 0 0 1

If all transition intensities are different then Qg can be diagonalised,
which would simplify many of the calculations below. Let us now write the

following lemmas:

Lemma 1.3.2. We will now calculate the value of pl* conditional on the
jump sequence J. Suppose we have Dy = 1. Using (1.8.5) the probability
that Dy =z + 1, i.e. that we have had ezactly x transitions up until time T'

(and so are in state z+ 1 as every transition increases the value of Dy by 1),
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is given by
=TV .
PDr=z+1]=) ?11 QY1+, (1.3.7)
y=0 7’
where once again 179 is the x + 1-dimensional column vector with all entries
equal to 0 and the j** entry equal to 1. Conditioning on Dy = z+1 being true,
we can further see that the probability of being in state w forw =1,...,z+1

at time t where t € [0,T] is given by

(520 H1 QY1) (Th2, 1 QY1)

oo TV
Zy:ﬂ 711 'QY 1=+

PIDi=w|Dr=z+1] =
(1.3.8)

We can re-write (1.8.8) as

g0 Tameo V(1 QY 17) (17 QY17H)
2o %ll'lezzﬁl

P[D,=w|Dr=z+1] = (1.3.9)

where
N T_ Y2
V= M_
y1lye!

We now have that the conditional probability at time t of being in state k

of our Markov chain Y;, given that we start in state j at time 0 is given by

I = Y PD=wDr=z+1] (1.3.10)

{w:jw=k}

Using equation (1.8.9) this becomes
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szlj = Z Z;?:O Z;;o:(i:”Q? lw)(lw ’Q;l;721:c+1).
> 11'QY1e+1

y=0 yI

(1.3.11)

{w:jw=k}

We now also define P%" to be the expected total time spent in state k so

that
. T .
P¥T = [ [p*|T)at. (1.3.12)
t=0

We can integrate (1.8.11) to get

o o] fo’e] 1’ w w! ot
P%klj= Z ZU1=02y2=0Z(1 Q?I]ll )(1 Q"ngl +)

; (1.3.13)
{w:jw=k} E;°=0 %11 Q‘y71-"~'+1
where
(y1+y2+1)
z= T
(r1 +92+1)!
O

Lemma 1.3.3. We will now calculate the probability of observing jump se-
quence J = (J1,---,Jz+1) 1 an interval [0,T], which we will denote by

pit-J=+1(T), by setting up a phase-type distribution as follows. We set
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XM a0 0 .. 0 0 32
0 —5\5 P o R || 0 N\j2ds
0 0 —5\?3 Me 0 0 \Jaja
QJ - )
0 0 0 0 .. - 5\.; MNzdzt1 ezl
0 0 0 0 .. 0 - 5\j1+1 XJ‘:+1
0 0 0 o .. 0 0 0

where as previously we have ¥ = Y p_, M* as well as M = M — %, We
therefore have
) TV L ix
p]1...J;+1 (T) — Z ?11 Qyj]_:”'l_ (1314)

y=0

Finally, we have the following definition:

Definition 1.3.4. When in state j and given that a transition will occur,
the probability that the process will transit to state k is given by

p* = P[Yiyaq = k|Y; = j, Transition has occurred)

M 1.3.15
DY SR Y (1.3.15)

for k=1,...,n, so that we also have that 3 ,_, p* = 1.

The usefulness of these lemmas will soon become apparent. We shall now

begin to develop the Equity Model.



Chapter 2

The Equity Model

2.1 Introduction

In this section we will begin by introducing the model, and then use the Black-
Scholes methodology to price derivatives whose underlying is represented by
this model. We will obtain a risk-neutral measure under which our model
will be a martingale, find a self-financing replicating strategy, and then finally

develop an equation to price the derivatives.

2.2 The Model

Our market contains assets whose price processes are dependent on the state
of the Markov chain market described in the previous chapter. Suppose we

have an asset whose price process, denoted by S; (where S; > 0 Vi), follows

14
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a generalised geometric Brownian motion so that

dS; = p(Y,-)Sdt + > 0y(Ye-) SedWy, (2.2.1)

b=1

where the W) for b = 1...r are independent Brownian motions under the
probability measure P, and the drift function u(-) and volatility functions
oy(-) are deterministic functions of the state variable Y;—. Note that the
mean and drift functions are dependent on ¢t— as they are predictable. The
price process of an asset behaving according to this model will therefore have
constant drift and volatilities until a transition occurs in our Markov chain.

We so far have the Markov chain and the diffusion part of our model,
and we will now add the jump part. We shall add to equation (2.2.1) a jump
process as follows. Suppose the Markov chain Y; has transited from state j to
state k. Let 7/ * be a random variable representing the size of the jump in the
asset price due to this transition, such that fyfk > —1 Vt. Being dependent
on t and not t— means that 7; will not be predictable. Adding this random

variable to (2.2.1) we get

dSy = S; |u(Yi-)dt + 3 oy(Yeo )dWP + 3> i dNj* |, (2.2.2)
b=1

j=1 k=1

where the counting process N/* is defined as in section 1.3.1. This implies

that the jumps occur only when N{* has increased for any j and k, i.e. a
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transition of the Markov chain has occurred (which includes a transition to
the same state). We shall assume that the jumps and the Brownian motions
are independent. Note that forcing 'yfk to be greater than or equal to —1
ensures that the asset price will never jump to a negative value. We also
have that

Pr[S;, =0|S;, =0 =1 Vit > ¢y,

so that once the asset has lost all of its value it can never regain it.

We are now left with the task of assigning a distribution to ~; k. We will
confine ourselves to using a distribution with a finite event space, because
should the event space be infinite we would then need an infinite number of
assets to obtain a risk-neutral measure, as shall be seen later on.

Consider a model under which for each transition from state j to k there
are | possible jump sizes given by ( {k, cees {k), where all the jump sizes
are finite and greater than -1. So given that a jump from state j to state k

occurs, the jump size is represented by 7{" which has distribution

{k with probability p}'k
=9 :
7% with probability pi*

for all j,k € S and where Zi=1 pl¥ =1 Vj k. With this setup we can
replicate practically any distribution for 7 * with a suitable choice of I.
We are also able to represent this model in a different way. Our model

thus far consists of n states, and for every transition between states there are
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! possible jump sizes in the asset price. We could however represent each of
these jump sizes as their own state in the market, all of which have the same
drift and volatility but only with differing jump sizes. We would then be left
with a model where there are n x [ states, with only one possible jump size
between any two given states. For the rest of this work, we will therefore
consider models where there is only one possible jump size when transiting
from state 5 to state k so that 77* = 47%. All the results which will be devel-
oped will therefore also hold true for models where there are more possible
jump sizes between any two states, since this would simply correspond to a

model with more states in the market.

Now that we have all the components of our model we can write the fol-

lowing proposition:

Proposition 2.2.1. Assume that between times [0,t] jumps occur at times
t1,...,tn,- The solution to (2.2.2) is given by the following exponential for-

mula:

S: = Soexp{/to (M(Ys_)_%iag(y )ds+/_ ZO’(,(Y-

= 0 p=1

/ Z Z log[1 + 7J’°]dN”°} (2.2.3)

5=0 j—1 k=1

Proof. The result can be obtained by applying the standard It6 formula

for the diffusion part, as well as the exponential formula of Stieltjes-Lebesgue
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Calculus (see Appendix A4 in Brémaud [1981]). Alternatively, it can be ob-

tained from the generalised It6 formula as in Runggaldier [2003] or Apple-
baum [2004].

O

This model has a lot of appeal because it is describes the manner in
which many of the world’s financial markets behave: a stable period of fluc-
tuation and drift, followed by a sudden change in the market conditions.
This shock to the system causes asset prices to jump and there to be new
levels of drift and volatility. It is particularly apt to fit such a model to less
liquid markets, where price behavior is generally stable until external stimuli

cause temporary shocks to the system, whereby a new equilibrium is reached.

We shall now introduce into our market a numéraire in the form of a bank
account process B;, which grows by a predictable state-dependent interest
rate 7(Y;—). We will assume r(Y;—) > 0 V¢. This bank-account process has

dynamics
dBt = 'f'(},t_)Btdt,
which has solution

e [ )

with condition By = 1.



2.2 The Model 19

We can now define the discounted asset price process S; as

'§t = St/Bt,

which has dynamics

dSe =S¢ | [u(Yec) —r(¥eo)]dt 4D (Ve )aWy +3 > y"any" | .

b=1 i=1 k=1
(2.2.4)
Since the drift, volatility and interest-rate functions are only dependent
of the value of Y;_, we can therefore denote them whilst in state j as being

Kj, ob; and r; respectively for all j € S. We can therefore write equation

(2.2.4) more simply as

8, =83 I |(ws —ri)dt + > o dWi + > ¥*aN*|,  (2.2.5)

j=1 b=1 k=1

where I7 is the indicator variable that the market is in state j at time ¢, and
N?* is the number of times that the Markov chain has transited from state

J to state k as described in section 1.3.1.

We can now write the following corollary:

Corollary 2.2.2. The dynamics of the discounted asset-price process which
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is the solution of (2.2.5), can be obtained using the same manner as for the

undiscounted price process in proposition 2.2.1 to give

. t n . 1 T T
S; = Spexp {/ Z e [(#j T af’j) dt + Zab,det"
8=0 j=1 1

b= b=l
+) log[l + #k]ng"“] } : (2.2.6)
k=1
O
Finally, our market consists of a set of m assets M = {1,...,m}, whose

discounted price processes are all described by equations similar to (2.2.5),
although with different drift, volatility and jump sizes. For asset ¢ € M, let
the price process be denoted by S;; and the drift and volatility functions by
u;,; and 0;p,; respectively, as well as the jump sizes by vl *forandall j,k € S.
We can now re-write the discounted asset-price dynamics equation (2.2.5) for

all assets ¢ € M as

S =8is Y I |(mij —rj)dt + D o, dWP+ ) ffdNF*|,  (22.7)
j=1 b=1

k=1

or alternatively in matrix form

dS, = 3" ED(S,) [(U; - 1™r;)dt + £;,dW, + T;dN]] (2.2.8)

=1
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where D(a) is an m x m diagonal matrix when a € R™, with the elements
of a down the principal diagonal and 0 elsewhere. 1™ is an m x 1 column

vector of 1’s, and we also define the following matrices:

52"’“ = {S'i,t}i=1...m
U;'md = {wijli=1.m
7 *T = {oipiti=t.mb=t..r
Wit = (W,
e = {7*}ictm k=1.m

NI ™ = (NFYeoyn

2.3 Risk-Neutral Measure

We will now establish the set of price processes which do not permit any arbi-
trage opportunities. In order to do this, we will first develop a Girsanov-type
change of measure. We will then proceed to finding the necessary conditions
under which this change of measure is a martingale measure, that is a mea-
sure under which the discounted asset-price processes in equation (2'.2.7) are
martingales. It was shown by Dybvig and Huang [1988], as well as Harrison
and Kreps [1979] and Harrison and Pliska [1981], that the existence of such a
measure is equivalent to a lack of any arbitrage opportunities in a finite-state

finite-time economy like ours, by the fundamental theorem of asset pricing.
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2.3.1 Change of Measure

The main tool for transforming processes into martingales is Girsanov’s the-
orem (or Cameron-Martin-Girsanov theorem), which is discussed in the con-
text of stochastic differential equations in @ksendal [2000], or for its use in
mathematical finance see Bingham and Kiesel [2004] . This is done by induc-
ing a change in the drift of a Wiener process by choosing a suitably different
probability measure. We will need to adapt the standard version of this the-
orem for use in our model, but let us begin by stating this classic theorem
for when S; follows the process defined by equation (2.2.1), that is without

any jumps.

Theorem 2.3.1 (Girsanov). Suppose we have a financial market as de-
scribed in section 1.3.1 where there are no jumps. The prices of the m assets
in this market S(t) € R™ follow an Ité process defined on the probability
space (0, F,P) of the form
n
dS, =) _IID(S,) [Ujdt + Z;dW,], t<T, (2.3.1)
=1

where the notation is as defined above. Suppose predictable processes ﬁ;-'”d

and @;XI ezist where

o {Aij}o=1..m;
@;XI = {eb,j}b=1...'r)

such that
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¥,;0; =U; - U, (2.3.2)

and where ©; satisfies Novikov’s condition

T n
E [emp (% /0 ZIgH@szds)] < oo.
=1

Let
dL, =) LL©dW(t), Lo=0, (2.3.3)
j=1
where
EP[L) =1 (2.3.4)
and
dQ: = LidFR;

on F. We can now define
Ol t n 3
Wt = / ZIgejds +Wt, t< T,
0 o1

where W, is a b-dimensional Brownian motion w.r.t. the equivalent proba-
bility measure Q. We can now represent the process S; in terms of this new

Brownian motion under Q as follows:

ds, = Z": ID(S,) [I‘J,-dt + Ede(t)] .
Jj=1 a
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Note that if m = b and X7**™ is invertible, then the process ©; defined

in equation (2.3.2) is uniquely given by
0; =37 [u; -1y

We can now set the process S; to be a martingale by letting ij = 0 for
all j € S. For the above model to be complete we require the existence of a
unique martingale measure, and hence a unique ©; for all j € S. For this to
be achieved in the no-jumps case above, we require that the number of assets
to be equal to the number of Brownian motions, as well as the invertibility
condition above to be fulfilled. Having fewer assets than this means that
there will be an infinite number of such measures, and more assets than
this could mean no risk-neutral measures. Either case will leave us with a
market which is either incomplete, or where there potentially exist arbitrage
opportunities.

It is interesting to note that the number of states of the Markov chain
does not affect the number of assets required for the market to be complete.
This is because since there are no jumps in the asset prices, we can regard
the process as being a standard generalised geometric Brownian motion with

constant drift and volatilities whilst it is in a particular state.

We shall now try and extend the above theorem to include the jump process
as in model (2.2.7). To remind ourselves, when in state j the process can

transit to any of the other n states or to itself, and for simplicity (although
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it can easily be generalised) for each such transition we will take there to be
only one possible jump size in each of the asset prices. The probability of a
transition from state j to state k at any time t < T is A*dt.

We will now develop a similar measure transformation as performed above
to include the jump process as in Runggaldier [2003] (see also Brémaud [1981]
and Bjork et al. [1997]):

Theorem 2.3.2. Consider a financial market described by equation (2.2.7).
Let (y7,...,47™) be an F;-predictable process where ¥’ > 0 Vj,k € S so
that V t < T we have

t non
Ak i
/S=OZZ¢J MNFIlds < 0.

i=1 k=1

Define
L=r{ LY

where Lgl) satisfies equation (2.3.8) above and ng) is given by
dLY =Y — 1) L2 (dNF* — N*dt). (2.3.5)
k=1

Noting that we can have at most one jump in a time period of length dt, then

from equation (1.8.2), where we ignore the negligible term we have

E[dN*] = PrlYira = k¥ = j

= M¥dt.
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We therefore also have that
EP [ng)] =1, L? =1,
which together with equation (2.3.4) gives us
EP L) =1,

where Ly = 1, as the jump process and the Brownian motions are assumed
to be independent. Using (2.3.3) and (2.3.5) and this independence property,
we get for the Radon-Nikodym derivative L;

dL, = d(LP - L) = LPdL® + LPdL?,
which becomes

dLy =L,y L0 dW(t) + L= Y (% — 1)(dN{* — N*dt),

J:], k=1

and which can then be solved to give

L= exp { [ > [(i(l — N~ %neju?) ds+ e;-des)] } [T
8=0 j=1 k=1

k=1

We now have an equivalent probability measure Q given by

dQy = LidP,
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under which not only do the drifts in each state change from Uj to fJ,- such
that
U; =U, - %,6;,

but the intensities of the jump process also undergo the transformation

Nk Xk f § k.

Using this Girsanov-type transformation we thus have:

Corollary 2.3.3. Under Q, the discounted asset-price processes given in

equation (2.2.8) become

a8, =Y HD(@E,) [(U; - 2,0, — 17ry)dt + ;dW, + rydN{|, (236)

j=1
where W, is a b-dimensional Q martingale, and where we also have that
E [dN]] = D(A;)¥;dt,
where

AP = {N*Yopn (2.3.7)

ST O N (2:3.8)

and once again D(a) denotes the diagonal matriz with the vector a down the

principal diagonal.
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2.3.2 Martingale Measure

We will now look at the conditions necessary for Q to be a martingale mea-

sure, that is that under Q we have
EQ[dS,] =0 Vt.

Taking expectations of equation (2.3.6) we can see that this condition be-

comes that for each state j we must have
Uj - 23-61- - 1m’l"j + PJD(AJ)‘I’J =0. (239)

Let us define the m x (r 4+ n) augmented matrix B; as having entries bj* for

z=1,....,m,y=1,...,(r +n) where

b — —Ozy,j I<y<r
i 'y%(y"r)/\j(y") r<y<r+n
so that
mx(r+n) mxr mxn

Similarly define the (r+n) x 1 augmented column vector V; as having entries

vf for x =1,...,(r +n) where

VE =

{0:,;,]' 1<z <r
J

PE r<z<r4+n’
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so that
0,
rx1
vV, = S
(r+n)x1 ‘I’j
nx1

We can now re-write equation (2.3.9) as
B;V; =[1"r; - U]

In order for there to be unique values for ©®; and ¥;, and hence a unique
V;, we therefore require that for all j € S the matrix B; be invertible. Given
that B; is an m X (r + n) matrix, this will clearly only be possible if we have

exactly r 4+ n assets so that m = r + n, and that

Rank (B;) =r +n. (2.3.11)

"This result is rather intuitive as it is requiring that we have one asset for
each source of risk - the r Brownian motions and the n states that the model

could jump to. Should the above conditions hold, this would then give us
V; =Bj'[1™r; - U,]. (2.3.12)

We are then left with a unique martingale measure Q, where by substituting

(2.3.9) into (2.3.6) we see that under Q, S, follows the process
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a8, =" HD(S,) [£;aW, + T; (dN} - D(A)T,d)| . (2319)

j=1
Defining
dN! = dNJ — D(A;)¥,dt,
equation (2.3.13) then becomes

d§, =Y IiD(§,) [zjdv'vt + rjdﬂr{] , (2.3.14)

=1

where W, and N{ are both Q martingales for all j € S.

We shall now look at an example of this model.

Example 2.3.4. Consider a market where there are two possible states; a
bear market represented by state 1 in which drifts tend to be lower, and a
bull market represented by state 2 in which drifts tend to be higher. We shall
set the interest rates r; = ro = 0.03. There are three assets in this market,
whose price processes have dynamics given by (2.3.6) where there is only one
Brownian motion. The drifts and volatilities under Q given by U; and X;
for 7 = 1,2, as well as the jump sizes given by I'; are shown in table 2.1
below. Suppose that we also have the jump intensities between each state

(not transition intensities as explained in section 1.3.1) shown in table 2.2.
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Asset 1 Asset 2 Asset 3
Parameters | State 1 State 2 | State 1 State 2 | State 1 State 2
Drift -0.200 0.060 0.065 0.070 0.128 0.020
Volatility 0.070 0.090 0.052 0.100 0.070 0.120
Jump Sizes Asset 2 Asset 3 Asset 4

State 1
State 2

State 1 State 2
-0.170 0.800

-0.450 0.600

State 1 State 2
-0.010 0.200

-0.315 0.270

State 1 State 2
-0.410 0.600

-0.350 0.390

Table 2.1: Asset parameters and jump sizes under ‘real-world’ measure.

Using these parameter values and employing equation (2.3.12), we then

have a risk-neutral measure where the drifts and the jump intensities are

transformed to the figures shown in table 2.3, where we have

e, =

@2=

3.3620

—1.3846.

Jump Intensity

State 1 State 2

State 1
State 2

1.0000  1.0000

1.0000  1.0000

Table 2.2: Jump intensities between each state (\*).
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Drift Asset 1 | Asset 2 | Asset 3
State 1 -0.435 -0.111 -0.107
State 2 0.185 0.208 0.186

Jump Intensity | State 1 State 2

State 1 0.7500 0.7412
State 2 0.9678 0.4682

Table 2.3: Risk-neutral drifts and jump intensities (47%) between each state.

Once the market is complete in the sense that there is a unique martingale-
measure, we can invoke the completeness theorem which would imply that
every contingent claim can be hedged by a self-financing portfolio, since there
are only a finite number of jump sizes.

We shall now proceed to show the existence of such a portfolio in our

market.

2.4 Replicating Portfolios

Let X7 be a contingent claim at time T, that is an J;— measurable random

variable with finite expected value. Denote the price process of this claim by
Ci = BiEq[Br' Xr | Fi]

or alternatively the discounted price process
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C: = Eg[By'Xr | ] = Eo[Xr | F). (2.4.1)

Suppose that at time ¢ the model is in state j, and we hold a portfolio
consisting of 7 ; units of the cash bond and ¢} ; units of asset i for all 1 =

1,...,m. Let ®,;; be the m x 1 vector of asset holdings, so that

By = (- b1

®, ; and 7;; must be F,— predictable. The value of the portfolio under this

strategy would then be given by

=0
j=1

e, Bt + Z ¢:,jSi,t} .
i=1

The value of the discounted portfolio is

n m
(AR Z I} |+ Z ¢:,1-Si,t] :
=1

j=1 i

The strategy ® is said to be self-financing if

A [Z ¢;',jd§i,t] :
j=1 i=1

or alternatively in matrix form

dv? =Y " L@, dS,. (2.4.2)
i=1
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A contingent claim X7 is said to be attainable if there exists some self-

financing replicating portfolio ® for which

If any such contingent claim is being traded in the market, then in order to
avoid arbitrage we must have that the price of this claim and its replicating

portfolio are equal, i.e.

Ve =2_C, (2.4.3)

By inserting equation (2.4.3) into (2.4.2), we therefore have that in order for

the claim to be replicable by a self-financing portfolio we must have that

dC, =" [ ®;,dS,. (2.4.4)

Replacing (2.3.14) into (2.4.4), the strategy ® is a self-financing replicating

portfolio of the discounted claim X, if and only if
dC, = Zp JD(8)[Z;dW, + T;dN]). (2.4.5)

Once the values of ® have been obtained, equation (2.4.5) can be used to

determine the amount held of the cash bond by
N = ét - Zng’é’Jdgt

In section 2.5 we will calculate explicit formulas for the asset and bond hold-

ings.
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The market is said to be complete if every contingent claim is attainable.
Noticing that the process (2.4.5) is also a Q-martingale, the n-factor mar-
tingale representation theorem tells us that we can represent the process C,

as
t n r n
C, = E°[C)] + / > lz e AW+ cg‘degk] :
5=0 j=1 |b=1 k=1

or similarly

dC,=>"1 LZ et dW}p + kz cg"‘dﬁg"‘] : (2.4.6)
=1 =1

=1

where ef,j and ¢/* are F,— predictable for all b, j and k, and where W; and
N7* are Q martingales. Let the (r 4+ n) x 1 column vector IT;; have entries

nf forz =1,...,(r + n), where

z €t r<r
T =9 Al
G r<z<r+n.

To determine the values of ef,j and {7 k¥ we can compare coefficients in equation

(2.4.5) to those in (2.4.6) to give us for all j
IT;; = G;D(S,) @, (2.4.7)

where / denotes the transpose, and G; is the m X (r +n) augmented matrix
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G, = [z:,- : r,}. (2.4.8)

For there to be a unique replicating portfolio for the contingent claim C;,
we therefore require the existence of a vector ®;; for every given Il ; such
that the above equation holds. For that to be the case, we require that IT, ;

to be in the row space of G;-D(gt), or alternatively
Rank (D(St)Gj) =r+n. (2.4.9)

As D(S,) is an m x m diagonal matrix it clearly has rank m. When
exploring the existence of a risk-neutral measure in section 2.3.2, we required
that m = r + n, as well as the matrix B; given in equation (2.3.10) to be

invertible and hence to be of full rank. This therefore necessitates that

Rank(%;) = r (2.4.10)

Rank (I';D(4;)) = n. (2.4.11)

Noting that D(A;) is an n x n diagonal matrix and thus has rank n, equation

(2.4.11) therefore implies that
Rank (T;) = n. (2.4.12)

Equations (2.4.10) and (2.4.12) therefore also imply that the rank of G;
is indeed equal to r +n. Condition (2.4.9) is therefore satisfied which tells us

that a unique solution for ®; ; exists, and hence a unique replicating strategy.



2.5 Derivatives Pricing 37

So we can see that completeness in the sense of the existence of a unique
martingale measure stipulated in section 2.3.2, necessarily implies complete-
ness in the form of the existence of a unique replicating portfolio of any Fr

contingent claim.

2.5 Derivatives Pricing

Now that we have calculated the conditions necessary in order to have a
complete market in which every T-claim can be uniquely replicated, we are
left with the task of deriving equations to price them.

From equation (2.3.14) we can write the asset-price process for asset i,
i1=1,...m, as

dSie =S HSi [ridt+ Y oipgdWE+ > v*dNF*| . (2.5.1)
b=1

If the market is arbitrage-free and complete, then the price of a contingent
claim is given by (2.4.1). Let us consider T-claims represented by Xr that

are a function of the state Y7 and the price of the single asset S;r, that is,
Xt = f(Yr, SiT)-
We can re-write (2.4.1) as

Ci=B*) Id(t,s), (2.5.2)
j=1
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where
d(t,s) = BiEq [By'Xr | Yi=j, Sig=s].
Assuming that the functions ¢’ (t, s) are twice continuously differentiable and
recalling that |
ANIF = dN7* — Nkyikdg,
we can use Itd’s lemma on (2.5.2), as well as an analogous lemma for the
jump part, to obtain the following equation for whenever the process is in

state j:

5 - oc] oc]
dC, = B;* r,d+r,sa—+22 2,58 F“LE dt

+B;! Zo, b,Js th

FB S (L4 1) — S, )N
k=1

+B;! i [c’“(t, 1 +1%)s) - &, s)] Nryikgt  (2.5.3)

It was shown from equation (2.4.5) that this process is indeed a martin-
gale, and so the drift term vanishes, leaving us with the partial differential

equations

. d%c 6
rjcl+rjs—+ =5 Z ””62 cZ

+Z [¢4(2, 51 +47%) = I (8, 5)] N = 0 (25.4)
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for j = 1...n. These equations are simply the standard generalised Black-
Scholes formulas with an added term for the jumps. Solving these equations

for the ¢/’s with the conditions
Ci(T7 3) = f(]a S)

for j = 1...n will then leave us with the arbitrage price for the derivative. By
replacing (2.5.4) into equation (2.5.3) we are left with the following stochastic

differential equation when in state j:

dC; = B;* Zai,b,jsaa—fdwtb + E [ck(t, (14 ~%)s) — (¢, s)] dthk] .
b=1 k=1

(2.5.5)

We can identify the replicating strategy by comparing the coefficients in

(2.5.5) to those in (2.4.5), leaving us with the following equations when in
state j:

G;D(S,)®:,; = Z;, (2.5.6)

where G; is as defined in equation (2.4.8) and Z; is the (r +n) x 1 column

vector with entries 2* for z =1,...,(r +n), where
ac]
Sit0i 5,5 5% z<r
2" =

E(t, 1+ 7)8:) — d(E,8iy) T<z<T+n.
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It was shown in section 2.4 that since condition (2.4.9) holds, we are therefore
able to find a unique solution for ®;; from equation (2.5.6) and hence the

replicating strategy.

In order to solve the set of stochastic differential equations (2.5.4) we will
need to employ numerical methods as will be done in the next chapter. We
will now try to the price the derivative using an alternative method.
Suppose that within the interval [0, T] we start off in state j; and that
there are z jumps. The jump sequence is represented by J = (J1,-- ., je+1),
and the jump sizes are given by ('y{'lj“, . ,'){’j’“). Conditioning on this
jump sequence, and noting that the times at which these jumps occur do not
affect the asset price at time T', we can therefore drop the jumps part from

equation (2.5.1) to give us in exponential form

£ n r r _
Sit = Sip exp {/ Z n [(rj - % Z 02 )du + Zoi,b,jdwg] } , (2.5.7)
u b=1 b=1

where Sio = s(¥/*...4/***'). In appendix A corollary A.0.5 we show a
methodology to derive the moment-generating function of the final stock
price Sj7 given the jump sequence J, which will be denoted by [Mg, ..(7)|J].

The probability of observing jump sequence J within a time T is given

in corollary 1.3.3 as being

PIT] = p3-4(T),
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Asset 1 Asset 1

Parameters | State 1 State 2 Jump Sizes | State 1 State 2

Drift -0.435 0.185 State 1 -0.170 0.800

Volatility 0.070 0.090 State 2 -0.450 0.600

Table 2.4: Asset 1 parameters and jump sizes in each state.

Summing over all the possible jump sequences and number of jumps, we can

calculate the unconditional moment generating function of St as

Ms,,(r) = Elezp{rSir}]
= 33> M (IT(T). (258)

z=0 j1=1 Jz4+1=1

Let us now look at an example of this methodology:

Example 2.5.1. Let us consider Asset 1 in example 2.3.4, which has risk-
neutral parameters shown in table 2.4.

The interest rates for this model are r; = ro = 0.03, and the risk-neutral
jump intensities are as shown in table 2.5.

The moments of the price of this asset after a time of 1 year calculated

State 1 State 2

State 1 | 0.7500 0.7412

State 2 | 0.9678  0.4682

Table 2.5: Jump intensities between each state.
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Moment 1 2 3 4 5

Value | 1.030455 1.590614 4.5790747 29.32724  362.5219

Moment 6 7 8 9 10

Value |6382.791 132195.7 2962521 69352123 1669148415

Table 2.6: Moments of price of asset 1 after 1 year starting in state 1.

using the above methodology, given that at time 0 we are in state 1, are

shown in table 2.6.

In order to price the derivative we need to calculate the expectation
Eq|Br'Xr |J),

and for this in turn we will need to find the distribution of S; r of which X7
is a deterministic function. To this end, we will be able to use the moments

1

of S;r to approximate its distribution®. In the following chapter we shall

compare methods of doing this with varying numbers of moments.

However, since By.! and S; 1 are both dependent of the path of the Markov

chain they will therefore be dependent, which means we will also need to

!Even though not every distribution may be uniquely determined by its moments (as
first shown by Hausdorff [1921]), nevertheless with any set of moments we are still able to

approximate its distribution.
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derive the distribution of By' conditional on S;r. Rearranging (2.5.7) we

get

T n
Bi' = exp {—/ Zlﬁrjdu}
— E%O ' ¢ ]j 1 - 2 d . dVVb
= g ¢ Z uly Zai,b,j U — Z‘Ti,b,j ul (9
T =0 j=1 b=1 b=1

and once again using corollary A.0.5 we can derive the moment-generating
function of Br ! conditional on S, and then too approximate its distribution.

We are now in a position to write the following:

Corollary 2.5.2. The price of a derivative on asset number i with time 0

price s, where the contingent claim is X (St) is given by

09 = [ [ uX@) rp15, 0 fsne)dudz

=0 Jz=0

where fg, . (2) and fozs,r are the distributions of the time T stock price
and the time T discout rate conditional on the stock price. When the interest

rate has constant value r in each state this simplifies to:

c(0,s) = e ooX(z)fsi..T(z)dz/,.

2=0
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Even though the above methodology is not of closed form, it does allow for
as much accuracy as required depending on how well we are able to approx-
imate the distribution from its moments. How fast it will converge however
is a potential problem, as an obvious drawback of the above methodology is
the number of calculations that need to be performed in order to calculate
the moments in equation (2.5.8), which as can be seen in corollary A.0.5 will
be large. So whether or not such calculations can be performed in reasonable
time will depend on the value of n, but more importantly the sizes of the
transition intensities and the duration T'. Also, for the case where the in-
terest rate r is dependent on the state, we have the undesirable requirement
that the density function fp-1)5, will need to be calculated for all values of
SiT.

2.5.1 Interest-Rate Derivatives

We shall be considering more elaborate interest rate derivatives when we
look at Term-Structure Models in Chapter 4. However, within our current
framework we can calculate an explicit formula for a simple class of interest

rate derivatives.

Consider an asset with price V; such that

B; B, Bt]
Vi=FE|zj—4+ 20— +...+zp—]|. 2.5.9
=B |nigh tmpt ot (259)
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This payout represents that of a coupon bond which pays A coupons of value
£z, at time t;, £z at time ¢; and so on, where we have that t; <ty <... <
ity and that ¢ < ;. The final coupon at time ¢, will normally also include the
nominal amount of the bond. The value of this bond is calculated by taking
the expectation of the sum of the discounted coupon payments to the current
time t. Let us denote the value of this bond given that we are currently in

state j by V7. We therefore have

tua T
e:rp{—/ ZIfrkds} |Y:=7].

=t k=1

(2.5.10)

h
Vi=> a,E
u=1
Applying Taylor’s expansion to (2.5.10) we get
ty T v
[ g -1
8=t =1

= Xh:l‘u {f: <—irk1’i;’°_t) } (2.5.11)

y=0 k=1

h
Vi= ) {E

u=l1

5 (-

where P/* is defined in equation (1.3.6). For (2.5.11) to converge we require
that

P, <1 Yu,k

Even though (2.5.11) is not of closed form, it does allow for as much accuracy

as required by summing to a suitable value of y.
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We will now try to price a call option on this bond at time 7' where
te < T < tgy1 such that 0 < a < h and where ¢y = t. The value of the bond
at time T will therefore be the expect discounted value of the remaining
h — a coupons. The strike price of this option is K, and we will denote the

discounted value of the option by C,, so that

Co=B)Y Iid (2.5.12)
Jj=1

where

d = BE[B;' Xr| Y; = j], (2.5.13)
as well as

Xr =Y _ IX}
=1

and

X3 = max[V{ — K, 0).

Applying It6’s lemma to (2.5.12), we find

dCy=B' I |~rid) + ‘g—ctz + Z(cf — )N*yI*| de. (2.5.14)
j=1 k=1

=

For C; to be a martingale we therefore require the right-hand side of (2.5.14)
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to be equal to zero, so that

%§==wd- (cf — )Xyt

k=1

for j =1,...n, subject to c; = X%. Writing in matrix form, and noting that
c{ is now only a function of ¢ and hence it is not necessary to use partial

derivatives, we therefore get that

ac. _

=t = (D(R) - A,%})C;

with side condition

CT = XT;

where A; and ¥; are defined in equations (2.3.7) and (2.3.8), and 1" is an
n x 1 column vector of 1’s. D(R) once again represents the diagonal matrix

with the elements of R along the principal diagonal, where R has entries
R = {r; + My}, 1
We can solve this to get

C; = exp{(A; ¥, - D(R))(T — t)}Xr. (2.5.15)



Chapter 3

Numerical Methods for the

Equity Model

3.1 Introduction

In chapter 2 we looked at assets with price processes given by

dS; = S, i I | pdt + Z b ; AW} + zn: ~RANT*| | (3.1.1)

j=1 b=1 k=1
where we have state-dependent means and drifts 4; and o3, and jump sizes
4% when the model jumps from state j to state k. We saw in section 2.5
that in order to price most derivatives of assets whose price processes fol-
low this MCJD model, it is necessary to employ numerical methods. In this

chapter we shall look at various methods of doing this. We shall begin by

48
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trying to numerically solve the partial differential equations given in (2.5.4)
using finite-difference methods. We will then move on to consider paramet-
ric methods to approximate the distribution of St to price the derivatives,
followed by tree-based methods and Monte Carlo simulation.

In the numerical work of this chapter, we will only be considering deriva-
tives of one asset, and we therefore suppress the subscript i in equation (3.1.1)
which was used in the previous chapter to denote the asset number. We can

also reduce the generalised model in equation (3.1.1) to the following:

dSy =8, I} |pjdt + o;dW, + Y ¥*dN*|, (3.1.2)

j=1 k=1

where

so that we then have
o;dWy ~ i ob,det”,
b=1
where W; is a Q Brownian motion. We can do this because the generalised
model is needed only when we consider the relationship between different
assets, but since we will now only be considering the behaviour of the price
of one individual asset, the generalised model can be reduced to equation

(3.1.2). For the rest of the chapter we shall assume that the parameter val-
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Asset 1 Asset 1

Parameters | State 1 State 2 Jump Sizes | State 1 State 2

Drift -0.435 0.185 State 1 -0.170 0.800

Volatility 0.070 0.090 State 2 -0.450 0.600

Table 3.1: Asset 1 parameters and jump sizes in each state.

ues of (3.1.2) are under a risk-neutral measure Q, the existence of which was

explored in section 2.3.2.

We shall be comparing the performance of each of the numerical methods on
a particular example, the summary of which can be found at the end of the
chapter in section 3.6. The example we will be calculating is the price of call

options with strike price K, such that the payoff at time T is given by
XT = ma.x[ST - K, 0],

where we will take 7' = 1 year. We will assume that the model is in state 1
at time 0 and that Sy = 1. For the asset-price process we will take Asset 1
in example 2.3.4, which had risk-neutral parameters in the two state market

shown in table 3.1.

Jump Intensity | State 1 State 2

State 1 0.7500  0.7412
State 2 0.9678  0.4682

Table 3.2: Jump intensities between each state.
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The interest rates for this model are r; = ro = 0.03, and the risk-neutral
jump intensities are as shown in table 3.2. The moments of Sp where T' =

1 year were calculated in example 2.5.1.

3.2 Finite-Difference Methods

In section 2.5 we derived the partial differential equation for pricing a deriva-

tive whose discounted price is given by C:, where

Ce=B;'> Hd(ts)

=1
and

d(t,s) = BiEq [B7* Xr | Yi =13, Sig =] .

To obtain the price of this derivative, it was shown in section 2.5 that we

need to solve the following partial differential equation (where will abbreviate

cdi(t, s) to c):

3] 9d  ad
—chg-l-T‘JSa—ct’ +— 2 fﬁ +E
+3° [c"(t, s(1+~%) - di(¢, s)] Nryik = 0 (3.2.1)
k=1
for j =1,...,n, with the conditions

J(T,s) = max[s — K,0].
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We will now proceed to develop a numerical technique for solving this par-
tial differential equation using finite-difference methods. As was mentioned
in section 3.1, we will be valuing a time T call option with strike K. We

shall follow the methodology set out in Hull and White [1990D].

We begin by dividing up the interval [0,T] into h equal periods of length
At so that At = %, and so we can now consider our interval as consisting of

h + 1 discrete time points
0,At,2At,...,T.

Let us assume that we can subdivide the possible stock prices over this pe-
riod into d values as follows. Firstly, for this model we need to specify the
maximum value we will allow the stock price to have. Denote by S,,, the
maximum realistic value that the stock can take during this interval, so that
the probability

P[Sr > Smaz)

is so small that if we were to exclude the possibility that St is above this
value, the effect on the value of the derivative would be negligible. Let us

now set

so that we now are left with the d + 1 possible values for the stock

0,AS,2AS,. .., Snaq-
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[ ] [ J [ ] [ ] ® [ J ®
L] [ ] [ ] [ ] L J ® [ ]
[ ] [ ] [ ] L ] ® [ ] ® [ ]
[ ] [ ] L ] [ ] [ ] [ ] [ ] [ ]
® ] ® o (]
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[ ] L] [ J [ ] ®
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L L & H——0
2At T

Time
Figure 3.1: Cube for finite-difference approach

Finally, we recall that the derivative price will also depend on which of the
n states the market is currently in. We can represent this by the three-
dimensional diagram in figure 3.1. This cube consists of (h+1) X (d+1) xn
points, each of which we can label as point (z,y,2), where z = 0,...,h,
y=0,...,dand z =1,...,n. Therefore = represents the time, y the state,
and z represents the stock price. We will denote the value of the call option

at each of these points by c7 .
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There are two ways we can now proceed, the implicit finite-difference
method and the explicit finite-difference method. We choose to follow the
implicit finite-difference method, as fewer assumptions are made about the

values of the partial derivatives.

Let us firstly begin by stating the fact that when the stock price hits 0
it cannot ever regain any value, and so the value of the option is therefore
going to equal 0. For any other point (z,y,2) on the grid where y > 0, we

can make the following approximation for the partial derivative %ﬂ:

Oy _ Cowtt — oy (322)

0Os AS
where (3.2.2) is known as the forward-difference approzimation. When y =
d the stock price has reached its maximum realistic value Sy, and can

therefore not increase, and so in this case we shall set

2 —
c:c,y+1 - c;,y'

We may use as an alternative to the forward-difference approzimation the

backward-difference approzimation given by (3.2.3) below

BC;’y c;)y _ C:vy_l
ol = PV, (3.2.3)

A third alternative would be to use an average of the two to give
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ac;,y c:,y+1 - c;,y—l
oy Ceptl el (3.2.4)

We can similarly approximate a%;t& using the forward differential equation

oc? c? -
T,y z+1,y T,y
= ; 3.2.5
ot At ( )

The backward-difference equation for %ﬂ at the point (z,y, 2) is given
by (3.2.3). The backward difference value at the point (z,y + 1, 2) is given

by
ac;,y-f-l _ c:.y+1 - cf:,y

0s AS

We can therefore write the forward difference equation to approximate 9;;8—°;

at the point (z,y, z) as

azci,y — (c:',y+1 - c;,y _ Cay — Ca

T,y z,y—l)
Bs? AS AS ) /AS,

which can be re-written as

0%, o+, 12
T,y __ “T,y+1 T,y—1 T,Y
32— AS ' (3:26)

Substituting these approximations into (3.2.1), and noting that s = yAS we

then get
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Go—c 1 Gt -2
—ToCh, + rzyAS—’y"'lz x Sw’y L4 §(yAS)2af zy+l Aw’gzl Y
cz - i
+EERE 1 I yAS(L+ 7)) — IV = 0.
At k=1 v

(3.2.7)

Using this methodology, we will need to represent any jump in the stock
price as a vertical jump in the grid in figure 3.1. Therefore, we will assume
that we have values q;"’ for all y, z, k, such that we can make the following

approximation:

yAS(1+7*) = ¢Z*AS,

i.e. the effect of a jump from state z to state k is to cause the value of the
stock to jump from yAS to ¢*AS where ¢Z* € {0,1,...,d}. We can thus

re-write (3.2.7) as
Eyrz(c;,y+1 - C;,y—l) + 59 0, (Cf,-,y+1 + c;,y—l - 20;,11)

C;+1,y - c;,y z % zk, ) zk = k zk, )2k
T—C%y(rz'l";A 1/) )+;cz,q;’°A ’(ﬁ =0

(3.2.8)

forz =0,...,h, y =1,...,d and z = 1,...,n. Equation (3.2.8) can be
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written as

n

z 27 z .z z § : k zk, ) zk

Cotly = OyCay T bvcw,y+1 + eycfc,y—l +At cm,q;k)‘ ¥, (3.2.9)
k=1

where

n
¢ = 1+ Aty +r, + Z N7kyp#ky
k=1

B o= —%At(yzaf+yrz),

e = %At(yr, - y0?).

We have now set up the framework of the implicit finite-difference method
and will proceed to price the derivative.

We shall begin by gathering all the values of the grid in figure 3.1 that
we know from the outset. At time T (i.e. z = h) we have that

¢y = max[yAS — K,0] Vy,z, (3.2.10)

which is known at time 0. We also know that when the stock price has hit 0

it cannot change, hence we have that
¢Zo=0 Vz,z (3.2.11)

The values known at time 0 are shown in figure 3.2. Equation (3.2.10) gives

us the outer vertical plane of the cube, whilst (3.2.11) gives us the values
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Stock
Price

Smax
Time T values

State

AS

/0 At T O

Time
Figure 3.2: Values known at the beginning of the calculation
on the base of our cube. Using these starting values, we are now able to
calculate all the values of the cube as follows. Firstly, we can calculate all
values of the cube where x = {h —[)A¢ as shown in figure 3.3, by using
equation (3.2.9) and setting x = # — 1. We thus have

Ny ~ NOR-Ly + NOh-Ly+ + A (3.2.12)
k—

for = 1,...,dand z = 1,..., n. We therefore have d x n unknowns and
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Stock
Price

S maxr

State <
2AS

AS

70 At 2At T — At T
Time

Figure 3.3: Estimating values at time T' — At from values at time 7.

d X n equations with which to solve for them, which should provide a unique
solution providing the equations are linearly independent. Once this has been
done, we can then do the same to calculate the values for £ = h — 2, and
then for £ = h — 3 and so on until all the values at time £ = 0 are calculated.
The value of the derivative would then depend on selecting the appropriate
time O value for the starting state.

We can re-write (3.2.12) in matrix form as follows. Let us define the
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(d + 1) x n column vector C;, with entries

— 1 1 1 2 2 n
Ch — (O, ch,l’ ch,2, e ’ch,d’ 0, ch,l’ - ’ch,d1 e ,ch,d).

60

Let us also define the following (d + 1)n x (d + 1)n square matrices A and

B with entries

1
et
A =
(d+1)nx(d+1)n

0
i
L | @
(d+1)nx(d+1)n 0
1:21
11
\ i

0

a

0

11
(3T

11
ta2
0

21

3p)
ml
242

0

11
Y1d

11
tad
0
21
3¥)

nl
Ydd

1
1b -1,
a;+by 0O

0 1 0

e af

0 0 ... 0
12 12 -12
1 12 1d
9 12 -19
zdl zdz . e de
0O 0 ... 0
22 22 .92
11 12 114
2 n2 2
(F TR 5} Yad

where entries other than those shown are 0, and where

2n
d

‘NN
Ydd )
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i NRyE AL if q;k =w
yw 0 otherwise.

Finally, let us define the dn x dn matrix K as

K=A+B.
We can now write equation (3.2.12) fory =1,...,d and 2z = 1,...n in matrix
form as

Cr =KCp-1,

and so given the derivative prices for time period hAt we are able to calculate

the time (h — 1)At values using the following recursion equation:
Ch_1 = K_lch, (3.2.13)

provided that K is indeed invertible.

We shall now look at an example of this method.

Example 3.2.1. Suppose we wish to price call options on Asset 1 whose
parameters are given in section 3.1. We shall take d = 25 and As = 0.2 so
that S,,.z = 5, which is over 5 standard deviations above the mean. We will
also set h = 12 so that At = 0.0833. The value of call options with various
strike prices are shown in table 3.12 in section 3.6. The value of the call

option with strike price £1 at each time period and state are shown in the
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tables 3.3 and 3.4 below. Reading off the tables, this method gives us the
time O price of a call option with strike £1 as being £0.24 in state 1 and
£0.21 in state 2. We can see the irregular behaviour of the option price when
the price of the stock is above £4. This is due to the capping of the stock
price at £5. This model’s usefulness is therefore limited to stock prices of
under £4. When the stock price is greater than this we will need to raise the

maximum stock price allowed in the model.



Stock

Price (£)
5.0 626 654 684 714 743 770 792 803 797 764 693 574 4.00
4.8 024 02 028 032 040 052 071 100 142 197 262 329 3.80
4.6 342 356 369 381 391 397 400 397 389 378 367 360 3.60
4.4 153 161 170 182 196 213 232 254 276 297 3.16 331 3.40
4.2 246 253 261 267 274 279 28 290 295 301 308 314 320
4.0 1.83 192 201 212 223 235 247 259 270 280 289 296 3.00
3.8 204 209 215 222 228 235 242 250 257 265 271 277 280
3.6 1.82 189 196 203 211 218 226 234 241 248 254 258 2.60
3.4 182 187 192 197 203 208 214 220 226 232 236 239 240
3.2 171 176 181 187 192 197 202 207 211 215 219 220 220
3.0 166 170 174 178 182 18 190 194 197 200 201 2.02 2.00
2.8 161 165 169 173 176 179 182 18 185 18 18 184 1.80
2.6 153 157 161 165 168 171 172 173 1.73 172 169 165 1.60
24 135 138 141 144 146 148 150 151 151 150 148 145 140
2.2 121 123 125 126 128 129 129 129 129 128 126 124 1.20
2.0 1.02 103 105 106 106 107 107 108 107 1.06 1.05 1.03 1.00
1.8 086 087 087 087 087 087 087 087 08 08 084 0.82 0.8
1.6 074 074 074 073 073 072 071 070 068 066 0.64 0.62 0.60
14 054 054 053 052 052 051 050 049 047 046 044 042 040
1.2 038 037 035 034 033 031 029 028 026 025 023 021 0.20
1.0 024 023 022 021 019 018 016 014 011 009 006 0.03 0.00
0.8 013 013 012 012 011 010 0.09 008 007 006 0.04 0.02 0.00
0.6 004 004 003 003 002 002 001 001 001 000 000 0.00 0.00
0.4 003 003 002 002 002 001 001 001 000 000 0.00 0.00 0.00
0.2 0.00 000 000 000 000 000 000 000 000 000 000 0.00 0.00
0.0 000 000 000 000 000 000 000 000 000 000 0.00 0.00 0.00
1 2 3 4 5 6 7 8 9 10 11 12

Table 3.3: Call option prices with strike £1 for state 1.

Time (months)



Stock

Price (£)
5.0 078 085 093 103 115 129 147 169 197 232 275 330 4.00
4.8 1.07 116 127 140 15 175 196 221 250 282 317 351 3.80
4.6 1.32 143 157 172 188 207 228 251 27 299 322 343 3.60
4.4 149 161 174 189 205 222 239 258 276 294 311 326 340
4.2 161 172 184 197 211 225 240 254 269 283 296 3.09 3.20
4.0 164 174 184 195 207 219 231 243 255 267 278 290 3.00
3.8 1.59 167 177 18 196 206 216 227 238 249 260 270 2.80
3.6 153 161 169 177 18 195 204 214 224 234 243 252 260
3.4 143 150 157 164 172 180 189 198 207 216 225 233 240
3.2 1.3 140 147 154 161 169 177 18 193 201 208 215 220
3.0 128 133 139 146 153 160 167 174 180 18 192 196 2.00
2.8 128 133 138 144 149 155 159 164 168 172 175 178 1.80
2.6 121 125 129 133 137 141 145 148 151 154 156 158 1.60
24 113 116 119 122 125 127 130 132 134 136 137 139 140
2.2 099 102 104 106 108 110 111 113 115 116 118 119 1.20
2.0 087 08 09 092 093 094 09 097 098 099 099 100 1.00
1.8 073 074 074 075 07 076 077 077 078 078 079 079 0.8
1.6 059 060 060 o061 061 061 062 062 061 061 061 0.60 0.60
14 047 047 047 047 046 046 046 045 044 043 042 041 040
1.2 034 034 034 033 032 032 031 030 028 027 025 023 020
1.0 021 020 019 018 017 015 014 012 010 008 0.06 0.03 0.00
0.8 010 010 009 008 007 006 006 005 004 003 002 001 0.00
0.6 005 005 004 004 003 002 002 001 001 001 000 0.00 0.00
0.4 001 001 001 o001 000 000 OO0 000 000 000 000 0.00 0.00
0.2 000 000 000 000 0.00 000 000 000 0.00 000 0.00 000 0.00
0.0 000 000 000 000 000 000 000 000 000 000 000 0.00 0.00
1 2 3 4 5 6 7 8 9 10 11 12

Table 3.4: Call option prices with strike £1 for state 2.

Time (months)
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3.3 Parametric methods

We shall now develop methods for pricing derivatives by approximating the
distribution of the 1-year stock price S;. We will assume that we have as
many moments of the distribution that we need, where they can be calcu-
lated using the methodology set out in section 2.5. We will be considering
two different models: a translated gamma distribution where the first three
moments will be the same as our time T' stock price, and a more general
methodology using polynomial splines that will match as many moments as

required.

3.3.1 Translated Gamma

A translated gamma distribution can be fitted to approximate the distribu-
tion of a random variable, when we have the first three moments given by
my,ms and m3. A translated gamma distribution with translation z has

density function

fsp(s;m A z) = 2 Ms—z)] te X062 s>q. (3.3.1)
I'(r)

To solve for the parameter values z,7 and A\ we can equate the first 3 cu-

mulants of the time T stock price with those of the translated gamma, so

that
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T
T+ X = m
T
ﬁ = Mg — 'TTL%
2r
33 = 2m§ + mg — 3myms,
which gives us
\ 2(mg — m?)
(27’71«"15 +mgz — 3m1m2)
r o= (mg— m%)/\z
T
r = mp— X

Pricing a call option with strike price K when the final stock price has the
distribution given in (3.3.1) is equivalent to pricing a call option with strike

price K — z where the final stock price has distribution

fsr(s;m,A) = F_(A;‘j s te™™ s>0. (3.3.2)

This is apparent by noting that the price of a call option will remain un-
changed when there is a parallel shift of both the distribution and the strike

price. The price of the call option will then be given by
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G = [ ls=Kifsn(o)ds

=K-x

= oo[s—K+m]ds—/ _E[S_K-'-m]fST(S)ds‘

3=0 =0

It can be easily shown that

K-z
/ sfs,(s)ds = %FST(K —z; r+1,N),

=0

which then gives us

r

Ot:)x

1-Fsp(K—z; r+1,\)] + (K — z)[Fsp (K — z; 7, A) — 1]. (3.3.3)

Example 3.3.1. We shall now price call options on Asset 1 whose parameters
are given in section 3.1. We find that the distribution of S;, where we start
in state 1 at time 0, can be approximated by a translated gamma where
z = 0.72822, r = 0.17275 and A = 0.57157. This distribution can be seen in
figure 3.4. The value of call options with various strike values were calculated

using equation (3.3.3) and are shown in table 3.12 in section 3.6.
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Figure 3.4: Chart showing approximated distribution of the price of Asset 1

after 1 year using a translated gamma distribution.

3.3.2 Polynomial Spline PDF Fitting

Using the above methodology we only took into consideration the first three
moments of our time T stock price. We shall now develop an alternative para-
metric methodology, which will allow us to factor in many more moments to
get a more accurate fit, and without having to make any assumptions on the

underlying distribution of the stock price.

Suppose we have the density of 7 + 1 points of a distribution {f(z) : z €

[—00, 0]}, which we can represent by the set

P= {(.’El, f((L‘l)), sy (xr+11 f(x1'+1))}’
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such that z; < ... < z,4;. Let us assume that z; and z,,, are sufficiently
extreme so that we can take f(z) = 0 for z ¢ [z1,Z,41]. We will need to
interpolate from these r + 1 densities a smooth curve to create a complete
density function. We can do this by fitting what is known as a polynomial
spline curve (see Silverman [1985] or de Boor [1978]). To this end, we shall
also assume that we have the first r + 1 moments of the distribution that we
wish to replicate given by my,...,mr4;.

A polynomial spline curve consists of piecewise polynomials which can
be fitted to a series of data points, and has the property that it is the in-
terpolating function which minimizes the integrated squared second deriva-
tive (f(f”(z))?dz). The piecewise portions are defined so that at the knots
(where the piecewise portions join, so that in our case these are at the points
Zg,...,Z,) the function and its first two derivatives are continuous, although
the third derivatives may be discontinuous.

Within the range z € [z;,z;41) for ¢ = 1,...,r we can fit a polynomial

curve (or spline) with equation
f(z) = diz* + ajz® + aj7® + alz + af) T; < T < Tiy. (3.3.4)

There are r such splines each consisting of 5 parameters, and so we are left
with 5r parameters to solve for. To do this, we obtain 5 equations as follows.

Firstly we require that at each of the r + 1 points the values of the spline
curves are equal to the given densities. We therefore have the following 2r

equations:
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f(z:) = of'z* +a§'zd +a 'zl +ai iz + af? i=2,...,r+1
flz) = aiz}+ izl +aja? +alz; +af i=1,...,7

Next, as mentioned above we ensure the smoothness of the curve by requiring

that the first two derivatives are continuous at each of the knots. This leaves

us with a further 2(r — 1) equations

4042—1:1:;3 + 30,?3—13:? + 20‘;—13"1' + ail—l = 40233;3 + 30%:1:? + 2a§a:,- + ai
12657122 + 6aiz; + 205 = 12aka? + 6akz; + 24
fori = 2,...,r. Next we require that the first  + 1 moments of the curve are

equal to ms,...,my4+1, and that the density function integrates to 1. This
can be done as follows.

We can calculate the y** moment of the distribution as being
Y . . . . .
E[z¥] = Z/ z¥(aiz* + air® + ahz® + alz + af)dz,
i=1 /o=

which can be re-expressed as

E[zY] = 4 R I 3 Ly _ oyt
[I ] ;[y + 5(xz+l Z; ) + v+ 4(56.,,4_1 z; )
+_0_;1é_(z 1y+3 _ $y+3) + ai (:Z‘ 1'y+2 _ m151+2)
y+3°" Py i
2 @ - 2™ (335)

y+1



3.3 Parametric methods 71

So by setting
E[z¥] = m, (3.3.6)

for y=0,...,7+ 1 where my = 1, we now have a further r 4+ 2 equations

leaving us with the 5r equations we require.

We are able to solve these 5r equations in matrix form as follows. Let us
define the matrix Dp, where the subscript denotes dependency on the set P

defined at the beginning of the section, as having entries

[ Xp X} \
X3 X3 ,
Xy X3
DP - ’ ’
5rx5r r—1 r—1
PR
P
\Y: ... o o YD)

where entries other than those shown are 0, and where

4 3 2

Z; z; T; T; 1
4 3 2
L= Ty T T T 1 _
x5 1223, 6z 2 0 0 i=1...,r=1
dod, 322, 2z 1 0
0 0 0 0 O
X} = > 0 0 00 i=1 r—1
o —12z,, -6z -2 0 0 AR )
_4“3?+1 _333?+1 —2z;41 -1 0
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. ( 4zt 12 22 oz, 1 )
P = 4 3 2 )
2x5 ATp ) Try ZTrpp Trer 1
“?ﬂ_z? :‘-?H_zg Tig1—Ti
t n e e ——'f—--—l
”—'?+1"-"':1's ‘”?+1‘“’§ z?il_z?
6 5 . . 2
i - : : :
Yp = : : : :
(r+2)x5 . . . .
afr-alt® o —altt st —ai !
- s J’——H_l

Now let us define the matrices

Ap = (Ab A3 ... Ap)T
5rx1
Bp = (Bb B} ... By')",
5rx1
where
i :(af1 at ay d} a,}')) i=1,...,r,
1x5
1% :(f(_’L‘z) f($i+1) 0 O) 7:—_—1,...,7'—1,
X

Bp = ( f(x:) f(zig1) ),

1x2

1
BL =(mo my ... ... my ).
1x(r+2)

72
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We can solve for the parameter values in the matrix Ap using the following
equation:

Ap = D;pr, (337)

provided that Dp is invertible.
We now have a polynomial spline curve approximation of our density
function given by
y=fo(z) z<z<zm
and y = 0 elsewhere, where once again the subscript P denotes a dependency
on the set P. This curve has the property that the first r + 1 moments are
the same as that of our time T stock price. We shall now see an application

of this methodology.

Example 3.3.2 (Standard Normal Distribution). We applied the above
calculations using the first 6 moments of the standard normal distribution to
obtain its polynomial spline approximation. For the set P we set z; = —4,
zg = 4 and the rest of the z’s equally spaced between these two values. For
the densities we took f(z1) = f(ze) =0 and f(z2) =... = f(z5) = 0.2. The
polynomial spline curve obtained is shown in figure 3.5.

a

Example 3.3.2 has demonstrated to us our next obstacle in this approxi-

mation, namely that even though our distribution will integrate to 1 and will
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Figure 3.5: Chart showing standard normal distribution and 6-moment poly-

nomial spline curve.

have moments as required, we have not ensured that the density values given
by our polynomial spline curve are greater than 0 for all values of . This
condition could not be included in the above system of equations, and so we
will have to try to find a solution that fulfills this condition numerically. We
can do this as follows.

Firstly, let us define an error term for our set of points P, denoted by Ep,
to represent the total area of our polynomial spline curve where the density

is negative, so that

Tr41 ~

=Ty
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We therefore wish to find a set P which minimizes Ep. As there may be
more than one possible solution, we would like our resulting curve to be
the ‘smoothest’, with preferably only one turning point. Let us define the

variation Vp as the integrated squared second derivative of the curve, so that

Trt1 62“ 2
Ve = / B ( g};gx)) de. (3.3.9)

We would therefore like our set P to minimise Vp as well.

We are now left with the task of finding an algorithm which will find our
solution. The algorithm we will use works by iteratively trying different val-
ues of z1,...,Zr41 and f(x2),..., f(z,), each time accepting the new values
only if the new curve generated reduces Ep and does not increase Vp. This
is repeated until EFp = 0 or is at least minimised. This algorithm can be

expressed by the following seven steps:

1. Initialise P by selecting values for z; and z,,1, and spacing out all
other z values equally between them. We set f(z;) = f(z,+1) = 0 and

flxi) =1/(Try1 —21) fori=2,...,r.
2. Calculate Ap, Ep and Vp numerically.

3. Try different values of f(z3) and calculate corresponding Ap, Ep and

Vp to find value which minimises Fp whilst not increasing Vp.

4. Repeat 3 for f(z3) to f(z,) and calculate overall reduction in Ep for

this iteration.
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5. Repeat 3-4 until overall reduction for the iteration is less than 1%.

6. Repeat 3-4 only changing values z; to z,4; rather than f(z3) to f(z,)

and calculate overall reduction in Ep for this iteration.

7. Repeat 3-6 until Fp is minimized.

We shall now show examples of the performance of the above algorithm
on the standard normal distribution we attempted to approximate earlier on,

as well as on a gamma distribution.
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Example 3.3.3 (Standard normal distribution). We ran the above algo-
rithm using between 4 and 10 moments of the standard normal distribution.
For the starting value of the set P, we took for z; and z,; values between —4
and —5 and 4 and 5 respectively. For each model, as well as computing the
error value Ep, we also computed the mean square error (MSE) between the
polynomial spline curve and the standard normal distribution. The results
can be seen in table 3.5.

We can therefore see that using 5 moments and above gives us a very
good fit to the standard normal curve. Our algorithm yields the best results
when 6 moments are used. The values z and f(z) for each of the 6 points,

as well as the parameter coefficients for the 5 splines are given in table 3.6.

Moments Ep MSE
(x107%) (x107%)
4 0.00 3.30
5 0.00 0.56
6 0.00 0.32
7 0.00 1.02
8 0.00 0.54
9 0.00 0.90
10 0.00 0.46

Table 3.5: Results for the polynomial splines simulation of the standard

normal distribution.
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X -4 -2.4 -0.8 0.8 24 4
f(x) | 0.00000 0.02210 0.29000 0.28500 0.02010 0.00000

i a ag ag a 2

1 | 0.00438 0.06566 0.37156 0.94254 0.90642

2 |[-0.02001 -0.14615 -0.31055 -0.02019 0.40597

3 | 0.04798 0.00583 -0.20686 -0.00686 0.40024

4 |-0.00764 0.06659 -0.13913 -0.11799 0.43747

5 | 0.01134 -0.15720 0.81654 -1.88707 1.64292

78

Table 3.6: Densities of 6 points used in the polynomial spline curve and spline

parameter coefficients.

O

We can see how well the polynomial spline curve has approximated the

standard normal distribution in figure 3.6. We shall now see how it performs

for the gamma(2,3) distribution.
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Figure 3.6: Chart showing standard normal distribution and 6-moment poly-

nomial spline curve.

Example 3.3.4 (Gamma(2,3) distribution). As in the previous exam-
ple, we ran the above algorithm using between 4 and 10 moments of the
gamma(2,3) distribution. For the starting value of the set P, we took z; =0,
whilst for z,,, different starting values were tried between 4 and 6. We kept
however f(z;) = 0 constant throughout. For each model, as well as comput-
ing the error value Ep we also computed the MSE between the polynomial
spline curve and the gamma(2,3) distribution. The results can be seen in

table 3.7.

40
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Moments 4 5 6 7 8 9 10
Ep(x 10'5) 0.00 0.00 0.00 0.00 0.11 0.00 5.43
MSE(XIO’E’) 92.07 12.02 8.14 259 6.54 0.31 178.89

Table 3.7: Results for the polynomial splines simulation of the gamma(2,3)

distribution.

We can therefore see that using between 4 and 9 moments gives us a very
good fit to the gamma(2,3) distribution, the best of which is when 9 moments
are used. The parameter coefficients for the 8 splines in the 9 moment model
are shown in table 3.8, and the values z and f(z) for each of the 9 points are

shown in table 3.9. a

i al al al, al al)
1]-11.91299 27.80528 -24.75174 8.89989  0.00000
2| -0.67300 3.26439 -5.08131  2.09415  0.84617
3| 0.82556 -5.38413 13.30164 -15.03080 6.76203
4 0.28979 -2.77118 9.90517 -15.72577 9.40369
5| -0.11770  1.32470 -5.53282 10.13494 -6.84096
6| -0.06264 0.85106 -4.31890 9.70240  -8.14089
71 -0.03452 0.57682 -3.60617  9.99526 -10.36059
8 | 0.00000 0.00000 0.00000 0.00000  0.00000

Table 3.8: Parameter coefficients for the 9-point polynomial spline curve.
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Figure 3.7: Chart showing gamma(2,3) distribution and 9-moment polyno-

mial spline curve.

Figure 3.7 shows again how we have been able to approximate the gamma(2,3)
distribution fairly accurately. We shall now apply this methodology to our

MCJD model.

X 0 0.625 1.25 1.875 2.5

f(x) o0.00000 0.86440 0.25700 0.05540 0.01690

X 3.125 3.7501 4375 27.67583
f(x) 0.00080 0.00140 0.00000 0.00000

Table 3.9: Densities of 9 points used in the polynomial spline curve.
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3.3.3 Application to the MCJD model

82

We will now look at an application of this methodology by fitting a polyno-

mial spline density curve to Asset 1, whose parameters are given in section

3.1. The moments of this asset are given in table 2.6 in section 2.5.

Using the algorithm above, we fitted a 6-point polynomial spline curve,

where the first 6 moments are that of the 1-year asset price. Each of the

points in the 6-moment model are given in table 3.10, as well as the parameter

coefficients for the 5 splines in table 3.11.

X |0.00240 1.23041 3.05795 7.48815 8.24355 29.13993

f(x) ‘ 0.00000 0.58280 0.00520 0.00060 0.00010 0.00000

Table 3.10: Densities of the 6 points in the polynomial spline curve.

i| a ay a3 aj ap

1] 229012 -6.83373 5.13635 0.23411 -0.00059
2| 0.01218 -0.23810 1.48183 -3.75568 3.37604
3 | -0.00043 0.01030 -0.08901 0.32628 -0.41698
4 (-0.00334 0.10657 -1.27273 6.74672 -13.39330
5 | 0.00000 0.00000 0.00000 -0.00006 0.00043

Table 3.11: Parameter coefficients for the 5 splines of the polynomial spline

curve.
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Figure 3.8: Polynomial spline curve fitted to 1-year ahead price of Asset 1.

The density function seen in figure 3.8 seems to resemble that of a gamma
distribution, which is interesting as the translated gamma approximation in
section 3.3.1 resulted in a density function looking very much like that of an
exponential distribution. So we can see that factoring in more moments has
radically transformed the shape of the density function.

The value of call options with various strike values were calculated using

this density function and are shown in table 3.12 in section 3.6.
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3.4 Tree-Based Methods

Tree-based methods are a type of simulation modelling, which involves trying
to replicate the behaviour of the stock using more simplified models, which
however retain the important characteristics of the initial model. Once this
is done, derivatives can be valued using this simplified model. This is nor-
mally done by firstly developing a discrete-time analogue of the model, and
then limiting the possible price movements within each time period. The
simulation modelling techniques we shall use are tree-based methods in this

section and Monte Carlo methods in section 3.5.

3.4.1 Trinomial Trees

When it comes to using tree-based methods to simulate the value of a stock
or derivative, trinomial trees have probably become the benchmark tool em-
ployed by the financial world. We shall now explore its usefulness in our
MCJD model described in section 3.1.

There are different ways in which a trinomial tree may be fitted. We shall
employ a method which specifies at each node the ability for the stock price
to rise to one value, fall to another value or remain constant as can be seen
in figure 3.9.

Suppose we wish to estimate the time T value of the stock whose price
process is governed by equation (3.1.1), where we are currently at time 0. To

do this we shall begin by writing a discrete time analogue of equation (3.1.1).
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Figure 3.9: One-period trinomial tree for stock price.

We can divide the time period [0, T into h time periods of length At, where

we therefore get h = %. During every such time period we will assume that
the state of the Markov chain is constant, while there is a possibility of a
transition of the state at the end of the period. The value of the stock at
the end of the period is therefore a combination of a lognormally distributed
random variable and a multinomial random variable as shown below, for

when in state k&

Sprar = Ste(rk—%aﬁ)At+akAWg H(l + ,.ykl)ANt“. (341)
=1

We shall now develop a useful lemma:
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Lemma 3.4.1. In the setting described above, we have that when in state k

E[JJa++2M = 1+%,
=1

Var([Ja++")2%] = 4% - @347,
=1

where

;Yk = Z’)’MAMAt,

=1

;;,k — E(’)‘kl)z)\HAt.
=1

Proof. This is easily shown by firstly noting that the probability of tran-
siting from state k to state [ in a time At is equal to A¥*At, and by using
standard results for two or more uncorrelated random variables (see for ex-

ample Mood et al. [1974] chapter 5).

]

Using lemma 3.4.1 and equation (3.4.1), together with standard results
of the cumulants of a lognormally distributed random variable, as well as the

following results for two uncorrelated random variables:

E[XY]

E[X]E[Y],

Var[XY] E[X)*Var[Y] + E[Y)*Var[X] + Var[X]|Var[Y],
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we have that the expected value of the stock at time ¢ + At conditional on

the fact that we are in state k is given by
E[Siiat] = Sie™A (1 + 7).
We also have the variance being equal to
Var(Serad = S7E™AH(1+ 4% +27%)e 84 — (14757,

Denote by If the indicator variable that the Markov chain is in state k at

time ¢ given that we start at time 0 in state 5. We have that

Ely) = o',

Varllf] = pi*(1-pl),

where 0 >t < T, and p{k is the probability we are in any state k at time ¢
given at time 0 we were in state j given in equation (1.3.5). Using the above

we shall now develop another useful lemma:

Lemma 3.4.2. Suppose we have a series of random variables X, ..., X,
with means py, . . ., e, and variances o2,...,02. Define another variable Z;
as follows:

Zy=L'X1+...+ I'X,.

The expected value of Z; is given by

ElZ)=pl'm+...+p"tn
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The variance of Z; will be equal to

Var(Z) = pllol+...+pl"0?
+of (1= + .+ P - Bl

=20 PP papr + ..+ pI VP 1 pin).

Proof. This can be easily shown by taking expectations and squared
expectations of each of the terms, and noting that as only one of the I’s will
have a value of one and all the rest will be zero, the covariances will therefore

be zero.

O

Using lemma 3.4.2 we therefore have that the unconditional (with respect
to the state we are in at time t) expected value of the stock as being
E(Sirad =D pi*Sie™2 (1 +7), (3.4.2)
k=1
and similarly the unconditional variance is equal to

Var[Suad = D piFSIemA(1 4 4F 4 27%)e kA — pf*(1 4+ 34)7]
k=1

=Y " pltplSEemrmIAt (1 4 74) (1 + ). (3.4.3)

k=1 I=1



3.4 Tree-Based Methods 89

Let us denote

n

Et — Zp{ke‘rkAt(l + ,'7’6),

k=1

Vi

n
Zp{kem‘kAt[(l + ;;lk + 2,—)-,k)eU§At _p,lk(l + ,—Yk)Z]
k=1

n n

=D ke 1+ ) (14 4,

k=1 l=1
so that
SiEy = E[Sttad]

and

S?Vt = VaT[SH.At].

We will now construct a trinomial tree which will replicate the behaviour
of the stock price given in (3.4.1). Suppose we have a one-period trinomial
model as in figure 3.9, where at time ¢ the time ¢+ At value of the stock price
will be equal to S;u with probability ¢;, S; with probability ¢? and S.d with
probability ¢3. We can combine h such one-period models to approximate
the stock price’s behaviour in the interval [0, T] (recalling that h = L). A

three-period model can be seen in figure 3.10 where u = %.
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Figure 3.10: Trinomial stock price tree where At = 1.

We shall now calculate the moments of the trinomial tree model at each

step. The expected value of the stock price at time ¢ + At is equal to
E[Sesae] = Si(gru + ¢f + gd). (3.4.4)
The variance of S;;; can similarly be shown to be

Var[Suall = S(at(1— g1’ +¢(1— ) + ¢ (1 — ¢})d)

—2(qrqfu + g gPud + gigid)). (3.4.5)

In order for the trinomial model to closely simulate the behavior of the



3.4 'Tree-Based Methods 91

MCJD model, at each step we thus require the MCJD model and the trino-
mial model to have similar characteristics. We do this by equating the means

and variances of both models. Starting with the means, equating equations

(3.4.2) and (3.4.4) we get
E;=qu+q +qd.
A comparison of the variances in equations (3.4.3) and (3.4.5) gives us
V=g (1 - ¢)u’ +¢(1 - @) + (1 - ¢})d”* - (g gu + ¢, ¢ud + g7} d).
Using these two equations, and given that we also know that
¢+ +a =1,

we are left with three equations to solve for five unknowns u,d, ¢}, ¢2, ¢3. We

must therefore specify two of these values in order to get a unique solution.

Let us set
y = 1
= o
2
2 —_— p—
qt - 3 )

which will allow us to solve for all the other unknowns. We are then left with

the following two equations to solve for u and g}:

. uPE, -2 -1
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and

4 1 2 2.1 1 2
qtl(1—%1)“4—"§Q3u3+((§+qt1)(§-Qtl)—‘/i)uz‘i'g(g—qt)u'*'(g—qtl)(g-l*qtl) =0.

These two equations must be solved numerically for the first time period
t = 0. For subsequent periods t = At,...,T — At we can either solve again
the above equations which will result in a different value for u and hence the
tree will no longer be recombining, or alternatively we can keep the same
value of u only relax the assumption that ¢* = % and therefore solve for all
the probabilities.

For an h-period tree we will then be left with 2A + 1 final nodes at time
T. The expected value of the stock can then be estimated as the weighted
average of the stock value at each of these nodes, where the weights are
the probabilities of the tree leading up to that node. This probability is
calculated by taking for each path leading to that node the product of all the
probabilities of the h one-period models, and summing over all the different
paths. So for example, the probability of the stock price equaling Su® after
three periods in the model shown in figure 3.10 is equal to ¢iqigi. The
variance can be estimated using similar procedures.

Derivatives of the time T stock price can be calculated using the same
tree. The only difference is that we replace the time 7" stock values at the end
of each node and replace it with the value of the derivative. The weighted

average of these values is then calculated, the result being the value of the
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Figure 3.11: Pricing a three period call option using a trinomial tree.

derivative at time T". So for example, the estimate of a call option after three

time periods with strike K whose payoft is given by
Co = By'maz(Sr — K, 0)

can be calculated using figure 3.11.

In order to calculate the time 0 value of the derivative, we need to estimate
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the value of the discount factor

B;l —e f;o Tedt
This can be done by simply using the approximation B; ! given by

h-1 n

~ T .
By = e om#) = T[ Y plhee ™,

=0 k=1

where pgk is once again the probability of being in state k at time At given
that we started in state j.

The advantages of this model will be its fairly easy formulation and im-
plementation. However, reducing an n dimensional process into just a three-
branch tree will clearly sacrifice much of the original model’s characteristics.

We shall now look at an example of this methodology.

Example 3.4.3. Considering Asset 1 with parameters given in section 3.1,
we have replicated the behaviour of this asset using a 12-node tree so that
At = 0.833. The value of call options with various strike prices were calcu-

lated using this methodology and are shown in table 3.12 in section 3.6.
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3.4.2 Multinomial Trees

We shall now try and represent our MCJD model in terms of a multinomial
tree. Using multinomial trees we will be able to create a tree which will more
closely resemble the behaviour of the stock, although this will lead to more

computational complexity.

Let us assume that we are currently at time 0, and are interested in simulat-
ing the price of the stock at time T". We can divide this time into A sections

of size At, so that h = %.

Firstly let us represent the stock price movement excluding the jumps by
a binomial tree model as shown in figure 3.12. The probability of the stock
price increasing by a factor u is given by ¢7, and similarly the probability of

the stock changing by a factor of d is given by (1 — ¢7).

qj Son
So

1-—- qJ Sodj

Figure 3.12: Stock price movement (excluding jumps) in time At when in

state j.



3.4 Tree-Based Methods

So(1+ 1)

So(1 +~72)

Statej Sp

So(1+ %)

So
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State 1

State 2

State 3

State j (no jump)

Figure 3.13: Stock price jumps in time At in a three-state model starting in

state j.

Next we shall consider only the jumps part. For simplicity we will consider

a model which has 3 states, although this can be easily generalised. To

represent this we will need a 4-branch tree as shown in figure 3.13, one

branch for each state the model can transit to and one branch representing

no transition (this is due to the fact that when in state j we can either transit

to state 7 in which case there is a jump, or alternatively we can remain in

state j with no jump). We have the following probabilities:

¢ = NEAL V5 k,
Po= 1-) NrAt
k=1
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We would like the variance implied by this binomial model to equal that
implied from (3.4.1). We can see from (3.4.1) that when excluding the jumps
S; is lognormally distributed, meaning the expected value of the stock price

after a change of time At when in state j is given by
E[Siint] = Sie4E.
The variance of the stock price over this period is given by
Var[Sppas] = S2e¥if (e3¢ — 1),

Looking at the expected value and variance implied by the binomial model,

we see that

E[SH.At] = St[qjuj + (1 - qJ)dJ]’

VaT[St+At] = Sf[q’u? + (1 - qj)df]
In order for our binomial model to have the same mean and variance as the
MCJD model (excluding the jumps) it is replicating, we therefore require
SterjAt = St[qj'll/j + (1 - q’)d]], (346)
S2eribt(e7iA —1) = SH(g'ul + (1 - ¢)d?). (3.4.7)

We now have two equations which we need to solve for three parameters, and

so we will need to specify one of the parameters. We may set

1
U=
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as in the Cox-Ross and Rubenstein model (see Cox and Rubenstein [1985]).

Equations (3.4.6) and (3.4.7) now become

St = gl 4 (1 )

S2enift(e7IA 1) = (%)2@1‘? +(1-¢)

These equations can be solved to give

. e‘rjAt _ d
¢ = —2,
Uj — dj
1+ eajAt + [(1 + eajAt)Z _ 4621-_,-At]%
Uj = s

2erit
where
a; = 2r; + af-.
For this to provide real solutions we need the constraint

ln(e—TjAt — e—2TjAt)
At

2
o; 2

We can now replicate the behaviour of the MCJD model by combining the
binomial model with the jumps model as in figure 3.14. We can use figure
3.14 to calculate the expected value of Sa; by taking the weighted average

of the value at each of the end nodes, where the weights are the products of
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S(J'I.I,j(]. + ’le)

Sou;(1 +77%)

So’LLj (1 + ')’j3)

Sou]'
Sodj(l + ’)’jl)

Sodj (1 + ’sz)

Sodj(]. + ,7j3)

Sodj

At

Figure 3.14: Stock price movement in time At when in state j.

the probabilities leading to that node.

We can similarly use this tree to price other derivatives of the stock price by
replacing the values at the final nodes by the payoffs of the derivative. For
example, figure 3.15 shows how we may use the tree to value a call option at
time 0 on the stock at time At with strike value K.

So far we have calculated the expected value of the stock and valued
derivatives of it over one time period At. If we wish to calculate the expected
value of the stock after a time T, i.e. over h time periods where h = %,
then we simply combine h of the above single-period trees. As will be fairly

apparent, this will mean the number of final nodes will be fairly large even
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e " maz((Sou;i(1 + 1), 0]

e"Amaz([Sou;(1 + 472), 0]

e "% maz[Sou;(1 + 472), 0]

e "%*maz[Sou;, 0]

e "%maz[Sed;(1 + 471), 0]

e~ "%%maz[Sod;(1 + ~72), 0]

e "Amaz[Sod; (1 + 77%), 0]

e "Amaz[Syd;, 0]

At

Figure 3.15: Valuing a call option at time 0 on Sa; when in state j.

for moderate values of h. The number of nodes after a time T represented
by Nr is equal to
Nr =[2(n+ 1)

This methodology’s usefulness will therefore be restricted to models where

there are small values of n and h, and hence T.

Example 3.4.4. Once again considering Asset 1 with parameters given in
section 3.1, we are able to replicate the behaviour of this asset using a 10
node tree so that At = 0.1. The value of call options with various strike
prices were calculated using this methodology and are shown in table 3.12 in

section 3.6.
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3.5 Monte Carlo Simulation

We shall now attempt to estimate the value of the time T stock price and its
derivatives using Monte Carlo simulation. The value at time 0 of a contingent

claim at time T" denoted by X7 is given by
Co = Ele~ ot Xy, (3.5.1)

where the expectation is under the risk-neutral measure Q. There are many
possible paths the stock price can take up until time T. We may generate
randomly one of these paths and calculate the value of the derivative under
this path. This is known as a simulation trial. The simulation involves
repeating the simulation trial say N times and then aggregating the values.
We shall now look at methods for simulating our MCJD model.

We shall once again divide the interval [0, T] into h subsections of length

At, so that
T

We can write a discrete version of our MCJD model given in equation (3.1.1)

whilst in state j as

AS, = Si[r;At + ojeV/ At + Y YFANTY, (3.5.2)

k=1

where ¢, is a sample from a standardised normal distribution, and AN?* is a

Bernoulli random variable with probability A’*At. We impose the restriction
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that
AN{' + AN +... + AN{" < 1

for all j, i.e. at most one jump per time period. In order to simulate
the value of S; we must therefore generate each of the random variables
Sat, S2At, - - - , Shat successively.

To generate these random samples we assume that we have an end-
less supply of uniform [0, 1] random variables U;, Uy, . . ., which can be eas-
ily generated by all computers. We also assume that we have samples
from the standard normal distribution ¢; Vi. To generate sample values of

AN}* for k =1,...,n, we can divide the interval [0,1] into n + 1 intervals

[0, ], [I1, L2), .- ., [In, 1], where we have for m =1,...,n
In=>)_M*At.
k=1

We then have that

1 U € [Ix-1, I,

jk _
AN —{ 0 otherwise,

for all k =1,...,n, and where I, = 0.

We are therefore able to generate AS; using one uniform [0, 1] random vari-
able and one standard normal random variable, and hence each simulation
trial using 2 x h variables. In total we have N simulations where we need to
generate 2 X N x h random variables. We can already see that the number

of calculations that need to be performed is linear in A, whilst the number
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required using the multinomial tree method was exponential in h.

In order to value the derivative price given in (5.4.1), we will also need to

value the bank account process Br for each such simulation given by

Br = eZicoTeAt,

The accuracy of the estimate given by the Monte Carlo simulation is clearly
going to be dependent on the number of trials NV which are performed. The
value of the derivative will be given by the mean of the values given by each
simulation trial, and we will denote this by 7. We are also able to calculate
the standard deviation of these simulated values which we will denote by w.
Since these are i.i.d. trials, the variance of 7 will therefore be given by

2
w
v = —,
ar(m) N
Using a normal approximation, we can thus write a 95% confidence interval

for the price of the derivative Cr as follows:

. 1.96w <Cr<mt 1.96w
T \/N

vN

So the accuracy of our estimate will be proportional to the number of trials

we perform.

Example 3.5.1. Once again considering Asset 1 with parameters given in

section 3.1, we replicated the behaviour of this asset using 250,000 simulation
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trials. The value of call options with various strike prices were calculated

using this methodology and are shown in table 3.12 in section 3.6.

3.6 Comparison of Performances

We shall now compare the performances of each of the methodologies de-
scribed in this chapter. Table 3.12 shows the price of a call option with
strike prices ranging from £0 to £5 using each of the above methodologies.

The tree-based methods seem to perform the worst, not being able to
price even the zero-strike option correctly, as well as seemingly underpricing
at higher strikes compared with the polynomial spline methodology and the
Monte Carlo methods. The multinomal tree seems to be worse than the
trinomial tree, although this is probably due to the fact that the the time T
was divided into 12 subperiods in the trinomial model, but only 10 subperiods
for the multinomial model. The finite-difference method also seems to be
giving very low results at higher strikes, but this could be a result of the fact

that we had capped the value of the stock price at £5.
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Strike Finite Translated Polynomial Trinomial Multinomial Monte
Price | Difference = Gamma Spline Tree Tree Carlo
0.0 1.0000 1.0000 1.0000 0.9929 0.9598 1.0009
0.2 0.8254 0.8059 0.8068 0.7993 0.7662 0.8068
0.4 0.6319 0.6118 0.6218 0.6180 0.5819 0.6145
0.6 0.4613 0.4177 0.4573 0.4680 0.4291 0.4415
0.8 0.3176 0.2605 0.3238 0.3511 0.3012 0.3149
1.0 0.2368 0.2035 0.2250 0.2576 0.2249 0.2322
1.2 0.1750 0.1648 0.1579 0.2006 0.1670 0.1712
1.4 0.1294 0.1358 0.1148 0.1458 0.1195 0.1306
1.6 0.0991 0.1131 0.0881 0.1175 0.0902 0.1042
1.8 0.0672 0.0949 0.0717 0.0893 0.0735 0.0829
2.0 0.0519 0.0801 0.0615 0.0673 0.0590 0.0662
2.2 0.0432 0.0679 0.0547 0.0558 0.0461 0.0533
2.4 0.0348 0.0578 0.0492 0.0444 0.0353 0.0440
2.6 0.0251 0.0493 0.0443 0.0329 0.0277 0.0374
2.8 0.0179 0.0422 0.0393 0.0264 0.0224 0.0321
3.0 0.0130 0.0363 0.0344 0.0227 0.0193 0.0274
3.2 0.0092 0.0312 0.0297 0.0190 0.0167 0.0234
3.4 0.0073 0.0269 0.0252 0.0152 0.0144 0.0200
3.6 0.0062 0.0232 0.0212 0.0115 0.0122 0.0172
3.8 0.0053 0.0200 0.0176 0.0090 0.0102 0.0148
4.0 0.0041 0.0173 0.0145 0.0081 0.0084 0.0129
4.2 0.0030 0.0150 0.0119 0.0071 0.0070 0.0114
4.4 0.0019 0.0130 0.0098 0.0061 0.0058 0.0102
4.6 0.0011 0.0113 0.0081 0.0051 0.0049 0.0092
4.8 0.0005 0.0098 0.0067 0.0042 0.0043 0.0084
5.0 0.0000 0.0086 0.0057 0.0032 0.0037 0.0076

Table 3.12: Prices of call options with various strike prices using each of the
methodologies.



Chapter 4

Interest-Rate Theory

4.1 Introduction

So far we have looked at the pricing of derivatives on assets with price pro-
cesses governed by our Markov chain jump-diffusion model. We will now look
at financial instruments whose payoffs are determined solely by the value of
interest rates over the period of the instrument. Such financial products are
collectively known as the Fized-Income Market. The main difference between
these two financial markets is that when dealing with stocks the underlying
is directly tradable, whilst with interest-rate derivatives it is not. This will
lead to complications regarding completeness, as we shall see later on.

The main building block in pricing interest-rate derivatives is the short
rate which we will denote by r;. This is the interest rate for instantaneous

borrowing at time ¢. From the short-rate process we can derive two other im-
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portant process: the forward-rate process and the zero-coupon price process.
The forward rate given by f(¢,T) is the interest rate set at time ¢ for instan-
taneous borrowing at time T'. The zero-coupon price given by p(¢,T) is the
price paid at time ¢ for receiving a fixed nominal amount, say £100, at time
T. Unlike the short rate, forward-rate contracts and the zero-coupon bonds
(which can be regarded as derivatives of the short rate) are freely traded on
the market.

The Term Structure of interest rates is the name given to the relationship
between the interest on a zero-coupon bond and its maturity. The Yield
Curve is a graphical representation of this relationship where interest rates
are plotted against maturity. The short rate r; is the left-most point on the
yield curve. The main objective of interest-rate modelling is to determine
the yield curve, which can then be used to price interest-rate derivatives.

We will first begin by describing our Markov chain jump-diffusion model
in the fixed-income context, and derive relationships between the short rate,
forward rate and zero-coupon bond prices. We will then look at the two most
common classes of models used to describe the short-rate dynamics: Short
Rate Models and HJIM Models.

For the rest of this chapter we shall mainly follow the methodologies set

out in Bingham and Kiesel [2004] and Musiela and Rutkowski [1997].
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4.2 The Model

We begin by assuming the following model for the short rate:
dry = p(t, Yi-)dt + o(t, ;- )dW; + " (t, Yi-, Y:)d Ve, (4.2.1)

where the drift and volatility functions p() and o() are previsible, and we
denote this by showing them as functions of Y;—. The jump function ()
is not previsible, but rather dependent on the state that we have transited
from Y;_ and the state we are transiting to Y;. Using the notation as in
the previous chapters, we may also write the jump sizes as being 'y{k when
Y;. = j and Y; = k. We have also attached a superscript r to the jump
function to show that it represents the jump in the short-rate process, as
opposed to jumps in the other two process described below. W; once again
represent a Wiener process and V; a counting process as described in section
1.3.1.

We also have the zero-coupon price process given by

dp(t,T) = p(t, T)[m(t, T, Ye-)dt + v(t, T, Y- )dWs + P (¢, T, Yi—, Y2 ) ANy
(4.2.2)

and the forward-rate dynamics given by
df(t,T) = a(t, T,Y;_)dt + b(t, T, Y;_)dW; + v/ (¢, T, Y,_,Y,)dN;, (4.2.3)

where as above the drift and volatility functions m(), a(), v() and b() are

previsible, whilst the jump functions 4?() and /() are not. We have the
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following well-known results:

_Olog p(t,T)
oT ’

f(t,1). (4.2.5)

df ¢, T)
r(t)

We shall now find the relationships between the above processes. Let us

(4.2.4)

begin with the zero-coupon price process and the forward-rate process.

Proposition 4.2.1. If p(t,T) satisfies (4.2.2) then the forward-rate dynam-

ics are given by
df(t,T) = a(t, T, Y;_)dt + b(t, T, Y;_)dW; + v/ (¢, T, Yi_, Y;)dNy,
where
at, T,Y;-) = vr(t,T,Y:)u(t, T,Y;-) —m(t,T,Y;),

b(t1 T, Yt—) = _UT(t; T, },t—)v

’YITJ‘(ta T’ }ft—;Yi.ﬁ)

f —
0% (t,T, K‘.—’Y;) 1 +fyP(t,T, Yt-,Yt),

and where by the subscript T we denote the partial derivative with respect to

T.

Proof. Applying It6’s lemma to (4.2.2) as well as an analogous lemma for

the jumps, we get
¢ ¢

p(t,T) = expl( [ (m(s,T,¥,) ~ 2o(s,T, YaoP)ds + / o(s, T, Yo )dW,

8=0 s=0

t
+ / log(1 +~7(s, T, Y,_, Y;)dN,].
s=0
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Taking the logarithm of the above equation and partially differentiating with
respect to T we get

Olog p(t,T)

t
5T = (mz(s,T,Ys-) — vr(s, T, Y, )u(s, T, Ys-))ds

8=0

¢ t (s, T, Y, Y,)
,T, Y;_ d ; T\Psy+yLts—y+Ls Ns.
R L A e e o
(4.2.6)
Inserting (4.2.6) into (4.2.3) completes the proof.

(]

It is interesting to note that jumps in the zero-coupon price process only
translate into jumps in the forward-rate process if 4 is a function of T". This
is a direct result of equation (4.2.4).

We will now look at the second relationship; between the forward-rate

process and the short-rate process.

Proposition 4.2.2. If f(t,T) satisfies (4.2.3) then the short-rate dynamics
are given by
dry = p(t,Y:_)dt + o(t, Yo )dW; + 77 (¢, Vi, Y2)d Ny, (4.2.7)
where
pt, YY) = fr(tt) +a(t,t,Ye),
ot,Y:-) = b(t,t,Y:-),

(Y, Yy) = (¢t Y, Yh).
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Proof. We can integrate the forward-rate dynamics in (4.2.3) to get

i

f@t,t)=r@)= f(0,1t) +/ a(s,t,Ys_)ds + b(s,t,Ys—_)dW,

t
3=0 =0

i
+ [ (5,8, Yi YN, (428)

=0
Writing a(-), b(-) and 77(-) also in integrated form, we get

t
G(S,t,Ys—) = a(s,s,Y;_)+/ aT(S,U,Y.;—)dU,

u=s

t
b(s,t,Y,") = b(s,sY,)+ br(s,u,Y,-)du,

u=s

t

Vo8, Yr Y+ [ ohlou Y Yodu,

u=s

v (s,¢,Y,-,Ys)

and on inserting into (4.2.8) we have

t

t
rt) = £(0,6)+ / a(s,s, Y, )ds + /io / (s, Y, )duds

=0

t t ot
+ b(s,s,Y,_)dW, + / / br(s,u, Ys-)dudW,
8=0 Ju=s

s=0

13 t t
+ [ A Yods || s, Yac Yoduan,
g s=0 Ju=s

) (4.2.9)
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Noting that

t t

aT(s,t,}{,_)ds+/ br(s,t,Y,_)dW,

3=0

fT(t,S) = fT(O,S)+/

8=0

t
+ / (5,1, Yo, V,)dN,,

=0

and after inserting into (4.2.10), we get

r(t) = /t la(s,s, Ys2) + fr(t, s)]ds

t t
+ / b(s,s,Y,_)dW, + / v (s,5,Y,_,Y;)dN,. (4.2.10)

=0 s=0

On comparing coefficients between (4.2.7) and (4.2.10) the proof is complete.

a

Our final relationship is between the forward-rate process and the zero-

coupon price process.

Proposition 4.2.3. If f(t,T) satisfies (4.2.3) then the dynamics for p(t,T)

are given by

dp(ta T) = p(t) T) [m(tr T: Yt—)dt + ’U(t, T7 Yt—)th + 7p(t’ Ta Yi—) },t)dNt]a
(4.2.11)
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where

mt,T,Y,.) = r(t)+A(t,T,Yt_)+%|B(t,T)|2,

’U(t, T, Yt—) = B(t) T, )/t—);

Y@, T,Y%:-,Y;) = exp{T/(t,T,Y;-,Y,)} - 1
and

T
A, T,Y;.) = —/ a(t, s, Y;—)ds,

=t

T
B4,T,Y:) = — / b(t, s, Yi—)ds,

=t

T
M@ T,Y,Y) = — / 7 (t, 5, Yim, Yo)ds.

=t

Proof. Rearranging (4.2.4) we get
T
p(t, T) = 6.’1}p[—/ f(t’ s)ds],
s=t
and so we can therefore re-write (4.2.2) as

p(t,T) = exp{Z(t,T)},

where

Z(t,T)=— i f(t,s)ds.
s=t

Writing (4.2.3) in integrated form, we have
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(4.2.14)

(4.2.15)
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t t

$t,5)= 50,50+ [ atuns, Vo) [ by, Yo )Wt

and after inserting into (4.2.15) we get

T t T
Zt,T) = — _tf(O, s)ds—/_o/_ta(u,s,lﬁ_)dsdu

114

v (u, 8, Y, Yo )d N,

t T t T
- / / b(u, s,Y,_)dsdW, — / / v (u, s,Y,_,Y,)dsdN,.
u=0 Js=t u=0 J s=t

Splitting the integrals and changing the order of integration gives us

T t T
26,7) = - [ 0,945 / . /_ a(u, s, Ya_)dsdu

t T t T
- / b(u, s, Y,_)dsdW, — / / v (u, 8,Y,_,Y,)dsdN,
u=0 Js=u u=0 J s=u

t t ot
+ f(0,s)ds + / / a(u, s,Y,_)dsdu
=0 u=0 Js=u

t t t t
+ / / b(u, 5, Y, )dsdW, + / / v (u,s, Yo, Ya)dsdN,,
u=0 Js=u u=0 Js=u

which can be written as
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t T
zZt,T) = Z(O,T)—/ / a(u, s, Y, )dsdu
u=0 Js=u

t T t T
- / / b(u, s, Y,_)dsdW, — / / v (u, s, Yy_, Yy )dsdN,
u=0 Js=u u=0 Js=u

t t L]
+ f(0,8)ds + / / a(u, s,Y,-)duds
8=0 8=0 Ju=0

t L] t L]
+ / b(u, s, Y,_)dW,ds + / / v (u, s,Y,_,Y,)dN,ds.
8 8=0 Ju=0

=0 Ju=0

The last two lines of the above expression constitute the integrated form of

the forward-rate dynamics, and since r(s) = f(s, s) we can thus write

zZt,T) = Z(O,T)+/;07‘(s)ds—/ELOL:ua(u,s,Y_)dsdu

i T t T
- / b(u, s, Y,_)dsdW, — / / v (u, s,Y,_, Y,)dsdN,.
u=0 J s=u u=0 Js=u

Replacing (4.4.6), (4.4.7) and (4.4.8) into the above equation we find
dZ(t,T) = (r(t) + At, T, Y:-))dt + B(¢, T, ;- )dW; + +/ (¢, T, i, ;) )dN;,

and on application of Itd’s lemma to p(t,T) = exp{Z(t,T)} the proof is

complete.
O
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It is apparent from the above propositions, that knowledge of the zero-
coupon process or of the forward-rate process is tantamount to knowing all
three processes. The short-rate process however is not a one-to-one mapping
of the zero-coupon prices or of the forward rates, which therefore means
that specifying a process for the short rate in (4.2.1) will not determine the
processes for the bond price and the forward rate in (4.2.2) and (4.2.3). This

can be seen by noting that
f (ta t) =Tt

and so specifying r, for s € [t,T] will only give us the points f(s, s) and not
the points f(s,u) for u > s. So too from equation (4.2.4) it is clear that we

will not be able to determine the bond prices either.

4.3 Short-Rate Models

Short rate models derive the evolution of the entire yield curve in terms of
a single 1-dimensional state variable - the short rate. The first task that we
are faced with is therefore the specification of the short rate.

Let consider the following model for the short rate:
dry = p(t,re, Y )dt + o(t, 1, Yoo )dW, + 47 (8, 7t Vs, Y;)dNt (4.3.1)

with the functions p(),0() and 7"() being sufficiently regular, that is, satis-
fying (see Qksendal [2000])

lut, z, Y-)| + o (t, 2, Yi)| < C(L+ |xl)
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and
lu(t z,Ye-) — ut,y, Y2 )| + o (t, 2, Vi) — o(t,y, Vi)l < Diz -y,

where z,y € R and C and D are some constants. We also require the
Y (t, 7, Y-, Y:)’s to be piecewise continuous. We shall begin by developing
pricing methodologies for derivatives of this short rate, and we will subse-

quently discuss the completeness of such a model.

4.3.1 Derivatives pricing

We shall assume that the short-rate dynamics are described by (4.3.1) under
the martingale measure Q, which we assume exists. We shall discuss later the
implications of modelling under this probability measure as opposed to the
real-world probability measure P. We can apply the risk-neutral valuation
principle to obtain the value C; of a sufficiently integrable T-contingent claim

Xt as being
Cy = Eqle™ ¥ x| ). (4.3.2)
Let us consider T-claims of the form Xp = f(Yr,7(T)). To develop the

price process for this claim we first need to develop a modification to the

Feyman-Kac formula as follows:
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Theorem 4.3.1. (Feyman-Kac formula modified). Suppose we have the fol-

lowing stochastic differential equation:

dry = p(s,rs,Y;_)ds + 0 (s, 75, Y, )dAW, + 47 (5,75, Y5, Ys)dN,, t<s<T,
(4.3.3)

with initial conditions

T = T,

i =

where the functions u(s,rs,Ys-), 0(s,7s,Ys-) and v(s,7s,Ys—,Y;) are suffi-

ciently reqular. The solution to the partial differential equation

. . Nl . .
Ey(t,,5) + plt, 7 ) F(t, 72 ) + 507 (67, ) Fre (87, 5)

+ i NYE{F(t,r +~(t, 74, k), j) — F(t,rj)} =0 (4.3.4)

k=1

with final condition

F(Ta rT,s YT) = h(TT7 YT)

has the representation

F(t,'f‘,j) = E(h(TTaYT)I T¢e =T, }/t :J)
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Proof. Consider a function of r; given by F(t,r,Y;), and assume that we
were just in state j, i.e. Y;— = j. Using It6’s lemma and an analogous lemma

for the jumps, we obtain
1
dF(t,r,j) = (F(t,rJ)+upl,ri)EG )+ 502(t,r,j)Frr(t, r,j))dt
+o(t,m, 5)Fe(t,r, 5)AWe + (F (¢, 7 +4(t, 7,5, Y2), 5) — F(¢, 7, 5))dN:.
Define for all j

dN, = dN, = )~ M*at,
k=1
where since

E[dN|Y;,- = 4] =) Xdt (4.3.5)
k=1

we have that dN, and hence N; are Q martingales. We can therefore write

1 .
CdF(tr5) = [B(trg) + p(tr ) E(tng) + 50° (6 5)Fr (27, 5)

~ SO NRE(t, + (7,5, k), 5) — F(t,T, 5))]dt
k=1
+o(t,r,§)Fu(t,r,5)dW; + [F(t,r +(t, 7,5, Y2), §) — F(t,r, 5)]dN;.

If we have that

1
F(t,r,5) + p(t, 7, 3)Fr (7, 5) + 507 (6,7, ) Fre(t,7, 5)

+ 3" NRE{F(t,r +4(t,7,5,k),5) — F(t,7,5)} =0
k=1
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with boundary condition

F(T, T, YT) = h(TT, YT)

we then get

E[dF(t,r,5)] = Elo(t, 7, 5)Fr(t, 7, 5)dWe(F (¢, 7, j+7(8, 7, 5, ) = F (8,7, 5))dIVE].

Writing this in integral form, we have

8

E[F(s,r,Ys)] = E[F(t,rej)+ /

U=

o(u, Ty, J) Fr(u, Ty, 5)dW,
t

+ / (F(ty Ty § + (1 Ty Yoo Ya)) — F(ty ra, Y )) AN,

=t
With W, and N, being martingales with initial values 0, we therefore have
that

E(F(s,n,Y))| e =1, Yy = j) = F(t,, ), (4.3.6)
and so finally
F(tlr)j) = E(h’(TT;YT)I Tt=T, Yi = ])

as required.

O

If we assume that X7 in (4.3.2) is of the form X7 = ®(ry, Yr), we can

use the above theorem to obtain the following proposition:
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Proposition 4.3.2. (Term Structure Equation). Suppose we have a T-
contingent claim Xt = f(rr,Yr), then the arbitrage-free value of price pro-

cess Cy, where

Ct = C(t, Tt, },t)a

is given by (4.8.2), is a solution of the partial differential equation

1
_TC(ta T,j) + Ct(t, ri .7) + ,Ll/(t, T,j)C"‘(t’ r)j) + 50'2(t’ 7, j)C"‘T’(t’ T, .7)
+ Y N*E{C(t,r +7(t, 1,4, k), 5) — C(t,r,5)} =0
k=1
(4.3.7)

with terminal condition C(T,r,Yr) = f(r,Yr) forallr € R, Yr € S.

We can now write the following result:

Corollary 4.3.3. (T-bond prices) We can calculate the price of a T-bond
p(t,T) as being the solution to (4.3.7) with terminal condition C(T,r,Yr) =
1.

O

We will now price derivatives whose payoffs are functions of the T-bond

prices, such as a European call option with payoff

Xr = max{p(S,T) — K, 0},
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where the maturity is S and the strike is K. To do this will require a two
step-process. We must first calculate the value of the underlying T-bond by
using corollary (4.3.3). We must then solve equation (4.3.7) for the value of

the derivative G(t, ¢, Yz), giving us

1
—rG(tJ T,j) + Gt(t7 T,j) + ﬂ‘(ta T,j)G.,-(t, T,j) + 502(t77ﬂ:j)G1‘1‘(t7 T,j)

+3Y " NEE{G(t,r +7(t,7,4,k),5) — G(t,r,5)} =0

k=1
(4.3.8)

with terminal condition

G(S, T, T) = ma'x{p(S7 T) - Ka 0}

forallr e R, Yres.

To solve these two partial differential equations may prove to be rather
tricky. The standard way of ensuring that these equations remain solvable
is by restricting the possible models for the short rate to those in which the
bond prices possess an affine term structure (see Duffie [1992]). But as we
shall see, even with models which exhibit such a structure pricing derivatives

using the MCJD model is not totally straightforward.
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4.3.2 Models of the Short Rate

There are many models which can be used to describe the behaviour of
the short rate. Some of these models may allow an exact fit to the initial
term structure or possess more preferable term structures than others. The
advantages and disadvantages of various short rate models can be found in
books such as Bjork [1998] or Duffie [1992]. In our Markov chain jump-
diffusion setting, we will consider extensions of two of the most predominant
models. We will firstly show how to price derivatives of the short rate for
each of the models without having to solve the partial differential equations
in the previous section, and subsequently we will discuss how to estimate
parameter values. In this section we shall assume that we are modelling
under the risk-neutral measure Q. In the next section we shall explore the

ramifications of such an assumption.
The Ho-Lee Model
We shall extend the Ho-Lee model first introduced in Ho and Lee [1986] so

that the short rate has the following dynamics:

dry=oudt + ) I [ajdwt +y 77'de3"°] , (4.3.9)

j=1 k=1

where o is previsible and strictly greater than 0. The values of a; are chosen

so that the short-rate model fits the initial term structure.
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The Ho-Lee model is generally not the most preferred short rate model as it
does not possess the mean-reverting property, as well as having the undesir-
able property that the short rate can be negative. However, the advantage

it does possess over the other models is its ease of computation.

We shall consider a market where we have an empirical term structure
{p(0,T) 0 <t < T} and so too an observed forward-rate curve {f(0,t) 0 <
t < T'}. We shall now derive the values of a; for 0 < ¢t < T so that the model

fits this initial term structure.

Lemma 4.3.4. Suppose the short rate follows an extended version of the
Ho-Lee model as given in equation (4.3.9). In order for this model to fit the

initial term structure we require that

oy = f'(0,) + M"(0,¢), 0<t<T, (4.3.10)
where
T u n n o n
M(t,T) =logE |exp {—/ (/ leades + Z ZvjkNgk)du}]
ust Jo=0 ;o J=1 k=1

and where ' represents the partial derivative with respect to t.

Proof. The value of the time ¢ zero-coupon bond p(0, t) is given by

p(0,2) =E[exp{—— / t r(u)du}]. (4311)

=0



4.3 Short-Rate Models 125

Integrating (4.3.9), we get

1 t n n n
Te =Ty +/ 0, ds +/ E Lo, dW, + E E A7k NT*, (4.3.12)
0 =0

= 8=U j=1 j=1 k=1

and inserting this into equation (4.3.11) we obtain

t ) u N n n
p(0,t) = E |exp {—/ (ro +/ ads +/ Zlﬁades + ZZ’ijNﬁk> du}] .
u=0 s=0 8=0 ;=) =1 k=1
Writing
T u N n n
exp{M(t,T)} =F l:e:cp {—/ (/ z Lo dW, + ZZ’yjkN,{k) du}]
u=t \Js=0 j=; 3=1 k=1
(4.3.13)
we therefore get
t U
p(0,t) = exp {—rot - / / asdsdu + M (0, t)} . (4.3.14)
u=0 J s=0
We then have
_ 0Ologp(0,t)
f(O’ t) = - oT
¢
= r0+/ a,ds — M'(0, ).
s=0
Differentiating once more, we find
f(0,8) = ax — M"(0,1). (4.3.15)

Rearranging (4.3.15) gives us (4.3.10). O
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In appendix B we develop a methodology to calculate the value of M (¢, T),

the result of which is given in corollary B.0.10.

Turning our attention to the zero-coupon bond prices, we have the following

lemma:

Lemma 4.3.5. The time 0 value of the zero-coupon bond p(t,T) at time ¢ is

given by
o(t,T) = poexp{M(t,T) — M(0,T) + M(0,¢)}, (4.3.16)
where
S

and where p(0,t) once again refers to the empirical time t zero-coupon bond

price.

Proof. We have that

p(t,T) = E [exp {— / Zt r(u)du}] ,

and on inserting the short rate given by 4.3.12 we find

T U m n n n
p(t,T)=E lewp {— / (ro + / asds + / > HojdW,+ Y >  ¥*Ni)du
u=t s=0 s=0 j=1

j=1 k=1

i
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Calculating this expected value we get

p(t,T) = exp{—(T—t)ro—— /Zt /3:0a3d5+M(t,T)}

T u t u
= exp {—(T —t)ro — / / a,sds +/ / a.ds + M(t, T)} ,
u=0 Js=0 u=0 Js=0

and finally on inserting (4.3.14) we get (4.3.16).

The Hull-White (Extended Vasicek) Model

The second short-rate model we shall consider is an extension of the Hull-
White (Extended Vasicek) model (see Hull and White [1990a]), where the
short rate has the following dynamics:

dry = Z Itj (0 — Byre)dt + 0;dW; + Z ’ijdthk (4.3.17)
j=1

k=1

where o; is previsible and strictly greater than 0. The 3, term can be set
as a function of the current state j, the time ¢ or both. We shall consider
models where (3; is a deterministic function of the time ¢ only. The values
of a; are once again chosen so that the short-rate model fits the initial term

structure.

The Hull-White model is generally preferred to the Ho-Lee as it possesses the

mean reverting property characterised above by the term ;. We shall again
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consider a market where we have an empirical term structure {p(0,7) 0 <
t < T} and so too an observed forward rate curve {f(0,t) 0 <t < T}. Let
us now derive the values of a; for 0 < ¢t < T so that the model fits this initial

term structure.

Lemma 4.3.6. Suppose the short rate follows an extended version of the
Hull-White model as given in equation (4.8.17). In order for this model to

fit the initial term structure we require that
oy = f(0,t) + Bef(0,2) + B M'(0,2) + M"(0,¢), 0<t<T, (4.318)
where

M@t,T) = logE

t u N
exp {—-/ e K@) (/ Z:l'feK(")ades
u=0 3=0 J=1

+ / ZZeK(S)"/jdeﬁk) du}]
8=0 j=1 k=1

and where' once again represents the partial derivative with respect to t.

Proof. The value of the time ¢ zero-coupon bond p(0, t) is given by

p(0,8) = E [exp{— / t r(u)du}}. (4.3.19)

=0

We can re-write (4.3.17) as

dre=Y_1} [(at — Bir)dt + o dW, + ) wdeg"‘} , (4.3.20)
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Integrating (4.3.20) we get (see Rogers [1995])

t n n n
_ o K® / K(s) S Lo, S°3 prant
rT,=e ro + e asds+ Y Do dW,+ dN? )

j=1 i=1 k=1
(4.3.21)

where
t
k(t) = Budu,
u=0

which is known at time 0 as ; is a deterministic function of ¢ as stated above.

Inserting (4.3.21) into equation (4.3.19) we find

t u u 71
exp {— / e KW (ry + / eK®a,ds + / z K@ g;dw,
u s=0 s=0 ;

p(0,t) = E

+/-u Xn:ieK(’)vjdegk)du}] .
8=0

3=1 k=1

Writing

t u "
exp{M(t,T)} = E [emp{—/ e'K(")(/ ZlfeK(’)ajdwa

+ / ZZeK<B>7f’°ng'k)du}] (4.3.22)
s=0

we therefore get
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t t U
p(0,t) = exp {— / e ¥ Wrodt — / / e*®a,dsdu + M(0, t)} .
u=0 u=0 Js=0

(4.3.23)
We then have
_ 0Ologp(0,t)
t
= e *{r, +/ e a,ds} — M'(0,1t).
8=0
Differentiating once more we find
f’(O, t) = —,Btf(O, t) - ﬁtM,(O, t) +a; — M”(O, t) (4324)
Rearranging (4.3.24) gives us (4.3.18).
0O

The calculation of M(¢,T) in equation (4.3.22) in the Hull-White model,
can be seen to be somewhat more complicated than that in equation (4.3.13)
for the Ho-Lee model, and will therefore need to be calculated numerically.

Turning our attention to the zero-coupon bond prices we have the follow-

ing lemma:

Lemma 4.3.7. The time 0 value of the zero-coupon bond p(t,T) at time t is

given by

p(t,T) = poexp{M(t,T) — M(0,T) + M(0,t)}, (4.3.25)
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where
po = PO.T)
9(0,t)

Proof. We have that

p(t,T)=FE [exp {— [‘Ztr(u)du}] ,

and on inserting the short rate given by 4.3.20 we find

T u u T
exp {— / e KW (ry + / eXa,ds + / Z 5o dW,
u=t =0 s=0

j=1

p(t,T) = E

+ / ) f:zn:e’f@)yfdegk)duH.
8=0 "

j=1 k=1

Calculating this expectation gives us

T T u
exp {_ / e KWrody — / / K@, dsdu + M(t, T)}
u=t u=t J 3=0
T T U
= ezp {— / e KWrody — / / eX®) o dsdu
u=0 u=0 J 3=0

t t w
+/ e"K(“)rodu + / / eK(")a,deu + M(t, T)} )
u___o u=0 J3s=0

p(t,T)

and finally on inserting (4.3.23) we get (4.3.25).
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4.3.3 Market Completeness

In the previous section we assumed that the short rate was modelled under
the risk-neutral measure Q. The drawback of such an assumption is that in
practice we only observe data under the real-world probability measure P,
and so we are clearly going to encounter difficulties in parameter estimation.
An alternative would have been to assume that short-rate dynamics are given
by (4.3.1) under the measure P. However, this would lead us into other

difficulties, as we shall now see.

Modelling under P

Let us assume now that the short rate is modelled by (4.3.1) under the

measure P. Define as in theorem (2.3.2)

n t t
L = exp{-z [a—wowsias—1 [t vl
k=170 0
t n , ik
+/ G(S,Tsa)/\s)dws} H("/)Jk)Nt .
0 k=1

As in theorem (2.3.2), this Girsanov density will yield an equivalent measure

P under which equation (4.3.1) becomes

th = (,Lb(t, Tty },t—) - O'(t, Tty }/t—)g(ta Tt }ft—))dt

+O’(t, Tt, K_)th + 7r(t, Tty }/t—-) Yt)dNt, (4326)
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where W, is a P Brownian motion, and the transition intensities of the
Markov chain undergo the transformation M* — ¥y V k under which
the counting process NV; is defined. Using theorem 4.3.1, we can see that any
T-contingent claim Xr = f(Y7,rr) which has present value Fi(t,r,5) given

by (4.3.2), must solve the partial differential equation

Ft(ta Taj) + (”(t7 T’j) - O'(t, Tt,j)e(t,’f‘t,j))Fr(t,T,j)

1 LA
+50°(t, 1, ) Fre(t,7,5) + D NWRE{F(t, + (87,5, k), 5) = F(t,7,9)}

k=1

with final condition

F(T,rr,Yr) = f(r(T), Yr).

The difficulty here arises since 8(t,r:,Y;-) and the 17*’s are not specified
within the model. This therefore leads us to an incomplete market situation.
This is due to the fact that the short rate is not actually tradable, which
leaves us only with the risk-neutral bank account to try to set up replicating
portfolios. Therefore, all we will be able to achieve when pricing bonds whose
prices are determined by the short rate, or alternatively which are derivatives
of the short rate, is to ensure that given we have a portfolio of bonds under
which (¢, r;,Y;_) and the 97*'s can be determined uniquely, then we can
ensure that all other bonds are priced consistently. Alternatively, we can use
statistical methods similar to those in the next subsection to calibrate the

‘best’ parameter values given some objective function.
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Modelling under Q

As mentioned earlier, modelling under Q leaves us the problem of having to
calibrate the parameter values which are observed under P. We therefore
need to develop methods for determining the parameter values. For this we
shall use a similar methodology to that described in Bjérk [1997] and brought
in Bingham and Kiesel [2004].

The process of calibration of a term-structure model involves solving the

following system of equations:

B(0,T) = p(0,T;¢) (4.3.27)

for all T > 0, where p(0, T') are the observed bond prices and p(0, T'; {) are the
estimated values using the parameter vector ¢. In order to solve exactly for
¢ we require the number of parameters to be equal to the number of bonds in
the market. Theoretically, (4.3.27) represents an infinite system of equations,
and so only short-rate models with an infinite-dimensional parameter vector
will be able to give us an exact fit. We would therefore need to find the ‘best’
fitting parameter vector using a given objective function.

In practice however there are not an infinite number of bonds. Suppose
‘there are m bonds in the market, and we choose to model the short rate using
an extension of the Hull-White extended Vasicek model, where the short-rate

dynamics are given by
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n n
dry=Y I |(o/ = Fr)dt + o?dW, + Y _ +*dNi* (4.3.28)
j=1 k=1
for j = 1,...,n. This means the parameter vector { contains 3 parameters

for each state, o/, 3 and o7, as well as n parameters for each transition
possibility, 49* for k = 1,...,n. This leaves us with a total of 3n + n?
parameters to solve for. So if we have that m = 3n + n? then there will be
an equal number of parameters and assets (and so too equations), and there
can therefore be an exact fit. If we have more or less bonds on the market,
then the model will not even price current bonds on the market correctly, let

alone other derivatives.

4.4 HJIM Models

There are many well-documented drawbacks in using short-rate models, such
as the modelling the yield curve which is an infinite-dimensional space using
only one factor which will generally prove to be inadequate, as well as the
assumption that the yields of all maturities are perfectly correlated. These
deficiencies as well as others have motivated the development of models which
contain more than one explanatory variable.

At the other extreme, the Heath-Jarrow-Morton (HJM) methodology
tries to improve on the short rate models in the previous section by directly

modelling the evolution of the entire yield curve simultaneously. We will now
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apply this methodology to our Markov chain jump-diffusion model.

We will model the forward rates as having the following dynamics:

df(t,T) = a(t, T, Y- )dt + D s(t, T, Y;_)dW? + 4/ (t, T, Vi, Ya)dN, (44.1)

b=1

for all T < T*, where the W2’s are Brownian motions under the objective

probability measure P. The bond-price dynamics are then given by

dp(t,T) = p(t,T) |m(t, T, Y. )dt + > w(t, T, Y:_)dW} + (¢, T, Vs, Vo)V, |,
b=1

(4.4.2)

where using proposition 4.2.3 we have

mt 1Y) = () +AGTY) +LISEDIE  (443)

w(t, T, %) = So(t,T,Y), (4.4.4)
(t,T,Y:-,Y,) = exp{l'(t,T,Y;_,Y})} -1, (4.4.5)
and
T
ALTY,) = — / alt, u, Y;_)du, (4.4.6)
u=t
T
ST.Y.) = — / sult, u, Vi )du, (4.47)
u=t

T
DT YY) = - [ 27t Ydu (148)

=t
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4.4.1 Martingale Measure

For a numéraire we shall take the bank account process given by

t t
Br = e:cp{/ f(u,u)du} = emp{/ r(u)du}.
u=0 u=0
We must now find a measure so that

p(t,T)

2(7) =B

(4.4.9)

is a martingale for every 0 < T < T*, where p(t,T) is given by (4.4.2) under
the probability measure P. The theorem below explores the existence of such

a measure.

Theorem 4.4.1. Assume that the family of forward rates is determined by
(4.4.1). Whilst in state j, let (N7*,...,Ni™) be an n-point process with in-

tensities (M!,..., M), where
N* = [{u;0 <u < t,Y, =k, Y, = j}|.

Let (47, ...,97™) be an F; predictable process where ¥ > 0 V j, k so that

V t < T we have

n n t
ik y 3k 7
ZZ/u=Oz/ﬂ NI du < o0.

j=1 k=1

Suppose there exist predictable processes ©(t, T, Y;)™! which satisfy the usual

regularity condition (see theorem 2.8.2). Define
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t n n n )
L= exp { .y !— (Z(l - N+ gneuuﬁ) du+t @;m(u)] } [T,
u=0 ;) k=1 k=1

where

EF[L)=1, Ly=1.

If we also have for each state j

d
at,T,5) = Y su(t,T,5){Ss(t, T, 5) + 6u(t, T, 5)}

=1

n
=Y XRS5, k)exp{T! (¢, T, 4, k)}  (4.4.10)
k=1
for 3 =1,...,n, then there exists a risk-neutral martingale measure.

Proof. From theorem (2.3.2) we can see that under such a measure Q we
induce a change both in the drift and the transition intensities of the Markov
chain. Under this probability measure we can re-write (4.4.2) whilst in state
jas

dp(t7T) = p(th) (m(t’Taj)_va(t,T)j)gb(taT’j)dt)

r

+ ) u(t, T, §)dWe + Y _°(t, T, 5,k)dN?* |, (4.4.11)
b=1 k=1
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where

E[dN7*] = Mkyikdy,

Defining
dN{* = dN7* — Nkykdy
and similarly

dN, = dN, — i i I3 \kyikdt,

j=1 k=1

we see that V; is a martingale under the measure Q. We can now express

(4.4.11) as

dp(t’ T) = p(ta T)[(m(t7 Ta .7) - ‘: 'Ub(t1 Ta j)gb(ta T1 .7) + Z )‘jk"/)jk"yp(n T, ja k))dt

b=1 k=1

+ w(t, T, 5)dWe + D 7P(, T, 5, k)N,

b=1 k=1

From (4.4.9) we can see that
dZ, = dB;'p(t, T) + By 'dp(t, T),

which on applying It6’s lemma can be written in terms of the forward coef-

ficients as follows:
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N : - . :
dzZy = Z HA(t,T,J)+§||5(t,T,J)I|2—Zsb(t,T,J)Gb(t,T,J)

b=1
+ W (exp{T/ (¢, T, 5, k)} — 1)} dt
k=1

+ > Su(t, T,5)dW; + Y (ep{T(t, T, 5, k)} — 1)sz"‘] :
b=1 k=1

For Z; to be a Q-martingale we therefore require that

L1 - . .
A(t,T,]) + EHS(t,T,Yj)Hz - Zsb(t’ T)J)eb(trT’J)
b=1

# 3N eap(T (T30} - 1) = 0, (4412

k=1

and on differentiating with respect to 7" we are left with the condition

T r
sb(t7 U, J)du + Z Sb(t’ T’ J)gb(t’ Tv])

=t b=1

—a(t,T,j) — sp(t, T, 7
7.5~ S a)/u

— > NI (4, T, j, k)eap{TY (¢, T, 5,k)} = 0.

k=1

Rearranging gives us (4.4.10).
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In the HJIM model all objects are specified directly under the risk-neutral
measure Q. In order for us to do this we must set §; = 0 Vi, as well as

¥/* =1 Vj, k. We are then left with the following model.

Corollary 4.4.2. (Extended HIM) Assume we are modelling under the risk-
neutral measure Q, and that the forward-rate dynamics are given by

df(t,T) = at, T,Y,-)dt+ > si(t, T, Yo )dWP++/ (¢, T, Yo, Vi)dN,. (4.4.13)

b=1
We then have the necessary drift condition whilst in state j given by
T

so(t,u, )du—Y _ Ny (¢, T, 5, k)exp{T/ (¢, T, j,k)}.
=t k=1

a(t,T,j) = ZSb(t, T,j)/
b=1 v

(4.4.14)

Integrating the forward-rate dynamics, the short-rate process can then be ez-
pressed as

r(T) = f(O,T)+/T a(u, T, Y,-)du + i isb(u,T,n_)dW3

u=0 u=0 p_

T
+ / Y (u,T,Y,-,Y,)dN,, (4.4.15)

=0

and the bond-price dynamics are given by

dp(t,T) = p(t, T)[redt + > Sy(t, T, Yo )dW? + > 7P(t, T, j, k)dN7*].
b=1 k=1

(4.4.16)

a
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4.4.2 Forward Rate Measure

For interest-rate models it is often more appropriate to use a bond maturing
at date T* with price p(¢,T*) as the numéraire. The associated martingale
measure using this bond as a numéraire is then called the T*-forward mar-
tingale measure Q, such that under Q* the process

p(t,T)
p(t,T*)

Z*(¢t,T) = (4.4.17)

is a martingale for all T' < T*, where p(¢,T) is given by (4.4.2) under the

probability measure P.

To find such a measure we can amend theorem 4.4.1 as follows :

Theorem 4.4.3. As in theorem 4.4.1, the Girsanov density L; for the change
of measure to Q* induces a change in the drift of 6,(t,T,Y;-) for each
Brownian motion b, as well as change in the transition intensities from A%
to ¥ikM*.  The necessary drift condition for the process Z*(t,T) given by
(4.4.17) to be a Q*-martingale now becomes

a(t, T,_]) = Xr: Sb(t, T,J){Sb(T) T*aj) + eb(t’ T:J)} +
b=1

i Ajk"/)jk(’yf(ta ij’ k)exp{rf(ta Ta j’ k)} -

k=1

v (¢, T*, 4, k)exp{T/ (¢, T", 5, k)}). (44.18)
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Proof. As in theorem 4.4.1 we have

dp(t,T) = p(¢,T)

{m(ta Ta .7) - i 'Ub(t, T’j)eb(t, Ta .7)

b=1

+ > MRk (t,T, j, k)} dt

k=1

£ wt T + 3P T k)dfvzk] |

b=1 k=1

From equation (4.4.17) we can see that
dz; = dp™'(t,T*)p(t, T) +p~" (t, T")dp(t, T),

where on applying Ité’s lemma and writing in terms of the forward rate

coefficients given by (4.4.3), (4.4.4) and (4.4.5) gives us whilst in state j
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iz = 7 |{A0T.5) - AT 5) + FUSG TP - IS T IP)

S (6T, 5) = St T )BT, 5)

b=1

>0 WrpHenp{ (4,7, ) — exp{T (¢, T k)})} dt

k=1

+ {S(t:, T, ) = So(t, T",5)}dWy
b=1

k=1

+ }ﬁ‘_,(ewp{l“f (t,T,5,k)} — exp{T* (¢, T, 5, k)})dﬁfk] :

For Z} to be a Q-martingale we therefore require that

A T,5) - AT )+ 518 TP - 18T, HIP)

- i(s,,(t,T, ) = Ss(t, T, 5))86(t, T, 5)

b=1

+ Zn: Xy exp{TY (t, T, j, k)} — exp{T/(t, T*, 4, k)}] =0,

k=1

and on inserting (4.4.6), (4.4.7) and (4.4.8) this condition can be expressed

as
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T+ 2 r T*

1
| attuiyu+; -S8ET) [ sltus)du
U b=1 u=T

=T

r T
Z / Sp (t7 u, J)du
b=1 u=T

3N Hep(T (4T, 5,00} — exp{T (4, T, 3, K)}] = O

k=1

Differentiating with respect to T we are left with the condition

T

T T+
a‘(t1 T7.7) +Zsb(ta TaJ)/ sb(tauaj)du_ Zsb(t’T’j)gb(tyT,j) +
b=1 u=T b=1

D O NRPEY (¢, T, 5, Yo)eap{T/ (¢, T*, 5, k)} — 7/ (&, T, 5, k)exp{T (¢, T, j, k)}] = 0.
k=1

Rearranging gives us (4.4.18).

O

Once again we assume for the HIM model that all objects are specified
directly under the risk-neutral measure Q* so that §; = 0 Vi, as well as

ik =1 Vj, k. We then have the following drift condition:
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Corollary 4.4.4. The HJM drift condition whilst in state j under Q* is
given by

T

ot,T,5) = Y s(t,T,5)Sy(T,T"5)
b=1

+ >N (4, T, 4, K)eap{L (8, T, 5, k)}

k=1

—y (¢, T, 5, k)ezp{T? (¢, T*, 4, k)}), (4.4.19)

and we are then left with the Q*-martingale

dz* = Z°[)_{S(t, T, ) = Sult, T",5)}dW;

b=1

+3 eap(TY (4,7, 3, 1)) — exp{T! (1, , )AVEY].
k=1

O

We have developed the main mathematical machinery that we will use
to price these interest-rate derivatives. Let us now turn our attention to

developing pricing formulas.

4.4.3 Derivatives Pricing

The first and most important derivative that we need to price is the zero-

coupon bond. As was mentioned earlier, we can price these bonds by the
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following formula:

pt,T)=F [ea:p {/uztr(u)du}] , (4.4.20)

where the process r(u) is given by (4.4.15). Finding the solution to this
will often be very difficult, which will mean that we may have to resort to
using numerical methods. Alternatively, there may be situations where the
HJM model will correspond to a particular short-rate model, and so we may
then use the pricing techniques developed in the previous section. We shall

now give a couple of examples which can be translated into short-rate models.

Example 4.4.5. Suppose we have parameter values
so(t, T,3) = spj x exp{—r*(T —1)}, (4.4.21)
’yp(ta Ta Js k) = Pyjk X eIL‘p{—K,’Y(T - t)} -1, (4422)

where k° > 0 and k7 > 0 so that the volatility and jump sizes are exponen-

tially damped. On differentiating (4.4.5), we see that

%’y”(t, T,Y;,_,Y)) = — (¢, T,Yi_, Vi)exp{T/ (¢, T, Y:_,Ys)},  (4.4.23)

and together with (4.4.21) and (4.4.22) we can see that that the drift in state

J given by (4.4.14) becomes
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a(j,t,T) = Z spjezp{—k°(T — t)} /=t spjexp{—k°(u — t)}du

+K7 Z Meytkerp{~k7(T —t)}

k=1

= —eap(—# (T~ O)}[1 — eap{~r*(T - (Y o3,)
b=1

+K"exp{—K"(T — t)}(z": kiR, (4.4.24)

k=1

Using proposition 4.2.1 we see that

%1, Y, Vi)

f —
v (t,T, Y;_,Y;) 1 _'_fyp(t,T, YZ—, Yi)

= K.

The forward dynamics in (4.4.13) can therefore be written
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FET) = |-emp{—k(T - O}1 - eon{-w'(T - OH(D" %)
b=1

+ n”exp{—n”(T—t)}(i)\jk'yjk) dt

k=1

+ ezp{—£*(T —1t)} Z sp;AW?

b=1

+ KYdN§*.

The short rate is therefore given by

no= o+ [ [%exp{—n’(t—u)}u—ezp{—n”(t—u)}](zzfzsz,j)

=0 j=1 b=1

+ KYexrp{—kK"(t — “)}(Z Z IINk3kY [ dy

§=1 k=1

t n r
+ / exp{—k°(t —u)} Z Z sy ;dW?
u=0

= j=1 b=1

+ I€7Nt.

Denoting
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m) = £+ [ [empl-r(e - w1 - emp{-n(e ~H(> 3 ek

+ Kexp{—K(t — u)}(z Z IIN*438) | du,
3=1 k=1
we get
t n r
o= mt)+ [ eap{-r(t-w} > Y Eonsd:
u=0 j=1 b=1
+ f‘&‘yNt,
which finally gives us
dry = [m(t) — &'ri)dt + Y 55, dW + K7dNV,, (4.4.25)
b=1

where

- 0 s .

my = —ms+ K'my+ KK N,

ot

We can see that (4.4.25) is an extended version of the Hull-White (extended
Vasicek) model given in equation (4.3.17). We can therefore use the methods
described in section 4.3.2 to price zero-coupon bonds where the short rate is

described by this model.
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Example 4.4.6. In this example we will set the volatility to be dependent
only on the state on the Markov chain, but will allow the jump sizes to be

exponentially damped. We have the following parameter values:

(6, T,5) = Sbg, (4.4.26)

The drift in state j given by (4.4.14) becomes
a(j,t,T) = (T — 1)) _st;+ Y Meafteapl—*(T - 1)). (4.4.28)
b=1 k=1

Using proposition 4.2.1, we see that

%t T, Y-, Yh)

f = -
Y (t,T, Y;—’}/t) 1 +")'p(ta T, }/"-"Yt)

Jjk

The forward dynamics in (4.4.13) can therefore be written as

dft,T) = {(T—-1)Y st;+ > No*expl—y*(T - t))}dt

b=1 k=1

+ s dWE+ Y y*dNG .
b=1 k=1

The short rate is therefore given by
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n T

o= 100+ [ (-0 Y Bedy+ 3o Nenply( - )}

j=1 b=1 k=1
t

[ S maamis [ prap
u=0

j=1 b=1 u=0 g

Setting

m(®) = 10,0+ [ (=033 Hely + 3 W eapi—r(t - wildu
u=0 k=1

j=1 b=1

we get that
t n T ) . t n . ..
Ty = m(t) + / Z ZI&SdeWS +/ ’ijngk,
u=0 j—1 p=1 u=0 k=1
which finally gives us
dry=m/(t)dt+ »  sp;dWP + ) y*dNE*. (4.4.29)

b=1 k=1

We can see that (4.4.29) is an extended version of the Ho-Lee model given in
equation (4.3.9), and bond prices can be priced using the methods described

in section 4.3.2.
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Once we have obtained the price of a zero-coupon bond, we may then
wish to price call options on this bond such that at time 7" the payout is

given by

Xt =max[p(T,T*) — K, 0].

The time O price of this derivative will be given by
Co = E[p(0,T)X7|Fo],

where the expectation is under the T-forward martingale measure Q7. We

can then write
Co = p(O, T)E[p(T7 T*)]-A] - Kp(oa T) QT(A)a (4430)

where 14 is the indicator variable for event A where A = {w : p(T,T*) > K}.
We have the following proposition (see Bingham and Kiesel [2004], Geman
et al. [1995)):

Proposition 4.4.7. Let the value of a contingent claim Xt discounted by
the numéraire Z(t) be a QZ-martingale. Suppose we have another numéraire
Y (t) such that Y (t)/Z(t) is also a QZ%-martingale. There then ezists a prob-
ability measure QY defined by the Radon-Nikodym derivative

_dQy _ Y(@)
™=3QZ T Y0)X(0)

such that
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X X
O
Using proposition 4.4.7 we can now write the following very useful result:
Corollary 4.4.8. The time 0 price of a call option on the zero-coupon bond
(T, T*) is given by

Co = p(0,T)Q"™ (4) — Kp(0, T)Q"(4), (4.4.32)

where QT and QT are the T and T* forward martingale measures respec-

twely, and A = {w : p(T,T*) > K}.

Proof. Using proposition 4.4.7, where we use the 7" and 7™ bonds as

numéraires, we have that

p0T)Eqr (AT =507 e [BTA] = 00,7007 ()

p(T,T) *

where p(T,T) = p(T*,T*) = 1, and which on replacing into (4.4.30) gives us
(4.4.32).

a

We are now left with the task of calculating QT(A) and Q7" (A). As in
(4.4.17) we have



4.4 HJM Models 155

z+,1) = 26T (4.4.33)

p(t,T*)’

which was shown in corollary 4.4.4 to have QT -dynamics

dz*(t,T) = Z°(tT) | _{S(t,T,Yeo) — Sy(t,T*, o) }dW;

b=1

+Y (ezp{T(t, T, 5,k)} — exp{T/ (¢, T*, 5, k) dN*| .
k=1

(4.4.34)

We then have that

T T
> AS(u, T, Yar) = So(w, T*, Yo ) Yot

=0 p=3

zZX(T,T) = Z*(O,T)exp[—%/

T T
+/ {Sb(u’, T’ Y’u.-) - Sb(’U/, T*aY'-u—)}de:

=0 p=1

+/u:0 i ilog(ea:p{l‘f(t, T, j,k)} — exp{T (u, T*, j, k)} + 1)dN7*].

7=1 k=1
(4.4.35)

Using the following manipulation:

Qo) > K) = QU (AT < 1)

™ * * i
rEm <) =@ < 5)

K
(4.4.36)
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together with (4.4.35), we are now able to calculate Q7" (A) using the pro-

cess Z*(T',T*). We shall see an example later where this result will be useful.

Similarly we can write

Z(t,T) = ’;((tt’:";)), (4.4.37)

which has QT-dynamics

dZ(t,T) = Z(@T*) |D _{S(t,T",Y:c) — S(t, T, Ys-) }dW;
b=1

+ Y (exp{TY (¢, T, 5,k)} — ezp{T’ (£, T, 5, k) AN7* | ,
k=1
(4.4.38)
so that
T

> {Su(w, T*, Vo) — So(u, T, Y, )Yt

=0 p—1

2(T,\T) = Z(0,T")exp [—-;- /

T T
Y S T Vo) - S T Ve Y

=0 p—1

T n n -
+ / > > log(exp{T (¢, T, j, k)} — exp{T’ (u, T, 5, k)} + 1)dNZ¥| .

u=0

i=1 k=1

(4.4.39)
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We can also write

A 1¢.1% ) WU
QeI 2 K) =" Eral > )= QT ETT) 2 k), (14.40)

and so we can once again use (4.4.39) together with (4.4.40) to calculate
QT(A), only this time using the process Z(T, T).
Whether or not such calculations are easy to compute will depend on our

choice of parameters. We shall now consider a third example where we will

use the formula in corollary 4.4.8 to price call options on the bonds.

Example 4.4.9. Suppose this time we have parameter values

Sb(t,T,j) = S8bj» (4441)

AP(t, T, 4, k) = (T —1t). (4.4.42)

We can see from (4.4.7) that

T
Sb(taT’j) = _/ sb(t,u’j)du

=t

= —Sb,j(T - t), (4443)

and similarly form (4.4.5) that

exp{l/(t,T*,5,k)} = +*(t,T,jk)+1

= AHT -t +1. (4.4.44)
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Once again we have

p(t,T)’
and replacing (4.4.43) and (4.4.44) into (4.4.38), we get that under the mea-

Z(t, Tt) — p(th*)

sure QT, the dynamics of Z(T,T*) becomes

dZ(t, T = Z(t, T) [Zn: ET: Igsb,j(T - T*)thb + i Zn: ’yjk(T* _ T)dek],

j=1 b=1 =1 k=1

Similarly we have

where from equation (4.4.34) we find that Z*(¢, T*) has dynamics

d2@,T*) = Z@,T)D. D Hspi(T* = T)dW +> Y (T — T*)dN*].

j=1 b=1 Jj=1 k=1
In appendix C we develop a methodology to calculate the probabilities QT (p(T, T*) >
K) and QT"(p(T, T*) > K), where the result is given in corollary C.0.12. We

can then price a call option on the zero-coupon bond p(T', T™*) using equation

(4.4.32).

4.4.4 Market Completeness

We will now once again explore the question of market completeness. As

discussed in section 4.3.3, the bond market theoretically contains an infinite
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number of bonds in which we can trade. However, unlike in the case of
the short-rate models, HIM models have an infinite number of parameters,
and so potentially there can be a complete market situation. In practice
however we have a finite number of bonds, and so we will try to discover the
conditions necessary for such a market to be complete, in the sense of there
being a risk-neutral measure and lack of arbitrage when trading in only a
given set of assets. To do this, we shall expand on the methodology set out
in Bingham and Kiesel [2004].

For the market to be complete in this sense, we require there to be unique
solutions for 8, for b = 1,...,r and for ¥* for k = 1,...,n in equation
(4.4.12). Let us assume there are m bonds in the market with maturities
t<T'<T?<...<T™ We therefore have the following series of equations,

where we use the subscript ¢ where ¢ =1, ..., m to denote the bond number:

1 - . ik, ik . _
A+ ISP+ Y Suablo + Y Wy (eap{DY(t, T, 5,k)} = 1) = 0. (4.4.45)

b=1 k=1

Define



4.4 HJM Models 160

@;XI = {6b}o=1...rs
A;‘XI = {N}o1n,

‘I’?Xl = {¥* 1.,

ST = {Sipli=1..m b=1..r,
G = {exp{T/(t, T, 5,k)} — 1}ic1..m k=1..m)
M™ = {4+ %||Bi|lz},~=1...m.

J

Equation (4.4.45) can now be written in matrix form as
S;0; + G;D(A;)¥; = -M;, (4.4.46)

where once again D(a) denotes the diagonal matrix with the vector a down

the principle diagonal. Let us define the m x (r 4+ n) augmented matrix as

U, = [ S, :G;D(A)) ] (4.4.47)

mX(r+n) mxr mxn

Similarly define the (r +n) x 1 augmented column vector V; as

©;
V; =
(r+n)x1 v,
(r+n)x1

We can now re-write equation (4.4.46) as
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In order for there to be unique processes ®; and ¥; and hence a unique V,
we therefore require that for all j the matrix U; be invertible. This therefore

necessitates that

m = r+n, (4.4.48)
m = Rank(U;). (4.4.49)

We are then left with
Vj == —Uj_le. (4450)

4.4.5 Replicating Portfolios

We have so far discovered the conditions necessary for the existence of a
unique risk-neutral measure when there are a given number of assets in the
market. We shall now consider the extent to which contingent claims can be
replicated using these assets.

Let us try to replicate a contingent claim X7 where Xt € Fr is bounded.
We assume that we are able to invest in m bonds with maturities t < 7¢ <
T? < ... < T™ as well as the risk-free bank-account process. We make
the restriction that T' < T?, so that throughout the time until the claim is
effected we can trade in all m assets. At time ¢ we hold a portfolio ;, € R™*1,

where
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(pt = (nt’¢%7""¢;n)1

where 7, represents the holdings of the risk-free bank account whilst ¢} is the
holding of the bond with maturity T%. 7, and ¢: are predictable and bounded
for t < T and for all ¢. The value of this portfolio at time ¢ is given by
m . .
VP =nBi+ ) éip(t, T,
i=1
or alternatively the discounted value process
~ m . .
TR =n+ Y ¢, T) (4.4.51)
i=1

where

A, T%) = B 'p(ty).

The portfolio @, is said to be self-financing if

dv® = f: Gidp(t, T"). (4.4.52)

i=1

We can re-write (4.4.16) as

d n
dp(t—, T%) = p(t, T)Y_ Si(t, T, Yo )AW; + ) _ eap{T (¢, T, j, k)} — 1)dN{"].

=1 k=1

(4.4.53)
So in order to be able to replicate X7 we need to find solutions for all the

s such that
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t m d -
Vo= Tok [ S GBET)Y ST V)W,
8=0 =1 i=1

b [ 3T Y enplr 6 T, k) - DN

=0 j=1 k=1
Vr = Xr,

where

Xr = B;'Xr.

Under the risk-neutral measure Q we have the following martingale:

M, = B[X,|F, (4.4.54)
which can be re-expressed using the martingale representation theorem as

t T t n .
> uldW, + / > gitdNiF, (4.4.55)

M, =M, +/
=0 k=1

5=0 1

where the v’s and ¢’s are predictable. Setting
Vo = My
and

o= @55, TS(s, T, Ys) b=1,...,r,

gg'k = iﬁ(s,’[’i)ezp{l"f(s,T,j, k)} - 1) k= L...,n,
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we therefore have a system of (r+n) equations. If we have that m =r+n
then a solution exists, and moreover if equation (4.4.49) holds, then it is

unique.

4.5 Credit Derivatives

So far we have only considered bonds where the payoffs are guaranteed. We
will now venture into the world of credit derivatives where the payoffs are
subject to default risk, and whose price will therefore be determined by the
credit-worthiness of the institution providing the payoff. We will look at two

such instruments: corporate bonds and credit default swaps.

4.5.1 Corporate Bonds

Corporate bonds are bonds issued by corporations much like the government
bonds discussed in earlier sections. The main difference is that buying a
corporate bond, one runs the risk of the corporation defaulting on the bond
or any of the coupon payments. We will therefore need to extend the model
derived in the above sections to encapsulate this risk.

Working within the HJM framework of section 4.4, we can model the

behaviour of the corporate bond prices as follows:
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me(t, T, Y,_)dt + 5, v(t, T, Y, )dW} + v°(t, T, Y;_, Y;)dN,,

dp°(t,T)

elt T 1-R TaTa Yr— )
pe(t,T) ( )

0,

for all T < T*, where the Wi’s are Brownian motions under the objective
probability measure P. We have introduced a stopping time 7 which is the
time when the bond defaults (7 = oo if no default occurs), at which time
the bond loses a proportion of its value given by R(r, T, Y;_), and henceforth
remains at this value. Later on we will express this model as being similar to
the government bonds in the previous sections, only with an additional state
in the market corresponding to default. For now though we will continue with
the above formulation, which will enable us to develop necessary conditions
for the existence of a risk-neutral measure, when these corporate assets are
introduced into our already complete bond market.

Assuming default has not occurred, we can express the dynamics of the

corporate bond price by

dp°(t,T) = p°(t, T){m"(t,T,Y:-)dt + Y vi(t, T, Y, )dW;

b=1

+7c(t1 Ta Y;-—) Y;‘)dNt - [1 - R(t: Ta }ft—)]dUt}’ (451)
where U; is the default indicator variable

U, = 0  no default,
711 default.
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Let the probability of default in the interval [t,t + dt] whilst in state j be

given by

PldU; = 1]Y; = j] = d’dt.

We can therefore write

dU, = dU, — ddt,

so that U, is a martingale.
Let us assume we have a probability measure Q under which the bond
market in section 4.4 is a martingale, as described in theorem 4.4.1. Define

p°(t,T)

z°,T) = 5

which has dynamics whilst in state j (assuming the bond has not defaulted)

dz¢ = dB;p°(t,T) + By ldp(t, T)

_ 7 [{ mry 4 me, T, ) + 3 N T K) - [L - BT, Yt-nd"} at
k=1

+ Y Vi, T, 5)dWE + ) ¥°(t, T, 5, k)dN* — [1 - R(t, T, Yt_)ldfft] :
b=1 k=1

(4.5.2)
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where Nt, W, and U, are Q martingales. Let us define the excess return of

the corporate bonds over the government bonds by
m(t, T, Y;-) = m°(t, T, Y,-) —m(¢, T, Ye-),
and similarly for the jumps
V(¢ T, 5, k) = v°*(t, T, 5, k) = +*(t, T, j, k).
Equation (4.5.2) can now be written as

dz¢ = Z°{{-re+m(t,T,5)+m@,T,Y:-)

+ > NP (4T, 5, k) + 47t T, 5, k)] — [1 = R(t, T, Yo )&}t
k=1

+ 3 g, T, 5)dW; + > 7°(t, T, 5, k)dNi* — (1 — R(¢, T, Y;-)dUr).

b=1 k=1
(45.3)

We can re-write (4.4.12) with the HIM conditions 6, = 0 Vb and 9% = 1

Y j,k to give us

m(t,T,5) —re+ »_7*(¢,T,5,k)dN{* =0,
k=1

so that for (4.5.3) to be a martingale we require
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m(t,T,Y:-) + > _ N3, T,j,k) = (1— R(t, T,Y:.))d =0.  (4.5.4)
k=1

So given the excess returns and jumps of the corporate bonds over the govern-
ment bonds, we can use (4.5.4) to calculate the implied default probabilities
of the bond. Alternatively, the default probabilities may be exogenous in the
model, and (4.5.4) can be used to derive the excess return required by the
corporate bond over the government bond.

To price the corporate bonds and their derivatives we shall express the
bond dynamics in a slightly different way. Our model is currently repre-
sented by an n-state Markov chain which has transition intensities A** when
transiting from state j to state k. Let us add another state which we will
enumerate as state n + 1 and which will correspond to default. This state
will clearly be absorbing as once defaulted the bond can no longer be paid,

so we have that

A =0 V3
We also have that

7p(ta Tajan+ 1) = —(1 - R(tsTaJ))

Given this formulation, we can now readily use the methodologies developed

in section 4.4 to price derivatives of these bonds.
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4.5.2 Credit Default Swaps

Credit default swaps (CDS) are used by companies or investors to hedge
their credit exposure to other companies. The investor will pay a certain
fee say annually, and in return will receive a payout should the company he
has insured against default on their payments. Let us illustrate this with an
example with a CDS which specifies physical settlement. For other types of
CDS'’s see Hull [2003].

Suppose Barclays is exposed to £100 million worth of exposure to the
Ford Motor Company, and wished to completely hedge this risk. They can
therefore buy a CDS on Ford from a CDS seller, say Lloyd’s, for which they
will pay z basis points (hundredths of a percent) of the 100 million notional
principal of the bond per year. Should Ford default on their payments, Bar-
clays will be reimbursed for £100 million by Lloyd’s. This annual premium
is paid at the end of the year, and should Ford default during the year then
Barclays would have to pay the proportion of the premium accrued up until
that time, e.g. should default occur after 1 month they would have to pay 75
basis points. They would then also immediately get paid their £100 million,
and Lloyd’s would receive any recovery payments Ford paid out.

To value such swaps, i.e. the annual premium charged by the seller,
we need to calculate the expected present value of the premiums paid by
the buyer, as well as the expected present value of the payout by seller,

and subsequently employ a risk-neutral argument to equate the two. Let us
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define:

N Notional amount of the CDS.

T Length of the CDS in years.

z; Premium charged for period year i — 1 to year 1.
R Recovery amount.

p: Probability of default not having occurred up to time ¢.

We will assume that the probabilities of default are those under the risk-
neutral measure developed in the previous section. Also, as with the corpo-
rate bonds above, we will take the recovery rates to be a function of the time
the default took place, the length of the CDS and the state the market was
in at the time of default, so that R = R(¢, T, Y;—) where we use Y;_ to show
that it is predictable. We again denote U; as the default indicator variable
given by

U = 0  no default,
711 default.

The probability of default in the interval [t,¢ + dt] whilst in state j is given
by

PldU; = 1|Y; = j] = d’dt.
We can separate the expected present value of the premiums paid by

the buyer, into the sum of end of year premiums paid where default hasn’t

occurred and the premium payment due on default. So for year ¢ we have
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E[End of year premium] = Bi' iz

for i =1,...,T, where B, is the expected value of the bank-account process

at time {. We also have
1 A
E[Default premium] = / B piuy—(1 = Piru))uzidu,
u=0

for i = 1,...,T. The expected present value of the payout by the seller of
the CDS is given by

1
E[Payout] = / BRupG+w-(1 = pray)[1 = R + w4, T, Yiiyw)-)| Ndu,

u=0
fori=1,...,T, where
R(i+u,T,Y:) = E[RG +u,T,Y.)].

Assuming that probabilities of default are under a risk-neutral probability

measure, we get for each year ¢ the premium is given by

_ Juco BrnPii+u)-(1 = pasw)l = RG +u, T, Yiyu)-)] Ndu
B p; + f 1=0 B;LLP(Hu)-(l - p(i+u))U’du

(4.5.5)

T

To evaluate (4.5.5) we firstly begin by conditioning on the jump sequence
between times 0 and T'. Suppose the model starts in state 7;, and up until
time T there are z jumps, after each of which we are in state j; for | =

1,...,z+ 1. We can express this sequence by the set J = (41,1, - -, Jzt+1)-
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We therefore have the probability of being in state k£ at time ¢ given by p{‘k

whose value is given in equation (1.3.5). We can thus write

n . t n .
pe = p(1= plitdvd) = / 3 pitdtat
k=1 u=0 k=1
= > PP, (4.5.6)
k=1

where Ptjk is the total time spent in state & up to time ¢ given that we are

currently in state 7, and is given by equation (1.3.6). For the bank-account

t n
B,=E [exp{/ Zlgrjdt}] .
u=0 j=1

Specifying the recovery rates as

process we have

R(t,T,j) = R?
for j =1,...,n so that it is dependent on the state alone, we get

R, T,j) = f: mR. (4.5.7)
j=1

Inserting (4.5.6) and (4.5.7) into (4.5.5) we obtain the value of 2, where the

superscript 7 is to denote that this is the premium conditional on the jump
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sequence J. To obtain the the value of the premium we must then sum over

all jump sequences to get

zi=Y Y ...y alphe(T),

=0 j1=1 Jz=1

where p?t-J=(T') is the probability that we obtain jump sequence (j; ... j;) in

time T as is defined lemma 1.3.3.



Chapter 5

Numerical Methods for

Interest-Rate Models

5.1 Introduction

We shall now develop methods for pricing interest-rate derivatives for the

short-rate models and the HIM models discussed in chapter 4.

In section 4.3 we developed various short-rate models and derived formu-
las for pricing zero-coupon bonds, as well as partial differential equations
that need to be solved to price other derivatives. In this chapter we shall
develop numerical methods for pricing such derivatives. For the short rate
we will consider both models developed in section 4.3.2. Firstly we have the

Hull-White extended Vasicek model given by equation (4.3.17), where when

174
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in state j the short rate given by r; has dynamics

dr, = (e — Bire)dt + o;dWs + Y y*dN{* (5.1.1)
k=1
for j = 1,...,n, where a;, §; and o; are all functions of the current state

Jj. Secondly, the Ho-Lee model is given by equation (4.3.9), where when in

state j the short rate has dynamics

dry = ajdt + 0;dW, + Y y*dN7*. (5.1.2)

k=1

Derivatives of other short rate models can be priced using similar techniques

as will be developed for these models.

In section 4.4 we developed an HJIM model using our MCJD framework. It
was shown how certain HIM models can be expressed as short-rate models,
and so in these instances derivatives can be priced using the same method-
ologies as for the short-rate models. It was also shown in section 4.4 how we
may price derivatives using techniques involving the forward-rate measure.
We shall now develop numerical methods for pricing these derivatives. For
much of the numerical work on HIJM models we will follow Clewlow and
Strickland [1998].

The model we shall be considering is that described in corollary 4.4.2,
where under the risk-neutral measure Q the forward-rate dynamics are given

by
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df(t,T) = a(t,T,Y:-)dt+ Y _ si(t, T, Y2 )dWP +9/ (¢, T, Y., Y;)dN,, (5.1.3)
b=1

and where the necessary drift condition whilst in state j is

T n

T
at,T,5) = s(t,T,5) / sy(t, u, j)du—Y _ X4/ (¢, T, 5, k)exp{T’ (¢, T, j, k) }.
u=t

b=1 k=1
(5.1.4)

The short-rate process is then given by

T T T -
r(T) = f(0,T)+ /_Oa(u,T,Y,,_)du+ / > sy(u, T, Y, )dW!

=0 p=1

T
+ / o (u, T, Yoo, Y)d R, (5.15)

=0

and the bond-price dynamics was shown to be

dp(t,T) = p(t, T)[redt+)_ Sp(t, T, Y, )dWP+> _+*(t,T, 5, k)dNi¥], (5.1.6)

b=1 k=1
where all the terms are defined in section 4.4.

As outlined in Clewlow and Strickland [1998], we may value at time t a
call option with expiry T on the bond maturing at time T, where T' < T™, by
taking discrete points on the forward-rate curve obtained from the market,
and simulating from these their time T" values. The bond price will then be

given by
P(T,T*) = exp {— " (T, u)du} . (6.1.7)

u=T
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The drawback with this method is the large number of points that would
be required. We shall therefore be working directly with pure discount bond
dynamics given in (5.1.6). In this context, the price of a call option at time
t with payout at time T on a bond maturing at time 7™, where the strike is
K, is given by

Ci=FE [emp {— /uT r(u)du} max[0, p(T, T*) — K]] , (5.1.8)

=t

where the expectation is under the risk-neutral measure Q.

5.2 Trinomial Trees for Short-Rate Models

As was done in section 3.4 for the equity model, we may simulate the be-
haviour of short-rate models using trinomial trees. Suppose we are interested
in derivatives of this short rate at a time T" given we are currently at time 0
and in state j. We can divide the time interval [0, T] into h subsections of
length At where At = —'E We will assume that the market can change state
only at the time periods At,2At,...,T — At.

We will use the trinomial tree methodology to price derivatives where
the short rate follows the Hull-White extended Vasicek model described in
section 5.1. We shall begin by writing a discrete-time analogue to (5.1.1) so

that when in state £ we have

Ary = (o) — Bire) At + 0, AW, + > yHANH (5.2.1)
=1
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for k =1,...,nand [ = 1,...,n, where I is the indicator variable with
value 1 when in state £ and 0 otherwise. Using the fact that the expected

value of AN} is given by
E[ANtkl] — ,ykl)\klAt,

where M\* is the transition intensity for transiting from state k to state I, we
therefore have that the value of the short rate at time ¢ + At has expected

value

Elrgpad) =me + (ak — Bxre + E’ykl)\“) At.

=1
The variance of r;.4; can easily be calculated as the sum of the variance of

the Brownian motion and the variance of the point process (as the two are

independent), and is thus given by

Varlriias) = o2 At + Z(’ykl)z)\k’At(l — ARAL.

=1

The unconditional mean is given by

Elreatl =me + Zp{k (ak — Bers + Z’ykl)\kl) At, (6.2.2)
k=1

=1

where p* is the probability of being in state k at time ¢ given in equation
(1.3.5), and using lemma 3.4.2 the unconditional variance of 7y4a¢ is given

by
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Var[rial = Xn: [p{k {aﬁAt + zn:('yk')2/\“At(1 - /\“At)}
=1

k=1

n 2
+pi*(1 - pi*) {rt(l — BeAt) + (ak + Z’y’“)\“> At}

=1

(5.2.3)

We shall now use the trinomial tree shown in figure 5.1 to simulate the
short-rate dynamics given in (5.2.1). In order to do this we must calculate
the moments of the trinomial tree model at each step and equate them to the
discrete-time MCJD model. The expected value of the stock price at time

t + At under the trinomial tree model is equal to
Elryad = Tt(Qtlu + ‘It2 + qu): (5.2.4)

where ¢}, ¢? and ¢ are the probabilities of an upward jump by a factor of u,
no jump or a downward jump by a factor of d respectively. The variance of

St+a¢ can similarly be shown to be
Varfriad = 7l (1—g)v* + g1 —¢f) + ¢} (1 — ¢f)d?)

—2(grq7u + grqiud + g;go d)). (5.2.5)

By equating the means of the trinomial tree model with that of the discrete

time MCJD model in equations (5.2.2) and (5.2.4) we get
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iU
1
2
T, t qﬂ T
3
0]
T d

Figure 5.1: One period trinomial tree for the short rate.

n n
re+ > pi* (ak — Bire + Zv’“’A"’) At = ry(gru+q; + ¢ d).
k=1

1=1
A comparison of the variances in equations (5.2.3) and (5.2.5) gives us

3 It (oAt 4 3 (MY AHAL — XA} + gL — ) (1 — BA)
k=1 =1

+Hak + L YNNALY = (g (1 — )’ + (1 — @) + (1 — ¢f)d®)

—2(qsgiu + grqiud + gl gl d)].

Using these two equations, and given that we also know that

Gd+E+a =1,
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we are left with three equations to solve for five unknowns u, d, g}, ¢Z, ¢3. We
must therefore specify two of these values in order to get a unique solution.

Let us set

S

_
I
Wl

which will allow us to solve for all the other unknowns. We are then left with

the following two equations to solve for u and g}:

1 uE — g
%= 3ry(uz —1)’

and
4 2 1 2 1
g (1—qf)ut - gqtlus +(5 - Viu? + 5(12%1 —dutg- (g + 3 =0

where
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E = 1-3) p* (ak — Bre + Z'y’“‘/\“) At
k=1 =1

vV = i:{pg"“{J:At+f:(7’=‘)2)\k‘At(1—,\’“At)}

k=1 =1

n 2
+ka(1 —p’t‘ik) {Tt(l - ﬂkAt) + (ak + Z’)‘HAH) At} ] .

=1

These two equations must be solved numerically for each time period ¢t =
0,At,...,T — At. For an h-period tree we will then be left with 2h + 1 final
nodes at time t. More importantly, we now have 3" paths the short rate can
take, and for each such path we can calculate the value of a derivative of the
short rate had the short rate followed that path.

After these derivative values have been calculated for each path, the over-
all value of the derivative is then given by the weighted average of these
values, the weights being the probabilities of observing those paths. These
probabilities are calculated by taking for each path the product of all the

probabilities of the h one-period models.

The most common derivative of the short rate is the zero-coupon bond with

value

p(0,T) = Efe™ ficomsdt,
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rud

1
5 q

r 2

q% ru?
2
q %
r 2 T 2

q}i qg ru
1 2
% q 2
9 2 r 2
da r 4 5
r 3 3 3 r
0 1 2
g s
r 2 r 2
7 % rd
1 2
1
) q

r 2

q§ rd?
2

rd?

Figure 5.2: Three-period trinomial tree to simulate the behaviour of the short

rate.

This can be estimated using our discrete time model by
p(0,T) = Ele™ Tiariact),
which can be calculated using the tree in figure 5.2. For each path we calcu-

late the value e~ Zi=o riatAt ag well as the probability of observing that path

given by the product of the probabilities for each node, and then aggregate
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to find the unconditional price of the derivative. So for example, the value

of the zero-coupon bond for the model shown in figure 5.2 is given by

— 2 _
p(0,T) = éq}q%e (rtrutra®)At ngisq:zse (r+rd+rd®)At

Other derivatives can be priced using a similar method.

The advantages of this model are its fairly easy formulation and imple-
mentation. However, reducing an n dimensional process into just a three-
branch tree will clearly sacrifice much of the original model’s characteristics.
The number of final nodes is exponential in the number of time periods A,

and so it may not be practical to implement models with large values of h.

5.3 Multinomial Trees for Short-Rate Mod-
els

We will now setup a multinomial tree to replicate the behaviour of r; as
was done in section 3.4.2 for the equity model. For this we will consider
the Ho-Lee model given in section 5.1. Assume we are currently at time 0,
and that we are firstly interested in pricing the zero-coupon bond expiring
at time T denoted by p(0,T), and subsequently pricing derivatives of this
bond. We can section the time interval [0, T] into h subsections of length At
where At = % We will assume that market can change state only at the

time periods At,2At,...,T — At.
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ri(1+ 1) State 1

r;(1+~9%) State 2
Statej r;

ri(1+473) State 3

T State j (no jump)

Figure 5.3: Jumps in the short-rate in time At in a three state model starting

in state j.

Let us once again consider a market where there are three states so that
n = 3. We can represent the jumps part of the model for a period At by
the four-branched tree in figure 5.3, where one branch is for each state the
model can transit to and 1 branch represents no transition. We also have the

following probabilities V7, &:

pF = MEAL,

Po= 1= Nt
k=1

We will now represent the short-rate movement excluding the jumps by

a binomial-tree model as shown in figure 5.4. The probability of the stock
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l—q] 7"j+dj

Figure 5.4: Stock-price movement (excluding jumps) in time At when in

state j.

price increasing by a factor u is given by ¢’, and similarly the probability of
the stock changing by a factor of d is given by (1 — ¢7).

We want the variance implied by this binomial model to equal that im-
plied from (5.1.2). We can see from (5.1.2) that (ri4a¢ — r:), when in state j
and excluding the jumps, is normally distributed with expected value

E[rt_mt] =71+ a,-At.
The variance of the short rate over this period is given by
Var[riead) = af-At.

Looking at the expected value implied by the binomial model we have that

Elrgind = e + du; + (1 — ¢')d;,
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and the variance is given by

Varlryad = (1 —g)(u; — dj)>.

In order for our binomial model to have the same mean and variance as

the MCJD model (excluding the jumps) it is replicating, we therefore require

T + a,-At = 1+ qjuj + (1 - q’)dJ (531)

oAt = g;(1—g;)(u; — dj)* (5.3.2)

I

We thus have two equations with which we need to solve for three parameters,
and so we will need to specify one of the parameters. Firstly, we can set the
probability

¢ =0.5.

Equations (5.3.1) and (5.3.2) become

1
At = 5(u;+dy),

1
O'?At = Z(u, - dj)2,
and this can be solved to give

u; = OtjAt +0o;V At,

dj = ajAt - O'jVAt.
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Unlike in section 3.4.2 there are no restrictions on the value of a; or oj.

Alternatively we can set
dj = —Ujy.
Equations (5.3.1) and (5.3.2) become
ajAt = Uj(2q_7' - 1),

afAt = 4qj(l—qj)u?,

and this can be solved to give

qJ = °2'K7
ajAt

YT k-1
a; At

4G = 7o

where

K1 oAt
- oAt + oAt

Again there are no restrictions on the value of a; or 0;. We can now replicate
the behaviour of the MCJD model by combining the binomial model with

the jumps model as in figure 5.5.
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ri(L+ A7) + u;

ri(1+ 672) +

ri(1+ 4753) + u;

T‘j + Uj
ri(1+ B + d;

'f‘j(]. + ﬁj2) + dj

ri(1+ B%) + d;

Tj-'l-dj

At

Figure 5.5: Short-rate movement in time At when in state j.

The value of a zero-coupon bond is given by

p(t,T) = E {ea:p{— / i r(s)dsH , (5.3.3)

=t

where the expectation is under the risk-neutral measure Q. In order to
approximate this we shall use a discrete-time version of equation (5.3.3), so

that

p(t,T)=E

h—1
exp {— Z rt.,,sAtAt}] . (5.3.4)

8=0

We can use figure 5.6 to estimate the value of the two-period-ahead zero-
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e—Ti(2+A)—u;

e~ i (2+67%)—u;

e—Ti(2+B7%)—u;

6—21‘_.,' —uj

(0, 2At) 2B,

e~Ti(2+67?)~d;

p e~ (2+87%)—d;

6—27'_.,' —d;

At

Figure 5.6: Valuing a two period zero-coupon bond.

coupon bond as follows. Firstly we note that the short rate for any time
period is previsible, so that the time 0 value of the short rate r; is effective
until the time At¢, and the subsequent value determined at time At applies
until the time 2A¢. To value the bond we start by calculating for each node
the value of the zero-coupon bond price should the short rate follow the path
leading to that node, and we then take a weighted average of these values
where the weights are given by the product of the probabilities leading to

that node. We thus have
p(0,2A¢) = quj1e-(r,~(2+ﬁi1)+u,~)At Fo+(1- qj)ﬁjle—(2rj+dj)At’

where we assume that the values g; are under the risk-neutral measure Q.
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We can similarly use this tree to price other derivatives of the short rate
or the zero-coupon bond, by replacing the values at the final nodes with the
payoffs of the derivative. The value of the derivative would then once again

be the weighted average of these payoffs.

So far we have calculated the expected value of the short rate and valued
derivatives of it over two time periods. If we wish to extend this to a time
T, i.e. over h time periods where h = —A"%, we simply combine A of the above
single-period trees, and then calculate the derivative values in the same way
as in the single-period model. As with the equity model, the number of final
nodes will be large even for moderate values of h. The number of nodes after

a time 7T represented by Nr is equal to
Np = [2(n + 1]

This methodology’s usefulness will therefore be restricted to models where

there are small values of n and h (hence T').

5.4 Monte Carlo Simulation for Short-Rate

Models

We shall now attempt to estimate the value of derivatives of the short rate
using the Monte Carlo simulation technique. Unlike in the case of stocks,

the value of the derivative is going to be determined by all the values of the
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short rate over the life of the derivative, and not just the final value. We
will consider valuing zero-coupon bonds, although this method can easily be
extended to cope with other derivatives. The value of a zero-coupon bond

for time T at time 0 is given by

p(0,T) = E [emp {— /:0 rtdt}] , (5.4.1)

where the expectation is under the risk-neutral measure Q. There are many
possible paths the short can take up until time 7. We may generate randomly
one of these paths and calculate the value of the zero-coupon bond under this
path. This is known as a simulation trial. The simulation involves repeating
this say IV times and then aggregating the values. We shall now look at
methods for simulating our MCJD model.

We shall once again divide the interval [0, T'] into h subsections of length
At, so that

T

Let us model the short rate using the Hull-White extended Vasicek model

described in section 5.1, where when in state j the short rate given by r; has

dynamics
n
dry = (a; — Bjre)dt + o;dW, + Y y*dN7* (5.4.2)
k=1
for j = 1,...,n. We can write a discrete-time analogue to (5.4.2), so that

when in state k we have



5.4 Monte Carlo Simulation for Short-Rate Models 193

Ary = (ox — Bire) At + oxeVAE+ Y AHANF (5.4.3)
1=1
fork=1,...,nandl =1,...,n. Also, ¢ is a sample from a standardised

normal distribution, and AN?* is a Bernoulli random variable with proba-

bility A’*At, although we impose the restriction that
AN + AN + ... + ANF <1

for all 7, i.e. at most one jump per time period. In order to simulate the
value of the zero-coupon bond, we must therefore generate each of the random
variables ra¢, 2a¢, - - -, That SUCcessively.

To generate these random samples we assume that we have an endless
supply of uniform [0, 1] random variables U;, Us, . . . which can be easily gen-

erated by all computers, as well as those from a standardised normal distri-

bution. To generate sample values of Athk for k =1,...,n, we divide the
interval [0,1] into n + 1 intervals [0, I1], [[1, I2), . . - , [In, In+1], Wwhere we have
that

[ - S  MEAE m <,
™1 1-1, m=n+1.

We then have that

1 l]z € [Ik—hIk])
0 otherwise,

AN/* = {
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forall k =1,...,n, and where Iy = 0. Should the value of Athk = 1 for any
k, i.e. we have transitioned to state k, then the next simulation trial will be
as above only with parameters for state k not j.

We are therefore able to generate Ar; using one uniform [0,1] random
variable and one standardised normal random variable, and hence each sim-
ulation trial using 2 x h random variables. In total we have N simulations
and so need to generate 2 x N x h random variables. We can already see that
the number of calculations that need to be performed is linear in h, whilst
the number required using the multinomial tree method was exponential in
h.

The accuracy of the estimate given by the Monte Carlo simulation is
clearly going to be dependent on the number of trials N which are performed.
The value of the derivative will be given by the mean of the simulation values,
which we will denote 7. We are also able to calculate the standard deviation
of these simulated values which we will denote by w. Since these are i.i.d.

trials, the variance of 7 will therefore be given by
2
w

Var(r) = N

Using a normal approximation, we can thus write a 95% confidence interval
for the price of the derivative Cr as

196w 1.96w
VN VN’

So the accuracy of our estimate will be proportional to the number of trials

<Cr<m+

we perform.
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5.5 Monte Carlo Simulation for HJM Models

We shall now use Monte Carlo methods to price derivatives under the HJM
model described in section 5.1. Using a similar methodology to Carverhill

and Pang [1995] we can write the following lemma:

Lemma 5.5.1. The price of a call option on a pure discount bond given in

(5.1.8) can be written as
C: = Elmax(0, p(t, T*)H(¢, T, T*) — Kp(t, T)H (¢, T, T))], (5.5.1)
where

HE,T,7) = exp{Z / (Sy(u, 7, Y, )dWE — Sf(u,'r,Yu_)du]

n

+ ZZ/ log(1 + 7*(u, T, j, k))d Nk}

j=1 k=1 Y u=t

Proof. We can immediately see that (5.1.8) can be written as

T
C; = Elexp{- /=tr(u)du} max (0, p(T, T*) — K)]

= E[max(O,p(T,T*)ewp{—/u r(u)du} — Kexp{— / r(u)du})].
(5.5.2)
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Applying Ité’s lemma to (5.1.6) as well as analogous lemma for the jumps

we get

T r r i
* _ 1 2 * * 17b
p(T,T*) = exp {/u (ru -3 b2=1 Sy (u,T ,Yu_> du + E / Sp(u, T*, Y, )dW,

n n T*

+ 33

j=1 k=1Y"%

log(1 + 7" (u, T*, 4, k))dNZ'“} :
T

It is therefore straightforward to show that
T .
p(T,T")ezp{~ / r(uw)du} = p(¢,T")H(E,T,T7) (5.5.3)
u=t

ezp{— /:tr(u)du}) = P&, T)VHGT,T).  (5.54)

Inserting (5.5.3) and (5.5.4) int (5.5.2) completes the proof.

Using lemma 5.5.1 we can value the price of the call option using Monte

Carlo methods with [ = 1,..., M simulations by

M
C, = % " max(0, p(t, T*)Hi(t, T, %) — Kp(t, TEL(¢, T, T)),  (5.5.5)
=1
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where when in state j we have

N r
H(t,T,7) = exp{d_ D [Selt+iAt,7,5)eisVAL - %Sﬁ(t +iAt, T, 5)At]
i=1 b=1
N n ~
+ D0 log(l+ P (t + i, T, §, k) AN},
1=1 k=1

where N = L, ¢, S N(0,1) and AN are Bernoulli random variables with

probability A’*At. We once again impose the restriction that
AN{' + ANP?® + ...+ ANj* <1

for all 7, i.e. at most one jump per time period. We may generate these

values as we did in the short rate simulations in section 5.4.

5.6 Binomial Trees for HIM Models

We shall now discuss the pricing of Derivatives under the MCJD HJM frame-
work using binomial trees. We have the bond-price dynamics given by (5.1.6),
only now we shall be taking the savings account as numéraire to avoid hav-
ing to maintain the short rate at every node. We can write a discrete time

analogue for this process as follows:

ABT) = 32 Bt TS Sult, T AWE + 3" 1(6, 7,5, DARH, (56.1)

j=1 b=1 k=1
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We can see from 5.6.1 that Ap(¢,T) clearly has expected value 0 as it is a

martingale. Its variance is given by

Varldg(t,T)) = S pla TIAt | S S2GT 5) + 3 72 T, 5, VAL — ¥¥AY) |

j=1 b=1 k=1
(5.6.2)

In our binomial model, the bond price can either go up to value p,(t + At, T)

or down to p4(t+At, T') with equal probability p = 0.5. For this to accurately

represent our model we must equate mean and variance to get
Pu(t+ALT) +pa(t + AL T) = p(¢,T)

and

%[ﬁu(t +A,T) —pa(t + AT = Var|A(t,T))-

Solving this we get

Fult+A,T) = ﬁ(téT)+\/Var[Aﬁ(t,T)]

Pat+AT) = 1—3(—%71—) — v/ Var[Ap(t,T)).

The bond price is then evolved over the N periods, where N = %, until the
all the 2V final node values are calculated and the derivative may be priced

as in section 5.2.



Appendix A

A Distributional Result for the

Equity Model

In this appendix we will derive the moment generating function of the time

T stock price St defined in section 2.5.

We shall begin with the following lemma (see Whittaker and Watson [1946]).

Lemma A.0.1 (Dirichlet’s integral). Suppose we have the following in-

tegral:

T T
Ry .z, = / .. / (o —21)¥? ... (T, — T,—1)¥*dx,...dz,
T2=T1 Tz=Tz-1

where all the superscripts are integers. We find that

ya!...y,! -1
Ry . = T — g, )Wt tvatz=1) A0.1
R (y2+...+yz+z—1)!( =) ( )

199
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Proof. We shall use a proof by induction. Suppose (A.0.1) is true for a

given value of z; and 2. We can calculate R, ,, as follows:

T
Ryy.c, = / R,(z1 — zo)¥*dx,

1=To0

_ /T va!. ..y, (T — @)@t usta-D) (g _ poying,.
ey=zo W2+ ...+ Y +2—1)!
(A.0.2)
It can easily be shown by taking recursive integrals that
' @ vidy, = yilal y1+a+1
/z 1=ZO(T — 21)*(21 — Zo)V'dzy = m(T — o) , (A.0.3)

and so on inserting (A.0.3) into (A.0.2) we find

!yl
R = T — ) W1ttyat2)
T (i Yt z)!( 0)

Taking trivial values for z; for and 2 completes the proof. Note that we have
shown that for a given value of z; and z the result holds true for zy and z as
well. However, as the symmetry of the integral will suggest, this is equivalent

to taking values of z; and z + 1.

a

Corollary A.0.2. Using lemma A.0.1 we can now easily calculate the fol-

lowing integral

T T T
R= / . / ¥ (za—z1)¥ . . . (2,—2,-1)Y* (T—2,)¥**dz1d2, . . . dz,
1=t Jza=x1 Tz=Tz-1
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by taking successive integrals to be equal to

n .
Ro Z lya! .. Y] a=i(T — )+t v tD)
(C+ya+ ...+ Yo+ 2)!

i=0
This result will be usefull in the following lemma.

a

Lemma A.0.3. Suppose we have a Markov chain process Y; where we con-

dition on the path J as described in section 2.5. Let us define

T T T
[Fikak: — By / / / IBnIk | Itds, .. .ds,] (A.0.4)
81=0 J32=0 8,=0

where Itj is the indicator variable that Y; = j. In terms of the Markov chain
D; given in the section 1.8.2 with generator Qz, and defining the set G such
that

G=A{w1,...,Ws: {Jwys--rJw} = {kn,-. -, k2}, v <wini=1,...,2},

we then have

[Ebbs = 1 5 S b gen=o AT QY1) L (1w QY1) (1 QY 1Y)
G (Xm0 3111/ QY1+)

(A.0.5)

where
TW+ya+..+yz41+2)

(y1 +y2+...+yz+1+z)!'
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Proof. Let the indicator variable U;” be such that

_ 1 ith='LU,

Ui _{ 0 otherwise. (A.0.6)

We can therefore rewrite (A.0.4) in terms of the Markov chain D; rather than

Y; as follows:

T T T
[hakaks = BS / / / UBUS .. UPds,...ds;)). (A.0.7)
G 81=0 J 32=0 8,=0

Take successive conditional expectations of (A.0.7) and note that since w; <

wi41 therefore s; < s;41 Vi so that

T T T
kiko..kz __ 1 wow] . W1W2 Wz—1Wz Wz Wzl
I : — p___wlw”l D Dot Dy, s, 1 PTes. dS1...dS;
T g 81=0 J s2=8; 8,=8;—1

where once again
WiWip1 _ _ —
Py = P[Dy = wiya| Do = wyl,

and set wp = 1 and w,4; = = + 1. Using corollary (1.3.2) we get

T T
Ik1k2~--kz — Z/ L / v dSl .. dsz, (AOS)
7] 81=0 8z=8z-1

where
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(TR W1t Qu1m) L (T, St QY1) (0, Tl e QY 1o+

W /
2, T Qy1e+)

This can be re-written as

z;‘:=0 L Z;:’+1=0 A(ll IQ?lwl) L. (1w=-1 ,Q? l'qu)(]_'w; IQ%, 1z+1)

‘I, = o0 ’ )
Xy 31t QY 1e+Y)
(A.0.9)
where
A S$1¥ ... (8, — 8p—1)¥=(T — s,)¥=+1
Yl Yo!
Using corollary A.0.2 we have
T T TWi+ya+.Fy=41+2)
/ / Ads,...ds, = T (A.0.10)
31=0 82=8z-1 (yl + Y2 +...+ Yz41 + Z).

On inserting (A.0.9) together with (A.0.10) into (A.0.8) we obtain (A.0.5),
noting that since we have assumed s; < s;4; for i = 1, ... 2 we therefore need

to multiply by 2! to obtain all combinations.

We are now in a position to write the following lemma:
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Lemma A.0.4. Suppose we have a stochastic process whose time t value is
gwen by X; for 0 <t < T, and has dynamics

dX, =Y I [dt + o;dWy] (A.0.11)

j=1

where W, is a standard Wiener processes, pi; and 012- are the drift and variance
respectively both of which are dependent on the state of Markov chain'Y;. We
also have that Itj is the indicator variable that Y; = j. Even though the models
looked at in section 2.5 had multiple Brownian motions, the model for each
asset individually can be expressed using a single Brownian motion as shown
in section 3.1. We condition on the path of the Markov chain following the
jump sequence J in the time [0,T) as described in section 2.5. Given Xo =0

we have that the moment generating function of Xr is given by:

1
[Mor ()| T] = 1+ mar + mar® +. (A.0.12)

where

dITki-* -
my = Z Z Z Z10d—2 Z Z ]._—.1[“’“0’351”'0’3%-:

a=lld/2 k=l ko=l b=l by_,=l
C#b] 1'--lbd—z

ford=1,... 00, where all the subscripts above are integers and we denote

by ||z/2|| the smallest integer above z.



Appendix A A Distributional Result for the Equity Model 205

Proof. The moment generating for Xt is defined as

MXT(T) = E

T =n
erp {/ Z rII [pidt + 0;,dW;] }] :
8=0 ]=1

Conditioning on the path of the Markov chain, i.e. assuming that I are

known for all s, we find that
[Mx,(r)| T, I Vs] = exp{/ Z(IJdt [ﬂﬂ'+ —rio? ]}

where once we uncondition we have

exp (I’dt)[u]r+ ~r%07]
gave i

Applying Taylor’s expansion and using lemma A.0.3 we get

[Mx,(r) | T) =
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My, (r) = 1+Zlk1(uklr+ “r2o2 )
k1=1

1
+ = Z Z Tkika( uk1r+ L 207 ) (pi,T + 21"20,32)
kl—lkz 1

1 & 1, 1,
+ g Z Z ) il yk1r+ =r akl) (e, + 57 %07)
k1=1 k=1

On rearranging we obtain (A.0.12).

Corollary A.0.5. Suppose we have a random variable Xp with Xo =0 and

which has dynamics given by (A.0.11). Let us define the variable St
St = Seezp{Xr}. (A.0.13)

We can derive from this the moment generating function of St using Taylor’s
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expansion as follows:

Ms.(r) = E [e:cp {SoreXT}]

S2r2e2Xt

o +...

= F [1 + SoreXT +

= 14 So’f'MXT(l) + ol

where the values Mx,.(u) are given by equation (A.0.12).

SgrzMxT(Z) +. ..

207



Appendix B

A Distributional Result for
Short-Rate Models

In this appendix we shall develop a methodology to calculate the value of
M(t,T) and M(t,T) used for pricing derivatives of the short rate in section
4.3.2.

Let us begin by writing an extended version of lemma A.0.1:

Lemma B.0.6. Suppose we have the following integral:

uz Uz
Ry.op = / .. / (z2 —z1)¥?...(z; — T,1)¥*dz2 .. . dz,
I2=T) Tz=ZTz—-1

where u; < u;41 fori=2,...,2—1 and all the superscripts are integers. We

find that

208
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Z Z[ Yal(ug — g Vethaheritl gpl(uy — z)"
(Cl Tz

ha=0  ha=0 d=3 (Ya + ha — hasr + 1)! (y2 — ho)!

(B.0.1)

where h,4; = —1.

Proof. We shall use a proof by induction. Suppose (A.0.1) is true for a

given value of z; and 2. We can calculate R,,. ., as follows:

uy
&o...z, = / Rz(wl - xo)yldxl- (B02)

1=T0

It can easily be shown by taking recursive integrals that

U1 n 14! _ a+hy+1
yl.a.(ug ul) —h
Uo — 1)1 — 20)¥2dz = E U1 — To)¥? 1
Amf2 (e = o) mowpmm@+m+m(l o)

(B.0.3)
and so on inserting (B.0.3) into (B.0.2) we find

R, . = Z Z[ﬁ Ya!(ud — Ua—1 yd+hd—hd+1+1]y1!(u1 — o)V ™M
e e Watha = hay +1)! (y1 — h1)!

Taking trivial values for z; for and z completes the proof. Note that we have
shown that for a given value of z; and z the result holds true for zy and 2 as
well. However, as the symmetry of the integral will suggest, this is equivalent

to taking values of z; and z + 1. -
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Corollary B.0.7. Using lemma B.0.6 we can now easily calculate the fol-

lowing integral:

uy ug Uy
R=/ / / z1(z2 — 21)¥2 ... (T — T,—1)¥*dzs . . . dz,
z1=0 Jz2=11 T2=Tz—1

where u; < uz41 fori=1,...,2—1 to be equal to

R= yz, o i ﬁ Yal(ug — ug_y)Vatha—hantl | g lypr—h .
hm0 Ao la—2 (Yd + ha — hayr +1)! (11 — ha)!

Moreover, using corollary A.0.2 we have

T T T
/ / / Rdu;...du, =
w1=t Juz=u Uz =Uz—1

Y= y1—h —hy—hy ho+h: Yz +22—-2
(ho!y1! o .y,!)t’“ 1 O(T - t) othztuat..ty.+22

N
ZZZ (y1——hl)!(ho+h2+y2+...+yz+2z—2)!

h1=0 hz=0 ho=0

We can now derive the following lemma:

Lemma B.0.8. Suppose we have a Markov chain process Y;, where we con-

dition on the path J as described in section 1.3.2 when there are x jumps.

Let us define

B T T uy Uy
IMF-fa (g, i) = EJ / / /
ui=t uz=0 J31=0 32,=0

I} ... I}dN,, ...dN, ds,, ...ds,,_.du, ...du,),

(B.0.4)
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where
{il,...,ie} S {1,...,2}
and

{i1, .. i} U{r,...,roee} ={1,...,2},

and where I} is the indicator variable that Y; = j. In terms of the Markov
chain D, as also described in section 1.3.2 with generator Qz, and defining

the set G such that

G={w1,...,Wet1: Lwss--1Jw. } = {k1,.- k. }yws Swqi=1,...,2+1},

where w,41 can take any value in (1, + 1. We then have

U
P Y v B.O.
I (41, .., 1e) Eg A (B.0.5)

where

[o o] [o o]

=32 ZA(ll'Q’“lwl)H/\‘“w“’*d“(lw-d y‘d+‘1w-d+‘)ﬂ(1‘"m Q7+ 1vint),

=0 y2=0
Jn #2

and

— (Z 11’Qy 1:z+1)z+e

y—O

as well as

A= i zz: ylz—él (holyy! . ..y, )ty1—hai—ho (T _ tyhothatyat..tys+22-2
= g W ) (ho Tty ¥ .. ¥ 7. 222!
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Proof. We again have the indicator variable U;” where:

w _ 1 if Dt =w,
U, _{ 0 otherwise. (B.0.6)

We can therefore rewrite (B.0.4) in terms of the Markov chain D, rather than

Y; as follows:

Iklkz...kz (Z ) _ T T ul Uz
1,...,13) = [Z
I uy=t uz=t Js;=0 8:=0

Ut.. . UdN,,, ...dN;, ds;, ...ds,,_du; ... du,].

iy *

(B.0.7)

Taking successive conditional expectations of (B.0.7) and noting that since

w; < wiy1 Vi therefore s; < s;41 Vi, we have that

T T T Uy u2 Uz
IRkeke(iy, ) = E:/ / / / / /
¢ Jwm=tJug=u Uz=Uz—1 v 51=0 J52=91 82=8z-1

e z—e
wow N Wi Wi 41, Pip +1Wip+1 Wiy Wiy +1
Ds, I I AWiaWig psl.d“_s,.d psjh“_sjh d31 ‘e dSzd’Ul e duz,
d=1 h=1
Jn#z

where once again

p:v."wi+l — P[Dt —_ wi+1| Do = 'LUi],
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and setting wo = 1 and p, - 1;, = 1, and where finally

< AW Wk
AWk — o
Using lemma (A.0.3) we get
TRkaeka(iy i) =
T T T Uy u2 Uz )/
Z/ / / / / / — dsy ...ds,du, ... du,
g Jwm=tJuz=u Uz=Uz—1 Y 81=0 J82=5) a.=az-1A
(B.0.8)
where
81V g : N (Sigh1 = Sig)? gy .
R 3 e S e |
y=0 7’ d=1 y=0 ’
zZ—€ o0
Sint1 — Sin )¥ w7 ws
H (Z( Jh+1y! Jh) 1%in Qyjl ,h+1)
h=1 \y=0
n#z
00 zte
1V 1’y 1z+1
A = (Zal QY1° :
y=0
We can re-write ¥ as
o0 [o o] € zZ—€
U= 3 K Quren) [ xwamen (1o Qe 1man) [T (10 QE+ 19v),
y1=0 y==0 d=1 h=1
Jn#z

(B.0.9)
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where
s, .. (Sz - Sz_l)y’

K=
... y,!

Using corollary B.0.7 we have

T T T uy uz Uz
/ / / / / / Kdsy...ds,duy...du, =
ui=t Jua=u; Uz=U,_]1 v 31=0 J 82=381 82=8,_1

Yz —h —hy— -
y1—ny (ho!y1! . yz!)t”‘ hy1—hg (T _ t)ho+h2+y2+“.+y,+2z 2

Z ZZ (yl—hl)!(hg+h2+y2+...+y;+22—2)!

h1=0 =0 ho=0

’

(B.0.10)

where on inserting (B.0.9) together with (B.0.10) into (B.0.8) the proof is

complete.

a

Lemma B.0.9. Suppose we have a stochastic process whose time t value is

given by H(t,T) for 0 <t < T, where

T u N n
=FE |exp{ — / / Z L (o;dW, + Z’yjdegk)du
u=t J s=0 j=1 k=1

H(t,T)

and where we condition on the path J as described in section 1.3.2. We

therefore get
H(t,T) = Z( 1) X4, T), (B.0.11)

d=0
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where

XT3 ST g

ki=1  kg=1e=0 Ce

(B.0.12)

where ¥, A and the set G are as defined as in lemma B.0.8, and where
Ce={i1,..-,te: {t1,--- %} €{1,...,d},ir <r+1, r=1,...,d -1}
and also

{jl, ve oy Jd—et {jl, e ,jd_e}U{il,. - ,ie} = {1, ce ,d},jr < Jrp1, T=1,.. .,d—e—l}.

Proof. Conditioning on the state of the Markov chain during the interval

[t, T, i.e. that we know I7 for t < s < T, we have

T u N n
[H(t, T)| ] =exp{—/ /OZIE(%U§d5+ZijdN3k)dU},
u=tJs=0 ;) k=1

and once we uncondition we get

HE,T) = [exp{ / / ZI’( ds+i7""dNﬁ’°)dU}]-
=t s—O k=1

Let us write

XtT) = / y / OZI’ ds+Z7J’°dN”°)du,

j=1
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so that on applying Taylor’s expansion we get
H¢,T) = E[1 - X(t,T) + %X(t,T)z _ %X(t,T)‘* ]
Denote by X¢(t, T) the following expectation:
X4t,T) = E[X(¢,T)%,

so that H(¢t,T) is now given by (B.0.11). We can now calculate the value of
X¢(t,T) as follows:

k1 ka
/ / / / 3 Ih Ik
uy=t ug=t 81—0 84=0 _1 kd—‘l

( akldsl + E 'ykllde‘l (—akddsd + Z 'yk"’de"’ } du; ... dud] .

X4t T) =

Using the definition of C¢ given above as well as employing lemma B.0.8 we

can see that X%(¢, T) is given by (B.0.12).

a

Corollary B.0.10. Using lemma B.0.9 The value of M (t,T) used in section
4.3.2 is then given by the sum of logH(t,T') over all jump sequences J, so
that

M@ET)=Y_>"... ) logH(t,T)p"=+(T),

z=0 j;=1 Jz+1=1

where pt--3=+1(T) is given in corollary 1.3.5.



Appendix C

A Distributional Result for
HJM Models

In this appendix we shall develop a methodology for calculating Z(T, T) and
Z*(T,T) in Example 4.4.9.

We have the following lemma:

Lemma C.0.11. Let us use the same parameter values as in Example 4.4.9,

i.e.

Sb(t,T,j) = Sbj

Y@, T,5,k) = ¥5T-1).

Conditioning on the path J = {j1,...,Jz+1} of Yi as described in section 2.5,

217
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we have that the moment generating function of Z (T,T) is given by

Mzm)1n(r) = ZZE Z 2 (gxz| i Sl N

d=0 =0 k1=1 kq=1
where I*1*%4 s given by lemma A.0.8, T =T — T*, and where we have that

ftde = f[(l — i Y, (C.0.1)

=1

Proof. We can see from (C.0.1) and (4.4.7) that

T
Sb(t’T)j) = _/ sb(t7uaj)du
u=t
= —Sb,j(T—t),

and

exp{l/(t,T*,5,k)} = +*@,T,5k) +1

= YHT-t)+1.

Inserting this into (4.4.39) we get
T n r r
A A - .1 = 5
Z(T,T) = Z(0,T)exp{T /u L jEzl I —3 bE=1 T'sy ;du + bE=1 Sp,;AW,]

n n

+>° “loglt — ¥*T]dN*}, (C.0.2)

j=1 k=1
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where T =T — T*. Let us define s; for all j such that

.
L= 2
5= 4| 2_ %%
b=1

r
8;dW; ~ Z sp,;AW?,

b=1

so that

where W, is a Q brownian motion. Equation (C.0.2) then becomes

T n
Z(T,T) = Z(0, T)e:cp{T/ i Z IZ[—-;—TZ_‘sfdu + 5;dW,]
u= J=1

n n

+ Z Z log[1 — v**T|dN*}.

7=1 k=1

Conditioning on the path J, we have that
T n

[Z(T, T) IJ] — Z(O, T)r,yjl...jze;z;p{T/ ZIZ[—%TS?(ZU + deWu]},

u=0 .1=1

where 4917+ is given by (C.0.1). Conditioning now also on the path I7 0 <

s < T, we can calculate the following expectation:

. . R o TS .
E|Z(T,T)*|\7,H] = 2(0, T)d,),h...th[exp{dT/ . Zfi[isfdu — 8;dW,]}]
u= J=1

. . -, [T &K
= Z(O,T)d'y“""’dexp{d—@Q—)T2/ OZI&sﬁdu}.
U= ]—1
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Unconditioning, we find

— —_ T n .
E[Z(T,T)*|J) = Z(o,T*)dvﬁ---jf"E[exp{@Tzf 0 D Lisidu}).
u= J=1

(C.0.3)

Using Taylor’s expansion as well as lemma A.0.3, we have

2=l

dd—1)— [T < N d%(d = 1)% g, -
Bleap(Z07 [ S pay =y, LU= S0 S ek g,
u= .7=1

=0 k=1  kg=1

(C.0.49)
where I*1* is given by (A.0.5). Inserting (C.0.4) into (C.0.3) completes the

proof.

a

Corollary C.0.12. We can derive the density function of [Z (T,T)|TJ] given
by f[Z(T,T) | j](z) using lemma C.0.11, and hence calculate the probability
QT (p(T,T*) > K) using equation (4.4.40) so that

PO 2K = [ fhgnn@ds (€0
=g

It can be shown in a similar manner using (4.4.36) that QT (p(T,T*) > K)

is given by
1

QT (p(T,T*) = K) = /_ S fieaiay ()2 (C.06)

Z2=—00 ..7
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where the moment generating function of fiz. |7 15 given by

d*(d —1)" s, ku2e d
Mo rmy 1 (T) = ZZZ Z 5o gl —————[hkaTg st

d=0 =0 k;=1 ka=1

where all the terms are as in the previous lemma as well as T =T* — T.
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