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Abstract

The well-known "law of supply and demand" says that an increase in the
price of a commodity leads to a decrease in the aggregate demand for this
commodity and an increase in aggregate supply. There is, however, no theor-
etical foundation for this "law". Empirical evidence, on the other hand,
should be interpreted with care. If one estimates the parameters of certain
functional forms for demand and supply functions, then the results may

simply be consequences of the parametric assumptions made in estimation.

The first chapter of the thesis discusses the implications of the
assumption of profit and utility maximisation for the properties of demand
and supply functions. It explains why economic ratiomality on the micro-
level does not, in general, lead to macroeconomic regularities and suggests
replacing the consumption sector of the neoclassical equilibrium model by a
large population of individually small consumers.

Such a population will be explored in the second chapter. The chapter
is a direct outgrowth of a basic contribution by W. Hildenbrand: "On the
Law of Demand"”, Econometrica 1983. In W. Hildenbrand's model the market
demand function is defined by integrating an individual demand function
with respect to an exogenously given income distribution. We build into the
model an individual labour supply function and then compare the matrix of
aggregate income effects studied by W. Hildenbrand with that obtained by
integrating the individual demand function with respect to a distribution
of wage rates.

The empirical part of the thesis analyses the labour supply and
earnings data in the U.K. Family Expenditure Survey 1970-85. Using hon—
parametric smoothing methods, the elasticity of labour supply with respect
to the wage rate is estimated for several groups of workers. The esti-
mations for full-time workers confirm the famous "downward sloping™ labour
supply function. The estimated elasticities for the entire population of
vorkers for the years 1970-85 have the mean value 0.2 and the standard

deviation 0.02.
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Notation and Definitions

We will denote the set of real numbers by R; the set of all non-
negative real numbers will be denoted by R+, and the set of all positive
real numbers will be denoted by R¢+. The sets Re:, R®:¢ and R"+. are defined
as the n-fold Cartesian products of R, R+ and R++, respectively.

The sum of two vectors x=(X1,...,Xa) and y=(vi,...,¥n) is defined as
X+y = (X1+Yt,...,Xa+yn), and the product of x by a real number o is defined
as ax = (aX1,...,0Xn).

Let x, v, xt,...,x* be elements of R®. For the sum xi+...+X™ we write
Xxi. The scalar product of x and y is denoted by xy and is given by xy =
XX1y1, where x=(X1,...,Xa) and y=(vi,...,¥n); lIxl| denotes the Fuclidean
norm of x, i.e., |ix||=xxX. The symbol #A stands for the number of elements

in a finite set A.

f: D—R™ denotes a function f with domain D in R and range in R®;
f(A) is the set of all points f(x) such that xeAg¢D. The components of f are
indicated by fi,....fm. We denote the Jacobian matrix of f at x=(X1,...,Xa)
by 5f(x); the elements of 8f(x) will be denoted by &x;fi(x), i.e., bxjf1(x)
is the partial derivative of fi with respect to the j-th variable at x. If
we want to emphasise that the derivative is evaluated at some particular
point x*, we write ox; £1(X) 1x=x+. The integral of f with respect to a

measure p on D is defined as

Ifdu = (jfldu, e ,Jt.du) .

The function f: D—)R®» is called homogeneous of degree zero if f(x) =
f(ax) for all xeD and all a>0 such that axeD. A function g: R+—>R+ is said
to be a density if g integrates to one, i.e., Jb(x)dx = 1.

A real nxn matrix A=(aiy) is said to be positive (resp. negative)
semi-definite if xAx20 (resp. xAx<0) for all x in R®, where xAx=XaijXiXy
(note that we do not assume that A is symmetric).






Chapter 0

Market Excess Demand Functions
in General Equilibrium Theory

1. Topic of the Thesis

If one wants to study how a market economy responds to changes in its
exogenous parameters, certain properties of the commodity demand and the
labour supply function are required. Textbooks on macroeconomics usually
assume that aggregate labour supply is an increasing function of the real
wage; in virtually all partial equilibrium studies it is assumed that the
demand for an aggregated commodity is a decreasing function of the commod-
ity price. There is, however, no microeconomic foundation for assumptions
of this type. Typically there will be individuals in the economy who re-
spond to a price increase by increasing their demand. If such people are in
the majority, the market demand function will not be monotone decreasing in
the commodity price. The question arises whether it is possible to identify
"broad" classes of distributions of consumption characteristics which lead
to macroeconomic regularities. More precisely, are there testable (and not
too restrictive) hypotheses on the distribution of personal characteristics
wvhich imply that the aggregate commodity demand (resp. labour supply)
function has specific properties? An important step to an answer of this
question was taken by W. Hildenbrand (1983).

Empirical evidence on the dependence of commodity demand and 1labour
supply upon prices and wages should be interpreted with care. It is stan-
dard practice in the literature to estimate the parameters of certain
functional forms for aggregate commodity demand and labour supply relation-
ships. Observed regqularities may therefore simply be consequences of the
parametric assumptions made in estimation. For the case of the commodity
demand function the problem of estimation was recently addressed by K.
Hildenbrand and W. Hildenbrand (1986) and W. Hildenbrand (1989%a).



The present thesis builds on the above three contributions. Chapter 1
emphasises the importance of the labour market for structural properties of
the market demand function; the chapter discusses Hildenbrand (1983) and
extends the model. Chapters 2 and 3 present an analysis of the earnings and
labour supply data in the U.K. Family Expenditure Survey 1970-85. Chapter 2
is concerned with the distribution of wages and hours of work. In Chapter 3
labour supply curves for several populations of workers will be estimated.
The novelty of our empirical study is that we use nonparametric smoothing
techniques in order to estimate the elasticity of labour supply with re-
spect to the wage rate. The chapters are written in such a way that they
can be read independently of each other.

This chapter discusses the neoclassical equilibrium model. Section 2
gives an informal description of the model. Section 3 reviews the impli-
cations of the paradigm of profit and preference maximisation for the
properties of demand and supply functions; we close the section with the
results on excess demand functions by Debreu (1974) and Mantel (1976). In
Section 4 we sketch the proof of Debreu's indeterminacy theorem.

2. The Neoclassical Equilibrium Model

The primitive concepts of the model are commodities, prices, technol-
ogies and preferences. There are two types of economic agents: consumers
and producers. Consumers are characterised by preferences and income; pro-
ducers are characterised by technologies. A certain behaviour of consumers
and producers is assumed. Finally, an equilibrium concept is introduced.
The model was first formulated by Walras (1874); the rigorous mathematical
foundation was provided by Arrow and Debreu (1954). Excellent textbooks
are, e.g., (in increasing order of abstraction) Varian (1984), Malinvaud
(1972), Arrow and Hahn (1971) and Debreu (1959).

It is assumed that there is a finite number n of commodities. Commod-
ities are labelled in such a manner that one can speak of commodity 1,
commodity 2 and so on; the same applies to comsumers and producers. A
commodity bundle is a collection x=(x1,...,Xa) of the n goods, where xi is
to be read as "Ixi| units of commodity i" (we will see below that some of



the elements of x typically have a negative sign). To each good i a price
p1>0 is assigned; a list p=(p1,...,Pa) Of the n prices is called a price
system. The price pi1 is interpreted as the amount which has to be paid to-
day by an agent for one unit of commodity i which will be made available to
him (in the future). Some of the n commodities are usually specific types
of labour; hence some of the prices pi are usually wage rates. (Notice that
the model does not explain who determines the price system.)

A producer (resp. firm) uses inputs in order to produce certain
outputs. A collection y=(yi1,...,yn) of amounts of inputs and outputs is
called a feasible production plan if the outputs can be produced with the
inputs. To be able to distinguish between inputs and outputs in a produc-
tion plan, inputs have a negative sign and outputs have a positive sign.
Thus, if yi1<0 then -yi units of commodity i are used as an input; if yi1»0
then yi units of commodity i are produced; if yi1=0 then commodity i is not
used in the production process described by y. The set of all feasible pro-
duction plans, called the producer's technology, is a subset of R® and will
be denoted by Y.

Suppose the firm realises the production plan y in Y. Then the scalar
product py represents its profit with respect to the price system p. It is
assumed that the firm wants to maximise py, i.e., the production target is
to choose a point y* in Y such that py<py* for all y in Y, where p is
exogenously given. Under this assumption, a firm is completely described by
its technology. (Notice that we do not really describe a firm but merely
technological knowledge. The classic article on the "theory of the firm" is
Coase, 1937; for a survey see, e.g., Holmstrdm and Tirole, 1989.) |

The role of the consumer {(resp. household) is to supply labour and to
consume commodities, i.e., the consumer chooses a consumption plan X =
(Xt yee.,Xn) in his consumption set X; X is the set of all consumption and
labour supply combinations which the consumer could realise in principle
(i.e., X is the consumer's "technology"). We reverse the above sign con-
vention: the labour supply of a consumer has a negative sign, and his
consumption is represented by positive numbers. From the point of view of
the model, the crucial difference between a consumer and a producer is that
the consumer does not want to maximise his income but his satisfaction
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which he derives from consumption; furthermore the firms are owned by the
consumers (see Koopmans', 1957, first essay for a beautiful discussion of

Robinson Crusoe's complex decision problems).

Given any two consumption plans x and x' in X, it is assumed that the
consumer is able to say whether he likes x more than x', or vice versa, or
whether he is indifferent between x and x'; furthermore, if from the point
of view of the consumer x is at least as good as x*' and x' is at least as
good as x", then it is assumed that the consumer does not desire x" more
than x. Hence, the tastes of a consumer can be described by a binary
relation =< on X, called preference relation, which is complete and tran-
sitive (or, equivalently, by a utility function u: X—>R). The expression
xe£x' [resp. the inequality u(x) < u(x')] is interpreted as "the consumer
does not like x more than x'"; if x < x' and x'< x, we say "x is indif-
ferent to x*'". It is assumed that < does not depend on prices and on other
consumers' tastes.

Suppose the consumer has non-labour income m. Then he can only realise
consumption plans x which have the property that px does not exceed m. It
is assumed that the consumer chooses a point x* in X such that px*<m and
x%x* for all x in X satisfying px<m (that is to say, the consumer is a
"fully rational" person).

Under certain assumptions on preferences (resp. utility functions) one
can show the following: (i) x* exists and is uniquely determined by p and
m; (ii) the function x*=f(p,m) is continuous (resp. differentiable); and
(iii) the consumer does not keeh any money back, i.e., pf(p,m)=m. Under
certain assumptions on technologies one can show that a uniquely determined
profit maximising production plan y*=y(p) exists and that y(p) is a con-
tinuous (resp. differentiable) function.

The function f(p,m) is called the demand function of the consumer; the
function y(p) is called the supply function of the producer. (Note that
f(p,m) contains the labour supply of the consumer at (p,m); y(p) contains
the demand for labour of the firm at the price system p.)

There are H consumers in the economy having consumption sets Xi,...,Xu
and preference relations #£;,...,4x; the demand of consumer i at (p,m) will
be denoted by ft(p,m) (i=1,...,H). There are F firms having technologies
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Yi,...,Yr; the supply of producer j at the price system p will be denoted
by vI (p) (j=1,...,F).

It remains to explain where non-labour income m stems from. In a
private ownership economy all natural resources and all firms are owned by
the consumers; furthermore, the consumers own various commodities which
have been produced in the past. The total resources of the economy are
represented by a commodity bundle w=(wi,...,¥n), i.e., w includes the
natural resources of the society and commodities which have been produced
in the past and which are still available.

The access to total resources which consumer i has is represented by a
commodity bundle wi=(wti,...,wla); w! is called the initial endowment of
consumer i. The firm shares of consumer i are represented by a list 6i=
(6ty,...,0'r) of non-negative numbers, where O!3; is interpreted as the
proportion of the total profit of firm j which accrues to consumer 1i.
Hence, the non-labour income of consumer i at the price system p is given
by bt (p)=pwi+Lj81l;pyI (p), and consumer i will choose the consumption plan
x1 (p)=£f1 (p,bt (p)). By definition of wt and 6!, Xwi=v and X;613=1 for all
j=1,...,F. (Notice that the model does not explain the ownership relationms;
these are historically given.)

The model is now fully specified. A production economy is given by F
firms and H consumers. The firms are described by their technologies Yi,
«...Yr; each consumer i is described by his consumption set Xi, his prefer-
ence relation £, his initial endowment w! and his firm shares 6!, where i=
1,...,H. An exchange economy is an economy where no production takes place,
i.e, Y5={0} for all j.

The total supply at the price system p is given by y(p)+w, where
y(p)=XyI (p);: x(p)=xx!(p) is called total demand, and z(p)=x(p)-y(p)-w is
called excess demand. Since all households spend their whole income on
consumption, we obtain the so-called KWalras identity pz(p)=0. The price
system p* is said to be an equilibrium price system if z(p*)=0. A market
equilibrium (or Walrasian equilibrium) is a collection {(xi(p))i=1,...,H,
(yJ(p))s=1,...,F, p} such that p is an equilibrium price system. (Notice
that a proportional change in all prices will not affect the decisions of
consumers and producers, i.e., z(p) is homogeneous of degree zero in p.)
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Of course, one has to prove that market equilibria exist. One may pro-
ceed as follows. Let S be the positive part of the (n-1)-dimensional unit
sphere, i.e., S={xe¢Rv: |iIxl{=1 and x1>0, i=1,...,n}. By Walras' identity
and homogeneity of z(p), the excess demand function may be looked at as
defining a tangent vector field on S. Congider an exchange economy. If all
commodities are desired by the consumers, {iz(p)l| tends to infinity if the
price of a commodity approaches zero. Furthermore, each consumer can only
supply a certain maximum amount of services to the other members of the
society, i.e., the function z(p) is bounded below. These two properties of
the excess demand function imply that z(p) points "inward" near the bound-
ary of S (see Figure 1). One can now show that a continuous vector field on
S with such a boundary behaviour has at least one point p such that z(p)=0.
To prove that an arbitrary continuous function z: S—>R® satisfying

(1) z is bounded below,
(2) 11z(p)I|—= if p tends to the boundary of §,
(3) pz(p)=0 for all p in S

must have a zero, one needs Brouwer's fixed point theorem or a similar
powverful mathematical argument (see, e.g., Varian, 1984, pp. 195-197; a
comprehensive discussion of the existence question is given by Debreu,
1981). The next section will show that it is not possible to establish the
existence of a market equilibrium by elementary methods.

faq

1

Figure 1
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3. Properties of Supply and Demand Functions

The question arises whether microeconomic rationality, i.e., the para-
digm of profit and preference maximisation, implies certain structural
properties of the excess demand function. We proceed by first proving four
simple propositions; we then state two theorems which may be interpreted as
the "death sentences" of microeconomic theory. We begin with some general
remarks.

3.1. Uniqueness and Stability of Equilibrium

The market equilibrium has been defined as a state of the economy
where all consumption and production plans are compatible with each other,
i.e., every member of the society can realise his plans. In natural
sciences one typically requires much more from an equilibrium. One thinks
of the equilibrium of a physical system as an "equilibrium state" and a
"motion to the equilibrium state"” if the system is not in the equilibrium
state already. One may take the view that a complete model of a market
economy should have a uniquely determined and (locally) stable equilibrium.

Suppose the economy is in a state of disequilibrium, i.e., the pre-
vailing price system p is such that z(p)+0. If p is far away from an equi-
librium price system of the economy, it may happen that the economy never
reaches an equilibrium state on its own accord since significant disturb-
ances of a system may have unpredictable consequences. However, if p is
sufficiently close to an equilibrium price system p*, and if there are then
no forces which gquarantee that p tends to p*, then the Walrasian equilib-
rium concept is economically not very meaningful. Hence, at the very least,
the economy should have a locally stable equilibrium. The problem with
multiple equilibria is that it is very difficult to explore how the economy
responds to a change in its exogenous parameters (i.e., technologies,
preferences, firm shares and resources) if there are a number of distinct
equilibria (we will see below that it is not impossible). To put it differ-
ently: a model which typically produces more than one equilibrium does not
provide a sound theoretical foundation for the great number of comparative-
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statics studies which one can find in the 1literature. Let us quote
Samuelson (1947, p. 257):

Thus, in the simplest case of a partial-equilibrium market for a
single commodity, the two independent relations of supply and
demand. . .determine by their Iintersection the equilibrium quan-
tities of the unknown price and quantity sold. If no more than
this could be said, the economist would be truly vulnerable to the
gibe that he is only a parrot taught to say "supply and demand."
Simply to know that there are efficacious "laws" determining equi-
librium tells us nothing of the character of these laws. In order
for the analysis to be useful it must provide information con-
cerning the way in which our equilibrium quantities will change as
a result of changes in the parameters taken as independent data.

The problem of stability is more subtle than that of uniqueness. The
neoclassical equilibrium model is based on the assumption that all members
of the society take prices as given and adjust to them. If at all, however,
this behaviour is reasonable only in an equilibrium. The question arises
hov consumers and producers actually behave in a disequilibrium state. Does
this behaviour then imply that a price system p with z(p)}0 tends to an
equilibrium p*? In this chapter we will consider a very simple and arti-
ficial price adjustment mechanism called the Walrasian tatonnement process
(see Arrow and Hahn, 1971, Chapters 11-13, for a detailed discussion of the
stability question). The idea is to view the economy as a large "auction".
Given a hypothetical price system, consumers and producers inform the
auctioneer about their consumption and production plans. The auctioneer, in
turn, tries to find prices such that all plans are compatible with each
other. This is an artificial but well-defined situation. It is natural to
ask whether such an auction will produce an equilibrium. If this is not the
case, one may consider more complicated price adjustment processes. How-
ever, one should expect that an auction is capable to produce the desired
result. Let us be more precise.

Suppose there is a fictitious agent, called the Walrasian auctioneer,
who announces a price system p. Each producer j informs the auctioneer
about his profit maximising production plan yJ (p) at p. The auctioneer in-
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forms the consumers about the production plans. Each consumer i uses this
information to compute his non-labour income bt (p) and then informs the
auctioneer about his optimal consumption plan x!(p). The auctioneer com-
putes z(p). If z(p)#0, no trade takes place and the auctioneer chooses a
new price system such that the price change is proportional to excess
demand. The above process begins again and continues until an equilibrium
p* has been found; at p* all trades will be carried out.

The auction can be described by a system of differential equations
p'1 (t)=kizi (p(t)) (ki>0, i=1,...,n). By choosing the units of measurement
appropriately, one may assume without loss of generality that ki=1 for all
i=1,...,n. A very readable book about differential equations is Hirsch and
Smale (1974); see especially Ch. 8 and Ch. 9. Let us mention the following:

The excess demand function z(-) is a function from R®++ into R®. A function
p(-): [0,b]—™Russ (b>0) which satisfies p’'(t)=z(p(t)) is called a (local)
solution of the differential equation p‘'=z(p). If z(.) is continuously
differentiable, there exists for all p° in R":++ a local solution p(-) of
p'=z(p) such that p(0)=p°, and p(:) is uniquely determined by the initial
condition p(0)=p°.

Let p(-): [0,b]—/™R":++ be a solution of p'=z(p). By differentiating t—
lip(t)l1, one sees that the Walras identity implies |(p(t)|! = constant for
all t. Hence, if p(0)eS={xeR®: |Ix|i=1 and x170, i=1,...,n}, the price path
p(-) never leaves the unit sphere. By homogeneity of z(p), the excess de-
mand function may be viewed as a function from S into Re.

We would like to know under what conditions p(t) converges to a zero of
z{(-) as t tends to infinity and whether the excess demand function sat-
isfies "in general" these conditions. It may, however, happen that there
exists no (global) solution p(-): Re—>S with initial value p(0)=p°. The
reason for this is that there may be a finite b>0 such that p(t) tends to
the boundary of S as t approaches b. Suppose there is a closed subset K =
K(p°) of S, such that every solution p(-): [0,b]—S with p(0)=p°® lies en-
tirely in K (i.e., p(t)eK for all te[0,b]). Then there is a global solution
p(-): Re—>S with p(0)=p° and p(t)eK, t>0. We will assume in the following
that this condition is satisfied by the excess demand function (loosely
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speaking, this means that we exclude the existence of an interval ]O,.pi]
such that zi1 (p) is negative for all pi: in }JO,pi]).

A point x in a subset X of R* is called isolated if x is not a point
of accumulation of X, i.e., there exists >0 such that |ix-x'l|2t for all
x' in X with x'$x. The two crucial definitions are now the following: Let
p(-,p°): R+—>S be the global solution of p'=z(p) with initial condition
p(0)=p°. A 2zero p* of the excess demand function z(-) is called locally
(Walras) stable if there exists 1>0 such that limi—«p(t,p°) = p* for all
p° in S with [ip*-p°ll < 1. The zero p* of z(-) is called globally (Walras)
stable if limt—>«p(t,p°) = p* for all p° in S. Notice that local stability
implies that p* is an isolated zero of z(:) in S while global stability
implies that p* is the only zero of z(.) in S.

Before turning to the properties of demand and supply functions, we
vant to draw attention to the following point. A commodity is characterised
by its nature and quality, the place at which it is available and the point
in time at which it is available (e.g., oil is a product that is available
in various qualities; a pianist provides a service which is also available
in various qualities). An individual may respond to a wage increase by
supplying a better quality of labour (see the "efficiency wage™ literature,
e.g., Akerlof and Yellen, 1986). Likewise, a firm may respond to an in-
crease in the price of one of its products by improving the quality of the
product and supplying less units of the improved product.

From the point of view of the model the firm (resp. individual) then
no longer supplies the same commodity. By assumption,  there is a finite
number n of distinguishable commodites in the economy. This means that we
have a finite number of exogenously given qualities of products and ser-
vices, a finite number of exogenously given locations and a finite number
of exogenously given periods. 1f there are K products in the economy, and
if the i-th product is available in nii qualities at nzi places and at nsi
points in time, then we have n = niinzins: +...+ mkhzxhag commodities in

the economy (see also Malinvaud, 1972, pp. 5-8).

The price of a commodity is the amount which has to be paid today for
one unit of a product or service of a given quality which is available at a
given location at a given point in time. We emphasise that there is no



17

"dishonesty" in the model. If a buyer wants to have x units of a certain
commodity i and if the buyer pays today the amount pi1x to the seller, then
X units of exactly that commodity will be made available to the buyer. [An
excellent discussion of uncertainty in the model is given by Debreu (1959,
Ch. 7). For a discussion of the problem of asymmetry of information, we
refer the reader to Varian (1984, Ch. 8); the classic article is that by
Akerlof, 1970).

Clearly, in this framework the hypothesis of profit maximisation im-
plies that a firm does not produce less units of a commodity (resp. does
not employ more labour) if the price of the commodity (resp. the wage rate)
increases while all other prices do not change. More generally, one has the
following relation between p and y(p) (note that a function g:R—R is
monotone increasing if and only if (x-x')(g(x)-g(x'))20 for all x,x'eR).

Proposition 1: Let y(p) be the supply function of a profit maximising
firm. Then for all price systems p and q

(M) y(p)=y(q) or (p-q)(y(p) - yv(q)) > 0.

Proof: Suppose y(p)#y(q). Let p' be any price system. Since y(p') is the
uniquely determined production plan at the price system p', we have
p'y(p')>p'y(p") for all p" with y(p')$y(p"). Hence, (p-q)(y(p)-y(q)) =
oy (p) - py(q@)] + [qv(q@) - qv(p)] > O. Q.E.D.

The property
py(p) 2 py(q) for all p, q

is sometimes called the weak axiom of profit maximisation; we will see
below that the demand function of a consumer has a similar property. We
remark that one may found the theory of the firm on the weak axiom of
profit maximisation. Property (M) is additive, i.e., the aggregate supply
function y(p)=XyJ(p) also satisfies (M): Let y(p)$y(q). Then there is a
firm j such that yJ (p)+$yJI (q). Hence,

(p - @ (y(p) -y(@) = =3 - QyI(p) - vi(q)) > 0.
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Suppose the aggregate demand function x(p) is strictly decreasing on
the set S of normalised price systems, i.e., (p-q) (x(p)-x(q))<0 for all p,
q in S with p#q. As the next proposition shows, the equilibrium price
gsystem is then uniquely determined (up to normalisation) and globally
¥Walras stable.

Proposition 2: Let PSR be open. Let z: P-—R® be continuously
differentiable. Suppose (i) E={peP: z(p)=0} is non-empty and (ii)
every solution p(-) of p'=z(p) with p(0)=p°® (p°ctP) remains in a com-
pact subset of P. Then the following holds:

(a) if z is strictly decreasing on P, i.e., for all p, q in P with p#q

(p - @ (z(p) - z(q)) < O,

then z has exactly onme zero p*, and p* is globally stable;
(b) the zero p* in E iIs isolated and locally stable if there is a 1’0
such that for all p in P with |Ip-p*| 1<t and pp*

(p - p*)z(p) ¢ 0.

Proof: Because of (ii) there exists for all p° in P a uniquely determined
function p(:): R+—P with p(0)=p° which satisfies the differential equa-
tion p'=z(p) (e.g., Hirsch and Smale, 1974, p. 172).

(a) Obviously, there is at most one p in P such that z(p)=0. Let p* be the
unique zero of z. Let p°tP, and let p(-) denote the solution of p'=z(p)
with initial condition p(0)=p°. If there is a t*>0 such that p(t*)=p*, then
p(t)=p* for all t>t* since p(-) is uniquely determined by the initial
condition p(0)=p°; hence p(t)—p* as t—>=. Suppose p(t)fp* for all t20.
Set D(t)=1ip(t)-p*ii2. Then, by strict monotonicity of z,

D'(t) = 2(p(t) -p*)(z(p(t)) - z(p*)) ¢ O (t20).

Hence, D(t) is a strictly decreasing function of t. If D(t)—O0 as t—)«,
then p(t)—p*. Suppose D(t)—D with D>0. We show that this leads to a
contradiction: An infinite bounded subset of R® has at least one point of
accumulation. Hence, since p(t)e[D,D(0)] (t>0), there exist a sequence (ta)
and a vector p', p'fp*, such that p(ta)—p' as n—)=. Because of (ii), p'
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does not lie on the boundary of P, i.e., z(p') is defined. Since D(t)—D,
wve have D'(t)—0 as t—>». Hence, by continuity of 2z,

0 = limn—=D'(ta) = 2(p' - p*)(2(p') - z(p*))

However, this is not possible since z is strictly decreasing. Hence, D=0
and therefore p(t)—p* ag t—>e,

(b) Suppose p(t)#p* for all t20. Because of the proof of (a), it suffices
to show that D(0)<t2 implies D'(t)<0 for all t>0. But this is obvious:
Since D(0)<12, we have D'(0)¢0, i.e., the distance between p(t) and p* is
first decreasing. Suppose there is a t>0 such that D'(t)20. Let t* be the
smallest t>0 with D'(t)20. Then D(t*)<D(0) and D'(t*)=0. However, D(t*)<t2
implies D' (t*)=2(p(t*)-p*)z(p(t*))<0. Hence, D' (t)<0 for all t20. Q.E.D.

Part (b) of Proposition 2 is illustrated in Figure 2a for the case
n=1l. Notice that (b) does mnot imply that the partial functions
p1—2z1 (p*1,...,Pt,...,P*n) are decreasing on [p*i-t1,p*1+1]. The property
of the function z in (b) excludes the instability shown in Figure 2b while
(a) implies that the functions zi1(p) (i=1,...,n) are strictly decreasing in
their own variable pi.

(a) (b)
Figure 2
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Let us now turn to the implications of the hypothesis of preference
maximisation for the market demand function x(p). An individual demand
function f(p,m) which is derived from preference maximisation has an
important (testable) property: '

Proposition 3: Let f(p,m) be the demand function of a preference
maximising consumer. Let p and p' be any two price systems, and let m

and m' be any two non-labour incomes. Then

(W) f(p,'m)+f (p',m*') and pf(p',m')<m implies p'f(p,m)>m'.

Proof: Suppose f(p,m)$f(p',m’) and pf(p',m')<m. Then the consumer could
realise the consumption plan f(p',m') at the price system p given non-
labour income m. But he chooses f(p,m)+f(p',m'), and his optimal choice is
uniquely determined by p and m. Hence, he prefers f(p,m) to f(p‘',m').
Suppose p'f(p,m)<m'. Then the same argument produces the contradiction
"f(p',m') is preferred to f(p,m)". Hence, p'f(p,m)>m'. Q.E.D.

Property (¥W) is called the weak axiom of revealed preference (the
theory of the consumer may be founded on (W); see Samuelson, 1938). In
applications of the equilibrium model one usually assumes that the market
demand function x(p) may be looked at as the demand function of a ficti-
tious consumer, called the "representative" consumer, who owns the economy,
i.e., the total resources w of the economy are his initial endowment and
his firm shares are given by ©=(1,...,1). This assumption does not imply
that the partial demand curves xi(p) (i=1,...,n) are decreasing in their
owvn price. Even if the individual demand function f(p,m) is monotone de-
creasing in p for any given m, the function p—f(p,pw), weR®:, may be
increasing on a subset of prices (note that an increase in a commodity
price pi1 implies an increase in income if wi1>0). However, if the market
demand function x(p) can be written as x(p) = f(p,b(p)), where b(p) = pv +
total profit of the production sector at p, themn there is "almost always" a
uniquely determined and globally stable equilibrium price system.
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Proposition 4: Let E be the set of equilibrium price systems of an
economy with demand function x(p), supply function y(p) and total re-
sources v, i.e., E={peRv++: 2(p)=0}, where z(p)=x(p)-y(p)-w. Let n(p)=
pY(p), and let N(p)=x(p)-w. Suppose the function x(p) is the demand
function of a fictitious consumer having the initial endowment w and
profit income n(p). Then, for any two price systems p and q in R4+

(a) N(p)$N(q) and pN(q)<n(p) implies qN(p)>n(q).
Property (a) has the following implications:

(b) z(p)$z(q) and pz(q)<0 implies qz(p)>0;

(c) x(p)=x(q) for all p, q in E;

(d) E is convex, i.e., if p,qtE then ap+(1-a)qeE (0sasl);

(e) the equilibrium price system is unique up to a multiplicative
constant if ENS has an isolated point;

(£) if EnS={p*}, then p* is globally Walras stable.

Proof: By assumption, there exists an individual demand function £f(p,m)
such that x(p)=f(p,b(p)), where b(p)=pw+n(p).

(a) "N(p)$Nq) and pN(q)<m(p)" is equivalent to "x(p)$x(q) and px(q)s<b(p)".
Thus, (a) is an immediate consequence of Proposition 3.

(b) Let z(p)#z(q) and pz(q)<0. Suppose N(p)=N(q). Then y(p)#y(q) and there-
fore qz(p) = q(N(p)-y(p)) = qN(q)-qy(p) = n(q)-qv(p) > 0. Clearly, pz(q)<0
implies pN(q)<m(p). Hence, if N(p)$N(q), then by (a) qN(p)>m(q) and there-
fore qz(p) = q(N(p)-y(p)) > O since n(q)2qy(p).

(c) is an immediate consequence of (a) and profit maximisation.

(d) One easily verifies that m(p) is convex, i.e., m(ap+(1-a)q) < an(p) +
(1-a)u(q) for all p, q (0<o<l). Let p,qtE; put pa=ap+(l-a)q, 0<a<l. Because
of (c), v(p)=y(q)=y. Since n(p) is convex, n(pa)<pey and therefore y(pa)=y
for all ae[0,1]. Now paN(p«) = mn(ps) < an(p)+(1-a)n(q). Hence, either
pN(p«)sn(p) or qN(p«)<m(q). Suppose pN(pa)sm(p). Since N(p)=y and n(pa)=
Pay, we have paN(p)=n(pe). Hence, (a) implies N(pa«)=N(p). If qN(p«)<m(q),
then (a) implies N(pa)=N(q). Thus, E is convex.
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(e) follows immediately from (d).

(f) Let p(:): Re—>S be a solution of p'=z(p') with p(t)#p* for all t20.
Set D(t)=11Ip(t)-p*1i2. Then D' (t)=-2p*z(p(t)) <0 because of Walras' identity
and (b). To show p(t)—p*, one now has to repeat the proof of part (a) of
Proposition 2. Q.E.D.

The function N(p)=x(p)-w is called net demand function. The net demand
function N(p) [resp. excess demand function z(p)] is said to satisfy the
veak axiom of revealed preference if (a) [resp. (b)] holds. Notice that (b)
does not imply (a); because of the monotonicity of the supply function
y(p), the excess demand function z(p)=N(p)-y(p) may satisfy (b) while the
net demand function N(p) does not satisfy (a). However, the weak axiom of
revealed preference for the market net demand function is the most general
condition on the consumption side of the model that by itself (i.e., ir-
respective of the production sector) guarantees (e) and (f). The following
argument is due to H. Scarf (for a detailed discussion see Kehoe, 1985):

Consider an exchange economy, i.e., pN(p)=0. Suppose N(p) does not satisfy
(a), i.e., there are price systems p and q with N(p)#N(q), pN(q)<0 and
qN(p)<0. Set Y={yeRr: py<0 and qy<0}. Then Y represents a technology with
constant returns to scale, i.e., ytY implies ayeY for all a>0. Since N(p),
N(q)eY and pN(p)=qN(q)=0, N(p) and N(q) are profit maximising production
plans with respect to p and q, respectively. Hence, p and q are equilibrium
price systems of the production economy described by N(-) and Y; see Figure
3 on the next page. (Notice that the exchange economy may have a unique
equilibrium, i.e., there may be only one p in S such that N(p)=0.)
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N(q)

Figure 3

The problem with the weak axiom is that it is not an additive prop-
erty. One can easily construct examples such that the net demand function
N(p) does not satisfy (a). Before turning to the question of what can be
said about the class of excess demand functions generated by the equilib-
rium model, let us explain that it is mot restrictive to assume that an
equilibrium price system is isolated in S, i.e., "almost all" economies
have a finite number of equilibria.

Consider a two-commodity economy with a differentiable excess demand
function z(p). By Walras' identity 2zz (p1,pz)=-(p1/pz)z1(p1,p2), and there-
fore z(p)=0 < z1(p)=0. If one normalises prices such that pi2+pz22=1, then
z1 (p1,p2) can be represented by a differentiable function f: ]0,1[—R with
f(x)=21(x,YI-x%). Let E denote the set of zeros of f. Suppose there are xi
and xz in ]0,1[ such that £(x)>0 on ]0,x1[ and £(x)<0 on ]xz2,1[. Then E is
closed since f is continuous and the zeros of f stay away from 0 and 1. If
f'(x*)$#0 at a zero x*, then one easily verifies that x* is an isolated zero
of f. Hence, if f'(x)#0 for all x in E, then E must be finite (see, e.qg.,
Apostol, 1974, Theorem 3.24, p. 54). Furthermore, the boundary behaviour of
f implies that f crosses the x-axis at least once and that the number of
downward crossings exceeds by exactly one the number of upward crossings,
i.e., we obtain an odd number of zeros (see also Figure 4 on page 26).

The above observations can be generalised. An economy is called
reqular if (i) the excess demand function z: Ro4+-—)R® is continuously
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differentiable and (ii) rank &z(p)=n-1 at all p with z(p)=0 (since z(ap)=
z(p), «)0, the Jacobian matrix can at most have rank n-1). A reqular econ-
omy has an odd number of equilibrium price systems in S. Property (ii) is
"robust" in the following sense: if at a zero p rank &z(p)<n-1, one only
has slightly to change the excess demand function to obtain rank &z (p)=n-1;
if rank 8z(p)=n-1, then a slight change in z does not lead to rank &z(p)<
n-1 (note: any n linearly dependent vectors in R® can be made linearly in-
dependent by a slight perturbation, but the reverse is not true, i.e., a
family of linearly independent vectors cannot be made linearly dependent if
only slight variations of the vectors are permitted).

One can show that the excess demand function depends continuously on
the parameters of the economy. If a given economy is regular, then it will
still be reqular after a small perturbation of its parameters has taken
place. A slight perturbation of a regqular economy does not change the
number of equilibria. In particular, one can show that each equilibrium
price system moves along a continuously differentiable curve if only local
parameter changes .are permitted; that is to say, regular economies may be
used to study comparative-statics questions. On the other hand, if a given
economy is not regular (such an economy is also called "critical"), one
only has slightly to change endowments or preferences in order to obtain a
reqular economy.

The above remarks suggest that regular economies form an open and
dense set in the class of all economies generating continuously differen-
tiable excess demand functions. Let us be more specific. Consider an
exchange economy vwhere the individual demand functions fi(p,m) are fixed.
Then the parameters of the economy are the initial endowments wigRe (i =
1,...,H) of the consumers. One can prove now that those endowment distribu-
tions (w!,...,w?) which give rise to critical economies are contained in a
closed and nowhere dense subset of RER having Lebesque measure zero, i.e.,
they are "negligible" (see Mas-Colell, 1985, for a comprehensive dis-
cussion; the classic article is Debreu, 1970). Hence, if one picks randomly
an economy then this economy has "almost surely” a finite number of
normalised equilibrium price systems. However, unless one makes very strong
ad hoc assumptions on agents' characteristics, this is all one can say
about the equilibrium states of the model.
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3.2. Results on Excess Demand Functions

At the beginnings of the seventies H. Sonnenschein initiated a series
of articles on the structure of market demand and excess demand functions
(see Shafer and Sonnenschein, 1981, for a survey). It turned out that
microeconomic theory does not impose any restrictions on excess demand
functions besides continuity, homogeneity, Walras identity and boundary
behaviour (i.e., l1z(p)i{—>» as a commodity price tends to zero).

In the following we consider exchange economies such that all con-
sumers have continuous, strictly convex and monotone preference relations
(see Debreu, 1959, Chapter 4, for definitions), i.e., the underlying ex-
change economy does not have "pathological" features. Let zi (p) be the
excess demand (i.e., demand minus endowment) of consumer i at the price
system p.

Given any compact set K of price systems, the question arises what can
be said about the class of excess demand functions generated by exchange
economies on K. By homogeneity of the excess demand function we may assume
that K is a subset of S. Let Se = [peS: pi2e, i=1,...,n} (£>0).

In an impressive paper Sonnenschein (1973) showed that the class of
excess demand functions, as functions from Se into R®, lies dense in the
set of all continuous functions z: Se—>R® with pz(p)=0 for all p in S..
Sonnenschein proceeded as follows: He fixed the price of the n-th commodity
at unity and considered an arbitrary compact set K of strictly positive
price systems p = (pi,...,pn-1) [this specific price normalisation is
inessential for the result]. He then showed that, given any polynomials
zi: Re-t—)R (i=1,...,n-1), there is an exchange economy whose excess
demand on K is equal to (21(p),...,Zn-1(p),2a(p)), where (by Walras'
identity) zn(p) = -p1z21(p)-...-Pn-1Zn-1(p). Some months later the "state of
the art" result was published.

Theorem (Debreu, 1974): Let z: S—Rt be a continuous function with
pz(p)=0 for all p in S. Let £>0. Then there exists an exchange economy
vith n consumers such that Xzi(p) = z(p) for all p in Se.
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The theorem tells us that, apart from boundary behaviour, any tangent
vector field defined on the positive portion of the (n-1)-dimensional unit
sphere {xeRv: |IxI|| = 1} may be looked at as the excess demand function of
an exchange economy. One therefore should not expect that a given Walrasian
equilibrium is stable with respect to the adjustment process p'=z(p). In
fact, if n>3, the differential equation p‘=z(p) may have very complex
solutions.

It is worth mentioning that one obtains a misleading picture of the
situation if one studies the question of stability using a two-commodity
economy. In this case an equilibrium price system may be locally unstable.
However, the adjustment mechanism p'=z(p) takes the economy always to some
equilibrium price system. Figure 4 below illustrates this. As we see, the
equilibria A, C and E are locally stable; the equilibria B and D are
unstable.

A
F1 =2 (R, 1)
f2,= conakenk
AR > <P
A\/B C D E P
21(')P1)

Figure 4

We remark that already Scarf (1960) showed that an exchange economy
may have an unstable equilibrium. More precisely, Scarf gave an example of
an economy with three commodities and three consumers which has a uniquely
determined equilibrium, but no solution of p'=z(p) converges to the equi-
librium price system. Later Gale (1963) gave an example of an unstable
three-commodity economy with only two agents.
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The reader will see in the next section how Debreu proved his theorem;
a closer look at his proof reveals that even fixing the distribution of
initial endowments does not give more structure. To see why Debreu needs at
least as many consumers as commodities, consider the case n=2 and a one-
consumer economy. Then the excess demand function satisfies the weak axiom
of revealed preference and hence the theorem fails to hold. One may, how-
ever, assume that there are more consumers than commodities (Section 4).

In fact, it follows from Debreu's proof that the given excess demand
function may be produced by a group of H consumers, where H is any integer
vhich is greater than or equal to n, having identical preferences, i.e.,
£1=...=%u, and collinear endowments, i.e., the endowment bundles of the H
consumers lie on a straight line (Kirman and Koch, 1986).

This lack of structure is perhaps less amazing than it appears at
first glance. Firstly, the weak axiom of revealed preference, satisfied by
an individual demand function, is not an additive property. Secondly, to
construct an economy with the desired properties, one may arbitrarily pick
some points in the extremely large set of agents' characteristics (i.e.,
preferences and endowments). Certainly, the consumption sector of a real
economy exhibits considerably more structure than the consumption sector of
the model. Thirdly, the price dependence of non-labour income may "“wipe
out" properties of an individual demand functions f(p,m).

The last observation was already utilised by Scarf (1960). Sixteen
years later R. Mantel published a striking theorem which we will state be-
low and which is based on exactly this observation. Suppose the preference
relation of a consumer has the following property: if x£x' then ax<ax'
for all a>0. Such preferences are called homothetic and imply that the de-
mand function f(p,m) can be written as f(p,m)=g(p)m (we remark that the
three consumers in Scarf's example have homothetic preferences). Before
stating Mantel's result, we show that the weak axiom implies that the func-

tion g(p) is monotone decreasing.

Proposition 5: ILet f(p,m)=g(p)m. Suppose f(p,m) satisfies (W) and the
Walras identity, i.e., pf(p,m)=m. Then for all price systems p and q

(p - @) (g(p) - g(q)) < O.
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Proof: Let f(p,m) be an arbitrary individual demand function. Let m'=
qf (p,m). Then the weak axiom implies (p-q) (f(p,m)-f(q,m'))<0 (the inequal-
ity represents the substitution effect of a price change from p to q; the
non-labour income m of the consumer has been compensated in such a way that
he can realise f(p,m) at the price system q). Let m=1 and f(p,m)=g(p)m.
Then

(p - @) (g(p) - g(qg)m') + (p - @) (g(qg)m' - g(q))
(p - 9dg(q) (m* - 1)
(pg(q) - 1) (qg(p) - 1) (since pf(p,m)=m).

(p - 9 (g(p) - g(q))

A

Suppose g(p)+g(q) and pg(q)<l ([resp. qg(p)<1]. Then the weak axiom implies
qg(p)>1 [resp. pg(q)>1]. Suppose pg(q)>1 and qg(p)>1. Then (p-q) (g(p)-g(q))
= [1-pg(q)] + [1-qg(p)] < 0. This completes the proof.

Hence, if the individual demand functions f!(p,m) (i=1,...,H) are of
the form fi (p,m)=g! (p)m and if the non-labour income of the consumers does
not depend on p, then the market demand function x(p) = gt (p)bi+...+g® (p)b®
(bt denoting the non-labour income of consumer i) is monotone decreasing in
p. However, in an exchange economy the non-labour income of the consumers
is given by bi=pw!, wieR®:+ (i=1,...,H). One immediately verifies that the
scalar product (p - q)-(g! (p)-pw! - gt (q)-qw!) can be written as

pwi-(p - @ (gt (p) - gi(q)) + {(p - q@)-gt(q)}-{wt-(p - @Q}.

Notice that the second term represents the income effect of a price change
from p to q. It turns out that the income functions bt (p)=pw! (i=1,...,H)
may completely "wipe out" the monotonicity of the function g— Eaig! (q),
wvhere ai=pwt (i=1,...,H).

Theorem (Mantel, 1976): Let z: S—)R® be a function with continuous
second-order partial derivatives and pz(p)=0 on S. Let w!,...,wd be
any linearly independent vectors in R*.. Let ¢>0. Then there exist a
constant k>0 and n homothetic preference relations =i (i=1,...,n) so
that the exchange economy (% ,kwi)i=1,...,n generates z on Se, i.e.,

>zt (p) = z(p) for all p in Se.
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We remark that there are two special cases where homothetic prefer-
ences imply that the exchange economy behaves as if a single consumer were
maximising homothetic preferences: (i) If the consumers have identical
homothetic preferences, i.e., ft(p,m)=g(p)m for all i=1,...,H, and arbit-
rary initial endowments w!, then the market demand function x(p) is given
by x(p)=g(p)-pw, where w=Xw!. (ii) Suppose the functions g! (p)m are arbit-
rary and the initial endowments w! are collinear, i.e., there are a vector
weR?+ and numbers @120 such that wi=ajyw, i=1,...,H. Then market demand be-
comes x{p)=g(p)-pw, where g(p)=Xai1g!(p). One can prove that the function
f(p,m)=g(p)m is the:demand function of a consumer having homothetic prefer-
ences (see, e.g., Shafer and Sonnenschein, 1981, Theorem 3, p. 676).

However, Mantel's theorem tells us that a slight deviation from pro-
portional initial endowments is sufficient to obtain market excess demand
functions which may have any structure [note that if all preference rela-
tions are homothetic and the exchange economy (<i.,kw!)i=1,...,8 (k>0)
generates the excess demand function z(p), then the exchange economy
(€1,w!)1=1,...,n generates the excess demand function (1/k)z(p)].

The results of Sonnenschein, Debreu and Mantel show that strong as-
sumptions are required if one wants to use the equilibrium model in order
to study problems which go beyond the "three famous questions" of econ-
omics, i.e., existence of market equilibria, Pareto optimality of market
equilibria and decentralisation of Pareto optimal states. If one picks
randomly an (regular) exchange economy then the excess demand function of
this economy may have very "peculiar" features. To put it differently,
those exchange economies which generate macroeconomic regularities form a
small set in the class of all exchange economies. We remark thét Hilden-
brand (1989b) has recently shown that the market net demand function
"always never" satisfies the weak axiom of revealed preference.

Recall that the aggregate supply function is monotone decreasing in
the commodity prices (Proposition 1). Thus, if there are multiple and un-
stable equilibria in a production economy, then the source of instability
and multiplicity lies entirely in the consumption sector of the model.

The question arises whether there are "reasonable" assumptions on the
distribution of consumers' characteristics which imply that the market de-
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mand function has certain structural properties. To get a feel for this
question, let us return to the equilibrium concept of the model.

The model is composed of a finite number of consumers and a finite
number of producers. For the proof that an equilibrium exists, the number
of consumers (resp. producers) is inessential. However, the notion of a
competitive equilibrium makes economic sense only if there is a large num-
ber of traders such that each individual trader has no influence on the
state of the economy. Certainly, the members of a small community will not
decentralise their decisions via a price system. A trader takes prices as
given and adjusts to them only if he is of the opinion that he cannot
change the prevailing prices.

It seems natural to model the consumption side of the economy as a
very large population of individually small and "price-taking" persons.
Aumann (1964) suggested that the appropriate mathematical model for such a
population "is one in which there is a continuum of traders (like the con-
tinuum of points on a line)" (p. 39). It should be intuitively clear that a
given economy with a continuum of individuals may be viewed as the "limit"
of a sequence of finite economies having the property that the number of
individuals tends to infinity (details can be found in Hildenbrand, 1974).

0f course, the production sector of a modern economy is not just a
collection of technologies. In the model the only difference between
production and consumption is that the assumption of profit maximisation
immediately implies that the supply function is a decreasing function of
the commodity prices. In a real economy, however, a very large number of
individually small consumers faces firms which vary in their size. At least
the big firms do not buy and sell commodities at an exogenously given price
structure.

Note that one has to define a new equilibrium concept if there are
"price-making" firms in the economy. One then has to study the uniqueness
and "stability" of this new equilibrium concept. We remark that the theory
of the firm (or, more generally, the theory of industrial organisation) has
become a major research area. A useful textbook is Tirole (1988); extensive
surveys of various aspects of business behaviour can be found in the Hand-
book of Industrial Organization (Schmalensee and Willig, 1989).
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The following three chapters will be concerned with the consumption
side of the economy. In the next chapter we will leave the framework of the
neoclassical equilibrium model. We will consider a very simple consumption
sector. All individuals have identical preferences but they differ in their
income. The two essential features of the model are the following. Firstly,
identical individuals earn different wage rates. Secondly, wage rates are
continuously distributed in a finite interval [a,b], i.e., the population
consists of a continuum of individuals. )

Our focus of attention will be the dependence of the market demand
function upon the distribution of wages in the population. Since we face a
continuum of individuals, summation will be replaced by integration.

As in this chapter, we will consider in the next chapter "rational"
consumers. More precisely,» the individual consumption behaviour will be
represented by a demand function which satisfies a weak version of the weak
axiom of revealed preference. One should view this assumption simply as a
"working hypothesis". On the micro-level there may be very complex socio-
economic interactive processes. However, the market demand function may
satisfy the weak axiom of revealed preference even if no individual demand

function satisfies the axiom.

It should be mentioned that psychologists have carried out a great
number of experiments. The results of these experiments suggest that people
do not behave "rationally", i.e., the departures of the actual behaviour of
people from rational economic behaviour appear to be of a systematic na-
ture. For a discussion of this experimental evidence and its relevance for
economics we refer to the articles collected in Hogarth and Reder (1987).
In particular, we refer the reader to Herbert Simon's fundamental contri-
butions on the problem of rationality; see Simon (1955, 1956, 1972, 1976).
In fact, Simon argues that people do not maximise but that they merely
"satisfice”, that is to say, an individual tries to realise a given
"aspiration level", but the actual decision of a person is typically not
the best decision in the huge set of all conceivable decisions.

Ideally, omne should therefore try to derive properties of the market
demand function from assumptions on the distribution of consumers' charac-
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teristics without postulating economic rationality on the micro-level. We
remark that such results were recently obtained by Grandmont (1992).

At the end of this chapter we want to show what happens if one fixes
in Debreu's (1974) theorem not only an excess demand function z: S—>R® but
also the collection (wt!,...,w#) of individual endowment bundles. Recall
that we say that an exchange economy (<€i1,w!)i=1,...,8 ¢generates z(-) on
Se={xeRn: |IxI1=1 and x12¢, i=1,...,n} (e>0) if the individual excess de-
mand functions zt(.) (i=1,...,H) sum up to z(-) on Se, i.e., Xzt (p) = z(p)
for all p in Se.

4. Debreu's Theorem

Fixing the initial endowment bundles w! restricts the class of excess
demand functions z(p) since market demand x(p) is non-negative if consumers
do not supply labour and x(p)=z(p)+Xw!. However, one does not obtain more
"gtructure" if one fixes (w!,...,w#). In view of Mantel's result the fol-
lowing observation is not surprising (see also Kirman and Koch, 1986). The
reader will now see how Debreu proceeded to prove his theorem.

Claim: Let z: S—R* be continuous with pz(p)=0 for all p in S. Let
wi,...,wd be any vectors in R"+:+. Let H2n and €¢>0. Then the following
holds:

(a) there exist a constant k>0 and preference relations £1 (i=1,...,H)
such that the exchange economy (=1 ,kw!)i=1,...,8 generates z on Se;

(b) there exist a constant k>0 and preference relations £1 (i=1,...,H)

such that the exchange economy (#%£i1,w'}i1=1,...,8 generates k-z on Se.

The %1 (i=1,..,H) may be chosen so that each £1 1is a continuous,

strictly convex and monotone preference relation on R®..

Proof: Debreu constructs the individual excess demand functions zi: S—)Re
which sum up to z on Se as follows: Let p be in Se. Set a(p)=z(p)+0(p)-p,
8(p) cR, and choose O(p} large enough so that a(p)>>0 (see Figure 5). “Since
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z is continuous, we can choose O6(p) so that the function 8: Se—>R is con-
tinuous.

Figure 5 Figure 6

Set bi(p)=et-pi:p (i=1,...,n), where e! denotes the i-th unit vector
in Re; i.e., bi(p) is the orthogonal projection of e! onto the one-dimen-
sional subspace generated by z(p) (see Figure 6 above). Finally, set z! (p)=
a1 (p)bt (p) (i=1,...,n), where ai(p) denotes the i-th component of a(p). One
immediately verifies that the z! (p) satisfy Walras' identity and sum up to
z(p). It is not difficult to show that the z! (p) satisfy the strong axiom
of revealed preference which implies that each z!(p) is the excess demand
function of a "fully rational” consumer (here we need that ai (p) is greater
than zero; for the definition of the strong axiom of revealed preference
see, e.g., Varian, 1984, p. 143; see also Shafer and Sonnenschein, 1981, p.
680) . The difficult part of Debreu's proof is to show that the z! (p) can be
generated by preference relations which have no "pathological" features.

Since z!(p) is continuous and Se is compact, there exists wieRe: such
that z!(p)+wi>)0 on Se. If we were free to choose the individual endowment
bundles, we could pick now any vectors wt,...,wt such that z! (p)+wi>>0 on
Se (i=1,...,n); see Figure 7. For prices p in Se the demand x! (p) of con-

sumer i is then given by x! (p) = zit (p) + wi.
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Figure 7

We now turn to (a) and (b):

(a) Since wi>>0, there exists ki>0 such that zi (p)+kiwi>>0 for all p in Se
(i=1,...,n). Set k = maxfki,...,ka}. Then zi(p)+kw!>>0 on Se (i=1,...,n).
Hence, there are preference relations £i1 (i=l1,...,n) such that the ex-
change economy (¢1,kwi)i=1,...,n generates z on Se.

(b) Let k be as in (a). Set k'=1/k. Then k'z! (p)+wi>>0 for all p in Se and
all i=1,...,n. By definition of z!(p), k'zt(p) = (k'zi (p)+k'@(p)-p1)-bt (p).
Hence, there are preference relations £i1 (i=1,...,n) such that the ex-

change economy (¢1,w!)1=1,...,n generates k'z on Se.

If one wants to have more consumers than commodities, i.e., H>n, one
may proceed as follows. Let =zi(p) (i=1,...,n) be as defined above. Set
K=H+1-n. Pick consumer n and set ZJ (p)=(1/K)z:(p), j=n,...,H; i.e., the
excess demand of consumer n is viewed as the sum of the excess demands of K
consumers all of them having 1/K of the excess demand of consumer n. Now
apply the above arguments to the excess demand functions zt(p),...,z"-1(p),
Z*(p),...,z8(p). This completes the proof.
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Chapter 1

Labour Supply Functions, Wage Rate Distributions
and the "Law of Demand”

1. Introduction

Let us consider a population of households who have identical pref-
erences but differ in their income. Such a consumption sector can be de-
scribed by a function f from R®++XR+ into R®*+ and a probability measure n
on R+. Here f(p,m) is interpreted as the commodity bundle demanded at the
price system p by a household with income m, and n represents the income
distribution in the population. The market demand function, F, is then
obtained by integrating f(p,-) with respect to n. It will be assumed that
each household spends all its income on consumption, i.e., households can
not keep money back.

The market for commodity i is said to fulfill the "law of demand” if
the partial demand function pi—Fi(P1,...,pP1,...,Pn) 1is monotone de-
creasing for any given prices ps, j¥i. The following property is a gener-
alisation of the "law of demand": the function F is called monotone
(decreasing) if for any two different price vectors p and q the vectors p-q
and F(p)-F(q) point in "different" directions, i.e., the angle between them
is not smaller than 90°; if the angle is always greater than 90°, then the
function F is called strictly monotone.

Notice that the price independence of the income distribution implies
that F is not homogeneous of degree zero in p. In Chapter 0 we have seen
that a strictly monotone demand function implies the uniqueness and stabil-
ity of the market equilibrium. More precisely, if ye&R®+ is an exogenously
given supply vector and p* is such that F(p*)=y, then p* is unique and
every solution of p'=F(p)-y converges to p* (Proposition 2, page 18).

It is usually assumed that the individual demand function f is derived
from utility maximisation. However, the utility hypothesis alone does not
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give structure in the aggregate: the excess demand function in an exchange
economy with identical individuals may have any structure (see Kirman and
Koch, 1986). A weaker requirement on individual rationality than the util-
ity hypothesis is the so-called weak axiom of revealed preference. The
axiom implies that the market demand function F is monotone if the matrix
of mean income effects, which one obtains by integrating fi(p,:)dafs(p.-)
with respect to u for all i,j, is positive semi-definite at each point p.

The importance of the income distribution for the structural prop-
erties of the function F was emphasised by Hildenbrand (1983). He shows
that for every continuous individual demand function f which satisfies a
weak version of the weak axiom of revealed preference the market demand
function is monotone if the distribution p can be represented by a de-
creasing density function on R+; if, in addition, the density function is
concentrated on a finite interval [0,b] and f is a continuously different-
iable function which satisfies a weak regularity assumption (i.e., the rank
of the substitution matrix of f has to be equal to n-1 for all prices p and
incomes m), then the market demand function is even strictly monotone.

In this chapter we incorporate into the above model of a homogeneous
household sector an individual 1labour supply function. Hence, the income
distribution is now no longer exogenous. Its shape will depend on the indi-
vidual labour supply behaviour, and the distribution will also depend on
the consumer goods prices.

The chapter is organised as follows. The next section introduces some
definitions and sketches the proof of Hildenbrand's theorem. Section 3 ex-
tends the model. It is straightforward to see that in the extended model
integrating over non-labour income yields aggregate demand functions which
are in general not monotone irrespective of the distribution of non-labour
income. In the remaining part of the section the assumption that a given
commodity has exactly one price will be dropped for the labour market,
i.e., we will integrate the individual demand function with respect to a
distribution of wage rates. Section 4 contains some final remarks.

It should be emphasised that all individuals of the given group supply
the same type of labour. Postulating that their wage rates differ means
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therefore that we implicitly assume that the labour market does not func-
tion in the same manner as the consumer goods markets.t?

¥We will not be able to say very much about the aggregate labour supply
function. However, the individual labour supply function allows a closer
look at the income distribution. In Hildenbrand's analysis the price inde-
pendence of the income distribution plays an important role. If the income
distribution depends on prices then one can construct examples such that
the market demand function is not monotone, even if for each price vector p
the corresponding income density is decreasing on R+. On the other hand,
individual 1labour supply is a function of the wage rate and the consumer
goods prices. In our approach, however, it is not the priée dependence of
labour supply but only the price dependence of the wage rate distribution
that may cause problems. This suggests that future research should explore
the dependence of the wage rate distribution on commodity prices.

2. Hildenbrand's Approach

In the following P denotes the set of all strictly positive vectors of
R®, where n represents the number of commodities; a generic element of P is
denoted by p and is interpreted as a price system. Individual income is
represented by meR+.

The function f:PxR+—>R® is said to fulfill the (weak version of the)
veak axiom of revealed preference if p'f(p,m)<m' implies pf(p',m')2m for
all (p,m) and (p',m') in PxR:.2) We say that f satisfies the Walras (or
budget) identity if pf(p,m)=m for all (p,m). A continuous function f from
PxR:+ into R2, which satisfies the weak axiom of revealed preference and the
budget identity is called an individual demand function.

Notice that a function which fulfills the weak axiom of revealed pref-
erence and the Walras identity may have component functions which take on
negative values. However, in this section an individual demand function is
assumed to have non-negative component functions, i.e., the behaviour de-
scribed by f does not include labour supply.
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Let p be a probability measure on R+. Then the non-negativity of an
individual demand function together with Walras' identity implies that
f(p,-) is p-integrable, i.e., Ifn(p,-)du(m for all component functions fa,
if and only if 1 has a finite mean. A (price independent) probability
measure n on R+ with finite mean is called an income distribution.

Let p be an income distribution and f be an individual demand func-
tion. Then the function F: P—Rv:s defined by F(p) = {f(p,:)dn is called
per capita (mean, aggregate) demand function. If'u has a density r, then
F(p) = |f(p,m)P(m)dm. The density P is said to be decreasing on Rs if
f(ml)Smez) for all mi2mz220.

We remark that f(p,m) may be interpreted as the mean demand at the
price system p of all households with income m in a heterogeneous popula-
tion (i.e., people differ also with respect to their consumption behav-
iour). In this case, however, the function f does not necessarily satisfy
the weak axiom of revealed preference. Whether or not the axiom is ful-
filled on the aggregate level will depend on the "form" of the joint
distribution of income gnd tastes; see Hildenbrand (1985b, p. 45) and
Hildenbrand (1989a, Propbﬁition 2, p. 271).

Theorem (Hildenbrand, 1983, p. 1003): Let f be an individual demand
function and n be an income distribution which can be represented by a
decreasing density function on R+. Then the per capita demand func-
tion, ¥, is monotone, i.e., for all p, q in P we have

(p - Q) (F(p) - F(q)) < 0.

It is crucial for the subsequent section to understand why the theorem
is true. We will therefore sketch the proof:

Since n has a decreasing density, the so-called second mean value theorem
for integrals 3’ implies that F is monotone if and only if for all b>0 the

function
p— r f(p,m)dm
0

is monotone. This is the easy part of the proof and allows Hildenbrand to
restrict attention to uniform income distributions. Suppose the given indi-
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vidual demand function f is continuously differentiable and homogeneous of
degree zero, i.e., f(tp,wm)=f(p,m) for all ©v>0. Then the remaining part of
the proof rests on the S!utzky equation, which says that for all i and j

5, £ (pom) = 8,8 (Mg, ~ £, (p/m)-3,£, (p,m),

where, for fixed p and m, the map q—>s(q,m) is the Slutzky compensated
demand function corresponding to f(p,m), i.e., s(q,m)=f(q,qf(p,m)) for all
q in P. The first term on the right-hand side represents the substitution
effect resulting from a price change and the second term represents the
Income effect. The proof proceeds now in three steps:

(1) A continuously differentiable homogeneous function f(p,m) with pf(p,m)=
m satisfies the weak axiom if and only if the matrix of substitution ef-
fects of f(p,m) is negative semi-definite for all (p,m); see Kihlstrom et
al., 1976, Theorem 1 and 3, pp. 974-975 (we remark that their Condition 4
is equivalent to the definition of the weak axiom given above).

(2) Integrating the Slutzky equation yields

5, Fy (p) = %-Eéqjs,(q.m)qudm - %-J:f, (p,m) -3,£, (p,m)dm,

vhere the first term on the right-hand side is the per capita substitution
effect of a price change and the second term is the per capita income
effect (with respect to a uniform income distribution).

(3) F is monotone if and only if the Jacobian matrix of F is negétive semi-
definite for all prices p (see, e.g., Ortega and Rheinbold, 1970, pp. 141-
142). Becaunse of (1), the matrix of per capita substitution effects is
negative semi-definite for any given income distribution. The matrix of per
capita income effects is in general not positive semi-definite [which would
imply negative semi-definiteness of the Jacobian matrix dF(p)]. However, if
the distribution of income is uniform on [0,b], then the income effect ma-
trix is positive semi-definite (we will see in the next section that here
the non-negativity of f is crucial).
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Thus, given a uniform income distribution, the Jacobian matrix 8F(p)
is negative semi-definite for all p in P. Since the theorem holds for a
smooth individual demand function, we will expect it to be valid for any
continuous demand function. The proof of the general case, however, re-
quires hard work. Hildenbrand does not assume that the individual demand
function f is homogeneous of degree zero. Thus, in general, there exists no
sequence {(fa) of homogeneous smooth demand functions such that, for given
p. fa(p,:) converges uniformly to f(p,-) on [0,b] (which would imply that
the function F(p) =

=g L]

‘be(p.m)dm is monotone).
(]

It is natural to ask whether the theorem would also be valid with an-
other type of income density. A closer look at the proof, however, reveals
that this is not case.4) ¥We remark that the graph of the function fi (p,-)
is called the Engel curve for commodity i (at the price system p).

Proposition 1: Let F be a continuously differentiable density
function. Suppose P is concentrated on a finite interval [0,b] and
strictly 1increasing somewhere., Then there exists a continuously
differentiable individual demand function f such that the aggregate
demand function F is not monotone. The function f may be chosen so
that it is derived from utility maximisation and has increasing Engel
curves on R+ (i.e., duf1 (p,m)20 for all m>0 and all i=1,...,n).

Notice that by the Slutzky decomposition monotone increasing Engel
curves imply that the partial demand functions Fi1 are decreasing in their
own price irrespective of the income distribution. We will prove Proposi-
tion 1 at the end of the next section. We remark that one can use the same
method of proof in order to show that if the income density is not de-
creasing on R+, then there exists an individual demand function f such that
the market demand function F does not satisfy the weak axiom of revealed
preference, i.e., there are price vectors p and q with F(p)#F(q) so that
pF(q) and qF(p) are not greater than the mean of the income distribution;
see Freixas and Mas-Colell (1987, Proposition 1, p. 520).
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3. Labour Supply and Commodity Demand Functions

In order to incorporate a labour supply function into the model, we
have to slightly change the definition of an individual demand function. We
will consider continuously differentiable demand functions which are homo-
geneous of degree zero.

Definition: A continuously differentiable function f: PXR+s—D)Rutt,
where P denotes the set of all positive vectors of R®*!, is called
individual demand function if

(a) £ satisfies the weak axiom of revealed preference and the Walras
identity (see Section 2), and f is homogeneous of degree zero;

(b) the component functions fi,...,fa are non-negative, and the
component function fan+1 1S non-positive.

Because of (b), the component functions fi,...,fn are interpreted as
commodity demand functions; fas+1 is the individual labour supply functionm,
and pn+t is the wage rate. The variable m represents non-earned income.

Obviously, the special case of pure consumption is included in the defini-
tion.

In Subsection 3.1 we will continue Hildenbrand's proof. It is
straightforward to see that the matrix of per capita income effects is, in
general, not positive semi-definite if the individual demand function f has
property (b), irrespective of the density f(m). However, when taking labour
supply decisions into the model, it is much more interesting to integrate
f(p,m) with respect to the wage rate. This will be done in Subsection 3.2.

Notice that the distribution of personal income is now endogenous. The
function (pa+1,M)m-pa+1fu+1 (p,m) transforms a given distribution of wage
rates and non-labour incomes into a distribution of total personal income.

We will return to this point in Subsection 3.2.

In Section 2 we have tacitly assumed that we may reverse the order of
integration and differentiation. It follows from the dominated convergence
theorem (e.d., Loéve, 1977, pp. 126-127) that one may differentiate under
the integral sign if (i) the probability measure yu is concentrated on a
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finite interval ([a,b] and (ii) the integrand f is a continuously differ-
entiable function. We will therefore assume that the wage rate distribution

has property (i).

3.1. Distribution of Non-Labour Income

By the weak axiom of revealed preference f has a negative semi-defi-
nite substitution matrix; for the relation between the weak axiom and the
definiteness of the substitution matrix it is inessential whether or not f

is positive-valued.

To complete Hildenbrand's proof, we have to show that the matrix, A,
of per capita income effects is positive semi-definite if m is uniformly
distributed over the interval [0,b]. The matrix A=(aiy) is given by

al.‘l = %).J:fj (p,m)-ﬁ.fl (p,m)dm (i,j=1'---:n+1)-

Pick any vector veRe+t, Calculating the quadratic -form v-A-v yields

VeAev = %?{(v-f(p.b))z - (v-£(p,0))?}.

If f20 (i.e., pure consumption), then the Walras identity implies that
f(p,0)=0. Hence vAv20, i.e., A is positive semi-definite. However, if the
behaviour described by f includes labour supply, then typically f(p,0)30,
and hence we cannot conclude any more that A is positive semi-definite.
Whether or not F is monotone will now depend on the matrix of the per
capita substitution effects; since the substitution matrix is negative
semi-definite, O&F(p) may be negative semi-definite even if A is not
positive semi-definite.

The elements along the main diagonal of A are obtained by setting v =
i-th unit vector of R+t ., Thus,

a,, = %.J:f, (D) -8, (pm)dm = Z=- (£, (2, D)® - £, (p,0)?}.
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Non-negativity of f together with f£(p,0)=0 implies that the sign of
Snf1 (p,m) cannot be negative over the whole interval [0,b], i.e., the Engel
curve m—>f1 (p,m) is either monotone increasing on R¢ or first increasing
and then decreasing (resp. "periodically" decreasing and increasing); see
Figure 1(a). This behaviour of the Engel curve, in turn, implies that over
any given interval [0,b] the average value aii1 of the individual income
effect fi(p,m)-omfi(p,m) is non-negative. The individual labour supply
function changes matters drastically. Now the mean income effect ajii may
have the "wrong" sign irrespective of the distribution of non-earned in-
come, i.e., globally decreasing functions fi(p,-) cannot be excluded any
more. Indeed, the standard assumption that leisure is a normal good means
that Omfn+1(p,m) is positive for all m>0 (recall the sign convention made
at the beginning of the section). Hence, the integral

[faes )80ty (0, 2dn

may be negative for any given distribution p [see Figure 1(b)]. Since the
household will have positive earned income at m=0, the demand for a
consumer good may be a strictly decreasing function of m, i.e., for some
ie{l, ...,n}l the integral

jf,(p,-)s_f,(p.-)du

may have a negative sign irrespective of u [see Figure 1(c)].

' ‘T '3

fi(rm)
o ‘Fi(th“b
f;+1(ﬂv1ﬂ)
m m
(a) (b) (c)

Figure 1
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Notice that &p; F1(p) (i=1,...,n+l) has a negative sign for any given
decreasing density r(m) if fi(p,m) 2 £f1(p,0) (i=1,...,n) and fa+1(p,m) <
fo+s1 (p,0) for all m (see note 3). Figure 2 illustrates this behaviour of
the function f(p,:).

'fg(ﬂv*“)

£;¢£F;hi)

Figure 2

We will now prove Proposition 1 (p. 40). As already mentioned, the
same proof can be found in Freixas and Mas-Colell (1987) who explore under
which conditions on the individual demand function f (as defined in Section
2, i.e., f is non-negative) the aggregate demand function F will satisfy

the weak axiom of revealed preference for any given income distribution.

Proof of Proposition 1: If the individual demand function f is derived
from L-shaped preferences [i.e., the utility function underlying f is of
the form u(xi,...,Xa) = min{uir(x1),...,un(xn)}, where the functions ui are
strictly increasing], then its substitution matrix vanishes. This is the
worst that can happen if a given demand function f satisfies the weak
axiom. Suppose the density function P: {0,b]—R+ is strictly increasing on
[m1,mz], where O<mi<(mz<b. The question arises whether there exist L-shaped
preferences so that the corresponding aggregate demand function F is not
monotone. This is indeed the case. Consider without loss of generality the
case n=2; pick any vector v in R2 with a positive and a negative component
and construct L-shaped preferences in such a manner that the individual
demand function f has the following properties: (a) vi(p,m)=0 for all
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m§ [m: ,mz], and (b) vE(p,m)#0 on a subinterval of [mi,mz] (see Figure 3).
Let A = A(p) be the matrix of per capita income effects corresponding to £
and f, i.e., the element aij of A is given by

ay = J:f, (p,m)-3,£, (p,m)P(m)dm.

Let xtR®. By partial integration, we obtain

DN =

xAx = 3. [(x£(p,m)?1] - %-E(xf(p.m))zf'(m)dm-

Because of (a), we have at x=v

XAX = -

DN =

-2 2
-J (vi(p,m)) f'(m)dm.

n,

Since P 1is strictly increasing on [mi,mz] and f(p,m) satisfies (b), the
integral on the right-hand side is positive. Thus, the matrix A(p) is not
positive semi-definite; hence, the Jacobian matrix &F(p) is not negative
semi-definite. Q.E.D.

£

<
bt 2 &

Figure 3

We now turn to the case where otherwise identical individuals face differ-
ent wage rates; we will assume that all individuals receive the same non-
labour income.
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3.2. Distribution of Wage Rates

Let ®: PxR+—>Rn*1 be an individual demand function and p be a dis-
tribution of wage rates, i.e., p is a probability measure on R+ with
compact support which can be represented by a density function f- To dis-~
tinguish easily between commodity demand and labour supply, we define:

WV = pll*l, p = (pl,-..,pn),
f(p,w,m) := (&1 (p,w,m),...,Ha(p,w,m)) (commodity demand),

and 1(p,w,m) := —-®n+1 (p,w,m) (1abour supply).

We are interested in two questions:

(1) Under what conditions is the per capita commodity demand function mono-
tone in p?

(2) Under what conditions does a proportional or absolute rise inm all wage
rates lead to an increase in per capita labour supply??’

We first turn to the market demand function

F(p) = Jf(p,w,m)du(w).

3.2.1. Per Capita Commodity Demand

Let S®(p,w,m) denote the substitution matrix of &=(f,-1) at (p,w,m).
Since &=(f,-1) satisfies the the weak axiom, the matrix Sé{(p,w,m) is nega-
tive semi-definite for all (p,w,m).®’> The substitution matrix of the
commodity demand function f with respect to p is obtained by deleting the
last row and the last column from S®(p,w,m). Hence, the substitution matrix
of the map p—>f(p,w,m) is negative semi-definite for all p, w, and m.
Since n is concentrated on a finite interval, we may reverse the order of
integration and differentiation. Thus, we can again decompose the Jacobian
matrix of F into a negative semi-definite matrix of per capita substitution
effects and a matrix of per capita income effects. Denoting the latter
matrix by A=(ai13), we have
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a,y = ij(p,w,m)~6_f1(p,w,m)du(w) for all i,j=1,...,n.

¥e want to relate this matrix to the matrix of income effects explored
by Hildenbrand (1983). To do this, we need the following crucial

Assumption 1: Consumption and labour are (weakly) separable, i.e.,
there exists a continuously differentiable homogeneous individual
demand function f#: PXR+—>R2:+ (as defined in Section 2) so that for
all (p,w,m)

f(plwlm) = fs (p,b(p,w,m)),

where b(p,w,m)=m+wl(p,w,m); that is the map (p,v,m)—)b(p,w,m) is the
individual income function.

Separability between consumption and labour supply means that the wage
rate affects demand behaviour only via its impact on individual income.
If the individual demand function ¢=(f,-1) is derived from utility maxi-
misation (what we have not assumed here), then the separability assumption
implies that the underlying utility function U(x,1), where X = (X1,...,Xn)
represents the consumption goods, is of the form U(x,1)=ulv(x),1] (and
hence the marginal rate of substitution between any two commodities is
independent of the amount of labour supplied). Maximising U(x,1l) subject to
the budget constraint px<wl+m (and an additional constraint on the maximum
amount of labour the individual can supply) leads to the commodity demand
function f(p,w,m) and the labour supply function 1(p,w,m). The special form
of U(x,1) allows now to decompose the overall maximisation problem into two
sub-maximisation problems: Suppose the individual has already decided to
supply 1 units of labour. Then his income is given by y=wl+m. The best the
consumer can do now is to maximise v(x) subject to the constraint px<y.
This produces the conditional demand function fs (p,y). Maximising U(x,1)
with respect to 1 subject to the constraints x=f%(p,y) and y=wl+m, we
obtain the optimal labour supply decision 1l(p,w,m). Plugging y=wl(p,w,m)-+m
into fs(p,y) yvields the optimal consumption decision f(p,w,m); see Barten
and B6hm (1981, pp. 392-394, 399-401) for a more formal discussion.
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We will call the function w—b(p,w,m) individual earnings function.
In the following we will frequently drop the variable m since non-labour

income is fixed.

Let us first show how the distribution of personal income depends on
the wage rate density p and the individual earnings function b(p,-). The
following assumption gquarantees that the distribution of personal income
has a density which depends in a very simple manner on f and b(p,-).

Assumption 2: The function b(p,-,m) is strictly increasing on Rs+:.
Furthermore, dwb(p,w,m)>0 for all w in Re+; and limw—>o+dwb(p,w,m)>0.

We have defined the labour supply function 1(p,w,m) only for strictly
positive wage rates w. We define b(p,w) at w=0 by b(p,0)=limw—o+b(p,v);
Swb(p,0) is defined by Owb(p,0)=limw—o+dwb(p,w). Notice, if a strictly
increasing function g: R+«—>R+ does not satisfy g'(x)>0 for all x in Rs,
one only has slightly to change g in order to obtain g'(x)>0 on R+; the
same applies if g: R+—>R+ is identically zero on [0,b] (b>0) and strictly
increasing on [b,«[.

The income distribution is given by the image of the distribution of w
under the map w—>b(p,w), i.e., by the probability distribution of the
"random variable"™ b(p,:) (see, e.g., Loéve, 1977, p. 168). Ve denote the
distribution of b(p,:) by un(p,.»; b-t(p,:) denotes the inverse of b(p,-).

Proposition 2: Let P be the density of wn. Suppose b(p,-) satisfies
assumption 2. Then wb(p,-) has a density function F(p,-): R+ — R+
which is given by '

~ _ -1 1
Fo.y) = PO (0¥ o)

for all y in b(p,R+), and ‘?:’(p,y) = 0 othervwise.

Remark: Clearly, b(p,R+)=[b(p,0),~[ if the earnings function b(p,-) is not
bounded. Since we have assumed that the wage rate distribution is concen-
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trated on a finite interval ([wi,wz], the income distribution is concen-

trated on the interval [yi,yz], where yi=b(p,w1), i=1,2.
Proof of Proposition 2: We have to show that for all x20

Wy (p, -y ([0,X]) = J‘:F(p,y)dy.

By definition of wb(p,-», we have for all x in b(p,R+)

mo(p, ) ([0,x]) =

n(fw ¢ Re: b(p,w) < x})

n(fw € Re: w < b1 (p,x)}) (assumption 2)

- “1¢(p,x) ( i
= Ib p (W) aw (n has the densityp)
(1]

-p 1
J:(p.o)f)(b (p.¥)) '6wb(p'b-" (p.y)) dy.

where the last equality is obtained by making the substitution w=b-1(p,y).
If x is not in b(p,R+), wn¢p, > ([0,x]) is either equal to 1 or equal to O.
By definition of F(p,‘), the last integral is equal to

E Plp.y)dy.

Thus, F(p,-) is the density of the income distribution. Q.E.D.

The density F(p,-) may be interpreted Hildenbrand's density of indi-
vidual incomes if all members of the population receive the same non-labour
income m. We will come back to Proposition 2 at the end of the section.

We now relate the matrix A to the matrix of per capita income effects
explored by Hildenbrand. To do this, we need the marginal dependence of
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total income on non-labour income, i.e., the partial derivative dab(p,w,m).

For fixed p and m, we define a function g from R+ into R by

6-b(prbml (D:Y):m)a if Yy in b(lef)
g(y) =
0, otherwvise.

Thus, if the individual described by ¢=(f,-1) has total income y, g(y) is
the rate of change in his total income resulting from a small increase in
non-labour income m; if m=0, then dab(p,w,m) is defined as dmub(p,w,0) =
lime—o0+dab(p,w,m). The following proposition expresses the matrix A in
terms of the probability measure pb(p,-) and the functions f® and g.

Proposition 3: Let n be a distribution of wage rates and d=(f,-1) be
an individual demand function satisfying assumption 1. Then

jf(p.w,m)du(w) = jf' (p,-)duyp, .-

Suppose the earnings function satisfies assumption 2. Let F(p,~) be
the density of un(p,-), and let g(-) be as defined above. Then the
matrix A = (ai13) can be written as

ay = §~If§(p.y)-syfi(p.y)-F(p.y)dy
+ cov (£ (p,+)8,£5 (p,+),g(:))

where the second summand denotes the covariance of f£8;3(p,-)dyf®1(p,-)
and g(-) with respect to the measure W\ v(p,-)>; and g = Ig(y)?(p,Y)dy,
i.e., g is the mean value of qg(:) with respect to {ib(p,-) .

Proof: The first part of the proposition follows immediately from the
definition of ub(p,-) and is a standard result in the theory of integration

(see, e.g., Loéve, 1977, p. 168). Turning to the second part, we have:

a;y = If:(p,b(p,w,m))-émf:(p,b(p,w.m))dn(w) (assumption 1)
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= [t} (p,b(p,w,m)) -5, £} (p,b(p,w,m)) -5,b (p,¥,m)dn (W)

= }}(D.Y)-Gyf:(D.Y)~g(y)dub(p',, (def. of g(:) and ub(p,:))

= [ (0, v) -5 £3(p,y)-g(y)-P(p,y)dy (def. of density).
3 y f

By definition of the covariance of two random variables X and Y with

respect to a probability measure P,

cov(X,Y) = jdeP - fXdP-IYdP.

Hence, 1letting X = fs;(p,:)dyf81(p,-), Y = g(:) and P = ub(p,.) completes
the proof.

Example: Suppose an individual behaves as if maximising a function
U(1l) = u{(wl+m) - v(1) (which may depend on p), where u is concave and
v is convex; u'>0 and v'>0. Then the labour supply function 1(w,m) is
implicitly given by the first-order condition u'(wl+m)w = v'(1).

Consider the following two special cases: if v(1) = al, then 1l(w,m)

u'~t(a/w)/w - m/w and hence dab(p,w,m) = 0; if u(y) = ay, then 1(w)
v'-1(aw) and therefore dab(p,w,m) = 1.

Since the elements of the matrix A=(aij) may be written in the form
a,, = JEj(p.y)-S,fi(p.y)'q(y)-F(p.y)dy.

the next proposition is an immediate consequence of Hildenbrand (1983,
Theorem 3). Notice that g(-) may be identically zero and that F(p,~) can
only be decreasing on R+ if m=0 since b(p,w,m)2m.

Poposition 4: Let &=(f,-1) be an individual demand function which
satisfies assumptions 1 and 2. Let F(p,-): R+—>R+ be the density of
Ib(p,.). Suppose g(-)F(p,~) is decreasing on R+ and g(-)20. Then

(i) the matrix A is positive semi-definite at p;

(ii) the Jacobian matrix of F iIs negative semi-definite at p.
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If the income density is monotone decreasing but depends on the price
system p, Hildenbrand cannot conclude that the Jacobian matrix &F(p) is
negative semi-definite. The relation between Hildenbrand's approach and our
approach is as follows: Let &=(f,-1) and f® be individual demand functions
(as defined in Section 2 and 3) such that f(p,w,m) = fs(p,b(p,w,m)). Let
r(p,~) be the density of the wage rate distribution at the prevailing price
system p. Finally, 1let F(p,-) be the income density generated by the labour
supply function l(p,w,m) and the wage rate density r(p,-).

The two primitive concepts of Hildenbrand's approach are the individ-
ual demand function f®* and the income density F(p,-). Market demand is de-
fined by F(p)=Jf'(p,y)F(p,y)dy. Differentiating under the integral sign and
applying the Slutzky decomposition, &F(p) may be written as

3F(p) =38 - 1 + B, where

8y = JBQJS,(q.y)uq=,.F(p,y)dy,

al
I

13 If; (va)‘Gyf: (P:Y) 'F(er)dy

and

ol
-
(%Y

I

[fiew 5, pe.nay.

For given p and y, the function q~>)s{q,y) is the Slutzky compensated de-
mand function corresponding to fs(p,y), i.e., s(q,y)=fs(q,qf® (p,y)). Here
we have assumed that the (continuously differentiable) income density
F(p,o) is concentrated on a finite interval [yi,yz] which does not depend
on p.’If the range of ?(p,-) depends on p, i.e., [yi1.,y2] = [a(p),B(p)], we
obtain &F(p) = T-1+3B+ C, where the matrix C=(ci13) is given by

iy =2 (p.B(P)) -3, 8(p) - 2, (p,a(p))-3, alp),

and z(p,y) = fs(p,y)ﬁ(p,y); see Courant and John (1974, pp. 76-177).

In general, the matrix B may have any structure. To see this, notice
first that the partial derivative of FTD,Y) with respect pj; cannot be
negative (resp. positive) on the entire interval [yi,yz] since F(P,~)
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integrates to 1 for any given p. Suppose the Engel curves f8i(p,-) (i=1,
...,N) are strictly increasing and that 6p5F(p,y) is non-positive on {y:.,z]
and non-negative on (z,yz], where z=z(j), j=1,...,n (the latter assumption
is without loss of generality); see Figure 4 below. Then the elements‘fgg
of B are positive:

o
|

13 = ffi(p.y)spjf(p.y)dy

v

fi(p.z)-J G,JF(p.y)dy + f:(p.z)-JzZS,J?(p,y)dy
LR

= 0.

Clearly, this implies that the matrix B is not negative semi-definite.
Hence, even if 1 is positive semi-definite, OF(p) may not be negative semi-
definite.

]

§ iﬁﬁvo

5 P ..
h % K Y

Figure 4

The primitive concepts of the present approach are the wage rate den-
sity P(p.-) and the function é=(f,-1); that is, F(p)=Jf(p,w,m)f(p,w)dw.
We obtain

5F(p) = S - A + B, where
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54 8¢ (. W,m) 1 oy - PR, WAV,

a;, = ’fj (p,y) -5, 3 (p,y)-9(y) -F(p,¥)dY (Proposition 3)

and

by, = E‘(p,w,m)~6pjf(p,w)dw.

For fixed p, w and m, the function q—>s(q,w,m) is the Slutzky compensated
demand function corresponding to f(p,w,m), i.e., s(q,w,m)=f(q,w,m'), where
m'=qf (p,w,m)-wl(p,w,m). The income density F(p,-) depends on p via the de-
pendence of individual labour supply on p (even if the wage rate density
does not depend on p). In our approach, however, it is only the relation-
ship between p and f(p,-) which may cause problems (i.e., the matrix B may
"wipe out" structural properties of A). It is straightforward to verify
that the matrix B is related to the matrix B as follows:

~y

Byy =Dy, + [18,15 (. b(R,v.m) -5, blp,v.m)]-p(p,W)AV,

It is natural to ask under what conditions on the wage rate density'f
and the earnings function b(p,:) the income density F(p,-) is decreasing on

an interval [y:,vz2]. By Proposition 1,
,‘o’(p.y) = p(b=t(p,y)) -8yb=t (p,¥) .

Suppose f is uniform on the interval [wi,wz]. Let R=wz-wi. Then

[

~ _ 1 1
P®Y) = 55T (o, y))

on the interval (yi,yz], where yi=b(p,w1), i=1,2; and F(p,y)=0 otherwise.
Hence F(p,-) is (strictly) decreasing on [yi1,yz2] if and only if b(p,-} is
(strictly) convex on [wi,wz]; b(p,-) is (strictly) convex on [wi,w2] if and
only if the labour supply function 1(p,-.m) is (strictly) increasing on

[wy,w2].

Postulating that the individual labour supply function is monotone
increasing in w would be an extremely strong assumption. However, if f is
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sufficiently decreasing then F(p,-) will be decreasing even if 1(p,-,m) is
strictly decreasing. One immediately verifies that the derivative SyF(p,y)
is non-positive if and only if

P'(aly))
p(a(y))

a" (Y)
a' (y)z [

S..

where a(y)=b-1(p,y).

Example: The Pareto distribution with parameters w*>0 and 8>0 is de-
fined by the density function

f(w) = gfw-(1+8) w2W*,

and f(w)=0 otherwise; a=(w*)® in order to ensure that P integrates to
one.?”? If the wage rates are distributed according to the Pareto dis-
tribution, then the income density is decreasing on ([yi,yz]., where yi=
b(p,w1) (i=1,2) and w*<wi<wz, if and only if a(y)=b-1(p,y) satisfies

aly) = a"(y)
a'(y) a‘'(y)

< 148 for all v in [yi,vz].

The first quotient on the left-hand side of the inequality is posi-
tive for all y in ({y:,yz]; the second quotient is positive at all
points y where the earnings function is locally strictly concave, and
smaller than or equal to zero otherwise.

Let us take stock. Obviously, assumption 1 implicitly underlies
Hildenbrand (1983). We do not think that assumption 2 is restrictive.®) For
instance, individual income is always an increasing function of the wage
rate if the demand function ¢=(f,-1) is derived from a quasi-concave
utility function which admits an additively separable representation
u(xt1,...,%X0,1) = m(X1,...,Xa) + uz(l), where x1 stands for the i-th com-
modity. However, assumption 2 was only made for the purpose of exposition.
If one merely wants to ensure that the income distribution has a density,
then assumption 2 is not needed: By the Radon-Nikodym theorem (see, e.q.,
Loéve, 1977, p. 133), uvb(p,.) has a p-density if (and only if) any p-null
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set is also a ub(p,.-)-null set, i.e., Mb(p,.)» is p-continuous. Since we
have assumed that p can be represented by a Lebesque density, p-continuity
of wb(p,-) implies that wb(p,.) has also a Lebesque density. The distribu-
tion wb(p,->, in turn, is p-continuous, if the function b(p,-) is not

locally constant on the support of p (see Figure 5).

Krin
) ﬂ-(r,,,.)

I
/-X l
- >, >
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—

b{(p,-) is w-continuous b(p,-) is not p-continuous

Figure 5

We now turn to the response of per capita labour supply to an increase in
the wage level; in the following we will also drop the variable p.

3.2.2. Per Capita Labour Supply

If leisure is a desired commodity, the individual will supply no
labour at w=0; if the wage rate is positive, however small, the individual
may want to supply at least the amount 1>0. Thus, the function 1(w), when
defined on the entire R+, may be discontinuous at w=0 (see Figure 6). We
define 1(w) at w=0 by 1(0)=limw—s>o+1(W).
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(a) (b)

Figure 6

Given the wage rate distribution p and the individual labour supply

function 1l(w), per capita labour supply, L, is defined by

L = Jl (w)dp(w) .

If we add to all wage rates the amount a>0, per capita labour supply

becomes

L(a) = Jl (w+ta)d|i(w) (aeR+) .

If we increase all wage rates by (a-1)-100%, we have to substitute aw for
wta. Hence, the rate of change of L resulting from a small absolute in-

crease 1in all wage rates is given by

6alL(a)la=0 = J1' (w)dp(w),

and the rate of change of L resulting from a small proportional increase is

given by

60L(a),a=1l = J1' (w)wdp(w) .



58

We say that the aggregate labour supply function satisfies the "law of
supply” with respect to an absolute (resp. a proportional) wage increase if
5:L(0)20 [resp. 6«L(1)20].

Notice that the Slutzky equation is now no longer helpful. If we
decompose the derivative dwl(w,m) into a substitution effect and an income
effect, then the substitution effect is greater than or equal to zero.
However, if leisure is a normal good, then the per capita income effect has
the wrong sign irrespective of the wage rate distribution. Since the indi-
vidual labour supply function may be a strictly decreasing function of the
vage rate, we cannot say very much about aggregate labour supply (see also
Subsection 3.1). The following observation is an immediate consequence of

the second mean value theorem.

Proposition 5: Let z20. Let D: denote the class of density functions
g: R«e— R+ which have the following properties: (i) g(w)=0 for all x
in [0,z[; (ii) g is decreasing on [z,~=[; and (iii) g 1is concentrated
on a finite interval. Then the following holds:

(a) 8aL(0)20 for all g in D, if and only if
() 1(w)21(z) for all w2z;
(b) 8aL(1)20 for all g in D, if and only if

(P) 1(w)w - 1(z)z 2 Jul(w)dw for all w>z.
2

Thus, if 2=0, then d«L(1)20 for all g in D: if and only if

(P) 1(w) 2 %-Jul(w)dw for all w>O0.
0

Proof: Let g: [z,»[—R+ be decreasing and concentrated on ([z,b]. By the
second mean value theorem (see note 3) there exist x, y in [z,b] such that

5,L(0) = g(z)orl'(w)dw
2

and
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8L (1)

g(z)ojvl'(w)wdw.
Hence,

%aL(0)

Il

g(z)-[1(x) - 1(z)]

and, by partial integration,

8aL(1) = g(z)-[1(y)y - 1(2)z - rl(w)dw].

z

If g is the density of the uniform distribution on [z,b], then x=y=b. This
completes the proof.

Thus, if the wage rate density is decreasing, our conclusion is essen-
tially that the "law of supply" holds if individuals working for firms
which pay wage rates w>z do not work less than those located at the bottom
of the wage rate distribution (see Figure 6b above). In view of the "effi-
ciency wage" literature (see, e.g., the articles collected in Akerlof and
Yellen, 1986) such a hypothesis is perhaps not unplausible. We will see in
Chapter 3 whether or not empirical labour supply curves satisfy (A).

Notice that the right-hand side of (P') is the average value of the
function 1(:) in the interval [O,w]. Hence, (P') says that the labour
supply of an individual earning the wage rate w must not be smaller than
the average 1labour supply (with respect to the uniform distribution on
[0,w]) of those individuals receiving wage rates between 0 and w (see
Figure 7a on the next page). Property (A) does not imply (P) (comsider,
e.g., the labour supply function 1l(w)=1-(1-w)2 and a uniform wage rate
distribution on [0,2-1], ©>0); but (P') implies (A) (see Figure 7b).

Let 2>0. Let D'z denote the class of density functions g: R+—>Rs
which have the following properties: (i) geDz and (ii) wg(w) is decreasing
on the interval [z,«[ (e.g., the densities of the on (z,b] (b>0) truncated
Pareto distributions belong to D':).%) Applying the second mean value
theorem to wg(w), one sees that of d«L(1l) has a positive sign for all g in
D'z if and only if (A) is satisfied.
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We close the section with an example that shows that the market demand
function may be monotone decreasing in the commodity prices while we cannot
say very much about the response of per capita labour supply to an increase
in the wage level:

Consider an additively separable utility function, u, with constant mar-
ginal disutility of effort, £>0, i.e.,

u{Xt1,...,%n,1) = vi(X1)+...4+va(xn) - 81,

vhere the functions vi are increasing and strictly concave; xi stands for
commodity i, and 1 denotes labour.

The "rational" individual described by u(x,l) maximises his utility
subject to the budget constraint px=wl+m. From the first order conditions

one obtains

f1(D,W,m)=(V1‘)'1(8'£l), i=1,...,n.

Thus the market demand function is monotone decreasing irrespective of the
wvage rate distribution. (That additive utility functions with decreasing
marginal utilities lead to market demand functions satisfying the "“law of
demand" is, of course, well-known and has already been recognised by
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Walras, 1874) However, the behaviour of the individual 1labour supply
function

l(p'w'm) = Ef_(&l). _h
v

W

depends on the curvature of the functions vi (i=1,...,n). It is not diffi-
cult to verify the following: Let m=0, n=1 and v=vi. Then dvl(p,¥)>0 if and
only if the function z(x):=(v')-1(x) satisfies z(x)+x-2'(x)<0 at x=8p/w.
For instance, if v(x)=VX' then this condition is satisfied for all x20; if
v(x)=-1/x, then z(x)+x-2'(x)>0 for all x>0, and hence 1l(p,w) will be a
strictly decreasing function of the wage rate.

4. Final Remarks

If one interprets f(p,w,m) as the mean demand at the prevailing price
system p of all individuals (of a given population) receiving the wage rate
w and non-labour income m, then the mean income effect matrix A=(aij),
wvhere

a,, = ”f, (p,w,m) -8,f, (p,w,m) -p (W,mdwdm (i,3=1,...,n),

can be estimated from a sample of a consumption sector. To estimate A, one
has to estimate the joint density of w and m, and one has to regress the
expenditure on any commodity i on w and m. The matrix‘ié(ﬁxJ), where

A, = If‘; (p,¥) -8, £} (0,¥) BN (L,3=1,...m),

was analysed by K. Hildenbrand and ¥W. Hildenbrand (1986) for an aggregated
demand system of 11 commodities. It turned out that the estimated matrix is
‘"approximately"” positive semi-definite’' (p. 267). Hildenbrand (1989a) re-
ports new results and concludes: "If the law of aerodynamics were founded
as I have here founded the Law of Demand would I then take a plane?...
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Perhaps I would feel somewhat uncomfortable, yet, I think, I would take a
chance" (pp. 275-276).

Nevertheless, it would be interesting to estimate the matrix A and to
compute its eigenvalues (if all eigenvalues are greater than zero, the es-
timated matrix is positive definite). Firstly, we have seen in Section 3
that the price dependence of the income distribution may cause more prob-
lems than the price dependence of the wage rate distribution. Secondly,
there is no clear empirical evidence that consumption and labour are separ-
able; see the time-series study by Abbott and Ashenfelter (1976, 1979), the
pooled cross-section study by Browning and Meghir (1989) and the cross-
section studies by Atkinson and Stern (1981), Blundell and Walker (1982,
1986) and Kaiser (1990).

One may try to characterise the class of joint distributions of pref-
erence relations, wage rates and non-labour incomes which lead to aggregate
commodity demand and labour supply functions satisfying the "law of supply
and demand". In the following two chapters we will be less ambitious. In
Chapter 2 we will estimate the wage rate density r , and in Chapter 3 we
will estimate the labour supply function 1(w). We will then compute 3aL(0)
and da«L(1).

5. Notes

1} It appears that the hypothesis is very well supported by empirical evidence; see, e.g., the nice
discussion of inter-industry wage differentials in Thaler (1989) and the references given there.

2} The usual and somewhat stronger foraulation of the weak axiom is: if f(p,m}¥f{p'.a'} and pflp',n')<u,
then p'fp,n)>n*. The axion was first used by Wald (1935, 1936a, 1936b) who proved the existemce of market
equilibria under the assuaption that the market demand function satisfies the weak axiom of revealed
preference. Later Samuelson (1938) used the axiom as a mew foundation for the theory of individual
consuaption behaviour. Houthakker {1950} established the relation between the weak axiom and the utility
bypothesis. The standard referemce for the “"demand theory of the weak axion® is Kihlstrom et. al. (1976); V.
Hildenbrand and ¥. Jerison {1988} simplify proofs. The volume of readings Chipaan et. al. (1971} contains
extensive surveys of demand theory.

3) The "second mean value theorem" states that for amy continuous real-valued function f and any decreasing
{resp. increasing) function g, both defined on an interval [a,b], there exists a point % in [a,b] such that
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b l.
(1) [ Elx)g (x)dx = g(a)-[ E(x)dx + q(b)-rf(x)dx.
£ l.

A proof can be found, e.q., in Apostol (1974, Theorem 7.37, p. 165). Notice, if g is decreasing on (a,b]
with g(x}20, one can replace g by the function g* defined by g*(x)=g(x) if a<x¢b and g*{b)=0. Substituting
g* for g does not change the value of the integqral on the left-hand side of ().

4) Of course, this strong assuaption on the distribution of personal income is only needed as long as one
does not want to restrict the class of permissible individual deaand functions. Iaposing no restrictions on
individual demand functions is an extreme starting point. The other extreme would be to restrict attention
to homothetic preferences, i.e., to demand functions f(p,m) which can be writtem as f(p,m)=g(p}-n. Recall
that we have shown in Chapter 0 (Proposition 5, p. 27) that the weak axiom and the budget identity imply
that the function g is monotone (it is not difficult to verify that already the weak version of the weak
axioa implies the momotonicity of g). The reader may find the following articles interesting:

The class of preference relations leading to demand fumctions f{p,a) which are monotone in p for any given
was characterised by Kamnai (1987); see also Mitjuschin and Polterovich (1978). Formalising Marshall's old
idea that the income effects fi(p,m)-8afi{p,n) (i=1,...,n} will be small if the proportion of total income a
spend on any commodity i is small, Vives (1987) states conditioms which imply that the partial demand
functions fi(p,m) are decreasing in their own price. Grandaont (1987} assumes that people have the same
income but that they differ with respect to their preferences. He then places restrictions on the "shape® of
the distribution of preference relations which lead to a monotone market demand function; see also Grandmont
{1992}, Preixas and ¥as-Colell (1987) study under what conditions on the function f{p,m) the market demand
function P{p} satisfies the weak axiom of revealed preference (i.e., if F(p) = F(p') and pF(p') < mean
income, then p'P(p) > mean income) irrespective of the shape of the income demsity. Chiappori (1985)
considers functions f{p,n) which can be written in the fora

fipa) = Zqlpluia),

where the g1 are vector-valued functions, and the 11 are real-valued functions. He then states sufficient
conditions for the existence of a decreasing function P*: Ri—)R+ which sclves the integral equation

If(p,-)du : [f(p,l} Pt (),

where p is a given income distribution. Chiappori does not, however, explore whether there exist individual
demand functions (as defined in Sectiom 2} which are non-linear in w and which can be decomposed in the
above way (it should be mentioned that his examples are mot consistent with the definition of am individual
demand function in Hildembrand, 1983). In applied deaand theory it is frequently assumed that the market
demand function may be expressed as a function of meam income; a discussion can be found in Hildembrand
(1985a) .

5) In textbooks on macroeconomics it is usually assumed that aggregate labour supply is am increasing
function of the wage level. Por instance, Blanchard and Pischer (1989, p. 518) specify the following labour
supply function in order to study supply shocks: n*=8(w-p), where §20. Here n*, % and p are the logarithas
of labour supply, the nominal wage and the price level, respectively. The labour supply function is part of
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a nodel (i.e., a system of five equations} that as the authors write "has played a central role inm the
analysis of economic fluctuations...® (p. 518).

6) In the literature it is usually assumed that m0, i.e., one proves the following: if ¢ is a demand
function which satisfies the weak axiom of revealed preference, then the substitution matrix is negative
seni-definite for all p))0 (here p includes the wage rate w} and m)0. In Subsection 3.2.1 it is natural to
set w=0. Of course, the substitution matrix $é(p,m) = (sij) is also negative semi-definite at {p,a}=(p,0}:
The elements sij are defined by

S” = 6"Q‘(D,l’ + ’,(D,IN.Q‘ (p'."

At the point (p,0), &adi(p,n) is defined as dadi(p,0) = lime-pes+dadi(p,n}, and & & (p,0) is defined as
o501 (p,0) = limape+B8p5éi(p,n). Hence, siy(p,ml—Isiy(p,0) as m tends to zero, and therefore
xSé(p,a}-x—> x-88(p,0)-x, as w—>0, for all xeRv+t. Thus, x-5é(p,0).x < 0 since x-Sé({p,m).x < 0 for all
0. Hence, $8(p,0) is negative semi-definite.

7} Por instance, a "large" firm which is pyramidally organised, with a comstamt "span of control® s)1 and a
constant wage differential of (d-1).100% {d>1) between any two adjacent layers of the hierarchy, generates a
Pareto wage rate distribution with 8 = log(s)/log{d}; the "span of control® is defined as the number of
people in the i-th layer (from the bottom) divided by the nuaber of people in the (itl)-th layer. See, for
example, Simon (1957) or Lydall (1968, pp. 127-133).

8) It is a standard assumption in the theory of optimum income taxation that earned income is an increasing
function of the wage rate; the classic article is Mirrlees (1971).

9) If 2=0, then D':=¢, i.e., there is no density function g: Rs—>R: such that wg(x} is decreasing on Ris:
Let g: Rv—)Rs be a function such that z(w)=wg(w} is decreasing on R.+. Let b0 be such that K=z(b)>0. Then
g(w}2K/w for all we(0,b] and therefore

s . -
}gﬂ' Lg(",d' -

Hence, g cannot be a demsity.:
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Chapter 2

An Empirical Investigation of the Labour Market
Part I: Estimating Distributions

1. Introduction

In this chapter we explore two distributions, namely the distribution
of weekly hours of work and that of gross wage rates in the United Kingdom.
More precisely, we estimate density functions. Our data cover the years
from 1970 to 1985 and are taken from the Family Expenditure Survey (FES)
which is a time-series of cross-sectional data. The size of the annual
sample studied is around 7,800 workers.

Density functions are usually estimated under the hypothesis that the
functional form of the distribution is known. Since we do not have this
knowledge here, we use nonparametric estimation methods. That is, we allow
the data to "speak for themselves" in determining the shape of the unknown
distribution. We will give examples showing that our results are insensi-
tive to the technical detail of the estimation procedure.

The density of the aggregate labour supply (resp. gross wage rate)
distribution was estimated for each odd numbered year of the period under
consideration. Using the data of the 1983 FES, we explore the distribution
of the two variables within eight subgroups of workers. The picture that
emerges has the same feature for other years. We also have a look at the
distribution of earned income in the year 1983. The gross wage rate dis-
tributions shown in this chapter will be needed in the second part of
Chapter 3 in order to compute the elasticity of per capita labour supply
(resp. per capita net earnings) with respect to the wage level.

It turns out that the labour supply distributions do not change very
much over the years. In fact, when estimating the density functions we did
not expect to obtain such a “stable picture". The mean of the data de-
creases somewhat while its variance increases. However, in the years from
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1971 to 1977 we are essentially faced with one distribution. The gross wage
rate distributions are considerably less stable. It is interesting to ob-
serve that the proportion of individuals receiving a low (resp. high) wage
rate increases in the years 1977-85. A brief data analysis shows a steady
increase in the sample proportion of female workers and a general switch
from manual to non-manual occupations.

Thus far there exists no satisfactory theory of the distribution of
wage rates and personal incomes in a market economy. Though there is an
enormous literature on this topic, attempts to derive a particular dis-
tribution from assumptions about the operating of the economy have always
been rather ad hoc. For example, the theory of the lognormal distribution
is essentially based on the so-called "law of proportionate effect" due to
Gibrat (1931) and an application of the central 1limit theorem. As M.
Friedman (1953) points out, "this absence of a satisfactory theory of the
personal distribution of income...is a major gap in modern economic theory"
(p. 277).v)

Nevertheless, it is a useful exercise to test whether a given sample
could have been generated by a density function belonging to a known
parametric class of distributions. Since the lognormal distribution has
received very much attention in the literature, we tested for all years
from 1970 until 1985 and for several groups of workers the hypothesis that
the data stem from a lognormal distribution. The variables chosen were:
gross wage rate, gross earnings, net earnings and weekly hours of work; the
test statistic employed was the Kolmogorov D-statistic. Although the null
hypothesis was rejected in most cases, the test results were not as
disastrous for the lognormal distribution as one might have suspected; It
is interesting to observe that the hypothesis of a lognormal distribution
of gross wage rates finds support for full-time workers in non-manual
occupations.

The chapter is set up as follows..Section 2 provides a description of
the data set. Section 3 introduces nonparametric density estimation methods
and applies them to the FES sample of "all workers" for the year 1983;
Section 4 investigates eight subsamples. The topic of Section 5 is the
stability of the aggregate distributions in the years 1971-85. Finally,
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Section 6 presents the results of the goodness-of-fit tests. The diagrams
relating to Sections 3-5 are always plotted at the end of the corresponding
section.

2. The FES Data

The Family Expenditure Survey is a sample survey of the household
population in the United Kingdom which provides very detailed information
on expenditure patterns as well as on various sources of income and weekly
hours of work. The households in the sample vary from year to year, i.e.,
the FES is a time-series of cross-sectional data and not a panel. The Sur-
vey has been in continuous operation since 1957 and is considered as one of
the best existing data sets.

Since 1967 the annual set sample (which contains ineligible addresses)
has been about 11,000 addresses, of which around 10,750 are selected in
Great Britain and 250 in Northern Ireland. The effective sample each year
is around 10,000 households and typically some 7,000 households (i.e.,
approximately 20,000 individuals) agree to participate in the inquiry.

The pre-selected addresses are visited by interviewers, and each
member of the household aged 16 (15 before 1973) and over is asked to
provide information on both expenditure and income. Only those households
where each such person (called a "spender") cooperates are included in the
data set. The spenders of a cooperating household receive a small payment.
At the preliminary interview a questionnaire covering various sources of
income is put individually to each spender. Expenditure information, in
turn, is collected partly by interview and partly by diaries which have to
be kept over a period of 14 days by the spenders.

The FES in Great Britain is conducted by the Social Survey Division of
the Office of Population Censuses and Surveys on behalf of the Department
of Employment; the overall design of the sample and its content are kept
under review by an inter-departmental committee under the chairmanship of
the Central Statistical Office. The FES in Northern Ireland is carried out
separately by the Policy, Planning and Research Unit of the Department of
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Finance, Stormont. However, both surveys use the same questionnaires and
coding instructions and therefore the two data sets can be merged.

The main purpose of the survey was originally to obtain expenditure
data for the construction of weights for the retail price indices. However,
the FES has become a multi-purpose survey. As the Family Expenditure Hand-
book remarks, "a number of government departments value the FES solely for
its income data" (Kemsley et al., 1980, p. 2). Academic users have access
to anonymised FES computer tapes held by the Social Science Research Coun-
cil Survey Archive at the University of Essex.

In this study we need the FES data on weekly hours of work, gross and
net earnings. Clearly, an individual may have more than one job. However,
the FES contains only information on hours of work for the “most remuner-
ative job" and we therefore focus on main employment. The annual samples
underlying our study consist of all workers whose “last wage/salary from
main employment was received last week/month" (FES code A250). The measures
of 1labour supply provided by the FES for its users are: "actual/usual
veekly hours of work including/excluding paid overtime"; the measures of
labour income are: "actual/usual weekly gross and net earnings". Actual
gross earnings are the "wage/salary, including overtime, bonus, commission
or tips the last time the individual was paid" (FES code 303); actual hours
relate to the period for which the individual gave the details of his pay.
Since actual earnings and actual hours of work may be subject to substan-
tial temporary variations, we decided to use for individual gross (resp.
net) earnings the measure "usual gross (resp. net) weekly earnings" and for
individual labour supply the measure "usual weekly hours of work including
paid overtime”. (The FES uses also the terms “normal earnings" and "normal
hours of work".)

Since these concepts are subjective, there is an instruction on the
income schedule of the FES questionnaires for the informant: "“If unable to
give usual pay because it varies considerably give average pay received
(not basic)". It may happen that an individual is unable to state how many
hours a week he or she usually works. In this case the household member has
to give an explanation: "“If (this question) cannot be answered because of
the irregular nature of the job give reason”. For instance, in the year
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1979 informants had to answer the following questions: “How many hours a
veek do you usually work, excluding meal breaks and overtime?" (FES code
A220); "on average, how many hours paid overtime do you actually work in a
veek?" (FES code A244); and "what do you usually receive each time you are
paid after (before) all deductions?" (FES codes 329 and 315).

The gross wage rate is obtained by dividing normal weekly gross earn-
ings by normal weekly hours of work. (The income data are recorded on the
computer tapes in tenths of pence per week.)

Our data cover the years 1970-85. Throughout this and the next chapter
we will assume that the data sets for the years 1971-85 are random samples
from the total population of individuals who were in the corresponding year
in paid employment (the data for 1970 are possibly unrepresentative; see
below). We remark, however, that our contribution may be viewed as a purely
descriptive data analysis. It should also be emphasised that users are not
uncritical of the FES. The sample size is relatively small; moreover, the
FES has a fairly high rate of non-response (in the order of around 30 per
cent). In the remainder of this section we comment briefly on the quality
of our data.

Interviewers generally ask informants for their pay-slips which are
provided by 70-80 per cent of all employees. Furthermore, there is evidence
that people consider quite a long period before the date of interview when
estimating normal earnings (see Kemsley et al., 1980, p. 71, for details).
Nevertheless, it is frequently argued that individuals under-state their
income in the FES. In particular, one should have the possibility in mind
that there is under-reporting of the earnings of women in part-time employ-
ment (Stark, 1978).

Unfortunately, not much is known about the characteristics of non-
responding households. One can, however, say the following (see Kemsley et
al., 1980, Chapter 10; and Kemsley, 1975). Firstly, the response rate
appears to decline with the age of the head of the household. Secondly,
households with children appear to show higher response rates than those
without. Thirdly, the response rate is not uniformly distributed across
regions (the Greater London Area produces the lowest response rate).
Finally, the distribution of responses over the year is not completely
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uniform as well (the number of households responding in December is usually

somewhat lower). In other words, non-response is not randomly distributed.

Hence, we cannot exclude that there will be a bias in our estimates
due to under-reporting and differential non-response. It appears, however,
that one does not have to worry too much about this. For instance, the FES
Report 1975 remarks about the survey's earnings data, that these "tend to
be slightly deficient, though generally within a few per cent of those
indicated by other sources" (p. 3). Two more recent studies reach essen-

tially the same conclusion.

Atkinson and Micklewright (1983) compare various aggregate income data
of the 1970-77 FES with the national accounts ("Blue Book") aggregates and
summerise their findings by writing: "On the whole the conclusions re-
garding the reliability of the FES income data are considerably more
favourable than those of some earlier investigators...For earnings, the
aggregate totals indicate only a small shortfall from the Blue Book total"
(p. 50). Atkinson, Micklewright and Stern (1988) provide a detailed com-
parison of the distribution of earnings and hours of work in the 1971-77
FES with that in the British New Earnings Survey (NES). Like the FES, the
NES is a time series of cross-sectional data. There are, however, two
important differences. Firstly, the NES obtains its data from employers.
Secondly, the sample of the NES is much larger than that of the FES: the
size of the annual NES sample is intended to be around one per cent of the
employed population.

The authors emphasise in their final assessment that "any divergence
may be due to shortcomings of the NES as well as of the FES" and conclude:
"The findings with regard to hours and earnings may...be re-assuring to
users of both surveys"; in particular, "there is no obvious evidence that
the FES fiqures are seriously affected by higher non-response by those in
the upper ranges of the earnings distribution" (Atkinson et al., 1988, pp.
220-221) .2

This brief discussion of the Family Expenditure Survey has made much
use of the latter two articles and the revised Family Expenditure Survey
Handbook (Kemsley et al., 1980). The reader who wants to know more about
the survey should consult the FES Handbook. The authors discuss very
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thoroughly the work of the Social Survey Division aﬁd that of the inter-
viewers, sample design aspects and the important issues of non-response and
reliability of the FES. Furthermore, the appendix of the Handbook contains
the complete questionnaires of the 1979 FES together with other interview
documents current in 1979.

The Appendix contains some summary statistics for the labour supply
and earnings data in the annual samples of "all workers" and in eight sub-
samples. All individuals in the samples have positive normal earnings. In a
very small number of cases the normal hours of an individual with positive
normal earnings are recorded as zero. These individuals were excluded from
the samples. Uhfortunately, the data of the 1970 FES to which we had access
are incomplete; the first 13 weeks of this year are missing.

3. Nonparametric Density Estimation

Let (x1,...,Xn) be a random sample of real—valued observations from a
continuous distribution with probability densityf’. Our aim is to estimate
f. We assume that we have no information about the probability density be-
yond (x1,...,Xa). Hence, we will construct an estimate of P (denoted by P)
directly from the observations.

In this chapter (Xi1,....Xa) is a sample of workers, and xi stands for
one of the following variables: gross wage rate, weekly hours of work,
gross (resp. net) weekly earnings. The diagrams relating to the section are
displayed on pages 86-92.

The oldest and most widely used nonparametric estimators of an unknown
distribution are the empirical cumulative distribution function (cdf) and
the histogram. The empirical cdf, Fa, of the sample (x1,...,Xn) is defined
by

F, (x) = %~i[i: x,$x} for all x.
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Let {[a,b] be an interval somewhat larger than the range 6f all observa-
tions. The histogram is obtained by fixing a partition a=ai<az<...<aa=b of
[a,b] and setting

A 1 .
F(x) = —al).‘!l: Xl £ [al’alﬁl[}

n(ag+s
whenever x ¢ [ai1,a1+1[ (i=1,...,m-1); outside the interval {a,b], P(x) is
set equal to zero.

We remark that none of the data sets considered in this chapter is a
simple random sample. However, supposing the observations are the first n
in an independent, identically distributed sequence (xi1:i=1,2,...), then
the empirical distribution function is an uniformly consistent estimator of
the unknown distribution function F. More precisely, by the theorem of
Glivenko-Cantelli (e.g., Laha and Rohatgi, 1979, Theorem 2.5.1, p. 114)

limp—» «supxer{Fa(X) - F(x)| = 0 with probability 1.

In the case of density estimation the situation is more complicated.
Clearly, the shape of the histogram depends on how we have divided the real
line into intervals. If the intervals are too large then the fine structure
of the data is obscured and hence F will not be a reasonable estimate of f.
On the other hand, the histogram becomes unstable if its cells are chosen
too small since a shrinking interval contains fewer and fewer observations.
This behaviour of the estimator is typical for nonparametric smoothing
methods and suggests that F will be a consistent estimator of f omly if ai-
ai-1 converges "slowly" to zero as the sample size tends to infinity. More
precisely, one has to require that ai-ai-i1 does not converge as rapidly as
n-! to zero (see, e.g, Tapia and Thompson, 1978, Theorem 3, p. 46).

Figure 1 shows the empirical cdf and a histogram of the overall gross
vage rate distribution for 1983. (Recall that the FES earnings data are
recorded in tenths of pence per week.) Clearly, the cumulative distribution
function does not tell us very much about the data. The histogram, on the
other hand, immediately reveals that the distribution of gross wage rates
is unimodal and skewed to the right. It also appears that there is a "bump"
in the central part of the distribution, immediately to the right of the
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mode, suggesting that the aggregate distribution may be of the form f =
mpa + nzfz (i.e., F may be a mixture of two populations).

The histogram is a very useful graphic technique for illustrating the
data. From the point of view of density estimation it is, however, not
wholly satisfactory. Firstly, it is a step-function and hence exhibits very
rapid local variations. In particular, the block form of the estimate
causes an unnecessary difficulty if one is not only interested in the un-
known density but also in its derivative. (Estimates of F' are required in
the next chapter.) Secondly, even slight changes in the interval partition
may have an effect on the shape of the curve.

We will therefore consider in this section three alternative methods,
namely the kernel method in Subsection 3.1 and the spline smoothing and the
penalised likelihood approach in Subsection 3.2; the methods will be
applied to the FES sample of "all workers 1983". Our aim is to present the
ideas behind the methods without going into mathematical details. The
mathematically interested reader finds in Prakasa Rao (1983) a comprehen-
sive treatment of the theoretical aspects of nonparametric curve estima-
tion. An excellent non-technical discussion of the subject is given by
Silverman (1986). Tapia and Thompson (1978) pay particular attention to the
penalised likelihood approach; a standard reference for spline smoothing is
Reinsch (1967). Finally, we would recommend to anyone to look through Chap-
ter 24 of the Handbook of Statistics, Vol. 4 (Krisnaiah and Sen, 1984).

3.1. Kernel Estimators

Kernel density estimators belong to the class of the so-called general
weight function estimators, which are obtained by assigning to each obser-
vation x1 a density function K(-;xi1) and setting

=

(W) f’(x) = 2. K (x;x1) for all x.

(One easily verifies that the histogram is a general weight function esti-
mator.) In order to understand the idea underlying the kernel method, it is
useful to begin with a specific member of this class. The question arises
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how one can free the histogram from a particular choice of subintervals.
Consider the density function F defined by

P = sEdii: x, ¢ 1x-h,x+hll,

vhere h is any positive number; Silverman (1986, p. 12) calls F the "naive
estimator”. As we see, the naive estimator is essentially a histogram, but
the interval partition has been replaced by intervals ]x-h,x+h[ (xeR).
Setting K(x)=1/2 if {|x{<1, and K(x)=0 otherwise, then ? can be written as

®  p =lmlkEX) for anl x.

By generalising (K), one can now define a whole class of density esti-
mators. Notice that the probability density K defined above is symmetric
around zero. Let us call a density with this property a kermel function.
The (ordinary) kernel density estimator with kernel K and parameter h>0 is
then defined by (K). The positive number h is called in the literature
smoothing parameter, window width or bandwidth. One immediately sees that
(K) is a special case of (W). Denoting the standard deviation of K by ¢ and
setting K(x;x1) = %‘K(ziél), then K(-;x1) is a symmetric density function
with mean xi1 and standard deviation ho. For instance, if K is the density
of the standard normal distribution, then K(-;x1) is the density of the
normal distribution with parameters mean=xi1 and variance=h2?. Since (K) is
an arithmetic mean of density functions, the kernel estimator is itself a
probability density. Obviously, the estimator inherits all the smoothness

properties of the kernel function.

For given x, one should think of K(x;x1) as a weight assigned to the
observation xi; the larger h, the more equally distributed will be the
weights. For instance, in the case of a "bell-shaped" kernel, K(x;xi) de-
clines with the distance between x and Xi, but less rapidly for 1large
values of h. In other words, for large values of the smoothing parameter
even observations far away from x contribute to the value of F at x, while
for small window widths only observations near to x do so. Consequently,
the larger the value of h, the smoother will be the estimator f. The first
diagram of Figure 2 shows a kernel estimate of the distribution of gross
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vage rates; the kernel chosen was the standard normal density (we will

discuss the diagrams in the last part of the subsection).

The properties of the estimator do not depend on the technical detail
of the kernel function. The symmetry assumption can be weakened, and non-
negativity of K is also not really needed. The choice of the window width,
however, is crucial for the behaviour of the estimator. Three questions do
arise here. Firstly, what is the statistical explanation of the observation
that the smoothing parameter determines the shape of the density estimate?
Secondly, what is the optimal window width with respect to a given measure
for the closeness of the estimator ? to the true density f? Thirdly, which
values of the window width (even if h is not "optimally" chosen) guarantee
that the kernel smoother will be a consistent estimator of the unknown den-
sity? There is a large literature on the properties of the kernel method,

but for the purpose of this chapter some brief remarks will suffice.

Let us first consider a single point x. A natural local measure of
discrepancy is the mean squared error E{(F(x)—f(x))zl, vhere E denotes the
expectation operator. The mean squared error can be decomposed into the
squared bias and the variance of F(x). More precisely, mean squared error =
[E{'F(x)}—f(x)]z + variance of ?(x). One can now say the following: (1) The
variance converges to zero as the sample size n tends to infinity; the
bias, however, does not depend upon the sample size directly, but only upon
the kernel function and the window width. (2) The bias becomes smaller if
.one decreases the window width while the variance becomes larger. In other
words, the systematic error in the estimation of r(x) can only be reduced
at the expense of increasing the random error, and vice versa, by varying
the value of the smoothing parameter. |

To obtain a measure for the global accuracy of P as an estimator of Pe
it is standard practice in the literature to integrate the mean squared

error, i.e., one examines the expression

IMSE = IE{ [p(x)- p(x) 1% 1dx.

One can show via a Taylor series expansion of the unknown demnsity r that an
approximate formula for the optimal window width, from the point of view of
minimising IMSE, is given by
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*

h* = Var(K)"”’-!IK(t)zdtl”’-ljr"(x)’dx}‘“’.n‘“’,

where Var(K) denotes the variance of K (see Silverman, 1986, pp. 38-40; and
Parzen, 1962, Lemma 4A).

If we set the window width proportional to n-1/% then the (integrated)
mean squared error converges to zero at the rate n-4/%, and hence the ker-
nel estimator is a consistent estimator of the unknown density. (Recall
that an estimator will be consistent if its mean squared error approaches
zero.) We remark that in the case of the histogram the IMSE is of the order
n-2/3 if the cells of the histogram are "optimally" chosen (see, e.g.,
Tapia and Thompson, p. 48).

The crucial condition ensuring pointwise consistency of the estimator
is the following: the window width must converge to zero as the sample size
goes to infinity, but not as rapidly as n-t. Clearly, the window width has
to decrease in order to reduce the bias. The condition on the fate of con-
vergence, in turn, is equivalent to the requirement that at each point x
with P(x)>0 the expected number of observations falling in the shrinking
interval ([x-h,x+h] tends to infinity as the sample size becomes larger and
larger; this implies that the variance of the kernel estimator converges to

zero (the classic article on consistency is Parzen, 1962).

As we see, the optimal window width depends upon the unknown density
P. Nevertheless, the above formula may be used as a gtarting point for
finding a suitable value of the smoothing parameter. In this study the
kernel K is always the density of the standard normal distribution. If the
true density p is also normal, with standard deviation o, we obtain

(P) h* = 1.06.0-n"1/3,

A quick way of finding a pilot value for h is therefore to estimate o by
the sample standard deviation and to substitute this value into (P). This
was done here. In the case of regression estimation ([Chapter 3] (P) worked
very well. In our opinion, however, the so obtained densities were in gen-

eral "too smooth”™ and we therefore decreased the window width somewhat.3’
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The drawback of using a fixed window width across the whole sample is
that the estimated density may be unstable in its lower and upper range. ¥We
can prevent rapid variations of the estimator in the tails of the distribu-
tion by increasing the value of the smoothing parameter. In this case,
however, one typically "“oversmooths" the central part of the density. The
best way of dealing with the problem is to use a larger window width in

regions where we have only relatively few observations.

Let ti,...,ta be positive numbers. The adaptive kernel density esti-
mator with (global) smoothing parameter h, kernel function K and local
bandwidth factors ti,...,ta is then defined by

X-X1
(t(h )

S

() ?(x) = -EE}—I—]-K for all x.

Notice that the i-th summand in (A) is a density function with mean xi1 and
standard deviation ti-h-(standard deviation of K). We want to choose the
weights ti,...,ta in such a manner that ti{ is small (resp. large) if there
are "many" (resp. "only a few") observations in a neighbourhood of the
corresponding data point xi1. The general strategy is to construct the local
bandwidth factors from a pilot estimate of the unknown density. In the
present study this is.done as follows (for a discussion of the method, see

Silverman, 1986, pp. 100-110):

(a) start with an ordinary kernel density estimate, F’,
as defined above,
(b) set g = (P(x1)-+-P(xa))*/®, and put
ty = (g/F(x1))2/2  (i=1,...,n).

Because of the factor g in the definition of the ti, the geometric
mean of the local bandwidth factors is equal to one irrespective of the
scale of the data. One can therefore use in (A) the same value for h as in
the pilot estimate (K). We remark that the above two-stage estimation
procedure is insensitive to the mathematical detail of the pilot estimator.
In principle, any convenient estimator (e.g., a histogram) can be used to
construct the ti.
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In the next chapter we also need an estimator for the first derivative
of the unknown density function. Differentiating (K) and (A) with respect
to x yields the estimators

' - l _1_ R'd X-X1 . .
prx) = -, K (F™) (ordinary kernel estimator)
and
. 1 1 .2,.,,,X-X1 . .
P'x) = a ‘:‘ETB’ K ‘ETE" (adaptive kernel estimator).

We now apply the two methods to the FES data. All subsequent kernel
estimates were obtained by using the standard Gaussian kernel
= L 21 .2
K(x) = N expf 5% i, xeR.
Figures displaying both an adaptive and an ordinary kernel estimate were
produced as follows. Firstly, the same value of the smoothing parameter was
used in the two estimations. Secondly, the ordinary kernel estimate served
as the pilot estimate required to obtain the adaptive kernmel smoother.

In Figure 2 we see kernel estimates of the density of the gross wage
rate distribution for the year 1983. Comparison of Figure 2 with Figure 1
shows that one can treat the kernel estimates as if they were smoothed-out
histograms. The density estimates for the gross wage rate data are unimodal
and skewed to the right. Furthermore, there is a "bump" in the density
(immediately to the right of its mode).

A typical feature of the adaptive kernel smoother is that its gréph is
somevhat more compressed than that of the ordinary kernel smoother. As we
see, the local bandwidth factors make the bump in the distribution much
more visible. The effect of varying the window width in Figure 2 is as
follows. Decreasing h=250 by around 45 per cent transforms the graph of the
adaptive kernel smoother into a slightly bimodal density having the shape
of the histogram plotted in Figure 1, while the ordinary kernel smoother
assumes the shape of the adaptive kernel estimate with h=250, exhibiting,
however, some random fluctuations in the upper tail of the distributionm.
Since the FES sample of "all workers 1983" contains a high proportion of
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individuals earning a low wage, the density estimates remain stable in the
lower range of the distribution even if one selects fairly small values for
the window width. If one increases the window width by around 45 per cent,
then the bump in the graph of the ordinary kernel smoother disappears, and
the adaptive kernel estimate assumes the shape of the ordinary kernel
estimate with h=250.

The standard measure for the skewness of a distribution is its third
central moment divided by the third power of its standard deviation. The
skewness of the empirical gross wage rate distribution for the year 1983 is
3.85. Table 1b in the Appendix contains for all years from 1970 until 1985
the corresponding value of the sample skewness. We do not know whether the
high value of 24.23 in 1970 is attributable to the incompleteness of the
FES data for that year (as already mentioned in Section 2, we did not have
the data for the first thirteen weeks of 1970; in the following calcula-
tions we therefore disregarded the year 1970). The arithmetic mean of the
sample skewnesses for the years 1971-85 is 5.07, and their standard devi-
ation is 2.64. Thus, the aggregate gross wage rate distributions are
strongly skewed to the right.4?

We remark that one obtains essentially the same values if one esti-
mates the skewness by computing the third central moment and the standard
deviation of the kernel estimates.®) This is not surprising. If one is only
interested in certain characteristics of a distribution, such as its skew-
ness, then a precise knowledge of the density function is not required. In
this case one should estimate the characteristics by sample statistics and

not worry about the density function.

Figure 3 presents an adaptive kernel estimate and a histogram of the
distribution of weekly hours of work. A problem with the labour supply data
is that they are recorded in whole hours. It should be mentioned that the
histogram does not cope very well with strongly discretised data. Even a
slight change in the interval partition may have an effect on the shape of
the curve. In Figure 3 the histogram cells were constructed in such a man-
ner that the j-th cell contains exactly those observations xi1 with xi1=2j-1
or x1=2j.



80

The estimates show that the FES sample has a high proportion of part-
time workers. More precisely, 24.4 per cent of the individuals in the
sample work less than 31 hours per week. It is interesting to observe that
over the interval [5,30] these persons are almost uniformly distributed.
The skewness in the labour supply data for the year 1983 is -0.34. Table 1b
in the Appendix contains the empirical skewnesses for the other years. The
mean and the standard deviation of the figures for 1971-85 are -0.43 and
0.12, respectively.

Finally, in Figure 4 we have drawn an adaptive kernel estimate and a
histogram of the distribution of gross (resp. net) weekly earnings. Loosely
speaking, we see that the tax function transforms a bimodal gross earnings
distribution into a unimodal net earnings distribution. On passing from
gross earnings to net earnings the mean and the standard deviation of the
data are reduced by around 30% and 35%, respectively; the mean of the gross
earnings distribution is £116.74 and its standard deviation is £80.07. The
empirical skewnesses are 1.67 (for gross earnings) and 1.87 (for net earn-
ings).

Clearly, the earnings distribution is less skewed to the right than
the wage rate distribution because of the high proportion of part-time
workers in the labour force. We remark that both distributions have the
same shape (and a skewness of around 2.5) if we exclude from the sample
those individuals working less than 31 hours per week (see also Section 4).
At first glance it is somewhat surprising that the gross earnings distribu-
tion is not more skewed than the net earnings distribution. However, the
British tax system is fairly linear. Let us give a brief description of the

tax function.

The income tax schedule is given by an exemption level yi, an upper
bound y2 and two tax rates, say, ti1 and tz; ti1=0.25 and t2=0.40. A person
vith gross earnings y has to pay ti(y-yi) if yelyi,yvz]:; if y>yz2, then the
individual is charged tz (y-yi). For the vast majority of full-time workers
the marginal tax rate is 25 per cent. The national insurance system can be
represented by a 3-tuple (s,ys,ve), where $=0.09 and ys<{y«. Individuals
earning less than ys do not have to make payments. If yelys,y«], then the
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contribution is sy; if y>y«, then the contribution is only sy«. Hence, the

tax function can be written as

t(Y) = tl'(y—yl)'l[V1’V2](Y) + t2°(y—YI)'1]V2»"[ (Y)

+ 8Y-ltyy,v 1 (y) + sy -liv,,=-1(¥), YeR,,

where 1. denotes the indicator function of the set A, i.e., 1la(y)=1 if yeA,
and 1a(y)=0 otherwise.

In Section 4 we will see that the lower (resp. upper) range of the
gross wage rate distribution is essentially composed of manual females
(resp. non-manual males). In the upper range of the labour supply distribu-
tion we have mainly manual males; of course, we will not find many males in
its lower range. We now turn to spline smoothing and maximum penalised
likelihood estimation. '

3.2. Two Alternative Methods

Let F denote the cumulative distribution function of a univariate
distribution with density f' Then the density can be obtained by differen-
tiating the cumulative distribution function, i.e., we have

f(x) = F'(x) for all x.

By the theorem of Glivenko-Cantelli (e.g., Laha and Rohatgi, 1979, Theorem
2.5.1, p. 114), the empirical distribution function Fa is a very good
estimator of F. One can therefore construct a density estimate by differen-
tiating a smooth function which approximates Fn. If one is also interested
in an estimate of the derivative of the unknown probability density, one
has to differentiate the approximating function twice.

The standard approach to this approximation problem is as follows. One
chooses a grid ai<az<...<am, calculates the corresponding function values
Fa(a1),...,Fn(am) and then constructs a smooth curve which passes through
the points (ai,Fa(ai)), i=1,...,m. That is, one interpolates the data
points. If one uses cubic polynomials in each interval [ai,ai+1], then the
aproximating function is called a cubic spline. More precisely, a cubic
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spline interpolant, P, is a function from [ai,am] into R with the following
properties:

(1) in each interval [ai,ai1+1] P is a cubic poly-
nomial (in the following denoted by Pi1),

(2) P(a1) = Fa(a1) for i=1,...,m,

(3) Pri-s(x1) = P1(x1)
P'1-1(x1) = P'1(x1) for i=2,...,m-1.
P"1-1(x1) = P"1(x1)

If the spline satisfies also the condition P"(ai) = P"(am) = 0, then it is
called a natural spline and represents the shape of a curved ruler (i.e., a
flexible strip of hard rubber or the ;ike) which is forced to match up with
the data points in such a way that thé ends are left free; the curved ruler
takes up a shape which minimises the potential energy. One can show that
for any given set of data points a uniquely determined natural spline
exists (see, e.g., Burden et al., 1981, pp. 111-113).

In order to actually calculate densities constructed via a cubic
spline smoothing of the empirical cumulative distribution function, we used
the NAG (Mark 12) 1library routines EO01BAF and EO02BCF. The first diagram of
Figure 5a shows a spline density estimate for the gross wage rate data. The
empirical distribution function was evaluated at the mesh points ax=
(10,000/26) -k, k=0,1,...,26. Whether or not the derivative of a spline
interpolant is a reasonable estimate of the unknown probability density‘f
is crucially dependent on a proper choice of the grid. In this respect the
spline smoothing approach does not differ from histogram estimation. In
Figure 5b the empirical distribution function was evaluated at the points
ak=(10,100/26) -k, k=0,1,...,26. We can see how sensitively the shape of the
curve reacts to a small change in the grid.

Recall that the histogram will become unstable if one reduces the
width of its cells more and more. The same happens to the spline density:
The graph of the derivative of a spline interpolant will exhibit rapid
local variations if one chooses a very fine grid. For instance, if one
partitions the interval [0,10000] into 200 subintervals of equal length and
plots the corresponding wage rate density, then one obtains a curve which
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oscillates so much that one can hardly speak of a probability density. This
behaviour of the estimator can be easily explained. The spline interpolant
approximates a step-function. The finer we choose the grid, the better will
be the approximation. A perfectly smoothed step-function, however, produces
a very poor density estimate.

A drawback of the methods discussed so far is that the estimators are
derived in a rather ad hoc way from the definition of a density function.
If one wants to avoid such an ad hoc definition, one has to explicitly
state the aims of the estimation. In parametric statistics this is accom-
plished by the maximum likelihood method. Recall that a maximum likelihood
estimator is implicitly defined as the solution of a maximisation problem.
One cannot apply this method directly to nonparametric curve estimation,
but there are approaches related to maximum likelihood. To see this, let g
by any density function; furthermore, suppose that (Xi,...,Xn) is a simple
random sample drawn from g. Then the likelihood (i.e., the joint density)
of the sample (X1,...,%n) is given by

(L) L(g) = g(x1)+++g(xn).

One is tempted to define the maximum likelihood density estimator as
that density function g which maximises (L). However, in the class of all
(smooth) density functions this maximisation problem possesses no solution.
One can make the likelihood (L) arbitrarily large by taking densities
having spikes at the observations and vanishing almost everywhere else,
i.e., densities which converge to a sum of Dirac delta-functions.

In parametric statistics this problem does not occur since one places
an a priori restriction on the class of admissible densities over which (L)
is to be maximised. This is, of course, exactly what we want to avoid in
this study. However, a density which looks almost like a sum of delta-
functions is a very poor estimate of the unknown probability density. Such
a curve would fit the data very well, but it obviously would exhibit too
much rapid variation. Thus, we are once again faced with a conflict between
"goodness—-of-fit" and "smoothness" which has to be quantified.

This, very naturally, 1leads to incorporating into the 1likelihood
function a term, say R(g)20, which measures in some sense the roughness of
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the density g under consideration. Let S be the set of all probability
densities g for which R(g) is well-defined and finite. The penalised log-
likelihood of a density g in S is now defined as

(PL) 1(g;a) = =1og g(x1) - a-R(q),

vhere a is a positive number; a is called smoothing parameter and R(g) is
called roughness penalty. The density F in S which maximises (PL) over S is
called maximum penalised likelihood density estimator; the larger we choose
a, the smoother will be ?.

We applied to the FES gross wage rate data a version of the penalised
likelihood approach due to Scott, Tapia and Thompson (1980). Suppose the
unknown density ﬁ is concentrated on the interval [a,b] and that F(a)=F(b)=
0.6) In order to obtain a computable approximation to the exact maximum
penalised likelihood estimator with roughness penalty

(%) R(g) = rg"(x)zdx,
]

the authors proceed as follows. A positive integer m and a regularly spaced
mesh of points a=ao<ai1¢...¢am=b are chosen. The roughness penalty (*) is
approximated by a sum of second differences, and the set S is replaced by
the set, say Da, of all continuous density functions g which are linear
over each interval [ai,a1+1] (i=0,1,...,m-1) and which satisfy g(x)=0 if
x 4 ]a,b[. This leads to the maximisation problem

maximise =1log g(x1) - a-={g(ak+1) - 2g(ax) + g(ak-1)1}2

subject to all densities g in Da, where a-i=a and am+1=b.

The solution of the above optimisation problem is unique and is called the
discrete maximum penalised likelihood (DMPL) estimator. A computer imple-
mentation of the method is incorporated in the IMSL programme library,
soubroutine NDMPLE.

The DMPL-estimator is relatively robust against variations in the
parameter m, i.e., the shape of the estimated density does not change very
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much if one changes the mesh spacing ai-ai-i=(b-a)/m. The choice of the
smoothing parameter a, however, is again crucial for the behaviour of the
estimator. Two DMPL-estimates of the gross wage rate density are plotted in
Figure 5. In Figure 5a the density was estimated using a=5-1013%, ao=130,
am=10,000 and m=64 (all gross wage rates in the 1983 FES are greater than
130); Figure 5b shows a DMPL-estimate with parameter values a=1013, ao=130,
am=8,000 and m=64. If we set a210t7, then the bump after the mode of the
density in Figure 5a disappears and one obtains curves having a very smooth
upper tail. Setting a<10*¢ yields density functions with rapid local vari-
ations; for a<10!'3 we obtained curves which were indistinguishable by eye.

Let us conclude this subsection with some remarks. The section begun
with the simple histogram estimator. We then pointed out that one should
use refinements of the histogram. Among the various smoothing techniques
which have been studied in the statistical 1literature, the method whose
properties are probably best understood is (ordinary) kernel estimation.
Nevertheless, it is interesting to ask whether the shape of the empirical
density depends upon the mathematical detail of the estimator. We therefore
have introduced in this subsection the spline smoothing and the penalised
likelihood approach. Comparing the histogram, kernel, spline and DMPL esti-
mates with each other, one sees that the similarity of the curves is indeed
striking (we remark that a kernel estimation with a "small" window width
leads to a density that differs only very slightly from those displayed in
Figure 5b).

We also computed spline and DMPL estimates for the distributions of
labour income and of hours of work. After some experimentation with the
parameter values, essentially the same pictures emerged as those plotted in
Figures 3 and 4. We made, however, two observations. Firstly, it turned out
that the upper tail of the DMPL-estimator is more unstable than that of the
kernel estimator. Secondly, the grid underlying the spline smoothing ap-
proach is more difficult to determine than the smoothing parameter of the
kernel (resp. DMPL) estimator. In view of this it appears that kernel esti-
mates shown together with histograms serve the purpose of presenting the
data best.

In the next section we will have a closer look at the data.
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Cumulative Distribution of Wage Rates
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Kernel Density Estimate
All Workers (1983); h=250
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Adaptive Kernel: Weekly Hours
All Workers (1983); h=1.45
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Distribution of Gross and Net Earnings
All Workers (1983)
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Histogram: Weekly Net Earnings
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Spline Smoothing of Empirical CDF
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Spline Smoothing of Empirical CDF
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4. Investigating Subsamples

The population of "all workers" is a conglomeration of various sub-
populations. We will therefore have in this section a look at subsamples of
the 1983 FES in order to obtain an insight into the determinants of the
densities plotted on the previous pages. There is also another and not less
important reason for investigating subsamples. Clearly, postulating that
the FES data are realisations of independent and identically distributed
random variables would be a heroic assumption (and as we will see in this
section, it is not fulfilled either).

On the other hand, this is the standard framework in which one proves
theorems on the asymptotic properties of estimators. For instance, in order
to show that the (integrated) mean squared error of the kernel estimator is
of the order n-4/%, one has to postulate that the density estimate is
constructed from the first n observations in an independent, identically
distributed sequence (x1:i=1,2,...) drawn from the unknown distribution. If
the unknown density P is of the form f=n1f1+...+nnfn, i.e., i is a mixture
of the densities r:,...,FN, then the sample (Xx1,...,Xa) falls into N sub-
samples, say, (xi:ie¢Iy), j=1,...,N, where IxNIjy=¢ if k+j, and Ii+...+Ix=
{1,....nl. Setting n;=#I3, we can write [see (K) on p. 74]

8 (x) = oy 1, 1 gEx
P(X) - E]‘:l,...,ll n [nJ zitI, h k( h ).

The j-th summand on the right side is a consistent estimator of my f3 if
h=h(n)—0 and n-h(n)—« as n—)=. If n is large relative to N, then re-
sults on the asymptotic behaviour of the kernel estimator are applicable.
In the entire population of workers, however, N may be very large. It
should be emphasised that, speaking strictly, an empirical study can only
go beyond a descriptive data analysis if the underlying sample can be de-
composed into N simple random samples so that N/n is close to zero.

In this section we will investigate the following eight subsamples of
the unstratified sample of "all workers 1983": female (resp. male) workers,
manual (resp. non-manual) workers, manual female (resp. male) workers, non-
manual female (resp. male) workers; the data sets contain both full-time
and part-time workers. Of course, the populations from which these samples
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vere drawn are not homogeneous. However, for the purpose of obtaining a
better understanding of the aggregate distributions our simple decom-
position of the overall population will suffice. In principle, ome could
have excluded from the data sets individuals working only a few hours per
week. We have not done this here since the mere fact that one person works
part-time while another is in full-time employment does not necessarily
imply that they do not belong to the same "homogeneous" group of workers. A
large variance of a statistical variable is in general not an indication of
heterogeneity in the underlying population.

Let us now turn to the analysis of the eight samples (resp. popula-
tions from which the data stem); an individual will be called full-time
worker if he or she works usually at least 31 hours per week. We begin with
an overview of the diagrams (see pages 102-117). When lookin§ at the wage
rate and labour supply distributions, one should keep in mind that the
measure for hours is subjective (Section 2, pp. 68-69) and that an indi-
vidual's perception of his normal hours may depend on whether the person is
a manual or a non-manual worker.

Figure 6 presents the empirical cumulative distribution functions of
the gross wage rate distributions for the eight populations. In Figure 7 we
see kernel estimates and histograms of the wage rate distributions. The
curves drawn in Figures 7a and 7b are the graphs of adaptive kernel esti-
mators; in Fiqure 7b the window width was decreased by around 35 per cent,
i.e., the densities in this figure "follow the data" more closely than
those of Figure 7a. In Figure 7c each adaptive kernel smoother is plotted
together with the ordinary kernel estimate which was used to construct the
local bandwidth factors; the values for the window width are the same as
those used in Figure 7b.

The graphs of the pilot estimates have the same shape as those of the
adaptive kernel smoothers plotted in Figure 7a. In our opinion the values
of the smoothing parameter used in Figure 7b are too small. But the reader
may decide himself which diagrams he prefers, for instance, by comparing
the kernel estimates with the histograms in Figure 7d. In Figure 8 adaptive
kernel estimates and histograms of the distributions of weekly hours of
work are displayed. The histograms were constructed in the same manner as
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the histogram in Figure 3. Finally, Figure 9 shows adaptive Kkernel esti-
mates and histograms of the distribution of gross (resp. net) weekly earn-
ings within the eight populations.

Notice that the empirical distribution function of the gross wage rate
distribution for males (resp. non-manuals) lies everywhere above that for
females (resp. manuals); the empirical distribution function for non-manual
male (resp. female) workers lies everywhere above that for manual male
(resp. female) workers. The gross wage rate densities are unimodal. The
skewness in the data is in all cases positive. However, the density for the
subgroup "male manual workers" is in its main part essentially symmetric,
and the density for the subgroup “female manual workers" is also fairly
symmetric (but less than that for male manuals).

We are now able to explain the bump in the aggregate wage rate density
(Figure 2). Looking at Fiqgure 7a, we see that the density for the whole
population is a mixture of the densities for manuals and non-manuals. The
gross wage rate distribution for manual (resp. non-manual) workers is, in
turn, a mixture of the distributions for female manual (resp. non-manual)
workers and male manual (resp. non-manual) workers. Just as the density for
the total population, the density for the subgroup "manual workers" has a
bump immediately after its mode. Loosely speaking, the cause of this bump
is the female-male pay gap: the density for the subgroup "female manual
workers" has a much higher peak than the density for the subgroup "male
manual workers", and the former density assumes its maximum at a lower
gross wage rate than the latter.

We also estimated wage rate distributions for populations of full-time
workers, i.e., we excluded from the sample of "all workers 1983" and from
the eight subsamples those individuals who stated in the FES questionnaires
that they worked usually less than 31 hours per week. Excluding part-time
workers from a sample does not change the shape of the empirical density
function very much. All nine densities are unimodal and have no bumps. The
distributions are, however, less skewed to the right than those estimated
on the samples which contain also part-time workers. The positive skewness
of the gross wage rate densities for the subgroups "full-time manual female
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(resp. male) workers" and "all full-time manual workers" is almost not

visible; these three densities are essentially symmetric.

A brief glance at Figure 8 shows that the vast majority of males are
full-time workers, while about every second woman works part-time. Thus the
lover range of the aggregate distribution displayed in Fiqgure 3 is ex-
plained by female labour supply. The labour supply data are with three
exceptions skewed to the left; the subgroups with positive sample skewness

are: "manual females", "non-manual males"™ and "all males™ (see below).

Since females earn lower wage rates than males and also work less
hours, we obtain a bimodal distribution of gross earnings for the total
population of workers (Figure 4).

Looking at the earnings data, we see that the densities for males,
manual males and non-manual males are unimodal and "bell-éhaped". The den-
sities for female workers and the two subgroups are of a very different
type. Because of the high proportion of part-time workers among the fe-
males, none of these densities is unimodal. All six distributions possess a
mode near to the left endpoint of the earnings range. The gross (resp. net)
earnings density for the subgroup "female manual workers"™ shows a three-
mode-shape while the other densities are bimodal. Reasonable variations of
the window width do not change the multimodality of the density functions.

Since the British tax system bears a strong resemblance to the simple
linear tax function, the gross earnings distributions are not more skewed
than the net earnings distributions (the only exception is the subgroup
"female manual workers"). The tax function shifts the earnings distribution
for males to the origin; the result is an almost unimodal aggregate net
earnings distribution.

In the remainder of this section we will have a look at the composi-
tion of the sample of "all workers 1983" and at four simple characteristics
of the distributions. The data set, which provides information on 6833
workers, contains more non-manuals than manuals and more males than
females. Contrary to male labour supply, where more individuals work as
manuals than as non-manuals, only every third woman is a manual worker. As
we have already seen in Figure 8, the vast majority of males work full-
time, while around every second woman is in a part-time employment. Part-
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time male labour is equally divided between manual and non-manual work.
While the majority of full-time females can be found in non-manual occupa-
tions, part-time female labour is almost equally divided between manual and
non-manual occupations; but among the part-time females there are also more
non-manuals than manuals.

The values of the sample statistics are taken from the Appendix; CV is
an abbreviation for coefficient of variation; the statistics for the
earnings data are given in f£. Looking at the the sample of "all workers
1983", we have for the four distributions under consideration:

mean standard deviation cv skewness
gross wage ratés 3.18 1.98 0.623 3.85
gross earnings 116.74 80.07 0.686 1.67
net earnings 81.90 52.12 0.636 1.87
weekly hours 35.57 13.08 0.368 -0.34

We now give a brief description of the eight populations.

Female and Male Workers:

43.8 per cent of all workers are females; 48.6 per cent of the females
work part-time, while only 5.5 per cent of the males are in part-time em-
ployment. Males do not only work more hours per week than females but they
also receive considerably higher hourly earnings; the two wage rate dis-
tributions differ, however, only very slightly with respect to their
skewness. The distribution of weekly hours of work for males is slightly
skeved to the right; the skewness in the sample for females is of the same
order but has a negative sign. Because of the high proportion of part-time
vorkers the distribution of earned income for females is less skewed to the
right than that for males. For females we have the following figures:

mean standard deviation CV skewness
gross wage rates 2.50 1.49 0.596 3.74
gross earnings 71.07 51.29 0.722 1.39
net earnings 52.217 32.59 0.623 1.53

weekly hours 27.92 12.59 0.451 -0.22
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The values of the summary statistics for male workers are:

mean standard deviation CV skewness
gross wage rates 3.72 2.14 0.575 4.06
gross earnings 152.41 80.39 0.527 1.93
net earnings 105.03 52.80 0.503 2.16
weekly hours 41.55 9.96 0.240 0.20

Observe that the deductions from gross earnings imply for females a de-
crease in mean earnings of around 26 per cent, while we have for males a
reduction of about 31 per cent. This difference follows from the fact that
many part-time females have earnings below the exemption level of the in-
come tax (see the brief discussion of the British tax schedule at the end
of Subsection 3.1). Notice also that on passing from gross earnings to net
earnings we have a slightly larger reduction in the sample standard devia-
tion for females than in that for males. The spread of the data around its
mean is reduced in the former group by 36 per cent and in the latter by 34
per cent. It would be interesting to examine how much of the earnings dif-
ferential between females and males can be attributed to discrimination as
opposed to differences in the quality of labour supplied. Unfortunately,
the FES lacks information on the level of education and past work experi-
ence which one would need for such a study.”?

Female Manual and Non-Manual Workers:

35.4 per cent of the females are manual workers. The proportions of
full-time workers among female manuals and female non-manuals are 37.7 per
cent and 58.9 per cent, respectively; hence 45.5 (resp. 26) per cent of the
part-time (resp. full-time) females are manuals. Many of the manual females
work for very low hourly wages. Non-manual females earn on average higher
gross wage rates than manual females and they also work more hours per
week. The gross wage rate distribution is considerably more skewed in the
population of "non-manual female workers" than in that of "manual female
vorkers". The distribution of weekly hours of work is slightly skewed to
the right for manual females and skewed to the left for non-manual females.
Clearly, the positive skewness of the former distribution is a consequence
of the fact that among the manuals only every third woman works full-time.

The values of the sample statistics for manual females are:
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mean standard deviation Ccv skewness
gross wage rates 1.85 0.66 0.357 1.58
gross earnings 47.62 34.51 0.725 1.18
net earnings 37.49 22.56 0.602 0.86
weekly hours 24.66 13.25 0.537 0.11

For non-manual females we have:

mean standard deviation CV skewness
gross wage rates 2.85 1.69 0.593 3.42
gross earnings 83.95 54.35 0.6417 1.25
net earnings 60.39 34.36 0.569 1.52

veekly hours 29.70 11.84 0.399 -0.36

Notice that taxes and social security contributions reduce the mean of the
earnings data for non-manual females by around 28 per cent, while we have
for manual females a decrease in mean earnings of only 21 per cent; as in
the case of female and male workers the standard deviations are reduced
much more equally, namely by 35 per cent for manual females and by 37 per
cent for non-manual females.

Male Manual and Non-Manual Workers:

55.7 per cent of all males work as manuals, and 95 per cent of the
manual workers are in full-time employment; in the sample of non-manual
males 93.8 per cent of the individuals work full-time; hence 50 (resp. 56)
per cent of the part-time (resp. full-time) males are manuals. The dis-
tribution of weekly hours of work for non-manual males is skewed to the
right and that for manual males is skewed to the left. Manual males spend
on average more time at work than males in non-manual occupations, but they
have substantially lower (hourly) earnings. The distributions of weekly and
of hourly earnings for manual (resp. non-manual) males are almost symmetric
(resp. skewed to the right). Comparing the earnings data before taxation
with those after all deductions, we observe for non-manual (resp. manual)
males a reduction in the sample mean of around 32 (resp. 30) per cent and a
reduction in the sample standard deviation of around 34 (resp. 35) per

cent. The values of the sample statistics for manual male workers are:
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mean standard deviation CV skewness
gross wage rates 2.98 1.15 0.386 1.48
gross earnings 127.70 54.47 0.472 0.81
net earnings 89.17 35.25 0.395 0.88
weekly hours 42.36 9.56 0.226 -0.54

The figures for non-manual male workers are:

mean gstandard deviation Ccv skewness
gross wage rates 4.65 2.67 0.574 3.70
gross earnings 183.54 95.57 0.521 1.74
net earnings 125.01 63.40 0.507 1.98
weekly hours 40.53 10.37 0.256 0.98

Manual and Non-Manual Workers:

46.8 per cent of all workers are manuals; 33.2 per cent of the manuals
and 53.2 per cent of the non-manuals are females. Most workers in the two
samples work full-time, namely 76 per cent of the manuals and 75.2 per cent
of the non-manuals. In the subsample of full-time (resp. part-time) manual
workers the proportion of women is 16.4 (resp. 86.2) per cent; in the sub-
sample of full-time (resp. part-time) non-manual workers the proportion of
women is 41.7 (resp. 88.2) per cent. As a consequence of the previous fig-
ures, manual workers have substantially lower (hourly) earnings than non-
manual workers. In both populations labour supply is skewed to the left,
but for non-manual workers the value of the émpirical skewness 1is close to
zero. The remaining distributions are more skewed to the right for non-
manuals than for manuals. The deductions from gross earnings reduce the
standard deviations in the two samples by some 35 per cent. The arithmetic
means of the data are reduced by around 29 per cent (for manual workers)
and 30 per cent (for non-manual workers). The values of the summary statis-

tics for manual workers are as follows:

mean standard deviation CV skewness
gross wage rates 2.60 1.15 0.442 1.47
gross earnings 101.13 61.63 0.609 0.68
net earnings 72.03 39.89 0.554 0.69

weekly hours 36.49 13.74 0.377 -0.63
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For non-manual workers we have:

gross wage rates
gross earnings
net earnings
weekly hours

mean

3.69
130.51
90.90
34.71

standard deviation

2.38
91.16
59.56
12.41

Cv

0.645
0.698
0.655
0.357

skewness

3.53
1.70
1.93
-0.03

The tables in the Appendix show that the picture that emerged for 1983

has the same feature in other years. The reader may find it interesting to

look through Routh (1980) who explores the trend in occupational earnings

differentials in Great Britain over the period 1906-79.
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5. Distributions over Time

So far we have been concerned with estimating distributions for a
single year. Such estimates may be misleading for two reasons. Firstly,
there may be deficiencies in the specific sample or the year to which the
sample relates may be atypical. Secondly, we do not know whether the dis-
tributions under consideration are stable across the years, i.e., the shape
of the density functions may change (either randomly or according to a
pattern). One therefore has to be cautious in drawing conclusions from what
has been donme in the last two sections. However, the FES is a time-series
of cross-sectional data, which allows us to study distributions over time.

In this section we will explore the evolution, over the period 1971-
85, of the distributions of gross wage rates and of weekly hours of work.
(We will comment briefly on the distribution of personal income below.)
Before proceeding with the data analysis, observe first that the mean and
the standard deviation of the gross wage rate data increase steadily from
1970 to 1985. The following figures are taken from Table la in the Appendix
(pn and o denote, respectively, the mean and the standard deviation, in £,
of the data):

1971 1973 1975 1977 1979 1981 1983 1985

n 0.60 0.78 1.16 1.49 1.91 2.72 3.18 3.67
o 0.37 0.52 0.62 0.77 1.03 1.82 1.98 2.55
o/p 0.62 0.67 0.54 0.52 0.54 0.67 0.62 0.69

Hence, in order to compare gross wage rate distributions for different
years with each other, one has to normalise the data. In principle, one
could deflate the earnings data in the annual samples by a price index and
focus on the evolution of real gross wage rates. In this case the value of
the density estimates would, however, depend on whether we have chosen the
price indices properly. Consumption behaviour typically varies across
groups of households, so that workers having in a particular year the same
labour income do not necessarily also have the same purchasing power with
respect to the price system in a base year. One therefore should not de-
flate all data in a sample by the same price index. The choice of the price
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indices requires much care; mistakes made at this stage may introduce
substantial bias into the estimates.

To avoid the above difficulties, we made the estimates independent of
the scale of the data by simply dividing all wage rates in a sample by its
arithmetic mean. Let X denote the arithmetic mean of n real observations
Xt,...,Xn drawvn from an unknown distribution with density f: let 1 and o
denote, respectively, the mean and the standard deviation of rh Then a
density estimate for the data points xi1/X,...,Xa/X is an estimate of the
density u-f(u-x), wvhose mean and standard deviation are given by 1 and o/u,
respectively. In the following we will use the term "normalised" as an

abbreviation for "normalised with respect to the mean".

We remark that the distribution of household net income in the FES was
studied by K. Hildenbrand and W. Hildenbrand (1986). Using the "discrete
maximum penalised likelihood" method (see Subsection 3.2), the authors
estimated the net income density on the sample of "all households" for the
years from 1969 until 1981. The estimations show that the income distribu-
tion is bimodal. Furthermore, it turned out that the left peak increased
while the right peak (with two exceptions) decreased over the period 1969-
81. The time series of distributions begins with densities whose second
maximum dominates the first and ends with densities where the relation
between the two maxima is exactly the reverse (see also Figure 5 in V.
Hildenbrand, 1989a). In other words, the percentage of households with low
income (relative to the mean) steadily increased during the 1970s.

Unfortunately, the authors do not say much about this change in the
income distribution. They only remark: "the Lorenz curves {(and. hence the
Gini coefficient) of the empirical data do not differ substantially for the
years 1969 to 1981. A parametric estimation (e.g., lognormal) of the nor-
malized data in every year leads approximately to the same density" (p.
256) .8) It is open to discussion whether or not the change in the distribu-
tion was "substantial". For instance, it appears that the proportion of
families with an income below the Supplementary Benefit level increased by
around a quarter between 1979 and 1981 (Department of Health and Social
Security, 1983).
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It is interesting to ask whether there was a similar change in the
distribution of gross wage rates during the 1970s. The precise formulation
of the question which we want to explore in this section is as follows: Let
Pt and nr denote, respectively, the gross wage rate density and the mean of
this density in year t, where t = 1971,...,1985. Does there then exist a
density f with mean equal to 1, so that (at least approximately) utft(utx)=
f(x) for all x and t?

Observe from the above figures that the standard deviations of the
normalised gross wage rate data, i.e., the coefficients of variation a/u,
are fairly stable; the mean and the standard deviation of the eight numbers
are 0.61 and 0.06, respectively. But notice also that the coefficients of
variation do not change randomly between 1970 and 1985: they are lower in
the period from 1975 to 1980 than in the remaining years (see also Table 1la
in the Appendix).

In the case of labour supply we do not have to normalise the data. We
want to investigate whether or not the distribution of labour supply did
change in the time period under consideration. A brief glance at Table 1la
in the Appendix shows that the means and standard deviations of the labour
supply data are very stable. The arithmetic mean of the sample means for
the years from 1971 to 1985 is 36.50; the standard deviation of the 15
numbers is 0.71. Thus, the sample means deviate on average by only 2 per
cent from its arithmetic mean. The sample standard deviations spread
slightly more around its mean: the arithmetic mean and the standard devi-
ation of the 15 numbers are 12.75 and 0.34, respectively, giving us an
average deviation from the mean of 2.7 per cent. But notice that just as
the coefficients of variation of the gross wage rate data, the values of
the two statistics do not change randomly over time, which conflicts with
the hypothesis that the labour supply distribution did not change.

The sample means decrease in the period from 1971 to 1975, appear to
change "randomly" between 1975 and 1979, and decrease during the years
1979-84 again. Comparison of the figure for 1971 with that for 1984 shows a
decrease in mean labour supply of 5.8 per cent (we will return to this
observation). If we approximate the time series of sample standard devi-
ations by a smooth curve, then we obtain a curve which is strictly increas-
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ing between 1971 and 1974, flat in the period from 1974 until 1981, vwhere
the sample standard deviations appear to change randomly, and from 1981
onwards again strictly increasing. We observe between 1971 and 1985 an in-
crease in the spread of the data around its mean of 11.4 per cent. Looking
at each second year, the following picture emerges (p and o denote, re-
spectively, the mean and the standard deviation of the labour supply data):

19711 1973 1975 1971 1979 1981 1983 1985

n 37.62 37.20 36.99 36.66 36.81 35.82 35.57 35.78
o 12.05 12.49 12.62 12.76 13.02 12.64 13.08 13.42
o/n 0.320 0.336 0.341 0.348 0.354 0.353 0.368 0.375

Let us now turn to the estimations. We begin again with an overview of
the diagrams which are displayed on pages 133-144. The distribution of
gross wage rates (resp. hours of work) was estimated on the sample of "all
workers" for each odd numbered year from 1971 to 1985. Figure 10 shows
adaptive kernel estimates of the distributions of nominal gross wage rates.
The diagram confirms what we have already said at the beginning of this
section: if we want to compare wage rate densities for different years with
each other, we have to normalise the data. In Figure 11 the empirical
cumulative distribution functions of the normalised gross wage rates (i.e.,
mean dgross wage rate equal to one) are plotted. Adaptive kernel estimates
and histograms for the normalised data are drawn in Fiqure 12. Finally, we
see in Figure 13 adaptive and ordinary kernel estimates of the labour
supply distributions. As always, the ordinary kernel estimates served as
the pilot estimates required to obtain the adaptive kernel smoothers.

Notice that the labour supply density obtained by the adaptive kernel
method has a much higher peak than that obtained by the ordinary kernel
method (especially in the years 1971-77). A brief reminder why this is the
case may be useful: The adaptive kernel estimator is defined in such a way
that (i) the local window width hi corresponding to the observation xi1 is a
strictly decreasing function of ?(x1), where ? denotes the ordinary kernel
estimate of the labour supply density, and (ii) the geometric mean of the
hi is equal to the global window width h which is used to compute the pilot
estimate (h=1.6 in Figure 13). Hence the local window width hi at the
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maximum of the ordinary kernel estimate is smaller than h. This, in turn,
implies that the adaptive kernel method gives more weight to observations
near the maximum than the ordinary kernel method.

It is interesting to observe how remarkably stable the labour supply
distributions are in the years 1971-85. In the first half of this period
the estimated densities differ only slightly in its lower and upper range.
Figure 13d shows that the density estimates for the years 1971, 1973, 1975
and 1977 are so similar that it appears as if one diagram was copied four
times. However, the tails of the density functions do not change randomly
over the years. A closer look at Fiqgure 13 reveals that the proportion of
individuals working less than 25 hours per week increased during the 1970s.

Nevertheless, we think it is reasonable to conclude from the estima-
tions that the data support the hypothesis of an "almost" constant labour
supply distribution in the years 1971-77. The picture changes during the
years from 1977 to 1985. We now observe a clear pattern of shifts: the
peaks of the densities decrease and shift to the origin. Of course, this
vas to be expected from what has been said above about the sample means and
standard deviations. In our opinion, however, these shifts are not really
significant. At the very least, Figure 13 suggests that the distribution of
labour supply did not change substantially between 1971 and 1985. Table 1
displays the evolution of some sample percentiles.

Table 1 Labour Supply Distributions
' Sample percentiles: all workers

YEAR 1% 5% 10% 25% 50% 15% 90% 95% 99%
1971 5 10 20 35 40 44 50 55 65
1973 4 10 18 35 40 43 50 55 65
1975 5 10 18 35 40 42 50 55 68
19717 4 10 16 35 40 42 50 55 68
1979 4 10 16 35 40 43 50 55 70
1981 4 10 16 32 38 40 48 54 67
1983 3 9 15 32 38 41 48 54 69
1985 3 8 15 32 38 42 50 55 70
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The distributions of the normalised gross wage rates are considerably
less stable. Figures 11 and 12 show that the distributions differ essen-
tially in the range of normalised gross wage rates which are not greater
than 1.6 (approximately 90 per cent of the observations are contained in
this range). In the following we will use the term "wage rate" as an ab-
breviation for "normalised gross wage rate".

As we see in the first diagram of Figure 1la, the empirical distribu-
tion functions for 1971 and 1973 are almost identical for wage rates not
greater than 1.05; in this range of wage rates the two distribution func-
tions also lie above the distribution functions for 1975 and 1977. For wage
rates greater than 1.05 and smaller than 1.7 the cdf for 1973 lies above
that for 1971. Over the interval [1.5,2] the graphs of the two functions
approach each other and for wage rates greater than 2 they are indistin-
guishable by eye.

For wage rates greater than 1.7 the graphs of the distribution func-
tions for 1975 and 1977 are also almost equal; it is, however, visible that
they lie below the curves for 1971 and 1973. For wage rates smaller than
0.75 the 1977 cdf lies below the 1975 cdf; over the interval [0.75,0.90]
the two distribution functions do not differ, and for wage rates greater
than 0.90 the former function assumes larger values than the latter. In the
interval (1.15,1.40] the distribution functions for 1973 and 1975 are
approximately equal; in the range of wage rates which are greater than 1.40
the graph of the former function lies below that of the 1latter. Thus, in
the range of wage rates which are grater than 1.15 the distribution func-
tion for 1977 assumes the largest values and that for 1971 the smallest.

Summing up, during the years from 1971 to 1977 we observe in the popu-
lation a decrease in the proportion of workers receiving low wage rates
(relative to the mean) as well as a decrease in the proportion of individ-
uals receiving high wage rates.

The empirical distribution functions of the normalised gross wage rate
data for the years 1979, 1981, 1983 and 1985 are plotted in the second
diagram of Figure 1la. Again the distribution functions change not randomly
over time but according to a pattern. In the range of wage rates which are
smaller than 1.1 the distribution function for 1979 (resp. 1985) lies below



124

(resp. above) the other three functions; the distribution functions for
1981 and 1983 do not differ very much, but the former function assumes in
general smaller values. Over the interval [1.10,1.35] the graphs of the
four functions are almost identical. In the interval [1.35,2.00] the dis-
tribution function for 1979 (resp. 1985) lies above (resp. below) the other
functions. The cdf for 1983 differs only very slightly from that for 1985
and lies below that for 1981. For wage rates greater than 2 the graphs of
the distribution functions for 1981, 1983 and 1985 are almost indistin-
guishable by eye, while it is still visible that the cdf for 1979 assumes
larger values than the other three functions.

Hence, over the period from 1979 to 1985 we are faced with an increase
in the proportion of workers earning low wages and an increase in the pro-
portion of individuals earning high wages (relative to the mean).

The density estimates in Figure 12a show us the same changes as the
empirical distribution functions. Roughly speaking, the densities in the
first diagram of this figure shift to the right, while the densities in the
second diagram shift to the 1left. (It should not be forgotten that the
curves in Figures 11 and 12 shift in such a manner that its mean does not
change.) Notice that the wage rate distributions shift between 1977 and
1985 in the same direction as the 1labour supply distributions in this
period. Observe also that we are faced with the following pattern of shifts
if we exclude the density estimates for the years 1971 and 1973 from the
eight curves plotted in Figure 12b: the modes of the six remaining den-
sities move to the left.

These changes are also inferable from the sample percentiles given in
Table 2 on the next page. Reading down the first five columns of the table,
we see that the first, fifth, tenth, twenty-fifth and fiftieth percentiles
first increase and then decrease. Looking down the last three columns, we
see that the ninetieth, ninety-fifth and ninety-ninth percecntiles first
decrease and then increase.
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Table 2 Distribution of Normalised Gross Wage Rates

Sample percentiles: all workers
YEAR 1% 5% 10% 25% 50% 15% 90% 95% 99%

1971  0.242 0.361 0.440 0.608 0.874 1.220 1.650 2.039 3.259
1973  0.247 0.370 0.451 0.613 0.874 1.203 1.629 2.032 3.171
1975 0.259 0.397 0.479 0.657 0.897 1.207 1.588 1.956 2.899
1977 0.268 0.419 0.520 0.676 0.897 1.188 1.566 1.935 2.823
1979 0.262 0.423 0.520 0.654 0.897 1.208 1.598 1.915 2.781
1981 0.238 0.387 0.479 0.620 0.868 1.210 1.651 2.050 3.000
1983 0.226 0.377 0.471 0.612 0.864 1.196 1.686 2.079 3.171
1985 0.216 0.382 0.463 0.597 0.843 1.206 1.708 2.096 3.265

If one computes the ratio of the wage rate at the top decile to that
at the bottom decile, then one obtains the following time-series for the
so-called decile ratio:

1971 1973 1975 19717 1979 1981 1983 1985
3.750 3.612 3.315 3.017 3.073 3.447 3.580 3.689

As we see, the decile ratio is decreasing in the years 1971-77 and increas-
ing in the years 1977-85. In other words, the imequality in the distribu-
tion of gross wage rates is first decreasing and then increasing.

It is interesting to remark that Atkinson and Micklewright (1992, pp.
86-87) make the same observation using the data of the British New Earnings
Survey (NES). Recall that we mentioned the NES already in Section 2. Both
the FES and the NES are time-series of cross-sectional data. The NES,
however, is much larger than the FES: the size of the annual NES sample is
around 170,000 persons while the FES has an annual sample of around 7,000
households. Furthermore, the NES obtains its information from employers.
One may therefore take the view that the NES data are more reliable than
those of the FES where interviewers visit the households. But it appears
that this is not the case (we refer the reader to our brief discussion of
the FES data in Section 2).

Atkinson and Micklewright consider the variable “gross weekly earn-
ings" and compute the decile ratio in the NES samples for the years 1968-89
(the NES data were first collected in 1968). It turns out that the decile
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ratio fell (resp. rose) in the years 1968-77 (resp. 1977-89) by 21.2 (resp.
17.2) per cent, namely from 3.68 in 1968 to 2.9 in 1977 (resp. from 2.9 in
1977 to 3.4 in 1989); Figure 4.1 in Atkinson and Micklewright (1992, p. 86)
shows that the decile ratio for 1971 is 3.4, approximately, and that for
1985 is 3.2, approximately.

The authors provide an explanation why the decile ratio decreased in
the period 1968-77. But before quoting their explanation, let us first have
a look at the data underlying our estimates.

The next tables (pp. 127-129) shed some light on the factors which
possibly caused the shifts in the distributions. Table 3 presents sample
proportions; Tables 4-8 contain sample sizes and sample ratios. Recall from
the preceding section that an individual is classified as a full-time
worker if his or her nmormal hours are greater than 30.

As we see from Tables 3 and 4, the proportion of females in the labour
force increased continuously over the period 1971-85 (from around 39 to 45
per cent). The sample proportion of part-time female (resp. male) workers
increases (resp. decreases) during the years 1971-77 by 3.2 (resp. 0.5)
percentage points; over the period 1977-85 the sample proportion of part-
time female (resp. male) workers increases by 1.4 (resp. 1.0) percentage
points. Loosely speaking, the proportion of part-time males in the labour
force is of the order of 3 per cent. Thus, the increase in part-time work
as shown in Table 5 is essentially attributable to a rise in part-time
female labour supply. (If we divide the number of part-time male workers by
the number of full-time workers in each year, this quotient decreases
between 1971 and 1977 from 0.036 to 0.031, and increases during the years
1979-85 from 0.036 to 0.044.)

In Tables 6 and 7 we can see that the sample ratio of females to males
increases more for non-manual than for manual workers. However, the change
in the sample proportion resulting from a change in the sample ratio is a
decreasing function of the sample ratio.

The proportion of females among both types of workers increased over
the period 1971-85 by around 4 percentage points, namely from 0.509 to
0.548 in the population of "non-manual workers" and from 0.299 to 0.338 in
that of “manual workers". Notice also that the proportion of females in the
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subsamples of full-time manual workers decreases in the years 1971, 1973
and 1975 (resp. 1979, 1981 and 1983), while we observe for full-time non-
manual workers between 1971 and 1977 an increase in the sample ratio of
females to males and a subsequent decrease until 1983. Moreover, a brief
glance at the sample sizes in Tables 6 and 7 shows a general switch from

manual to non-manual occupatioms.

The proportion of non-manual workers in the labour force grew rapidly
in these years, namely from 0.326 to 0.420 in the population of "male
vorkers" and from 0.541 to 0.633 in that of "female workers". Thus, we can
conclude that the overall rise in female labour supply was largely due to
females entering the labour market as non-manuals_ (many of them working
part-time). Finally, Table 8 shows that the sample ratio of non-manuals to
manuals increases more between 1979 and 1985 than in the years from 1971 to
1977. The sample proportion of non-manual workers rises during the years
1971-77 (resp. 1979-85) from 0.409 to 0.442 (resp. from 0.462 to 0.515).

Table 3 Proportions of Subgroups in the Annual
Samples of "All Workers™

1971 1973 1975 19717 1979 1981 1983 1985
Part-time:
Females 0.165 0.185 0.194 0.197 0.199 0.210 0.213 0.211
Males 0.029 0.027 0.027 0.024 0.028 0.030 0.031 0.034
Full-time:
Females 0.220 0.215 0.218 0.224 0.2217 0.226 0.225 0.235
Males 0.586 0.573 0.561 0.554 0.546 0.533 0.531 0.520

Table 4a Female and Male Workers
Sample Sizes and Sample Ratios

YEAR MALES FEMALES RATIO
1971 5109 3198 0.626
1973 4946 3298 0.667
1975 4906 3428 0.699
1971 4731 34417 0.728
1979 4379 3259 0.744
1981 4565 3538 0.775
1983 3837 2996 0.781

1985 3842 3100 0.807
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Table 4b Full-Time Female and Male Workerst?

YEAR MALES FEMALES RATIO
1971 4867 1829 0.376
1973 4724 171 0.375
1975 4679 1813 0.387
1971 45317 1834 0.404
1979 4168 1736 0.417
1981 4322 1834 0.424
1983 3625 1540 0.425
1985 3609 1631 0.452

Table 5 Full-Time and Part-Time Workers!’

YEAR FULL-TIME PART-TIME RATIO
1971 6691 1616 0.242
1973 6495 1749 0.269
1975 6492 1842 0.284
1977 6371 1813 0.285
1979 5901 17317 0.294
1981 6156 1947 0.316
1983 5165 1668 0.323
1985 5240 1707 0.326

Table 6a Non-Manual Female and Male Workerst)

YEAR MALES FEMALES RATIO
1971 1668 1730 1.037
1973 1702 1771 1.044
1975 1745 1991 1.141
1977 1666 1951 1.1711
1979 1632 1895 1.161
1981 1821 2146 1.178
1983 1698 1934 1.139
1985 1615 1961 1.214

Table 6b Full-Time Non-Manual Female and Male Workerst)

YEAR MALES FEMALES RATIO
1971 1584 1125 0.710
1973 1619 1135 0.701
1975 1642 1224 0.745
1977 15717 1217 0.772
1979 1536 1174 0.764
1981 1711 1289 0.753
1983 1592 1140 0.716
1985 1508 1176 0.780

1) Sample sizes and sample ratios.
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Table 7a Manual Female and Male Workerst?

YEAR MALES FEMALES RATIO
1971 3441 1468 0.427
1973 3244 1521 0.469
1975 3161 1437 0.455
1977 3071 1496 0.487
1979 2741 1364 0.497
1981 2744 1392 0.507
1983 2139 1062 0.496
1985 2232 1139 0.510

Table 7b Full-Time Manual Female and Male Workerst’

YEAR MALES FEMALES RATIO
1971 3283 704 0.214
1973 3105 636 0.205
1975 3037 589 0.194
1977 2960 617 0.208
1979 2632 562 0.214
1981 2611 545 0.209
1983 2033 400 0.197
1985 2101 455 0.217

Table 8a Manual and Non-Manual Workerst)

YEAR MANUALS NON-MANUALS RATIO
1971 4909 3398 0.692
1973 4765 3479 0.730
1975 4598 3736 0.813
1971 4567 3617 0.792
1979 4111 35217 0.858
1981 4136 3967 0.959
1983 3201 3632 1.135
1985 3371 3576 1.061

Table 8b Full-Time Manual and Non-Manual Workerst?

YEAR MANUALS NON-MANUALS RATIO
1971 3987 2709 0.679
1973 37141 2754 0.736
1975 3626 2866 0.790
1977 3571 2794 0.781
1979 3194 2710 - 0.848
1981 3156 3000 0.951
1983 2433 2732 1.123
1985 2556 2684 1.050

1) Sample sizes and sample ratios.
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These two changes in the composition of the annual samples, i.e., the
increase in female labour supply and the switch from manual to non-manual
occupations, explain the shifts in the densities of the labour supply dis-
tributions. [Recall from Section 4 that females (resp. non-manuals) work on
average less hours per week than males (resp. manuals); see also the tables
in the Appendix.]

The factors which caused the shifts in the wage rate densities are not
that easily to detect. An increase in the sample proportion of workers
earning low wages will shift the empirical density somewhat nearer to the
origin; and as the diagrams of Figure 7 and the summary statistics in the
Appendix show, females receive lower gross wage rates than males. It seems
therefore reasonable to conclude, that the observed shifts in the densities
over the period 1979-85 are attributable to the high proportion of female
workers in the FES samples from the end of the 1970s onwards.®) Our brief
data analysis does not, however, explain the shifts in the distributions
during the years 1971-77.

¥e remark that Atkinson and Micklewright (1992, pp. 86-87) provide the
following explanation for the fall in the decile earnin