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Abstract

This dissertation presents pricing models for stop-loss reinsurance contracts for 
catastrophic events and for catastrophe insurance derivatives.

We use doubly stochastic Poisson process or the Cox process for the claim arrival process 
for catastrophic events. The shot noise process is able to measure the frequency, 
magnitude and time period needed to determine the effect of the catastrophe. This 
process is used for the claim intensity function within the Cox process. The Cox process 
with shot noise intensity is examined by piecewise deterministic Markov process theory.

We apply the Cox process incorporating the shot noise process as its intensity to price 
stop-loss catastrophe reinsurance contracts and catastrophe insurance derivatives. In 
order to calculate fair prices for reinsurance contracts and catastrophe insurance 
derivatives we need to assume that there is an absence of arbitrage opportunities in the 
market. This can be achieved by using an equivalent martingale probability measure in 
our pricing models. The Esscher transform is used to change probability measure.

The dissertation also shows how to estimate the parameters of claim intensity using the 
likelihood function. In order to estimate the distribution of claim intensity, state 
estimation is employed as well. Since the claim intensity is not observable we filter it out 
on the basis of the number of claims, i.e. we employ the Kalman-Bucy filter. We also 
derive pricing formulae for stop-loss reinsurance contracts for catastrophic events using 
the distribution of claim intensity that is obtained by the Kalman-Bucy filter. Both 
estimations are essential in pricing stop-loss reinsurance contracts and catastrophe 
insurance derivatives.



Introduction

1. General

The principal aim of this dissertation is practical reinsurance problem solving. Namely, to 
create models for the pricing of catastrophe reinsurance contracts and catastrophe 
insurance derivatives. As most of our references ignore the e@ect of interest rates we will 
do so as well.

Insurance companies have traditionally used reinsurance contracts to hedge themselves 
against losses from catastrophic events. During the last decade, the world has experienced 
a higher level of catastrophic events both in terms of frequency and severity. Some of the 
recent catastrophes are Hurricane Andrew (USA 1992) and the Kobe earthquake (Japan 
1995) (see Booth (1997)). This has had a marked effect on the reinsurance market. Such 
events have impacted the profitability and capital bases of reinsurance companies some of 
which have withdrawn from the market and others have reduced the level of catastrophe 
cover they are willing to provide.

In the early 1990s, some beheved that there was undercapacity provided by the 
reinsurance market. Some investment banks, particularly US banks, recognised the 
opportunities that existed in the reinsurance market. Through their large capital bases the 
investment banks were able to offer alternative reinsurance products. This caused 
reinsurance companies to reassess their strategies for the type of products offered to the 
market.

The Chicago Board of Trade introduced catastrophe insurance futures and catastrophe 
insurance options on futures traded on a quarterly basis (Jan-Mar, Apr-June, July-Sep and 
Oct-Dec) in December 1992. The CBOT devised a loss ratio index as the underlying 
instrument for catastrophe insurance futures and options contracts. The Insurance Service 
Office calculates the index from loss data reported by at least 25 selected companies (see 
CBOT (1994, 1995a, 1995b)). The loss ratio index is the reported losses incurred in a 
given quarter and reported by the end of the following quarter, , divided by one fourth

of the premiums received in the previous year, U, i.e. .



The value of the insurance futures, at maturity t, is the nominal contract value, 
US$25,000, times the loss ratio index capped at 2, i.e.

= 25,000 X Min

The CBOT capped the maximum loss ratio at 200% in order to limit the credit risk from 
unexpected huge losses and to make the contract look like a non-proportional reinsurance 
policy. However, to date there has not been an incident where the maximum loss ratio has 
been reached; the highest estimated loss ratio being 179% for Hurricane Andrew. 
Therefore ignoring the maximum loss ratio, the value of the catastrophe insurance call 
options on futures, P,, at maturity t is given by

P, = Max[F, - E , 0 )  = [F, -  EY  = (^25,000 x ̂  j  A -  B)*

Y\Kwhere E  is the exercise price and B =
25,000

There has been discussion and research into the possibility of using catastrophe insurance 
futures and options contracts rather than conventional reinsurance contracts (see Lomax 
& Lowe (1994), Smith (1994), Ryan (1994), Sutherland (1995), Kielholz & Durrer (1997) 
and Smith, Canelo & Di Dio (1997)). The competitiveness in the reinsurance market 
emphasises the need for an appropriate pricing model for reinsurance contracts and 
catastrophe insurance derivatives. It is common practice for most references to ignore the 
effect of interest rates. We will also adopt this approach.

In insurance modelling, the Poisson process has been used as a claim arrival process. 
Extensive discussion of the Poisson process, from both applied and theoretical viewpoints, 
can be found in Cramer (1930), Cox & Lewis (1966), Bühlmann (1970), Cinlar (1975), 
and Medhi (1982). However, there has been a significant volume of literature that 
questions the appropriateness of the Poisson process in insurance modelling (see Seal 
(1983) and Beard et a/.(1984)) and more specifically for rainfall modelling (see Smith 
(1980) and Cox & Isham (1986)).

As catastrophic events occur periodically, the assumption that resulting claims occur in 
terms of the Poisson process is inadequate. Therefore an alternative point process needs



to be used to generate the claim arrival process. We will employ a doubly stochastic 
Poisson process, or the Cox process, (see Cox (1955), Bartlett (1963), Serfozo (1972), 
Grandell (1976, 1991), Bremaud (1981) and Lando (1994)).

Claims arising from catastrophic events depend on the intensity of natural disasters (e.g. 
flood, windstorm, hail, earthquake). By intensity we mean the frequency of claims 
resulting from the natural disaster.

The shot noise process measures the impact of catastrophic events (see Cox & Isham 
(1980,1986) and Klüppelberg & Mikosch (1995)). As time passes, the shot noise process 
decreases as more and more claims are settled. This decrease continues until another 
catastrophe occurs which will result in a positive jump in the shot noise process. The shot 
noise process is particularly useful in the claim arrival process for catastrophic events as it 
mirrors the nature of such events. Therefore we will use it as a claim intensity function to 
generate the Cox process.

We will adopt the shot noise process used by Cox & Isham (1980):

A, = +
ij<f

X
t



where:
i catastrophe 
/Iq initial value of X

jump size of catastrophe i (i.e. magnitude of contribution of catastrophe i to intensity) 
where ) < 0 0  

5, time at which catastrophe i occurs where a; < / < 00 

8  exponential decay which never reaches zero 
p  the number of catastrophes in time period t.

The piecewise deterministic Markov process theory developed by Davis (1984) is a 
powerful mathematical tool for examining non-diffusion models. Using this theory, 
Dassios (1987) examined the Cox process incorporating the shot noise process as its 
intensity. In Chapter 1 we present definitions and important properties of the Cox and 
shot noise processes with the aid of piecewise deterministic process theory. In Chapter 2 
this theory is used to calculate the distribution of the number of claims and the mean of the 
claims. These are important factors in the pricing of any reinsurance product.

Harrison & Kreps (1979) and Harrison & Pliska (1981) launched the approach for the 
pricing and analysis of movements of the financial derivatives whose prices are determined 
by the price of the underlying assets. Their mathematical framework originates from the 
idea of risk-neutral, or non-arbitrage, valuation of Cox & Ross (1976).

A reinsurance contract is similar to a financial derivative in that its value is determined by 
the underlying claim arrival process. Sondermann (1991) introduced the non-arbitrage 
approach for the pricing of reinsurance contracts. He proved that if there is no arbitrage 
opportunities in the market, reinsurance premiums are calculated by the expectation of 
their value at maturity with respect to a new probability measure and not with respect to 
the original probability measure. This new probability measure is called the equivalent 
martingale probability measure. The equivalent martingale probability measure is not 
unique in general. It is not the purpose of this thesis to decide which one to use.

One of the methods to change the probability measure is the Esscher transform. Gerber 
& Shiu (1996) priced derivatives using the Esscher transform to go from the original 
probability measure to the equivalent martingale probability measure. In Chapter 3 we use 
this approach for the pricing catastrophe reinsurance contract and catastrophe insurance



derivatives (i.e. catastrophe insurance futures and catastrophe insurance options on 
futures). For the reason already explained, the Cox process with shot noise intensity is 
used as the claim arrival process.

We need to solve two estimation problems for the pricing of a reinsurance contract and 
catastrophe insurance derivatives. Firstly, the parameters of the shot noise process i.e. the 
rate of occurrence of catastrophe, the size of catastrophe and the rate of decay 
(settlement) should be estimated. In chapter 4 we present parametric estimation 
techniques for the estimation of the three parameters in the shot noise process. Secondly, 
the distribution of the claim intensity should be obtained. Since the claim intensity is 
unobservable it has to be "filtered out" from the observed number of claims at various 
times. So chapter 5 deals with state estimation to derive the distribution of the claim 
intensity. One of the methods used is the Kalman-Bucy filter. We derive pricing models 
for catastrophe reinsurance contracts using the distribution of the claim intensity that is 
obtained by the Kalman-Bucy filter. The Laplace transform of distribution of 1, is 
obtained assuming that we know the times of catastrophe jumps and claim points. We 
also examine the Laplace transform of distribution of assuming that the number of 
claims in a fixed time interval is known. The idea and discussion of state estimation can be 
found in Karr (1991).

2. Definitions and conditions

Let us look at a brief outline of the concepts of generator (see Davis (1984)), martingale 
(see Gerber (1979) and 0ksendal (1992)) and equivalent martingale probability 
measure (see Sondermann (1991)) that we will use in this dissertation.

The process = (n^Xt) takes values from the set L xE  where L is a discrete set and 
E c  91”. In any interval [0,^], can be discontinuous at only a finite number of points 

where In theorem 5.5 of Davis (1984), the discontinuity can also
occur when a boundary is reached. However this is not applicable here. The generator A 
of the process is an operator on functions / :  L x E ^  91 and its domain contains functions 
/  satisfying the following conditions:
(i) For all 7Î g L,  the function /  is absolutely continuous on

< 00 .



We define the generator A acting on any function /  belonging to its domain. Then A /  is
t

the unique function that makes / (X^) ~ J A / {X^)ds is an 3^-martingale. We will use the
0

term 'martingale' to refer to martingale with respect to the natural filtration i.e. 3,- 
martingale.

The generator of the process {X^} acting on a function f ( X )  belonging to its domain as 
described above is also given by:

' AiO h
A /(X ^) is the expected increment of the process {X^} between / and t+h,  given the 
history X^ at time t. From this interpretation the following inversion formula is plausible:

E[f(X,, ,) \X,  = x \ - f { X , )  = J £[A/(X ,)>& .
0

Therefore if we are able to find a function /  such that A /  = 0 then f {X ^ )  is an 3,- 
martingale. In this thesis, it will be very important to solve the equation A /  = 0 for 
various circumstances.

Let (Q ,F ,P ) be a probability space with information structure F. The information 
structure F  is the filtration, i.e. F  = {3,, t g [0, T]j. F  consists of o-algebra's 3, on Q,

for any point t in the time interval [0, 7], representing the information available at time t. 
Then a probability measure P* is called an equivalent martingale probability measure
if:

• P*[A\ = 0 iff P [^] = 0, for any e 3  ̂;
dP*• the Radon-Nikodym derivative  belongs to (H, 3^, P) ;
dP

• a specified process  ̂7  ̂ is a martingale under P% i.e.

= y - a  s.

for any 0 < s < t< T ,  where E* denotes the expectation with respect to P*.

Note: In our case, a specified process is premiums minus claims, i.e. = PR̂  — Q ,



3. Overview

We now conclude our introduction by giving an overview of this dissertation. Let K, be 
the claim amount then the total loss excess over 6, which is a retention limit, up to time t is

(  N, \  +
Z ^ i - b

V '=1

where is the number of claims up to time t and -  b\  = Max -6 , 0
V »=] /  V «=1

N,
Let Ct = be the total amount of claims up to time t. Then

i= l

(  V
={C^-b) .

< »=i J

When X; = 1, Q becomes N^. Therefore the stop-loss reinsurance premium at time 0 is

£ { ( iV ,- j r )  or £{(C,-6)*}.

Catastrophe insurance futures and options introduced by CBOT are standardised 
reinsurance instruments. If we assume that 4  = C„ ignoring the effect of interest rates, 
the price of the insurance futures at time 0 is

25,000x A//>7
n - '

and ignoring the maximum loss ratio, the price of the insurance call option on futures at 
time 0 is

^ £ [ ( C , - B r ] ,

If we substitute 'b' with 'B' in the formula of the stop-loss reinsurance premium at time 0 
the two formula are equivalent.

The probability distribution for or C, used in this dissertation is based on the following 
hierarchical specification:

• a Poisson process with constant intensity p  is used to generate catastrophe times .
The random variable is the total number of catastrophes up to time t.



the positive random variable specifies the size of the catastrophe at time 5,.. The 
distribution of is denoted by
the intensity decreases with the decay rate (5, which is a constant, between 5,._i and 5,. 
until another catastrophe jump ŷ  occurs at 5 .. 
given (5;. we define the positive function

A,= +
s,<t

where Àq is the initial value of À . This is the shot noise process and also piecewise
t

deterministic Markov process. We also define the aggregated process = J
0

which is the accumulated intensity.
• the function A, is used as the claim intensity of a Poisson process to generate the 

number of claims W,.
• given a claim, the claim size distribution is H{u) . The total amount of claims up to 

time t is denoted by Q.

The unknown parameters are p, y  and Ô which are the rate of occurrence of catastrophe 
jump, the size of catastrophe and the rate of decay respectively. In the time dependent 
case 5, p  and G(_y) vary with time t. When /I, is time homogeneous these do not vary 
with time t.

In chapter 1, we examine the shot noise process as it mirrors the nature of catastrophic 
events. Other process may be applied to measure the impact of catastrophic events. Also 
the shot noise process itself can be applied in financial field such as interest rate modelling, 
bond pricing and bond option pricing.

In chapter 2, doubly stochastic Poisson process is discussed as a claim arrival process 'N̂  
where the claim intensity function is the shot noise process X .̂ By changing the claim 
intensity function in Poisson process, we can derive a variety of doubly stochastic Poisson 
processes. In insurance modelling, if a homogeneous or non-homogeneous Poisson 
process are not appropriate as a claim arrival process, doubly stochastic Poisson process 
can be considered as an alternative by selecting proper claim intensity function.



The results in chapters 1 and 2 are very important in the pricing of any reinsurance 
products. Even if we change the claim intensity function in Poisson process, we can easily 
obtain important results using the approach used in these chapters.

In chapter 3, we assume that there are no arbitrage opportunities in the market to obtain 
fair premiums for stop-loss reinsurance contracts and fair prices for insurance derivatives. 
This can be achieved by using an equivalent martingale probability measure in our pricing 
models. The Esscher transform is used to change probability measure. If the market is 
complete, there is only one equivalent martingale probability measure and only one fair 
premium or price can be obtained for each contracts. However we have more than one 
equivalent martingale probability measures as the market is not complete. We present 
quite a flexible family of martingales that can be used to change measure; however it is not 
the purpose of this dissertation to decide which one to use.

In chapters 4 and 5, we solve two estimation problems for the pricing of reinsurance 
contracts and insurance derivatives. Firstly, we suggest estimating parameters of using 
the likelihood function and the distribution of via the Kalman-Bucy filter. The X̂  is 
standardised by subtracting its mean and dividing by the variance leading to Z,. The claim 
arrival process W, is similarly approximated as well as Q, which is the total amount of 
claims up to time t, leading to and Û . For large /?, the standardised process Z, 
becomes an Omstein-Uhlenbeck process and the standardised processes and 
become Brownian motions. The assumption of oo implies that catastrophes are a 
common events. Therefore this approach can be used for the pricing of reinsurance 
contracts when we expect quite a few claims in the near future. Secondly, in order to 
estimate the parameters and distribution of Z,, direct and realistic approaches are 
presented. For estimation of parameters and the Laplace transform of distribution of X̂  
we assume that we know the catastrophe time ŝ  as well as the claim point tj. We

examine another method of obtaining the Laplace transform of the distribution of X̂  
assuming that the number of claims in a fixed time interval is known.

The direct approach provides us with accurate pricing as it is realistic. However it is not 
always practical to use given the complexity of the equations involved. A more practical 
approach is to use the transformed and approximated approach, where we assume oo. 

However we should examine whether the third moments of the catastrophe size y  and the



claim size u exist; if it does not exist the central limit theorem does not provide an 
accurate result.

It would be interesting to empirically test our models and estimation methods derived. 
The relevant data would need to be obtained from reinsurance companies or CBOT. In 
that case, the numerical examples illustrated in chapters 3, 4 and 5 may be useful.

10



1. Doubly Stochastic Poisson Process, Shot Noise Process and 
Aggregated Process

1.1 Doubly stochastic Poisson process

Claims arising from catastrophic events depend on the intensity of such natural disasters. 
Therefore the intensity means the frequency of claims resulting from the natural disaster.

In order to calculate the price for catastrophe reinsurance contracts and insurance 
derivatives, the claim arrival process needs to be determined. A homogeneous Poisson 
process can be used as a claim arrival process. Under this approach the claim intensity 
function is assumed to be constant. Another approach is to use a non-homogeneous 
Poisson process where the claim intensity function is assumed to be a non-random 
function of time. However, both these process do not adequately explain the phenomena 
of catastrophes as mentioned in the introduction.

Under doubly stochastic Poisson process, or the Cox process, the claim intensity function 
is assumed to be stochastic. The Cox process is more appropriately used as a claim arrival 
process as it allows for the assumption that catastrophic events occur periodically. 
However, little work has been done to further develop this assumption in an insurance 
context. We will now proceed to examine doubly stochastic Poisson process as the claim 
arrival process.

Doubly stochastic Poisson process provides flexibility by letting the intensity not only 
depend on time but also allowing it to be a stochastic process. Therefore doubly 
stochastic Poisson process can be viewed as a two step randomisation procedure. A 
process is used to generate another process by acting as its intensity. That is, is 
a point process conditional on /I, which itself is a stochastic process (if is deterministic 
then Nf is a Poisson process).

Many alternative definitions of a doubly stochastic Poisson process can be given. We will 
offer the one adopted by Bremaud (1981).

11



Definition 1.1.1. Let be a point process adopted to a history 3̂  and let A, be a non
negative process. Suppose that is 3^-measurable, / > 0 and that

t
^X/is < 00 almost surely (no explosions).
0

If for all 0 < < ^2 and w

=  g  , (111 )

then is called a 3^-doubly stochastic Poisson process with intensity X .̂
□

In this dissertation we will take 3  ̂to be the natural filtration of the probability space. 

(1.1.1) gives us

X.ds

-iV„ = % ; / .  = ^ ^  (1.1.2)

and

- ( 1-

= e - (1.1.3)

SO

r /
= = " }. (1.1.4)

If X̂  is a Markov process and is the generator of the process (X^, f) then the generator 
of the process {N^,X^,t) acting on a function f{n,X,i)  belonging to its domain is given 

by
Kf{n,X,t)  = X { f  ( n + \ ,X , l ) - f ( n ,X , t ) } + K j{ n ,X j ) .  (1.1.5)

Clearly, for f{n,X,t)  to belong to the domain of the generator A, it is essential that 
f { n ,X j )  belongs to the domain of A;̂  for all n.

Notice that the generator A acting on a function 0* f  (X j)  gives
A 6Tf(Xj)  = -X ( l -e )6 r / (X , t )  + 6rA,f(X, t) .  (1.1.6)

12



Now consider the process
t

aggregated process)-,
0

the generator A of the process acting on a function f{x ,X , t)  belonging to its

domain is given by

A /(x ,A ,0  = A -^ + A ,/(x ,A ,0 . (1.1.7)
cx

Clearly, for f ( x ,X , t )  to belong to the domain of the generator A, it is essential that 
f [ x , X j )  belongs to the domain of A;̂  for all x  and that it is differentiable w.r.t. x. 
Trying a function of the form then

A 0] = -;i( l -  0  + 0 . (1.1.8)

By the aggregated process we can easily find that (1.1.4) is
(1.1.9)

(1.1.6) and (1.1.8) as well as the relationships (1.1.2), (1.1.3) and (1.1.4) suggest that the 
problem of finding the distribution of the point process, is equivalent to the problem 
of finding the distribution of the aggregated process. For example (1.1.9) means that 
we just have to find the p.g.f. (probability generating function) of to retrieve the m.g.f. 
(moment generating function) of X^ and vice versa.

13



1.2 Shot noise process with time dependent parameters

The shot noise process measures the impact of catastrophic events. As it mirrors their 
nature, the shot noise process can be used as a claim intensity function in the claim arrival 
process. In this section we examine a shot noise process .

We are now going to generalise the shot noise process by allowing three parameters to 
depend on time. Therefore we assume that 8{t\ p{t) and G{y,t) are all Riemann 
integrable functions of t and are all positive. Furthermore the rate of jump arrivals, p(J), 
is bounded on all intervals [0, t) (no explosions). 0{t) is the rate of decay but we assume 
S(J) = Ô throughout the rest of this thesis. The distribution function of jump sizes for all t 
is G(y\t) Cy>0). If the jump size distribution is exponential, its density is 
g(y,t) = (a +  , >̂ > 0, a+ye^ > 0 (i.e. y > -a e ~ ^ \  a special case that will
be quite useful later.

The generator of the process (/I,, /) acting on a function /  (A,/) belonging to its domain is 
given by

For this process we can derive the Laplace transform of the distribution of A, at any given 
time t given Ag.

Theorem 1.2.1 Let A, as defined. Then

g(A:;5) = ^e~^dG{y\s)

is a martingale for all v> 0, where A(/) = J S(s)ds.

Proof
From (1.2.1), / (A,/) has to satisfy A /  = 0 for it to be a martingale. Setting 
we get the equation

- X A \ t ) + R \ t )  + S(t)U(t)+p(t)[g{Ait)-t} -1] = 0 (1.2.2)

14



and solving (1.2.2) we obtain

S(_u)du

and the result follows.

We now will use the martingale found in theorem 1.2.1. 

Theorem 1.2.2 Let as defined. Then

□

Proof
From theorem 1.2.1, for a fixed time t* and a fixed constant v > 0, we have

/*

and setting v = ve  ̂  ̂we have
r*

;4]dï
(1.2.4)

Since (1.2.4) holds for an arbitrary fixed t*, it holds for all / >0 and the theorem is 
proved.

□

We can also obtain the asymptotic (stationary) distribution from theorem 1.2.2. In this 
context we interpret it as the limit when t - ^ -co .  In other words, if we know À at '-o o ' 

and no information between '- o o ' to present time t, '- o o ' asymptotic distribution of /I, can 
be used as the distribution of .

In order to find the ' -o o ' asymptotic distribution let us start with lemma.

15



Lemma 1.2.3 Let’s assume that ^ 0  = S, lim f ( t )  = p  and lim (/) = Then
Ï—>—00 /—>—CO

J p(s)[l -  g{ < 00

where p^ (/) = fydG{y\ t) = E{y\ t) and G{u\ t) = L -  
0 “

Proof
When 5{t) = 5 the exponential part of the second term in the right hand side in (1.2.3) is

=  f  v e  ’* / ? ( < - . y ) ^  — — o k = f  ve ^p(t-s)G(ve ‘‘;t-s)dsJ yg “ J
0

but

G(ve~^;t-s)  = ^je~^*^{\-G(y;t-s)}cfy<J{l-G(yJ-s)}cfy = p ^ ( t - s ) .  (1.2.5)
0 0

From (1.2.5)
^ A  *  A *

Jp(j)[l -  g{ ve~̂ ^~‘̂ ,s}]ds = J ve~^p{t -  j) G( ve'^ J  -  s)ds < J ve~^p{t -  s)p^ {t -  s)ds < oo.
-00 0 0

□

Corollary 1.2.4 Let 6{t) = 6 and assume that limp(/) = p  and lim Px(J) = P\ whereJ—>-00 f—>-00
00

( 0  = J ydG{y\ t ) . Then the ’-o o ’ asymptotic distribution of has Laplace transform
0

( 1.2 .6)

Proof
From theorem 1.2.2 and let 0{t) = then

U, } = « (1.2.7)

letting Îq -> - 0 0  in (1.2.7) then

-vX̂  \ J
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In order to use E{e as the '- o o ' asymptotic distribution, it should be shown that the 

integrated value, | p ( 5 ) [ l - g { i s  smaller than oo. Otherwise the '-o o '

asymptotic distribution approaches zero. In lemma 1.2.3 we proved that the integrated 
value is smaller than oo and so the result follows.

□

Theorem 1.2.5 Let ô{t) = S  and the jump size distribution be exponential i.e.

g(y\t) = {a+ye^)e j/> 0 , y > -a e  Assuming that XO = P
a

a+ye
then

+ a  j ye ° +( v+a)e
( 1.2 .8)

Proof
Use theorem 1.2.2 and

g{ ve-*'--V> = J e - '' ‘̂ "‘>'dG(y,s) = J e '” )e‘')e-^"’’‘^'dy = a+ ?e* J

=  a+}e' a+}e

Therefore

J -  g{ ; s}]ds = a p j  ^  -  apj
1

;[ a+(y+ ve

P 
S

ds

Hence

)g-vv-*'-«g « (

Similarly, the '- o o ' asymptotic distribution can be obtained from theorem 1.2.5.

 ̂Note: The reason for this particular assumption will become apparent later when we change the 
probability measure.

□
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Corollary 1.2.6 Let ô{t) = Ô and the jump size distribution be exponential i.e.

g(y \/) = (« +  7 ^ ^ , y > 0 , Y>-cce~^■ Assuming that f{ t)  = p — ^  then the
a-\-ye

'- o o ' asymptotic distribution of has Laplace transform

(1.2.9)r+  OB
Y+(y+a)e  y 

Proof
We let ^0 - 0 0  in (1.2.8) and the corollary follows immediately.

□

Now let us evaluate the mean and variance of assuming that Xq is given.

Theorem 1.2.7 Let A, be a generalised shot noise process. Assuming that we know X^,
t

e {x ,\X^ = V " *  +e“* (1.2.10)
0

where S{t) = 6.

Proof
The generator of the process X̂  acting on a function /  (X) is given by

A f{ X )  =  - S { t ) X ^ + p ( t ) { \ f { X + y ) d G ( y , t ) - f { X ) l  ( 1.2 .11)

If we set /  (/I) = X, then
A A = — (^)/?(/) (1.2.12)

where 0{t) = 5  and (t) = J ydG{y\ t) .
0

(If the jump size distribution is exponential i.e. g(y\t) = {a+ye^)e~^"'^^ }/> 0,

A ( 0 =  ~ a )-a+ye
t

From E{X,\X^')-X^ = £ [ J {hf{X,)\X^}ds]
0

t t

0 0

Differentiate w.r.t t

= -æ (A ,|2„)+ A (/)/K 0 .

18



Solving the differential equation
t

I ^ )  =  +  e “ *  J  {s)p{s).

Lemma 1.2.8 Let /I, as defined. Assuming that we know Ag,

e {x\  | \  ) = + 2 e -^  J  V i W p(s)£( )ds + e '^ ' J  {s)p{s)ds.

□

(1.2.13)

Proof
From (1.2.11) and set / (A) = then

where (0  = j  y^dG(y\t) .
0

(If the jump size distribution is exponential i.e. g ( y j )  = {cc+ye^)e~^‘̂ ^^^^^, J > 0 ,

y > -a e -  , / / i ( 0  = ------- &)a+ye

From E{X\ |A„ ) - X \ =  £ [ |  (A )r&]
h

E{^,, I A, ) = -  2S j E{:^\x,^ )(&+2] /r, (s)/j(s)£:(A,|A,^ ) *  + J /̂ 2 {s)p{s)ds.

Differentiate w.r.t

«e U , K )
dt^

Multiply by , then
d  r 2«,

-  -2(S?( Kg )+ 2//i (/i )XA K , )+ /̂ 2 (A )XA ) •

K , )] = ((, )XA )+ El (A )p('i )] •

Solving the differential equation

e { x \  |A„ ) = X\e-^‘̂ <'-‘-> + 2e-“ ' J (j)p(s)£(A J )ds+ }  e^^Ei {s)p{s)ds.

□
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Corollary 1.2.9 Let as defined. Assuming that we know Zq,

V a r { \  IA J  = (4 X 4 a k . (1.2.14)

Proof

Kar(A,J\) =

Therefore (1.2.14) follows immediately from (1.2.10) and (1.2.13).
□

Similarly, the '-oo' asymptotic mean and variance can be obtained fi’om theorem 1.2.7 and 
corollary 1.2.9.

Corollary 1.2.10 Let /I, as defined. Furthermore if is '-oo' asymptotic then

= je^p(s)ju,(s)ds. (1.2.15)

Proof
From (1.2.10)

e [x ,̂  I a  j  = +e-^'] e^p{s)ju, (s)ds. (1.2.16)

Letting -> -o o  in (1.2.16) and the result follows immediately.
□

Corollary 1.2.11 Let as defined. Assume that we know X̂  ̂ and <5(0 = S. 
Furthermore if X̂  is '- o o ' asymptotic then

Var{A,) = e-^“' je^ ‘̂ M2(s)P(s)ds (1.2.17)

Proof
Letting -o o  in (1.2.14) and the result follows immediately.

□
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1.3 Time homogeneous shot noise process

We are now going to simplify the shot noise process described in the previous section by 
allowing the parameters to be homogeneous in time. Therefore the shot noise process, 
where the decay is exponential S, which is a constant, can never reach 0. The frequency 
of jump arrivals follows a Poisson distribution with p. We will have generally distributed 
jump sizes with distribution function G{y) Cv>0). If the jump size distribution is 
exponential its density is g(y) = cxeT°̂ , >' > 0, a >  0.

The results in this section can also be found in Dassios (1987).

The generator of the process /) acting on a function /  (A,r) belonging to its domain is
given by

For this process we can find the Laplace transform of the distribution of at any given 
time t given the distribution of X̂ . We begin with a related theorem that is also used by 
Dassios (1987).

Theorem 1.3.1 Let = X^e^. Then

pj 0-g( ve*))ds

e~^‘e ® 

is a martingale for all v>0.

Proof
The result follows immediately fi’om theorem 1.2.1.

We will now use the martingale found in theorem 1.3.1. 

Theorem 1.3.2 Let X̂  as defined. Then

g( v) = J e"^dG(y)

□

-P J  * ) } &

= • . (1.3.2)
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Proof
The result follows immediately from theorem 1.2.2.

Also the asymptotic (stationary) distribution can be obtained from theorem 1.3.2.

Corollary 1.3.3 The asymptotic distribution of has Laplace transform

-pj )}<fa

□

which can also be written as
GWdu

where G(u) =
u

Proof
Let  ̂ 00 in (1.3.2) and the corollary follows immediately.

□

Theorem 1.3.4 Let the jump size distribution be exponential i.e. g{y) = ae y> 0 ,  
a>0.  Then

a+ V
(1.3.3)

Proof
Use theorem 1.3.2 and

-(a+ve~ )y

a+ ve
a

a + v e ^
Therefore

4"

a+ ve i  + e-
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Hence

a+ y

□

Similarly, the asymptotic (stationary) distribution can be obtained from theorem 1.3.4

Corollary 1.3.5 Let the jump size distribution be exponential i.e. g(y) = ae~°^, )/> 0 , 
a >  0. The asymptotic distribution of has Laplace transform

 ̂ Y
<(x+ vj

Proof
Let  ̂ 00 in (1.3.3) and the corollary follows immediately.

□

Now let us evaluate the mean and variance of A, assuming that Xq is given.

Theorem 1.3.6 Let X̂  as defined. Assuming that we know Xq then

E{x,\Z,) = ^ + ( X , - ^ ) e - \  (1.3.4)

Proof
The result follows immediately from theorem 1.2.7.

□

Lemma 1.3.7 Let X̂  as defined. Assuming that we know Xq then

E{x\\X,) = X\e-^^ _e-2») + ( i ^ + ^ ) ( l _ e - ^ « ) .  (1 .3 .5 )

Proof
The result follows immediately from lemma 1.2.8.

□
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Corollary 1.3.8 Let as dejfined. Assuming that we know Àq then

Var{A,\X,) = ( ï - e - ^ ^ ) ^ .  (1.3.6)

Proof
Var(A,\X,) = E{A]\Jl,)-{E(Z,\A.,)}\

Therefore (1.3.6) follows immediately from (1.3.5) and (1.3.4).
□

Similarly, the asymptotic (stationary) mean and variance can be obtained from theorem 
1.3.6 and corollary 1.3.8.

Corollary 1.3.9 Let as defined. Furthermore if is stationary, that is X^ has the 
stationary distribution then

E{X) = ^ .  (1.3.7)

Proof
Let  ̂ 00 in (1.3.4) and the corollary follows immediately.

□

Corollary 1.3.10 Let X̂  as defined. If X̂  is stationary then

Var{X) = ̂ .  (1.3.8)

Proof
Let  ̂ > 00 in (1.3.6) and the corollary follows immediately.

□
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1.4 Aggregated process

fFrom (1.1.4), we see that ) = E (j ^ / i s ) . In other words, the mean number of
h

points in a fixed time interval of length is determined by the expected value of 

J À^ds. It will be of interest to find the mean and variance of the aggregated process X^.
h

As we have seen, the integrated value of the shot noise process is the aggregated
t

process i.e. X^ =^X^ds. Throughout this section, we assume that the shot noise
0

process is time homogeneous.

fNow let us evaluate the mean and variance of J X/is assuming that is given.

Theorem 1.4.1 Let X^ and as defined. Assuming that we know Xq, then

E { \  X,d^X,) = E{X\X,)  = E{N,  |Ao) = X, + . (1.4.1)

Proof
From (1.1.3)

t
E { N \X „ 0 < s < t )  = ^Xjds. (1.4.2)

0

E{N.)  = e{E{N,\X,)] = E(\X,ds)  = J E{X,)ds. (1.4.3)
0 0

Conditioning on Xq in (1.4.3), then

£(Af,|A„) = £ ( J  X,d^X,) = j E{X,\X^)ds. (1.4.4)

Therefore (1.4.1) follows immediately from (1.3.4).
□

25



Lemma 1.4.2 Let A, as defined. Assuming that we know Aq then

E{N,X,\X,) = i ^ t  - H £ )

.Aq 3//jP , /^o , ^ PiP\f,-2St

(1.4.5)

Proof
The generator of (A^^,AJ acting on /(» ,A ) is given by

A /(«,A ) = A [/(« + l ,A )- /(« ,A )]-  <5A-^+p[J/(w,AH->')i/G(>')-/(«,A)]

(1.4.6)
If we set /  (w. A) = wA in (1.4.6) then

A «A = Â -  ^ A +p/ijW.
Therefore

£(Ar,A,|Ao) = - 4 £ ( A ^ A K ) ‘*+J-E(A^.K)c&+//^j£:(iV,|Ao)*.

Differentiate W.r.t t

^ ^ ^ ^ ^ ^ ^  = -æ{N,X,\X,)  + E(^X,)^ f i ,pE{N,\X ,) .

Solving the differential equation

E{N,X,\X,) = e-^{\e^E{X\\X,)ds+Mj\e^E{N,\X,')ds}.  (1.4.7)

The result follows when we substitute (1.3.5) and (1.4.1) in (1.4.7).

Lemma 1.4.3 Let Â  and as defined. Assuming that we know Aq, then

E{{\Xjdsf\X,} = E{Xj\X,)
0

□

(1.4.8)
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Proof
t

The second moment of J Z^ds, given Zq, becomes
0

t t t t s

£{(J  X,ds f \K )  = £ {J  Xjds-\x,dr\X^} = 2 j  J E{X,X,\X^)drds (1.4.9)
0 0 0 0 0

where r<s.

Also
= Xfi{N,\X/,Q<r^s) .  (1.4.10)

From (1.4.2)
S

E { N ^ \X / ,0  < r  < 5) = A J  X^dr
0

s

E(N,X,) = \E{X,X,)dr. (1.4.11)

Conditioning on /Iq in (1.4.11), then

E(N;i,\X,) = \E(X,X,\X,)dr.
0

Hence (1.4.9) becomes

£{(J X.dsf\X,} = 2 j  E{N,X,\X,)ds. (1.4.12)
0 0

The result follows when we set (1.4.5) in (1.4.12).
□

Corollary 1.4.4 Let /I, and as defined. Assuming that we know then

Vari\Xjd^X,) = Var{X,\X,) = ! ^ t - ' ^ { \ - e - ^ ) + ! ^ { \ - e - ^ ^ ) .  (1.4.13)

Proof

Var{\ X,d^X,) = E {( \X ,ds f \X ,} -  (E () X,d^X,) f .

Therefore (1.4.13) follows immediately from (1.4.8) and (1.4.1).
□
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fLet us also try to obtain the asymptotic (stationary) mean and variance of J X ^ds .

Corollary 1.4.5 Let A, and as defined. Furthermore if A, is stationary then

E { \x ,d s ) ^E { X , )  = E(N,)  = f ^ t .  (1.4.14)

Proof
Since is stationary, if we set (1.3.7) in (1.4.3) then the result follows immediately.

□

Lemma 1.4.6 Let X ,̂ as defined and X̂  be stationary. Then

= (1-4.15)

Proof
t

The aggregated process X^= j  Xjds. Therefore
0
t t t

E{X,X,) = E(X,jX,ds) = E(jx,X,ds) = jE(X,X,)ds, s< t  (1.4.16)
0 0 0

where
£(A,AjA„, s<,u)=Xfi{X,\X^, s<u)  =X,E(X,\XJ 

E{X,X,) = E{E{X,X\X„ s i u ) }  = E[Xfi{X,\X^)}. (1.4.17)

From (1.3.4)

E(X,X,) = E{X ,E (^K ))  = E [X ,P §-H K  = e [ X , ^ + ( X ^  ~ ^ X , ) e - ^ ‘-‘̂ \d o  0 0

= i ! fE (X J + e - ‘̂ ‘-‘̂ E(X; ~ ^ X , )  = ̂ E ( A J  + (E (A /)-^ E (A ,)} .
0 0 0 0

Since A, is stationary, from (1.3.7) and (1.3.8)
_ ^\P P\P Q-S(.t-s) I Z ^  PtP  __ P\P P\P\

6 6 6 ^  26 6 6 ^

6 26
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Hence

E{X,X,) = \e(X,X,)<E = j {{f f̂ +(̂ )e-«'-)}<* =
= + y Se^ds = + { ! ^ ) e - \ e ^  - 1)

o 2d O'̂ Q o 2o

~ 2 5 ^ ^  s ’ 2 ^  ■

□

Lemma 1.4.7 Let X„ X, as defined and X, be stationary. Then 

£{(j X / i s f )  = E(X^) = 2jE{X,X,)ds = ( ^ Ÿ t ^  + ( ^ ) , + i f ^ e - *  (1.4.19)

Proof

The aggregated process ^ t =  j  Therefore
0

t t t t s t s

£{(J  X,ds f )  = E {X f)  = E { \  X,dsj X^O-] = E{2 j  J X,X,a-ds) = 2 j  J E{X^X,)drds.
0 0 0 0

From (1.4.16)

£{(J X ,d s f} = 2 j E{X,X,)ds. (1.4.20)

Hence from lemma 1.4.6

£{(} X M )  = E ( X f )  = 2 j E(X,X,)ds = 2 j  ( | ^ + ^ s - ^ g - * ) < f c

s ’ ^  S ^ ’ ^  ^
□

Corollary 1.4.8 Let A, and as defined. If A, is stationary then

Var{\x,ds) = Var(X,) = ^ t + l ^ e - ^ (1.4.21)
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Proof

For( J Xjds) = E{{\  X jds f} -  {E { \X .d s ) f . (1.4.22)
0 0 0

Since is stationary, if we set (1.4.19) and (1.4.14) in (1.4.22) then the result follows 
immediately.

□
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2. The Cox Process with Shot Noise Intensity

This chapter deals with the Cox process incorporating the shot noise process as its 
intensity function.

fIn section 1, Laplace transforms of the distributions of and = 1 À^ds
h

will be obtained. We will then specialise our analysis of this Laplace transform where the 
jump size distribution is exponential. We will also examine the asymptotic behaviour of 
Xj and Nt where is assumed to be stationary in both these cases. As a matter of 
interest we discuss the higher order properties of X^ such as the joint distribution of

X,^ -  X ,^  at specified times , t j , • • ■, .

The mean, variance and covariance of , assuming that is stationary, will be

evaluated in section 2. As a matter of interest we also discuss the higher order properties 
of such as the joint distribution of , • • •, at specified times

A * ̂ 2) *

In section 3, the distribution of the intensity at point times, Aj., where T is a time at which 
a point of has occurred, will be derived assuming that A, is stationary. It will be of 
interest to compare the distribution of the intensity of point times, Xj. with the distribution 
of

We look at the interarrival time between points and its distribution in section 4, in 
particular we will examine = inf W, = l | = 0} assuming that A, is time

homogeneous. The mean and variance of interarrival time between points will be shown 
when stationary has been achieved.

2.1 The distribution of number of points in a fixed time interval

2.1.1 Time homogeneous case

In this section we assume a time homogeneous shot noise process; this is discussed in 
detail in section 3 of Chapter 1. Therefore X̂  is a shot noise process with rate of decay Ô, 
rate of jump arrivals p  and jump size distribution function G(y) (y > 0). If the jump size 
distribution is exponential its density is given by g(y) = y  >0, a>0.
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Now we will obtain the distribution of which is a doubly stochastic Poisson process 
with intensity function To do so we will first examine the aggregated process and 
then use the relationship (1.1.9) to deduce results about N^. We will therefore evaluate 
the joint Laplace transform of the distribution of and at time t.

The generator of the process acting on a function belonging to its
domain is given by

=  (2.1.1)

Also the generator of acting on / (n,À,t) is given by

Ay («, X j)  = ̂  + X[f(n + \,X,t )- f(n ,X ,t)]  -  +p[ J / (« ,  X +y  J  )dG{y) -  f{n ,  X, r)].
Ct CM ’'q

(2 .1.2)

Let us begin with a theorem also used by Dassios (1987). Our proof is somewhat shorter.

Theorem 2.1.1 Let X^ and X̂  as defined above and evolving up to a fixed time t*. We 
will assume that the constants and are such that k^>0 and ^ -k^e~^ ; then

g(v) = je- '^dG(y)\  (2.1.3)j-kiSC, ~(ki+k2ê )X, 0
V O  y

is a martingale.

Proof
Define Ŵ = ôX^+X^ and Z, = X^e^, then the generator of the process (W^,Z^J) acting on 
a function / {w,z,t) is given by

A /(w ,z, 0  = -C  + 4  J / ( w  +y,2 +ye^ , t ) d G ( j ) - f { w , z , t ) l  (2.1.4)
^  0

and f {w ,z , t )  has to satisfy A /  = 0 for to be a martingale. Setting
we get the equation

h \ t ) - A \ -  g{k, + )]h{t) = 0. (2.1.5)
belongs to the domain of the generator because of our choice of k ,̂ k  ̂\ the 

function is bounded for all  ̂ ^  and our process evolves up to time t* only.
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Solving (2.1.5)
r

h( t)  =  K e  » (2.1.6)

where K is an arbitrary constant.

Therefore

7  0

is a martingale and hence (2.1.3) is a martingale.
□

Theorem 2.1.2 Let the jump size distribution be exponential i.e. g(y) = , > '>0,
a>0.  Then

)̂ /  ̂̂ 2 + ( +K j ^2 1 7)

is a martingale.

Proof
Since the jump size distribution is exponential i.e. g(y) = 0 !e~‘̂ , y > 0 ,  a>0,  from 
theorem 2.1.1

g(i, + V * )  = J = I  = «J = a
0

a
a+k^ + k^e^

Therefore

k^+a+k^= t    In
S(a+k^)

Hence

_k  ̂+(a+k^)e-a

h  g  ^ 2+ «+ ^ i d  ap  . .  ^ 2+ g+ ^ i X
, 0 _ S(̂a+ki) k2+(,a+ki)e~̂ j _ «S[a+A:,) k2+{a+ky)e~̂

_ gPf ^̂ 2 j
ÂTj +  Of +

(2 .1.8)
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Set (2.1.8) in (2.1.3) and the result follows immediately.

Corollary 2.1.3 Let >0, > 0, v> 0, O<0<\  and /j, be fixed times. Then

□

E{e- 2̂̂12
/2-/1

-P J[l4{-̂ +(v'2-̂ )e-*}]dï

(2.1.9)
and

E { é

-pJ [!-«{¥+(
= g

(2 .1.10)

Proof

We set ^ i= — , -  —)e"^', ^ * > ^ 2  in theorem 2.1.1 and (2.1.9) follows
S 6

immediately.

(2.1.10) follows from (2.1.9) and (1.1.9).
□

Corollary 2.1.4 Let >0, > 0, v>0, 0 < ^< 1 and ^2 be fixed times. Let the
jump size distribution be exponential, i.e. g(y) = y > 0 ,  a>0.  Then

Xjds
E{e X,,X,^} = E[e -Vi(̂ /2 *'2-̂/2 X,J = E{e '

(2.1.11)
and
E { ^ N , ^ , \ )  = E{e X ,,,A J = £{^"'=-""V ‘'"'=AJ 

'  (v+a)e-«'-''>  ^
(2.1.12)
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Proof

We set ^ i= — , ^ 2  - ( Mz " t heorem 2.1.2 and (2.1.11) follows 
S o

immediately.

(2.1.12) follows from (2.1.11) and (1.1.9).
□

Corollary 2.1.5 Let A, as defined; then

- vJ Xjds

and

E{e \ }  = E{e " \ \ }

Y'In

~p J

(2.1.13)

(2.1.14)

Proof
If we set Vj = 0, v= 0 in (2.1.9) and (2.1.10) then (2.1.13) and (2.1.14) follow.

□

Corollary 2.1.6 Let X^, A, as defined. Let the jump size distribution be exponential 
i.e. g(y) = ae~‘̂ ,  y > 0 ,  a>0.  Then

E{e

} 7-  v J  Xjds -  V I Xjds

\ }  = E{e ~ \ \ }  = E{e ®
v (-\ _

(2.1.15)

and

f -S{t2-tO fae

(2.1.16)
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Proof
If we set V2 =0, v= 0 in (2.1.11) and (2.1.12) then (2.1.15) and (2.1.16) follow.

□

Corollary 2.1.7 Let as defined. Furthermore if is stationary then

- ‘' J ~  JG{̂ (l-«-*)}di
= n 0 (2.1.17)

and
(L-̂ p

where G{u) -

Proof

£{^"'=-"">} = £{e-‘'-®('̂ '’- '̂'>} = e ” • (2.1.18)

l-g (« )
u

From corollary 2.1.5

•i-i\

From corollary 1.3.3, when A, is stationary it has a distribution with Laplace transform

— G{ii)du

e °
Therefore

3 ^ " *  '2-/1  A ^ /2-fl

" i  .g i  i  .e i

= e ® =e °

Similarly (2.1.18) follows.
□
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Corollary 2.1.8 Let as defined. Let the jump size distribution be exponential
i.e. g(y)  = ae~^, y > 0 ,  a>0.  Furthermore if is stationary then

} ?-  'J -  V I Xjds

,  } = £{e • }

= (2,1.19)

and

=  g-fKh-tx)(_______ ^ ^

Proof
From corollary 2.1.6
£{£-•<-»•,-f„)j ^ £ { £ { e - ’<-*''i-f")|;i_̂ }} =

_ _.w# \ - <Z + -ÿ (1 — ̂
ae

Therefore, since X̂  is stationary and from corollary 1.3.5, (2.1.19) follows immediately. 
Similarly (2.1.20) follows.

□

We will now close this section by evaluating the joint Laplace transform of the distribution 
of - Xf^,Xf^~Xf^,'",X^^ - Xi^  ̂ (« -1  successive increments). Using the important

corollary 2.1.3 and 2.1.5 we can derive higher order properties of X^.

Lemma 2.1.9 Let X^, X̂  as defined. Vi,v„_2 , ....... , Vj and Yq are non-negative
constants. Then

 ........

(2.1.21)
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- p  \ [ ^ - g { - jH r i- i~ ) e  }]<fa
where = e ® , / ^ = ^  + K. and ^  =(;^,_i

o o
J
0

for 7 = 1,2,•••,« -!.

Proof
£{g-v.(Jr,-x,)g-v,(jr,-Jr;,).......g-‘t(-f,.--f,„)g-r,Ki,,|;̂

_ g- -'*'<1 )g- ‘'<.-2(^/3 -̂ t2 )........g- --^,^2 )jr ^  J

(2 .1.22)

Therefore from corollary 2.1.3

, -8{^+<.n-W )̂ds- p

(2.1.23)

*n-*n-\
-p I ĵ<n- )̂e- )̂]ds

Put = g ® , and. ^ i =( / o— in (2.1.23),
d d

then

= '̂ l(''̂ '2--̂ 1 )g- *̂ 2(̂ /3-"̂ «2).......^  J 24)

Hence
^  -*̂ /l )g- >'#1-2(-̂ /3 --̂<2 )........g- ■-'̂ '#1-1 ̂ Q~ŷ *n j

= >̂-2(-̂ ,3 -"'̂ '2 ).........g- >'2('T,,_; j

(2.1.25)
Taking the same procedure from (2.1.22) to (2.1.25) recursively, then

) g -  V n - z i X f ^ - X ^  ) ..................g -  > l ( - r , „ - A ' , ^ i  J

= .......

(2.1.26)

(2.1.21) follows where we condition /l,̂  in (2.1.26).

□

38



Corollary 2.1.10 Let /I, as defined.  , Vj and are non-negative
constants. Then

.................................... j ^ ........

n̂-la-ï
-P  J[l-^{-^(l-«‘*)}]dî

where ^ i=e  ® , y\= —  + K[ , K[ = —— and
S 5

(2.1.27)

>. = e

for ; = 2,3,---,w-l.

Proof
Set Xo = 0 in (2.1.22) and take the same procedures as lemma 2.1.9, using corollary 2.1.5 
then the result follows.

□

2.1.2 Time dependent parameters

In this section we assume a shot noise process that is dependent on time; this is discussed 
in detail in section 2 of Chapter 1. Therefore A, is a generalised shot noise process with 
rate of decay <5(0, rate of jump arrivals p(t) and jump size distribution function 
GCy;0 Cy > 0). If the jump size distribution is exponential its density is 

= >'>0, y>-ae~^.

The generator of the process acting on a function f ( x , X j )  belonging to its
domain is given by

A /(x ,A ,0  = ^  + X^-Ô{t)X^^-^p{t)[^ f{x ,X-\-y , t )dG{y’J ) - f { x ,X , t y \ .  (2.1.28)
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Also the generator of acting on / («,>^-,0 is given by

âÀ,

(2.1.29)

Similar to the previous section, let us evaluate the Laplace transform of the distribution of 
and at time t.

Theorem 2.1.11 Let and as defined. Also consider constants k  and v such that 
A: >0 and v>0; then

t I t
j"e~̂^̂dr}Xf J ê~̂ '̂ dr,s}]ds

g(w;5) =

(2.1.30)

is a martingale where A(0 = J S(s)ds.

Proof
From (2.1.28) has to satisfy A /  = 0 for it to be a martingale. Setting
/  = we get the equation

—XA (^t)+R (/) — Av+ S(t)XA(t) '^pCOlS^i^COfO ~ 1] — 0 (2.1.31)

and solving (2.1.31) we get
t t ^  s

A{t) = and R{t) = ^p{s)[\- g{ke^^"  ̂-  e~^^''^dr,s}]ds.
0 0 0

t

Put A(0 = J 5{s)ds and the result follows.
0

□

Theorem 2.1.12 Let the jump size distribution be exponential i.e. 

^CyiO = >^>0, y>-ae~^  and f X f ) - p — Assuming that
a-\-ye

S{t) -  8, then
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y + a
y+ae~^ y+k + a

\ —Ŝa+v

(2.1.32)

is a martingale.

Proof
This theorem can be proved in a similar method to theorem 2.1.2. In this case, if we set 

P(0 = P— ~~~â g(y;t) = (a+ ye^ , j/> 0 , y>-ae~^  the result follows.
a-\-ye

Corollary 2,1.13 Assume that <5(/) = Let Vi>0, > 0, v>0, 0< 6< \ .  Then

□

- I

(2.1.33)
and

- I X'Xl-g{V+( 
|at,_ , }  = g-lVx^Y)«-'*-''Kg ,

(2.1.34)

Proof

(2.1.33) follows immediately where we set v= v̂ , k = -  + in theorem
Ô Ô

2.1.11. (2.1.34) follows from (2.1.33) and (1.1.9).
□

Corollary 2.1.14 Let Vj >0, > 0, v> 0, 0< 1 and the jump size distribution be
exponential i.e. g{y\t) = {a-\rye^)e~^"'*^*^^, 3^>0, y>-ae~^.  Assuming that ^ 0  = ^ 
then

C
Sf >6** + ( V2 -  + a + ^ ^

[ )e^ '+ a  J
°p&r+v,

(2.1.35)
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and
+ { v -^ )e  +

I J

ap<k+(l-6)

(2.1.36)

Proof

(2.1.35) follows immediately if we set v= Vp k = — +{v^ in theorem 2.1.12.
Ô Ô

(2.1.36) follows from (2.1.35) and (1.1.9).
□

Corollary 2.1.15 Let A",, as before. Assume that <5(/) = <^;then

E{e ■'i/j n

and

),

(2.1.37)

(2.1.38)

Proof
If we set Vj =0, v= 0 in (2.1.33) and (2.1.34) then (2.1.37) and (2.1.38) follow.

□

Corollaiy 2.1.16 Let N^ as defined and the jump size distribution be exponential i.e.
^CyiO = (a +  , A' > 0, y> -ae~^. Assuming that 0{t) = ô  then

+cr

s f
ap 

Sa+ V

(2,1,39)
and

 ̂yê  ̂+ae V
j e ^ ' + a  J

ap
Sa+{y~0)

(2,1,40)
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Proof
If we set V2 =0, v= 0 in (2.1.35) and (2.1.36) then (2.1.39) and (2.1.40) follow.

□

Corollary 2.1.17 Let X^, as defined and is ' - 00 ' asymptotic. Assuming that 
S{t) -  S  then

^ g , (2.1.41)

and

= g _ e " . (2.1.42)

Proof
From corollary 2.1.15

From corollary 1.2.4, when X̂  is ' - 00 ' asymptotic it has a distribution with Laplace 
transform

e *
Therefore

= e

Similarly (2.1.42) follows.
□

Corollary 2.1.18 Let as defined, is ' - 00 ' asymptotic and the jump size
distribution be exponential i.e. g(y\t) = (a+ye^ ^  > 0, y > - ae~^. Assuming 
that S(t) = S  then
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and

\ ^ r \ —  '&+V

(2.1.43)

qp

(2.1.44)

Proof
From corollary 2.1.16 and corollary 1.2.6

 ̂ + ag
+ a

_______ y-\-ae _______

y+{-(l-g-'^':-''))4-(%}g'*'
V o

+  a  J
+ a + - ( I -  

________ Ô__________

ap 
Sa+ V

op
Sa+ V

\%r

yê  ̂ + a + - ( l - B ' ‘̂ ' -̂'‘̂ ) 
S

(V
& Z+ V

Similarly (2.1.44) follows.
□

We will now close this section by evaluating the joint Laplace transform of the distribution 
of , X f ^ - X f ^  (% -l successive increments). Using the important

corollary 2.1.13 and 2.1.15 we can derive higher order properties of X .̂

Lemma 2.1.19 Let X̂ ,  A, as defined. Vi>^n-2 > y^i y^ are non-negative
constants. Then
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£ { g - ................................................ j ^ .........

(2.1.45)

where ç>j=e , / j = — +K. and
5 Ô

for z = 1,2,•••,« -!.

Proof
The result follows if we take the same procedures as lemma 2.1.9, using corollary 2.1.13.

□

Corollary 2.1.20 Let A, as defined. V,,v„_2 ,  , v, and are non-negative
constants. Then

 ........

(2.1.46)

where , /  ̂= — + ^nd
S 6

*n-U\
J S o S

<Pi=e

y .= —  + K'.=—  + [ - ^  {1 -  ^
' Ô ' S Ô Ô ' ' â

for z = 2,3,--* ,«-l.

Proof
Set / q = 0 in (2.1.22) and take the same procedures as lemma 2.1.19, using corollary 
2.1.15 then the result follows.

□
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2.2 The distribution of the increments of

We have found the p.g.f. of (refer to corollary 2.1.7) assuming that is

stationary. Therefore moments, cumulants etc. can be expressed in terms of p.g.f. of 
. However, it is not easy to find the mean and variance of in terms of

the p.g.f. of as the first derivative of w.r.t 0 is very complicated.
So we will evaluate the mean, variance and covariance of fi-om the Poisson

properties assuming that is stationary. We will also evaluate the higher order 
properties of W, such as the joint Laplace transform of the distribution of 
\  . • • •. ̂ 1, -  at specified times /j .

2.2.1 Time homogeneous case

2.2.1.1 Mean number of points in a fixed time interval

From (1.4.3)
ti+h ti+h

- N , )  = |A jj  = E i jZ ,d s )  = jE (Z Jd s .  (2.2.1)
ft

Since we have obtained E(A J when A, is stationary, the mean of the number of points in 
a fixed time interval, ) can be easily found.

Theorem 2.2.1 Let as defined. Also let A, be time homogeneous and stationary then

= (2.2 .2)

Proof
The result follows immediately if we set (1.3.7) in (2.2.1).

□

From (2.2.2) we can see that ) is a function of time h i.e. ) is

linear in h when Â  is stationary.
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2.2.1.2 The variance of number of points in a fixed time interval

From (1.1.3)
t,+h

t^<s<t^+h)= jx,ds .  (2.2.3)

and
^ f ̂  4-A} = {E |A„ t^^s^ti+h)Ÿ+Var(N,^^^-N,^\À^, t^^s^t^+h)

t\+h ti+h

= { j x , d s f + j x , d s .  (2.2.4)

From (2.2.4)
tl+h ty+h

E { ( N , ^ , , - N , f }  = E [E { ( ,N , , , -N . f \X , ,  +h}] = E{( j x ^ d s f }  + E( jx^ds)
h h

tl+h ti+h
= E { ( j X / l s f } +  jE(X,)ds.  (2.2.5)

Therefore
rar(iV,,,, - N ^ )  = £{(AT,„, -  N.  ̂f } -  {£(iV,_,, -  ) f

fj+/l f|+̂  fj+/l
= E{{ \X jd s f}+  \E { X , ) d s - { \ E { X . ) d s f .

Theorem 2.2.2 Let N„ X, as defined and X, be stationary then

(2.2 .6)

Proof
The result follows immediately if we use (1.4.19) and (1.3.7) in (2.2.6).

□

We can find a interesting result from theorem 2.2.1 and theorem 2.2.2. In the case of 
homogeneous or non-homogeneous Poisson process, the mean and variance of number 
points in a fixed time interval are the same (see (1.1.3)). However in the case of doubly

stochastic Poisson process, they are different i.e. = and

Var{N,^^, -  ) = ^ A + ^ ( / , + £ ^ ) .
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2.2.1.3 The covariance of the number of points in two fixed time intervals

To obtain the covariance of the number of points in two fixed time intervals, 
, t̂^+h we will need to examine a lemma.

Lemma 2.2.3 Let as defined and be stationary. Then

h (m+l)A - -a,
£ ( J  ] x , X ^ d s )  = { ^ Ÿ h ^ + i ^ e - ^ " - ' ^ " ( — ^ Ÿ  (2.2.8)

0 L  5 25  5
where and .

Proof
tl+h t̂ +h ti+hÎ2+h tl+h t2+h

E( jÀ^ds) = E( j  jÀ^À^duds)= j  jE(X^ÀJduds,  s<u.  (2.2.9)

Since A, is stationary

J jE(Z^Z^)duds=j jE{Z^ZJduds (2.2.10)
ti t2 0 mh

where m = and t^<t^-\-h<t^<t-^+h.

From (1.4.17) and (1.4.18)

= £{£(A „4|A „ s<i^)} = £{A.£(A„|A.)} = (M )=  (2.2.11)

□
The result follows if we set (2.2.11) in (2.2.10).

Theorem 2.2.4 Let as defined and A, be stationary then

Cov(iV,_,, -  N,^, -N,^) = (2.2.12)

where and t^<t^+h<t^<Î 2 +h.

Proof
C o v { ( # ^ ^ + ; , <s<t^ +/?} = 0.
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Therefore

f,+A ti*h
= ^X,ds'

and
E{{N^,, -  N^ -  N^ )} = £[£{(iV,„» -  iV, )(# ,,,, -  )|A„ ï, S ^ +/,)]

fj+/l (;+A t̂ -̂ ht̂ '̂ h
= E( J J = E( J J X^X/iuds).

h h h h

Hence
C o v { ( # , ^  -  i V ,  ) .  ( J V , . , ,  - # , ) }  =  £ {  -  JV ,, ) ( i V , ^  -  N,̂  )]-E(N^,,-  T V , ) £ ( i V , . , ,  -  N,̂  )

= £ ( ]
f, f;

(2.2.13)
Since is stationary
Cov{(N,^^,-N,^UN^^,-N,^)} = Cov{(N,-N^\iN,^_,^^,-N,^_,^)} = Cov{(N,-NJ,{N^^,-N^)}

h (m+l)A=  Cov{ ( ; ^,  -  AT, ),  ( J }  =  £ ( J  J  X,X,<huh) -
0 mh

(2.2.14)

□

where m = t^-t^ and t^<t^-\-h<t^<t^-\-h.

If we set (2.2.8) in (2.2.14) then (2.2.12) follows immediately.

2.2.1.4 The joint distribution of “ -^Vj

We will now evaluate the joint Laplace transform of the distribution of 
Nf  ̂-  {n -1  successive increments). Using the important

corollary 2.1.3 and 2.1.5 we can derive higher order properties of

Lemma 2.2.5 Let N^, X, as defined.  and / q are non-negative
constants. Then

65,-"" = .......

(2.2.15)

49



where <j>̂ = e 

for z =

, r , =  ^ + K ,  and K, = {y,_, >
o o

Proof
(1.1.9) implies

 j  _  -̂(y~B{){X,^-X,^{)

Therefore the result follows from (2.2.16) and (2.1.21).

(2.2.16)

□

Corollary 2.2.6 Let as defined.  and are non-negative
constants. Then

E {€- gT" ' " ' " \ }  = 4J2 ........................................................ (2.2.17)

(f^=e

1-A

for z = 2,3," ,zz-l.

Proof
If we set /o = 0 in (2.2.15) then the result follows.

□
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2.2.2 Time dependent parameters

2.2.2.1 Mean number of points in a fixed time interval

Since we have obtained E{X^) when A, is '- o o ' asymptotic, the mean of the number of 
points in a fixed time interval, can be easily found.

Theorem 2.2.7 Let N^, as defined and be '- o o ' asymptotic then
tl+h 3J  («)(*/«& (2.2,18)

-0 0

where -oo<w</j <5</j+/z.

Proof
From (2.2.1)

tl+h=  J  E{X,)ds. (2.2.19)

If we set (1.2.15) in (2.2.19) then (2.2.18) follows immediately.
□

2.2.2.2 The variance of number of points in a fixed time interval

We start with lemmas that are very useful when trying to find variance of number of points 
in a fixed time interval, Var{N̂ ^^y, -  W, )̂.

Lemma 2.2.8 Let as defined and A, be '- o o ' asymptotic. Then

J {u)fiu)du + g J (4X4^ (2.2.20)

Proof
Letting -oo  in (1.2.13) and fi"om (1.2.15),

*1 s ti

E(Xl)  = 2e'^^- j e ^ \ ( s ) p ( s )  e-'^je^/i,(u)fi(u)cMs+e-^^‘ fe^^ju,(s)fi(s)ds (2.2.21)
—00 —00 —00

where - o o <u<s<t^.
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h  s

Letting c(^) = J (u)p(u)duy then

h f
J ( 4 X 4  • J (u)p(u)duds = J J e*//i (u)p(u)du {s)p{s)ds

—00 —00 —00—00

= I  Je*/i,(a)p(a)rfMe*/<,(s)p(i')£fe= |c (s )c ’(s)£& = ic ^ (/,)  = i  |e*//,(a)p(a)rfa
—0(̂ 00 —00 —00

(2 .2.22)

Therefore from (2.2.22) we have

j {u)p{u)du + e J ( 4 X 4 ^  (2.2.23)

□

Lemma 2.2.9 Let as defined and be '-oo' asymptotic. Then

e [x^^X̂ )̂ = g"*' Ig “* J (u)duds + g"'** | e^p{u)^^{u)du^g“* J e^p{u)fi^(u)duds.
0 -00 0  -0 0

(2.2.24)
Proof

r
The aggregated process = J  X^ds. Therefore from (1.4.16)

0

E [ \ X ^ )  = \E{X^X,)ds,  s<ty (2.2.25)

Conditioning on X̂  ̂ in (1.4.17) and from theorem 1.2.7

e[x,X\X,^ ) = e-^''-‘^E{X\\X^ ) +e-*' J e^fXu)n, (u)du-E{X\X,^). (2.2.26)
s

Letting -> -oo in (2.2.26) and from (2.2.21) and (1.2.15)
5  t i  s

E{X^^X^) = ^e^^p{u)^2{^)du + e~^^e~^ ^e^fXu)j^^{u)du^e^p{u)jii^iu)du.
—CO —OO —00

(2.2.27)

If we set (2.2.27) in (2.2.25) then (2.2.24) follows immediately.
□
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Lemma 2.2.10 Let A,, as defined and be '-oo' asymptotic. Then
/ l  h  S  U J  s u

£’{ (JX^dsf } = 2 J e ~ * Je~  ̂J (y)dvduds + J ( v X r j e~  ̂J e^p(y)fiy(y)dvduds
0 0 -00 0 -oo 0 -00

(2.2.28)

Proof

The aggregated process ^ t = j  Therefore from (1.4.20)
0

E{(j; i ,dsf}  = 2jE(A,X,)ds.  (2.2.29)

The result follows if we set (2.2.24) in (2.2.29).

Theorem 2.2.11 Let as defined and be '-oo' asymptotic then

□

h s u h s s u
Je"*  Je"*  J {'^)dvduds+^ e"* J (y)dv^ e"* J  e*p(v)//, (y)dvduds
0 0 -0» 0 -» 0

2

+̂ e~  ̂^e^p{u)fd^{u)duds-\^e ^ ^e^p{u)fi^{u)dudX . 
0 - »  L 0 J

(2.2.30)

Proof
From (2.2.6) and since X̂  is '-oo' asymptotic
Var{N^,, - N , )  = E{{N,^,, -  f ]  -  {£(JV,_,, -  )}' = E[(N, - N , f ] -  {E(N, - N , ) f

= E  {(J A.,dsf] + 1 E(A.,)ds- { |  £(X,)ds}\
0 0 0

The result follows immediately from (2.2.28) and (1.2.15).
□

2.2.2.3 The covariance of the number of points in two fixed time intervals

To obtain the covariance of the number of points in two fixed time intervals, 
Cov{N̂ ^ f̂, -  ), we will need to prove the following lemma.
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Lemma 2.2.12 Let as defined and be '- o o ' asymptotic. Then

tj*ht2*h h t  h t  (m+l)A u

£ (  J  j X ^ X jd u d s)  =  J e  *  J ( y ) d v  J e ~ ^ d u d s  +  J e  *  J e ^ p iy ) ^ ^ ( y ) d v  J  e " *  J e ^ p ( y ) p ^ ( v ) d v d u d s
0 mh 0 ‘ mh

(2.2.31)
where /» = " A s<u.

Proof
From (2.2.9)

tl+h tj+h ti+ht̂ +h
E{^X/iS '  ^Xjds)= ^ ^E{X^X^duds , s<u.  (2.2.32)

Since X̂  is '- o o ' asymptotic,
(%+A f j + / i  t l + h  t 2 + h  h  ( h i + l ) h

£ ( jA . ,d s - jÀ ,e i s ) = j  jE(A,A.Jduds = J jE (A J , )d u ds  (2,2.33)
t i  f; 0 m h

where and /j </, +/ i < ^ 2̂ •

The result follows if we set (2.2.27) in (2.2.33).
□

Theorem 2.2.13 Let as defined and X̂  be ' - 00 ' asymptotic then 

Cov{N
h $ h M (w+1)* u f A j ) ^

= Je”* Je*‘*'/3(v)/̂ (v>/v je~̂ duds+je~̂  je*p(y)pi(y)dv J e”* Je*p(v)//,(vyvJw£fe-jJe”* Je*p(v)//,(v>/v<isl
0 -« mh 0 -CO mh -<o (_ 0 -<o J

(2.2.34)
where m = and t^<t^+h<t 2 <t^+h.

Proof
Since is ' - 00' asymptotic

C0V{{N̂ ^̂ ŷ  )X^t2+h = C0V{{Ny, -  )X^{m-\)h ~^mh)}
where and t^<t^+h<t^<t^+h.
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From (2.2.13) and (2.2.19)
Cov{(lV,_,* -  AT,_),(iV,̂ ., -  Af,,)} = E{iN,-N,)(Nf„, , , -N„,)}-E(^N,-N,)E(N,^ , , , -N„,)

h (m+l)/t
= J jE (A M dtu is- \jE (X Jc is \  .

0 mh

The result follows immediately if we set (2.2.31) and (2.2.18) in (2.2.35).

(2.2.35)

□

2.2.2.4 The joint distribution of

We will now evaluate the joint Laplace transform of the distribution of
(« -1  successive increments). Using the important

corollary 2.1.13 and 2.1.15 we can derive higher order properties of

Lemma 2.2.14 Let as defined.  and Xo &re non-negative
constants. Then

E i e r ^   K , } = .......

(2.2.36)

J X ')[l-g{^+( r,-i ^

where

and

(p. =e

O

Proof
(2.2.36) follows from (2.1.45) and (2.2.16).

□

Corollary 2.2.15 Let N^, A, as defined.  and are non-negative
constants. Then

A,.} = % % ........................................................ (2.2.37)
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where <p^=e'’̂  ̂ , y^= -----------------------= - - — Lg-«5(̂ -̂ «-i) ^nd
ô d

(p. = e

s * s s ô

o
for z = 2 ,3,•••,«-!.

Proof
If we set /g = 0 in (2.2.36) then the result follows.

□
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2.3 The distribution of the intensity at point times

In this section we will examine the Laplace transform of the distribution of the intensity of 
point times . We will assume that the process is stationary where T„ is the time of
the point of W, and X̂  ̂ is the value of X̂  when takes the value n for the first time.
The distribution of should not be the same as the distribution of X^. Since a point

occurs at that time this implies that the intensity should be higher than "expected” at other 
times (see comment at the end of this section).

Let us assume that shot noise process is time homogeneous and start with a lemma also 
used by Dassios (1987). We will provide our own proof.

Lemma 2.3.1 Let X̂  as defined. Let A be the generator for the process A, and
suppose that /  (X) is a function belonging to its domain and furthermore that it satisfies

/
■J'*'*

lim £{/(A ,)-e • |A„} = 0. (2.3.1)
<->00

If h(X) is such that

then

Proof
From (2.3.2)

X { / 7 ( X ) - / ( X ) )  + A / ( X )  = 0 
/. Kf{X)  = -X{h{X)-f{X)}  (2.3.2)

^ W „ ) | 4 )  = / ( A )  (2.3.3)

/(A ,)+ J[A .W A .)-/(A .)} ]ds

is a martingale and since r, is a stopping time (Pr( r, <s) = Pr(W, > 0) and is /Im
measurable)

r,A <

J[A,{A(A,)-/(A.)}]&|A„] = /(A o). (2.3.4)
0

If we now place a condition on the realisation X^, 0 < v< t  then the first term of the left- 
hand side in (2.3.4) is

E U i K M  = J  ̂ ^{/(^,.,)|^v.O < V  < t}-dP(X„0 < V  <  0  (2.3.5)
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and the second term of the left-hand side in (2.3.4) is
T̂At rjAf

El J =  j ^ [  {h{X ,) - f (X , )}d^X , f i^v<t] dP(X^,0^v<t)
0 O 0

(2.3.6)
where dP{X^,0<v <t) is the probability differential of a particular realisation in Q, the 
set of all realisations. r I

— j À.jds — j Ajds

Since t^aé is distributed with density ® on (0,/) and a mass e ® at / 
conditionally on < r  < / (Â  ̂ is doubly stochastic Poisson), we have

t j j
E{f{X,^.,)\K) = ] { f i K ) K e  " }àr+f{X.)e  « (2,3.7)

0

and
t|A/ ! r I

E[ j2 ,W ,) - /a .)} < is |2 .]  = J[jA,{A(A,)-/(2.)}<fePr(r. =r)]dr+j2.,{A(/l,)-/a.)}(*Pr(r, >0 
0 0 0 0

t  r  “ J •*■»* / j
= J [jA .{A (2 .)- /a .)}& -V  • ]dr-^\x,{h(X,)-f(X,))dse • .

0 0 0

Integrating by parts
t,A/ ! / -  I / -J

E {  J/l,{A (2,)-/a ,)}ds|2J = J[-J-2,e • </r]-4{/.a.)-/(A ,)}& +jA .(A (A .)-/a.)}<te •
0 0 J  0

/ - j  ^,<6 -  J X,ds f  -  J A/fr f  -  J A ,6

= j(e • -e  • )-A,{/,(A,)-/a.)}<*+jA,{A(A.)-/(A,)}dte • =jA,{/i(A,)-/(A,)}e "

Put s = r

TiAt t -  I
E [ \ X M K ) - f l K ) ) d ^ K ^  = \ K { K K ) - f { K ) } e  " dr. (2.3.8)

Therefore (2.3.4) becomes
r,Af

E U i K j K ) + £ [  J  [ 4  m . ) -
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( - J X/ls - J

= J[J /( '^ r)^ r«  " dr+f(X ,)e  » ]d!P(A„,OSv<0
O 0

-J
+ j [ j 4 ( A ( 4 ) - / ( 4 ) k  ' d r W { X . , 0 ^ v i t )

a 0
- J Xfds t “ J

= ® dP{X^,0<v<t)+^[^X^h{X^)e “ dr]dP{X^,0<v<t)
a 0

- f Xjds t - J Xjds
= E{f(X ,)e  ° \X,} + \[\h{X,)X,e « d r W { K , ^ ^ v  <t) = f {X ,) .

n 0

Letting / -> oo the first term in the left-hand side tends to 0 from (2.3.1) and the second to

■J- \ X / l s

E{h{X^y\XQ) X^e ® is a density) we therefore have £{/ï(>l^^)|Ao} = /(Ao).

□

Now let us derive the Laplace transform of the distribution of the intensity of point times 
Xj assuming that the process X̂  is stationary.

Theorem 2.3.2 Let T„ be the time of the point of N^. Assume /ij is the first moment 
of G and that it exists. When the process X̂  is stationary

Giv)
Ml

(2.3.9)

Proof
We will use lemma 2.3.1 which implies that if / (X) and h(X) are such that

X{hiX)- f(X)}  + A f ( X )  = 0

i.e. X { K X ) - / { X ) } - 0 ^ \ X ) + p { j f ( X + y ) d G ( y ) - m ) }  = 0 (2.3.10)

and (2.3.1) is satisfied then by starting the
E m , j

process from T.

T̂, } — (2.3.11)
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We will use

f {X )  = {A— = Xe-'”- —
l - g ( 0  l -g (v )

/ (A) clearly satisfies (2.3.1) and substituting into (2.3.10)
A  A

X{h{X)-Xe-'’̂  Æ îlle - ’* + {A— ^ ^ } ( -  v)e-'*]
l - g (v )  l - & ( 0

Therefore

=  - 4  J  [ {(^+ ;') -  ¥ G { y ) - { X -  g " ' ] ,
0 i - g { y )  i-g (0

X{h{X)-Xe'^^ 4- g~ } +
l- g (v )  l - ^ ( v )

= - / tg -  (A&'( V)+ g'( V) -  - V ) }  -  {A -  - ^ ^ ) e -  ]
I-^ (V ) l - g ( 0

= -pAg"‘''‘{^(v)-l}. 

Dividing by À and simplifying

h(X) = Ag-^ ( 1 -  <?v) + &-■• -  (1 -  5v) g- + pg- {1 -  ̂ ( V)}
l - g ( 0

and by (2.3.11)
£{A(A^., )} = E[E{A(A,,_ )|A, }] = £ { /(A , )}

then
A A

E l X r y ^ ’‘(l-St>)+&-'^'> -(1-Std g"^'" { l-g (0}] = E{A;g""' -  g
l-g (v ) l - g ( 0

(1 - â v ) E ( X ^ y ) - ( ! - )  +P{1 - k  ).
l-g(v) l-g(v)

(2.3.12)

When the process is stationary and have the same distribution whose Laplace 

transform is denoted by v) ; by (2.3.12) we have
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ô\H'{v) + Sv H {y )+ [5+ p{ \ -g (v)}M v) = 0.

-(1 -  ( V) -  (1 - v)+[5+p{\-  g{ v)}]//( V) = v).
l - g ( 0  l - & ( 0

. g'i'') 

l - g ( 0

Dividing by ôv

g '(v )  + " — g (v ) + { - + ^ ^~'^^*'^}g(v) = 0. (2.3.13)
i - g ( y )  ^  ^  "

Therefore H( v) is given by solving (2.3.13) subject to
/f(0) = l (2.3.14)

and we get

V
where is a constant.

From (2.3.14) A^=—  then

M l y  My

□

(2.3.15) provides us with the interesting fact that this is the distribution of the sum of two
random variables; one having the stationary (asymptotic) distribution of as its

distribution (see corollary 1.3.3) and the other having density {G(y) = 1-G(_y)).
My

In other words, the intensity of point times are higher than the intensity at other times.
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2.4 The distribution of in terarrivai times

The distribution of the time between two successive points is also of interest. By we 
denote the length of the interval between the -1)^ and the A* point. Since the 
distribution of is the same as the distribution of ^  when stationary has been achieved, 
we will try to find the distribution of = inf [t: = 1\Nq = 0}. This section also deals

with the derivation of the mean and variance of interarrival time between points assuming 
that is stationary.

Let us assume that the shot noise process is time homogeneous.

2.4.1 The distrihution of interarrival time between points 

From (2.1.14) in corollary 2.1.5

= • . (2.4.1)

By setting 0 we get the tail of the distribution of ,

r, > t\K) = = 0|A„) •
-)}ds

Pr(r, > /Uo) = P r(# , = OlAJ V » (2.4.2)

Theorem 2.4.1 Let r  a interarrival time of points of N^. Assume that 0 is a time at 
which a point of has occurred. When the process is stationary,

Pr(T> t) = Pr(T) > t) = —^ —  —e ° (2.4.3)

Proof
From (2.4.2)

/ /
- p \  -PJ ^

Pr(r, > /)  = £{Pr(r, = • ] = e » E { e ~ ^ ’̂ }.

(2.4.4)

Since 0 is a time at which a point of has occurred and A, is stationary, substitute
(2.3.15) into (2.4.4) then
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' 9 ï { r > t )  = V v { r ^ > t )  = e ® E{e '  “} =e ® -------— e ®

f i-«(^^) . f . f
f—}*

f ft } . j* i-xi—5—; f i-gi-
ê (lzç i) ^  - , J , _

_ —  ̂  ̂ -e ® "g ® = — ^  -e ®
A

G G - j . - ' )  G ( i - j e - )e ® = — -— ------- e
Ml Ml

□

2.4.2 Mean of interarrival time between points

We have found the distribution of interarrival time between points assuming that 2, is 
stationary. So by integrating it we can evaluate the mean of the interarrival time between 
points when A, is stationary, i.e.

E(%) = JPr(T> t)dt.
0

Theorem 2.4.2 Let as defined and also r  be a interarrival time of points of N^. If A, 
is stationary then

« c
E (r)=  \Vr{T>t)dt=— . (2.4.5)

i  Mip

Proof
From theorem 2.4.1

f  ( S k ü î i  V .  f t ê t i L i )
i  Ml : Ml

5  ^ . O  1... .fCO /I A _ OJI  )•« "

If we differentiate -e  • w.r.t t we can obtain *)e »
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Therefore

f s p ' ' * -fjôcj-i.-*)* g
jP r(T > ,X ( = — j  ' ]rf/ = — [e • r
» ^  (2.4.6)

i p ‘f i
£

MlP
s e

Set w = 0 in (2.4.6) then (2.4.5) follows immediately.
□

Theorem 2.4.2 shows the interesting fact that the expected value of the interarrival time 
between points is the inverse of the expected value of the intensity of the point process i.e.

1 c
E ( t) = --------= ------  (see corollary 1.3.9).

ju,p

2.4.3 Variance of interarrival time between points

Let us derive the second moment of r, i.e. E(r^) to obtain the variance of the interarrival 
time between points when A, is stationary, Var(r) .

Lemma 2.4.3 Let V, and t as defined. If is stationary then

=  ^-e » ]du. (2.4.7)
0 A

Proof

E(t^)  = j  t ^ f  {t)dt = J [{J 2udu)f  = J 2w{ J /  (J)dt}du = 2 j w • P r(r>  u)du
0 0

□
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Theorem 2.4.4 Let and r  as defined. If is stationary then

]du-(— f .  (2.4.8)
Mt fhP

Proof
Var(T) = E(z^)-{E(T)} \  

The result follows fi-om (2.4.5) and (2.4.7)
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3. Insurance Applications

In this chapter we will apply the Cox process incorporating the shot noise process as its 
intensity to price stop-loss reinsurance contracts and catastrophe insurance derivatives. In 
other words, we will use this point process as the claim arrival process. From hereon we 
will refer to the rate of jump arrivals, the rate of decay and the jump size in the shot noise 
process as the rate of occurrence of catastrophe, the settlement of claim and the size of 
catastrophe respectively.

Aase (1994) and Meister (1995) discuss pricing techniques such as the general equilibrium 
approach and the utility maximisation pricing. The non-arbitrage pricing technique will be 
employed (see Sondermann (1991) and Cummins & Geman (1995)) in our pricing model.

The assumption of no arbitrage opportunities in the market is equivalent to the existence 
of an equivalent martingale probability measure. We will examine an equivalent 
martingale probability measure obtained via the Esscher transform (see Gerber & Shiu, 
1996). Furthermore, using this equivalent martingale probability measure, the pricing 
models for two contracts will be established and illustrated through numerical examples. 
In general, more than one equivalent martingale probability measure exists so we will also 
show more equivalent martingale probability measures. However it will not the purpose 
of this thesis to decide which is the appropriate one to use.

3.1 The Esscher transform and change of probability measure

In general, the Esscher transform is defined as a change of probability measure for certain 
stochastic processes. An Esscher transform of such a process induces an equivalent 
probability measure on the process. The parameters involved for an Esscher transform are 
determined so that the price of a random payment in the future is a martingale under the 
new probability measure. A random payment therefore is calculated as the expectation of 
that at maturity with respect to the equivalent martingale probability measure (also known 
as the risk-neutral Esscher measure).

We here offer the definition of the Esscher transform that is adopted fi’om Gerber & Shiu 
(1996).
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Definition 3.1.1 Let be a stochastic process and h* a real number. For a measurable 
function/ ,  the expectation of the random variable f {X ^ )  with respect to the equivalent 
martingale probability measure is

£ '[ / (X ,) ]  = £

,h 'X ,6
where the process —7—;—r is a martingale. 

E\e^ j

From definition 3.1.1, we need to obtain a martingale that can be used to define a change
dP*of probability measure, i.e. it can be used to define the Radon-Nikodym derivative

where P is the original probability measure and P* is the equivalent martingale probability 
measure with parameters involved. This martingale will be used to calculate the fair prices 
for stop-loss reinsurance contract and catastrophe insurance derivatives.

Theorem 3.1.2 Let as defined and ^  >\. Then

» (3.1.2)
is a martingale.

Proof
The generator of {N^, X^ ) acting on a function / («, x) is given by

A /  (w, x) = + X [f  (« +1, x) -  /(« ,x )]
âc

/jljds
and f { n ,x )  has to satisfy A /  = 0  for to be a martingale. Setting ^ e  ®
we get the equation

A<iJ* + A ((^ -l) = 0
yielding 

Therefore

is a martingale.
□
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Theorem 3.1.3 If is a martingale with respect to the equivalent martingale
probability measure when it is a martingale with respect to the original probability measure

• (3.1.3)
is also a martingale with respect to the original probability measure.

Proof
We will use

t

« )
as the Radon-Nikodym derivative to define equivalent martingale probability measure. 
Hence the expected value of with respect to the equivalent martingale probability
measure is

, 0 } = B Æ Æ f i L — U .  (3.1.4)
\x ,d s  

« )

In theorem 3.1.2 we found a martingale that is the denominator used in (3.1.4). If we 
condition on Zq and N q, (3.1.4) becomes

E'{f(^X„t)\X„,N„} = E [ / ( X „ t ) - ^ e  ‘ (3.1.5)

Conditioning on such that 0 < 5  < / in the right-hand side of (3 .1.5)
/• L

-(̂ -1)1 A/Ü -{ -̂Y)\x/ls
E [ f( ,X„ t) -^’e • \X„N,-,X,.O^s^t] = f(X„l)e  • El^\X„N„-X,,0<s<t] .

(3.1.6)

Therefore from (1.1.3), (3.1.6) becomes
/

E [ f (X „ ty ^ '* e  • \X„N,;X,,0<s<t] = f (X „ t ) .  (3.1.7)
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Hence, since/ is a martingale with respect to the original probability measure
I t

—(Ô —1) filjdî — 1) iAjdk
E [ f ( X „ t y ^ e  “ \X„N,] = E [ E { f ( X „ t y ^ e  » |A„,;\r,;A.,0<s</}]

(3.1.8)

Furthermore, from (3.1.5) and (3.1.8)

E'{ f{X„t) \X„N,]  = f (X „ 0) .  (3.1.9)

□

Corollary 3.1.4 Let A, as defined. Consider constants / ,  ^  such that y* <0 and 
6̂  > 1. Then

- (û '- l )  f A^ds p  f
f ' e  « ' (3.1.10)

is a martingale.

Proof
-(0 -\)^A jd s

From theorem 3.1.2 it has already been found that ^  'e ° is a martingale. Put

v= y* in theorem 1.3.1 then e ® is also a martingale. Therefore if we set

p j
/ (A,, t) = e~̂  e ® in (3.1.3) the corollary has been proved.

□

Now we have quite a flexible family of martingales to use as the Radon-Nikodym 
derivative.
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3.2 Pricing of a stop-loss reinsurance contract for catastrophic events

This section deals with the derivation of the pricing model for stop-loss reinsurance 
contracts for catastrophic events. Its application in computing the premium is illustrated 
in section 4 of this chapter.

3.2.1 Constant claim sizes

Ignoring the effect of interest rates, the stop-loss reinsurance premium at time 0 is

£ [ ( | ; H - * r ]  (3.2.1)
i=l

where:
K, claim amount

number of claims up to time t 
b retention limit

( Z ^ - b y = M a x ( X i < , - b ,  0),
j=l i=l

If we assume that X,. = 1, then
N,

-  i)* ] = £[(iV, -  ]. (3.2.2)
J=1

However, to calculate a premium for a reinsurance contract we need to assume that there 
is an absence of arbitrage opportunities in the market. This can be achieved by using an 
equivalent martingale probability measure, P*, within the pricing model used for 
calculating premiums for reinsurance contracts. That is

i?P»=r[(AT,-6)*] (3.2.3)

where is the fair reinsurance premium at retention level b and E* denotes the 
expectation with respect to P*.

Therefore

R P ,= E '[ ( N , - b r ]  = X ( n - b ) P \ n ) =  f ^ P \ n )  = ' ^ P \ N >j )  (3.2.4)
n=b n=b+\ j=b+\ J=b

where P* is an equivalent martingale probability measure.
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We aim to obtain the stop-loss reinsurance premium at retention level b with respect to the 
equivalent martingale measure. Let us start with a few technical lemmas.

Lemma 3.2.1 Let as defined. Consider a constant 0< 1. Then

= (3.2.5)
;=0 A O

Proof
The p.g.f. of Nt is

;= o

Similarly

j=0 J=0 i=0 i=0 j=i

^  ± 0 - P { N , = i )

= 5 —

\ - 6
□

Lemma 3.2.2 Let iV, and 0 as defined. Then

f ^ e> -P {N ,> j)  = ̂ - ^ ^ .  (3.2.6)
/=0 1 C7 I  U

Proof

I ;  ^  • p ( Af, > 7 ) = I ;  ^  • {1 -  p ( Af, s  7)}= f ^ f f - Y e > .  p {n , ^  j ) .
7=0 7=0 7=0 7=0

From (3.2.5)
^ _ i  E (e f ' )

Ï - 0  1 - 0
□

We will now derive the stop-loss reinsurance premium at retention level b with respect to 
the equivalent martingale measure.
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Theorem 3.2.3 Let as defined. Consider constants 0 and b such that 0< 1 and
b>0.  Then

(3.2.7)

Proof
From (3.2.4)

^E'[{N,  -*r ] = I; ̂ | ;P r '( A r  > j )
b=0 b=0 b=0 j= b

.  l_ ^+ i _

. - l - ( | ; p r ’( j ï  > 7) -  « £ » 'P r '(»  > m
L — t/ ,-ny= o  j= o

From lemma 3.2.2
1 e e

□

We can see that E*{N^) and E *(^ ')need to be determined in order to obtain stop-loss 
reinsurance premium with respect to the equivalent martingale measure at retention level 
b. Firstly we will examine the generator A* of the process acting on a function
/ {n,X,t) with respect to the equivalent martingale probability measure.

Lemma 3.2.4 Let as defined. Assume that / {n,X,t) = / {X,t) for all n and that 
is a martingale. Consider a constant v such that v > 0. Then

A"/(A,0) = (3 2.8)

Proof
The generator of the process acting on a function f { X j )  with respect to the
equivalent martingale probability measure is

(3.2.9)
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We will use  ̂ as the Radon-Nikodym derivative to define equivalent martingale

probability measure. Hence, the expected value of /(A f ,0  given X with respect to the 
equivalent martingale probability measure is

E - ( / ( A „ . ) | A } - a & 5 ^ .  (3.2.10)

Since the denominator in (3.2.10) is a martingale, it becomes

/ ( A ,  0 )  • e - +  j £ [  A / ( ^ ,  s )  • e - I  A ] *
E'{f{X„t)\X} = ---------------------------------------  . (3.2.11)

Set (3.2.11) in (3.2.9) then

A 7 ( 2 . . ,  = ^ S j S m 3 * .  (3.2.12)
É? 0  *

Therefore, fi*om Dynkin's formula (see 0ksendal (1992)) (3.2.8) follows immediately.
□

Theorem 3.2.5 Let A, as defined. Consider constants y*, ^  such that y <0 and 
^  >\. Then

P:f{n,X,t) = ̂ ^ f f X { f ( n  + \M )-K n ,X , t )} -SX^+ p( t ){ \ f (nM y, t )dG '{y , t ) - f (n ,X , t ) )

(3.2.13)

where p*(0 = p g ( / e “ ) and dG’(y,t) = ̂ —̂—

Proof
From corollary 3.1.4 we can use

V L
j Xjds p  j {l-g(y*e*)}dr

(3.2.14)

as the Radon-Nikodym derivative to define an equivalent martingale probability measure.
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Therefore from lemma 3.2.4 / /r r A . .̂))ds

From (2.1.2), using the generator with respect to the original probability measure,
/ t

p \{ l-g { r e * ) )d s

= [4 -+ ^ ^ { /(" + 1 .^0  - / ( « +1,^0} a

-SA.^+p{jf(n,Ji+y,t)e-’''-’>dG(y)-g(re*)f(n,A,t)}]-^e •
-( -̂1) f À,ds p  f {!-«(/«*)}&

0^ 0
(3.2.15)

Therefore

A /(w ,A ,0  = ~  + ^'^{/(w  + l,A ,/)-/(w ,^ ,/)}
_  .  (3.2.16)

-ôX— ^-p {t){^f{n^X+y,t)dG ( y j ) - f ( n , X , t ) }

where p  (0  = pg{y  ) and dG*(y\t) =
g ( A '')

□

Theorem 3.2.5 yields the following:
(i) The claim intensity function X̂  has changed to ^X^ \

A

(ii) The rate of jump arrival p  has changed to p  (/) = pg{y*e^) (it now depends 
on time);

(iii) The jump size measure dG(y) has changed to dG*{y\t) = ^ n o w
gCA"")

depends on time).

In practice, the reinsurer will calculate the value of a stop-loss contract using 6*" > 1 and 
/  < 0. This results in the reinsurer assuming that there will be a higher value of claims, a
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higher value of the damage caused by the catastrophe and more catastrophes occurring in 
a given period of time. These assumptions are necessary as the reinsurer wants 
compensation for the risks involved in operating in an imperfect market. The reinsurer 
would also be aiming to maximise their shareholders' wealth by earning profits rather than 
operating at breakeven point where premiums are equal to claims.

Now, let us derive the expected value of Nf and the Laplace transform of the distribution 
of with respect to the equivalent martingale probability measure, i.e. E*{N^) and

Theorem 3.2.6 Let as defined and be a generalised shot noise process with 

p  {t) = pg{y  e^), dG*{y\t) = — --------—  and S{t) = 0. Consider constants / ,  ^

such that Y* <0 and 6*" > 1. Then

E {N ,^ -N , ; )^ \E {X , )d s  = )p' {s)p\ {s)ds.

(3.2.17)
and

E'{N,^-N,;)  = f f \E{X,)ds = ff £(A„ ) + y  (1 - )p {s)p\{s)ds

(3.2.18)

Proof
From (2.2.1)

(3,2.19)

Conditioning on A,̂  in (3.2.19) and theorem 1.2.7 gives us 

E{N^  -  AT,jA,.) = j£ (A ,|A ,.)*  = |[A , + e “]e^p{u)p,{u)duYs

(3.2.20)
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Hence

E iN ^ -N .^ )  = lE(Ji,)ds= ------  (3.2.21)
ti \  /  ti

If we set p(s) = p* (s) and p^(s) = //i(5)in (3.2.21) (3.2.17) follows immediately.

From theorem 3.2.5

E \ N ^  -N ^ ] =  erf E(X,)ds. (3.2.22)

Therefore (3.2.18) follows from (3.2.17) and (3.2.22).
□

Theorem 3.2.7 Let as defined and 3 f  be the filtration generated by 0 < 5 < /}. 
Also let A, be the generalised shot noise process and be the filtration generated by 
[X/, 0< ^ </}. Consider constants ^  and 9 such that /  < 0 ,6  ̂> 1 and 0^  1.

Then

£■((/'■■"'■ |2^-‘) = £ (e  '  |3^) = e"“ ^ " "  ‘ ’" ' 'e '■

(3.2.23)

wherep’(0  = /JS'(A '*) . dG'(y,t) = —^— and g*{u-,t) = fe^ '^dG\y,t ) .
g ( / e ^ )

Proof

—0 (1—0)^Ajds
From (3.2.22) and (1.1.4) = E{e " ). Therefore (3.2.23) follows

^  A

immediately if we set v = 9 { \ - 6 ) ,  p(s) = p  (s) and g(u;s) = g  (u;s) in (2.1.37).
□

We can now substitute E*(Nf) and E*(6^‘) in (3.2.7) and find stop-loss reinsurance 
premiums at retention level b with respect to the equivalent martingale measure.

Theorem 3.2.8 Let as defined and A, be the generalised shot noise process. 
Consider constants / ,  and 0 such that y* <0 >1 and 0 < ^< 1. Then
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00 / f

6=0 i

\ - e -a

+ ■

e

e

e
(1 -0 ^

/

(1 -0 ^
E[e

A *  A *®

where/7 (0  = A’? ( /e * ) ,  A ( ')  = and g'{u;t) = ^e~“̂ dG’(y;t).

(3.2.24)

Proof
From (3.2.7)

Therefore use (3.2.18) and (3.2.23) then the result follows.
□

We will now analyse the above results assuming that the jump size distribution is 
exponential (g(y) = cce'^ ,̂ >’>0, a> 0)  and that is '-oo' asymptotic. Since

dG*(y;t) =^ —̂— , we can obtain that g \ y j )  = ( a +y , y> 0 ,
gCA"*)

-a e '^  < y <0 and / < ^ ln (—%). It is clear that such a model is appropriate in the
o y

short term only as it break down for t > — ln(—%).
5 y

Corollary 3.2.9 Let 'N̂  andA, as defined. Also let the jump size distribution be 
exponential, i.e. g (y \^ )  -  (oc+ y*e^)e~^"‘̂ ^ y > Q ,  -ae~^ <y* <0 and

t <-^ln(—%). Consider a constant ^  > I. Then 
o y

£*(JV,,-JV,_) = éf 

where <t.

p ^ ^ ( y * e ^ + a \  p ( l - e  '̂̂ ) 
S(a+ y

(3.2.25)
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Proof

The result follows if we set p* (5 ) = p  and X  (4  =  in (3.2.18).
a + r e ^  a + y e ^

□

Corollary 3.2.10 Let the jump size distribution is exponential. If A, is ' - 00 ' asymptotic, 
the ' - 00 ' asymptotic expected value of is

(3.2.26)
d{a+Y*e^^)

where 0 < < L

Proof

The result follows if we set p  (s) = p — — 7-^- and p* (5 ) = — — r&  in (1.2.15).

□
a + y e ^   ̂ a + y e ^

Corollary 3.2.11 Let as defined and the jump size distribution be exponential. 
Consider a constant 6̂  > 1. If A, is ' - 00’ asymptotic

where 0 <t^<t 2 <t.

Proof
Since A, is ' - 00 ' asymptotic, set (3.2.26) in (3.2.25) and the result follows.

□

Corollary 3.2.12 Let as defined and be the filtration generated by 
0 < 5  < /}. Also let A, be the generalised shot noise process and 3f be the filtration 

generated by {Â ; 0 < 5  < /}. Consider constants ^  and 9 such that 6̂  > 1 and 0 < ^< 1. 

Assuming that the jump size distribution is exponential then

—6 (1—0 rkjds
= " |3^)
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= e
/ e * ‘+ a

/e * -+ a  + ^  (1 -e-®"'-''))

/ e * ‘+û8''* '̂’”'‘’

ap
SoæQ (1—̂

(3.2.28)

Proof
The result follows if we set v - ^ i y - 0 )  in (2.1.39) in corollary 2.1.16.

□

Corollary 3.2.13 Let 'N̂  as defined and the jump size distribution be exponential. 
Consider constants ^  and 6 such that ff  > 1 and 0< 1. Furthermore if is '-oo'
asymptotic then

ye
S  ________1

ap

(3.2.29)
where 0 < /j < < L

Proof

Set v= — — { l - e  } in (1.2.9) and from corollary 3.2.12 the result follows.

□

Corollary 3.2.14 Let X̂  as defined and the jump size distribution be exponential. 
Consider constants ^  and $ such that 6t > I and 0< 1. Then

0 £(Ao) + y ^ / - - f l n
o \ a  oa

___^

( 1 - 0 ' \ y +a

y +a+ ^ ( 1 - 0 )

^ y*e^ + a \  p(l-e~^)  
y* + a  J â(y* + a)

op

0
(1 - 0

y + ae-a

Sa+e (y-0)
^(1-^

E[e  ̂ ' ' “].

(3.2.30)
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Proof
The result follows immediately from theorem 3.2.8, corollary 3.2.9 and corollary 3.2.12.

□

Corollary 3.2.15 Let as defined and the jump size distribution be exponential. 
Consider constants 6t and 0 such that 6̂  >1 and 0< ^<1. Furthermore if is ’-oo' 
asymptotic then

00 ^  

1 —0

0
/

0

(1 -4 ^

(1 -0 ^

y

ap

( l - e " )
Sa+0 (1—0

(3.2.31)

Proof
The result follows immediately from theorem 3.2.8, corollary 3.2.11 and corollary 3.2.13.

□

We will close this section with a lemma that proves that the joint Laplace transform of 
and Àf with respect to the equivalent martingale probability measure is equal to an Esscher 
transform of such a process.

Lemma 3.2.16 Let and A, as defined. Consider constants / ,  ^  and 0 such that 
/  < 0 , ̂  >1 and 0 < ^< 1. Then

I Xjds p j {l-g( A*)}*
E{e  e

(3.2.32)
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Proof
From theorem 3.2.7, the left-hand side of (3.2.32) is

f >

Setting Vj = ^ ( 1 -  Vj = v, = P (4  and g{u,s) = g \u \s )  in (2.1.33), then

(3.2.33)

Conditioning on such that/, < s< t2 , then the denominator of the right-hand side of
(3.2.32) is

-(0*-i)|A,dî p\{\-'kr»*))ds

= e "  ̂ A ,, /, < ^ < /J .

(3.2.34)

Therefore from (1.1.3)

Hence

- ( ^ - 1 )  I P  [ { ! - « ( / « * ) } *  P  r { l - g (

E [ / '^  g " '* = e " |3j|'''^).

(3.2.35)
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Similarly, conditioning on such that/j < s< t2 , then the numerator of the right-hand 
side of (3.2.32) is

= e -  E{e '

(3.2.36)

Therefore, from (3.2.35) and (3.2.36), the right-hand side of (3.2.32) is

-(̂ -1) lA/6 pf{i-i(r«*)}* -^(y-e)\x/is
" "g '  e “ 3 " '']  E{e ’ 3 ^ }

-(ÿ-l)L/: (!-»(/«*))* '  ''
£ [ / “■"% '  e - ’v - g î !

(3.2.37)

Set v'i = 6’'( l - 6 ) ,  ^2 = ^+/^** in (2.1.9) for the numerator of (3.2.37) and set 
v= y in (1.3.2) for the denominator of (3.2.37). Then

-pjg(./e*)ds pjgl  ̂ ^ }e ‘̂2-̂ ]ds
= " g " . (3.2.38)

Hence from (3.2.33) and (3.2.38) the lemma has been proved.
□
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3.2.2 Random claim sizes

Let us look at the stop-loss reinsurance premium for catastrophic events when the claim 
size is random. Again, in order to calculate a fair price for a reinsurance contract we need 
to assume that there is an absence of arbitrage opportunities in the market. This can be 
achieved by using an equivalent martingale measure P*.

Let C, be the total amount of claims up to time t then the fair stop-loss reinsurance
premium at time 0 is

£ '[ ( ! ;« ,  - * n = E'[(c, - i n  (3 .2 .3 9 )
<=i

N,
where Q = and all other symbols have previously been defined.

1=1

Theorem 3.2.17 Let and Q as defined. Also let the claim size distribution be

gamma, i.e. /?(%/) = ^ , u>0, p>0, <p^\. Then

n ( c , ( 3 . « ,

where a* = P*{N^ = n) .

Proof
Since the claim size distribution is gamma, C, is also gamma with parameters nq> and p  
given N t= n . Therefore

00 «  p n q >  n q > -\ - p c

. „ , , 2 z j 2 : w * - 6 f É W î * i .

Set a* = P*{N^ = n) in (3.2.41), then the result follows immediately.

(3.2.41)

□
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Corollary 3.2.18 Let and Q as defined and the claim size distribution be exponential,
Ï.Q. h(u)=/3e~^, u>0, J3>0. Then

r „ c ,  - « • , =

Proof
The result follows immediately if we set ç=  \ in (3.2.41).

□
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3.3 Pricing of catastrophe insurance derivatives

3.3.1 Catastrophe insurance futures

In this section we will derive the model for the pricing of catastrophe insurance futures. 
Its application in computing the price is illustrated in section 4 of this chapter.

The value of the insurance futures, F̂ , at maturity t is given by

F, =25,000 X Min(#• 4 (3.3.1)

N,

Assuming that = Q, ignoring the effect of interest rates, the price of the
1=1

insurance futures at time 0 is

25,000 X Min"(n • 4 (3.3.2)

In order to calculate a fair price for the insurance futures contract, we assume that there is 
an absence of arbitrage opportunities in the market which can be achieved by using an 
equivalent martingale probability measure P*. Therefore

F o = r 25,000 X 2 j

where is a fair price for the insurance futures contract.

(3.3.3)

Now let us derive the price of the insurance futures with respect to the equivalent 
martingale probability measure.

Theorem 3.3.1 Let F^, C, and II as defined. Then

= 25.000 X ) -  £*{(C, -  2n)* }]

where (Q -  211)  ̂= Max{C^ -211, 0).

(3.3.4)
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Proof
(3.3.3) can be written as

= 25,000 X Min

= 25,000 X E

25,000 X l ^ - A t o ^ ^ - 2 ,  o j j  

l ^ - A t o ^ ^ - 2 ,  o j j  =25,000 x ^ E \ C , ) - E ' [ M a x [ C , - 2 n , o)}].

(3.3.5)

If we set (Q -  211)  ̂ = Max{C^ -211, 0) in (3.3.5) then (3.3.4) follows immediately.
□

We will show how to apply theorem 3.3.1 if the claim size distributions are gamma (i.e.
 ______ _ -Ah{u) = 

)9>0).

, w>0, p>0, <p>\) and exponential (i.e. h{u) = p e ^ ,  m>0,

Corollary 3.3.2 Let , Q and II as defined. Also let the claim size distribution be 

gamma, i.e. /?(«) = ^ , u>0, p>0, ç > \.  Then

F, -  25.000J
l * - 7 -

y  a; ^ dc-2YvU
»=i , P 2n (»f)! m

■dc
/J J
(3.3.6)

Proof
From theorem 3.2.17

 ------------dc = y a  —
0 {n<p-\)\ t f  P

(3.3.7)

and

dc). (3.3.8)

The result follows if we set (3.3.7) and (3.3.8) in (3.3.4).
□
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Corollary 3.3.3 Let and II as defined. Also let the claim size distribution be
exponential, i.e. h{u) = pe~^ , w > 0, /?> 0. Then

F„ = 25,000^
n=l n\

r f c - 2 n j
n - \^ -p c

2U (« -!)!
■dc (3.3.9)

Proof
The result follows if we set ^  = 1 in (3.3.6).

3.3.2 Catastrophe insurance options on futures

□

We will now derive the model for the pricing of catastrophe insurance call options on 
futures. Ignoring the maximum loss ratio, the value of the catastrophe insurance call 
options on futures, P,, at maturity t is given by

V,=Mck{F,-E, o) = (f; -  E)* = ^25,000 X -  F  j  = ^ ^ ^ ( 1 , - 8 ) *

where E  is the exercise price and B = IIE
(3.3.10)

25,000

N,

Assuming that Z, = = Q, ignoring the effect of interest rates, the price of the
j=i

insurance call options on futures at time 0 is

25,000
(3.3.11)

If we set B = 6 in (3.3.11) and assume that there is an absence of arbitrage opportunities 

in the market, it can be found that (3.3.11), excluding is equivalent to (3.2.39).

As the formulae are easily can be obtained by substituting b with B in (3.2.40) and 
(3.2.42) we will omit the details.
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3.4 Numerical examples

This section illustrates the calculation of stop-loss reinsurance premiums for catastrophic 
events and catastrophe insurance futures contracts using the pricing models derived 
previously. The change of stop-loss reinsurance premiums associated with changes in 
value of ^  and y  is also examined. The appendix contains the S-Plus routines needed 
for these calculations.

As discussed in section 3.3.2 the pricing model for catastrophe insurance call options on 
futures is equivalent to that of stop-loss reinsurance premium for catastrophic events. We 
shall therefore use one example to illustrate the pricing of both these products.

Let us assume that the claim size distribution is gamma, i.e. ---- 777— , z/>0,

P>0, (p>\. From (3.2.40) and (3.3.6)

The stop-loss reinsurance premium for catastrophic events

(3.4.1)

F„ = 2 5 ,0 0 0 l

The price o f catastrophe insurance futures

(3.4.2)

Let us also assume that the jump size distribution is exponential i.e.

= y>Oy -ae~^ < /  <0 and ^ < ^ ln (—%) and that A, is
o y

' - 00 ' asymptotic. Consider constants & and 0 such that 6^>1 and 0 < ^< 1 . From 
(3.2.29), the p.g.f. of is

E \G f^) = f ^ 0 - P \ N ,= n )  = Y^0'al
n = 0 n = 0

y + a +

y +a+ ^ ( 1- 0)
ap

Sa+ô\ï-Û)

y +ae -a (3.4.3)
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The parameter values used to expand (3.4.3) with respect to Û are
6** = 1.1 , y* = -0.1 , (%= 1, ^=0.3 , p=  4 , t = \.

Using these parameter values we can calculate the mean of the claim number in a unit 
period of time. From (3.2.27)

 ̂y* 
y + a

16.61.

By expanding (3.4.3) using the MAPLE algebraic manipulations package we can obtain 
a\ = P*{N^ = ri) which is as follows:

4.4(1-60

= 0,000014982 + 0.000116280 + 0.000482660“ + 0.0014225^ + 0.00333550* + 
0.0066150* + 0.0115230* + 0.0180860* + 0.0260450* + 0.0348816^ + 0.0439 0* + 
0.0523490* + 0.059537 0* + 0.064932 0* + 0.0682140“ + 0.069290* + 0.0682730“ + 
0.0654340* +0.0611480** +0.0558310** +0.0498980“ +0.0437230* +0.0376160* 
+ 0.0318150* + 0.0264840“ + 0.021720“ + 0.0175670“ + 0.0140230* + 0.0110560* 
+ 0.00861660® + 0.00664190“ + 0.00506670* + 0.00382720* + 0.00286390* + 
0.00212410“ + 0.0015621 0 “ + 0.00113960“ + 0.000824970* + 0.000592820* + 
0.000423010“ + 0.000299810° + 0.000211120* + 0.000147750* + 0.000102790* + 
0.0000711010“ + 0.0000489110“ + 0.000033469 0 “ + 0.0000227850* +
0.000015436 0* + 0.0000104070’ + 0.0000069850° + 0.00000466720* +
0.0000031051 0* + 0.0000020573 0* + 0.0000013575 0 “ + 0 ( 0 “).

(3.4.4)

Example 3.4.1
The parameter values used to calculate (3.4.1) are

/»: 1 ~ 41, <p=\, p = \ ,  6 = 0, 5, 10, 16.61, 20, 25, 30, 33.22 
£ ’(C,) = £'(Ar,)£(K) = 16.61.

By computing (3.4.1) using S-Plus the calculation of the stop-loss reinsurance premiums 
for catastrophic events at each retention level 6 are shown in Table 3.4.1 (see appendix for 
S-Plus routine).
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Table 3.4.1
Retention level b Reinsurance premiums

0 16.58403
5 11.61916

10 7.06779
16.61 2.833487
20 1.587005
25 0.595824
30 0.1951147
33.22 0.0886971

Example 3.4.2
The parameter values used to calculate (3.4.2) are

« : 1 ~ 41, ç?=l, /?= 1, n  = 16.61.

By computing (3.4.2) using S-Plus the calculation of the price of catastrophe insurance 
futures is as follows (see appendix for S-Plus routine):

Fq = $25,000 X (0.9984363-0.005339982) = $24,827.41.

Example 3.4.3
We will now examine the effect on stop-loss reinsurance premiums caused by changes in 
the value of ^  and / .  By expanding (3.4.3) usm% MAPLE at each value of ^  and y  
respectively and computing (3.4.1) by S-Plus, the calculation of the stop-loss reinsurance 
premiums for catastrophic events at the retention limit 6 = 25 are shown in Table 3.4.2 
and Table 3.4.3 (see appendix for S-Plus routine).

Tab e 3.4.2
y* = -0.1

1.0 0.3544252
1.1 0.595824
1.2 0.9299355
1.3 1.366049
1.4 1.90885
1.5 2.558786

Tab e 3.4.3

/ ^  = \.\
0.0 0.3029752
-0.1 0.595824
-0.2 1.207256
-0.3 2.512553
-0.4 5.364622
-0.5 11.65184
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3.5 More equivalent martingale probability measures and the distribution of 
the total amount of claims

So far we have used (3.2.14) as the Radon-Nikodym derivative to define the equivalent 
martingale probability measure in our pricing model for stop-loss reinsurance contract for 
catastrophic events and catastrophe insurance derivatives. We will now use an alternative 
martingale taking into account the claim sizes. After the equivalent martingale probability 
measure is obtained, the expected value of and the Laplace transform of the 
distribution of with respect to the equivalent martingale probability measure, i.e. 
E*(Nj) and will be derived. The Laplace transform of the distribution of Q at
time t will also be derived. These can be used to derive the pricing models through the 
same methods presented in sections 2 and 3 of this chapter.

Let H{u) {u > 0) be the claim size distribution function and be the total number of 
catastrophe jumps up to time t. We will assume that claim points and catastrophe jumps 
do not occur at the same time.

The generator of the process acting on a function /(x,w,c,A,/w,/)
belonging to its domain is given by

K f(x ,n ,c ,X ,m ,t) = ^  + X ^ + ^ \ f { x , n  + \,c+ u,X ,m ,t)dH {u)-f{x,n ,c,X ,m ,t)]
a  & J

CO

-  ( 5 A +/ t  f /  (x, «, c, A+ y , 7w + 1 , )  -  /  (x, «, c, >1, w, 01
ÛÀ i

(3.5.1)
Clearly, for /  (jc,w,c, A,/w, t) to belong to the domain of the generator A, it is essential that 
f{x ,n ,c ,X ,m ,t)  is differentiable w.r.t. %, c , A, / for all x , n, c , /I, w, t and that

< 0 0 .

The generator of the process (W^,Q,0 acting on /  (« ,c,0  is given by

A /(« , c, 0  = - ^ + A[ J / ( n  +1, c + u,t)dH  («) -  /(w , c, ()] (3.5.2)

and the generator of the process acting on /  is given by

A/(A,/w,0 = ~ “ (3.5.3)
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Theorem 3.5.1 Let and as defined. Consider constants 0 and v such that
0< ^< 1 and v> 0. Then

)-l}jA,ds-{Ohivy

is a martingale.

Proof
From (3.5.2), / {n,c,t) has to satisfy A /  = 0 for / (# ,,C ,,r) to be a martingale. Trying 

we get the equation

À (t)+ X {e\e-''dH {u)-\}= ^0  (3.5.5)
0

fand solving (3.5.5) we get A{t) = -{^/z( v) -  1}J and the result follows.
0

□

Theorem 3.5.2 Let andM, as defined. Consider constants y/ and k such that 
0 < y/< 1 and A: > 0. Then

/
p\{̂ -Vg(Jke*))ds /  00 >

- g{v) = \e"^dG {y) (3.5.6)
V o  y

is a martingale.

Proof
From (3.5.3), / (X,mJ) has to satisfy A /  = 0 for / (X^,M^,t) to be a martingale. Trying 

we get the equation

-X À {t) + R'(i) + SU (t) + 4  y/g{A{t)) -1] = 0 (3.5.7)

and solving (3.5.7) we get

A{t) - k e ^  and R{t) = p j {1 -  y/g{ke^)}ds
0

and the result follows.
□
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Theorem 3.5.3 Let Q , and as defined. Consider constants 6**, v ,  ij/ and 
/ ,  such that 6̂  > 1, v <0, y/ >\ and /  < 0. Then

• •
-{9*h{ v*)-l} f A/fc p  j {1- y

0 / ' ' g  / V g  < (3.5.8)

is a martingale.

Proof
From (3.5.1), f{x ,n ,c ,X ,m ,t) has to satisfy A /  = 0 for to be a
martingale. Trying ^ ”e~' ' yTe'^  the equation

A'(t) + À f  + ^ ^ h {  V ) - 1 } + X / k r e ^ ) - 1} = 0 (3.5.9)

and solving (3.5.9) we get

/  = - { ^ h { v ) - l }  and A{t) = p ^ { \ - i / g { y  e^))ds
0

and the result follows.
□

Now, let us examine the generator A* of the process acting on a
fijnction / {x,n,c,X,m,i) with respect to the equivalent martingale probability measure .

Theorem 3.5.4 Let Q , and as defined. Consider constants 6̂ , v , y/ and 
such that 6̂  > 1, V < 0, > 1 and y* < 0. Then

X! f{x,n,c,Z,m J) = ̂  + Z^-\-&h{v)X{^f{x,n-\-\,c-\-u,Z,m,t)dH*{u)-f{x,n,c,Z,m,t)}
ât dx 

ÔX

(3.5.10)

where d H \u ) = — , P {t)= py/* g{y e^)  and d G \y ;t)  = ^ ^
h ( v )  g ( A ^ )
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Proof
From theorem 3.5.3, we can use

/ I
-{9* h( V )-l} f X,ds p  f {]- v  g{y*e^))ds

 ̂   (3.5.11)
-{6 * h {v )- \} \X /is  P \{ ^ -V  g(.r e‘‘)}ds

as the Radon-Nikodym derivative to define an equivalent martingale probability measure. 

Therefore from lemma 3.2.4

=   Y   .
- { ^ Â ( v ) - l )  f k ,d s  p j ( 1 - y  g ( / e * ) ) 6

From (3.5.1), using the generator with respect to the original probability measure,

t I
- { ^ / » ( v * ) - l } p\{\-yr*g{y  e*))ds

k.f(x,n,c,X,m,f)&"e~''‘e " xfTe'’' ^ ’"e •

= [ ^  + X ^  + X[& [ f  {x,n-\-\,c+u,X,m,t)e''’“dH {u)- h { v ) f  {x,n,c,X,m,t)] 
à  Sx J

p { ^ i / \ f  {x,n,c,X-^y,m -^\,t)dG {y)- y/’ g{y e^)fix ,n ,c ,X ,m ,t))\
Sk J

• t
-{9*/i(v*)-l} p \{ ^ -V g ( .y f^ ) )d s

® xfTe~^ e ®

Therefore

AC f  {x,n,c,X,mj) = ̂  + + & h{v)X{^ f  {x,n-\-\,c+u,^.,m,t)dH\u)- f  {x,n,c,^,m,t)}

- S X ^ + p  {t){^f{x,n,c,X+y,m + \J)dG \y,t)-f{x ,n ,c ,X ,m ,t)}

(3.5.12)

where = , P (J)= P¥* g i ï  and d G \y ;t)  = ^^^ —
h { v )  g ( A ^ )
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Theorem 3.5.4 yields the following:
A ^

(i) The claim intensity function has changed to h (v  );

(ii) The rate of jump arrival p  has changed to p* (t) = p i /  g { / e ^ )  (it now depends 
on time);

(iii) The jump size measure dG{y) has changed to dG*(y\i) = ^ ( i t  now

depends on time);

(iv) The claim size measure dH{u) has changed to dH*(u) = -  ^
h { y )

Let us evaluate the expected value of and the Laplace transform of the distribution of 
with respect to the equivalent martingale probability measure, i.e. E*{N^) and

Theorem 3.5.5 Let as defined and be a generalised shot noise process with 

p*(/) = p /  dG*iy\t) and S(J) = S. Consider constants / ,  ^

and i /  such that /  < 0, 6̂  > 1 and i /  >\. Then

E {N ,^-N ,;) = \E{Z;)ds=  ------   E{Z,;)+ -U \-e-^^^-^^)p\s)p\{s)ds.
h \  ^  J

(3.5.13)

(3.5.14)

and

E \ N ^  -N^) =  f f h ( y ) \  m , ) d s  =  ^ k v )
h 

fwhereÀ(v) = Je  '^dH{u),
0

Proof
This theorem can be proved in a similar method to theorem 3.2.6. In this case

A  ^  f

p  (s) = p /  g { / e ^ )  and use E*[Nj^ -  # , ] = ^  /?( v )J E (ZJds  then the results follow.

□
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Theorem 3.5.6 Let as defined and be the filtration generated by 0 < 5  < 
Also let be the generalised shot noise process and 3f be the filtration generated by 
{a,; 0 < s< /} . Consider constants 6, v , 1/  and /  such that 0< ^< 1 ,
V < 0, 1/  > I and y < 0. Then

f k v y i - s , ,.
£-*(^--'''|3 j'-') = £'(e '  |3^) = e «

(3.5.15)

v/heie p ( i ) =  p i / g ( r ’e^) , dG"(y,t) = —^—  ̂ g'{u-,t) = \e " ^ d G \y ,t)  aai
g ( r e ^ )

fh{v) = je-''dH (u).

Proof

From E 'lN ^  - iV J =  ^Â ( v ) |£ (A .)&  and (1.1.4),

E ' =  E{e ' ).

By setting ^  h { v ) { \ -  G), p{s) = p{s )  and g{u\s) = g*{u\s) in (2.1.37), (3.5.15) 
follows immediately.

□

We are now going to close this section with an evaluation of the Laplace transform of the 
distribution of Q at time t.

3.5.1 Where is time homogeneous

Corollary 3.5.7 Let and A, as defined. Let v>0, 0 < ^ < 1  and be fixed 
times. Then

{éh {v )-\)\X /is

'  . (3.5.16)

96



Proof
Since (3.5.4) is a martingale (3.5.16) follows immediately.

□

Corollary 3.5.8 Let and A, as defined. Consider constant v>0. Then

{h (y )- l} lA /ù

= - . (3.5.17)

Proof
The result follows if we set Û=1 in (3.5.16).

□

Corollary 3.5.9 Let a n d a s  defined. Consider constant v>0. Then

( 3 5 . S ,

Proof
From (3.5.17)

= ]. (3.5.19)
Without loss of generality, change the time scale and condition on Àq, then (3.5.19) can be 
written as

\x ,d s

E{e-'^'\X^) = E[e • |AJ. (3.5.20)

Therefore (3.5.18) follows immediately from (2.1.13).
□

Corollary 3.5.10 Let and as defined. Consider constants Vj >0, Vj > 0. Then

,3 5 3 , ,

Proof
Multiply and set v= Vj in (3.5.20) then
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£ (e - '‘'''e->'^|A„) = £[e • «“ '■'‘'K ]  (3.5.22)

The corollary follows immediately from (2.1.9).
□

3.5.2 Where the parameters of A, are time dependent

Corollary 3.5.11 Let and as defined. Consider a constant K>0. Assume that 
S{t) = S. Then

r  r  A ''
- { 1 - Â C  V)} [  A / 6  . i l z k l â r i -

E{e-'^'\X^) = E[e - \X̂ '\ = e « V « (3.5.23)

Proof
The corollary follows immediately from (3.5.20) and (2.1.37).

□

Corollary 3.5.12 Let and A, as defined. Consider constants v; >0, > 0. Assume
that 6{t) -  Ô. Then

t

v\)}f A/Ù
E {e - '^ 'e '’'^'\X;) = E[e "

= e
(3.5.24)

Proof
The corollary follows immediately from (3.5.22) and (2.1.33).

□

Now we can easily evaluate the Laplace transform of the distribution of Q at time / with 
respect to equivalent martingale probability measure since A, is a time dependent shot 
noise process with rate of decay 6, rate of jump arrivals p  {t) and jump size distribution 
function G* (_y; t) (_y > 0).
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Corollary 3.5.13 Let and A, as defined. Consider constants v, v , y/ and y* 
such that v> 0, 6** > 1, v < 0, y/ > I and y < 0. Then

E \e - ' \ X , )  = E[e < \X,] = e T —

(3.5.25)

v/here p  (t) = py/’ g ( /e '^ )  , dG '{y,t) = —^—^ O O   ̂ g ’{u-,t)=\e-'^dG'{y,t) aai
g { / e “)

h{v)=^e-'^dH{u).
0

Proof

From E*[Nf^ -N^^'\ = ^  h{ v ) j  E{X^)ds and (2.1.37), the corollary follows immediately.

□

Corollary 3.5.14 Let and as defined. Consider the constants Vj, 6̂ , v , y/
and /  such that Vj > 0, v^>0, ̂  >\ ,  v < 0, y/ > \ and /  < 0. Then

-9* A( V*){!-/»( Vi)} f X,ds

E \e - '’'-̂ ‘e-'''^‘\X^) = E[e • |A<,]

— e * ' * 'e •
(3.5.26)

where p‘(0  = P V 'V (A * ) . = ̂ _ g\u-,t) = \e~'^dG’(y,t) aaA
g{ye^ )

A(v) = J e -“aW(tt).

Proof
A

From -  #^ ] = 6"* /z( v ) j  E{X^)ds and (2.1.33), the corollary follows immediately.

□
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4. Parametric Estimation

In the previous chapter, arbitrary values for the parameters of the shot noise process were 
used to calculate the stop-loss reinsurance premium and the price of catastrophe insurance 
futures. The next stage in the pricing process is to estimate these parameters of the time 
homogeneous shot noise process, i.e. the rate of occurrence of jump p, the size of jump y  
or its distribution and the rate of decay ô should be estimated. In this chapter, using the 
likelihood function, the parametric estimation for the shot noise process will be presented.

In the first section, we will derive the likelihood function by transforming and 
approximating as a normal variable . In the second section, the maximum likelihood 
estimators of the three parameters will be obtained by assuming that the times of 
catastrophes and claims are known.

4.1 Approximation of as an Ornstein-Uhlenbeck Process

Let be the epochs at which the claim points occur. The likelihood function
conditional on {Z ,̂ 0 < j  ̂  evolving up to a fixed time /, is given by

W .......V  ' (4.1.1)
where 0 < /,<•••< /„<  L

From (4.1.1) we have the likelihood function that is the expectation with respect to the 
intensity process {X^, 0<s< t), i.e.

E{X,X,^..... X,e  » ). (4.1.2)

We will now assume p  is large and obtain this expectation by transforming the shot noise 
process X̂  using

yip) _ ~E{X^) . .
Var{X,) '  ̂ ^

In corollary 1.3.9 and 1.3.10, assuming that X̂  is stationary, we have found that

E{X )̂ = and Var{X^) = . Therefore (4.1.3) becomes
o 25
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y ip )  _  S : p I _  , y ip )  I P2P
Æ   ̂ U s 'V 2S

(4.1.4)

Now let us start with a proposition used by Ethier & Kurtz (1985).

Proposition 4.1.1 For « = 1,2,---, let {3”} be a filtration and let be an {3"}-local 
martingale with sample paths in Dj r̂f[0,oo) and M„(0) = 0. Let = ((AjI)) be symmetric
d x d  matrix-valued processes such that has sample paths in Dĝ [0, oo) and
A^ it) -  A^ (5 ) is nonnegative definite for 0 < 5  < / . Assume

limE
n -> o o

limE
n —>00

andfor / , 7  = 1,2,” -,6/, 

is an {3^}-local martingale.

sup
t<.T

sup

= 0, 

= 0.
t̂ T

Al{t)

For each t > 0 and /,y = 1,2,
A H iO ^c^iO

in probability where C = ((c^)) is a continuous, symmetric, d x d  matrix-valued function, 
defined on [0,00), satisfying C(0) = 0 and J ] ( ^  ( 0 ~ ^  ( 4 ) ^ 0 , ^ g 91''. Then

M„=>X
in law where X  is a process with independent Gaussian increments such that X^Xj-c^j 

are (local) martingales with respect to {3f }.
□

Let us define , and look at a technical lemma.
i= l P2P

23

Lemma 4.1.2 Let V, and as defined and 0 0 . Then
yW ^  Jt ^  VïâB,

in law where is a standard Brownian motion.

(4.1.5)
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Proof
The generator of the process acting on a fiinction /  (v) is given by

A /(v ) = - ^ - T + X f  f ( . v + ^ ) d G ( y )  -  /(v )} . (4.1.6)
I /%} d U-iP
2S 0 V 2«y

Set / (v )  = v .̂ Then

A v^ = - 2 - ^ v + p { \ ( v + - ^ y d G ( y ) - v ^ ]  = 2S.
/  U->P J I H-iP\PiP •' IMtP
~2S 0 \ ' 2 S

As mentioned in the introduction, f { X ^ ) - ^ K f { X ^ ) d s  is a martingale therefore A /  is
0

the solution to the 'martingale problem'. Hence ) - 2 ^  is a martingale.

Therefore from proposition 4.1.1, (4.1.5) follows immediately.
□

Let us look at a theorem that proves that is a normal variable.

Theorem 4.1.3 Let Z^^ as defined and /?-> oo. Then converges in law to Z, where
dZ,=-6Z,dt + 4 2 m ,  (4.1.7)

and is a standard Brownian motion.

Proof
t

From A, = -  J Se-^'~'‘̂ J^du,

2(P) ^

( ^ 0 * * )  + + '^ f̂î pudu

_ iK  -  f J. du. (4.1.8)
i UtPMtP0 V 2«y

Therefore by continuous mapping theorem (see Billingsley (1968)) and lemma 4.1.2, 
(4.1.8) converges to
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Z, = Zoe"* + y lïô j . (4.1.9)
0

Hence (4.1.7) follows immediately from (4.1.9).
□

Theorem 4.1.3 has proved that is a normal variable, which is an Ornstein-Uhlenbeck 

process. As a result of this, we have obtained Xt which is a Gaussian approximation of

Lemma 4.1.4 Let Ẑ  as defined. Then
(*+1

Z,̂ _ (4.1.11)

and

Jz .d i = z „   ------ + y l2 S \ - ------------dB, (4.1.12)

where

Proof
From Ito's lemma and (4.1.7)

d(Z,e‘‘) = 5Z,e^dt+e^dZ, = 5Z ,e^d t+ e^{-^,d t + V2&B,) = JÏSe^dB ,.

Therefore evolving up to a fixed time s

Z/*-Z,,e'** = JV2&*aB„
4

s

Z, = Z ,e -^‘-"^ (4.1.13)

If we set J = in (4.1.13) and integrate it from to then the result follows 
immediately.

□
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Corollary 4.1.5 Let Ẑ  as defined. Assuming that we know

_ g-2̂ 4+1-")

M z . M  = 2S

and

C ov{fz ,d s,Z ,Jz,^ ) = 2ô du.

(4.1.14)

(4.1.15)

Proof
From (4.1.11)

/ \ *?*
|Z,J = + J ) = Fhrr(j )

4

(*+1

= Far( j  = £ { (  J {£ ( J

4+1 4+1
= £ { (  J )'} -  0 = 2^ J .

From (4.1.11) and (4.1.12)
VCov(JZ,ifc,Z,,JZ,,)

4+11—g-%+1-4) ,---1 _g-^4+i-«) >- ,---
= Cov{Z,, 1 - ! — + V z3 J  aB.. Z,,e-^'*--‘*> + J i ^ e - « ' ‘- - “>aB.|z,,}

4 4
4+1

= Cov{yIl0 J
\ _ g-«̂ 4+i-w)

J } = 2 J  J i/w.

□

4+1
4+1Lemma 4.1.6 Let Ẑ  as defined and be a constant. Then jz^ds-K^Z^^  ̂ and Z,

4
are independent given Z,̂  if and only if

9 1
(4.1.16)

Proof
4+1 4+1

Cov( JZ ,ak-K .Z„ , ,Z„,, |Z, ) = Cov( J Z A Z ,.j2 „  )-K ,Fa/-(Z „Jz„ ). (4.1.17)
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We would like to obtain that makes J  ̂ and Z,̂   ̂ independent given Ẑ .̂

VTherefore Cov( J Z/is -  K̂ Ẑ  ̂ ,̂ Ẑ^̂  ̂ Z,̂  ) should be 0. If we set (4.1.17) equal 0 and from

(4.1.14) and (4.1.15)

Cov( J -  K ,Z,,., Z,.̂ . [Z,, ) = 25 J : -----------j --------du -  K, 25  J = 0.
tk h 4

(4.1.18)
Solving (4.1.18) then

K, = -------- ------------—
+ S'

□

Theorem 4.1.7 Let Ẑ  as defined. Then
4+1

Zjds

4+1

(4.1.19)

Proof
4+1 4+1

E{e " Z ,^ ,Z ,J  = E(e '•

From lemma 4.1.6 we have found that jZ^ds-K,^Z^^^ and Ẑ  ̂ are independent given 

Ẑ  . Therefore

E(g '*

4+1

r4 4
-VW(j4'6-%+,) 

|Z ,,Z ,J  = £(e -

Hence (4.1.19) follows immediately from (4.1.11), (4.1.12) and (4.1.16).

(4.1.20)

□
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Theorem 4.1.8 Let Z  as defined.

E{e ® e

n*\

mjZsds - m \ Z ^
•n-l t ........... 9 )

—   1,1 g-C; %f2 , , , , , , g-C, 1,̂  g-Cm̂l ̂

(4.1.21)
where

^k= i:M 2P i  {'"'"T"" for A: = 0,l,---,« + l,

Q  = 9 Q  = for A: = l,2,---,« and

Q+i =

Proof
The intervals between points are independent and Z, has the Markov property. Therefore

Ik+l

E(e
I z,<fc ~V  ̂I I ~V  ̂ I “v^  I

Jz^
= Eie » |Zo.Z,)£(e " |Z,,,ZJ...E(e

- ^ 0  9 9 ................. 9 )

- ^ |z ^  -;#jz/,
Z,^,Z,J-E(e -  K ,.ZJE(g - k.Z,).

From (4.1.19)

.},

•Î
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41+#-
W  |{ks:^-j:^,e-*"-")}2^„

'■ >ii

(4.1.22)

If we set H „= l-n^p\ {^= ^^^-K i,e-^ '‘*'-‘^ fd u  and Z,, = ( À - ^ ) ^  for
2 ..

^ = 0,1,•••,«-1-1 in (4.1.22) then

-

e

•g  "'   ' g

(■̂Ijt-I t X̂ -̂a:,̂ ,_î 2)) 4i+,*n-rjt-ii)̂  4i+,4»-rn))̂

If we set C  =

k = \,2 ,'" ,n  andQ^i =

1 2 C  —
2 2

5 ^ { l -t- g-‘̂ '*-'*-»>} + g^'*+i-'*)}

^ l  + g-«'-U} g

(4.1.23)

for

in (4.1.23) the result follows.

□

Now let us examine the likelihood function (4.1.2). We can write (4.1.2) as

-  J  X,ds - 1 A /6  -  J  -  j [  ^tds  -  J  X^ds

E { W  ' ) = E{X,X,^........X, e » -g "  g ). (4.1.24)

Since we have obtained Xt which is a Gaussian approximation of X̂ , we will use this 
approximation (see (4.1.10)). We will also assume that the process has reached its 
stationary state. Then (4.1.24) can be written as
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-̂ Àjds -Ĵ Ajdî -^Xjds —̂Xjds -jxjds
E{XtJXt^ g ' ) = E (i,, .i ( ; ........^t„e - e '* .......e e )

-\afd, -̂ üfds -ja^ -Jiÿ* _ _ -#ïz/6 -Vwjz/: -VWJz.*
=  e  • - e  "  g  e  *• E { Â , ,  1 , , .............À / . £ ( e  ' -e  "  e  e  '• |Z („ Z ,_ , ............Z ,_ ,Z ,) } .

From (4.1.21)

= g E{Â,, i , ,  i , ,   g-C„^„g-C„,X.y

Assuming that we know Ào then

-jxjds
E{Xt, At, At„e Ao)

^  g;f,+7fr .+ff.gT(Co+c,+. ........

(4.1.25)

From (4.1.25) we can see that E(Ati At, At„ e  e '̂̂ ‘̂ ') needs to
be obtained. We will use the m.g.f. to derive it, i.e.

JKl »H-1 JH-1

(4.1.26)

where

and

1 , " A  ■ E { A t J

A

^  — [  ^  > t^2 > .............. » K i+1 ]  > ^  — ,  ^  = =

_ i _ _ ^ n + l . _ E ( A t ) _

Z =

«̂+1.1 «̂+1.2 «̂+1.3

0-12 <̂13 ^l.n+1

^21 ^22 ^23 ............ ^ 2,n+l

^31 ^32 0-33 ............ ^ 3,n+l
; 1

w+l,«+l
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From (4.1.10)

If j= y .

If

% = c ^ = C o v ( l„ l ,)  = F a r(l,)  = V a r ( ^ + Z , ^ J ^ )  = ÿ .

Hence

and

E =

Jf2P
2S

Y =

'  A  ' E ( i . ) J

<t>2
=

^ ( i j
m/'
5

_^«+l. _ E ( 1 )
H\P

L «y J

M 
2

( W e

MiP 
IS

t*7P\r̂ -̂ h~h)

( W e
thP
25

thP_
28 ( W e '^ ‘"'^

thP.
25

Lemma 4.1.9 Let Xt as defined. Then

£(A,, A,,....... A,,  gC.Kg-c^h )

= ̂ '{ .+1 +•••+— ;rn------+(A+S^uK/)J’̂ ’“ "" | v ,̂-c..„v.-c„-,v,-c„v,-ci
^-1+E^-uK/ ^2+Z®’2ŷy

y»i y=i y=i

(4.1.27)
where

n+l w+1 n+1 n+1 n+\

={(«>„+2  x,)(^.-i+ Z  O’-.-!/ *oK(̂ »-2+ Z  y,)....... (4 + Z (^3 , x ,)(A + Z  X,)}
y=l y=l y=l y=l y=l
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Proof
By dififerentiating (4.1.26) w.r.t. i/̂ .

 ^2^1 ' ' .....
n+1 n+1

= + Z  ^n-M + Z  °»-2y *'/)
j = \  J = l

n+1 n+1

+ («>» + Z  +Z «V 2; ’'/)••••>=1 7=1
n+1 n=l

  -  .

V. =E(A,, A,," A,.

n+1

n+1

7=1
n+1

(^2+Z°'2yV'y)o'i,-i
7=1
n+1

+ (A + Z ° '.-V  + Z  + Z  o»-3; Xf)...... (^2 + S  °iy
7=1 7=1 7=1 7=1

+

+
+

+
n+1 n+1

+ {(«*»+ Z  K <**-■+ Z  ^n-lj X, )•
7=1 7=1

/f+1 /l+l
+  (?>» + Z  »0)((**»-2 + Z  « V î / ’'/)•'

7=1 7=1

n+1 n+1
( A  + Z  <̂ 4/ ^ j ) i^ 2  + Z  ^2j''j)<^l2

7=1 7=1
n+1 n+1

- (A + Z °:',X ,)(f)3+ Z °^y
7=1 7=1 K+1 n+1 n+1

«+1 W+1
+ W . + Z  ° ’- v  + Z  ‘y l’

7=1 7=1

«+1„  „  Z ''* 4 Z Z*2 + Z  °'2/>0 K ̂ 1 +  Z  ® “
7=1 7=1

(4.1.28)

If we set
n+1 «+1 rt+1 n+1 n+1

^  =  {(«>»+ Z  ° ’-» +  Z  ° ’- i j  ''y)(^n-2 +  Z  °'.-2y Xf). . . ( A  +  Z(^3y *y)(«*2 +  Z  °2y Xf))
7=1 7-1 7=1 7=1 7=1

in (4.1.28) then

= A ^{ - M.n-1

+Z®’"7 X, -̂1 +Z<Vl; Xf f)._2 +Z^-27 X/
7=1 7=1 7-1

•+ SP +(A+Z<r,,v,)}.g'-' ‘->-
A+Z<̂ 27M,

7=1

(4.1.29)

The result follows if we set v„̂ j = -C ^ i, v„ = -C „,....... , = - Q ,  v, = - Q  in (4.1.29).
□
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Theorem 4.1.10 Let Àt as defined. Then

Xsds
Àt2 € A o )  =  B ^ ^ -r (^ o + C i+ " -+ c^ i-0  . ^ - C q A o

(4.1.30)
where

Q  =

for A = 0 ,l,- ./»  + l,
2 /*

1 2 r' -
2 2

for k  = 1,2,••*,«,

Q+i =

» + l «+1 n+1 n+1 n+1
^ = {(^,+ S  + Z  y/)(A-2+ E  °'-2/ *0).......(A + E °3 / x ,)(A + E  ’o)}>

y=i ;=i j=\ j=\ j=\

and
\n + l,«-2____  _̂ ^ 12

n+1 M+1 H+1 ' w+1
«>„+E°-y''/ <^-l+E°'-l/'"y <^,-2+'L^n-2jVj ^2+ 'L^2jyj

j= l J=\ J=l J=\
m-1 jH-1 n+1

+(A + 2 1 I' /̂.+i = “ Q+i>^« = “ Q>'*’> ^̂2 = “ Q > = ~ ^ i -
;=i

n+1

Proof
From (4.1.25)

E{At  ̂At^ t̂„ €
-jxsds

Ao)

= gff.+»l-+H.g'y(C.+C.+-+C»l-Og-C,̂ ,  g-Ci+ig-Cj^ .̂........g-C,+.g-C„,ij

From (4.1.27)
—  ĝ o+̂ 1 "+̂ nĝ C'0+Q+ "+Cn+l-()g-CQ%o

n+1 n+f +•••+ »+" + ( ^ ^ 1 " '  IVi—C.»|.''.=-C.,".«',=-C„v,—C,
^n+'E^n,yj <>n-l+Ẑ -Vy/

J=l J=l J ^ l
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Set

B = A-{------^ ^ --------+.......+ ------ ^ -------

«^-1+ Z ‘̂ -i/*'/ (^«-2+Z°’-v^y  ^i+'LcTyVi
j=\ j=l j=l 7=1

m-l iH-1 n+l

„+i

+(A +%]<^i7^)}'^"' | h.+i =~Q+i»^« = “ Q>*” » ^̂2 = “ Q > =  ~Q
;=i

then the result follows immediately.
□

As the likelihood function has been obtained the value of the parameters, i.e. S,

that maximise the likelihood function can be evaluated from (4.1.30) as an estimation 
procedure.
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4.2 Where the times of catastrophes and claims are known: A direct approach

This section deals with obtaining the maximum likelihood estimators of the parameters in 
the shot noise process assuming that the times of catastrophe jumps and claim points 
are known. In other words, we will obtain the maximum likelihood estimators of p  , S 
and on the basis of observed catastrophes and claims. Its application in calculating the 
estimators of the parameters is illustrated in example 4.2.1 at the end of this section. The 
appendix contains the S-Plus routine needed for this calculation. Note that p  is not large 
and therefore the Ornstein-Uhlenbeck process approximation is not used.

The times of the jump occurrence are denoted by (i.e. m catastrophe jumps)
and the times of point occurrence in each jump interarrival time as

 > claim points). The intensity
function X decreases with the decay rate Ô between the time 5;_i and ŝ  where 
/ = 2,3, • • • ,772 until another catastrophe jump occurs at . Therefore , • • ■, are

regarded as parameters of the problems from which we can estimate the jump sizes as 
there are not many catastrophes. We observe the claim points between catastrophe jumps 
while X decreases with the decay rate Ô.

Let's assume that the claim points and catastrophe jumps do not occur at the same time. A 
time interval (0, T) can be divided by the epochs at which the jumps and points occur. 
The figure below illustrates the epochs at which the jumps and points occur.

I I I_ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ I_ _ _ I_ _ _ _ _ I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ I
0  t  _______ t  s  t  s  t  s

1 J  I J  + I m  y 7M+11 1  m+ 1
where T = is a fixed time not the epoch at which the jump occurs.

We can estimate the rate of jump arrivals by

^  772
P = y -  (4.2.1)

Let us begin by deriving the maximum likelihood estimator of X , Xs,
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Theorem 4.2.1 Let Nf as defined with intensity that is time homogeneous. Then

4  = - (4.2.2)

A

where S  is the maximum likelihood estimator of S  and z = 0,1,• • • ,/w.

Proof
If we know the times of catastrophe jumps and claim points, from (4.1.1), the likelihood 
function L is given by

- s y  t,  ̂ ^

L  = Mle '=* g" " ........

e” f <=A,+I g" ^

(4.2.3)

Take the logarithm of (4.2.3) and differentiate with respect to (z = 0,1,---,tw); if we
equate this to 0 then the maximum likelihood estimator of is

i  _Â â± C L À lyis, — A

□

Corollary 4.2.2 Let N, and A, as defined in theorem 4,2.1. Then

InZ, (4.2.4)

where z = 0,l,-*-,zzz.

Proof
The result follows if we take the logarithm of (4.2.3) and differentiate twice with respect

A

to (z = 0,1,"',z?z) and set Zs, = .
' 2_g-^4+i-4)

□

114



Corollary 4.2.3 Let N, and A, as defined. Then

^ I n l „ =0=A.
(4.2.5)

where i ^ k .

Proof
The result follows if we take the logarithm of (4.2.3) and differentiate with respect to
and A- .

□

Theorem 4.2.4 Let and A, as defined above. Then

â\nL

35
_ Jm*l _ -  £

S=S \ - e
-  (y'm -  Jm-l X̂ m “ ̂m-1 ) '

y-i
“ 2^ /"  ...... " 2 ( 4 “ V l)“ 2 (41— /■! /■/♦! f=y*.i+1 f=y.+i

(4.2.6)

Proof
The result follows if we take the logarithm of (4.2.3) and differentiate with respect to Ô

^Ji+i ~Ji)

□

The maximum likelihood estimator of S can be obtained by equating (4.2.6) to 0.

Corollary 4.2.5 Let and Â as defined. Then

^]nL
.2

35 s=s
=X^aSl I

1 -e
+ (72 “ 7i)(̂ 2 ~‘̂i)it  + (‘̂2

+Um -  J„-lXs„ -  Vl )| T + (̂ m -  Vl ) I" — ;------
[5 I

+ a .,-y J (T -o < |T + (T -o [  -% -■

(4.2.7)
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Proof
The result follows if we take the logarithm of (4.2.3) and differentiate twice with respect

A

to Ô and set ( / = 0 ,l,” -,w).

□

Corollary 4.2.6 Let and A, as defined. Then

^ In L
S=S

(4.2.8)

Proof
The result follows if we take the logarithm in (4.2.3) and differentiate with respect to 

(z = 0,l,-*-,7w) and S.
□

As the maximum likelihood estimation is used, the variance-covariance matrix of the
A A A A

maximum likelihood estimators of and S  (i.e. Xo,Xs^,-",Xs„ and Ô) is

given by

z^lnZ 0

Û \nL

0

0

0 0

z^lnZ ^InZ,

0 0

â\s iL

^ In Z
ôX^dÔ

0 I 
z^lnL ^ In Z

z^lnL ^ In Z  
dX. âô dS-

-1

(4.2.9)

Now let us find the maximum likelihood estimator of jump size y^, y ,̂
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Corollary 4.2.7 Let and as defined and be the jump size. Then

-  'h j i r  Jh>).e -‘‘‘ (4.2.10)

where / = 1,2,•••,/».

The intensity at j , at which the first jump occurred is = Â e +>̂ i. Therefore
A A A A

Proof
tensity at j , at which the first

y ^  — A j ,  — A o  ^  .

From theorem 4.2.1 

Similarly,

; _ 1  i  --fa _ X j , -  j,-x ) . - A

□

The following example illustrates the calculation of the estimators of parameters by 
maximum likelihood estimation.

Example 4.2.1

The numerical values used to simulate the claim arrival process are w = 3, ^=0.1, 
Aq = 1,000. We will assume that the interarrival time between jumps is exponential with 
mean 1, i.e. p = \  and that the jump size follows exponential with mean 100, i.e. 
y  ~ Exponential{0.0\).

S’Plus was used to generate random values and to simulate the claim arrival process. The 
calculation of the estimators of parameters by maximum likelihood estimation are shown 
in Table 4.2.1 (see appendix for simulation and estimation).

The distribution of the jump size has not been estimated directly. As we have seen in the 
previous chapter, to calculate the stop-loss reinsurance premium and the price of 
catastrophe insurance derivatives, we should use a theoretical distribution for jump size y  
and what we only need to calculate the prices is the mean of jump sizes. Therefore if the
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jump size distribution is exponential (i.e. g(y) = ae , y > 0 ,  a > 0 )  can be

used as The reader should bear in mind that the general distribution of jump size y  
a

cannot be deduced from 3 catastrophes.

Table 4.2.1 The estimates of parameters calculated by M.L.E.
Numerical values 

used for simulation
Estimate of 
parameters

Standard error

Ô 0.1
A

s 0.070768653 0.04572912
1,000

A

Ào 976.7606 39.7807772

1,024.994
A

A 1,068.861 49.5543917

& 1,302.009
A

Às2 1,216.297 51.076307

1,230.569
A

Àsj 1,173.496 43.732490

+y2
3

Average 
jump size

179.6427
where

_yi= 100.3073 
^2 =323.7813
>̂3 = 114.8395

A A A

yi+y2+yi
3

186.0299 80.89193

P 1
A

P 0.80386 0.46411

From (4.2.4), (4.2.5), (4.2.7), (4.2.8) and (4.2.9) the varicmce-covariance matrix of the
A  A  A  A  A

maximum likelihood estimators of and Ô (i.e. and S) is as

follows:

1582.5102371 196.6463007 730.386784 431.220483 0.792275617'
196.6463007 2455.6377323 478.488780 282.499858 0.519033205
730.3867842 478.4887797 2608.789093 1049.265418 1.927801296
431.2204832 282.4998580 1049.265418 1912.530661 1.138174217
0.792275617 0.519033205 1.927801296 1.138174217 0.002091152
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5. State Estimation

In practical situations, we observe daims (and perhaps catastrophes) and we want to filter 
the "noise" out and "estimate" the value of at any time. This is useful for the pricing of 
catastrophe reinsurance contracts and catastrophe insurance derivatives in chapter 3 as it 
helps us estimate the distribution of Xq from the past data. Therefore in this chapter we 
will examine the conditional distribution of given "observed information".

Firstly, we will try to obtain the Kalman-Bucy filter by transforming and approximating 
and Nf as normal variables and from which we will derive the distribution of Z,. As 
a matter of interest we will also examine the pricing of stop-loss reinsurance contracts 
using the Kalman-Bucy filter. Its application in computing the premium will be illustrated. 
Secondly, the Laplace transform of distribution of will be obtained assuming that we 
know the times of catastrophe jumps and claim points. Finally, we will look at the Laplace 
transform of distribution of A, assuming that the number of claims in a fixed time interval 
is known.

Let us assume that the shot noise process is time homogeneous.

5.1 Transformations, approximations and pricing: The Kalman-Bucy filter

5.1.1 Transformations and approximations

Given the observations /}, it is required to estimate the value of A, at any
time t. Therefore "the filtering problem" is to obtain the best estimate A, on the basis of 
the observed process {Â ,; 0 < 5 < /}. We will also assume p  is large.

We will now find the best estimate of A, based on the observations s<t}.  We
start by transforming the processes Â and using

i,e. (5.1.1)
. Æ  S  \  2S

and

i.e, + (5.1,2)
Æ  ’ 6 \ 2 S

IS
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N ,- ] x jd s
Now let us define Z?' =  and where C, is the total\thP

23
JMiP

23

amount of claims up to time t and =judH(u). H{u) (w>0) is the claim size
0

distribution fimction. Also recall and .\fiiP
23 i=l

Lemma 5.1.1 Let and as defined and p - >  qo. Then

y w '
lip) => (5.1.3)

in law where and B̂ ^̂  are three independent standard Brownian motions and
00 /  00 

^2=1 u^dH(w) -  J udH(m) (the variance of claim size).

Proof
The generator of the process acting on a function f { x ,n , c ,X j J )  is
given by

K f{x ,n ,c ,X ,j j )  = ^  + X ^ - Ô X ^ + p { ^ f ( x ,n ,c ,X  + yJ-¥y,t)dG {y)-f{x ,n ,c ,À J ,t)}
dt ÔX ÔX ^

+X{f{x,n + \,c-\-u ,XJj)dH {u)-f{x,n ,c,XJJ)}.

Set/(x ,w ,c,1 ,7 ,0  =
r

n - x
fi-iP 

v v  13 7
an d /(x ,w ,c ,l,7 ,0  =

/
c-m^n

ImiP 
V V 2«5 7

(5.1.4)

. Then

n - x
I fhP 

\ \  23 7
=  12 n - x

f /hP
V V 23 7

PiP 
K V 7

+P\

f  >2 
n - x

V V 23 7
dG(y)-

r  ̂
n - x

V  V 23 7

21
+  1'

n + \ - x

y y 23 7

r yn - x
iPiP

yy 23 7
2ÔX
^2P

and
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c -n \n
1

I0

c + w-/w,(« + l)
2

► dH{u)-
( \  

c-m^n
1

jpip\  M IS J
— /L̂ Iflip

L V 25 J
ImiP ^ yj IS J

2 .2âÂ
-  iph ) ------

P i  P

, 26X= k , ------
P2 P

where7Wi =jî4dH(u), =^u^dH{ü) and = m ^-n^.

As mentioned in the introduction. A /  is the solution to the 'martingale problem'. Hence

( l ^  1 -  f and [ 1  -  f ̂ 2  are martingales.
V J i  p  V J i  pP i  P

By Chebyschev's inequality,

Pr^
P i  P  P i

>e\<

and

Pr \ k j ^ ^ d s - k p ^ t  
i  1̂ 2 p  Pi

{^ fV a r( \X jd s)
 0________

kl{j^fVar{\X jds)
> s\<

As can be seen from (1.4.13) (see also (1.4.21)) Var{^X^ds) = K{t)p. Therefore as
0

y9-> 00

Pr^
i  Pi p  Pi

> e ■ > 0  (5.1,5)

and

Pr * j — > 4
{ p i  p  Pi j

k ,^ (^ y V a r ( fX A )  ^ 1 , ^ , 1K i ^ r m p
f i é f i é

■>0 .

(5.1,6)

Therefore from (5.1.5) and (5.1.6)
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and

[k^ - —^ d s -> k2 ̂ ^ t .  
0 M2 P Ml

in probability. Hence from proposition 4.1.1,

—̂
Pi

2/i|

L f  =
N - \ x , d s

12 ,̂

Pi
(5,1.7)

and
Q<J>) _ 2p, A®IM2P

25

in law where and are two independent standard Brownian motions.

(5.1.8)

( \ rn - x
thP. \M IS y

j-M iPi
(

fhP. \  ^  2Ô
L f { x ,n ,c ,X j , t )  = c-m^n

thP 
\  M 2S J

j-M^Pi
I  MtP 

y  \  2S J

and

r
f{x ,n ,c ,X ,J ,t)  =

\
c-m^n

ImtP 
y  yl 2s J

( \  
n - x

P2P ŷ J 25
. Then

f  ^
n - x
I P2P

VV 2S
f \ f  

n - x

j - p ^ p ‘
I P2P 

y yj 2s J

r \  
n - x
I P2P

V V 2S y

jPiPVV 2  ̂y
J+ y^iP t

plp IS
X

plpIS y

MxP
I P2P y \  2 s J

f \f
n - x

+ Â j-MxPt

Pip

P2P
y M 2s J

M

1

PiP + X

P2Py *v 2j  y
\ f

n + \ - x
pipdG{y) -

= ~ ^ i^ ~ ^ )~ ~ H ::^ U -M \P i) '^ P ^ {n -x ) -^ — {j-^^p t)  

=  0

]PiP\ M 2S \  2S y fPiP \  \  2S IPiP
2s y

P2P
23

P2P
25

P2P
25

P2P
25

(5.1.9)

c-m^n j -HxPt
fPiP fpiP

\  \  2s A  \  2s y

c-m{n  / / 1/7

PiPV V 25 fPiP' 2s y
+p

i
c+u-m ,{n + V) J -P ip l

I P2Py yl 25 y

c-m^n
fpiPV V 25 y

r

j + y - p ^

dH{u)- c-m^n
I P2P

\lhP 
2 5  y

j-MxPt
\P2P

dG{y) - c-m^n j-PxP^
fhP 

V  \  2 5
I P2P 

2 5  y

y 25 jy  M 25 y
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/
c-m^n

IhP 
\  M 2S J

.JhE .
ImiP V V 2«y y

+P

\
c -m^n

i/̂ iP

f  \
A + À

\  2S A  V 2S J

(r ^

V V 2<y y
I  MtP

V V 2.5 y

/  \  
rrh j -P x f^
\mtP  \MtPVV 25 yv V 25 y

= 0 ,
(5.1.10)

and
/

c-m^n
IfhPV, V 25 y

n - x
ImiP W  25 y

= y c -n \n  1

= y c-m,M
ImiP V V 25 y IM.V V 25 y

+y

w IV -V 25 y 

c - m . n

\ thP 2 5  y
+y n + l - x

i MiPV "V 2 5  y
dH(u)~ c-m^n

IfhP V V 2 5  y

A
n - x
/w  V  V 2 5  y

MiPV V  2 5  y ]!b£L VV 25 y
m,
}PipV V  2 5  y

w-x
\PiPVV 25 y

OT,
\ptpV \  2 5  y \pipV V  2 5  y

m,
[£2P W  2 5  y

w-x
P2PV V  2 5  y I P2PV V  2 5  y W  2 5  y

= 0 .

(5.1.11)

Therefore (5.1.3) follows immediately from lemma 4.1.2, (5.1.7), (5.1.8), (5.1.9), (5.1.10) 
and (5.1.11).

□

PiP f
Let us now define = ——p=L—- and prove the main result of this section.

MtPV 2S

Theorem 5.1.2 Let Z ^ \  and as defined and p->cc. Then and
converge in law to Z^,W^ and where

dZf — — SZ^dt + y/20dB (̂1)

dŴ  =Zfdt + _ [2y/,

M2

(5.1.12)

(5.1.13)

dU, = m,dW, + 1*2 (5.1.14)

where are three independent standard Brownian motions and

?(4)  __ 1
=

2//,

X'2 V /4
2/<i
/̂ 2

(also a standard Brownian motion).
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Proof
First, note that (5.1.12) has already been proved from theorem 4.1.3.

and can be written as

N , - j z , c b  ,
JP f A A A  A + (-^j= J-ds  (5.1.15)J MtPMtP

0  V  2 5

and

25
MtP
25

f/'îP
25

I MtP 
V V 25 y

(5.1.16)

Therefore by continuous mapping theorem (see Billingsley (1968)), lemma 5.1.1 and 
theorem 4.1.3, (5.1.15) and (5.1.16) converge to

0 (2)

and

W, = jZjds+
0 V M2

U,=m,JV,+
V ^2

(5.1.17)

(5.1.18)

Set cŴ  = in differential form of (5.1.18) then
V ^2 _____

dU, =m,Z,t6+m, (5.1.19)

Since the sum of two independent standard Brownian motions is also a standard Brownian 
motion (5.1.19) becomes

dU, = m^Z,dt + j ( m ^ + i y ^ W r  = m,Z,dt + lm ,^ d B < ‘'>

where 5''*̂  = — '

2ft,
f*2

5 f  > +
2ft,
fh

B f ’

m +^2 )
2fi,
fti

□
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The theorem 5.1.2 has proved that Z ,̂ and are normal variables. As a result of this, 

we obtained Àt, Nt and Ct which are Gaussian approximations of A,, and Q;

I , = ^ + z J ^  i.e. Z , = à L ^  (5.1.20)

N , = ^ t  + W i.e. = (5.1.21)
S \  25 V 2S

5.1.2 The Kalman-Bucy filter and the distribution of Z,

We will derive the conditional distribution of Z,, given [W/,0<s<t}, by the Kalman- 

Bucy filter where
dZ,=-5Z,dt + 42SdBf^ (5.1.23)

and

dW,=Z,dt+.^^i-dBf-\ (5.1.24)
V

Let us begin with a proposition used by 0ksendal (1992).

Proposition 5.1.3 The solution Zr = £ (z ,|p ^ ;0 < 5 < /) of the 1-dimensional linear 

filtering problem
dZ,=F{t)Z,dt + C{t)dBl^^- Fit\C{t)&SR  (5.1.25)
dW, = G{t)Z,dt+D{t)dBf^\ G{t\D{t)  (5.1.26)

satisfies the stochastic differential equation

dZ , = { F { t ) - ^ ^ ÿ ^ ] Z . d t + ^ ^ ^ - d W , -  Zo=E(Z,)  (5.1.27)

where

S{t) = E \ \ Z ^ - Z t \  > satisfies theRiccati equation

^  = 2 F { t ) S { t ) - ^ ^ S \ t )  + C \ t ) ,  5'(0) = £[{z„-£:(zjf] = Kar(Z„). (5.1.28)
D‘{t)
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Proof
From theorem 6.10 in chapter IV of 0ksendal (1992), the result follows immediately.

□

Theorem 5.1.4 Let (Z^^Wf) be a two-dimensional normal process satisfying the System 
of equations of (5.1.23) and (5.1.24). Then the estimate of Z, based on the observed 
{W^\0<s<t} is

/ •
t \H(u)du

Z, = E{z\W ,,0<s<t) = e> Z o + - ^ j e '  S{s)dW, ( 5 , 1 . 2 9 )
0

where

4 - 2

S{s)^

+2

EE
n

- 2 0 ^
Ml

-1

(5.1.30)

and

El
2<?>0i
El

+ 2

H(s) = -

EL
e

2//,

. (5.1.31)

Proof
Let iS(0) = . Then from (5.1.28) the Riccati equation has the solution
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(2ft
f t

5 (0  =

jWJX^+2) 1
£L

g

"'+^+V¥V^¥^ £L
g «

- 2 ^ a .
/̂ 2

-1
« ' + e - V ë V # ^

Therefore from (5.1.27) (5.1.32) offers the solution for Zf of the form
/ /
jH(s)ds  ̂ ( r

Z, = £ ( z , |r . ;0 ^ s ^ / )  = e« Z o + - ^ j e '  5 ( 0 ( ^
2/̂ 1 0

where

(5.1.32)

H(s) = -

|2ft ) jf + 2I
14^+ )̂
JÙ.

l i f t  F < /̂ 2 >

2ft ►
ft « ' + ^ - V & V X ^  + 2)''

□

Corollary 5.1.5 Let as defined. Then if Z, is stationary the estimate of Z, based on 
the observation [W/,0 < 5 < /} is

where

m
Ml

S{s') —

^  t  \ f f ( . u ) d u

Z ,= £ (z , |r . ;O < s < 0  = — J e ' 5 (0 ^ # : (5.1.33)

25ft
f t

+ 2 U
£L

- 2 Ô

i+^-V ¥V ^¥^
g -1

(5.1.34)
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V4h
^2

2 ^ 1

I  ^2
+ 2

and H{u) = -

2/̂ 1
i«2

1+e+VëV#  ̂.'̂ #^" ^

(5.1.35)

Proof

Since is stationary, E ( Z g )  = 0 .  Therefore from ( 5 . 1 . 2 7 )  and ( 5 . 1 . 2 8 ) ,  Z o = 0  and 

5(0) = a^=F<y(Z„) = i ^ ^  = l.
ZÔ

Hence put Z o  =  0  in ( 5 . 1 . 2 9 )  and = 1  in ( 5 . 1 . 3 0 )  and ( 5 . 1 . 3 1 )  then the result follows 
immediately.

□

Corollary 5.1.6 Let Ẑ  and as defined. Then the estimate of Z, conditionally on 
{l^;-oo<5<r} is

Z , = E { z , \ W , - < j a i s i t )  =  e - ^ Z ^ - \ ô - ^ ^ - ^ ô ^ ^ + 2  - e ^ l e ^ d W ,  ( 5 . 1 . 3 6 )

where P= \̂à[ S-\-—  ̂

Proof

For large value of 5, we have obtained S(s) = - ^ ^ ^ + ——- + 1
M2 \ M2 \ [ M2

A

from ( 5  . 1 . 2 7 )  this offers the solution for Zt of the form 

Z, = £(z,|lf.;-oo < s ^ / )  = e -^Z o -

. Therefore

2//i y 2/̂ 2
2ÔH,

+ 2 
y ^2

where P= Aô

□
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We have obtained e(z^\W/,0 < s  < t) = Z t . Now let us try to find the distribution of .

Corollary 5.1.7 Let Zt and S(t) as defined. Then

E{e~^' 0 < 5 < /) = (5.1.37)

Proof
From theorem 5.1.4 and the fact that Z, is normally distributed, given W /,0<s<i, with 
Var{z^\W/,0 < s < t) = S(t) the result follows immediately.

□

5.1.3 Pricing of a stop-loss reinsurance contract using the Kalman-Bucy filter

We have transformed and approximated and as normal variables Z, and fi'om 
which we have obtained the distribution of Z .̂ As a matter of interest let us derive the 
pricing model for stop-loss reinsurance contracts for catastrophic events using normal 
variables Ẑ  and Ŵ.

5.1.3.1 Constant claim sizes

Ignoring the effect of interest rates, the stop-loss reinsurance premium at time t is

(51.38)
1 =  1

where:
N, claim amount,
Nj -  Nf number of claims between time T and t, 
b retention limit,
Nj—Nf Nf—Nf

( '£ H , - b y = M a x (  -6 . 0).
J=1 J=1

If we assume that N, = 1, then

- 6 ) ']  = -  AT,) - 6 ) '] .  (5.1.39)
i=l
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Since we have obtained which is a Gaussian approximation of we will use this

approximation (see (5.1.21)). Therefore set + in (5.1.39) then
Ô V

E Ï { ( N , - N , ) - b y = E (5.1.40)

From (5.1.40), we can see that mean and variance of Wj-JV^ need to be determined to 
obtain stop-loss reinsurance premium. Therefore let us derive the expected value and
variance of Wp-W^.

Lemma 5.1.8 Let ,1^, Zt and S(t) as defined. Then

E(Wp-W,\W/yO<s<t) = ^ - ^  Zt (5.1.41)

and
Var{Wr-W,\W,;0<s<t)

= ± { ( l  -  5(/) -  -  3 } + a f-l + ̂  j ( r -  /).

(5.1.42)

Proof
From (5.1.23) and (5.1.24)

Z, = Z,e-^‘-‘̂  + ̂ l ïô j  ; t < s
t

and

W , - W , = ] z , d s + ^ ] d B y \

Set (5.1.43) in (5.1.44) then

Wp-W,=

(5.1.43)

(5.1.44)

. (5.1.45)

Take expectation in (5.1.45) then (5.1.41) follows immediately.

Var{Wp -  W,\W/,0 <s<t) = e [{Wp -W ,f\W ^\0< s< t]-  E[[Wp -W\W^,0<s< t ) Y .

(5.1.46)
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Therefore (5.1.42) follows immediately from (5.1.45) and (5.1.41).
□

We can now find stop-loss reinsurance premium at time t based on the observations 
\W;,0<s<i].

Theorem 5.1.9 Let Z t  and S{t) as defined. Then

\ M - i P

4&T 2Ô

(5.1.47)
where

M = E(fF^ -W,jfV,;0<s<t) = ^ -----Z,,

I  = Far(W^ -  W;jfV̂ ;0 < s£ /)

= 5 (0  - +4e-‘<̂-‘> - 3 }+ 2 f l  + M r - 1),

B  = ^  -  ~ — T = — — and ®(-) is the cumulative normal distribution function.
2S

Proof
Conditioning on 0 < 5 <  ̂ and set IT = in (5.1.40), then

25

1 (<g-Mr 
 ̂  ̂ dû)

1^;0< 5< /

(5.1.48)

where

M  =  E { w ^ - W , \ W ^ - 0 < s < t )  =  —̂ ^  Z t ,

Z = Var{jVj-W^^;,0<s<t)

= ^ { ( l  _ 5(/> -  -  s j + z M M r - t ) .
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ûj—M A — M
Set X = — r=r- in (5.1.48) and put B = — then (5.1.47) follows immediately.

0

Let us evaluate the fair stop-loss reinsurance premium at time t assuming that there is an 
absence of arbitrage opportunities in the market. This can be achieved by using an 
equivalent martingale probability measure P*. By theorem 3.2.5 we have found that the 
claim intensity function /I, has changed to ^ a n d  the rate of jump arrival p  and the 
jump size y  in the shot noise process depend on time with respect to the equivalent 
martingale probability measure, i.e.

A

p - ^ p \ t ) ^ p g ( , r e “);

d G (y )^d G '{y ; t )  =  ̂ .
gir 'e^)

For simplicity, let us assume that ^  = (1+^  and y" = 0 where 0< 6< l.  Then
+ (5.1.49)

Corollary 5.1.10 Let Z, ,W„ Zt and S(t) as defined. Then

4&r

(5.1.50)
where
E* is the expectation with respect to equivalent martingale probability measure P \

=  (1 + 0 2 , ,
o

B* = A*-M* b -
, A =

( T - t )
10+ff)̂ M2P 

V 2S

and 0 (  ) is the cumulative normal distribution

function.
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Proof

If we replace //j, //j, Zr and 5 (0  with (l + 0 //„  + ( l+ 0 Z f , and (l + ^ ^ 5 (0
respectively in (5.1.47) then (5.1.50) follows.

□

5.1.3.2 Random claim sizes

Let C j . - C f  be the total amount of claims between time T  and t .  Then from (5.1.39), the 
stop-loss reinsurance premium at time t  is

-*n=4{(c, -c,)-&r] (5.1.51)
1=1

where all symbols have previously been defined. Since we have obtained C, which is a 
Gaussian approximation of C,, we will use this approximation (see (5.1.22)). Therefore

set Q + in (5.1.51) then
'  ̂ Ô \ 2 S

£ [{ (Q -C ,) -6}*] = E -U,)+m, ^ { T - / ) - 6 j (5.1.52)

From (5.1.52), we can see that mean and variance of need to be determined to
obtain stop-loss reinsurance premium. Therefore let us derive the expected value and 
variance of t/j. -C/,.

Lemma 5.1.11 Let Z ,̂ f/, and Z t  as defined. Then

E ( U j ,  - U f \ W / , 0 <  s <  t )  =     Z t .

andFariUr-U,\W/,0<s<()
= f a  ] {(l _ S(t) -  + 4e-« r-o_3 | + 2 f ^

(5.1.53)

( T - t ) .  (5.1.54)

Proof
From (5.1.14)

U r - U , = m , ] z / i s +  t f f l f (5.1.55)
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Set (5.1.43) in (5.1.55) then
__ __ 1 - 1  -  Uy Uf — /Wj Z, +m, V25j ^— (5.1.56)

Take expectation in (5.1.56) then (5.1.53) follows immediately.

V ar{U r-U \W ;fi< s< t)^E [{U r-U ,f\W ;,Q ^sit] -E {{U r-U \W ,- ,0< .s< ,t)y

Therefore (5.1.54) follows immediately from (5.1.56) and (5.1.53).
(5.1.57)

□

We can now find stop-loss reinsurance premium at time t based on the observations

Theorem 5.1.12 Let Z, Zt and S{t) as defined. Then

^[((4 - c, ) - 0 S s i / ] = + { + ^ ( r -  /) -ijoC-i)
(5.1.58)

where

T = E {u ^ -U ,\W ,- ,0 < s< t)= m ,^ -^ ----- Z,,

' i f  =  V a r { U r - U , \ W / , 0 ^ s ^  i )

^  b - m , ^ { T - t )
VŸ \fhP

25

and O(-) is the cumulative normal distribution function.

Proof
Conditioning on 0 < 5 < / and set U = U j - U /m { 5 .1.52), then 

^ [{ (Q -Q ) -^ » rK ;0 < 5 < ^ = E T-U t) + r j \ ^ { T - t ) - b

25
2 'Î' do

W/,0<s<t 

(5.1.59)
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where

r  = E (U ,-U ,jff:;0< s< f) = m,  -----Z,,

'I'= Far(u^-U,jW ;;0^s<t)

= J  {(i _ e-«̂ -o)" s(t) -  -  3} + t),

andJg = ^ ~ 3 -̂ Œ r -0

t ; - r  j ^ - rSet y  = in (5.1.59) and put L = then (5.1.58) follows immediately.

□

Let us evaluate the fair stop-loss reinsurance premium at time t assuming that there is an 
absence of arbitrage opportunities in the market. This can be achieved by using an 
equivalent martingale probability measure P*.

Corollary 5.1.13 Let Z, ,1 ,̂ Zf and S{t) as defined. Then

(5.1.60)

where
E* is the expectation with respect to equivalent martingale probability measure P*,

l_g-«5(r-f) A
r  = 7M,:L_!_ (l + 0 Z f ,

Y  = ^  J  {(i -  f ( i+ e )^  S{t) -  -  3} + 2H + / ) ,

. _ r ^  . b-m ,

V ^ '  4 (1+̂  fX'jP
2S

and O(-) is the cumulative normal distribution

function.
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Proof

If we replace //j, *^(0 with (1 + 0 /ij, {1+0)^ (}+0)Zt, and (1 + 0^6'W
respectively in (5.1.58) then (5,1.60) follows.

□

The following example illustrates the calculation of stop-loss reinsurance premiums using 
the pricing model derived previously.

Example 5.1.1

The numerical values used to simulate the claim arrival process are <^=0.5, Àq =200. 
We will assume that p =  100 i.e. the interarrival time between jumps is exponential with 
mean 0.01 and that the jump size follows exponential with mean 1, i.e. 
y  ~ Exponential(\). S-Plus was used to generate random values and to simulate the 
claim arrival process. The numerical values used to calculate (5.1.29) and (5.1.60) are 

Zo = 0, S{0) = 0, 6= 0.1, //j = 1, / /2  = 2, /Mj = 1, /Wj = 3, / = 1, r =  2,
6 = 0, 190, 200, 210, 220, 230, 240, 250,

£* (Q  -C ,)  = E \ N r  -  N,)E(iK) = = 220.s

By computing (5.1.29) and (5.1.60) usm%MAPLE and S-Plus, where Zi = 0.5579152, the 
calculation of the stop-loss reinsurance premiums at each retention level b are shown in 
Table 5.1.1 (see appendix for simulation and pricing).

Table 5.1.1
Retention level b Reinsurance premiums

0 227.512939
190 38.767164
200 30.049486
210 22.209532
220 15.521060
230 10.171605
240 6.202363
250 3.494186
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5.2 W here the times of catastrophes and claims are known

In this section we will derive the Laplace transform of distribution of assuming that the 
times of catastrophe jumps and claim points are known. In other words, we will obtain 
the Laplace transform of distribution of by conditioning on observed catastrophes and 
claims.

The times of the jump occurrence are denoted by 51,^2 , (i e. m catastrophe jumps) 
and the times of point occurrence by  ^

claim points). The intensity function A decreases with the decay rate S  between the time 
and 5, where / = 2,3,•••,/« until another catastrophe jump occurs at 5,. Note that 

in the most general case in this section jump sizes >'2 , do not have to be 
independent. We observe the claim points between catastrophe jumps while À decreases 
with the decay rate S.

Let's assume that claim points and catastrophe jumps do not occur at the same time. A 
time interval (0,w) can be divided by the epochs at which the jumps and points occur. 
The figure below illustrates the epochs at which the jumps and points occurred.

I I I_ _ _ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ I
0 r   t  S t  s  t  ^1 jT 1 jT +  I m n

Let us start with a lemma.

Lemma 5.2.1 Let evolving up to a fixed time u {t<u), 
and , ̂ 2 , • • •, as defined. Assuming that we know then

-[

0 0 0

(5.2.1)
where

Â Jl Jm

4 + - 4  )+ + \-e~*‘

Ki e  ̂ , (5.2.2)
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1

-a.u-*m l)
• {Xq6~̂ -  ̂+ +• • • +>';̂ 2̂ ”*̂ '̂‘~̂""*̂ + y^i e  ̂ ^̂""‘

• (ÀQe~  ̂+ + y2e~̂ ^~*̂ ^+-• • + >'«)”~'̂ " g  ̂ â
(5.2.3)

and
îjiA J (3 î»>'2 >***».Vm) is the w-dimensional joint probability density function of jump size 

Proof
The shot noise process evolving up to a fixed time t is

A, = V * + (5.2.4)aUl
s,<t

Therefore
X̂  '"Xi

Jm

(5.2.5)
and

g'"-' =g (5.2.6)

The result follows if we use (5.2.5) and (5.2.6) for the left-hand side of (5.2.1).
□

Corollary 5.2.2 Let X̂  evolving up to a fixed time u {t<u), 
and , ̂ 2 , • • ', as defined. Assuming that we know then

^jds 00 00 00
E ( \ Z , ^ - X , e  • |Ao) = K j J

0 0 0

(5.2.7)
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where

 "+  ̂ 1-»'*
K j  =  A i e  " :  e  ° ^ ,  ( 5 . 2 . 8 )

= ( V '^

(Agg-^

( A g g  * " - ‘ + 3 / 1 ^  + } ^ 2 ^  ' " - 2 )  > - l g  <y

l_g-<"-̂ l)
y«-i

”̂m
• ( V ' * "  +y^e'̂ ‘’"'‘'̂  +y,e +y„ï~’'e  '

(5.2.9)
and
^2,j5 j. (Ji»>'2 »"*>3 'm) is the /w-dimensional joint probability density function of jump size 

Proof
The result follows immediately if we set v= 0 in (5.2.1).

□

Now let us obtain the Laplace transform of the distribution of intensity .

Theorem 5.2.3 Let X̂  evolving up to a fixed time u as defined. Also as defined and 
3 f  be the filtration generated by 0 < 5 < ^}. Let be the total number of jumps up
to time t and 3f^ be the filtration generated by 0 < 5 < /}. Assuming that we know 
Xq then

0 0 0

(5.2.10)
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Proof
If we assume that we know intensity Z from 0 to w i.e./l^ where 0<eo<u. Assuming that 

we know when the jumps and points occur then

îo
$
f-io

where is interarrival time between claims.

^  edt„,u<T„^^,S^ eds^,S^ Gds„,u (0 < u }

Pr(7; e d t ^ , T ,  e d t „ , u < T „ ^ „ S ,  e d s , , S j ^  e d s ^ , ‘ - , S „  e d s „ , u < S „ ^ ^ \ A ^ , 0 < o ) < u )

(5.2.11)

We can find that the denominator of (5.2.11) is a joint probability density function of 
7 ,̂7 ,̂••*,7 .̂ Therefore

^ (^ -vA„|3JV.A/)

E [ E { e ~ ' ' ^ I ( T ^  e d t^ ,T ^  e d t ^ , - - X  <T„^^,S^ ^ d s ^ .S ^  e d s ^ r ’ ' , S „  e d s „ , u  < S ^ ^ ) \ à ^ , 0 ^  œ ^ u } ]

-jx ,d s

 V  ' ]
(5.2.12)

Conditioning on ,• • • , in the numerator of (5.2.12) then

e^/tj,-,7; e d t „ , u < T „ ^ , , S ,  e d s „ , u < S „ ^ , ) \ Y „ > " J J ] \ K > ^ < ( o < u ]

= erft„-,7; e d t ^ , u < T „ ^ , , S ,  e d s , r " , S „  E d s „ , u < S „ ^ ^ \ Y , , - ^ - J J } \ X ^ , 0 < û ) < u ]  

=  E[r"^E)...^{Pr(7; G i/t,,-,7; s d t „ , u < T „ ^ i , S i  e d s ^ , - , S „  e d s ^ , u < S „ ^ f i y , - - - J J } \ X ^ , 0 < û ) < u ]  

=  £[e’ "̂ “Pr(7; Gds,,--,S„ ^ds^,u <S„^^\X^,0<(o<u)].

(5.2.13)

We can also find that the second part of (5.2.13) is the joint probability density function of 
7^,7^,•••,7^. Therefore

-J Àjds
= E[e"'"A ,A,,....... \ e  » ]. (5.2.14)
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Hence

 — I  (5.2.15)

E [ \ \  V  " ]

The result follows immediately from (5.2.1) and (5.2.7) if we place a condition on Xq in 
(5.2.15).

□

We will close this section with a corollary that illustrates the use of theorem 5.2.3 when 
the jump size distribution is exponential i.e. g(y^) = cxe~"̂ ,̂ 3̂ 1 > 0 , a> 0  and there is only 
one jump.

Corollary 5.2.4 Let as defined and evolving up to a fixed time u. Assume that there
is only one jump, it occurs at and that there are n points at ̂1X2 , where
0</i < 5j </„ <w. Let the jump size distribution be exponential i.e.
g{y )̂ = , 3̂ 1 > 0, a > 0. Then

{ a + i - ^  f -------------------------- ^ --------------------------------------------dp

. ,  , : L  , ,  ■

s  J - a .  r ( « - y + i )

(5.2.16)
Proof
As there is only one jump, the numerator of (5 .2.10) becomes

0 0 0
00
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Set g(y, )= ae  , then

= ae
r(n-y + l)

{ « +  + — -----

f r(n-y + l) (5.2.17)

where

-------------------------------------------------------- — -------------------------------------------------------------------------------------------- ~  Gamma
T { n - j  + \)

Setting v= 0 in (5.2.17), then the denominator of (5.2.10) becomes

„»-y

0 0 0

nn-J + l) j o
)P

1_g-«5(M-Sl)
( a + — -------------- V-*- r(w — y +1)

■dp

(5.2.18)
where

{a+
l - e -d(u-Si) .{a+Lt!^)P

T ( n - j  + \)
~ Gamma « - y  + 1 , {<%+ %  } '

The result follows immediately from (5.2.17) and (5.2.18).
□
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5.3 W here the num ber of claims in a fixed time interval is known

This section deals with the derivation of the Laplace transform of the distribution of 
intensity /I, assuming that the number of claims in a fixed time interval is known. We do 
not have any information about catastrophes and also the times of claim point occurrence. 
Therefore we will obtain the Laplace transform of the distribution of intensity A, by 
conditioning the number of claims between a time interval for which information is 
available.

Let us assume that the shot noise process is time homogeneous.

Lemma 5.3.1 Let and as defined. Let v > 0, 0< ^< 1, 0<n<r <oo and 
be fixed times. Then

E{e-'’̂ I ( N ^ - N ^  = (5.3.1)

Proof

= -N,^ = i ) e = (5.3.2)
i=0

The result follows immediately if we differentiate (5.3.2) n times w.r.t. 0 and set 6=0.
□

Corollary 5.3.2 Let W, and as defined and 0< 1. Then

Vx{N^-N,^ =/2) = ^ £ [{ ^ £ (^ - - " « |iV ,, ,A ,,)} |^ J .  (5.3.3)

Proof
The result follows immediately if we set v= 0 in (5.3.1).

□

Now let us derive the Laplace transform of the distribution of intensity .

Theorem 5.3.3 Let and A, as defined. Let v> 0, 0^  1 and be fixed times.
Then
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E{e-''^-1;̂ ,. -  N, = n) =  — -------- (5.3.4)

Proof
E{e = n) can be written as

(5.3.5)

The result follows from (5.3.1) and (5.3.3).
□

We will close this section with a corollary that illustrates the use of theorem 5.3.3 when 
the jump size distribution is exponential i.e. g(y) = y > 0 , a > 0  and there is only
one claim in a fixed time interval.

Corollary 5.3.4 Let Nf and as defined. Let v> 0, 0< 1 and be fixed times.
Assume that there is only one claim between the interval (f,, /j) , i G = 1 Let
the jump size distribution be exponential i.e. g(y) = 0, a >  0. Assuming that
we know the Laplace transform of the distribution of then

E(e-^^-N,^-N,^=l) =

In
( t 1 >
( v - - ^ e  * + a+ — ccfU l-e*) ( v - - ^ e  * + a+ —

_3L

(&Z+1)' ( K+ a)e'*
<

â(,Sa+ l)(v+ a)e~* ( v+ a)e'* S ( v+ a)e'*

-1'

(âa+iy ûb“* â(Sa+l)œ'‘' ae * ae'^
.

op
ScH-1

(5.3.6)

where //i(v) denotes the Laplace transform of the distribution of ,

and s = t^ - ty

144



Proof
From (2.1.12),

 ̂ (v+a)e-«'=-« ^

_ g-fl+( g -X ':-',)g -4  X v--‘T)g"^'‘~'‘* +
‘ (v + a )e -« '-«  )

 ̂ (v+a)e-«'-'-> ^
b

= Ke*''(a-6')^<' 

where

/j — _____  A r_ a[«*fay-*2-'i>

(v+a)e-'"»-'-> 
a/cjl-e"*"'"''’}  ̂ (Ja+l){l-g-'^''-'''}
^v+a)e''^'=''‘’ v+ a)e‘ '*̂'’‘'‘>

Using MAPLE, expanding (5.3.7) with respect to 6 without a constant K then

(5.3.7)

+ a + i

(5.3.8)

I -c+(lna)a  ̂ 1 -2c^g -  + 2(ln a)ca  ̂+ bĉ  -  26c(lng)g+6(ln  ̂q)o  ̂  ̂ 1 ^2+1 g _  + - e  —  + -  e I

]_. *b.,^-2 c^a -c ’ +2(lna)ca^+fcc^-2fcc(lna)a+fc(ln^a)fl^ . 1 ,.;,*>i«t-c+ (lna)a . 1 , ,
2 c"a* 2 c'a 6 ^
 ̂1 -3c*a- 6c'a'-2c' +6(lna)c'a'+6ftc'a + The* -  126c'(lna)a' - 3fec’(lna)a+6&c(ln' a)a’ -feV + 3fcV(lna)a- 3&'c(ln' a)a' +ft'(ln’a)a’
6 c'a'

1 -'ic*a-6(?ef -2c* +6(lno)c*flf* -¥6b(?a-¥2bc*-126<f(Ino)aP - 36<̂ (lna)o+6&c(ln̂  a)a(’ - ĉ* +36̂ ĉ (lno)a-36*c(ln* a)a* +6'(In' a)o*
c V

1, 1 Jha -2ĉ o-c*+2(lno)cai*+6t?*+36c*-2ic(lna)+i(ln*a)fl* 1 t̂aa.-c+(lna)o 1 ;*»« 6A. 1 ,aj*“
  6

+ 0 (^ ')

(5.3.9)
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where
A = -lAc^a^ -  6c’ +1 \bc  ̂-  66’ĉ  +6V  + 24(lna)c^a^ - %ĉ a -  llc^a^ + lAbc^a + 36bc^a  ̂-  126’c'*a 
+/>̂ (ln̂  a)a* -12bc^(]na)a  ̂-24bc*a^(ina)-Sbc^(ina)a+36bc^(]n  ̂a)a* +366V(lna)a^ +\2b^c*(\na)a 
-366V(In^a)a^ -66V(ln^a)a^ + 126^c(ln^a)a^ - 46^c^(lncf)a + 66^ c ^ ( V - 4 6 ^ c ( l n ^ .

Therefore, from (5.3.9) and = 1, the numerator of (5.3.4) becomes

= £ [{ ^ K e ‘^ a - ^ ) ^ } | ^ J  = £
înâ - c  + (Ina)a ^ ^

J <5( v+ a)c‘*
6

ĉ cr

(5.3.10)

Substitute (5.3.8) into (5.3.10) and put s = t2 ~t^ then

—

ap !-«•*  ̂ ap In
(v-^e-*+a+-

âa+l ( v+ a)«‘* âiv+a)e-* (Sa+IŸ ( y+ a)e"* ( y+ a)e'* S ( v+ a)«‘*

= e
ap

£ i- '
l-e**  ̂ ap (v_l)«-*+a + t

&

In
I 1 Sa* 1 {v*a)e~* S(,v*à)e'* (<&%*!)' ( v * a ) ^ (v+a)«-* S (v+a)«-*

(5.3.11)

Since we know the Laplace transform of the distribution of we have

2  
Ô= e

( V - -^ e  *  +  a +

(v + a)c  *

( i + c - y )

ap
Sa+l

ap
(Sa+iy

-In
oryo(l-e"*) ( +  « -!--

-1

1 jyc)
( v+ a )e “*

>
v + a )e"* ( y 4- a )e ”*

(5.3.12)

where Hi(v) denotes the Laplace transform of the distribution of 

/?<■>=
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Setting v= 0 in (5.3.12), then the denominator of (5.3.4) becomes

d

-e~^<

1 -, 
^ 8  5^

ae- &

ap
<Sat+l

I n
ap (l-e '* )

- i '

(fe + i) ' a e ~ ^ 0 { 5 a - \ - \ ) a e ~ ^ a e  *

, 1

\  J ■

The result follows immediately from (5.3.12) and (5.3.13).

(5.3.13)

□
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6. Conclusions

As a claim intensity function for doubly stochastic Poisson process, we have examined the 
shot noise process. We have looked at doubly stochastic Poisson process incorporating 
the shot noise process as its intensity for the claim arrival process for catastrophic events.

We have derived pricing formulae for stop-loss reinsurance contracts for catastrophic 
events and for catastrophe insurance derivatives applying doubly stochastic Poisson 
process incorporating the shot noise process as its intensity. We have also presented 
pricing formulae for stop-loss reinsurance contracts for catastrophic events using the 
Kalman-Bucy filter. For these pricing models, it has been assumed that there are no 
arbitrage opportunities in the market. This has been achieved by using an equivalent 
martingale probability measure via the Esscher transform.

Having established the pricing models, it has turned out two estimations, i.e. estimation of 
the parameters of the claim intensity and estimation of the distribution of claim intensity 
were essential. We have shown how to estimate the parameters of the claim intensity 
using likelihood function. For estimation of the distribution of claim intensity, we have 
employed state estimation, one of which was by the Kalman-Bucy filter.
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Appendix

1. The calculations and S-Plus routine for example 3.4.1

> an
[1] 0.00011628 0.00048266 0.00142250 0.00333550 0.00661500 0.01152300 
[7] 0.01808600 0.02604500 0.03488100 0.04390000 0.05234900 0.05953700 

[13] 0.06493200 0.06821400 0.06929000 0.06827300 0.06543400 0.06114800 
[19] 0.05583100 0.04989800 0.04372300 0.03761600 0.03181500 0.02648400 
[25] 0.02172000 0.01756700 0.01402300 0.01105600 0.00861660 0.00664190 
[31] 0.00506670 0.00382720 0.00286390 0.00212410 0.00156210 0.00113960 
[37] 0.00082497 0.00059282 0.00042301 0.00029981 0.00021112

> sum(an)
[1] 0.9995107

> 0.9995107+0.000014982 
[1] 0.9995257

>n
[1]41

> g l
[1]1

> betal 

[1]1

> b l (Retention limit)
[1] 0.00 5.00 10.00 16.61 20.00 25.00 30.00 33.22 

>b2
fiinction(bl)

{
zl <- l:n
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for(i in l:n) {
al <- (gl * i) + 1
aal <-1 - pgamma(bl, al)
aa2 <-1 - pgamma(bl, (al -1))
zl[i] <- an[i] * (((aal * (al - l))/betal) - (bl * aa2))

}
retum(sum(zl))

}

> b2(b 1 [i]) (Reinsurance premium)
[1] 16.58403 11.61916 7.06779 2.833487 1.587005 0.595824 0.1951147 0.0886971
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2. The calculations and S-Plus routine for example 3.4.2

> an
[1] 0.00011628 0.00048266 0.00142250 0.00333550 0.00661500 0.01152300 
[7] 0.01808600 0.02604500 0.03488100 0.04390000 0.05234900 0.05953700 

[13] 0.06493200 0.06821400 0.06929000 0.06827300 0.06543400 0.06114800 
[19] 0.05583100 0.04989800 0.04372300 0.03761600 0.03181500 0.02648400 
[25] 0.02172000 0.01756700 0.01402300 0.01105600 0.00861660 0.00664190 
[31] 0.00506670 0.00382720 0.00286390 0.00212410 0.00156210 0.00113960 
[37] 0.00082497 0.00059282 0.00042301 0.00029981 0.00021112

> sum(an)
[1] 0.9995107

> 0.9995107+0.000014982 
[1] 0.9995257

>n
[1]41

> g l
[1]1

> betal 

[1]1

> b l
[1] 0.00 5.00 10.00 16.61 20.00 25.00 30.00 33.22 

>b2
fiinction(bl)

{
zl <- l:n 
for(i in 1 :n) {

al <- (gl * i) + 1
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aal <-1 - pgamma(bl, al)
aa2 <-1 - pgamma(bl, (al -1))
zip] <- anp] * (((aal * (al - l))/betal) - (bl * aa2))

}
retum(sum(zl))

}

>b3
function(bl)

(
zl < l:n 
for(i in l:n) {

al <- (gl * i)
zip] <- (1/bl) * anp] * (al/betal)

}
retum(sum(zl))

}

>b3(bl[4])
[1] 0.9984363

>bb2[8]<-b2(bl[8])/bl[4]
>bb2[8]
[1] 0.005339982

> flitu<-25000*(b3(bl[4])-bb2[8]) (Catastrophe futures price)
> fiitu
[1] 24827.41
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3. The calculations and S~Plus routine for example 3.4.3

> g l
[1]1

> betal 

[1]1

> bl (Retention limit)
[1] 25.00

>b2
function(bl)

{
zl < l:n
for(i in l:n) {

al <- (gl * i) + 1
aal <-1 - pgamma(bl, al)
aa2 <-1 - pgamma(bl, (al -1))
zl[i] < an[i] * (((aal * (al - l))/betal) - (bl * aa2))

}
retum(sum(zl))

3.1 ^  = 1.0 and y* = —0.1

> an
[1] 0.00022918 0.00090937 0.00256150 0.00574030 0.01087900 0.01810700 
[7] 0.02715300 0.03735600 0.04779100 0.05745400 0.06543800 0.07108200 

[13] 0.07403700 0.07427900 0.07205100 0.06779100 0.06204000 0.05535700 
[19] 0.04825800 0.04117900 0.03444900 0.02829500 0.02284600 0.01815500 
[25] 0.01421400 0.01097400 0.00836150 0.00629300 0.00468130 0.00344420 
[31] 0.00250780 0.00180800 0.00129130 0.00091405 0.00064155 0.00044666 
[37] 0.00030858 0.00021162
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> sum(an)
[1] 0.9995349

> 0.9995349+0.000030886 
[1] 0.9995658

> n
[1]38

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 0.3544252

3.2 ^  —1.1 and y* — "0.1

> an
[1] 0.00011628 0.00048266 0.00142250 0.00333550 0.00661500 0.01152300 
[7] 0.01808600 0.02604500 0.03488100 0.04390000 0.05234900 0.05953700 

[13] 0.06493200 0.06821400 0.06929000 0.06827300 0.06543400 0.06114800 
[19] 0.05583100 0.04989800 0.04372300 0.03761600 0.03181500 0.02648400 
[25] 0.02172000 0.01756700 0.01402300 0.01105600 0.00861660 0.00664190 
[31] 0.00506670 0.00382720 0.00286390 0.00212410 0.00156210 0.00113960 
[37] 0.00082497 0.00059282 0.00042301 0.00029981 0.00021112

> sum(an)
[1] 0.9995107

> 0.9995107+0.000014982 
[1] 0.9995257

> n
[1]41

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 0.595824
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3.3 ^  —1.2 and y* — —0.1

> an
[1] 0.000060714 0.00026207 0.00080323 0.001959 0.0040414 0.0073238 
[7] 0.011959 0.017919 0.02497 0.032703 0.040582 0.048034

[13] 0.054522 0.059616 0.063031 0.064647 0.064496 0.062741
[19] 0.059636 0.055488 0.050619 0.04534 0.039926 0.034604
[25] 0.02955 0.024885 0.020684 0.016981 0.013781 0.011062
[31] 0.0087872 0.006912 0.0053864 0.0041604 0.0031864 0.0024208 
[37] 0.0018251 0.0013659 0.0010151 0.00074928 0.00054953 0.00040055 
[43] 0.00029023 0.00020909

> sum(an)
[1] 0.9994842

> 0.9994842+0.000007524 
[1] 0.9994917

> n
[1]44

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 0.9299355

3.4 ^  = 1.3 and y* = —0.1

> an
[1] 3.2563e-05 1.4545e-04 4.6138e-04 1.1647e-03 2.4871e-03 4.6660e-03 
[7] 7.8881e-03 1.2237e-02 1.7657e-02 2.3946e-02 3.0773e-02 3.7721e-02 

[13] 4.4343e-02 5.0218e-02 5.4993e-02 5.8422e-02 6.0375e-02 6.0839e-02 
[19] 5.9905e-02 5.7742e-02 5.4570e-02 5.0639e-02 4.6199e-02 4.1485e-02 
[25] 3.6704e-02 3.2025e-02 2.7581e-02 2.3463e-02 1.9730e-02 1.6410e-02 
[31] 1.3508e-02 l.lOlOe-02 8.8914e-03 7.1168e-03 5.6485e-03 4.4472e-03 
[37] 3.4746e-03 2.6949e-03 2.0755e-03 1.5878e-03 1.2069e-03 9.1174e-04 
[43] 6.8468e-04 5.1125e-04 3.7967e-04 2.8047e-04 2.0613e-04
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> sum(an)
[1] 0.9994578

> 0.9994578+0.0000039001 
[1] 0.9994617

>n
[1]47

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 1.366049

3.5 ^  = 1.4 and y* = —0.1

> an
[1] 1.7904e-05 8.2427e-05 2.6951e-04 7.0137e-04 1.5442e-03 2.9869e-03 
[7] 5.2068e-03 8.3297e-03 1.2395e-02 1.7337e-02 2.2978e-02 2.9052e-02 

[13] 3.5228e-02 4.1152e-02 4.6489e-02 5.0948e-02 5.4318e-02 5.6470e-02 
[19] 5.7367e-02 5.7050e-02 5.5630e-02 5.3264e-02 5.0141e-02 4.6459e-02 
[25] 4.2415e-02 3.8189e-02 3.3939e-02 2.9794e-02 2.5855e-02 2.2192e-02 
[31] 1.8852e-02 1.5859e-02 1.3217e-02 1.0918e-02 8.9433e-03 7.2672e-03 
[37] 5.8601e-03 4.6910e-03 3.7289e-03 2.9444e-03 2.3100e-03 1.8012e-03 
[43] 1.3961e-03 1.0761e-03 8.2483e-04 6.2893e-04 4.7714e-04 3.6022e-04 
[49] 2.7067e-04 2.0245e-04

> sum(an)
[1] 0.9994294

> 0.9994294+0.0000020808 
[1] 0.9994315

>n
[1]50
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> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 1.90885

3.6 ^  = 1.5 and *̂ = —0.1

> an
[1] 1.0075e-05 4.7649e-05 1.6006e-04 4.2797e-04 9.6818e-04 1.9245e-03 
[7] 3.4476e-03 5.6683e-03 8.6694e-03 1.2463e-02 1.6980e-02 2.2069e-02 
[13] 2.7509e-02 3.3037e-02 3.8370e-02 4.3233e-02 4.7390e-02 5.0657e-02 
[19] 5.2913e-02 5.4108e-02 5.4253e-02 5.3416e-02 5.1708e-02 4.9270e-02 
[25] 4.6258e-02 4.2832e-02 3.9147e-02 3.5344e-02 3.1543e-02 2.7846e-02 
[31] 2.4329e-02 2.1049e-02 1.8043e-02 1.5330e-02 1.2916e-02 1.0796e-02 
[37] 8.9543e-03 7.3729e-03 6.0286e-03 4.8965e-03 3.9516e-03 3.1694e-03 
[43] 2.5272e-03 2.0036e-03 1.5799e-03 1.2393e-03 9.6719e-04 7.5116e-04 
[49] 5.8065e-04 4.4681e-04 3.4231e-04 2.6115e-04 1.9841e-04

> sum(an)
[1] 0.9994037
> 0.9994037+0.00000114 
[1] 0.9994048

> n
[1]53

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 2.558786

3.7 = —0.0 and ^  = 1.1

> an
[1] 0.00028698 0.00111750 0.00309080 0.00680370 0.01267100 0.02073400 
[7] 0.03057600 0.04138100 0.05209800 0.06165000 0.06913600 0.07396100 
[13] 0.07588700 0.07501500 0.07171100 0.066508000.06000800 0.05279800 
[19] 0.04539500 0.03821000 0.03153600 0.02555800 0.02036600 0.01597400 
[25] 0.01234500 0.00940970 0.00707950 0.00526160 0.00386560 0.00280920
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[31] 0.00202050 0.00143910 0.00101560 0.00071035 0.00049272 0.00033903 
[37] 0.00023151

> sum(an)
[1] 0.9994914

> 0.9994914+0.000039944 
[1] 0.9995313

>n
[1]37

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 0.3029752

3.8 /  = -0 .2  and 6̂  = 11

> an
[1] 0.00003774 0.00016795 0.00053041 0.00133230 0.00282920 0.00527530 
[7] 0.00885960 0.01364800 0.01954700 0.02630100 0.03352200 0.04074100 

[13] 0.04746900 0.05326600 0.05778100 0.06078700 0.06219300 0.06203100 
[19] 0.06044100 0.05763600 0.05387700 0.04944100 0.04459700 0.03958700 
[25] 0.03461700 0.02984700 0.02539700 0.02134300 0.01772600 0.01456000 
[31] 0.01183400 0.00952320 0.00759140 0.00599730 0.00469750 0.00364950 
[37] 0.00281330 0.00215260 0.00163540 0.00123400 0.00092503 0.00068909 
[43] 0.00051025 0.00037564 0.00027501 0.00020026

> sum(an)
[1] 0.999491

> 0.999491+0.0000045336 
[1] 0.9994955

>n
[1]46
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> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 1.207256

3.9 /  = -0 .3  and ^  = 1.1

> an
[1] 8.8706e-06 4.2635e-05 1.4534e-04 3.9384e-04 9.0186e-04 1.8125e-03 
[7] 3.2798e-03 5.4414e-03 8.3904e-03 1.2151e-02 1.6661e-02 2.1781e-02 

[13] 2.7289e-02 3.2918e-02 3.8376e-02 4.3379e-02 4.7676e-02 5.1069e-02
[19] 5.3429e-02 5.4696e-02 5.4878e-02 5.4042e-02 5.2302e-02 4.9803e-02
[25] 4.6710e-02 4.3190e-02 3.9404e-02 3.5500e-02 3.1604e-02 2.7822e-02
[31] 2.4233e-02 2.0895e-02 1.7845e-02 1.5101e-02 1.2669e-02 1.0541e-02
[37] 8.7015e-03 7.1288e-03 5.7982e-03 4.6835e-03 3.7580e-03 2.9963e-03
[43] 2.3744e-03 1.8705e-03 1.4652e-03 1.1415e-03 8.8471e-04 6.8219e-04
[49] 5.2346e-04 3.9978e-04 3.0393e-04 2.3005e-04

> sum(an)
[1] 0.9993227

> 0.9993227+0.00000098605 
[1] 0.9993237

>n
[1]52

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 2.512553

3.10 = -0 .4  and = 1.1

> an
[1] 1.2588e-06 6.6004e-06 2.4529e-05 7.2415e-05 1.8055e-04 3.9485e-04 
[7] 7.7702e-04 1.4013e-03 2.3477e-03 3.6922e-03 5.4965e-03 7.7967e-03 

[13] 1.0596e-02 1.3860e-02 1.7515e-02 2.1454e-02 2.5543e-02 2.9632e-02 
[19] 3.3564e-02 3.7191e-02 4.0378e-02 4.3018e-02 4.5029e-02 4.6366e-02
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[25] 4.7013e-02 4.6986e-02 4.6325e-02 4.5092e-02 4.3365e-02 4.1230e-02 
[31] 3.8779e-02 3.6100e-02 3.3280e-02 3.0397e-02 2.7520e-02 2.4705e-02 
[37] 2.2000e-02 1.9442e-02 1.7054e-02 1.4854e-02 1.2851e-02 1.1046e-02 
[43] 9.4354e-03 8.0113e-03 6.7629e-03 5.6774e-03 4.7406e-03 3.9379e-03 
[49] 3.2549e-03 2.6773e-03 2.1920e-03 1.7866e-03 1.4499e-03 1.1716e-03 
[55] 9.4289e-04 7.5582e-04 6.0354e-04 4.8014e-04 3.8059e-04 3.0063e-04 
[61] 2.3665e-04 1.8567e-04

> sum(an)
[1] 0.9993604

> 0.9993604+0.00000012815 
[1] 0.9993605

>n
[1]62

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 5.364622

3.11 /  = -0 .5  and ^  = 1.1

> an
[1] 7.3820e-08 4.2887e-07 1.7641e-06 5.7589e-06 1.5863e-05 3.8298e-05 
[7] 8.3138e-05 1.6528e-04 3.0502e-04 5.2813e-04 8.6503e-04 1.3493e-03 

[13] 2.0155e-03 2.8960e-03 4.0184e-03 5.4021e-03 7.0559e-03 8.9760e-03 
[19] 1.1145e-02 1.353le-02 1.6092e-02 1.8771e-02 2.1508e-02 2.4233e-02 
[25] 2.6879e-02 2.9377e-02 3.1664e-02 3.3686e-02 3.5398e-02 3.6764e-02 
[31] 3.7762e-02 3.8381e-02 3.8623e-02 3.8498e-02 3.8027e-02 3.7238e-02 
[37] 3.6166e-02 3.4847e-02 3.3323e-02 3.1636e-02 2.9825e-02 2.793le-02 
[43] 2.5989e-02 2.4033e-02 2.2093e-02 2.0192e-02 1.8354e-02 1.6594e-02 
[49] 1.4926e-02 1.3359e-02 1.1899e-02 1.0549e-02 9.3105e-03 8.1815e-03 
[55] 7.1590e-03 6.2387e-03 5.4151e-03 4.6821e-03 4.0332e-03 3.4616e-03 
[61] 2.0605e-03 2.5232e-03 2.1434e-03 1.8148e-03 1.5317e-03 1.2888e-03 
[67] 1.081 le-03 9.0428e-04 7.5420e-04 6.2728e-04 5.2029e-04 4.3041e-04
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[73] 3.5514e-04 2.9229e-04 2.3997e-04 1.9653e-04 1.6058e-04 1.3091e-04 
[79] 1.0647e-04 8.6410e-05 6.9975e-05 5.6547e-05 4.5601e-05 3.6699e-05 
[85] 2.9477e-05 2.3629e-05 1.8906e-05 1.5099e-05 1.2036e-05 9.5773e-06 
[91] 7.6075e-06 6.0323e-06 4.7753e-06 3.7738e-06 2.9776e-06 2.3456e-06 
[97] 1.8448e-06 1.4487e-06 1.1359e-06

> sum(an)
[1] 0.9990944

> 0.9990944+0.0000000067754 
[1] 0.9990944

>n 
[1] 99

> b2(b 1 [ 1 ]) (Reinsurance premium)
[1] 11.65184
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4. The calculations and S-Plus routine for example 4.2.1

4.1 Simulation

>ttt<-rexp(4,l)
> ttt
[1] 0.7834462 0.4673357 1.5443291 0.9398078

> ttt<-round(ttt,3)
> ttt
[1] 0.783 0.467 1.544 0.940

> ttt<-array(ttt)
> ttt

[1] [2] [3] [4]
0.783 0.467 1.544 0.94

> tttt<-cumsum(ttt)
[1] [2] [3] [4]

0.783 1.25 2.794 3.734

> tttm<-sum(ttt)
> tttm 
[1] 3.734

> ti<-ttt*5000 
>ti

[1] [2] [3] [4]
3915 2335 7720 4700

> tim<-cumsum(ti)
> tim

[1] [2] [3] [4]
3915 6250 13970 18670
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> yy<-rexp(4,0.01)
>yy
[1] 100.3073 323.7813 114.8395 119.3889

> yy<-array(yy)
>yy

[1] [2] [3] [4]
100.3073 323.7813 114.8395 119.3889

> (yy[i]+yy[2]+yy[3])/3 
[1] 179.6427

> yy0<-1000 
>dd<-0.1

>ijl<-c(0:ti[l])
> BB<-((l-exp(-dd/5000))/dd)
> AAO<-exp(-dd*ij 1/5000)
> intensO<-yyO*AAO*BB
> NNO<-rpois(ti[l],intensO)

>ij2<-c(0:ti[2])
> yyl<-yyO*exp(-dd*ttt[l])+yy[l]
> AAl <-exp(-dd*jj2/5000)
> intensl<-yyl*AAl*BB
> NNK-rpois(ti[2],intensl)

>ij3<-c(0:ti[3])
> yy2<-yyl*exp(-dd*ttt[2])+yy[2]
> AA2<-exp(-dd*ij3/5000)
> intens2<-yy2*AA2*BB
> NN2<-rpois(ti[3],intens2)

>jj4<-c(0:ti[4])
> yy3<-yy2*exp(-dd*ttt[3])+yy[3]
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> AA3<-exp(-dd*ij4/5000)
> intens3 <-yy3 *AA3 *BB
> NN3<-rpois(ti[4],intens3)

> intensi<-c(intensO,intensl ,intens2,intens3)

> NNn<-c(NN0,NNl,NN2,NN3)

> Aa<-sum(NNn)
> Aa 
[1] 845

> Bb<-sum(NNn^2)
>Bb
[1] 1001

> XX<-(Bb-Aa)/2
>xx
[1]78

> YY<-(2*Aa-Bb)
> YY 
[1] 689

> XX*2+YY
[1] 845

> Aaa<-order(NNn)

^ Hh'^-l !(Aa-XX)
> for (i in l:(Aa-XX)) {Hh[i]<-Aaa[tim[4]+l-i]} 

>gg<-l:XX
> for (i in 1 :XX) {gg[i]<-Hh[i]-l}
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> ff<-(XX+l):(XX+YY)
> for (i in (XX+1):(XX+YY)) {flP[i-6]<-Hh[i]-0.5}

>Hhh<-l:6
> for (i in 1:6) {Hhh[i]<-Hh[i]}
> kk<-c(ff,gg,Hhh)

>AAa2<-l:3324
> for (i in 1:3324) {AAa2[i]<-Aaa[i+14974]}

> AAa3<-l:361
> for (i in 1:361) {AAa3[i]<-Aaa[i+18298]}

> AAa4<-l:ll
> for (i in 1:11) {AAa4[i]<-Aaa[i+18659]}

>u2<-l:3324
> for (i in 1:3324) {u2[i]<-AAa2[i]-0.5}

> u3<-l:361
> for (i in 1:361) {u3[i]<-AAa3[i]-l}

>u4< -l:ll
> for (i in 1:11) {u4[i]<-AAa4[i]-l}

>uu4<-l:ll
> for (i in 1:11) {uu4[i]<-AAa4[i]-0.5}

> kk<-c(u2,u3,AAa3,u4,uu4,AAa4)

> tpo<-sort(kk)
> tpoi<-tpo/5000 
>tpoi

[I] 0.0001 0.0007 0.0009 0.0047 0.0055 0.0061 0.0101 0.0105 0.0106 0.0108
[II] 0.0121 0.0135 0.0143 0.0153 0.0159 0.0165 0.0179 0.0193 0.0201 0.0205
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[21] 0.0223 0.0239 0.0255 0.0257 0.0265 0.0277 0.0283 0.0287 0.0291 0.0301 
[31] 0.0309 0.0316 0.0318 0.0319 0.0322 0.0324 0.0333 0.0343 0.0347 0.0349 
[41] 0.0351 0.0353 0.0367 0.0369 0.0383 0.0387 0.0412 0.0414 0.0421 0.0423 
[51] 0.0432 0.0434 0.0447 0.0465 0.0493 0.0509 0.0510 0.0512 0.0513 0.0527 
[61] 0.0543 0.0551 0.0575 0.0593 0.0601 0.0627 0.0645 0.0647 0.0671 0.0675 
[71] 0.0677 0.0709 0.0711 0.0723 0.0751 0.0752 0.0754 0.0756 0.0758 0.0767 
[81] 0.0771 0.0812 0.0814 0.0851 0.0857 0.0891 0.0895 0.0907 0.0909 0.0927 
[91] 0.0929 0.0941 0.0959 0.0965 0.0967 0.0969 0.0973 0.0975 0.0979 0.0985 

[101] 0.0987 0.1013 0.1021 0.1025 0.1033 0.1041 0.1051 0.1053 0.1071 0.1072
[111] 0.1074 0.1075 0.1085 0.1089 0.1091 0.1093 0.1097 0.1101 0.1106 0.1108 
[121] 0.1110 0.1112 0.1173 0.1190 0.1192 0.1197 0.1201 0.1205 0.1207 0.1229 
[131] 0.1247 0.1249 0.1251 0.1253 0.1255 0.1261 0.1267 0.1287 0.1295 0.1297 
[141] 0.1305 0.1309 0.1321 0.1323 0.1329 0.1330 0.1332 0.1344 0.1346 0.1347 
[151] 0.1377 0.1409 0.1427 0.1433 0.1442 0.1444 0.1445 0.1457 0.1485 0.1493 
[161] 0.1505 0.1557 0.1567 0.1585 0.1623 0.1635 0.1645 0.1647 0.1649 0.1671 
[171] 0.1677 0.1699 0.1729 0.1733 0.1746 0.1748 0.1751 0.1760 0.1762 0.1765 
[181] 0.1767 0.1781 0.1795 0.1797 0.1807 0.1835 0.1853 0.1857 0.1861 0.1867 
[191] 0.1875 0.1883 0.1888 0.1890 0.1899 0.1925 0.1957 0.1965 0.1971 0.1974 
[201] 0.1976 0.1981 0.1989 0.1997 0.2001 0.2029 0.2031 0.2067 0.2082 0.2084 
[211] 0.2084 0.2086 0.2101 0.2121 0.2129 0.2143 0.2157 0.2165 0.2167 0.2185 
[221] 0.2201 0.2210 0.2212 0.2219 0.2221 0.2235 0.2241 0.2243 0.2265 0.2317 
[231] 0.2327 0.2331 0.2341 0.2373 0.2383 0.2387 0.2393 0.2407 0.2409 0.2411 
[241] 0.2435 0.2445 0.2451 0.2461 0.2465 0.2489 0.2549 0.2578 0.2580 0.2593 
[251] 0.2605 0.2621 0.2623 0.2639 0.2655 0.2683 0.2685 0.2699 0.2703 0.2707 
[261] 0.2717 0.2728 0.2730 0.2737 0.2743 0.2747 0.2761 0.2763 0.2765 0.2783 
[271] 0.2785 0.2811 0.2821 0.2831 0.2843 0.2849 0.2853 0.2859 0.2863 0.2869 
[281] 0.2893 0.2919 0.2933 0.2941 0.2947 0.2963 0.2969 0.2980 0.2982 0.2983 
[291] 0.2989 0.3007 0.3013 0.3033 0.3039 0.3041 0.3053 0.3057 0.3064 0.3066 
[301] 0.3073 0.3095 0.3105 0.3157 0.3172 0.3174 0.3191 0.3197 0.3243 0.3245 
[311] 0.3255 0.3261 0.3271 0.3281 0.3287 0.3297 0.3319 0.3325 0.3331 0.3333 
[321] 0.3359 0.3361 0.3385 0.3386 0.3388 0.3391 0.3403 0.3407 0.3409 0.3413 
[331] 0.3433 0.3443 0.3444 0.3446 0.3451 0.3459 0.3462 0.3464 0.3483 0.3489 
[341] 0.3513 0.3516 0.3518 0.3527 0.3529 0.3531 0.3559 0.3567 0.3579 0.3583 
[351] 0.3596 0.3598 0.3603 0.3604 0.3606 0.3649 0.3681 0.3705 0.3713 0.3724 
[361] 0.3726 0.3729 0.3764 0.3766 0.3775 0.3787 0.3793 0.3795 0.3807 0.3818
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[371 0.3820 0.3847 0.3863 0.3865 0.3905 0.3907 0.3919 0.3927 0.3931 0.3944
[381 0.3946 0.3965 0.3967 0.3969 0.3979 0.3989 0.4013 0.4023 0.4041 0.4053
[391 0.4063 0.4069 0.4075 0.4077 0.4079 0.4081 0.4101 0.4103 0.4109 0.4123
[401 0.4127 0.4145 0.4181 0.4189 0.4193 0.4197 0.4203 0.4205 0.4213 0.4243
[411 0.4250 0.4252 0.4263 0.4285 0.4287 0.4311 0.4315 0.4329 0.4365 0.4367
[421 0.4377 0.4381 0.4385 0.4411 0.4413 0.4417 0.4419 0.4421 0.4433 0.4453
[431 0.4471 0.4473 0.4479 0.4501 0.4525 0.4531 0.4535 0.4555 0.4583 0.4585
[441 0.4593 0.4603 0.4647 0.4679 0.4681 0.4713 0.4723 0.4735 0.4737 0.4753
[451 0.4755 0.4763 0.4768 0.4770 0.4783 0.4797 0.4803 0.4811 0.4817 0.4829
[461 0.4835 0.4849 0.4887 0.4889 0.4891 0.4919 0.4921 0.4935 0.4957 0.4969
[471 0.4981 0.4983 0.5001 0.5015 0.5021 0.5029 0.5033 0.5041 0.5045 0.5055
[481 0.5061 0.5089 0.5117 0.5151 0.5171 0.5175 0.5181 0.5183 0.5209 0.5223
[491 0.5249 0.5253 0.5273 0.5281 0.5297 0.5303 0.5314 0.5316 0.5321 0.5325
[501 0.5341 0.5359 0.5361 0.5365 0.5387 0.5389 0.5397 0.5414 0.5416 0.5423
[511 0.5477 0.5480 0.5482 0.5485 0.5492 0.5494 0.5495 0.5519 0.5531 0.5537
[521 0.5539 0.5541 0.5548 0.5550 0.5561 0.5575 0.5585 0.5601 0.5604 0.5606
[531 0.5625 0.5627 0.5633 0.5641 0.5645 0.5653 0.5659 0.5673 0.5679 0.5683
[541 0.5701 0.5709 0.5713 0.5755 0.5759 0.5769 0.5771 0.5777 0.5781 0.5787
[551 0.5789 0.5815 0.5819 0.5829 0.5843 0.5849 0.5852 0.5854 0.5855 0.5887
[561 0.5891 0.5897 0.5911 0.5925 0.5931 0.5935 0.5943 0.5949 0.5971 0.5993
[571 0.5995 0.5999 0.6011 0.6015 0.6017 0.6019 0.6035 0.6037 0.6069 0.6077
[581 0.6089 0.6126 0.6128 0.6135 0.6139 0.6163 0.6165 0.6175 0.6197 0.6200
[591 0.6202 0.6217 0.6225 0.6227 0.6251 0.6257 0.6313 0.6321 0.6343 0.6359
[601 0.6361 0.6367 0.6375 0.6393 0.6397 0.6403 0.6415 0.6489 0.6491 0.6493
[611 0.6495 0.6505 0.6513 0.6515 0.6523 0.6525 0.6537 0.6541 0.6545 0.6549
[621 0.6565 0.6573 0.6579 0.6589 0.6601 0.6603 0.6621 0.6645 0.6661 0.6668
[631 0.6670 0.6671 0.6699 0.6719 0.6721 0.6732 0.6734 0.6735 0.6749 0.6841
[641 0.6855 0.6859 0.6873 0.6879 0.6881 0.6889 0.6893 0.6913 0.6929 0.6937
[651 0.6945 0.6947 0.6949 0.6951 0.6963 0.6973 0.6979 0.6983 0.6997 0.6999
[661 0.7007 0.7009 0.7015 0.7039 0.7067 0.7071 0.7077 0.7079 0.7081 0.7083
[671 0.7099 0.7105 0.7135 0.7143 0.7151 0.7171 0.7173 0.7175 0.7177 0.7179
[681 0.7225 0.7227 0.7257 0.7265 0.7273 0.7283 0.7289 0.7311 0.7327 0.7347
[691 0.7349 0.7367 0.7377 0.7384 0.7386 0.7390 0.7392 0.7433 0.7437 0.7439
[701 0.7461 0.7475 0.7480 0.7482 0.7485 0.7496 0.7498 0.7502 0.7504 0.7508
[711 0.7510 0.7511 0.7541 0.7553 0.7555 0.7573 0.7581 0.7605 0.7606 0.7608
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[721] 0.7609 0.7627 0.7628 0.7630 0.7641 0.7680 0.7682 0.7700 0.7702 0.7705 
[731] 0.7706 0.7708 0.7713 0.7715 0.7725 0.7731 0.7737 0.7739 0.7773 0.7787 
[741] 0.7797 0.7811 0.7823 0.7825+ 0.7843 0.7849 0.7851 0.7855 0.7857 0.7859 
[751] 0.7867 0.7871 0.7887 0.7895 0.7903 0.7905 0.7921 0.7933 0.7937 0.7949 
[761] 0.7957 0.7967 0.7973 0.7993 0.7999 0.8009 0.8011 0.8013 0.8021 0.8039 
[771] 0.8045 0.8047 0.8069 0.8081 0.8085 0.8119 0.8151 0.8161 0.8164 0.8166 
[781] 0.8166 0.8168 0.8205 0.8215 0.8225 0.8241 0.8245 0.8267 0.8279 0.8288 
[791] 0.8290 0.8303 0.8305 0.8307 0.8310 0.8312 0.8317 0.8325 0.8359 0.8379 
[801] 0.8383 0.8391 0.8393 0.8397 0.8403 0.8409 0.8417 0.8431 0.8433 0.8439 
[811] 0.8441 0.8449 0.8453 0.8477 0.8483 0.8485 0.8489 0.8493 0.8503 0.8505 
[821] 0.8513 0.8517 0.8527 0.8535 0.8536 0.8538 0.8565 0.8569 0.8573 0.8594 
[831] 0.8596 0.8597 0.8659 0.8665 0.8667 0.8695 0.8737 0.8739 0.8745 0.8751 
[841] 0.8753 0.8761 0.8767 0.8773 0.8791 0.8793 0.8816 0.8818 0.8821 0.8826 
[851] 0.8828 0.8829 0.8835 0.8911 0.8923 0.8959 0.8965 0.8967 0.8971 0.8977 
[861] 0.8979 0.8983 0.8989 0.8997 0.9007 0.9017 0.9020 0.9022 0.9033 0.9041 
[871] 0.9073 0.9085 0.9093 0.9103 0.9115 0.9117 0.9119 0.9125 0.9135 0.9147 
[881] 0.9161 0.9163 0.9191 0.9207 0.9211 0.9221 0.9231 0.9235 0.9241 0.9247 
[891] 0.9255 0.9257 0.9259 0.9273 0.9289 0.9290 0.9292 0.9297 0.9306 0.9308 
[901] 0.9319 0.9327 0.9333 0.9335 0.9359 0.9363 0.9367 0.9368 0.9370 0.9373 
[911] 0.9380 0.9382 0.9405 0.9417 0.9421 0.9439 0.9451 0.9453 0.9459 0.9460 
[921] 0.9462 0.9471 0.9495 0.9505 0.9507 0.9515 0.9537 0.9553 0.9558 0.9560 
[931] 0.9569 0.9571 0.9585 0.9587 0.9609 0.9619 0.9622 0.9624 0.9629 0.9647 
[941] 0.9665 0.9667 0.9669 0.9675 0.9703 0.9717 0.9721 0.9731 0.9739 0.9751 
[951] 0.9767 0.9771 0.9795 0.9851 0.9873 0.9875 0.9885 0.9891 0.9895 0.9897 
[961] 0.9909 0.9917 0.9929 0.9945 0.9953 0.9959 0.9987 1.0015 1.0019 1.0037 
[971] 1.0062 1.0064 1.0065 1.0073 1.0101 1.0111 1.0127 1.0155 1.0185 1.0187 
[981] 1.0211 1.0214 1.0216 1.0235 1.0246 1.0248 1.0251 1.0255 1.0263 1.0271 
[991] 1.0275 1.0281 1.0315 1.0317 1.0325 1.0331 1.0341 1.0345 1.0347 1.0349 
[1001] 1.0369 1.0371 1.0379 1.0401 1.0403 1.0409 1.0415 1.0425 1.0427 1.0429 
[1011] 1.0437 1.0443 1.0451 1.0467 1.0497 1.0519 1.0521 1.0524 1.0526 1.0529 
[1021] 1.0539 1.0553 1.0555 1.0560 1.0562 1.0563 1.0567 1.0581 1.0591 1.0601 
[1031] 1.0607 1.0609 1.0611 1.0613 1.0623 1.0627 1.0637 1.0643 1.0663 1.0665 
[1041] 1.0669 1.0675 1.0681 1.0685 1.0693 1.0699 1.0733 1.0777 1.0783 1.0785

+ Note: = 744 and j, = 0.783.
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[1051 1.0795 1.0797 1.0805 1.
[1061 1.0877 1.0879 1.0891 1.
[1071 1.1007 1.1009 1.1023 1.
[1081 1.1091 1.1095 1.1101 1.
[1091 1.1179 1.1191 1.1197 1.
[1101 1.1227 1.1230 1.1232 1.
[1111 1.1303 1.1313 1.1325 1.
[1121 1.1391 1.1397 1.1433 1.
[1131 1.1557 1.1561 1.1563 1.
[1141 1.1653 1.1659 1.1661 1.
[1151 1.1743 1.1753 1.1763 1.
[1161 1.1873 1.1877 1.1889 1.
[1171 1.1961 1.1965 1.1971 1.
[1181 1.2047 1.2065 1.2077 1.
[1191 1.2161 1.2164 1.2166 1.
[1201 1.2213 1.2221 1.2225 1.
[1211 1.2303 1.2307 1.2309 1.
[1221: 1.2375 1.2389 1.2391 1.
[1231 1.2453 1.2455 1.2465 1.
[1241 1.2533 1.2536 1.2537 1.
[1251 1.2583 1.2586 1.2588 1.
[1261 1.2627 1.2631 1.2639 1.
[1271 1.2689 1.2699 1.2710 1.
[1281 1.2765 1.2771 1.2777 1.
[1291: 1.2847 1.2851 1.2897 1.
[1301 1.2991 1.2992 1.2994 1.
[1311 1.3062 1.3064 1.3067 1.
[1321 1.3133 1.3143 1.3155 1.
[1331 1.3307 1.3331 1.3333 1.
[1341 1.3392 1.3415 1.3423 1.
[1351 1.3470 1.3481 1.3491 1.
[1361 1.3531 1.3539 1.3563 1.
[1371 1.3608 1.3615 1.3617 1.

0825 1.0843 1.0845 1.0849 1.0865 1.0874 1.0876
0917 1.0931 1.0959 1.0968 1.0970 1.0981 1.0997
1033 1.1043 1.1049 1.1051 1.1067 1.1069 1.1071
1105 1.1107 1.1149 1.1151 1.1159 1.1165 1.1177
1199 1.1205 1.1207 1.1211 1.1213 1.1224 1.1226
1247 1.1249 1.1259 1.1261 1.1281 1.1287 1.1295
1329 1.1335 1.1339 1.1343 1.1371 1.1373 1.1385
1435 1.1445 1.1503 1.1506 1.1508 1.1525 1.1539
1565 1.1579 1.1593 1.1611 1.1621 1.1625 1.1645
1667 1.1679 1.1703 1.1713 1.1721 1.1729 1.1731
1777 1.1799 1.1801 1.1803 1.1805 1.1820 1.1822
1891 1.1902 1.1904 1.1909 1.1919 1.1921 1.1927
1975 1.1987 1.2003 1.2009 1.2011 1.2021 1.2043
2093 1.2105 1.2107 1.2127 1.2129 1.2141 1.2145
2170 1.2172 1.2173 1.2174 1.2176 1.2191 1.2205
2235 1.2268 1.2270 1.2280 1.2282 1.2292 1.2294
2320 1.2322 1.2333 1.2337 1.2343 1.2355 1.2371
2403 1.2405 1.2415 1.2420 1.2422 1.2445 1.2451
2481 1.2483+ 1.2501 1.2507 1.2511 1.2513 1.2531 
2538 1.2553 1.2557 1.2574 1.2576 1.2576 1.2578
2591 1.2595 1.2597 1.2599 1.2614 1.2616 1.2617
2643 1.2645 1.2647 1.2669 1.2677 1.2685 1.2687
2712 1.2713 1.2715 1.2719 1.2735 1.2751 1.2757
2783 1.2787 1.2793 1.2801 1.2807 1.2819 1.2823
2901 1.2927 1.2933 1.2947 1.2967 1.2975 1.2977
3039 1.3040 1.3042 1.3051 1.3055 1.3059 1.3061
3073 1.3076 1.3078 1.3115 1.3123 1.3127 1.3131
3167 1.3175 1.3185 1.3205 1.3271 1.3279 1.3283
3335 1.3347 1.3351 1.3359 1.3366 1.3368 1.3390
3425 1.3429 1.3449 1.3450 1.3452 1.3455 1.3468
3493 1.3494 1.3496 1.3503 1.3507 1.3517 1.3529
3581 1.3583 1.3587 1.3601 1.3603 1.3606 1.3607
3643 1.3646 1.3648 1.3665 1.3679 1.3687 1.3724

+ Note: j  = 1235 and s =1.25.
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1381 1.3726 1.3751 1.3753 1.3771 1.3781 1.3799 1.3801 1.3803 1.3819 1.3835
1391 1.3844 1.3846 1.3867 1.3880 1.3881 1.3882 1.3883 1.3887 1.3889 1.3891
1401 1.3893 1.3917 1.3921 1.3931 1.3935 1.3945 1.3951 1.3953 1.3973 1.3977
1411 1.3995 1.4006 1.4008 1.4025 1.4043 1.4047 1.4059 1.4091 1.4095 1.4098
1421 1.4100 1.4101 1.4107 1.4111 1.4119 1.4129 1.4139 1.4151 1.4179 1.4186
1431 1.4188 1.4201 1.4221 1.4249 1.4271 1.4275 1.4277 1.4309 1.4333 1.4334
1441 1.4336 1.4339 1.4343 1.4351 1.4359 1.4369 1.4371 1.4377 1.4385 1.4403
1451 1.4429 1.4431 1.4433 1.4435 1.4451 1.4463 1.4465 1.4469 1.4470 1.4472
1461 1.4495 1.4499 1.4509 1.4511 1.4527 1.4529 1.4547 1.4551 1.4553 1.4557
1471 1.4573 1.4593 1.4601 1.4609 1.4614 1.4616 1.4623 1.4625 1.4643 1.4647
1481: 1.4654 1.4655 1.4656 1.4657 1.4679 1.4689 1.4699 1.4723 1.4724 1.4726
1491: 1.4737 1.4743 1.4751 1.4781 1.4787 1.4799 1.4805 1.4807 1.4817 1.4819
1501 1.4825 1.4851 1.4855 1.4876 1.4878 1.4887 1.4912 1.4914 1.4919 1.4937
1511 1.4941 1.4945 1.4959 1.4979 1.4983 1.4987 1.5029 1.5033 1.5043 1.5063
1521 1.5081 1.5082 1.5083 1.5084 1.5090 1.5092 1.5099 1.5107 1.5119 1.5131
1531 1.5145 1.5155 1.5161 1.5163 1.5173 1.5179 1.5187 1.5195 1.5197 1.5199
1541 1.5203 1.5207 1.5211 1.5223 1.5225 1.5257 1.5263 1.5267 1.5291 1.5295
1551 1.5307 1.5315 1.5327 1.5333 1.5351 1.5352 1.5354 1.5357 1.5359 1.5367
1561 1.5377 1.5393 1.5395 1.5411 1.5429 1.5449 1.5451 1.5481 1.5492 1.5494
1571 1.5506 1.5508 1.5529 1.5543 1.5549 1.5553 1.5565 1.5589 1.5605 1.5607
1581: 1.5621 1.5635 1.5637 1.5639 1.5655 1.5667 1.5673 1.5685 1.5689 1.5713
1591: 1.5721 1.5731 1.5751 1.5759 1.5761 1.5768 1.5770 1.5771 1.5779 1.5786
1601 1.5788 1.5807 1.5809 1.5811 1.5821 1.5827 1.5845 1.5853 1.5863 1.5867
1611: 1.5869 1.5871 1.5873 1.5875 1.5887 1.5901 1.5903 1.5907 1.5913 1.5919
1621 1.5921 1.5923 1.5928 1.5930 1.5935 1.5957 1.5973 1.5989 1.5991 1.5999
1631 1.6004 1.6006 1.6007 1.6009 1.6019 1.6021 1.6029 1.6035 1.6049 1.6055
1641 1.6076 1.6078 1.6081 1.6083 1.6085 1.6087 1.6089 1.6097 1.6105 1.6107
1651 1.6113 1.6117 1.6123 1.6125 1.6129 1.6133 1.6158 1.6160 1.6161 1.6181
1661 1.6185 1.6203 1.6213 1.6214 1.6216 1.6221 1.6231 1.6235 1.6237 1.6239
1671 1.6243 1.6256 1.6258 1.6271 1.6273 1.6311 1.6313 1.6331 1.6339 1.6349
1681 1.6355 1.6359 1.6365 1.6373 1.6379 1.6397 1.6399 1.6405 1.6407 1.6413
1691 1.6419 1.6435 1.6456 1.6458 1.6469 1.6479 1.6497 1.6511 1.6519 1.6532
1701 1.6534 1.6539 1.6543 1.6553 1.6564 1.6566 1.6568 1.6570 1.6577 1.6599
1711 1.6605 1.6611 1.6617 1.6623 1.6635 1.6641 1.6643 1.6669 1.6689 1.6695
1721 1.6709 1.6713 1.6719 1.6759 1.6761 1.6767 1.6775 1.6777 1.6781 1.6797
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[1731 1.6804 1.6806 1.6815 1.6817 1.6823 1.6827 1.6835 1.6837 1.6841 1.6845
[1741 1.6853 1.6863 1.6865 1.6883 1.6891 1.6895 1.6909 1.6919 1.6929 1.6933
[1751 1.6937 1.6940 1.6942 1.6943 1.6971 1.6983 1.6995 1.7047 1.7048 1.7050
[1761 1.7057 1.7058 1.7060 1.7063 1.7069 1.7071 1.7075 1.7083 1.7085 1.7089
[1771 1.7093 1.7107 1.7109 1.7113 1.7129 1.7131 1.7139 1.7147 1.7149 1.7155
[1781 1.7165 1.7194 1.7196 1.7197 1.7202 1.7204 1.7215 1.7219 1.7231 1.7236
[1791 1.7238 1.7243 1.7249 1.7251 1.7253 1.7263 1.7283 1.7287 1.7299 1.7309
[1801 1.7323 1.7325 1.7333 1.7334 1.7336 1.7337 1.7343 1.7345 1.7363 1.7368
[1811 1.7370 1.7377 1.7385 1.7393 1.7404 1.7406 1.7415 1.7435 1.7439 1.7441
[1821 1.7443 1.7450 1.7452 1.7455 1.7457 1.7509 1.7517 1.7523 1.7525 1.7553
[1831 1.7555 1.7585 1.7589 1.7599 1.7607 1.7611 1.7613 1.7617 1.7619 1.7623
[1841 1.7635 1.7667 1.7681 1.7689 1.7695 1.7701 1.7711 1.7719 1.7727 1.7729
[1851: 1.7733 1.7741 1.7743 1.7749 1.7753 1.7757 1.7789 1.7795 1.7799 1.7808
[1861 1.7810 1.7831 1.7833 1.7841 1.7845 1.7853 1.7857 1.7871 1.7875 1.7879
[1871 1.7885 1.7889 1.7909 1.7911 1.7935 1.7939 1.7951 1.7967 1.7971 1.7973
[1881 1.8003 1.8007 1.8013 1.8022 1.8024 1.8049 1.8053 1.8055 1.8061 1.8063
[1891 1.8067 1.8071 1.8081 1.8095 1.8105 1.8111 1.8119 1.8125 1.8127 1.8141
[1901 1.8148 1.8150 1.8179 1.8181 1.8184 1.8186 1.8189 1.8193 1.8200 1.8202
[1911 1.8204 1.8206 1.8207 1.8218 1.8220 1.8231 1.8233 1.8236 1.8238 1.8238
[1921 1.8239 1.8240 1.8247 1.8279 1.8285 1.8287 1.8289 1.8295 1.8307 1.8319
[1931 1.8327 1.8329 1.8337 1.8339 1.8343 1.8351 1.8353 1.8357 1.8364 1.8366
[1941 1.8369 1.8385 1.8386 1.8388 1.8411 1.8415 1.8431 1.8437 1.8441 1.8455
[1951 1.8459 1.8465 1.8479 1.8483 1.8485 1.8496 1.8498 1.8519 1.8591 1.8597
[1961 1.8603 1.8611 1.8640 1.8642 1.8643 1.8651 1.8653 1.8654 1.8656 1.8658
[1971 1.8660 1.8663 1.8669 1.8673 1.8683 1.8699 1.8725 1.8727 1.8736 1.8738
[1981 1.8741 1.8745 1.8747 1.8762 1.8764 1.8769 1.8779 1.8783 1.8789 1.8793
[1991 1.8801 1.8803 1.8804 1.8806 1.8806 1.8808 1.8817 1.8827 1.8829 1.8845
[2001 1.8847 1.8888 1.8890 1.8909 1.8915 1.8916 1.8918 1.8933 1.8971 1.8973
[2011 1.8975 1.9005 1.9021 1.9043 1.9057 1.9058 1.9060 1.9061 1.9063 1.9065
[2021 1.9081 1.9097 1.9099 1.9105 1.9109 1.9118 1.9120 1.9121 1.9124 1.9126
[2031 1.9131 1.9135 1.9147 1.9151 1.9157 1.9173 1.9181 1.9183 1.9189 1.9191
[2041 1.9194 1.9196 1.9203 1.9207 1.9214 1.9216 1.9231 1.9233 1.9245 1.9249
[2051; 1.9257 1.9259 1.9265 1.9267 1.9291 1.9299 1.9311 1.9317 1.9318 1.9320
[2061 1.9323 1.9339 1.9361 1.9363 1.9368 1.9370 1.9374 1.9376 1.9411 1.9419
[2071 1.9425 1.9433 1.9437 1.9444 1.9446 1.9449 1.9464 1.9466 1.9479 1.9491
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[2081 1.9499 1.9509 1.9519 1.9521 1.9527 1.9533 1.9537 1.9544 1.9546 1.9553
[2091 1.9563 1.9565 1.9571 1.9577 1.9587 1.9613 1.9631 1.9633 1.9637 1.9639
[2101 1.9663 1.9673 1.9687 1.9699 1.9711 1.9714 1.9716 1.9719 1.9723 1.9733
[2111 1.9741 1.9759 1.9761 1.9771 1.9775 1.9791 1.9797 1.9810 1.9812 1.9827
[2121 1.9831 1.9833 1.9844 1.9846 1.9847 1.9865 1.9869 1.9871 1.9883 1.9897
[2131 1.9902 1.9903 1.9904 1.9905 1.9921 1.9951 1.9959 1.9963 1.9997 2.0033
[2141 2.0065 2.0077 2.0079 2.0081 2.0085 2.0101 2.0103 2.0121 2.0131 2.0133
[2151 2.0137 2.0149 2.0163 2.0181 2.0183 2.0189 2.0209 2.0213 2.0221 2.0235
[2161 2.0239 2.0251 2.0257 2.0259 2.0263 2.0265 2.0269 2.0271 2.0293 2.0325
[2171 2.0361 2.0375 2.0377 2.0379 2.0393 2.0395 2.0399 2.0411 2.0427 2.0435
[2181 2.0447 2.0483 2.0493 2.0501 2.0531 2.0553 2.0557 2.0575 2.0581 2.0587
[2191 2.0593 2.0595 2.0597 2.0625 2.0629 2.0657 2.0689 2.0693 2.0697 2.0701
[2201 2.0711 2.0717 2.0721 2.0725 2.0735 2.0737 2.0741 2.0745 2.0755 2.0763
[2211 2.0764 2.0766 2.0783 2.0785 2.0797 2.0799 2.0801 2.0803 2.0805 2.0813
[2221 2.0815 2.0823 2.0825 2.0837 2.0841 2.0845 2.0861 2.0873 2.0917 2.0931
[2231 2.0933 2.0939 2.0946 2.0948 2.0979 2.0985 2.0997 2.1007 2.1009 2.1017
[2241 2.1030 2.1032 2.1057 2.1067 2.1075 2.1081 2.1085 2.1089 2.1095 2.1101
[2251 2.1105 2.1107 2.1109 2.1117 2.1123 2.1125 2.1127 2.1133 2.1169 2.1175
[2261 2.1177 2.1181 2.1185 2.1205 2.1213 2.1216 2.1218 2.1221 2.1228 2.1230
[2271 2.1231 2.1281 2.1290 2.1292 2.1293 2.1307 2.1311 2.1312 2.1314 2.1317
[2281 2.1333 2.1347 2.1351 2.1357 2.1361 2.1377 2.1385 2.1387 2.1397 2.1409
[2291 2.1413 2.1421 2.1425 2.1443 2.1455 2.1457 2.1461 2.1465 2.1479 2.1489
[2301 2.1494 2.1496 2.1499 2.1501 2.1511 2.1527 2.1533 2.1545 2.1565 2.1567
[2311 2.1583 2.1593 2.1611 2.1619 2.1633 2.1639 2.1659 2.1662 2.1664 2.1665
[2321 2.1681 2.1685 2.1707 2.1715 2.1740 2.1742 2.1743 2.1757 2.1759 2.1763
[2331 2.1789 2.1811 2.1823 2.1831 2.1840 2.1842 2.1843 2.1853 2.1879 2.1881
[2341 2.1885 2.1901 2.1905 2.1925 2.1927 2.1933 2.1937 2.1942 2.1944 2.1948
[2351 2.1950 2.1959 2.1965 2.1969 2.1971 2.1985 2.1987 2.1989 2.1995 2.2007
[2361: 2.2009 2.2025 2.2035 2.2039 2.2041 2.2043 2.2053 2.2069 2.2085 2.2087
[2371 2.2093 2.2123 2.2127 2.2155 2.2157 2.2164 2.2166 2.2167 2.2171 2.2177
[2381 2.2179 2.2191 2.2196 2.2197 2.2198 2.2209 2.2211 2.2213 2.2220 2.2222
[2391 2.2231 2.2235 2.2239 2.2255 2.2272 2.2274 2.2278 2.2280 2.2283 2.2289
[2401 2.2293 2.2295 2.2299 2.2301 2.2302 2.2304 2.2353 2.2355 2.2359 2.2363
[2411 2.2365 2.2367 2.2369 2.2389 2.2393 2.2433 2.2441 2.2451 2.2453 2.2465
[2421 2.2467 2.2470 2.2472 2.2489 2.2493 2.2503 2.2507 2.2514 2.2516 2.2517
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[2431 2.2521 2.2527 2.2547 2.2552 2.2554 2.2561 2.2580 2.2582 2.2587 2.2600
[2441 2.2602 2.2637 2.2642 2.2644 2.2655 2.2663 2.2689 2.2705 2.2715 2.2737
[2451 2.2741 2.2757 2.2759 2.2806 2.2808 2.2809 2.2825 2.2835 2.2839 2.2863
[2461 2.2871 2.2879 2.2883 2.2895 2.2917 2.2927 2.2935 2.2937 2.2953 2.2959
[2471 2.2999 2.3013 2.3017 2.3055 2.3062 2.3064 2.3067 2.3079 2.3081 2.3089
[2481 2.3101 2.3103 2.3125 2.3137 2.3139 2.3151 2.3159 2.3207 2.3223 2.3231
[2491 2.3233 2.3235 2.3237 2.3245 2.3248 2.3250 2.3255 2.3277 2.3279 2.3325
[2501 2.3329 2.3363 2.3365 2.3371 2.3381 2.3387 2.3397 2.3427 2.3431 2.3441
[2511 2.3443 2.3445 2.3465 2.3467 2.3495 2.3499 2.3511 2.3513 2.3525 2.3527
[2521 2.3531 2.3545 2.3555 2.3575 2.3587 2.3591 2.3601 2.3615 2.3625 2.3635
[2531 2.3641 2.3669 2.3675 2.3681 2.3715 2.3717 2.3721 2.3729 2.3765 2.3769
[2541 2.3776 2.3778 2.3783 2.3795 2.3797 2.3799 2.3809 2.3839 2.3845 2.3853
[2551 2.3859 2.3860 2.3862 2.3863 2.3877 2.3895 2.3899 2.3911 2.3921 2.3931
[2561 2.3935 2.3955 2.3967 2.3971 2.3975 2.3981 2.3983 2.3986 2.3988 2.3993
[2571 2.4003 2.4013 2.4025 2.4035 2.4040 2.4042 2.4051 2.4057 2.4064 2.4066
[2581 2.4071 2.4083 2.4087 2.4099 2.4113 2.4127 2.4131 2.4147 2.4159 2.4173
[2591 2.4177 2.4197 2.4201 2.4240 2.4242 2.4259 2.4273 2.4279 2.4289 2.4295
[2601 2.4297 2.4301 2.4311 2.4320 2.4322 2.4327 2.4337 2.4341 2.4351 2.4359
[2611 2.4369 2.4373 2.4376 2.4378 2.4389 2.4405 2.4413 2.4425 2.4427 2.4437
[2621 2.4441 2.4459 2.4470 2.4472 2.4483 2.4487 2.4499 2.4507 2.4513 2.4523
[2631 2.4531 2.4537 2.4547 2.4555 2.4557 2.4559 2.4561 2.4563 2.4565 2.4566
[2641 2.4568 2.4569 2.4574 2.4576 2.4579 2.4581 2.4587 2.4597 2.4609 2.4613
[2651 2.4633 2.4642 2.4644 2.4649 2.4651 2.4655 2.4657 2.4662 2.4664 2.4682
[2661 2.4684 2.4703 2.4709 2.4721 2.4743 2.4745 2.4759 2.4773 2.4794 2.4796
[2671 2.4797 2.4803 2.4835 2.4837 2.4852 2.4854 2.4857 2.4883 2.4907 2.4908
[2681 2.4910 2.4915 2.4917 2.4940 2.4942 2.4959 2.4963 2.4971 2.4973 2.4987
[2691 2.4989 2.4991 2.4999 2.5026 2.5028 2.5031 2.5033 2.5055 2.5057 2.5085
[2701 2.5087 2.5092 2.5094 2.5101 2.5109 2.5129 2.5191 2.5201 2.5204 2.5206
[2711 2.5223 2.5225 2.5231 2.5233 2.5241 2.5243 2.5247 2.5257 2.5259 2.5285
[2721 2.5297 2.5307 2.5309 2.5319 2.5331 2.5341 2.5359 2.5361 2.5367 2.5380
[2731 2.5382 2.5415 2.5417 2.5419 2.5425 2.5427 2.5447 2.5449 2.5451 2.5455
[2741 2.5457 2.5465 2.5491 2.5501 2.5511 2.5521 2.5525 2.5533 2.5543 2.5565
[2751 2.5567 2.5571 2.5573 2.5575 2.5587 2.5597 2.5599 2.5601 2.5605 2.5609
[2761 2.5621 2.5627 2.5637 2.5641 2.5643 2.5647 2.5655 2.5657 2.5659 2.5661
[2771 2.5667 2.5671 2.5673 2.5675 2.5681 2.5684 2.5686 2.5707 2.5713 2.5721
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[2781 2.5725 2.5736 2.5738 2.5741 2.5751 2.5753 2.5763 2.5779 2.5788 2.5790
[2791 2.5790 2.5792 2.5801 2.5807 2.5823 2.5825 2.5831 2.5833 2.5845 2.5859
[2801 2.5871 2.5875 2.5879 2.5883 2.5884 2.5886 2.5887 2.5888 2.5889 2.5890
[2811 2.5897 2.5903 2.5917 2.5929 2.5947 2.5981 2.5987 2.6012 2.6014 2.6021
[2821 2.6023 2.6034 2.6036 2.6049 2.6055 2.6064 2.6066 2.6077 2.6079 2.6103
[2831 2.6113 2.6118 2.6120 2.6121 2.6124 2.6126 2.6135 2.6139 2.6147 2.6155
[2841 2.6159 2.6165 2.6178 2.6180 2.6182 2.6184 2.6185 2.6192 2.6194 2.6197
[2851 2.6209 2.6261 2.6264 2.6266 2.6275 2.6283 2.6285 2.6289 2.6291 2.6311
[2861 2.6315 2.6319 2.6331 2.6361 2.6369 2.6379 2.6387 2.6388 2.6390 2.6397
[2871 2.6407 2.6415 2.6431 2.6441 2.6451 2.6453 2.6463 2.6465 2.6469 2.6477
[2881 2.6481 2.6501 2.6515 2.6519 2.6521 2.6523 2.6541 2.6545 2.6551 2.6555
[2891 2.6581 2.6599 2.6637 2.6675 2.6683 2.6689 2.6695 2.6699 2.6713 2.6721
[2901 2.6727 2.6733 2.6743 2.6753 2.6773 2.6777 2.6781 2.6797 2.6811 2.6829
[2911 2.6841 2.6843 2.6847 2.6855 2.6875 2.6901 2.6915 2.6931 2.6933 2.6935
[2921 2.6937 2.6943 2.6965 2.6979 2.6985 2.7029 2.7031 2.7053 2.7059 2.7061
[2931 2.7067 2.7068 2.7070 2.7071 2.7086 2.7088 2.7091 2.7109 2.7116 2.7118
[2941 2.7137 2.7147 2.7155 2.7159 2.7161 2.7175 2.7190 2.7192 2.7193 2.7203
[2951 2.7205 2.7207 2.7209 2.7213 2.7231 2.7236 2.7238 2.7261 2.7265 2.7283
[2961 2.7293 2.7295 2.7303 2.7311 2.7329 2.7348 2.7350 2.7357 2.7369 2.7379
[2971 2.7381 2.7397 2.7413 2.7433 2.7443 2.7465 2.7469 2.7481 2.7495 2.7497
[2981 2.7505 2.7525 2.7537 2.7545 2.7561 2.7581 2.7629 2.7639 2.7655 2.7677
[2991 2.7685 2.7703 2.7711 2.7733 2.7741 2.7743 2.7745 2.7763 2.7779 2.7788
[3001 2.7790 2.7795 2.7807 2.7809 2.7811 2.7817 2.7827 2.7831 2.7843 2.7871
[3011 2.7887 2.7893 2.7933 2.7935 " 2.7943 2.7945 2.7947 2.7960 2.7962 2.7971
[3021 2.7973 2.7991 2.7995 2.8017 2.8025 2.8029 2.8033 2.8035 2.8058 2.8060
[3031 2.8073 2.8083 2.8091 2.8095 2.8103 2.8109 2.8119 2.8125 2.8131 2.8135
[3041 2.8139 2.8153 2.8165 2.8169 2.8195 2.8201 2.8204 2.8206 2.8207 2.8211
[3051 2.8219 2.8233 2.8237 2.8241 2.8245 2.8249 2.8293 2.8299 2.8309 2.8325
[3061 2.8335 2.8337 2.8351 2.8387 2.8391 2.8397 2.8399 2.8405 2.8410 2.8412
[3071 2.8435 2.8437 2.8439 2.8449 2.8451 2.8456 2.8458 2.8467 2.8477 2.8535
[3081 2.8545 2.8575 2.8577 2.8579 2.8597 2.8623 2.8625 2.8629 2.8635 2.8649
[3091 2.8655 2.8657 2.8661 2.8670 2.8671 2.8672 2.8677 2.8683 2.8685 2.8687
[3101 2.8701 2.8731 2.8737 2.8746 2.8748 2.8767 2.8775 2.8791 2.8803 2.8827

Note: y’j = 3014 and = 2.794.
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[3111
[3121
[3131
[3141
[3151
[3161
[3171
[3181
[3191
[3201
[3211
[3221
[3231
[3241
[3251
[3261
[3271
[3281
[3291
[3301
[3311
[3321
[3331
[3341
[3351
[3361
[3371
[3381
[3391
[3401
[3411
[3421
[3431
[3441
[3451

2.8845 2.8851 2.8853 2.8857 2.8865 2.8891 2.8907 2.8917 2.8927 2.8929 
2.8930 2.8932 2.8935 2.8951 2.8959 2.8961 2.8967 2.8977 2.8978 2.8980 
2.8981 2.8983 2.8992 2.8994 2.9021 2.9025 2.9029 2.9033 2.9061 2.9065 
2.9069 2.9079 2.9089 2.9095 2.9099 2.9107 2.9109 2.9115 2.9123 2.9135 
2.9153 2.9157 2.9163 2.9179 2.9187 2.9190 2.9192 2.9203 2.9213 2.9217 
2.9221 2.9237 2.9241 2.9249 2.9265 2.9271 2.9283 2.9287 2.9293 2.9309 
2.9311 2.9313 2.9318 2.9320 2.9321 2.9322 2.9324 2.9341 2.9351 2.9353 
2.9355 2.9375 2.9379 2.9387 2.9389 2.9395 2.9415 2.9421 2.9433 2.9435 
2.9451 2.9453 2.9455 2.9463 2.9465 2.9467 2.9485 2.9503 2.9505 2.9507 
2.9509 2.9515 2.9521 2.9541 2.9545 2.9547 2.9559 2.9569 2.9581 2.9589 
2.9604 2.9606 2.9622 2.9624 2.9639 2.9653 2.9655 2.9659 2.9661 2.9679 
2.9687 2.9711 2.9713 2.9715 2.9735 2.9737 2.9741 2.9743 2.9748 2.9750 
2.9759 2.9781 2.9795 2.9797 2.9807 2.9817 2.9823 2.9829 2.9833 2.9839 
2.9849 2.9855 2.9859 2.9867 2.9875 2.9881 2.9906 2.9908 2.9919 2.9923 
2.9949 2.9954 2.9956 2.9957 2.9963 2.9975 2.9991 3.0017 3.0019 3.0023 
3.0029 3.0041 3.0050 3.0052 3.0073 3.0081 3.0093 3.0097 3.0111 3.0131 
3.0167 3.0173 3.0177 3.0191 3.0209 3.0233 3.0241 3.0269 3.0285 3.0287 
3.0295 3.0297 3.0298 3.0300 3.0311 3.0317 3.0321 3.0325 3.0327 3.0331 
3.0341 3.0343 3.0347 3.0357 3.0365 3.0381 3.0383 3.0397 3.0399 3.0429 
3.0439 3.0449 3.0451 3.0473 3.0477 3.0483 3.0491 3.0492 3.0494 3.0497 
3.0503 3.0505 3.0513 3.0523 3.0527 3.0539 3.0549 3.0553 3.0559 3.0565 
3.0575 3.0579 3.0585 3.0594 3.0595 3.0596 3.0603 3.0613 3.0617 3.0633 
3.0638 3.0640 3.0644 3.0646 3.0660 3.0662 3.0665 3.0681 3.0687 3.0691 
3.0694 3.0696 3.0707 3.0719 3.0720 3.0722 3.0723 3.0727 3.0735 3.0763 
3.0773 3.0775 3.0783 3.0791 3.0803 3.0809 3.0811 3.0813 3.0837 3.0849 
3.0857 3.0859 3.0871 3.0893 3.0897 3.0905 3.0915 3.0916 3.0918 3.0922 
3.0924 3.0929 3.0943 3.0959 3.0963 3.0971 3.0975 3.0991 3.0999 3.1001 
3.1002 3.1004 3.1008 3.1010 3.1027 3.1069 3.1075 3.1099 3.1105 3.1139 
3.1143 3.1153 3.1165 3.1173 3.1181 3.1182 3.1184 3.1199 3.1214 3.1216 
3.1223 3.1250 3.1252 3.1253 3.1273 3.1281 3.1283 3.1287 3.1289 3.1295 
3.1296 3.1298 3.1300 3.1302 3.1332 3.1334 3.1334 3.1336 3.1345 3.1391 
3.1397 3.1419 3.1425 3.1433 3.1520 3.1522 3.1533 3.1535 3.1543 3.1549 
3.1581 3.1586 3.1588 3.1592 3.1594 3.1595 3.1612 3.1614 3.1631 3.1634 
3.1636 3.1640 3.1642 3.1642 3.1644 3.1653 3.1663 3.1679 3.1701 3.1705 
3.1721 3.1723 3.1731 3.1747 3.1759 3.1763 3.1765 3.1793 3.1795 3.1797
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[3461 3.1799 3.1807 3.1817 3.1821 3.1829 3.1841 3.1845 3.1847 3.1849 3.1865
[3471 3.1866 3.1868 3.1885 3.1892 3.1894 3.1909 3.1933 3.1939 3.1953 3.1957
[3481 3.1963 3.1979 3.1985 3.1987 3.2007 3.2019 3.2029 3.2031 3.2054 3.2056
[3491 3.2065 3.2089 3.2093 3.2099 3.2115 3.2117 3.2118 3.2120 3.2125 3.2141
[3501 3.2155 3.2157 3.2167 3.2181 3.2189 3.2195 3.2197 3.2203 3.2214 3.2216
[3511 3.2219 3.2222 3.2224 3.2229 3.2231 3.2235 3.2254 3.2256 3.2273 3.2275
[3521 3.2297 3.2305 3.2314 3.2316 3.2325 3.2329 3.2333 3.2367 3.2375 3.2377
[3531 3.2383 3.2385 3.2403 3.2409 3.2413 3.2417 3.2423 3.2426 3.2428 3.2449
[3541 3.2457 3.2459 3.2473 3.2489 3.2495 3.2503 3.2504 3.2506 3.2519 3.2525
[3551 3.2534 3.2536 3.2537 3.2543 3.2550 3.2552 3.2559 3.2582 3.2584 3.2587
[3561 3.2593 3.2597 3.2619 3.2631 3.2633 3.2634 3.2636 3.2653 3.2668 3.2670
[3571 3.2677 3.2685 3.2693 3.2697 3.2709 3.2711 3.2715 3.2717 3.2721 3.2773
[3581 3.2775 3.2783 3.2804 3.2806 3.2817 3.2837 3.2866 3.2868 3.2871 3.2877
[3591 3.2893 3.2901 3.2903 3.2915 3.2925 3.2928 3.2930 3.2951 3.2955 3.2973
[3601 3.2981 3.2989 3.2997 3.3023 3.3039 3.3047 3.3057 3.3059 3.3061 3.3063
[3611 3.3077 3.3079 3.3107 3.3108 3.3110 3.3125 3.3141 3.3143 3.3161 3.3197
[3621 3.3201 3.3203 3.3215 3.3219 3.3239 3.3244 3.3246 3.3258 3.3260 3.3269
[3631 3.3281 3.3287 3.3301 3.3308 3.3310 3.3319 3.3321 3.3323 3.3337 3.3350
[3641 3.3352 3.3365 3.3375 3.3379 3.3383 3.3385 3.3417 3.3423 3.3431 3.3435
[3651 3.3438 3.34403.3441 3.3444 3.3446 3.3450 3.3452 3.3468 3.3470 3.3487
[3661 3.3505 3.3507 3.3511 3.3531 3.3547 3.3553 3.3557 3.3561 3.3575 3.3577
[3671 3.3581 3.3583 3.3597 3.3599 3.3600 3.3602 3.3604 3.3606 3.3625 3.3643
[3681 3.3655 3.3675 3.3677 3.3689 3.3693 3.3703 3.3705 3.3711 3.3725 3.3744
[3691 3.3746 3.3789 3.3793 3.3809 3.3821 3.3833 3.3839 3.3845 3.3851 3.3855
[3701 3.3861 3.3869 3.3871 3.3875 3.3899 3.3939 3.3947 3.3953 3.3959 3.3964
[3711 3.3966 3.3967 3.3975 3.3979 3.3980 3.3982 3.3985 3.4027 3.4033 3.4041
[3721 3.4047 3.4051 3.4053 3.4075 3.4077 3.4079 3.4080 3.4082 3.4091 3.4105
[3731 3.4107 3.4114 3.4116 3.4125 3.4141 3.4151 3.4157 3.4161 3.4166 3.4168
[3741 3.4171 3.4179 3.4191 3.4199 3.4203 3.4205 3.4219 3.4238 3.4240 3.4245
[3751 3.4253 3.4259 3.4261 3.4265 3.4273 3.4291 3.4297 3.4301 3.4303 3.4319
[3761 3.4325 3.4327 3.4337 3.4351 3.4353 3.4365 3.4386 3.4388 3.4395 3.4403
[3771 3.4411 3.4419 3.4433 3.4451 3.4463 3.4473 3.4479 3.4480 3.4482 3.4487
[3781 3.4497 3.4503 3.4517 3.4519 3.4521 3.4530 3.4532 3.4553 3.4555 3.4561
[3791 3.4617 3.4647 3.4651 3.4677 3.4679 3.4689 3.4693 3.4707 3.4713 3.4715
[3801 3.4717 3.4727 3.4733 3.4753 3.4803 3.4809 3.4814 3.4816 3.4840 3.4842
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[3811 3.4847 3.4849 3.4853 3.4867 3.4869 3.4871 3.4873 3.4884 3.4886 3.4901
[3821 3.4907 3.4917 3.4929 3.4942 3.4944 3.4947 3.4965 3.4989 3.4993 3.4994
[3831 3.4996 3.4996 3.4998 3.5015 3.5047 3.5055 3.5071 3.5077 3.5089 3.5091
[3841 3.5105 3.5121 3.5151 3.5169 3.5183 3.5195 3.5198 3.5200 3.5203 3.5205
[3851 3.5207 3.5211 3.5213 3.5225 3.5261 3.5269 3.5273 3.5289 3.5313 3.5327
[3861 3.5329 3.5343 3.5357 3.5371 3.5375 3.5389 3.5417 3.5427 3.5433 3.5435
[3871 3.5445 3.5451 3.5467 3.5483 3.5487 3.5501 3.5506 3.5508 3.5523 3.5535
[3881 3.5539 3.5550 3.5552 3.5565 3.5566 3.5568 3.5615 3.5617 3.5627 3.5643
[3891 3.5645 3.5653 3.5657 3.5661 3.5663 3.5669 3.5675 3.5683 3.5691 3.5695
[3901 3.5703 3.5707 3.5723 3.5743 3.5751 3.5757 3.5767 3.5775 3.5787 3.5805
[3911 3.5807 3.5809 3.5831 3.5845 3.5847 3.5848 3.5850 3.5863 3.5883 3.5887
[3921 3.5915 3.5921 3.5925 3.5927 3.5939 3.5949 3.5953 3.5963 3.5965 3.5975
[3931 3.5977 3.5983 3.5989 3.6002 3.6004 3.6009 3.6023 3.6031 3.6055 3.6070
[3941 3.6072 3.6075 3.6081 3.6082 3.6084 3.6099 3.6119 3.6127 3.6147 3.6161
[3951 3.6163 3.6167 3.6171 3.6175 3.6225 3.6227 3.6229 3.6233 3.6243 3.6249
[3961: 3.6251 3.6255 3.6257 3.6269 3.6287 3.6289 3.6301 3.6321 3.6335 3.6343
[3971 3.6356 3.6358 3.6359 3.6361 3.6368 3.6370 3.6371 3.6377 3.6383 3.6388
[3981 3.6390 3.6399 3.6405 3.6417 3.6429 3.6439 3.6451 3.6487 3.6497 3.6509
[3991 3.6513 3.6524 3.6526 3.6537 3.6559 3.6565 3.6567 3.6579 3.6587 3.6599
[4001 3.6603 3.6605 3.6607 3.6631 3.6637 3.6643 3.6650 3.6652 3.6659 3.6665
[4011 3.6667 3.6669 3.6679 3.6685 3.6689 3.6699 3.6701 3.6705 3.6732 3.6734
[4021 3.6737 3.6743 3.6750 3.6752 3.6755 3.6759 3.6761 3.6771 3.6791 3.6811
[4031 3.6847 3.6861 3.6879 3.6885 3.6899 3.6907 3.6935 3.6945 3.6953 3.6969
[4041 3.6973 3.6985 3.6993 3.6995 3.7001 3.7009 3.7011 3.7029 3.7043 3.7056
[4051 3.7058 3.7073 3.7085 3.7089 3.7095 3.7103 3.7113 3.7115 3.7135 3.7155
[4061 3.7157 3.7159 3.7167 3.7181 3.7185 3.7213 3.7215 3.7223 3.7233 3.7234
[4071 3.7236 3.7253 3.7263 3.7269 3.7271 3.7283 3.7287 3.7297 3.7307+

4.2 Estimation

>tpoil<-1:744
> for (i in 1:744) {tpoil[i]<-tpoi[i]}

+ Note: j \  = 4079 and T = 3.732.
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> tpoi2<-1:491
> for(i in 1:491) {tpoi2[i]<-tpoi[i+744]}

>tpoi3<-l:1779
> for(i in 1:1779) {tpoi3[i]<-tpoi[i+1235]}

> tpoi4<-l:1065
>for(iin 1:1065) {tpoi4[i]<-tpoi[i+3014]}

> stpl<-sum(tpoil)
> stpl
[1] 289.0196

> stp2<-sum(tpoi2-tttt[l])
> stp2
[1] 115.8695

> stp3<-sum(tpoi3-tttt[2])
> stp3
[1] 1348.608

> stp4<-sum(tpoi4-tttt[3])
> stp4
[1] 491.4479 

> fl
function(dl)

{
{al <- 4079/dl
aal <- (744 * 0.783 * exp(-0.783 * dl))/(l - exp(-0.783 * dl)) 
aa2 <- (491 * 0.467 * exp(-0.467 * dl))/(l - exp(-0.467 * dl)) 
aa3 <- (1779 * 1.544 * exp(-1.544 * dl))/(l - exp(-1.544 * dl)) 
aa4 <- (1065 * 0.938 * exp(-0.938 * dl))/(l - exp(-0.938 * dl)) 
a2 < stpl + stp2 + stp3 + stp4 
zl al - aal - aa2 - aa3 - aa4 - a2
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}
retum(zl)

}

> d l
[1] 0.08 0.09 0.10 0.11 0.12

>fl(0.070768653)
[1] 1.118724e-07

>yyO 
[1] 1000

>yyl
[1] 1024.994 

>yy2
[1] 1302.009 

>yy3
[1] 1230.569

> 10<-(ddl *(ü l-jjO))/(l-exp(-ddl *(sl-sO))) 
>10
[1] 976.7606

> lK-(ddl *(jj2-ij l))/(l-exp(-ddl *(s2-sl))) 
> 1 1
[1] 1068.861

>12<-(ddl*(jj3-ij2))/(l-exp(-ddl*(s3-s2)))
>12
[1] 1216.297
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> 13<-(ddl *(jj4-jj3))/(l-exp(-ddl *(s4-s3)))
>13
[1] 1173.496

> vO<-(l-exp(-ddl *(sl-s0)))^2/(ddl^2*(ü 1-jjO))
> vO
[1] 0.0007798241

>vK-(l-exp(-ddl*(s2-sl)))^2/(ddl^2*(ij2-ijl))
> vl
[1] 0.0004297727

> v2<-(l-exp(-ddl*(s3-s2)))^2/(ddM2*(ij3-jj2))
>v2
[1] 0.001202532

> v3<-(l-exp(-ddl*(s4-s3)))^2/(ddr2*(ij4-jj3))
>v3
[1] 0.0007733688

> coO<“ (( 1 -exp(-dd 1 *(sl -sO)))/dd 1 ̂ 2-((s 1 -sO)*exp(-dd 1 *(s 1 -sO))/dd 1 ))
> coO
[1] -0.2954522

> col <--(( 1 -exp(-dd 1 *(s2-s 1 )))/dd 1 ̂ 2-((s2-s 1 )*exp(-dd 1 *(s2-s 1 ))/dd 1))
> col
[1]-0.1066715

> co2<--((l-exp(-ddl *(s3-s2)))/ddl^2-((s3-s2)*exp(-ddl *(s3-s2))/ddl)) 
>co2
[1]-1.108596

> co3<--((l-exp(-ddl *(s4-s3)))/ddl^2-((s4-s3)*exp(-ddl *(s4-s3))/ddl))
> co3
[1] -0.4209299
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> v4<~(((jj 1 -jjjO)*(s 1 -s0)*(2/dd 1+s 1 -sO)*exp(-dd 1 *(sl -sO))/(l -exp(-dd 1 *(s 1 -sO)))) 
++((Ü2-jjl)*(s2-sl)*(2/ddl+s2-sl)*exp(-ddl*(s2-sl))/(l-exp(-ddl*(s2-sl)))) 
++((ü3-ij2)*(s3-s2)*(2/ddl+s3-s2)*exp(-ddl*(s3-s2))/(l-exp(-ddl*(s3-s2)))) 
++((îj4-j[j3)*(s4-s3)*(2/ddl+s4-s3)*exp(-ddl*(s4-s3))/(l-exp(-ddl*(s4-s3)))) 
+-(2*jj4/ddl^2))

> v4
[1] 1867.722

> matr<-matrix(matr,5,5)
> matr

[.1] [,2] [,3] [,4] [,5]
[1,] 0.0007798241 0.0000000000 0.000000000 0.0000000000 -0.2954522
[2,] 0.0000000000 0.0004297727 0.000000000 0.0000000000 -0.1066715
[3,] 0.0000000000 0.0000000000 0.001202532 0.0000000000 -1.1085961
[4,] 0.0000000000 0.0000000000 0.000000000 0.0007733688 -0.4209299
[5,] -0.2954522389 -0.1066714766 -1.108596093 -0.4209298537 1867.7215633

> cova<-solve(matr)
> cova

[,1] [,2] [,3] [,4] [,5]
[1,] 1582.5102371 196.6463007 730.386784 431.220483 0.792275617
[2,] 196.6463007 2455.6377323 478.488780 282.499858 0.519033205
[3,] 730.386784 478.488780 2608.789093 1049.265418 1.927801296
[4,] 431.220483 282.499858 1049.265418 1912.530661 1.138174217
[5,] 0.792275617 0.519033205 1.927801296 1.138174217 0.002091152

> yyel<-ll-10*exp(-ddl*sl)
>yyel
[1] 144.7525

> yye2<-12-ll *exp(-ddl *s2)
>yye2
[1] 237.9266
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> yye3<-13-12*exp(-ddl*s3) 
>yye3
[1] 175.4105

> (yyel+yye2+yye3)/3
[1] 186.0299
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5. The calculations and S-Plus routine for example 5.1.1

5.1 Simulation

> te<-rexp( 150,1 GO)
>tte<-l:100
> for (i in 1:100) {tte[i]<-te[i]}

> tte<-round(tte,4)
> tte

[1] 0.0122 0.0040 0.0099 0.0035 0.0031 0.0091 0.0033 0.0710 0.0033 0.0125
[11] 0.0024 0.0222 0.0134 0.0057 0.0237 0.0063 0.0212 0.0026 0.0142 0.0195 
[21] 0.0001 0.0066 0.0037 0.0089 0.0010 0.0058 0.0045 0.0059 0.0188 0.0158 
[31] 0.0101 0.0012 0.0387 0.0031 0.0026 0.0069 0.0072 0.0051 0.0032 0.0144 
[41] 0.0004 0.0128 0.0102 0.0001 0.0058 0.0238 0.0037 0.0032 0.0181 0.0159 
[51] 0.0027 0.0409 0.0045 0.0162 0.0228 0.0120 0.0009 0.0059 0.0150 0.0042 
[61] 0.0019 0.0126 0.0208 0.0023 0.0080 0.0051 0.0067 0.0073 0.0018 0.0118 
[71] 0.0060 0.0079 0.0167 0.0079 0.0013 0.0060 0.0263 0.0121 0.0055 0.0051 
[81] 0.0113 0.0037 0.0119 0.0064 0.0367 0.0033 0.0011 0.0014 0.0042 0.0347 
[91] 0.0019 0.0120 0.0029 0.0005 0.0043 0.0079 0.0033 0.0086 0.0022 0.0244

> cumsum(tte)
[1] 0.0122 0.0162 0.0261 0.0296 0.0327 0.0418 0.0451 0.1161 0.1194 0.1319

[11] 0.1343 0.1565 0.1699 0.1756 0.1993 0.2056 0.2268 0.2294 0.2436 0.2631
[21] 0.2632 0.2698 0.2735 0.2824 0.2834 0.2892 0.2937 0.2996 0.3184 0.3342 
[31] 0.3443 0.3455 0.3842 0.3873 0.3899 0.3968 0.4040 0.4091 0.4123 0.4267 
[41] 0.4271 0.4399 0.4501 0.4502 0.4560 0.4798 0.4835 0.4867 0.5048 0.5207 
[51] 0.5234 0.5643 0.5688 0.5850 0.6078 0.6198 0.6207 0.6266 0.6416 0.6458 
[61] 0.6477 0.6603 0.6811 0.6834 0.6914 0.6965 0.7032 0.7105 0.7123 0.7241 
[71] 0.7301 0.7380 0.7547 0.7626 0.7639 0.7699 0.7962 0.8083 0.8138 0.8189 
[81] 0.8302 0.8339 0.8458 0.8522 0.8889 0.8922 0.8933 0.8947 0.8989 0.9336
[91] 0.9355 0.9475 0.9504 0.9509 0.9552 0.9631 0.9664 0.9750 0.9772 1.0016

>y<-rexp( 100,1)
> y<-array(y)
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>y
[1] 2.844531 0.6437058 0.1532211 0.1419299 2.136895 0.9931174 0.6334041
[8] 3.089103 0.846644 0.1783297 0.0999909 0.3013416 0.04383538 0.2155333

[15] 2.575489 0.562017 1.639105 1.942076 0.5436354 0.004495321 0.006376755
[22] 0.7757282 1.028568 0.6781959 2.755949 0.3756035 1.400532 0.3567848 
[29] 0.479679 0.5749752 3.214524 1.117339 0.008017103 0.4736012 0.2124399 
[36] 3.445639 1.455314 0.3378651 0.2721739 0.000110719 1.136713 0 . 0 2 6 9 2 5 8 8  
[43] 1.316751 2.508186 0.1748482 0.4527609 1.515758 0.6491918 1.393431
[50] 1.750964 0.3921691 1.440703 3.064295 1.212635 0.1391625 3.968223 
[57] 0.1834681 0.3241229 0.06615166 3.33812 0.1966045 0.857705 0.7827508
[64] 1.444248 1.69832 0.538809 2.462212 3.799613 0.1554118 1.029232 
[71] 0.5837805 0.6370158 2.938962 0.630229 0.198576 1.973318 0.1792413 
[78] 1.084332 0.6133536 0.4536421 1.173732 7.341652 2.585211 0.1193903
[85] 0.02439253 1.11829 1.92124 1.712752 0.6441057 2.026121 0.9926892
[92] 0.2372974 0.06095418 0.1912166 1.051397 0 5888466 3.651955 1.472982 
[99] 1.738937 1.762146

> yO 
[1] 200 
>d 
[1]0.5
> BO<-((l-exp(- d * tte[l]))/d)
>B0
[1] 0.01216287
> intenO<-yO*BO
> intenO
[1] 2.432573
> NO<-rpois(l,intenO)
>N0
[1]3

> yl<-yO*exp(-d*tte[l])+y[l]
> yl
[1] 201.6282
> Al<-exp(-d*tte[l])
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> BK-((l-exp(-d*tte[2]))/d)
> intenl<-yl*Al*Bl
> intenl
[1] 0.8008072
> Nl<-rpois(l,intenl)
>N1
[1]2

> genel<-function(i){
+ yl[i]<-yl[i-l]* exp(-d*tte[i])+y[i]
+ return(yl[i])

+ }

>yl[l]<-201.6282
> for(i in 2:99){
+ yl[i]<-genel(i)

+ }

> y l
[1] 201.6282 201.8691 201.0255 200.8159 202.6418 202.7150 203.0142 199.0227
[9] 199.5412 198.4763 198.3383 196.4503 195.1823 194.8423 195.1226 195.0709 

[17] 194.6532 196.3424 195.4969 193.6046 193.6013 193.7392 194.4097 194.2247
[25] 196.8835 196.6890 197.6475 197.4220 196.0547 195.0869 197.3187 198.3177 
[33] 194.5252 194.6975 194.6570 197.4322 198.1780 198.0112 197.9668 196.5467 
[41] 197.6441 196.4101 196.7277 199.2261 198.8240 196.9248 198.0766 198.4091 
[49] 198.0150 198.1980 198.3228 195.7490 198.3733 197.9856 195.8806 198.6770 
[57] 198.7711 198.5097 197.0926 200.0173 200.0240 199.6255 198.3429 199.5592
[65] 200.4609 200.4891 202.2808 205.3435 205.3142 205.1356 205.1049 204.9333 
[73] 206.1682 205.9857 206.0504 207.4065 204.8762 204.7248 204.7759 204.7081 
[81] 204.7285 211.6917 213.0211 212.4599 208.6212 209.3956 211.2017 212.7666 
[89] 212.9644 211.3275 212.1195 211.0879 210.8430 210.9815 211.5798 211.3345 
[97] 214.6380 215.1901 216.6924

> gene<-function(i){
+ A <- exp(- d * tte[i])
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+ B<-((l-exp( - d * tte[i+l]))/d)
+ inten<-genel(i)*A*B 
+ retum(inten)

+ }

> gene2<-function(i){
+ Cl[i]<-rpois(l,gene(i))
+ retum(Cl[i])

+ }

>CK-1:99

> Cl[l]<-2 
>for(iin2:99){
+ Cl[i]<-gene2(i)

+ }
>C1
[1] 2 1 3 1 1 2  17 0 0 0 3 4 0 3 1 3 0 3 3 0 4 0 3 0 1  

[26] 2 1 2 3 0 1 9 0 0 2 1 2 0 3 0 3 2 0 3 5 0 0 6 5 0  
[51] 5 0 7 7 4 1 2 3 1 0 4 7 0 3 1 0 0 0 2 3 1 3 3 0 0  
[76] 5 1 0 0 4 3 1 0 9 0 0 0 2 9 1 5 0 1 0 1 1 2 1 4

> cla<-l:100
> cla[l]<-3
> for (i in 2:99){

+}
> for (i in 2:100){
+ cla[i]<-Cl[i-l]}

> da
[1] 3 2 1 3 1 1 2  17 0 0 0 3 4 0 3 1 3 0 3 3 0 4 0 3 0  

[26] 1 2 1 2 3 0 1 9 0 0 2 1 2 0 3 0 3 2 0 3 5 0 0 6 5  
[51] 0 5 0 7 7 4 1 2 3 1 0 4 7 0 3 1 0 0 0 2 3 1 3 3 0  
[76] 0 5 1 0 0 4 3 1 0 9 0 0 0 2 9 1 5 0 1 0 1 1 2 1 4
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> cl
[1] 3 2 4 2 3 2 3 2 3 2 3 1 0 1 1 2 3 0 2 1 1 2 1 2 2 2 4 2 2 3 1 1 2 1 2 2 3  

[38] 2 1 2 3 2 1 3 2 4 2 2 1 4 2 4 0 2 1 2 0 5 3 4 2 4 3 3 1 4 3 4 3 1 0 1 4 1
[75] 2 3 1 2 2 1 1 0 4 4 0 2 2 3 2 2 3 3 2 4 3 2 2 2 2 2

> sum(cl)
[1]215

5.2 Pricing

> gel<-function(i,v){
+ h[i]<-exp(21.457-1.0*log(6.5451*10^8*exp(2.2361*v)+2.5*10^8)+1.118*v) 
+ retum(h[i])

+ }

> ge2<-function(i,v){
+ s[i]<-((1.118*(1.0-2.618*exp(2.2361*v))/(-2.618*exp(2.2361*v)-1.0))-0.5)
+ retum(s[i])

+ }

> hhh
[1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

[16] 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30
[31] 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
[46] 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60
[61] 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75
[76] 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90
[91] 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

> ge3<-function(i,v){
+ a[i]<-((l/14.14214)*(v-200*0.01))
+ retum(a[i])

+ }
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> zzl<-l:100
> for (i in 1:100){
+ zzl[i]<-gel(l,hhh[i])*ge2(l,hhh[i])*ge3(l,cl[i])

+}
> zzl

[1] 0.001608527 0.000000000 0.009467405 0.000000000 0.007725902 
[6] 0.000000000 0.010583998 0.000000000 0.013307409 0.000000000

[11] 0.015896063 -0.017139969 -0.036700755 -0.019527412 -0.020671221
[16] 0.000000000 0.022859886 -0.047810325 0.000000000 -0.025898823 
[21]-0.026847758 0.000000000 -0.028651360 0.000000000 0.000000000
[26] 0.000000000 0.063782202 0.000000000 0.000000000 0.034011355 
[31] -0.034661342 -0.035283673 0.000000000 -0.036447172 0.000000000 
[36] 0.000000000 0.037996460 0.000000000 -0.038904213 0.000000000 
[41] 0.039716393 0.000000000 -0.040436912 0.040764026 0.000000000 
[46] 0.082708843 0.000000000 0.000000000 -0.042087773 0.084587143
[51] 0.000000000 0.085300151 -0.085603463 0.000000000 -0.043054198 
[56] 0.000000000 -0.086483887 0.129938041 0.043368587 0.086820206 
[61] 0.000000000 0.086903369 0.043452597 0.043440811 -0.043416734
[66] 0.086761533 0.043333301 0.086549451 0.043205419 -0.043125755 
[71] -0.086072197 -0.042936808 0.085656470 -0.042710724 0.000000000
[76] 0.042450227 -0.042307894 0.000000000 0.000000000 -0.041836322 
[81] -0.041665278 -0.082975584 0.082608288 0.082229215 -0.081838898
[86] 0.000000000 0.000000000 0.040302809 0.000000000 0.000000000 
[91] 0.039644530 0.039416927 0.000000000 0.077901509 0.038712596 
[96] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000

> szzl<-sum(zzl)
> szzl
[1] 0.5579152

> ge8<-fiinction(i){
pm <- (((121/pi)^(l/2)) * (3.3576^(1/2)) * exp(-0.5 * ((3.5081 * 0.01 * i - 7.9815)^2))) + 
(((242^1/2)) * 0.48295 + 220 - i) * pnorm( - (3.5081 * 0.01 * i - 7.9815))) 
retum(pm)

}
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> pm<-l:10 
>for (iin 1:10){
+ pm[i]<-ge8(bbl[i])}

> bbl (Retention limit)
[1] 0 190 200 210 220 230 240 250

> pm (Reinsurance premium)
[1] 227.512939 38.767164 30.049486 22.209532 15.521060 
[6] 10.171605 6.202363 3.494186

189



References

Aase, K. K. (1988) : Contingent claims valuation when the security price is a 
combination o f an Ito process and a random point process. Stochastic Processes and 
Their Applications, 28, 185-220.

Aase, K. K. (1994) : An equilibrium model o f catastrophe insurance futures and spreads, 
Norwegian School of Economics and Business Administration, Bergen, Pre-print.

Aase, K. K. and 0degaard, B. A. (1996) : Empirical investigations o f a model o f 
catastrophe insurance futures, Norwegian School of Economics and Business 
Administration and Norwegian School of Management, Bergen, Pre-print.

Apostol, T. M. (1974) : Mathematical Analysis, 2nd Edition, Addison-Wesley Publishing 
Co., Inc., USA.

Bartlett, M. S. (1963) : The spectral analysis o f point processes, J. R. Stat. Soc., 25, 264- 
296.

Basawa, I. V. and Prakasa Rao, B. L. S. (1980) : Statistical Inference fo r Stochastic 
Processes, Academic Press Inc. Ltd., London.

Beard, R.E., Pentikainen, T. and Pesonen, E. (1984) : Risk Theory, 3rd Edition, Chapman 
& Hall, London.

Billingsley, P. (1968) : Convergence o f Probability Measures, John Wiley & Sons, USA.

Billingsley, P. (1986) : Probability and Measure, 2nd Edition, Wiley, New York.

Black, F. and Scholes M. (1973) : The pricing o f options and corporate liabilities. 
Journal of Political Economy, 81, 637-654.

Booth, G. (1997) ; Managing Catastrophe Risk, FT Financial Publishing, London.

190



Bremaud, P. (1981) : Point Processes and Queues: Martingale Dynamics, Springer- 
Verlag, New-York.

Bühlmann, H. (1970) : Mathematical Methods in Risk Theory, Springer-Verlag, Berlin- 
Heidelberg.

The Chicago Board of Trade (1995a) : Catastrophe Insurance : Background Report.

The Chicago Board of Trade (1995b) : Catastrophe Insurance: Reference Guide.

The Chicago Board of Trade (1994) : The Management o f Catastrophe Losses Using 
CBoTInsurance Options.

Cinlar, E. (1975) : Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs.

Cox, D. R. (1955) : Some statistical methods connected with series o f events, J. R. Stat. 
Soc. B, 17, 129-164.

Cox, D. R. and Isham, V. (1980) : Point Processes, Chapman & Hall, London.

Cox, D. R. and Isham, V. (1986) : The virtual waiting time and related processes. Adv. 
Appl. Prob. 18, 558-573.

Cox, D. R. and Lewis, P. A. W. (1966) : The Statistical Analysis o f Series o f Events, 
Metheun & Co. Ltd., London.

Cox, D. R. and Miller, H. D. (1965) : The Theory o f Stochastic Processes, Metheun & 
Co. Ltd., London.

Cox, J. and Ross, S. (1976) : The valuation o f options fo r alternative stochastic 
processes. Journal of Financial Economics, 3 , 145-166.

Cox, J., Ross, S. and Rubinstein, M. (1979) : Option pricing : A Simplified Approach, 
Journal of Financial Economics, 7, 229-263.

191



Cramer, H. (1930) : On the Mathematical Theory o f Risk, Skand. Jubilee Volume, 
Stockholm.

Cummins, J. D. and Geman, H. (1995) : Pricing catastrophe insurance futures and call 
spreads : An arbitrage approach. Journal of Fixed Income, 46-58.

Dassios, A. (1987) : Insurance, Storage and Point Process: An Approach via Piecewise 
Deterministic Markov Processes, Ph. D Thesis, Imperial College, London.

Dassios, A. and Embrechts, P. (1989) : Martingales and insurance risk. Commun. Stat.- 
Stochastic Models, 5(2), 181-217.

Davis, M. H. A. (1984) : Piecewise deterministic Markov processes: A general class o f 
non diffusion stochastic models, J. R. Stat. Soc. B, 46, 353-388.

Delbaen, F. and Haezendonck, J. (1989) : A martingale approach to premium calculation 
principles in an arbitrage free market. Insurance: Mathematics and Economics, 8, 269- 
277.

Duffie, D. (1988) : Security Markets, Academic Press, Inc., San Diego, California.

DufBe, D. (1989) : Future Markets, Prentice Hall, New Jersey.

Esscher, F. (1932) : On the probability function in the collective theory o f risk, 
Skandinavisk Aktuarietidskrift 15, 175-195.

Ethier, S. N. and Kurtz, T. G. (1986) : Markov Processes Characterization and 
Convergence, John Wiley & Sons, Inc., USA.

Feller, W. (1968) : An Introduction to Probability Theory and Its Application, Vol. I, 3rd 
Edition, Wiley, New York.

Feller, W. (1971) \ An Introduction to Probability Theory and Its Application, Vol. II, 
2nd Edition, Wiley, New York.

192



Gerber, H. U. (1979) : An Introduction to Mathematical Risk Theory^ S. S. Huebner 
Foundation for Insurance Educatin, Philadelphia.

Gerber, H. U. and Shiu, E. S. W. (1996) : Actuarial bridges to dynamic hedging and 
option pricing. Insurance: Mathematics and Economics, 18, 183-218.

Grandell, J. (1971) : 0»  stochastic processes generated by a stochastic intensity function, 
Skandinavisk Aktuarietidskrift 3-4, 204-240.

Grandell, J. (1976) : Doubly Stochastic Poisson Processes, Springer-Verlag, Berlin.

Grandell, J. (1991) : Aspects o f Risk Theory, Springer-Verlag, New York.

Grandell, J. (1997) : Mixed Poisson Processes, Chapman & Hall, London.

Harrison, J. M. and Kreps, D. M. (1979) : Martingales and arbitrage in multiperiod 
markets. Journal of Economic Theory, 20, 381-408.

Harrison, J. M. and Pliska, S. (1981) : Martingales and stochastic integrals in the theory 
o f continuous trading. Stochastic Processes and Their Applications, 11, 215-260.

Hull, J. C. (1993) : Options, Futures, and Other Derivative Securities, Prentice-Hall, Inc., 
NJ.

Ikeda, N. and Watanabe, S. (1989) : Stochastic Differential Equations and Diffusion 
Processes, North-Holland Publishing Company / Kodansha Ltd., Tokyo.

Jang, J. W. (1993) : The Black & Scholes Option Pricing Model and 7%e Binomial 
Option Pricing Model on Bond Futures, MSc. Thesis, The City University, London.

Jarrow, R. A. and Rudd, A. (1983) : Option Pricing, Richard D. Irwin, Inc., Illinois.

Karatzas, I. and Shreve, S. E. (1991) : Brownian Motion and Stochastic Calculus, 2nd 
Edition, Springer-Verlag, New York.

193



Karr, A. (1991) : Point Processes and Their Statistical Inference, 2nd Edition, Marcel 
Dekker Inc., New York.

Kielholz, W. and Durrer, A. (1997) : Insurance derivatives and securitization: Ne^v 
hedging perspectives fo r the US Cat insurance market. The Geneva Papers on Risk and 
Insurance-Issues and Practice, 22, 3-16.

Klüppelberg, C. and Mikosch, T. (1995) : Explosive Poisson shot noise processes with 
applications to risk reserves,'BQmo\iXli, 1, 125-147.

Krzanowski, W. J. and Marriott, F. H. C. (1994) : Multivariate Analysis Part 1 
Distribution, ordination and inference, Edward Arnold, Great Britain.

Lando, D. (1994) : On Cox processes and credit risky bonds. University of Copenhagen, 
The Department of Theoretical Statistics, Pre-print.

Liptser, R. S. and Shiryayev, A. N. (1977) : Statistics o f Random Processes I  General 
Theory, Springer-Verlag, New York.

Lomax, M. and Lowe, J. (1994) : Insurance Futures, The Actuary, January/February, 12- 
13.

Medhi, J. (1982) : Stochastic Processes, Wiley Eastern Limited, New Delhi.

Meister, S. (1995) : Contribution to the Mathematics o f Catastrophe Insurance Futures, 
Technical report, Dep. of Mathematics, ETH Zurich.

0ksendal, B. (1992) : Stochastic Differential Equations, Springer-Verlag, Berlin.

RenaissanceRe Holdings Ltd. (1996) : Form lO-K Annual Report Pursuant sectionIS or 
15(d) o f The Securities Exchange Act o f1934, Pembroke, Bermuda.

Ryan, J. (1994) : Advantages o f Insurance Futures, The Actuary, April, 20.

194



Seal, H. L. (1983) : The Poisson process: Its failure in risk theory^ Insurance: 
Mathematics and Economics, 2, 287-288.

Serfozo, R. F. (1972) : Conditional Poisson processes, J. Appl. Prob., 9, 288-302.

Smith, A. (1994) : Insurance Derivatives, The Actuary, April, 22.

Smith, J. A. (1980) : Point Process Models o f Rainfall, Ph. D Thesis, The Johns Hopkins 
University, Baltimore, Maryland.

Smith, R. E., Canelo, E. A. and Di Dio, A. M. (1997) : Reinventing reinsurance using the 
capital markets. The Geneva Papers on Risk and Insurance-Issues and Practice, 22, 26- 
37.

Sondermann, D. (1991) : Reinsurance in arbitrage-free markets. Insurance: Mathematics 
and Economics, 10, 191-202.

Srinivasan, S. K. (1974) : Stochastic Point Process and Their Applications, Charles 
GrifFin & Company Ltd., London.

Sutherland, H. D. (1995) : Catastrophe Insurance Futures and Options: Threat or 
Opportunity!, 17th Annual UK Insurance Economist's Conference, University of 
Nottingham Insurance Centre.

Williams, D. (1991) : Probability with Martingales, Cambridge University Press.

195


