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ABSTRACT

This thesis aims to develop a class of state space models for 

non-Gaussian time series. Our models are based on distributions of the 

exponential family, such as the Poisson, the negative-binomial, the 

binomial and the gamma. In these distributions the mean is allowed to 

change over time through a mechanism which mimics a random walk. By 

adopting a closed sampling analysis we are able to derive finite 

dimensional filters, similar to the Kalman filter. These are then used 

to construct the likelihood function and to make forecasts of future 

observations. In fact for all the specifications here considered we 

have been able to show that the predictions give rise to schemes based 

on an exponentially weighted moving average (EWMA). The models may be 

extended to include explanatory variables via the kind of link 

functions that appear in GLIM models. This enables nonstochastic slope 

and seasonal components to be included. The Poisson, negative binomial 

and bivariate Poisson models are illustrated by considering 

applications to real data. Monte Carlo experiments are also conducted 

in order to investigate properties of maximum likelihood estimators 

and power studies of a post sample predictive test developed for the 

Poisson model.
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NOTATION

The following symbols are commonly used in the text:

1 following a scalar denotes the transpose of a vector.

~ following a variable will stand for " distributed as", 

above a variable denotes the conditional me!n of the 

variable distribution.

above a variable denotes an artificially generated 

variable.

2: following an expression means an approximated result.

(*) at the heading of a section means that the section 

contains too detailed material on literature review.

NBD stands for negative binomial distribution.

As a rule vectors will be typed in bold case, although in certain 

self evident situations this will not occur. Other symbols and 

acronyms are used in the text, but these are either explained or 

evident from the context.
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CHAPTER ONE

INTRODUCTION

In the last decade or so several techniques have been proposed to 

address the problem of non-linearity and/or non-Gaussianity in the 

modelling of time series. For example, non-linear schemes with 

Gaussian disturbances are discussed in Priestley (1980) under the 

umbrella of his state-dependent models (SDM). These may be shown to 

contain as special cases the bilinear models of Granger and Andersen 

(1978), the self exciting threshold autoregressive models (SETAR) of 

Tong and Lim (1981) and the exponential autoregressive models (EAR) of 

Ozaki (1982). Although of interest in themselves, these formulations 

will not be considered in our review since our main concern is with 

explicit non-Gaussian formulations.

Besides the empirical evidence provided elsewhere (see,e.g., 

Granger and Nelson 1979) sometimes the very nature of the data may 

suggest, in an obvious way, the inadequacy of a Gaussian scheme. 

Perhaps the most extreme case of this occurs when the series consists 

of binary data, i.e., a sequence of zeros and ones in time (see 

section 4.2.2). A less extreme case is exemplified by count data, in
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particular when the number of events in each time period is relatively 

small (see figure 1.1 and Chapter 3 ).

Figure 1.1 An example of time series of count data: goals scored by
England against Scotland in international football matches.

10.0

5.0

0.0-1
10 20 30 40 50 60 70 80 90 100

The fitting of Gaussian models to non-Gaussian data meanwhile, 

should not be viewed as a practice to be avoided at any cost. A good 

guide is to reconcile pragmatism and good sense. It may be the case 

that the analysis of this type of data in an appropriate setting could 

become highly complex, and that the Gaussian framework provides a 

reasonable approximation for the data in study. Shephard and 

Harvey (1989), for example, use a continuous Gaussian structural model 

to track the share of the main political parties in recent British 

elections. In a more dramatic scenario, as in the case of the purse 

snatching data analysed in section 3.5, the fitting of a Gaussian
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model on the untransformed data may produce negative forecasts and 

prediction intervals straying into the region of negative values. For 

situations like this the Gaussian approximation is clearly 

non-admissible. A different approach must be sought.

Transforming data to normality may be a good strategy in a variety 

of situations. For example, the square root transformation when used 

in the aforementioned data set works quite well, while the logarithmic 

transformation is more appropriate for relatively large counts, e.g., 

casualties in Harvey and Durbin *( 1986). One must, however, be aware 

about certain limitations when using such transformations. Firstly, as 

remarked by McCullagh and Nelder (1983, p.16) very rarely will a 

single transformation jointly produce symmetry, constant variance and 

additivity of systematic effects. Furthermore when the model is set up 

in terms of components of interest such a strategy could jeopardize 

the interpretation of the modelling process. To avoid these

undesirable results a model should 'be unable to predict values which 

violate definitional constraints", i.e., a model should be data 

admissible (Harvey 1989, p.13).

In order to properly address some situations of intrinsic non 

normality the structural approach (see Harvey 1989) has been extended 

into a class of non-Gaussian models (see,e.g, Harvey and 

Fernandes 1989a). This new class of models differs from the

conventional state space models in that, for most of the

specifications considered, neither the measurement nor the transition 

equations are expressed in external noise form. Instead they are 

replaced by two conditional probabilistic statements which are shown
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to capture the essential features necessary to derive forecasting 

models. J.Q. Smith (1979, 1988a-b) (henceforth Smith) discusses this 

modelling approach from a Bayesian perspective and uses the 

nomenclature of partially specified models for them. A similar 

approach has also been developed by R. Smith and Miller (1986) 

(henceforth S&M), but theirs is restricted to an application based on 

the exponential distribution, a special case of our Gamma-Gamma model, 

as we shall see.

The particular choice for the state predictive mechanism together 

with the use of conjugate distributions have allowed us to derive a 

broad class of simple models with high potential for applications. In 

particular we have considered situations in which non-normality is 

present in the form of:

(i) count data — as in the Poisson-Gamma model (Ch.3, section 2), 

the Negative Binomial-Beta model (Ch.3, section 3) and the 

Bivariate Poisson model (Ch. 6).

(ii) binomial data - as in the Binomial-Beta model (Ch. 4).

(iii) gamma data— as in the Gamma-Gamma model (Ch. 6).

(iv) random sun^ as in the Random Sum model (Ch. 7).

Our methodology may be viewed as belonging to the class of 

partially specified models, but, amongst other things, our heuristics 

differs from the one adopted by Smith. We prefer to look at our 

framework as naturally motivated by the structural paradigm in time 

series. In particular we advocate a classical treatment for the 

modelling process, where we make use of non-informative priors and
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estimate the hyperparameters using the maximum likelihood method (ML). 

Where possible, we try to derive classical tests for model checking, 

as in the post-sample predictive test for the Poisson-Gamma model.

In addition our framework allows for the introduction of 

explanatory variables and deterministic structural components (time 

trend and seasonals). These effects are introduced via suitably chosen 

link functions, which appear in GLIM models (McCullagh and 

Nelder 1983). Before embarking on a full description of our class of 

models, which is left to the next chapter, we would like to introduce 

some results of interest and consider a review of some of the state 

space models for time series.

Amongst the already vast literature in the area we will be 

covering in some detail only those formulations which are closer in 

spirit to our methodology. We start with the Gaussian-linear 

Structural Models (henceforth SM) of Harvey (1984,1989), since these 

provide a natural basis of comparison when considering

non-linear/non-Gaussian extensions of state space models. It is widely 

known that an exact and optimal filter (in the MMSE sense) is only 

obtainable for the Gaussian-linear specification (see,e.g, Anderson 

and Moore 1979, ch.5). Therefore, by examining the singularities of 

this formulation we will be better equipped to understand the natural 

difficulties one will be faced with when considering more general 

formulations. Our review also covers the Dynamic Generalized Linear 

Models (DGLM) by West, Harrison and Migon (1985) (henceforth WHM) and 

the Poisson filter by Figliuoli (1988). These formulations will be 

illustrated with respect to one of the simplest structures describing
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the level of a series, the random walk plus noise or local level 

model, (see Harvey 1989, p.19) since this forms the basis for the 

construction of our class of non-Gaussian models.

Rather than presenting the filtering and prediction equations for 

these models in a standard way we would like here to take a different 

perspective. We have chosen to use the probabilistic or Bayesian 

approach to carry out our analyses since this framework is naturally 

fitted to study state space formulations, in particular, our own class 

of non-Gaussian structural models. In doing so we will be providing an 

appropriate setting within which these formulations can be easily 

analysed and the differences amongst them understood against a common 

background.
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1.1 THE PROBABILISTIC APPROACH IN STATE SPACE MODELS:

The probabilistic approach (see also Kitagawa 1987 and Pole and 

West 1988) for the presentation and solution of a univariate state

space model is given by the following set of equations, where we have 

defined Y t— (yi ,Y2 » • • • *Yt^ an(* { #1»#2» • • • »®t^■ our notation
p (* | •) denotes a generic symbol for a probability distribution/density 

labelled by its argument.

- measurement equation: this gives the probabilistic structure of the 

observable yt in terms of a dynamic parameter 0t , the state of the 

process, possibly with a physical interpretation, and a fixed 

parameter i>, which we call the secondary parameter. Their

identification will become clear from the context. This equation can

either be obtained via the proper manipulation of an external noise 

measurement equation (as in the Gaussian case; see also

Figliuoli 1988) or by direct or internal specification (see Ch. 3 

onwards and also WHM 1985 and S&M 1986). In particular this model may 

be chosen from a class of the exponential family, as in WHM (1985). 

Symbolically we thus have

pCyt^t.^Yt-i) (l.i.i)

where yt 6 T c R, f 0 c R , u e U c R.
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—  transition equation: this gives the dynamics of the state and is 

generally stated in external noise form, from which, hopefully, the 

transition density can be obtained

P(*t l*t-l.tf.Y t-l> (1.1.2)

where \p is any existing parameter associated with the dynamics of the 

state. The parameters u and \p are put together in a single vector if, 

the vector of hyperparameters, which, in the classical approach, is 

estimated via ML. In certain cases mechanisms may be derived to make 

these parameters dynamic, when they will no longer be considered 

hyperparameters. The most common example is given by the adoption of 

the ARCH structures for the variances of Gaussian models, as in 

Figliuoli (1988). See also Chs. 3 and 6. For ease of notation, in the 

following, we will drop the hyperparameter vector ♦ from the above 

distributions/densities.

Filtering and forecasting:

(i) state prediction ( prior ):

p(0t *Y t-l)' P ( » ̂ t-1 * Y t-l) ^ t - 1
0

e
p (#ti #t-1»Y t-i) p(^t-i*Y t-i) ^t-i

(1.1.3)
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(ii) state updating ( posterior ): directly obtained by use of Bayes 

theorem

where the constant of proportionality is given by the reciprocal of 

the subsequent equation.

(iii) conditional distribution ( predictive distribution ):

(iv) multi-step ahead forecasting distribution: here we want to derive 

the distribution of yj+k (k > 2) conditional on the data observed up 

to time T. This can be accomplished via two equivalent schemes. The 

first uses an explicit expression for the multi-step ahead 

distribution for the state, and is obtained through the following 

manipulation:

p(0t lYt) cc p(yt I p(0t »Yt-l>

0
p(yt'0t»Y t-i) p(0t'Y t-i)d0f (1.1.5)

P(yT+k,YT )" P(yT+k»0T+k|YT ) d0T+k 
Je

P(yT+k>^T+k»YT )P(^T+k,YT ) d0T+k- (1.1.6)
0
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where the k-steps ahead density for the state is given by

p(0T+ k |YT)' p(0T+kl0T+k-l>YT > P(0T+k-l|YT> d0T+k-l- C1 -1 -7)0

Forecasts may also be obtained by integrating out the variables up to 

time T+k-1 from the joint forecasting distribution. This is as 

follows:

P(yT+k»YT )' p(yt+i*■••*yi+k-1*yT+k) dyT+i•••dyT+k-1

f f T+k ... n p(ytiYt-l) dyT+l ••• dyT+k-l
^y T+1 (1.1.8)

Even when the full forecasting distribution is difficult to evaluate 

forecasting moments may be derived by use of one of the following 

properties of conditional expectations:

(i) the chain rule for conditional expectations (see,e.g., 

Shiryayev 1984, ch.2 §7)

n n
E (yT+k,YT>“ eT eT+1 ••• ET+k-2 ET+k-l (yT+k> (1.1.9a)

where E-p+j j—0,1,2,... denotes taking expectations wrt Y j+j and 

n- 1.2......
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(ii) when an explicit transition equation is available then the 

following standard result may prove to be useful

E (yT+k lYT )- E( E(yT5k l«T+k)l YT) . (1.1.9b)
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1.2 GAUSSIAN-LINEAR STRUCTURAL MODELS:

The structural approach in time series modelling (see 

Harvey 1984,1989) was originally developed for the analysis of 

Gaussian time series and it is based on the representation of a series 

in terms of components of interest such as trend, seasonals, cycles, 

etc. Similar formulations have also been introduced by Harrison and 

Stevens (1976), Akaike (1980) and Kitagawa (1981). The framework used 

is that of a linear state space model (see,e.g., Anderson and 

Moore 1979) and as such the Kalman filtering equations (Kalman 1960) 

can be used for state estimation and likelihood construction. Note 

that model identification (in the time series sense) is achieved by

direct specification of those components one may find relevant to 

describe the series. Another interesting feature of this approach is 

that the components are local rather than global, so that the model 

has an intrinsic dynamic structure. It can be shown that under 

specific differencing operations the structural models may be reduced 

to an equivalent ARIMA structure.

The SM in which the level of the process is described by a random

walk structure has the standard form:

measurement eqn: yt - 0t + ct ft ~ NID(0,<t2) (1.2.1a)

transition eqn: 0t - ^t-1 + ^t Vt ~ ^ID (0,qcr2) (1.2.1b)

where 0 < q < °° and t- 1, . . . ,T. In the above et and rjt are

independent of each other in all time periods.
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Most of the results and proofs presented here for the above 

specification are well known in the literature (see,e.g., Harvey 1984 

and Anderson and Moore 1979). Our contribution lies in the stress we 

put on the properties which make the filtering and forecasting problem 

so unique for the Gaussian-linear case, namely, the Markovian 

evolution for the state and the Gaussian reproducing property under 

linear combinations. In fact by use of the aforementioned properties 

the integrals in section 1.1 are trivially solved. We then briefly 

comment on the potential problems one is likely to meet when trying to 

redefine the above framework across distributions other than the 

Gaussian.

- measurement equation: the Markovian structure of the transition

equation (1.2.1a), implies that the measurement yt is conditionally 

independent of the past data, i.e., given 0t , for all t, the 

measurements yt are independent variables (see.e.g, Jazwinski 1970, 

ch.3). This is formalized by rewriting (1.1.1) as

This conditional probabilistic statement is just a different way of 

restating the measurement equation, traditionally given in external 

noise form (1.2.1a). Making use of the linear property for Gaussian 

variables we find that

where the first element of the vector of hyperparamters is <r2.

p(yt l0fYt-l ) - p(yti0t)- (1.2.2)

p(yt I 0t)~ N (0t> °‘2) (1.2.3)
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(i) state prediction- as a result of the Markovian property we have 

that

(1.2.4)

Using (1.2.1b) it is straightforward to show that the transition 

densities may be obtained through

P<*t'*t-1>- Prj (*f*t-l> (1.2.5)

where the density on the rhs is the density of i7t evaluated at 

^f^t-1- evaluation of the above density is trivial in the

Gaussian case given the additive structure of the transition equation. 

This is given by N(0t_i,cr2). This alone is all one needs to derive the 

joint distribution of the states p(0]_, #2, • • • » ®t) > slnce as a corollary 

of the Markovian evolution

t
p(0£,0t-i».«.»^i)“ n p ( i ^ i - i )

i«l

with p (  ̂1 | 0O) given. Observe than, in view of (1.2.2-3) and the above 

factorization the joint distribution of the observations {y^l a^d 

states {0t} may be fully characterized. In fact one may easily show 

that

t
P(Yt>*t)“ n p(yil0i> P(^iI^i-l) 

i-1

where the densities in the rhs are given, respectively by (1.2.3) and
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(1.2.5). In the sense of the above, Gaussian state space models are 

known as fully specified state space models.

Apart from very special cases, considered by Bather (1965), the 

construction of transition equations appropriate for distributions 

other than the Gaussian is not usually possible. Fortunately, as we 

will see later, the existence of an explicit transition equation is 

not a necessary condition for the construction of forecasting models, 

altough it may facilitate the derivation of multi-step ahead forecasts 

and smoothing algorithms in certain cases.

This is known in the literature as the Chapman-Kolmogorov equation 

(see,e.g., Jazwinski 1970, ch.3). Finally by making use of (1.2.5) the 

above integral may be written as

It then follows that for the Gaussian-linear case the 

Chapman-Kolmogorov equation (1.2.6) may be written as a convolution. 

Again this is a direct consequence of the additive structure of the 

transition equation (1.2.1b). The second density in the rhs of 

(1.2.7), is by assumption, N(mt.^,a2pt.^). Using the reproducing 

property for Gaussian variables, this integral may be easily solved 

resulting in the predictive step for the Gaussian case:

Using (1.2.4) the state prediction equation (or prior) is

simplified to:

6
P(0t,et-l) P(0t-l,Yt-l) d*t-l. (1.2.6)

p(0t 'Yt-l)“ P t7 (*t-*t-l> P0 (0t-llYt-l>d0t-l-
Je

(1.2.7)
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p(0tlY t-l) - N (mt/t-l«pt/t-l) (1 . 2 .8)

where

mt/t-l~ mt-l 

Pt/t-l~ + Pt-1)-

(1.2.9a)

(1.2.9b)

Observe that in the predictive step, the location parameter of the 

state distribution remains unchanged while the scale parameter

transition, the component 0t will be less precise than its previous 

value, since no observation is used to validate this step.

(ii) state updating - it is a well known fact in the literature that 

Gaussian variables are closed under sampling, i.e., the posterior of a 

Gaussian variable with fixed variance will also be Gaussian (see,e.g., 

Berger 1985, ch.4). Using this result one can establish that the 

posterior or filtering density is given by

increases. This reflects the fact that immediately after the

p(0t lYt) ~ N (mt ,pt) ( 1 . 2 .10)

where

m t“ m t/t-l + Kt ( y f m t/t-l)

Pt“ Pt/t-1 (1- Kt)

(1.2.11a)

(1.2.11b)

and Kt , the gain, is given by, Kt- Pt/t-l/(1+Pt/t-l)•
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The above equations, together with the prediction equations (1.2.9) 

form the so called Kalman filtering equations. In a more general 

environment, where non-Gaussian and/or non-linear equations are 

considered, the computation of the filtering density may become vastly 

more difficult. While in the Gaussian-linear case this density is 

fully characterized by a finite set of dynamic equations, for general 

distributional assumptions we would need the whole distribution, and 

it is in this sense that the resulting filter is known as having 

infinite dimension. This problem is known in the control literature as 

the non-linear filter problem (see,e.g., Jazwinski 1970, ch.9).

(iii) predictive density- first, by using the general result of

conditional independence for the measurement equation (see 1.2.2), 

equation (1.1.4) may be simplified to

p(yt»Yt-i)' P(yt'0t > P ^ t lYt-l)d0t (1.2.12a)
©

or symbolically,

P(ytlyt-l)- P(ytl0t.*> $tP<0t |Yt-l>• (1.2.12b)

The operation ^ is known as mixing (or compounding for discrete 

distributions) and is a natural consequence of constructing state 

space models. The resulting distributions contain all the information 

that is verifiable from the data, and we sometimes refer to them as 

the operational model. They form the basis for constructing the 

likelihood for hyperparameter estimation and mispecification tests 

(see,e.g., Harvey 1989, ch.5 and section 3.4). In particular, it is a
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well known result that the joint distribution of the observations, or 

the likelihood for the vector of hyperparameters ♦ may be obtained 

through the following factorization (see,e.g., Harvey 1984, 

pp.125-147)

Observe that to obtain the operational model no explicit use of the 

transition density has been made (see 1.2.12a-b); the key density in 

this operation being the state predictive density (see 1.2.7). As we 

shall see later this important feature will be at the core of our 

class of non-Gaussian models.

In a general non Gaussian/non-linear environment the resultant 

compounding or mixing distribution, might not have a closed form and 

therefore be computationally difficult to solve. Hence numerical 

methods will be required not only to maximize the likelihood function 

(1.2.13), but also to construct it. For the Gaussian case, this 

distribution is easily obtained given the additive structure of the 

measurement equation. Using equations (1.2.3) and (1.2.8) it may be 

shown that the solution of the compounding operation is given by 

(see, e.g., Johnson & Kotz 1969, vol.2)

T
p(yi,y2  yx;*) - n p(yt'Y t-i)*t-i

(1.2.13)

P(yt»Y t-l)“ N(0t ,<r2)* N(mt/t_1 ,pt/t_1)
*t

~ N<yt/t-i.ft/t-i) (1.2.14)

where the moments are given by
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yt/t-i-

+ Pt/t-i

(1.2.15a)

(1.2.15b)

with and Pt/t-1 as (1-2.9a) and (1.2.9b) , respectively.

A particular feature of the Gaussian-linear model is that both the 

measurement and predictive densities belong to the same family of 

distribution. For alternative specifications this will not be true, in 

general. In addition, the resulting compounding or mixing distribution 

may or may not have a direct and simple interpretation in terms of the 

physical situation being investigated. Given that, by assumption, the 

measurement equation is data admissible, the virtual arbitrariness of 

the predictive density may be circumvented by noting that under the 

Bayesian perspective this distribution may be viewed as the 

expectation of the measurement distribution over the prior 

distribution of the state. Therefore for squared error loss, the 

predictive distribution (or operational model) is the optimal 

estimator of the measurement distribution taken with respect to the 

density which encapsulates the modus operandi imposed in the state 

evolution. If one feels too uneasy about this interpretation, a more 

general principle is given by the predictive point of view which 

simply judges a model on the merits of its predictive performance. 

This has been advocated,e.g., by Akaike (1984).

34



(iv) k-steps ahead predictive distribution - we first notice that by 

equation (1.2.2) the following simplification occurs

P(yT+k'0T+k>YT>- P(yT+k«0T+k>

so that equation (1.1.6) may be rewritten as

P(yT+k|YT)'

or symbolically,

P(yT+k'0T+k)P(0T+klYT) d0T+k (1.2.16a)
0

p(yi+k|Yx) " P(yT+k' 0T + k > ^ +g(0T+k,YT> • (1 .2 .16b)

Now, the first distribution on the rhs of the above equation is 

readily obtained by direct extrapolation of the measurement equation 

(1.2.3) and has the form N(0<p+ic,o-2) . By use of the Markov property the 

second density in this mixing operation may be written as

p(0T+k|YT)' p(0T+k'0T+k-l) P(0T+k-llYT) d0T+k-l
0

for k-2,3,... . It is easy to show that from (1.2.1b) the state 

equation projected k steps ahead has the form

k
0T+k~ eT + 1 VT+i 

i-1

Once more making use of the property of Gaussianity invariance under
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linear combinations, the repeated application of the convolution

operation in the previous integral results in the following expression 

for the state multi-step ahead density:

(0T+1c|Yt )~ N (mT+k»PT+k) (1.2.17)

where mx+k/T“ mT

PT+k/T“ (PT + kq)a2.

From this the multi-step ahead forecast distribution may be easily 

obtained by a last application of the convolution property, resulting 

in

P(yT+k,YT )" NC^T+k’0-2) * N (mT+k»PT+k)
0T+k

~ N (yT+k/T* fT+k/T> (1.2.19)

where yx+k/T“ mT+k/T *“mT (1.2.20a)

fT+k“ ( 1+PT+ k(l)- (1.2.20b)

Note that for the above derivation one has first to compute the 

k-steps ahead density for the state (1.2.17), which is simple to 

obtain in the Gaussian linear case given the remarkable property of 

Gaussian invariance under sucessive convolutions.

(1.2.18a)
(1.2.18b))
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1.3 NON-GAUSS IAN/NON-LINEAR MODELS:

One natural way to generalize the state space framework is to 

conserve the skeleton of equations (1.2.1a-b) and allow for 

specifications where the system and the measurement noises are not 

necessarily Gaussian distributed. Given the possibility of 

restrictions on the parameter space this linear structure may not be 

appropriate, and further generalizations in terms of a non-linear 

transition equation and/or non-linear measurement equation may be 

called for. Based on some of the previous results the general feeling 

should be that this strategy is bound to produce intractable models, 

since, in general, some or all of the distributions/densities of 

interest may not be given in an analytical form. This problem may be 

circumnvented by considering a number of techniques which we now 

briefly review.

1.3.1 Numerical filters:

With the rapid development of computer technology, approximation 

techniques based on the use of numerical methods to reconstruct 

densities and/or moments have become more attractive. Filters based on 

these principles we designate by the name of numerical filters. A good 

discussion on the practical problems of implementing such algorithms 

is provided by Sorenson (1988). Applications of these techniques to 

real data are given in Kitagawa (1987) who considers non-Gaussian 

state space models where both the measurement and transition equations 

have non-Gaussian noises. By specifying some heavy tailed

37



distributions he was able to model general irregularities in time 

series, such as structural change (abrupt or gradual change in the 

level and/or slope of a linear model) and outliers. In his approach a 

rather straightforward method is taken: the probability densities are 

approximated by a piecewise linear function (or first order spline), 

and the necessary operations on the densities are realized by 

numerical computation. Model selection (say,e.g., when competing 

models have different noise distributions) is done using the AIC 

criterion and hyperparameter estimation using the likelihood function. 

One drawback of his method is that it can be extremely computationally 

demanding, especially when the state is multidimensional (see,e.g.,

H.K.Tan 1990, ch.2 and Pole and West 1988).

A more recent numerical approach for state space models has been 

proposed by Pole and West (1988), who consider general non-Gaussian 

models under the Bayesian perspective. They use Gaussian quadrature as 

the numerical technique to approximation. The essence of this 

technique is to approximate integrals by a discrete sum where the 

weights and grid points involve the Hermite polynomials. For details 

see Pole and West (1988). The authors claim theirs are more 

numerically efficient than Kitagawa's, but doubt still remains about 

the overall effect brought by these successive approximations. It is 

also legitimate to ask about the improvement in forecasting perfomance 

and overall CPU time required by these filters when compared either 

with standard Gaussian filters, like the SM or with the non-Gaussian 

analytical filters, which are considered in the next topic.
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1.3.2 Analytical filters:

The central idea behind this general technique is to approximate 

the unknown optimal non-Gaussian filter by a finite dimensional, hence 

sub-optimal filter. We use the generic term analytical filters for 

this approach. Amongst the existing analytical techniques in the 

control literature (see, e .g.,Anderson and Moore 1979, ch.8) the 

extended Kalman filter (EKF) and the Gaussian sum approximations (GSA) 

are the most widely known. The EKF is based on the adaptation of 

linear algorithms to non-linear environments, while the GSA, as the 

name suggests, approximates the state prediction densities by a sum of 

Gaussian densities. These two techniques will not be considered in 

this review since they are not directly relevant to the discussion of 

our class of models. Note that it is also possible to find procedures 

in the literature which are the result of a mixture of both 

strategies, and in those cases the prevailing method will dictate the 

appropriate classification.

A1tough interesting in themselves the review that follows might be 

considered too detailed and may be omitted without affecting the 

overall understanding of our own material.
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1.3.2.1 The DGLM (*)

The Dynamic Generalized Linear Models (DGLM) were introduced by 

WHM in 1985, and may be viewed as a dynamic extension of the 

Generalized Linear Models of McCullagh and Nelder (1983) constructed 

under Bayesian principles. It is characterized by an internal 

measurement equation and a closed sampling analysis. As such the 

•natural parameter' densities are exact, but a number of 

approximations are used to construct a stochastic mechanism for their 

parameters. Using the equations of the probabilistic approach we may 

look at the DGLM as follows:

- measurement equation: is chosen from the exponential family,i.e., 

P(yt>Pt»tf>“ exp W y t P t - a (^t) ) )b(yt * where y?t , the natural
parameter, satisfies

ECyt^t’̂ )- ht~ d/dt <a(̂ t))
Var(yt ipt ,^)- d 2/dt2 (a(^t))/^.

transition equation- no explicit mechanism is assumed for the 

evolution of the natural parameter i.e., pC^tJ^t-l) left

unstated (see 1.1.2).

(i) natural parameter prediction - the non-existence of an explicit

transition equation is circumvented by the specification of a proper 

mechanism describing the evolution of the natural parameter density in 

time. In this set up a prior distribution for (see 1.1.3), denoted
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CP(at/t-l»̂ t/t-l) » assumed at the outset. This is chosen to be the 

natural conjugate for the particular member of the exponential class 

taken as the measurement model. The stochastic mechanism responsible 

for the evolution of its two parameters is as yet unexplained.

(ii) natural parameter updating* given the choice of a closed sampling 

analysis, the posterior for >̂t , will have the general form CP(at ,/3t) 

where

a t~ <*t/t-l+^yt and 0t“ 0t/t-l+tf-

(iii) conditional distribution- for a measurement equation selected 

from the exponential family, under a conjugate analysis, the resulting 

compounding integral (1.1.5 and 1.2.12a-b) will always produce an 

analytical distribution, symbolically,

p(yt|Yt-i) “ p (yt/t-i(a t)>ft/t-l(0t>)

where yt/t-l(‘ ) and ^t/t-l^’ ) are functions depending on the 

measurement model.

It now remains to be explained how they motivate the evolution of 

the parameters at and 0t . This is accomplished by a rather ingenious 

procedure. They introduce a GLIM-like link function, connecting the 

natural parameter <pt with a latent process 0t (the state in their 

notation), as yet unexplained. This relation is formally expressed by 

the equation g(y>t;)“ h'0t , where h' is generally fixed (h'-l for the 

random walk structure). Using a suitable specification for g(*) and
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by fixing its first two moments it is possible to solve numerically 

for at and f3t , and therefore, fully specify the prior-posterior 

analysis together with the predictive moments for yt . It is obvious 

that for this to be achieved, a transition mechanism for the state 

itself should be motivated. They assume that the state follows the 

same transition equation of the Gaussian linear case (see 1.2.1b) (the 

state is the carrier of the structural components), but unlike in the 

linear case, its distribution form is left unspecified. They 

concentrate only on its first two moments, in order to avoid 

analytical intractability and also because of the limitations a 

complete specification would bring to the natural parameter prior 

choice. This explains why the link function equality should not be 

taken in a strict sense but rather as a guiding relationship to form 

the prior for <pt . In the predictive step for the state the increase in 

uncertainty is achieved through the replacement of the state noise 

variance by a discount factor multiplying the previous value of the 

state variance, i.e., instead of (1.2.9b) now we have 

Pt/t-l“ (l/b)Pt-l» where 0<b<l is set by the user. Using a linear 

Bayesian approach they are able to derive a sub-optimal linear filter 

for the state, on the lines of the standard KF (see 1.2.11a-b). For 

the random walk structure this is given by

m t“ m t/t-l+ (St-m t/t-l)

Pt“ v t

with gt- E(g(^t)lYt) and vt- Var(g(pt)|Yt).

This means that besides the predictive and updating steps for the
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natural parameter >̂t , we have extra expressions, of similar meaning, 

for the latent process 0t . This completes the definition of the DGLM.

(iv) k-steps ahead forecasting- this is achieved by postulating the 

following form for the natural parameter forecasting distribution

pĈ T+k̂ T)"" CP(ar(k) ,0t W  )

which obviously doesn't follow from the solution of equation (1.1.7). 

These projected parameters are then solved by equating the moments of 

the above distribution with the projected moments of the latent 

process 0t (see 1.2.20a-b) via the link function. Once these are 

obtained ,the k steps ahead forecasting distribution is postulated as 

having the same form as the predictive density with the projected 

parameters a'j’(k) and /3-p(k) .

We feel some concern about the validity of some of the assumptions 

and approximations used by the authors in their DGLM. In particular

- The state 0t is not fully characterized, but only represented

in terms of its two moments. A proper Bayesian analysis would require 

the full distribution.

- The filter for this process is linearly approximated.

- The k-steps ahead forecasting distributions are inexact, and have 

been forced in order to obtain a tractable expression for forecasting. 

Altough this may be plausible, the authors have not made their 

assumptions suficiently explicit in this important step.
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For a more extensive critique of this methodology the reader is 

referred to the discussion paper following the article by WHM (1985) 

and Figliuoli (1989, ch.7).

1.3.2.2 Figliuoli's filter (*)

We now briefly review a class of analytical filters developed by 

Figliuoli (1988) in his PhD thesis, and one which the author was 

involved with at the begining of his research. Figliuoli's approach is 

developed on the lines of classical control theory, this meaning, 

amongst other things, that both the measurement and transition 

equation are given in external noise form, and that for the derivation 

of his sub-optimal non-linear filter, explicit optimality statements 

are considered. To illustrate his general methodology we have chosen 

to briefly describe his Poisson-lognormal model for counting data. The 

analysis follows in the lines of our probabilistic approach.

- measurement equation:the implicit representation of the DGP takes 

the form

P(yt lx(*t>>~ Poi(\(0t))

where the intensity X(-) is related to the unobserved state via a 

suitably chosen link function. Since, by assumption, the state follows 

a Gauss—Markov process (see 1.2.1.b) this function must ensure that 

X(-) > 0. In particular, the use of exponential and polynomial

functions, under the Gaussian approximation to be introduced, may be
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shown to produce closed formula for the conditional moments (see 

Figliuoili 1988). For an exponential link function, it is easy to show 

that an equivalent way of expressing the measurement equation is given 

by

yt - X(0t)+ et 

X(0t)- exp(-h0t)

where et follows a non-centered Poisson distribution, with E(et)-0 

and E(et2)- (X(0t)) and h is a scalar with fixed value. Observe that 

now the measurement equation is non-linear on the state and also has a 

noise whose variance is state dependent.

- transition equation: has the same form adopted for the Gaussian

case, i.e. ,p(0t l 0t-l)~ N(0t.1 ,<r2) .

(i) state prediction: in evaluating the predictive step (see 1.1.3 and 

1.2.6) the resulting distribution will very easily become intractable. 

The fact is that, although the transition density p(0t>^t-l) *-s t îe

same as in the Gaussian case, after the first interaction the 

posterior will lose conjugacy (since the measurement distribution is 

no longer Gausssian) and this will make the integral in (1.2.6) not 

analytical. In order to avoid the need for numerical integration, 

Figliuoli has assumed a Gaussian approximation for the posterior,i .e .,

p(0t lYt)~ N(mt ,pt)

where mt and pt are as yet unexplained.
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The above approximation is all one needs to guarantee that the 

predictive step will follow the same equations of the Gaussian linear 

case (see 1.2.9a-b). As pointed out earlier, for certain forms of link 

functions, the Gaussian approximation produces closed form conditional 

moments. In the control literature this is known as a global filter, 

given that no truncations of the non-linearities are required in order 

to implement the filter.

(ii) state updating - the fact that his model has not been set up in 

terms of a closed sampling analysis makes the establishment of the 

updating equations a rather elaborate issue. All one knows is that the 

posterior form is approximated by a Gaussian density, but the 

updating mechanism for its two moments is left to be determined. This 

asks for the introduction of some structure in order to properly frame 

the problem. Figliuoli assumes that the optimal algorithm describing 

the evolution of the posterior mean is given by the following 

difference equation, which is non-linear on the previous filtered 

state and linear on the observations:

m t- f(mt_1/t_1 ,t-l)+ Ktet

where et is the one step-ahead prediction error, f(-) is a function to 

be determined and Kt is the filter gain. The two last quantities are 

determined by imposing the following criteria in the above estimator:

- optimality: m t should be chosen such that it is a minimum variance

estimator,i.e., min tr{E(0t-mt)2}.

- unbiasedness: m t also should satisfy E(mt)- 6t .
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Using the above requirements, one can demonstrate that the mean and 

variance of the updating step assume the form:

mt“ m t/t-i+ Kt< yt- Et-l(x(0t>>

Pt~ Pt/t-1 -KtEt.l{[X(0t)-Et-l(x(^t)]-(Vt-l)> » and the Sain 
Kt- Et.1 [0t/t.1 [X(0t)-Et.1 (X(5t)].2Et.1 [X(0t)-Et.1(X2(0t))]

where 0t/t-l~ ^t"^t/t-l» X(0t)-e"h^t is the exponential link function 

and Et_i= E( lYt-l) • Using the Gaussian approximation, the above 

formulae may be shown to take the following final form:

mt“ mt/t-l +Kt<yf Xt/t-l)

Pt“ Pt/t-1 + Kt-h *Pt/t-l-Xt/t-l 

Kt~ "Pt/t-1-h *Xt/t-l/(st+xt/t-l)

where Et-l<e"h0 t>“ exp(-hmt/t.1+(l/2)h2 pt/t-l > and

st" exp(-2h(mt/t.1+h.pt/t.1))- exp(-hCmt/t-.^h.pt/t.!) ) .

Observe that now the mean updating equation is coupled with the 

variance equation.

(iii) conditional distribution- given the specifications of this model 

one can show that the associated compounding operation is given by 

(see 1.1.5)

P(yt«Yt-l)- Poi(Xt(0t))A logNormal(-hmt/t_i,h2pt/t-l)
M * t »
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The resulting compound distribution is known in the literature as the 

discrete lognormal (see,e.g., Johnson and Kotz 1969, ch.8) and may be 

shown not to possess an analytical form. However it is possible to 

obtain expressions for its two first moments, which are given below

yt/t-1" exP[-h (mt/t-l+ (1/2)hpt/t_1)]

ft/t-l“ exp[2h(-mt/t_;i+h pt/t-l>l + exP[h (-m t/t-l+ (1/2)hPt/t-1) ] - 

- exp[h(-2mt^t.1+hpt^t.1)]

where mt/t-1 an(* Pt/t-1 are as *n (l-2.9a-b).

(iv) k-steps ahead predictive distribution- as a by-product of the 

Gaussian approximation it is easy to see that the multi-step 

predictive distribution for the intensity will have the same form of 

its one step ahead distribution, i.e.,

(XT+k(0T+k),YT)~ lognormal(-hmT+k/T ,h2 Px+k/T>

where nit+k/x anc* PT+K/T are as *-n (l-2.21a-b). From this it is not 

difficult to establish that the k-steps ahead compound distribution 

will also be discrete lognormal with its first two moments given by:

yT+k/T “ exp[h("mX+k/T + (l/2)h.pT+k/x)
-exp{h[ -mx+(l/2)h(px+k(72) ]} 

fT+K/T“ exp[2h(-mT+k/x + ^PT+k/T^ + e?cp[h(-mT+K/T+ (l/2)hpT+k/x] -

-exp[h(-2mT+ic/x+ ^PT+k/T) 1 •
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We would like here to produce some comments on Figliuoli's approach:

- It seems that there exists an inherent difficulty in his approach 

with regard to the structural interpretation of the state. In the

Gaussian formulation the state is linearly associated with the mean of 

the process, so that whatever physical interpretation is given to it,

this is easily assimilated in terms of the observed features of the

process, and vice-versa. For a non-linear measurement equation this 

relation is rather obscured. In the above procedure the mean or

intensity is not the state in itself, but is linked to it via the 

exponential function, and as a result the structural interpretation 

will not be as clear as in the Gaussian case. This is easily seen by 

considering a random walk structure for the state in the Poisson 

formulation. In the Gaussian case the forecasting function will be a 

horizontal straight line with value mf (see 1.2.20a), while for the 

Figliuoli-Poisson formulation, as the first of the above equations 

show, the logarithm of this function will grow linearly with the 

state noise variance.

- I have carried out some preliminary investigation which has shown 

that, due to the existence of several exponential functions on his 

filter equations, an ad hoc prefixing of the scalar h at an untypical 

value (i.e., different from 1) is necessary in order to avoid 

floating point overflow on the VAX computer. This would further 

complicate, the already problematic structural interpretation of the 

model, since at the end we would be considering non-integer values of 

the structural components describing the movements on the series!.
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- In the case of non-analytical predictive distributions we will be 

faced with potential problems for hyperparameter estimation. If the 

chosen criterion function is the likelihood, this would require 

reliable and easy to implement approximations to this distribution, 

which in itself is already an approximation to the 'true' likelihood 

function. For a minimum distance type estimator, doubt still remains 

about the existence of firm asymptotic results.

In short, although this seems to provide an elegant and 

statistically sound class of non-linear/non-Gaussian state space 

models, we feel that further work is still needed in order to overcome 

these potential drawbacks, and to investigate the empirical usefulness 

of the proposed methodology.
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CHAPTER TWO

NON-GAUSSIAN STRUCTURAL MODELS

2.1 INTRODUCTION:

The objective of our class of models is to provide a state space 

forecasting technique for certain types of non-stationary/non-Gaussian 

data, with particular emphasis on count data. The data structures 

dealt with in our study are listed below.

(i) count data- as in the Poisson-Gamma (Ch.3), Negative Binomial-Beta 

(Ch.3), Binomial-Beta (Ch.4) and the Bivariate Poisson (Ch.5) models.

(ii) binary data - as in the Bernoulli-Beta model (Ch.4).

(iii) positive continous data - as in the Gamma-Gamma model (Ch.6).

(iv) random sums - as in the Random Sum model (Ch.7).

The structural models for non-Gaussian data are defined in terms 

of two equations like the conventional state space models: these are 

the measurement equation and the transition equation (see 1.1.1-2). 

The measurement equation is internally defined, i.e., it is not
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written in external noise form as in the conventional state space 

models and econometric equations. WHM (1985) and S&M (1986) have used 

a similar approach. Regarding the transition equation (1.1.2), here we 

also take a different view from the conventional models in that for 

most of the models considered this equation is implicitly defined. In 

the present context an implicitly defined state equation means that 

the state evolution is only set in terms of an updating mechanism 

which transforms its conditional densities. For forecasting purposes 

this will suffice to produce operational models. See,e.g., S&M (1986, 

p.83) and Smith (1988a-b). Since our modelling strategy is guided by 

the structural paradigm, the class of models we produce is formulated 

in terms of components of interest, such as level, slope and 

seasonals. Explanatory variables and dummy variables may also be 

introduced. Using our system of classification for state space models, 

we could say that our procedure belongs to the class of analytical 

filters, albeit for certain distributional assumptions, k-steps ahead 

moments of order higher than one and/or distributions may need 

simulations in order to be computed.

In what follows we present a more formal treatment of our 

modelling strategy. This does not intend to be complete, since many 

features in our approach (e.g., the introduction of explanatory 

variables/structural components, the linear character of the 

predictor, etc) may be only fully understood with reference to 

explicit distributional assumptions. As before, we make use of the 

probabilistic approach in state space models (see section 1.1).
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2.2 AN OVERVIEW OF THE NON-GAUSSIAN STRUCTURAL MODELS

- measurement equation: we have chosen to work with the standard

text-book parameterization of the exponential family, since, amongst 

other things, in this form the state, or stochastic parameter, has an 

easily identified conjugated prior (see,e.g., Aitchison and 

Dunsmore 1975). This makes the formalism simpler to be worked with, if 

compared with the alternative canonical parameterization (see,e.g., 

Stuart and Ord 1987, vol.l ch. 5, and WHM 1985) or mean-value 

parameterization (see,e.eg., Dalai and Hall 1983). This particular 

choice of setting up the problem, although operationally convenient, 

makes the establishment of general results less unlikely. Our 

measurement equation can be symbolically represented by an internal 

equation as in (1.1.1) and (1.2.3)

with 0t e 0 c R and ut e U c R . Here A,C and D are arbitrary 

functions of their arguments. The mean and variance are given 

respectively by

where f(-) and g(*) are some specific functions. Note that the 

secondary parameter ut can be either static or exogenously dynamic.

P(Yt1et>ut)~ exp{ytA(0t)+C(yt ,ut)+D(0t)) (2.2.1)

E(yt l0t ,ut) “ Mt " f(^t»ut) 

Var(yt l0t ,ut) - g(0t ,ut)

(2.2.2a)

(2.2.2b)

53



A secondary parameter is purposely made dynamic in order to introduce 

explanatory variables and/or structural components, either because the 

state does not offer the appropriate setting (as in the 

Negative-Binomial model, section 3.3.2) or because it gives a second 

option for this mechanism along with the state (as in the Gamma-Gamma 

model, section 6.2.2). This will be made clearer in the forthcoming 

chapters.

If we look back at (2.2.1), it is easy to notice that an implicit 

independence statement has been used in writing this equation. In 

fact, in analogy to its Gaussian counterpart (see 1.2.2), we have 

required that conditional on the state 0t , the present observation yt 

is independent from the past of the process By doing so we will

be inducing some desirable characteristics in the stochastic parameter 

0t ,e.g., the role of a sufficient statistic for forecasting purposes. 

See, e.g., Smith (1988a-b).

transition equation: as stated previously, for most of the

specifications considered, this is not given in external form, but 

rather as an implicit mechanism which is defined in the next item. 

Note however, that the existence of such an equation is, in principle, 

desirable, but not always easy to obtain. Bather (1965) showed that 

only for measurement models drawn from the exponential family is such 

a specification feasible. A step further in the generalization of this 

class of models was given by J.Q. Smith in his 1979 paper. He 

acknowledged that, in order to obtain state space models for 

forecasting purposes, the transition equation (see 1.1.2 ) could be
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left unstated, the crucial point being the establishment of the 

updating rule transforming the conditional densities of the state (see

1.1.3), and this could be motivated by analogy with the Gaussian 

random-walk when it reaches the steady state. Using Bayesian decision 

theory, Smith developed arguments in this direction, culminating in 

his Power Steady model (Smith 1979) which adopts the following 

transformation

co

with 0 < co < 1. It may be shown that such a transition rule will keep 

the mode of the densities unchanged, while increasing the expected 

loss (see Smith 1979). As we shall see our model strategy is 

constructed on the lines of Smith's design and therefore may also be 

classified as belonging to the class of partially specified models.

(i) state prediction- since in our formalism we lack the equivalent of 

a Chapman-Kolmogorov equation (see 1.2.6), the state prediction step 

may be arrived at by the adoption of a transformation rule between 

p 1(0t-lIYt_i), the posterior at time t-1 and p 2(0tl̂ t-l)> t îe Pri°r 

at time t. This has to be done in such a way that the framework is 

kept analytically tractable and the adopted rule has a meaningful 

interpretation in terms of the structural paradigm. By construction, 

this rule should induce, in a consistent way, a random walk evolution 

on the mean of the process, /it (2.2.2a). Observe that this desired 

effect has to be imposed on the mean of the measurement equation, 

rather than directly on the state itself. They only coincide when the 

function f(-) in (2.2.2a) is the identity, as in the Poisson
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specification, but for most of the cases considered f(-) will be a 

trivial function of 0t , so that mathematical manageability will 

follow. The natural guideline in the construction of this transition 

rule is given by the original equations for the random walk 

evolution under the Gaussian-linear assumption (see 1.2.9a-b). In this 

set up, the distribution at time t-1 for the state (which is also the 

mean of the process) is Mt-l/^t-1 ~ N(mt-1 , Pt-l)- The predictive 

distribution for is also normal and is given by N(mt.^,a2(q+Pt-l))• 

The essential features in this transition are :

(i) the distributional form of the state is kept invariant during the 

transition.

(ii) the mean of tbe same as that of ^t-l/^t-l but tbe

variance increases.

This same effect can be induced on the non—Gaussian set up by imposing 

the following requirements:

1. Both p 1 (0 f l  ,Yt-l) anc* P 2(^tlYt-l) belong to the same class of 

distributions, in particular to the class of the natural conjugate 

distributions to the chosen measurement equation. We can therefore 

adopt the following general representation for these distributions:

Pi(0t-l|Yt-l) “ P(at-l»bt-l) (2.2.3)

P2<0t lYt-l) " P(at/t-l»bt/t-l) (2.2.4)

where p(-) is the natural conjugate distribution and at_^ and b t.^ 

are computed from the first t-1 observations. This structure
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guarantees a closed sampling analysis and all the simplicity 

associated with it. Note that the members of the exponential family 

considered in our study have either the gamma or beta densities as 

natural conjugates.

2. The mean and variance of the process level evolves according to the 

following rules:

E(^ t 'Y t - l ) -  ECft t . i lY ,- . ! )  (2 .2 .5a )

Var( / i t l Y t - l )  > V a r ^ t . x l Y , - . ! ) .  (2 .2 .5b)

Since /tt-= f(0t ,ut) (see 2.2.2a) it is not difficult to see that the 

implementation of the condition in (2.2.5a) will result in a 

deterministic link between the parameters of the state densities in 

(2.2.3) and (2.2.4). For the second condition to be obeyed, in 

general, extra relations will have to be found involving a> and u. With 

the benefit of hindsight the prediction equations in (2.2.5a-b) may be 

written in a general form as

at/t-l“ at-l + 1* Ct)) (2.2.6a)

b t/t-l“ w bt-l (2.2.6b)

where i-0 for the Poisson-Gamma and Binomial-Beta models and i=l 

otherwise.

Apparently our prediction equations for the Poisson-Gamma and 

Binomial-Beta models are the same as those produced in the examples of 

Smith (1979). This should not be the case since in his formulation it 

is the mode of the state density that is kept constant during the
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transition. The explanation for this apparent contradiction lies in 

the fact that in his examples Smith uses a different parametrization 

for the state densities, namely a gamma (at/t-l+l» ^t/t-l) and a 

beta(at/t_i+l, bt/t-l+l) instead of the parameterizations which we 

have adopted.

Given that our modelling strategy is developed in terms of a 

desirable forecasting behaviour for the mean of the process, it is 

more appropriate to look at it as describing the patterns of the data 

forecasting mechanism (hencefort DFM) rather than attempting to 

represent the components of interest of the actual process (as in the 

Gaussian structural approach) or approximating observations (as in the 

ARIMA models).

(ii) state updating- once more the closed sampling analysis comes to 

our rescue. The filtering or updating distribution, by construction, 

will have the same form of the state predictive distribution (2.2.3). 

As in the Gaussian case, the filtering equations are standard results, 

and are given by a set of non-coupled equations linear in the 

predictive parameters at/t-1 and ^t/t-1 , and on t îe newly observed 

value of the process, yt . These may be conveniently expressed as

at“ at/t-l + xt (2.2.7a)

^t” ^t/t-l + zt (2.2.7b)

where and bt/t-l are as in (2.2.6a) and (2.2.6b),

respectively.
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For the Poisson-Gamma model: x t-yt . zt“ »̂
Negative Binomial-Beta model: zt«yt ;

Binomial-Beta model: xt-yt, zt- n t-yt;
Gamma-Gamma model: xt-ut> zt-yt-

(Hi) conditional distribution- given the fact that we are working 

under closed sampling in the exponential family, all the predictive 

distributions have an analytical form, and may be expressed 

symbolically as

where and b t/t_i are as in (2.2.6a) and (2.2.6b), respectively.

In our models we adopt the conditional mean of the predictive 

distribution as our measure of location. It is well known that this is 

the optimal forecast under the quadratic loss function and that for 

different loss specifications, other measures of location could be 

obtained,e. g. , a step loss gives the mode. Note however that such a 

measure is not suitable for discrete distributions. To obtain the mean 

of the predictive distribution one makes use of the following relation

where we have used (2.2.2a) and dropped ut for ease of notation. As we 

shall see for all our models the asymptotic form of this predictor is 

given by an exponentially weighted moving average (EWMA) scheme.

P(yt'Y t-l> *" E(at/t-l»^t/t-l) (2 .2 .8)

yt/t-i“E(yt|Yt-i)“ E (E(yt,0t*ut>iYt-i)
- E (f(0t)lYt.1) (2.2.9a)
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The predictive variance may also be obtained by a similar formula 

which is given by

Var yt/t-1" E (Var(yt l0t)|Yt.1)+ Var (E(yt I0t)lYt-1)

- E (g(0t)lYt.1) + Var (f(6t) l Y ^ )  . (2.2.9b)

(iv) k-steps ahead forecasting— as we shall see, the choice of having 

the mean of the level kept invariant during the transition will 

produce a constant forecast function, which, asymptoticaly has an EWMA 

form. This will be a general characteristic of all our models . When 

structural components and explanatory variables are introduced it is 

also possible to show that the forecasts will be a combination of EWMA 

schemes. Not surprisingly the form of the forecast function in Smith's 

framework will be different from ours since in his models it is the 

mode of the state density that is kept constant. In this sense Smith's 

models cannot be considered direct generalizations of the Gaussian 

steady model, where the projected mean is constant. Quoting Key and 

Goldophin (1980, p.93) : '... Smith's proposal of steady evolution of 

the system parameter is not equivalent to the concept of a steady 

forecasting model which necessarily pursues a constant forecast 

function'.

Analytical expressions for k-steps ahead moments of order higher 

than two are not easy to obtain, with exception of the Gamma-Gamraa 

model. One has, therefore, to resort to non-analytical methods for the 

computation of these quantities if needed. The full forecasting 

distribution could be evaluated, in principle, by use of equations 

(1.1.6-8), where integrals should be replaced by sums whenever 

discrete data models are considered. Unfortunately it is also true
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that the integrals or sums involved in these evaluations will, in 

general, become difficult to manipulate producing further 

intractability. Contrary to the Gaussian case the form of the

forecasting distribution will change with time in an unpredictable 

way. A number of strategies can be used in order to tackle these

problems, and we, following S&M (1986), advocate the use of Monte

Carlo simulations whenever probability forecasts and high order

moments are needed for more than one step ahead. We are still not

convinced about the feasibility of computationally intensive numerical 

methods described in section 1.3.1. to solve these problems. 

Approximation schemes for the forecasting distribution of a more ad

hoc nature are adopted by WHM (1985), but this needs careful

investigation. In Chapter 3 we provide details of how to implement

such techniques in our framework.
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2.2.1 Explanatory Variables and Structural Components

In a non-Gaussian structural model explanatory variables are 

introduced via the kind of link functions used in the GLIM framework 

of McCullagh and Nelder (1983). Bringing stochastic slope and seasonal 

effects into our class of models is not an easy task. They can, 

however enter in a deterministic fashion and this is done by treating 

them as explanatory variables. We believe this is not a serious 

restriction. Even with data on continuous variables, it is not 

unusual to find that the slope and seasonal effects are close to being 

deterministic; see, for example, Harvey and Durbin (1986) and Harrison 

(1988). In particular with count and qualitative data it seems even 

less likely that the observations will provide enough information to 

pick up changes in the slope and seasonal effects over time. In what 

follows we briefly discuss the way this mechanism is brought in our 

models letting the more technical details be presented when the

specific distributional assumptions are introduced.

In our framework the effects of explanatory variables, trend and

seasonal variations are brought together into a single component,

which is known in the GLIM literature as the systematic component, and 

this is given by

T7t«= zt' 6 , -oo < Tjt < oo (2.2.10)

where zt- ( Rt ,Tt ,St) is a pxl vector, with Rt being the usual vector 

of regressors, i.e. , Rt- /3t'xt , Tt the trend, St the seasonal

component, to be defined latter and 5 is a pxl vector of unknown 

parameters to be estimated using ML. The way to relate the systematic
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component with the level of the process is by adopting a suitable 

function which relates the mean of the measurement equation (2.2.2a) 

to the above component. Formally we have

/it+- f(tft+ ,vt+ )- h(fit ,tft)

- h[f(0t ,i>t),>,t] (2.2.11)

where the symbol + denotes the presence of explanatory variables/ 

structural components and h(-) is the link function or the inverse 

link function in the GLIM notation. Observe that it may be the case 

that the secondary parameter offers the appropriate setting to 

introduce these effects as in the Negative Binomial- Beta (NBD) model 

of section 3.2 and the Gamma-Gamma model of Chapter 6. In selecting an 

appropriate link function the important factor is to produce a 

consistent mapping from the real line ( - o o foo) ( the space of the 

systematic component) onto the state space 0 or the secondary 

parameter space U . For example the rate of a Poisson model is always 

positive while the proportions on a multinomial model take values 

between zero and one and should add up to one. The link function has 

to be consistent with these constraints. It is also important for the 

chosen transformation not to destroy the conjugacy property of the 

model. With the exception of the Binomial-Beta model we have been able 

to avoid such undesirable effect. Regardless of the mechanism selected 

to introduce these effects in our models, they share some common 

characteristics which are worth stressing at the present stage:

(i) as we shall see, the systematic component ryt always enters into 

the link function via an exponential function (see section 3.3.2 and
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eqs. 3.2.25,, 4.2.10b and 6.2.30), i.e.

h[f (0t , ut) , r7t]— h[f (0t , ut) , exp(Tjt) ]

(ii) in view of (2.2.5a), the prediction and updating equations will 

have to be duly modified to take account of the presence of i7t .

We leave a more formal treatment of (ii) to the forthcoming chapters 

and concentrate now on the definitions of the structural components 

which are handled in our models.

Structural Components:

Time trend: a slope is introduced by setting one of the elements of x t 

equal to time, t, so that the time component takes the form

Seasonals: the seasonal component is modelled by s-1 explanatory

variables constructed so that the seasonal effects sum to zero over 

the period s in question. In our framework this can be done by two 

different ways. The first option is to consider the seasonals as dummy 

variables and this has the form

with j-0,1,2.....s-1, where s is the seasonal period and the dummy

Tt- St (2.2.12)

St“ 7j zj,t (2.2.13)
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zj^t is such that

:j .t"
1 j- mod(t,s) 
0 otherwise.

with the constraint that the seasonal coefficients yj sum to zero over 

the seasonal period s . One may also model seasonality by a set of 

trigonometric terms at the seasonal frequencies, Xj — 2xj/s, 

j=l» 2,...,[s/2], where

[s/2]*= s/2 for s even

(s-l)/2 for s odd.

The seasonal effect at time t is then given by (see,e .g..Harvey 1989, 

ch.l)

[s/2]
St- J [aj cos(Xjt)+ bj sin(Xjt)] (2.2.14)

where aj and bj are estimated by the likelihood method. Note that if 

the full set of dummies and seasonals are included then the two 

formulations produce the same number of coefficients.
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CO P T E R  THREE

UNIVARIATE COUNT DATA MODELS

3.1 INTRODUCTION:

It is not unusual to find time series consisting of count data. 

Such series record the number of events occurring in a given interval 

and are necessarily non-negative integers. For instance, the monthly 

number of homicides in Canada, the monthly number of U.S. cases of 

poliomyelitis (Zeger 1988), the number of goals scored by England 

against Scotland in international football matches (Harvey and 

Fernandes 1989a) and so on. Count data models are usually based on 

distributions such as the Poisson or negative binomial (NBD). If the 

means of these distributions are constant, or can be modelled in terms 

of exogoneous variables, then the GLM framework of McCullagh and 

Nelder (1983) offer the appropriate set up. For the Poisson 

specification the assumed link function is the log-linear link 

(see section 2.2.1) which is written as In xt '5, where S is a pxl 

vector of unknown coefficients, estimated by weighted least-squares. 

Dispersion relative to the Poisson model may be obtained by specifying
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var(yt)- a where 0 < a < °° , is assumed constant. If further

flexibility is desired to tackle overdispersion then Cameron and 

Trivedi (1986) and Lawless (1987b) provide the appropriate setting by 

considering NBD regression models. Gourieroux, Monfort and 

Trognon (1984) discuss pseudo maximum likelihood methods for these 

specifications.

For situations where counting data shows serial correlation a 

number of techniques is available. Zeger (1988) develops an extension 

of log-linear models where the mean of the process, fit is assumed to 

depend on an unobservable noise process et . This, by assumption is 

taken as a second order stationary AR process. His modelling is then 

developed by specifying the first two moments of the observed process 

yt , which has the form exp(xt’6)et , where E(et)-1 and

cov( et , « t + r ct2p £(t )- It is then easy to see that the process yt 

inherits both overdispersion and autocorrelation from et . Estimation 

of the regression parameters in Zeger’s model is accomplished by 

extending quasilikelihood techniques to dependent data, while for the 

nuisance parameters a method of moments is proposed.

The nature of count data makes standard ARIMA models inappropriate 

both for fitting real data and generating synthetic observations. Only 

when the values of the observations are large enough to justify the 

assumption of normally distributed disturbance, may ARIMA models be 

used as a reasonable approximation. A discrete version of these models 

has been developed by McKenzie (1985,1986) which considers, among 

other specifications, Poisson and NBD models with linear correlation 

structure. Since no inferential technique has yet been developed for
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those models, its use is mainly restricted to the generation of 

synthetic data.

In considering state space models for count data, we refer the 

reader to Chapter 1 where Figliuoli’s Poisson model is discussed with 

some detail. Other references are the Poisson models of WHM (1985) and 

the state dependent observation variance of Zehnwirth (1988), whose 

filter may be shown to be a particular case of Figliuoli's filter.

In what follows we will present our class of structural models for 

univariate count data, which is based on the Poisson and NBD 

distributions. The development is analogous to the Gaussian random 

walk plus noise model (see section 1.2) in that they allow the 

underlying mean of the process to change over time. By introducing a 

hyperparameter, o), into these local level models, past observations 

are discounted in making forecasts of future observations. Indeed it 

transpires that in all cases the predictions for all future periods 

can be constructed by an EWMA procedure. This is exactly what happens 

in (1.2.1a-b) under the normality assumption. Muth (1960) showed that 

such a predictor is optimal (in the MSE sense) for an ARIMA(0,1,1) 

process, (1-L)yt« (l+o>L)et .
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3.2 THE POISSON-GAMMA MODEL:

The discussion of this and the subsequent models will follow the 

general archetype for state space models introduced in Chapter 1, 

section 1.1.

- measurement equation: suppose that the observation at time t is

drawn from a Poisson distribution,

p(yt l0t> “ ^  / yt ! » yt- 0,1,2,... (3.2.1)

where 0t > 0. This is a particular case of (1.1.1) and corresponds to 

the measurement equation in (1.2.1a). The mean and variance for 

(3.2.1) are given respectively by:

E(yt«0t)- /*t“ 0t 
Var(yt i0t)« pt .

It then follows that for this specification both f(-) and g( •) in 

(2.2.2a-b) are equal to the identity function and that the secondary 

parameter ut=l.

(i) state prediction- the conjugate prior for a Poisson distribution 

is the gamma distribution. Let p(0t_ilYf-i) denote the p.d.f. of 0 f l  

conditional on the information at time t-1. Suppose that this 

distribution is gamma, that it is given by
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e
'b et-l a-1 a 

*t-l b (3.2.2)

with > 0 and b-bt_i > 0 and r(*) is the gamma function. It is

standard that

where at_i and bt_i are computed from the first t-1 observations, 

Y t_i. In order to satisfy conditions (2.2.5a-b) which guarantee the 

induction of a random walk evolution on the mean, the state predictive 

density p(#t1Y t-l)> wbich is also gamma by construction, should have 

its parameters at/t-l anc* bt/t-l linked to the posterior parameters 

through the following deterministic equations (the prediction 

equations)

Mode(0)« (a-l)/b (3.2.3a)

(3.2.3b)
f(a)

so that

E(0t-l'Y t-l>“ at-l / bt-l (3.2.4a)

2
Var(0t.1 iYt_1)- at.! / b t_! (3.2.4b)

at/t-l “ w at-l 

b t/t-l " w b t-l

(3.2.5a)

(3.2.5b)

with 0 < o) < 1. It then follows that
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E(0t lY t-l) “ at/t-l / bt/t-l
- at.! / b t.! - E (0t-l,Yt-l) (3.2.6a)

while

2
Var(#t1Yt-l) - at/t-l / b t/t-l

- cj"1 Var (^t-l,Yt-l) (3.2.6b)

so that the aforementioned conditions are satisfied. The stochastic 

mechanism governing the transition of 0 f l  to ^t Is therefore defined 

implicitly rather than explicitly. However, using known properties of 

gamma and beta variates, it is possible to show that it is formally 

equivalent to a multiplicative equation, originally developed by 

S&M (1986) in their exponential-gamma model. For our Poisson-Gamma 

specification this equation takes the form

where ~ beta (coat.i, (l-w)at_!). As recently demonstrated by

Shephard (1990b), in the context of a Gaussian local scale model,

be problematic, since if a> < 1, -* 0 almost surely, as t-» <». The

easiest way to understand this effect is by looking at the expression 

for the expected value for log ^t/^t-1 wb*-cb bas the form

#t “ co'1 et-l Vt (3.2.7)

where 0^"^ tbe Precision at time t, such a transition equation may

E[log(0t/0t.1) E [ l o g  Vt,Yt-l] " lo6 u

(l-o)) 1 , 0 < a) < 1,
2 a> <at-l + 1)
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where the approximation for the expectation on the rhs was obtained by 

a Taylor series expansion about the mean of Tjt , o>. The growth rate of 

the state is therefore negative on average, the rate of decay being 

slower for values of u) close to unity and inversely proportional to 

the value of the gamma shape parameter at time t-1, at-l- 

Shephard's model this parameter is data independent, so that, 

eventually, this will settle to a constant value. By redefining the 

transition equation (3.2.7) in an appropriate way Shephard is able to 

remove this problem. Note, however, that in our Poisson-Gamma model 

at-l depends on past observations (see 3.2.8a-9a), so that the rate of 

convergence of the Poisson parameter may be partially counterbalanced 

by the weighted sum of past observations. Monte Carlo experiments 

conducted in our models (see Ch.8) have shown that replications based 

on values of < 0.8 combined with sample sizes larger than 100 will 

eventually produce such effect. Since values of interest for u) are 

usually greater than 0.8, this will not have much relevance in our 

setting. In fact simulated NBD series of 700 observations are commonly 

obtained for values of co greater than 0.90 (see Ch.8). Note that 

S&M (1986) model is based on a linear drift so that this effect does 

not take place.

Explicit transition equations as given in (3.2.7) may also prove 

useful in the derivation of multi-step ahead moments. This has been 

used, e.g. , by S&M (1986) in their exponential-gamma model for the 

uncensored case. Since in our case the updating equation for the gamma 

shape parameter involve the observables yt (see 3.2.8a), this strategy 

will be of limited use, given that the projected raw moments of order 

superior to one will inevitably depend on future values of y t . As we 

shall see, by use of the chain rule for conditional expectations
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given in (1.2.9a) we will be able to derive an expressions for the 

k-steps ahead variance.

(ii) state updating- once the observation yt becomes available, Bayes 

theorem is used to update knowledge about the state. It is standard 

that the posterior distribution, p(#tlYt), *-s g*ven by a gamma 

distribution with parameters (the updating equations)

at " at/t-l + Yt (3.2.8a)

b t - + !• (3.2.8b).

These equations together with (3.2.5a-b) complete the definition of 

our filter. Note that by repeated substitution from (3.2.5a-b) and 

(3.2.8a-b) we obtain

t-i
at/t-l“ I ^  yt-j (3.2.9a)

j-1

t-1
b t/t-l“ 2 ^  • (3.2.9b)

Note that the equivalent of a 'steady state' filter is obtainable for 

t sufficiently large when bt/t-1 Is approximately equal to o>/(l-o>) , 

a) < 1. It is not difficult to see that convergence to the steady state 

solution will depend on the value of o> itself, being faster the closer 

o) is to its lower boundary value zero.
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(iii) conditional distribution - predictive p.d.f.'s are given by the 

solution of the compounding operation (see 1.1.5 and 1.2.12a-b) and 

for Poisson observations and a gamma prior this yields a NBD 

distribution

a+ yt - 1 
ytp(ytiY t-i> 

where a - at/t-l anc* b “ bt/t-l anc*

b “ (1 + b) (a + yt) (3.2.10)a

a + yt'1 
yt

r(a + yt)
r(yt+l) T(a)

Note that since yt is an integer, r(yt + 1) — yt !.

It follows from the properties of the NBD that the mean and 

variance of the predictive distribution of yt given are

respectively

Yt/t-1 “ E(yt lYt.1) - / b t/t-l “ at - l A t-l (3.2.11a)

and

2
Var(yt lYt.1) - d + b t/t-l)/bt/t-l

- (3.2.11b)

which shows overdispersion compared to the Poisson model. Substituting 

(3.2.9a-b) in the expression for the predictor in (3.2.11a) one finds 

that

t-1 t-1
yt/t-1 - 1 uJ Yt-j / 1 . (3.2.12)

J-l j-1

74



This is a weighted mean in which the weights decline exponentially. It 

has exactly the same form as the discounted least squares estimate of 

a mean. Using the large samples value for the denominator of (3.2.12), 

one may show that the forecasts can be obtained recursively by the 

EWMA scheme

where y]yo - 0 and X - 1-co is the smoothing constant. When c*-l, the 

right hand side of (3.2.13), is equal to the sample mean. Regarding 

this as an estimate of ft, the choice of zeros as initial values for a 

and b in the filter is seen to be justified insofar as it yields the 

classical solution (see also section 3.2.1). It is also worth noting 

that, unlike the Gaussian case, no approximations are involved in the 

use of a diffuse prior in this model.

Finally it is worth investigating the existence of conditions 

under which our state transition rule becomes similar to that of 

Smith. From (3.2.3a-b) one can show that

Substituting the asymptotic value of I>t/t-l t îe above difference 

becomes approximately equal to (l-o>)/o) so that when the estimated 

value of o) is close to one our updating rule and Smith's become very

yt/t-i - *yt-i + yt-i/t-2
- EWMA(y)

t - 2 T

(3.2.13)

[ Mode(9t/t.1)]- (1 / bt/t.i).

close.
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(iv) k-steps ahead forecasting - for k-1 this is trivial. One has only 

to substitute t for T+l in (3.2.10) to obtain the forecasting 

distribution with first two moments given in (3.2.11a-b). For k>2 it 

is possible to work out analytical expressions for the first two 

moments of the forecasting distribution using the chain rule for 

conditional expectations given in (1.2.9b). One may show that these 

are given respectively by (see Appendix Al)

E<yT+kl*r> ~ a-p/b-p (3.2.14a)

and

Var(yx+kIYj)” ( 1+ c«)b'p+ b>p (l-co)) (3.2.14b)

where

k-1
sk-l~ 2 (l/bT+1> . k > 2 (3.2.15)

j-1
with S0=0. Observe that for T sufficiently large b-p as l/(l-o)) so that 

the k-steps ahead mean and variance become

E (yT+k,YT) “ EWMA(y) -

and
Var(yT+klYT) « (f,T / w ) [ 1+ (k-l) ]

which grows linearly with k the lead time.

The predictive distribution conditional on the observations up to 

time T, in theory, could be obtained through (1.1.6). The first

(3.2.15a)

(3.2.16b)
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distribution which appears in this integral is just the projection of 

the measurement equation k-steps ahead, and this is trivial to obtain. 

To compute the second density in (1.1.6), the state density projected 

k-steps ahead (1.1.7), one could use the explicit transition equation 

in (3.2.7), as it has been done on the Gaussian case. Unfortunately 

the successive applications of the compounding operation in (1.1.7), 

necessary to derive this density, will very easily produce analytical 

intractability (see Chapter 6, eqs 6.2.6-7). In the present context it 

is more appropriate to use (1.1.8) instead, where the integrals are 

replaced by summations producing the following expression

P(yT+k'YT) “ 2  2 n P(YT+jlYT+j-l>
yT+k-1 yT+1 j-1

(3.2.17)

where the summations are to be evaluated from 0 to oo. As we shall see 

it is difficult to derive a closed form expression for p(yx+k,YT^ from

(3.2.17) for k)2, but it can, in principle, be evaluated numerically. 

In order to shed some light on the nature of these calculations we 

derive its expression for two steps ahead. If we let a—a^ .h-b^ 

y,-yT+l. y z-yT+2 tken tke appropriate substitution of (3.2.10) in the 

above expression leads to

/ .v \ w  \ 2 r(aja+y. )r(o)2a+y2+wy.) zYlp(yT+2»YT>- k <y2> ' -0 —  ---------    2 1 —y i u
r(o)2a+oy1) y, ! (3.2.18)

where

k (y2)'
ub oa cob + a) oo2a i
1+ob . . l+co2b+co . y2J (l+oo2b+co) 72 r(wa)
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c ^ (1+^2-co)w2a(l-a>) y * (3.2.19)
y 2! T(wa)

and

z- (w2b+co)a) s o) (1-co) , 0 < z < 1.
. (1+uib) (l+oH-a)2b^) (3.2.20)

The approximate values of the above expressions have been obtained by 

use of the asymptotic value of b-p for 0 < a> < 1. The infinite sum in

(3.2.18) can be evaluated numerically along with the constant k(y2) 

producing probability values for yj+2•

It is obvious that for k)3 the computations involved in (3.2.17) 

will become very tedious. In these situations a number of strategies 

may be adopted and these are discussed below.

(i) Monte Carlo simulation- here we make use of the fitted model and a 

NBD random number generator (henceforth NBRG) (see Ch. 8) in order to
A

simulate future values of the process y t , say yx+i» i“l*2 k. The

replications at each time are then used to evaluate the unconditional 

distribution of y-p+i and its moments. This approach has been advocated 

by S&M (1986), which use percentiles to predict records of some 

athletics data. In the absence of justifiable analytical 

approximations, this seems to be the most promising technique to 

tackle the forecasting problem in our setting. In what follows we 

briefly schematize how this procedure should be implemented in our 

framework, having the Poisson-Gamma as an example.
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First note that as a by-product of the fitting of the 

Poisson-Gamma model to a certain data set one has readily available
A A A

the ML estimate of the vector of hyperparameters ¥ -{a), 6 1, . . . , Sp} and 

the updating values of the state prior parameters at time t-T, a-p and 

b-p. Once these quantities are made available one should proceed as 

follows:

1. For i-=l evaluate the prediction equations

aT+i/T+i-l~ « aT+i-l 

bT+i/T+i-l~ ^ b T+i-l-

2. With the above values and an appropriate NBRG obtain one deviate

yT+i ~ NBd (aT+i/T+i-1> bT+i/T+i-l)•

A

3. Using the generated deviate yT+i calculate the updating equations

aT+i“ aT+i/T+i-l + YT+i 

bT+i“ bT+i/T+i-l + 1 -

4. Set i-i+1 and repeat steps 1-3 until i-k.

5. Repeat steps 1-4 Nrep times, using a new seed at each time.

After the completion of the above process one will have available 

for each step ahead i—1,2 k a vector of generated values with
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dimension Nrep, i.e., { yp+p(j) ) j-1,2,...,Nrep. These may then be

used to evaluate sampling moments, skewness and kurtosis, and the 

probability mass functions for each step ahead. In the case of 

continuous variates, as in the Gamma-Gamma model, percentiles could be 

evaluated as in S&M (1986).

(ii) ad hoc approximation- here we use the exact expressions for the 

k-steps ahead moments in (3.2.14-15) to construct an analytical 

approximation for the actual and unknown forecasting distribution 

P(yT+k'YT> f°r The 'natural' approximating distribution is the

NBD(a-r+k/T>bT+k/T), but further investigation is still needed to 

justify the basis of this procedure. A similar approximation has been 

used by WHM (1985) in their DGLM (see section 1.3.2.1). In order to 

determine the projected parameters ap+k/T and b-p+fc/T one has only to 

match the first two moments of the above distribution (3.2.16a-b) with 

the correspondent moments of the NBD (see 3.2.11a-b) and solve for 

aT+k/T anc* bT+k/T* After some algebra one may show that this yields

where Pfc-l” l/[l+(l-co)b<p S^-p] with S^.p given by (3.2.16). Note that 

approximations of this kind may also prove useful in handling missing 

observations.

aT+k/T~ w aT pk-l 

bT+k/T“ w bT pk-l

(3.2.21a )

(3.2.21b )
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3.2.1 Likelihood

ML estimates for the unknown hyperparamter o> may be evaluated by 

substituting the formula for the predictive density (3.2.10) into 

(1.2.13). To initialize the gamma prior, that is the distribution of 

at time t - 0, we set a 0-b0 - 0. Obviously this is an improper 

density. However, none of this prevents the recursions (3.2.3a-b) 

being initialized at t-0 with a 0-b0 - 0. A proper distribution for 

is then obtained at time t- t where r is the index of the first 

non-zero observation. In this context this is also known as an 

'unbiased' gamma prior (Hartigan 1983). The Jeffreys density is 

obtained by setting a 0-l/2, b 0-0. Note also that, it is possible to 

set b t to its 'steady value' o)/(l-a>) right from the beginning.

The log-likelihood function for the unknown hyperparameter o) is 

then given by 

T
log l (u>) - 2 <los[ r (at/t-i + yt>/ r <at/t-l>] + at/t-l loS b t/t-l '

t-7+1
" (at/t-l + yt) lo6 <1+ b t/t-l)> (3.2.22)

Maximization of the likelihood is accomplished via a quasi-Newton 

method based in the Gill-Murray-Pitfield algorithm provided by the NAG 

library (routine E04JBF). This routine is naturally fitted to handle 

constrained optimization so that no transformation of the 

hyperparameter a> is made necessary. Also given the fact that in E04JBF 

derivatives of the objective function are numerically calculated, no 

explicit formula for the derivatives of (3.2.15) are required, 

although we have worked them out in case of need. To calculate the 

terms involving the gamma function in (3.2.15) we have used the fact 

that for n integer and 'a' positive
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n
log[ r(a+n)/r(a )]- J log(a+j-l). (3.2.23)

j-1

At the present stage of our research we have been unable to find a 

satisfactory result which could be used to prove consistency and 

asymptotic normality of ML estimators. This would then enable us to 

construct confidence intervals for our point estimates. 

Sweeting's (1980) paper offers some general conditions for the 

establishment of these conditions for nonergodic stochastic processes, 

but we have not found them particularly useful in our context. 

Evidence of normality and consistency are nevertheless, provided in 

Chapter 8 where properties of ML estimators are investigated using 

Monte Carlo simulations. The overall message conveyed in our study is 

that our ML estimators are asymptotically unbiased, consistent and 

normally distributed for large sample sizes. For small and moderate 

sample sizes we have detected an unusual behaviour of the ML estimator 

of a) when it is set close to its upper bound value one. A significant 

proportion of its estimates will be exactly one even when its actual 

value is fixed at a different value. Similar behaviour of ML 

estimators are reported by Shephard and Harvey (1990) in the study of 

Gaussian local level models. Anyhow since values of interest for a) lie 

close to the boundary value the absence of confidence intervals should 

not be considered a serious drawback. Inference of parameters 

associated with structural components and regressors, to be introduced 

later, are made using the \ 2 approximation for the likelihood ratio 

test. This has also been advocated by Lawless (1987b) in the context 

of regression models for count data. For a more detailed discussion on 

this topic the reader is referred to Chapter 8, section 8.2.
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3.2.2 The Discount Factor

Here we exploit in some detail the meaning conveyed by the 

discount parameter in our framework. We start by rewriting (3.2.13) as 

a geometric series. This has the following asymptotic form

yt+i/t- (i-w)yt + (i-«)«yt-i + (i-w)o>2 y t_2 + ...

“ c 0yt + c,yt_i + c 2yt_2 +... (3.2.24)

where c $-(1 - a>) «*•, i-0,1,2, . . . ; 0< o> < 1. Given that the weights are 

normalized, then the above predictor may be thought of as splitting 

out the information content of the series into the current value, with 

weight c 0 and past values, with overall weight l-c0. It is then 

obvious that a) represents a tradeoff between tracking ability and 

smoothing on the one step-ahead forecasting function (3.2.13). The 

more discounting is done (i.e. when owl), the more past terms will 

contribute for (3.2.24) and as a result the less the forecasts will 

track model changes. When the reverse occurs, i.e. when o>-»0, then the 

current value dominates the weighted sum in (3.2.24). In this 

situation the system tracks very rapidly, inclusive of random 

changes.

In the context of state space models discounting factors have yet 

another suggestive interpretation which cannot be grasped in standard 

EWMA forecasting schemes. For example, in a Bayesian framework, Ameen 

and Harrison (1984-5) use discounting factors to tackle the increase 

in the predictive variance for components present in Gaussian DLM 's 

(see section 1.3.2.1). These then may be viewed as indicators of the 

ability of stochastic components in describing the movements of a
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series. Non-Gaussian structural models use discount factors in a 

similar fashion, but only in association with the local level 

component. If one looks at the role played by the discount factor in 

the transition equation for the variance of this component (3.2.6b), 

then it becomes clear that estimated low values of the discount 

parameter indicates a rather volatile level. Note that by considering 

the extreme value o>-l in (3.2.3a-b) we reduce our model to the static

case. In this sense the deterministic components, such as time trend

and seasonals, present in our formulation may be thought of as having 

discount factors fixed at unity.

Further insight into the discount factor may be obtained by 

considering its relation with the signal-to-noise ratio (SNR) of the 

Gaussian random walk plus noise model (see 1.2.1a-b). If the reader 

refers back to these equations then the SNR is defined as the ratio 

between the system noise variance and the measurement noise

variance, i . e . , SNR- Var r;t/ Var £t- q, 0 < q <00. Now it can be shown

that the steady state solution of the Kalman filter for the above 

specification produces a forecast function which is also equal to the 

EWMA scheme in (3.2.13). See Harvey (1989, p.175). It is then 

straightforward to establish the following relationship between the 

smoothing constant X and q, the SNR

(q+ /*2 + 4q)/( 2+q + yq2 + 4q).

Finally using that for the Poisson-Gamma model X-l-o), it follows that

q- (l+ct)2-2w)/w . (3.2.25)

As expected, when the level of the series behaves in a haphazard
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fashion , i.e., when a>-»0 then q-*». For a deterministic level, a>-»l and 

so q-»0. The above formula may also be used to establish a link between 

the Poisson-Gamma model and the Gaussian model when the numbers on the 

series are not too small.

3.2.3 Explanatory Variables and Structural Components

For the Poisson-Gamma model the inverse of the log link function 

or the exponential link function will ensure that the contributions 

of the systematic component (see 2.2.10) keeps the mean positive

h(Tjt)- exp(zt'5) . (3.2.26)

In our framework the way to proceed is by combining

multiplicatively the standard mean /it , which is dependent on the

actual and past values of the endogenous variable, with the

exponential link function for the systematic component so that the

distribution of yt conditional on /it , is Poisson with mean

Vt+ " /*t h (r?t>
- fit exP <zt'6> • (3.2.27)

Using that conditional on Y t_i, fit-gamma(o)at.^,a)bt_^) , it follows from 

the properties of the gamma distribution, that, conditional on

~ gamma(at/t_1+ »bt/t_1+ ) where
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at/t-l+ - <*> at-l

bt/t-l+ - w b t-l exp(-zt ’6).

(3.2.28a)

(3.2.28b)

As regards updating, - gamma(at+ ,bt+ ) where at+ and b t+ are

obtained from at/t-l+ anc* bt/t-l+ v^a updating equations of the 

form (3.2.8). Therefore the posterior distribution of is

gamma(at ,bt), where at and bt are given by

at - o) at_i + yt (3.2.29a)

b t - o)bt_i + exp(zt '5), t — r + 1 T. (3.2.29b)

Thus the only amendment as compared with the recursions of the 

standard case (3.2.8) is the replacement of unity by exp(zt '6) in the 

equation for bt . The log-likelihood of the observations is therefore 

as in (3.2.22) with ^t/t-l anc* bt/t-l replaced by an(* b t/t-l+ -

This must be maximized with respect to u and 5.

From (3.2.27) it follows that in the presence of exogenous 

variables/structural components the Poisson mean is modelled by an 

expression of the form

Mt+“ Mt exP( Rt + Tt + st ) (3.2.30)

where Rt> Tt and St are as previously defined (see 2.2.12-14).The form 

of the above linking mechanism means that the trend and seasonals 

combine multiplicatively, just as in a logarithmic Gaussian model. As 

in such a model, the coefficient of the slope is to be interpreted as 

a growth rate, while the seasonal coefficients are multiplicative 

seasonal factors.
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The extension of count data models to include explanatory 

variables opens up the possibility of carrying out intervention

analysis. The explanatory variables xt are replaced or augmented by a

variable w t which is designed to pick up the effect of some event or

policy change.

Forecasting in the presence of explanatory variables/structural 

components:

For a given value of 5, we can proceed as in (3.2.8) to show that 

the mean of the predictive distribution of yx+k *-s

E (yT+k|YT) “ exp(zT+k'5) (aT/bT+ )

T-1 T-1
- exp(zx+k'S) J yX-i / 2 exp(zT 4' 5)

j-o j - o

— exp(zx+k*5) EWMA(y)/ EWMA{exp(z'5)) (3.2.31a)

where EWMA(y) is given by (3.2.13) and EWMA{exp(z'5)) is defined 

similarly. Note that if structural effects are present in the 

systematic component then multi-step forecasts are obtained by direct 

projection of these components, i.e. by substituing t for t-T+k in

(3.2.12) and (2.2.13-14) respectively. Using an argument similar to 

that employed to derive the projected variance in the standard case 

(3.2.16) it is also possible to show that

87



2
Var(y<r+wx) - (ax/wbx+k*) (1+ Gdfox+]c*+  (!-<*>) bT+k* s*k-l)

(3.2.31b)

where bx+k*“ exp(xx+k' $)bx+k an<* 

k-1
S \ . i -  2 (i/^T+l )exP[ (zT+k"zT+i ) ' • (3.2.32)

j-1
As before Monte-Carlo simulation and scenario projection might be used 

to construct forecasts. The k-steps ahead distribution may again be 

approximated by a NBD(ax+k/x>b+T+k/T) wbere ax+k/T as *-n (3.2.18a) 

and bx+^/x

bT+k/T“ 00 bT exp(-zT+ic') P*k-1 (3.2.33)

with

p*k-l“ l/tl+brtd-uJsVl.]- (3.2.34)

In the absence of explanatory variables, 6—0 and as a result (3.2.32) 

collapses to the standard case (3.2.16) as expected.

It is interesting to compare (3.2.31a) with the result obtained 

from the Gaussian model (1.2.1a-b) for a given discount factor, co. 

Since the level and explanatory variables are combined 

multiplicatively in this model, it seems sensible to make the 

comparision with a Gaussian model in which logarithms have been taken. 

The optimal estimator of is obtained by applying the EWMA operation 

to log yt - xt '6. The optimal estimate of log yx+k can then be

expressed as
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E(log yi+k|YT) " xT+k’6 + EWMA(log y) - EWMA (x’6) . (3.2.35)

The other point of comparision with the Gaussian model is in the 

maximization of the respective likelihood functions. In the Gaussian 

case, the computational burden is eased considerably by the fact that 

6 may be concentrated out of the likelihood function by estimating it 

by generalized least squares; see Kohn and Ansley (1985). This 

suggests that it may be possible to use estimates from the Gaussian 

model as starting values; the difficulty lies in how to handle zero 

observations when logarithms are being taken.
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3.3 THE NEGATIVE BINOMIAL-BETA MODEL:

- measurement equation: let the observations at time t be drawn from a 

NBD distribution,

p(yt,Tt*u> v + yt - i
Yt

yt
xt (l-irt) , yt« 0,1,2,

(3.3.1)

where 0 < xt < 1 and v > 0. This is known as the Pascal distribution 

if v is an integer and u-1 corresponds to the geometric distribution. 

In terms of our notation we have that the state xt . The mean and

variance are

E(yt,xt»u) “ u(i-xt)/Tt
Var (yt |xt ,u) - E(yt/xt) [1 + IT1 E(yt/xt) ]

(3.3.2a)

(3.3.2b)

The distribution therefore exhibits overdispersion compared with the 

Poisson distribution, that is the variance exceeds the mean. However, 

if the mean is kept constant, the NBD tends towards the Poisson 

distribution as v -»

(i) state prediction- the conjugate prior distribution for the NBD is 

the beta density, so that p(irt:.i lYfl) ^as t*ie form

a -1 b -1
p(xt_ilYt.i )- yt-l (1~xt-l> (3.3.3)

B(a,b)
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where a-at_i > 0 , b-bt_i > 0 and B(*) is the beta function given by 

B(a,b)“r(a)f(b)/r(a+b). It is a standard result for this density that

n r (a+b) T(a+n) n-1,2,3,...M *  _______________
T(a) T(a + b+ n) (3.3.4a)

and

M * a - 1 a > 1, b > 1. (3.3.4b)Mode(x)- _____________
a + b - 2

Our approach led us to assume that p ^ t ^ t - l )  is also beta. At first 

sight it might appear that the recursions in (3.2.3) are again 

appropriate to express the predictive equations. However, in view of 

(2.2.5a), it is the expected value of (l-x)/ir, rather than r, which 

needs to be kept constant while the variance increases. For a beta 

distribution, (3.3.3), one may easily show that

E((1 - t )/t ) - B(a-1, b+1) _ b (3.3.5)
B(a,b) a-1

provided that a > 1. Hence , by using (2.2.5a) we require that

b t/t-l _ b t-l (3.3.6)
lt/t-l ’ 1 at-l

This can be achieved by multiplying the numerator and denominator in 

the expression on the right hand side of (3.3.6) by u>. The prediction 

equations will therefore take the form
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at/t-l ~ w at-l + (1 - tt) 

b t/t-l - w b t-l

(3.3.7a)

(3.3.7b)

with 0 < co < 1. In order to have the variance of »/(1-t ) increased 

during the transition one may show that the following condition has to 

be satisfied

We leave a more detailed investigation of this inequality after we 

have established the updating equations.

Note that a multiplicative transition equation similar to that 

derived for the Poisson-Gamma model (3.2.7) could also, in principle, 

be worked out for the beta parameter Tt , by use of the multiplicative 

property of beta variates (see, e .g .,McKenzie 1985) given by

Be(a,b) . Be(a+b,c) - Be(a,b+c)

where Be(-) is the beta density. It is not difficult to see that such 

a specification would require transition equations different from 

(3.3.7a-b) and that as a result the forecast function would no longer 

be expressed by an EWMA scheme. Furthermore this would be of no help 

in finding an useful expression for the multi-step moments, given that 

these would be dependent on future values of the observable.

at-l > (l+«)/(l-u). (3.3.8)
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(ii) state updating - the posterior distribution for the state, 

p(irt iYt) is also a beta distribution with parameters

at " at/t-l + u 

bt " bt/t-l + Yt-

(3.3.9a)

(3.3.9b)

Repeatedly substituting from (3.3.7a) and (3.3.9a) gives

t-1 t-1
(3.3.10)

As before when t -» « f converges to the 'steady solution1

[ u(l-ci))+l]/(l-o>) so that at_i -» (u+l)/(l-o>) . Using this result one may 

easily prove that the condition in (3.3.8), which guarantees the 

increase on the variance of the level during the transition, is 

satisfied for u > o).

(iii) conditional distribution - the predictive distribution is 

obtained by solving the compounding operation in (1.1.4). The 

resulting distribution is the beta-Pascal (see,e.g., Raiffa and 

Schlaifer 1961, p.238)

The mean and variance of the above distribution are given respectively

B(u+at/t-l> yt+bt/t-l> (3.3.11)
u + yt B(u, yt+l) B(at/t.1 , bt/t_i)

by
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yt/t-i- E (yt'Yt-i>
_ w b t/t-i _ 11 b t-i •at-l > 1 (3.3.12a)

at/t-l - 1 at-l -1
and

v [(at/t-l + *>t/t-l -1)(at/t-j +  v -I)]
2

u b (a+ b+ 1) [u+ w(a - 1)]
2

(a -1) [o> (a -1)- 1]

(a + b+ 1) [u+o)(a-l) ] , a > (1+cj)/oj
(3.3.12b)

where for ease of notation we have made and b-bt_^. Note that

this shows overdispersion with respect to the Poisson model. It is 

straightforward to show that, when t °°, b t/t_i can be written as an 

exponentially weighted average of past observations, and using that 

(&t/t-l "1) c«>u/(l-c»>) , the predictor yt/t-1 *-n (3.3.12a) may again be

shown to have the EWMA form (3.2.13).

As regard the relation between our updating rule and Smith's, in 

the present context they differ radically. This can be understood by 

noting that while our rule keeps invariant the quantity b/(a-l)

(see 3.3.5b), Smith's keeps unchanged (a-l)/(a+b-2) (see 3.3.4b).

(iv) k-steps ahead forecasting- using an argument similar to that 

employed to show (3.2.14b), it is possible to verify that the 

forecasts k steps ahead, k>l are also given by an EWMA scheme.
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However we have not succeeded in deriving a general expression for the 

variance k steps ahead. The same holds true for the forecasting 

distribution. In what follows we present the expressions for the first 

factorial moment and the distribution two steps ahead.

As in the Poisson-Gamma model the way to proceed is by first 

evaluating the factorial moment of order one using the chain rule for 

conditional expectations (1.1.9a). The variance is then obtained by 

substituting the derived expression, together with the appropriate 

forecast function (3.2.13) into (A2.2). After some tedious 

manipulation it is possible to show that the two steps ahead factorial 

moment of order one is given by

E(YT+2(2) «yt)“ E(yT+1(2>iYt)+ w(v+l)«b{h(l-o))+o»[(b-o))-fch(l+b)])
h(h-l)[w(h+u)-1]

(3.3.13)

where b-b-p, E(y-p+p( 2) | Y^)- u(u+l)cdb(l+cob)/[h(h-l) ] and h- a>(a<p -1).

As regard the two step ahead forecast distribution, the appropriate 

substitution of (3.3.9) into (3.2.17) leads to

00

p(yT+2'YT>_ k(y2> 2 r<A+ y 2> r<B> r(u+y,) r(A+ajy1)
71-0 r(B+y2) r(A) y , ! (3.3.14)

where y^yj+l, y 2_yT+2 »A“ (c^b-p+y,), B- a)2(aT+bT ) + (l-co) (l+o>)+ o^y^i;) 

and

k(y2)- r(u+y2) r(D+uBt) r<c+u) r(D+u) 

r?u) r(D) r(o.Bt) r(c> y 2i
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with

C - co2 a-p+ (1  - co) ( l+oo) +  uco & 1+ u /( l -c o )

D -  coa-p +  (1  - co) & 1+ v c o /( l-c o )-  a-p.

The approximated values are obtained for large sample size when a-p- 

a-p* = 1+ uco/(l-co). Under this condition it is not difficult to see 

that k(y2) becomes

k(y2)«* T(iH-y2) rCa^+oib-p) r(a<p*+u)

T^u) r(l+a>(aT*-l))

3.3.1 Likelihood

The parameter u can be estimated by ML along with oi. Alternatively 

it may be pre-set. Using (3.3.8) one can write the log-likelihood 

function for the hyperparameters v and co as

T
log L(co,u)- £ { log[r(u+at/t.1)/r(at/t.1)]+ log[r(u+yt+l)/r(u)]+

t-=7+l

+ log[r(yt+bt/t.1)/r(bt/t.p)]-log[r(yt+u+ dt/t.1)/dt/t.1 ] }

(3.3.15)

where at/t-l + ^t/t-1* start the recursions (3.3.7a-b) and

(3.3.8a-b) at t-0 with an 'unbiased' beta prior ,i.e.f by setting 

a 0-b0-0. In order to ensure that b t is strictly positive we require r 

to be the first value of t for which yt is non-zero; at will be always
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positive. It is clear this is not a uniform beta prior, since this is 

obtained by setting a 0-b0-l; the Jeffreys prior is obtained by setting 

a 0-=b0-=l/2. When u is set to the integer value which maximizes (3.3.15) 

then (3.2.23) may be used in order to evaluate the logarithm of the 

ratio of gamma functions. For non-integers values of v one has to 

evaluate the gamma function directly and for this we have used the 

routine GAMMLN in Press et al (1986, p.157).

3.3.2 Explanatory Variables and Structural Components

The appropriate way of proceeding with the NBD-Beta model is to 

introduce the explanatory variables/structural components directly 

into the distribution of yt/Tt v*-a an exponential link function. This 

may be done by replacing v by ut+ - v exp (^t:,5). Such a NBD 

distribution has, for a constant x, a constant variance-mean ratio; 

see the discussion in Cameron and Trivedi (1986, p.33). Proceeding in 

this way leads to the updating equation (3.3.7a) being modified to

at - at/t-l + u exP (zt ' (3.3.16)

while (3.3.8b) remains unchanged. It is then possible to show that the 

mean of the predictive distribution of yx+k *-s

E (yT+klYT> “ v exp(zT+k'S) bT/(aT -l) (3.3.17)

and it is not difficult to deduce that it can be expressed in terms of 

an equation identical to (3.2.32a).
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3.4 MODEL SELECTION:

In this section we introduce our model selection methodology, and 

with few exceptions most of the techniques discussed here are also 

suitable to the non-count data models considered in this dissertation.

Many of the issues which arise in the selection of GLIM models are 

also relevant here. However there is the additional problem of testing 

for randomness. Given the non-Gaussian nature of our model one has to 

rely on non-parametric tests which may be used both for the residuals

and raw data. In particular we have implemented the following

randomness/trend tests in our program:

Table 3.4.1 List of the tests for randomness/trend implemented.

TEST STATISTICS

Runs above and below the median 
(or Runs for short)

Standard Normal

Runs up and down 
(or Rud for short)

Standard Normal

Kendall's tau test for trend Standard Normal

Daniel's rank test for trend Standard Normal

Rank version of Von Neumman ratio VNR

The reference for the first four tests is Farnum and Stanton (1989,

ch.2) while for the last test the reader is referred to Bartels (1982) 

who shows that the rank version of Von Neumman ratio has far greater 

power than the turning point test when used in AR(1) models with 

different distributional assumptions. The critical values for the VNR
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statistic may be evaluated through the formula

fa (T)« a + b Tc (log T)d (3.4.1)

where a is the significance level of the test, T is the sample size 

and the parameters a,b,c, and d are given in the table below for 

different significance levels.

Table 3.4.2 Values of coefficients of the VNR formula for different 
significance levels.

a .005 .01 .025 .05 .1

a -.040 -.023 -.004 .119 -.465
b .200 .261 .381 .440 1.184
c -.400 - .345 -.266 -.230 .088
d 2.540 2.212 1.748 1.520 .674

The null hypothesis of randomness should be rejected when VNR < fa (T).

Once randomness of the residuals is checked one can proceed by 

evaluating the standardised (Pearson) residuals which are defined by

vt " yt “ E (yt,Yt-l> (3.4.2)
SD(yt lYt_1)

If the parameters in the model are known, it follows from the 

decomposition of the likelihood in (1.2.13) that these residuals are 

independently distributed with mean zero and unit variance. However, 

they are not, in general, identically distributed.
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The following diagnostic checks are suggested in order to check model 

adequacy:

a) An examination of the plot of the residuals against time 

and against an estimate of the level.

b) A check on whether the sample variance of the residuals is 

close to one. A value greater than one indicates overdispersion 

relative to the model which is being fitted. (Note that since the mean 

of the residuals is not necessarily zero, the sample variance and raw 

second moment will not usually be the same).

c) When discriminating between alternative models one must 

select the model which produces the smallest of the following goodness 

of fit criteria:

- Akaike information criterion:

A I O  -2 ML(ty+ 2 p . (3.4.3a)

When no likelihood is explicitly available then one may adopt as the 

objective function the sum of squared residuals (SSR), so that the 

above formula becomes

AIC= log SSR+ 2 p . (3.4.3b)

- Bayesian information criterion:

B I O  -2 ML(*)+ P logT (3.4.4.a)

or
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B I O  log SSR + p log T. (3.4.4.b)

■ Theil*s U statistic:

O  j SSR(model) / / SSR('naive' model) (3.4.5)

where ML(^)is the maximized log-likelihood, p is the number of 

independent hyperparameters, T is the number of observations used to 

fit the model, and the 'naive' model is the model for which the

one-step ahead prediction is set equal to the last observation. The

AIC and BIC version used in most of our comparisons are the ones with 

the likelihood function (3.4.3a and 3.4.4a) unless otherwise stated. 

For further discussion on the topic of model selection using 

information criteria the reader is referred to Priestley (1981, 

ch. 5).

Post-sample predictive testing may also be carried out. For the 

model with Poisson observations, the post-sample predictive test 

statistic is

T+fi
£(£) - 2 ^ ^ a t/t_1 log( at/t-l / Yt b t/t-l ) (3.4.6)

T+0
- 2 I <at/t-i + yt > los < yt+ at/t-i / <1+bt/t-i)yt>t- T+l

where a^/t-l and are computed from the recursions (3.3.7a-b).

In the special case when yt is zero, the term in Z(Q) at time t is

-2 at/t-l lo8 ( (1 + b t/t-l )/ bt/t-l>-

Under the null hypothesis that the model is correctly specified, £(Q)
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is asymptotically X 2 with Q degrees of freedom. The test is analogous 

to the test developed by Chow (1960) for a Gaussian regression model. 

The derivation in the Appendix is based on the introduction of a dummy 

variable into the model for each of the observations in the post 

sample period.
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3.5 APPLICATIONS:

This section illustrates the use of our classes of count data 

models by considering some applications to real data. When possible we 

compare the performance of our models with the equivalent structural 

Gaussian model and also with alternative classes of count data 

models.

3.5.1 Goals Scored by England against Scotland

Here we analyse the series of the number of goals scored by 

England in international football matches played against Scotland at 

Hampden Park in Glasgow (see figure 3.5.1). The source for this data 

is 'The Official Football Association Yearbook 1985/1986' (Pelham 

Books). Apart from the war years these matches were played in Glasgow 

every other year (the year 1985 is also an exception; the match should 

have been played at Wembley). Treating the observations as though they 

were evenly spaced, estimation of the Poisson-Gamma model gave:

Table 3.5.1 Poisson-Gamma model fitted to the England series of 
goals for matches played at Hampden Park.

estimate goodness-of-fit

0) AIC BIC SSR ML U
0.844 102.65 104.58 91.937 -50.323 0.751

The variance of the standardized residuals is 1.24. When subjected to 

the randomness tests of section 3.4, the residuals showed no signal of 

structure. A post-sample predictive test carried out over the last 

five and ten
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observations gave no hint of model breakdown with $(5)=0.377 and 

$(10)= 8.478. The forecasted value for the mean of future observations 

is 0.82. This corresponds to the forecast that would have been 

obtained from the Gaussian random walk plus noise model (1.2.1) by 

setting q=0.029 (see 3.2.25).

Figure 3.5.1 Goals scored by England against Scotland at Hampden Park 
and estimated level using the Poisson-Gamma model.
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Table 3.5.2 Predictive probability distribution 
of goals in next match.

0 1

Number

2

of goals 

3 4 >4

.471 .326 .138 .046 .013 .005

Fitting the NBD-Beta model when v is estimated by ML yields

Table 3.5.3 NBD-Beta model fitted to the England series of goals for 
matches played at Hampden Park.

estimates goodness-of-fit

CO V
0.965 4.819

AIC
103.71

BIC SSR ML U 
107.53 90.86 -49.856 0.747

Thus the introduction of an adjustable scale parameter has resulted 

in less movement in the level. The variance of the standardised 

residuals is 1.0467 and the prediction is 1.1931. The likelihood 

function is relatively insensitive with respect to changes in u. 

Furthermore its value at the maximum is only marginally greater than 

the maximised likelihood for the Poisson-Gamma model. If an allowance 

is made for the extra parameter via the AIC or BIC, the Poisson-Gamma 

model gives a better fit.

We now consider the full set of results of England-Scotland 

matches (see figure 1.1), with the model extended by the introduction 

of a dummy variable which takes a value of unity when England are at 

home. Playing at home tends to confer an advantage, and so we extend
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the model by introducing a dummy explanatory variable which takes a 

value of unity when England are at home, and is zero when they are 

away. Here we only report the fitting using the Poisson-Gamma model, 

since no specification of the NBD-Beta model has produced a better 

result. For discriminatory purposes we estimate the Poisson-Gamma 

model with (Modi) and without the dummy variable (Mod2). The results 

are as follows:

Table 3.5.4 Poisson-Gamma model with dummy variable fitted to the 
England series of goals for matches played either at England or 
Hampden Park.

estimates goodness-of-fit

Modi
Mod2

a) 8 
0.892 0.496 
0.893

AIC
158.53
165.18

BIC SSR
163.82 257.50
167.82 289.17

ML
-77.263
-81.590

U
0.679
0.699

As expected, the estimate of 6 is positive. The likelihood ratio test 

statistic is 8.66: this statistic is asymptotically \-\2 under the null 

hypothesis that 8 is zero, and so is clearly highly significant. Since 

exp(0.496)« 1.64, the results can be interpreted as saying that the 

expected number of goals scored by England rises approximately by 64% 

when they are playing at home.
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3.5.2 Purse Snatching in Chicago

In their textbook, McCleary and Hay (1980) list a time series of 

reported purse snatchings in the Hyde Park neighbourhood of Chicago. 

The observations were collected by Reed (1978), and are twenty-eight 

days apart, running from January 1968 to September 1973. McCleary and 

Hay decided that the series was stationary and on the basis of the 

correlogram and sample partial autocorrelation function they fitted an 

AR(2) model.

The assumption of stationarity for this series implies that the 

level of purse snatchings remained constant throughout the period in 

question, and that the variations observed were simply fluctuations 

around this constant level. This in turn implies that purse snatching 

is in some kind of equilibrium. While this may be true, a more 

plausible working hypothesis is that the level of this crime is 

gradually changing over time. This suggests a Gaussian random walk 

plus noise model, (1.2.1). Estimating such a model under the time 

domain gives a signal noise ratio of q- 0.208. The residuals give no 

indication of serial correlation. For example, the Box-Ljung statistic 

(see,e.g., Harvey 1989, p. 259), Q(8) is equal to 7.88, and this

should be tested against a chi-square distribution with 7 degrees of 

freedom. The prediction error variance is estimated to be 38.94, and 

this is only slightly above the figure reported by McCleary and Hay 

for their AR(2) model which, of course, contains one more parameter.

In summary, basic a priori considerations give rise to a 

structural time series model which not only has a clearer 

interpretation than the ARIMA model fitted by McCleary and Hay, but
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is more parsimonious as well. However the model is not, strictly 

speaking, data admissible. The forecast function is horizontal and 

cannot be negative, but a prediction interval of one RMSE on either 

side rapidly strays into the region of negative values of y. A 

logarithmic formulation, on the other hand, is not satisfactory as it 

fails the Bowman-Shenton normality test. A much better model is 

obtained by carrying out a square root transformation before fitting 

the model. Note that the square root transformation is the variance 

stabilizing transformation for a Poisson distribution; see McCullagh 

and Nelder (1983, pp. 129-130). The resulting fitting yields a 

time-domain estimated signal-noise ratio of q—0.1465, while squaring 

the forecasted values gives predictions of 7.39 and a much narrower 

prediction interval.

Of course, the purse snatchings are an example of count data, but 

since the numbers are not too small fitting various Gaussian models is 

a useful preliminary exercise. (For example, extending the model to 

include a stochastic slope indicates that such a component is 

unneccesary).

When the data are treated explicitly as count data, a NBD-Beta model 

seems to produce the best fit, whose summary follows

Table 3.5.5 NBD-Beta model fitted to the purse-snatching data.

estimates goodness-of-fit

0) V AIC BIC SSR ML U
0.707 18.026 -3323.97 -3319.19 2748.80 1663.84 0.834-

The predicted level is 7.66, corresponding to predictions from the 

Gaussian model with q-0.131. A plot of the residuals shows no evidence 

of heteroscedasticity, while the sample variance of the standardised
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residuals is 0.965. As an exercise of comparison we display in figure

(3.5.2) the one step ahead predictions produced by our NBD model and 

these obtained through the fit of a Gaussian local level model. It is 

no surprise that the Gaussian model performs quite satisfactorily 

since the data values are not too small.

Figure 3.5.2 Purse snatchings in Hyde Park, Chicago and estimated 
levels using a NBD-Beta model (count) and a Gaussian model (nor).
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3.5.3 Effect of the Seat Belt Law on Van Drivers in Great Britain

The effect of the seat belt law of January 1983 on various classes 

of road users in Great Britain was analysed in Harvey and 

Durbin (1986). For certain categories the numbers involved were 

relatively small with the result that a Gaussian model could not be 

regarded as a reasonable approximation. One such series is the monthly 

totals of drivers of light goods vehicles (LGV) killed. Here the 

numbers, from January 1969 to December 1984, range from two to 

seventeen. Since the series contains no zero observations, a Gaussian 

model can be fitted to the logarithms of the observations. This gives 

preliminary estimates for the seasonal and intervention effects which 

can be used as starting values in the iterative procedure used to 

calculate the ML estimators in a count data model. However, it is 

clear from doing this that a Gaussian model is not at all satisfactory 

in these circumstances and the results are very different for 

different specifications. In particular, fitting a model with fixed 

seasonals and no slope gives an estimate of the intervention effect 

which implies a 45% fall in fatalities as a result of the seat belt 

law. This is quite out of line with estimates obtained for other 

series, and indeed with the results obtained when a slope is included.

For the Poisson model it is reassuring to note that the 

conclusions regarding the effect of the seat belt law are affected 

very little by the inclusion or otherwise of a slope term. In fact the 

preferred specification does not have a slope. The explanatory 

variables are therefore an intervention and seasonals, and fitting the 

model gives the following estimates of a) and the intervention effect:
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Table 3.5.6 Poisson-Gamma model with seasonals and intervention 
variable fitted to the series of LGV drivers killed.

estimates goodness-of-fit

AIC BIC SSR ML U
0.934 -0.2764 -4239.24 -4196.96 1480.7 2132.62 0.702

The estimate of 5 implies a 24.1% reduction in fatalities which is 

quite close to the figures reported earlier for car drivers by Harvey 

and Durbin (1986). The likelihood ratio test statistic for the 

inclusion of the intervention variable is 25.96 and this is clearly 

significant when set against a 2 distribution. Figure 3.3 shows the 

plot of the LGV series and the fitted Poisson-Gamma model.

Figure 3.5.3 LGV drivers killed in Great Britain and fitted 
Poisson-Gamma model with seasonals and intervention.
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Finally the estimated seasonal factors, given by exponentiating the

estimated seasonal coefficients, are very reasonable and not

dissimilar to the seasonal factors reported by Harvey and

Durbin (1986) for car drivers killed and seriously injured.

Table 3.5.7 Estimated seasonal factors for LGV drivers killed.

J F M A M J J A S 0 N D

1.16 .79 .94 .89 .91 1.06 .97 .92 .92 1.16 1.19 1.19
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3.5.4 U.S. Polio Incidences

Zeger (1988) lists a time series of the monthly number of cases of 

poliomyelitis reported by the U.S. Centers for Disease Control. The 

data runs from 1970.01 to 1984.12 and has been used as an illustration 

of his model. The specification chosen by Zeger includes a linear 

trend with seasonal harmonics, and this is based both on the evidence 

of seasonality on the spells of the disease and on a desire to 

investigate claims about a long-term decrease in the rate of U.S. 

polio infection. In considering the seasonal pattern Zeger has used 

only the annual and semi-annual frequencies in (2.2.14), i.e., s-12 

and j-1,2. It is also worth noting that the November 1972 observation 

has been considered an outlier, but in his analysis, Zeger has not 

removed this observation 'since it had a minor effect on the 

findings'. In order to compare our class of count data models with 

Zeger's formulation we have specified a model with similar components, 

but treating the outlier explicitly, for which a dummy variable is 

defined. The table below presents the result of our best model, a 

NBD-Beta, against Zeger's parameter driven model.

Table 3.5.8 NBD-Beta and Zeger's model applied to U.S. polio data.

estimates goodness-of-fit

NBD
Zeger

trendxl0"3 to
-5.03 0.862 
-4.35 —

v I 
7.287 2.04

SSR AIC BIC 
419.47 22.04 46.94 
507.89 22.23 47.22

In the above table 5 denotes the estimator of the outlier dummy. The 

likelihood ratio test for the inclusion of the trend variable is 0.28
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and this is obviously not significant when set against a \,2 

distribution, so that according to our model, there is not sufficient 

evidence in the data to support a long term decrease on the rate of 

U.S. polio cases. A similar finding has also been reported by Zeger.

Figure 3.5.4 U.S. number of cases of polio and fitted trend using a 
NBD-Beta model and Zeger's model.
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The seasonal component for both models is depicted in figure

3.5.5. From this and the above table one may conclude that both models 

produce similar fit, although Zeger's model seems to be

computationally more expensive since it involves simulation studies 

in order to determine an appropriate autocorrelation structure needed

at the stage of parameter estimation.
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Figure 3.5.5 Seasonal component of the NBD-Beta model (seasl) and 
Zeger1s model (seas2) fitted to the U.S. polio series.
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APPENDIX

Al- The Post-Sample Predictive Test for the Poisson-Gamma Model

The post-sample predictive test statistic for the Poisson 

observation model is obtained by introducing Q dummy variables into 

the model at times T+l to T+G. The statistic £(G) is obtained by 

subtracting the log-likelihood obtained without these variables from 

the log-likelihood with these variables and multiplying by a factor of 

two.

To find the log-likelihood function for the model with dummy 

variables in the post sample period, first consider the case of G—1. 

The log-likelihood function is of the form (3.2.22) with T replaced by 

T+l. However, the dummy variable parameter, 6, only enters the 

likelihood via b t/t_i+ , which from (3.2.28b) is

bx+l/T"^ “ o) b'p e" ̂ . (Al.l)

Thus the log-likelihood can be written as

log L-p+i - log L+t+ i + aT+x/T log bT+]yT+

- (aT+l/T + yT+1 ) (1 + ^T+l/T+ ) (A1.2)

where L*t+i does not depend on 6. Differentiating (A1.2) with respect 

to 6 yields

exp(-6)- ax+l/T / YT+1 bT+l/T+ “ aT / YT+1 bT (A1.3)
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and so, from (Al.l)

bT+l/T ~ aT+l/T / yT+1-

Substituting into (Al.2) gives the log-likelihood concentrated wrt S. 

Note that, in the special case when yj+i - 0, the last two terms on 

the right hand side of (Al.2) are zero when taken together and so 

log Lt+ i- log L*t+1 •

Now consider C>1. The log-likelihood function with Q dummy 

variables, 5^, ..., 5q , in the post sample period is

T+C
log L-r+g - log L*t+c + I loS b t/t-l+

t-T+1

T+G
- S ( at/t-l + Yt) iogd- +bt/t-l+ > (A1.5)
t-T+1

where ^>t/t-l+ obeys the recursion (3.2.28b) and (3.2.29b). This 

implies that b-p+j /T+j -1+ depends on 5^,..., for j - 2,...,G ,

thereby making differentiation of log Lj+g wrt ^i, . . . , rather 

tedious. However if we differentiate wrt 5q first, we obtain a result 

analogous to (Al.4) namely

bT+G/T+£-l " aT+£/T+G-l / yT+£

This is independent of previous values of t>t/t-l+ and hence of 

fil.•••>fifi-l*
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Concentrating the log-likelihood with respect to 6q and proceeding 

to treat 6]_, ...,5g_x in the same way, gives the following

concentrated log-likelihood function

T+Q
log Lr+C - log L*T+C + I at/t-l loS <at/t-l / Yt > -

t-T+1

T+Q
-  1 (at/t-i + yt ) los <1+ at/t-i / yt>- (Ai.7>
t-T+1

The log-likelihood function under the null hypothesis, that is 

without dummy variables, is

T+C
log L-r+g - log L*T+g + y at/t.x log

t-r+i

T+C
- I <at/t-l + yt ) loS <1+ b t/t-l> (A1.8)
t-T+1

where is computed via the recursion in (3.2.5b) and (3.2.8b).

Subtracting (A1.8) from (A1.7) and multiplying by two gives the LR 

test statistic, (3.4.6). When the model includes the systematic 

component rjt , the only amendment on the above formula will be the 

substitution of an(* b t by tbe expressions in (3.2.28b) and

(3.2.29b) respectively.
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A2- The k-steps ahead mean and variance for the Poisson-Gamma model

To prove (3.2.14a) we apply the chain rule for conditional 

expectations given in (1.1.9a). Taking the conditional expectation of 

yT+k at ti-1116 T+k-1 gives, from (3.2.11a),

ET+k-l <yT+k> " aT+k-l / bT+k-l •

Using (3.2.8a-b), and taking conditional expectations at time T+k-2

gives

ET+k-2 ET+k-l (yT+k) " ET+k-2 ( ]

“ aTtk-2 , k>2
bT+k-2

Repeating this procedure by taking conditional expectations at time 

T+k-3 and so on gives (3.2.14a).

To obtain the k-steps ahead variance, the appropriate way to proceed 

is to derive the expression for the first factorial moment, which is

also obtained by use of the chain rule in (1.1.9a). Once this has been

derived we use the standard result that
2

Var(yT+^|Yi»)- E(y-p+^(2) |Y^)+ E(y-];+klY-p) - E(yT+klYj) (A2.2)

where the first term on the rhs is the second factorial moment given 

by

E(yT+k(2) |YT>“e (yT+k(yT+k - D l Y T) (A2.3)

- fk

119



We now derive a recursion for from which a closed expression for 

the variance is derived. It is straightforward to show that

2
E ( y T + k ^  ,YT+k-l)- aT+k-l (w aT+k-l +1)/ w bT+k-l 

5 fk-l<

from which it follows that

E <yT+k(2)lYT+k-2)- Tk-2 " fk-l + aT+k-2 (A2.4)
w bT+k-l bT+k-2

Applying (A2.4) recursively and evaluating the expectations of the 

second term by (3.2.14a) yields, for (A2.3)

o) a,p(oJa,p+l)/(cob'j’)2 + a'p ((I- w)/wb^) 

k-1
where I (l/bj+4). Substituting this back in (A2.3) and using

j-1
(A2.1) the expression in (3.2.14b) follows.
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CHAPTER FOUR

BINOMIAL MODELS

4.1 INTRODUCTION:

In this chapter we focus our attention on formulating models for 

count data where the total number of counts nt is assumed fixed and 

known. When nt is one, the data are binary or dichotomous. For nt 

different from one the binomial or multinomial distribution can be 

used. If the probabilities of a positive occurence in these 

distributions can be considered fixed or dependent on exogenous 

variables then the GLM of McCullagh and Nelder (1983, chs.4-5) offers 

the appropriate framework. For those situations which are believed to 

be changing with time, the state space models of Kitagawa (1987) and 

WHM (1985) are some of the proposed solutions in the literature (see 

section 1.3). It is not difficult to find data suited for these 

models. For example, the daily occurrences of rainfall over 1mm in 

Tokyo (Kitagawa 1987), the weekly counts of the number of people who 

provide a positive response to advertising of a popular chocolate bar 

(WHM 1985), the number of wins for Cambridge in the university boat

(i
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race between Oxford and Cambridge and so forth.

Our class of structural 'Binomial' models is based on the 

binomial, Bernoulli, and multinomial distributions. The development 

follows the line of the Poisson-Gamma model of Chapter 3, although it 

is mathematically more elaborate at the stage of explanatory

variables introduction.

4.2 THE BINOMIAL-BETA MODEL:

- measurement equation: if the observations at time t are generated

from a binomial distribution then

p(yt,Tt»nt) nt
yt

yt nt-yt
*t (i-*t)» yt"°»1 >2 * . ,nt 

(4.2.1)

where irt is the probability that yt is unity when nt is one. The 

value of nt is assumed to be fixed and known. Thus observations from 

the binomial can be regarded as a special case of count data where 

there is a fixed number of opportunities for the event in question to 

occur. It is a standard result that

E(yt iTt ,nt) - nt xt 

Var(yt lxt ,nt)- (l-rt)E(yt Iirt ,nt) .

Note that here the state 6^ is the probability of a positive 

occurence, irt .
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(i) state prediction- the conjugate prior for the binomial

distribution is the beta distribution as in (3.3.3). Let p(*t-l*^t-l)

have a beta distribution with parameters at_i and b t_^. Assume that

P(xtlYt-l) i-s also beta with parameters given by equations exactly the 

same as those in (3.2.5a-b). This again ensures that the mean of

is the same as that of ^t-l^t-l but tbe variance increases. 

Specifically

E (*tlYt-l> " at/t-l / <at/t-l + bt/t-l> “ at-l / (at-l + bt-l>

and

Var(irt |Yt.1) - ____________at/t-l b t/t-l____________________
(at/t-l + b t/t-l>2 <at/t-l + b t/t-l + 1>

a b

(a + b ) 2 (a) a + o) b + 1) 

where a«at_i and b-bt_^.

(ii) state updating- once the t-th observation becomes available, the 

distribution of ir^lY^ is beta with parameters

at " at/t-l + Yt (4.2.2a)

bt “ bt/t-l + (nt ' Yt> (4.2.2b).

(iii) conditional distribution- the predictive distribution, 

p(yt lnt ,Yt_i) is obtained by solving the compounding operation in
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(1.1.4). This produces a beta-binomial distribution given by

p(yt lnt>Y t.i) - nt
yt

B(at/t-i + yt»bt/t-i + nt -yt>

B (at/t-l»bt/t-l> (4.2.3)

where B( •) is the beta function. The mean and the variance of this 

distribution are:

yt/t- 1 “ E(yt'nt>Yt-l) “ nt at/t-l/(at/t-l + bt/t-l>
" nt at-l/ <at-l+bt-l) (4.2.4a)

Var (yt ,nt »Yt-l) " nt at/t-l b t/t-l <at/t-l + bt/t-l + nt> 

<at/t-l + b t/t-l>2(at/t-l + b t/t-l + !)

nt at-l bt-l (at-l+bt-l+ w ^ (4.2.4b)
2 -1 

(at-l+bt-l) (at-l+bt-l+ W )

(iv) k-steps ahead forecasting- by substituting repeatedly from the 

recursive equations (3.2.5a-b) and (4.2.2a-b) it can be seen that, for 

nT+k constant, yx+k/T » tbe predictor k-steps ahead, may be expressed 

as an EWMA scheme having the form

yT+k/T ~ nT+k EWMA(y)/ EWMA(n). (4.2.5)

As before we face problems in computing variances and the forecasting 

distribution for k)3. Here we only derive the first order factorial 

moment along with the distribution for two steps ahead. If we let



n i“nT+l» n 2""nT+2> a“aT» b-b-p^ h-a>(a+b) then by use of the chain rule 

in (1.1.9a) it is possible to show that

E(yT+2(’)|YT)- n 2(n; -1) E(yT+1(*>|YT ) + k ( a ,«,n ,)
n,(n, - 1) (4.2.6)

where

E(yT+1<’>.YT)- ".(",-!) («*»D
h (h+1)

and

. , v n, (n,-l) r h(l+o)2-co) + c*)2(l+n.a)k(a,a),n)= 2 2   1 __________
h ( h+1) L [aKh+n,) ] [co(h+n1 )+l]

By use of (3.2.17) and the expression for the predictive density in

(4.2.3) one may also show that

P(yT+2'YT>- k,(yj) s' r(“A i+y 2> r(A i> r(oB,+n;-y;) r(B,)
y,-° y, ! (n,-y,)! (4.2.7)

where

k 1(y2)- ^  ni! r(h) r[w(h+n1) ]
y 2! (n2-y2) ! T(o)a) T(o)b) T[o)(h+n1 )+n2]

A,- wa + y 1 and B,- a)b + (n, - y t).
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4.2.1 Likelihood

The likelihood function is again obtained by (1.2.13) with r defined 

as the first time period for which

7 7
0 < I yt < I nt .

t-1 t-1

This condition ensures that aT and br are strictly positive, although 

again there is nothing to prevent us starting the recursions 

(3.2.5a-b) and (4.2.2a-b) at t - 1 with a0 — bQ — 0; see the comments 

in section 3.3.1. Using (4.2.3) it may be shown that the kernel of the 

conditional log-likelihood has the form 

T
log L(o)|nt)- 2 {log[ r(at/t.1+yt)/r(at/t.1)] +

t-7+1

+log[ r(bt/t.1+ vt)/r(bt/t.1)]-log[ r(dt/t_]+nt)/r(dt/t_i)]

where vt- nt-yt and dt/t-1” ^t/t-l+ at/t-l* ^s before the logarithms 

of the ratios of gamma functions may be easily evaluated using

(3.2.23).
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4.2.2 Binary Data

Binary data is easily handled by the Binomial-Beta model by 

setting nt-l where appropriate. It is then easy to show that the 

predictive distribution in (4.2.3) reduces to a binomial 

(1, at/t-l/(at/t-l+bt/t-l)). From this the one-step ahead predictions 

may be established by considering the conditional probability of a 

positive ocurrence,i .e .,

(yt=l E ( T t lYt_i)“ at/t-l/ (at/t-l +bt/t-l)

with

PrCyt-OiY,..!)- 1- Pr(yt-l l Y ^ )

where y^-1 is the event being predicted. The log-likelihood in (4.2.5) 

may be then simplified to

T
log L(a>)- 2 yt log(at/t.1/bt/t.1)+ log[ 

t-r+1

As regards multi-step ahead forecasts, it can be shown, by evaluating 

(3.2.17), that

P(yT+klYT)“ aT/(aT+bT ) fork-1,2,...

This should be no surprise, given that in the present context, the 

distribution of y^+k conditional on Yj coincides with the forecast

127



function, and this by construction, is time invariant in the absence 

of explanatory variables/structural components (see 4.2.5).

4,2.3 Polvtomous Data

When there are more than two categories, the observations are said 

to be polytomous and the multinomial distribution is appropriate. Let 

there be m possible categories, and suppose that the probability that, 

at time t, an object belongs to the i-th category is Tit- If there are 

nt trials and the number of objects in the i-th category is y£t> then 

the measurement equation is given by

p(y. t> *ymt)> nt
yit. >ymt

m yit 
n Tit i-l

(4.2.8)

with

m m
I yit “nt and 1 *it -1-
i-l i-l

The conjugate prior for the multinomial distribution is the 

multivariate beta or Dirichlet distribution

m m ai"l
r (£ ai) n Ti

n i-l i“lp(x1 , . . , irm , a 1 , . . , am )- ___________
m
n T(ai) 
i-l
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where we have dropped the time index for ease of notation. When m - 2 

this collapses to the beta distribution with a, — a and a 2 - b. 

Proceeding as in the previous section, it is not difficult to show 

that the recursive equations corresponding to (3.2.3) and (4.2.2)

become

“ ai,t-l . (4.2.9a)

ai,t “ ai,t/t-l + yit > i - l  m (4.2.9b).

The likelihood for o) is as in (4.2.5) with r the first value of t 

which yields a.±tt > 0 f°r “ l,..,m. The predictive distribution

in this case is known as the Dirichlet-multinomial. The forecasts can 

again be expressed in terms of EWMA's.
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4.2.4 Explanatory Variables and Structural Components

Here we restrict our discussion to the binomial distribution 

measurement model (m-2 in 4.2.8). Multinomial models may be handled by 

extending the techniques here discussed. See Ord, Fernandes and 

Harvey (1989).

In order to investigate the relationship between explanatory 

variables/structural components affecting the probability xt we define 

xt+ as the probability of a positive occurence when such effects are 

present. Following the line of the Poisson specification one must 

choose a suitable link function g(*) such that irt+ - g(irt ,zt'$)- It is 

then obvious that a consistent link function should map the unit 

interval (0,1) onto the real line (-»,+<»). Here we chose the logit 

link function , which takes the form

logit(xt+)« log[irt+/(l-*t+ ) ]- logit(rt)+ zt' 5 (4.2.10a)

or

x+ —  t  u / ( 1 - t + t u ) (4.2.10b)

where u- exp(zt' 6) and the subscripts are to be understood from the 

context. We note that

.+ for u- 1 ,

r < < 1 for u > 1 and

for u < 1. (4.2.11)

Using (4.2.11) one may express the measurement equation (4.2.1) as



U  y (A.2.12)
- P(ytlTf nt> ----------------

where pCytl^t^t) *-s t îe standard binomial distribution as in (4.2.1). 

Unlike the specifications so far studied, the binomial model with 

explanatory variables produces a non-standard measurement equation, 

which may be looked at as a 'perturbed' version of its standard form. 

They obviously coincide when u t—1.

We now look in detail at the solutions adopted in order to solve 

the problems created by loss of conjugacy. In Ord, Fernandes and 

Harvey (1989) we make a brief introduction to the adopted techniques 

which are either based on the hypergeometric series or on a modal 

approximation. They are looked at in detail in the next section.

Series approximation:

First we consider the predictive distribution and its first 

moments. The former is obtained by compounding the distribution in 

(4.2.12) with the beta density in (3.3.3) and this results in

P+ (yt,nt>Y t-l>“ —
n
y

B(a,b)

y**-1 a-x^-y-1 d*
n

[l-x(l-u)]
(4.2.13a)

where a-at/t_i and b“l>t/t-l- Now the expansion of the term in brackets 

in the denominator through a binomial series produces
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l-x(l-u)] n
" 1
j-o

n+j -1
j

j j
t (1-u) (4.2.14)

which is a convergent series for 0 < u < 2 .  If u > 2 one can redefine 

the logit link in terms of (1-x) instead, and convergence will be 

guaranteed. Substituting (4.2.14) back into (4.2.13a) and integrating 

one obtains

p+ (yt»n t>Y t-i)-

y  oo

B(a,b)'

n+j -1
j

j
(1-u) B(a+y+j,b+n-y) 

(4.2.13b)

Constants apart the sum in the above expression is the hypergeometric 

series jF,(n,a+y;a+b+n;l-u) (see,e.g., Abramowitz and Stegun 1965, 

p.556). The ratio of the (n+l)st term to the n ^  term on this 

expansion may be shown to be

A / a (a+y+j) (n+j) (1-u) (4.2.15)Aj+1 / Aj " ------------------------
(a+b+j+n) (j+1)

so that the predictive density takes the final form

P+ (yt'nt,Y t-l)' nt
yt

u B(a+y,n+b-y) £ Aj
B(a,b) J“°

p(ytint«Y t-i) u I A i 
j-o

(4.2.13c)

with A 0=l and p(yt |nt ,Yt_i)is the standard predictive distribution as 

in (4.2.3). Convergence criteria for the above series can be 

established by choosing e, e > 0 for which lAj+l - Aj I < As 

expected this distribution reduces to the beta-binomial when ut-l.
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Our next step will be the evaluation of its first two conditional 

moments, which may then be used for predictive purposes.

Using the definition of the mean for a discrete random variable 

and the following recursive relation for binomial coefficients

n n (n-l). .(n-k+1) n-k
y y (y-1) . .(y-k+1)

(4.2.16)

it is not difficult to see that

n u

B(a,b)

n
2
y«i

n-l
y-1

a+y-1 /n Nb+n-y-l y-1. x J (1-x) j u-7 dx

[l-x(l-U)] n

(4.2.17a)

Now using (4.2.14a) this may be shown to take the form

E+(yt'Yt-l>- E [ T / tl-'d-u)] 1 Yt-1 ] (4.2.17b)
B(a.b)

where condition in n should be understood. Finally by use of the 

binomial theorem the argument on the above expectation can be

expressed as an convergent series and after integrating wrt x we 

obtain the following expression

00

E+fv.lY- n U ^ d - u ) J B(a+j+l,b).
1-0B(a,b) J U
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This infinite sum may be recognized as the hypergeometric series 

2F 1(a+l,l;a+b+l;l-u) which follows the recursion

_ (a+j+1) (1-u) . B 0-l
H+1 /  Bi ------------------------------(a+b+j+l)

so that the predictive mean has the final form

E+ (y t l Y t - l > -  n a U  2 Bj+1 . (4.2.17c)
(a+b) J

In the present context the natural way of evaluating the variance is 

by first computing the first factorial moment, since its calculation 

will be made easier by use of the relation in (4.2.16). It is not 

difficult to show that on the lines of the previous derivation one may 

find that

E+[yt(yt-l),Yt.1) _ n ( n W I  <J+1> (1-»)J B(a+j+2,b).
B(a,b) J (4.2.18a)

As expected the above sum, constants apart is also an hypergeometric 

series given by 2F 1(a+2,2,a+b+2,1-u), where the ratio of the (n+l)st 

term to the n ^  is given by

(j+2) (j+a+2) (1-u) , C 0-l.
J+1 J "(j+l) (a+b+j+2)--------

Using the above one may write the final expression for the first 

factorial moment as
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00
E+ [yt( y f 1) n(n-l) u 2 a(a+l) J Cj+1 

(a+b) (a+b+1) J“°
(4.2.19b)

with n>l. From this one may then easily evaluate the predictive 

variance.

In order not to disturb the property of conjugacy we have assumed 

that the exact posterior is approximated by a virtual beta density, 

whose parameters are obtained by matching its moments with those of 

the exact posterior density, not as yet derived. This artifice will 

enable us to obtain the updating equations in a straightforward 

manner, keeping the model tractable as before.

The exact posterior is obtained by making use of Bayes' theorem 

(1.1.4) and this produces

P+ (*t!Y t)’
. y y+a -1 ... . n-y+b-1k u J r J (1-x) J

B(a,b) [l-x(l-u)] n
(4.2.20a)

This also may be put in a 'perturbed' version having the form

k uy B(a+y-l,n-y+b-1) p(Tt |Yt) (4.2.20b)p+(Tt lYt).
n
y

B(a,b) [l-x(l-u)] n

where k, the normalization constant, is given by 1 / p+(yt>Y t-l) 

(see 4.2.14c) and p(*t,Yt) is the standard beta posterior with 

parameters as in (4.2.3). On the lines of the previous derivations it 

is possible to demonstrate that the posterior mean may be written as

E+ (»t lYt)_ pt_ k uy 1 
B(a.b) J"°

n+j -1
j (l-u)^B(a+y+j+l,n-y+b)

w
k uY B(a+y+l,n-b+y) J Dj+1 (4.2.21a)

B(a,b) j-o-
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where

Dj+i/Dj
(a+y+j+1) (n+j) (1-u) 

(a+b+j+l+n) *(l+j)

Finally subsitituting k by (4.2.14c) in (4.2.21a) the posterior mean 

simplifies to

(a+b+n)

2 Dj+l / I Aj+1 
j-o j-0

(4.2.21b)

where the A ’s are as in (4.2.16).

Under the lines of the previous derivation one may also show that 

the posterior second raw moment is given by

E+(x|lYt)- mt-
B(a,b)jSO

n+j -1
j (1-u) B(y+a+j+2,n-y+b) 

(4.2.22a)

where again the sum may be expressed as an hypergeometric series apart 

from constants. This is given by jF,(s,a+2,a+b+2;l-u) with ratio 

between consecutive terms having the form

Fj+1 7 Fj
(a+y+j+2) (n+j) (1-u) 
(a+b+j+2+n) (j+1)

. F 0-l

Finally by substituing k in (4.2.22a) one obtains that

E+fx’.Y^- (a+y+1) ? Fj+i / 2 Aj+1u t' --------------------- J„0 j-0
(a+b+n) (a+b+n+1)

(4.2.22b)
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where the A's are as in (4.2.16). By equating the first two central 

moments of the virtual beta posterior with the correspondent moments 

of the true posterior, the following expressions are obtained for the 

updating equations of our model

at " Mt (/^-“t) / (“ t"/*2) (4.2.23a)
bt - at (l-/xt) / (4.2.23b)

where /*t and m t are given by (4.2.21b) and (4.2.22b) respectively.

Modal approximation:

The series expansion approach may become tedious for polytomous 

data or u near zero. A more parsimonious approach may be given by a 

modal approximation. This technique is based on a very simple idea: 

the replacement of yt in (4.2.1) by a virtual variable wt , which, by 

construction, should increase when effects that also increase the 

probability of a positive event occur. If the overall sum is kept 

constant during this process, the net effect will be a 'reallocation' 

of cases to the positive event. It is obvious that the link between 

these effects and the virtual variable should be made by the logit 

function (4.2.10b). The question that remains is how to select a 

mechanism that implements this allocation in a proper manner.

We start by rewriting the observation model in terms of w t

w t nt- w t
p ( w t |Tt ,nt ) oc T t (l-*t) (4.2.24)
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Now consider both this distribution and the observation equation in 

xt+ (4.2.14a) as functions of xt and xt+ respectively. The idea is to 

select w t so that the mode of (4.2.24), xm— w t/nt agrees with the

mode of (4.2.14a), *m+“ yt/nt wrt to t îe link function

(4.2.10b). Using this criterion one can easily show that the virtual 

variable w t is linked to the explanatory variables and the actual 

variable yt through the relation

wt " nt Yt_______________  (4.2.25)

u t » t + yt d - ut)

Note that

wt- yt if u- 1 ,

0 < wt < yt if u < 1 and

yt < wt < nt if u > 1 . (4.2.26)

The net effect of this approximation is the reallocation of 

'observations' to the event of interest, with the overall sum kept 

constant.

Given that the structure of xt in the measurement equation

(4.2.24) is left intact, conjugacy is preserved, regardless of the 

fact of the non-integer nature of w t . The predictive equations remain 

unaltered and the only change on the updating equations is the 

replacement of yt by w t in (4.2.2). With regard to the predictive 

distribution a word of caution is necessary. Although the formulae for 

the predictive moments are only affected by the replacement of yt by 

w t (see 4.2.4), since the observation model has been defined in a



kernel form, in order to obtain a proper predictive distribution, one 

has to evaluate a normalization constant. After taking this into 

account one obtains

P+ (ytlnf Y t-l)1 nt
yt k ” B (w t+at/t-l» b t/t-l+ nf  wt>

(4.2.27)

where

n«

yt"°
nt
yt

B <wt+at/t-i»bt/t-i+nt- w t>

The distribution in (4.2.27) obviously reduces to the standard case

(4.2.3) when u t—1. Given that wt is non-integer the routine for the 

logarithm of the gamma function in Press et al (1986, p.157) is used.
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CHAPTER FIVE

BIVARIATE COUNT DATA MODEL

5.1 INTRODUCTION:

In this chapter we consider a bivariate extension of our class of 

count data models. The model we set up is based on the total number of 

events recorded in each period which is assumed to follow a Poisson 

distribution. The split into the individual series is then determined 

by a binomial distribution. Both of these mechanisms may be made 

dynamic in the way suggested in the previous chapters. Combining the 

predictive distributions for each mechanism leads to a joint 

predictive distribution for the series, from which predictions may be 

made and a likelihood function constructed. The development makes use 

of the results previously derived for the Poisson-Gamma (section 3.2) 

and the Binomial-Beta models (section 4.2). Alternative methods of 

forming bivariate distributions for count data are shown in Stein & 

Juritz (1987) and Johnson and Kotz (1969, pp. 297-300). Of importance 

in these developments is the resulting correlation structure. It seems 

that a restricted range for the correlation parameter is the rule
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rather than the exception for bivariate models. Our approach offers 

some advantage in this particular point, given that it allows for the 

existence of both negative and positive correlation. The multivariate 

extension of this class of models is considered in Ord, Fernandes and 

Harvey (1989).

To illustrate the bivariate model we consider its application to 

the goals series introduced in Chapter 3, but now the goals of both 

teams, England and Scotland, are jointly modelled.

5.2 THE BIVARIATE COUNT DATA MODEL:

- measurement equation- suppose we have two series of count data

observations y lt and y 2t» t  “ 1,...,T. Assume that each of the

individual series follow a Poisson distribution as in the univariate 

case (see 3.2.1), i.e.,

yit -^it
P(yit'0it)“ 0it e / Yit1 > i-1*2

(5.2.1)

with the individual rates obeying the relation

8it“ *it et » where (5.2.2a)

T it + T 2t“ 1 Tit i-l »2 (5.2.2b)

where 8^ is the overall rate, not as yet explained. First some

notation; define the bivariate vector wt- ( y , t >  y 2 t^-  Gi-Ven that the
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series are independent of each other, conditional on the knowledge of 

its respective rates, the bivariate measurement equation may be 

factorized as follows

2
p(wt i01t,02t) " n Pi<Yit**it> (5.2.3)

i-l

where Pi(’) denotes the Poisson probabilities for y^t given in

(5.2.1). We now consider the aggregate over the series, St ,

st " Yit + y 2t t - 1,...,T (5.2.4)

From a standard property of the Poisson distribution the overall sum 

in (5.2.1) is Poisson distributed with overall rate 0«- i.e.,

st -0t
p(St l0t)- et e / St ! (5.2.5)

Hence the t's may be interpreted as the individual shares associated 

with each of the series. Using (5.2.1-3) with another standard 

statistical result one can show that conditional on the overall sum 

^t> Yit *-s binomially distributed, i.e.,

P(Yitlst*T it) St
Yit

Yit sf Y i t
*,t C1" *it>- (5.2.6)

We are now able to derive the form for our bivariate measurement 

equation. Using (5.2.1-3) one may easily show that this distribution 

may be expressed by the product
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p(w t t » » x 1 t) “ p ( y 1 1 t »x (5.2.7)

where the distributions in the rhs are given respectively by (5.2.5) 

and (5.2.6). In order to formulate a dynamic model we now have to 

consider stochastic mechanisms for the evolution of the overall rate 

0t and the individual share * 1>t, the states of our bivariate model. 

Observe that each of the distributions in (5.2.7) are measurement 

equations for which a stochastic mechanism has already been 

established. See sections 3.2 and 4.2. Our strategy will then be 

heavily based on the results derived for these univariate 

formulations.

(i) state prediction- let Yt- {Ylt, Y 2t) where Y^t- , y±2 Yit)

i-l, 2 , and 0 c ft and II c R be the parameter space for the overall rate 

and proportions respectively.

i-a. the overall rate: the obvious way to proceed is to assume a gamma 

prior as in (3.2.2), i.e.,

given that St is Poisson distributed. Using the same argument 

developed for the univariate case, 0t |Yt-l ~ gamma(at/t-l»b t/t-l) 

where

P(0t-l,Yt-l> ~ gamma(at.1 ,bt_1) (5.2.8)

at/t-l“ «iat-l 

b t/t-l“ °hbt-l

(5.2.9a)

(5.2.9b)
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with 0< co, <1.

i-b. the individual shares: given the constraint in (5.2.2b) we only 

need to consider the dynamics for one of the shares, say xt= irlt 

Since y,^, conditional on St , is binomially distributed, we adopt the 

usual beta prior

Following the lines of the univariate Binomial-Beta model (section 

4.2) one has that *t,Yt-l ~ beta(ct/t-l»dt/t-l) with

where 0< co2 < 1 .

(ii) state updating- as before the results that follow are based on 

the Poisson and Binomial univariate models.

ii-a. the overall rate: based on results of section 3.2 we know that 

the posterior for 0t , p(0t ,Yt)> will also be gamma with parameters

p(*t-llY t-l) ~ beta(ct.1 ,dt.1) (5.2.10)

Ct/t-l“ ^2 Ct-1

dt / t - r =  ^ 2  dt - i

(5.2.11a)

(5.2.11b)

at“ at/t-l+ st 

bt“ bt/t-l+ 1

(5.2.12a)
(5.2.12b)
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ii-b. the individual shares: given conjugacy of the pair binomial-beta 

the posterior for xt , p(*t iYt) will be beta distributed with 

parameters

ct“ ct/t-l+ Yi , t 

dt“ dt/t-l+ ( ^t" Yit)

(5.2.13a)

(5.2.13b)

where for the bivariate case St- Y 2t*

(iii) conditional distribution- in order to derive the joint 

predictive distribution, conditional on the overall sum, we first need 

to establish an equivalent bivariate version of the compounding 

operation (see 1.1.6). This gives

The second density on the rhs of the above expression is the state 

joint density. Assuming that the overall rate and the individual share 

are independent processes, the following decomposition holds

where the individual densities are respectively the beta prior and the 

gamma prior given in (5.2.9) and (5.2.11). Using the above 

factorization together with (5.2.7) one may easily show that

p(wt I Yt_i )« p(wt lSt ,irt , 6t) p(rt , 0t *Yt-l >d0t dirt-

e n (5.2.14a)

P(Tt» ̂ t P ( Tt^t-l) P(^t^t-1^ (5.2.15)
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| P(St l0t)P(0t |St-l)d0t^jP(wt IYt_x)- J p(St l0t)p(0t lSt_i)d0t | p(yit|xt>p(xtiYt-i)dirt 

- P(St lSt.i) P(yitlSt»Y t-l ) (5.2.14b)

which is the product of the NBD (see 3.2.7) and the Binomial Beta (see 

4.2.23) predictive distributions. Note that an equally valid way of 

deriving the above equation would be by expressing the measurement 

equation in terms of the individual rates (0^ )  instead of the overall 

rate 0t . The joint predictive distribution is then obtained by 

compounding this distribution with the joint density for the rates, 

not as yet derived, giving

P(w t I Y t-l) "
e e

P (W^ | 0 1 £ , 0 2 £;) P ( 0 j £ , 0 2 t I Y t-l) 1 t d ^2t

(5.2.16)

Our derivation for the joint predictive distribution will be based on 

(5.2.14b). Substituting the necessary probability functions in 

(5.2.14b) we arrive at the following expression

1!M, r(a+st> r<c+y.t> r<d+yzt> .
r(a) r(c) r(d)

F(c+d+St)
r(c+d)

1 ba (l+b)'(a+St) 
yit! y 2t ! (5.2.17)

where ^“^t/t-l» c“ct/t-l and d“dt/t-l- before the terms

involving ratios of gamma functions are easily evaluated using 

(3.2.23) .
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Before evaluating the moments for the joint predictive distribution 

we investigate in some detail the joint density of the rates. It is 

not difficult to see that by making use of the (5.2.2a-b) and (5.2.15) 

one arrives at

P<0it.*2tlY t-l)- P(/*tlY t-l>| P(*t»Y t-l>| «J I (5.2.18)

where the first density on the rhs is the gamma prior for /*t given in

(5.2.9), the second density is the beta prior for xt given in 

(5.2.11), 0it+ ^2t * Tt*“ t / ( t + ^2t) anc* •J* t îe determinant

of the Jacobian of the transformation. Proceeding with the necessary 

evaluations the bivariate density may be shown to have the form

p(9,t .»JtlY t-l)— bae -b (,it+#2t)#)c-l 9jd-l + #jt)a-(c+d)
T(a) B(c,d) (5.2.19)

This may be considered a bivariate gamma density for which the sum is 

always gamma distributed. We now evaluate its moments. Using (5.2.2a) 

and (5.2.15) it is easy to show that the mean of {^it} gi-ven Y t-1

E (0it«Y t-l)“ Ei

" E (0t xitlYt-l>
- E(0t lSt_i) E(xitlYt.1)

a Ci (5.2.20)
b (c + d)

where Cj_- ct/t-l f°r an<* equal to ^or The variances

are readily shown to be
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Var (0it l Yt_!)- E(ritiYt^ )  E( 9t I Y t.1} - [ E(*it I Y ^ )  U S ^ Y ^ ) ]

« a [ (c+l)(c+d)+ ad ]
2 2

b (c+d) (c+d+1) (5.2.21)

while the covariance is given by

CovC^t^t-lY,-.!)- E(irt:(l-1rt)0t:lYt .1 }-E(Tt 0t:|Yt:.1)E((l-Tt)0t lYt .1)

" ElEz [ (ct/t-l+ dt/t-l)~ at/t-l 1
(1+ ct/t-l +dt/t-l> at/t-l (5.2.22)

where the E^'s are given in (5.2.20). Given the intrinsic 

non-stationary character of our model care should be exercised when 

interpreting this measure of linear association. With the above 

results we are now in a position of deriving the standard moments for 

the predictive distribution in (5.2.17). Using (5.2.2a-b) it is easy 

to see that

E (yitlYt-l>- E<*itlYt-l) - Ei (5.2.23)

Var(yitiYt.1)- E(tfitiYt.1) + Var(«itiYt.1)

- Ej + E, E 2 4- (Cj_ +1) Et (5.2.24)
( c + d )  b (l+c+ d)

Cov(yltfy 2t iYt_i)- Cov(01t 02t lY t-l) (5.2.25)

One may also verify that the univariate means may also be expressed 

through the general formula
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E(yitlYt-l)- E(St lSt.1) E(ylitlSt ,Yt.1)/ Se i-1,2.

From (3.2.13), the conditional expectation of St is an EWMA with

weights determined by the hyperparameter w, . Let this be denoted as 

EWMA^S). Furthermore if one refers to the Binomial-Beta model 

(section 4.2) the second moment on the above expression may be shown

to be equal to the ratio of an EWMA of the y^t's hyperparameter

a)2, denoted EWMA2(y£),to a similar EWMA for the sum St . Thus

E(vitiYt - EWMA2(yi) EWMA,(S) (5.2.26)
EWMA2(S)

with i=l,2. In the special case when - o)2 this reduces to an EWMA 

of the observations in the i-th series. As we shall see when this 

equality holds true independence between the two processes follows.
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5.2.1 Dependence Structure Implied bv the Model

Correlation: if the recursions involving the prior parameters are

initialized with 'unbiased' priors, i.e., by setting a 0-=b0-c0= d 0=0 , 

then by use of the predictive and updating equations one may easily 

show that the term between square brackets in the numerator of 

(5.2.22) reduces to

t-1
K c t/t_i+ - at/t-ll* I (w 2 "“ i)1 st-i (5.2.27)

i-0

From the above expression one may derive a guide to the covariance 

structure of our bivariate model

(i) if co1 -= o>2 then there is no linear association between the two 

series.

(ii) if d-t/t-1 > at/t-l a positive correlation is observed*
(iii)if Ct/t-l+ d^/t-l < a negative correlation is observed.

Note that the derived correlation structure is rather rich when 

compared with similar bivariate count data models in the statistical 

literature. See,e.g., Stein and Juritz (1987).

Independence: when a—c+d (5.2.19) splits into two distinct factors

and the (flit) are independent gamma states. Under this condition it is 

straightforward to show that the joint predictive distribution

(5.2.17) also splits into two univariate NBD models, i.e,

P(ztlY t-l)~ NBD(y1t ;c,b).NBD(y2t ;d,b) (5.2.28)
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so that independence between the series follows. Note that, by

(5.2.27) the independence condition occcurs only if o),-o)2, and that as 

a result zero correlation implies independence. An interesting 

corollary of the independence of the series is that the likelihood 

function for o), - o)2 is given by the product of the likelihood

functions for the individual series. A likelihood ratio test of the 

hypothesis that o), - o)2 can be carried out for 0 < o), , o)2 < 1. If 

the null hypothesis is accepted, the series should be forecast 

separately.

5.2.2 Likelihood

The log-likelihood function is obtained by summing the logarithms 

of the joint predictive distributions (5.2.16) from 7+1 to T, where t 

is defined as the first value of t for which all the series have had 

at least one non-zero observation. By use of (5.2.14b) it is 

straightforward to show that the overall log-likelihood function may 

be factorized as

log 1 (0), ,o)2)« log L ^ oj,) + log L 2(o)2) (5.2.29)

where L,() and L 2() are the likelihood functions associated with the 

sum St and the series y,t respectively. Hence the optimization 

problem may be split into the maximization of two separate 

log-likelihood functions, one with respect to o), and the other with 

respect to o)2.
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5.2.3 Marginal Predictive Distributions

Although we have been be able to derive the univariate predictive 

moments in a straightforward fashion the establishment of the 

correspondent univariate distributions is a more elaborate issue. When 

a-c+d this is trivial. See (5.2.28). When a * c+d, i.e., when the

series are dependent, the joint predictive density is given in

(5.2.14b). To obtain the marginals one has to sum this whole

expression wrt to each of the variables. Clearly in this case the

marginals will not be NBD's. Proceeding with the necessary operations 

one may easily show that the marginal for the first variable is given 

by

00

ofv 1Y«- i)- k(yit> 1 r(a+y1t+y2t) r(d+y2t) 1Ptflt'*t-1> y 2t_0 ------------------------------
y2tr(c+d+ylt+y2t) y 2t! (1+b)

(5.2.30a)

where

k(y,t) - F(y’t+C) b
B(c,d) T(a ) (l+b)(a+y,t)

Constants apart the infinite sum in (5.2.30a) is the hypergeometric 

series 2F,(a+y, ̂ -.djc+d+y,t ;l/(l+b)). Following the lines of section

(4.2.4) one may show that the ratio of the (j+l)st term to the 

term in this expansion may be expressed as
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A . / A . - (a+ylt+j) <d+j) 1 / <1+b> (5.2.31)Ai+1 / Ai -------------------(c+d+y,t+j) (j+1)

with A 0-l. The final form for the univariate predictive density is 

then

Si oo
pfv,t iYr b r(c+y<t> r(c-fd) r(a+y,t)____________  J Aj(y,t)

y,t ! r(a) T(c) r(c+d+y1t) (l+b)(a+y’t) J-°
(5.2.30b)

When a«c+d , i.e., under the independence assumption, one has that

oo d
2 Aj - [<l+b)/b]. (5.2.32)

j-o

From this one may easily show that, as expected, this marginal reduces 

to the univariate NBD(y,t ;c,b). For the second series it is equally 

possible to demonstrate that

a oo
p(v.t iYf 1 >- b r(d+y3t) T(c+d) r(a+y;t)______________ 2 Bj(y2t)

y Jt! r(a>r(d) r(c+d+y2t) (l+b)(a+y^ >  J“°
(5.2.33)

where the B's follow the recursive relation

B / Bj - <a+y 2t+j) <c+j) V  d + b > (5.2.34)

(c+d+y2t+j) (j+1)

with B 0-l. As before when a-c+d this reduces to the NBD(y2t ;d,b).
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5.2.4 Conditional Distributions:

In this section we derive the conditional distribution of y 1t 

given y 2t and Using a standard result of probability calculus

one can show that

p<y,tiy2t.*t-i>- r <a+st) r(y1t+ o  r(c+d+y2t) q +  b> y»t 

r(c) r(c+d+St) r(a+y2t) y 1t! J Bj(y2t)
j-o

(5.2.35)

where the B's follow the recursion given in (5.2.33). Note that when 

the variables are independent, i.e., when a-c+d, this reduces to the 

NBD(y,t ;c,b), as expected.

We now derive the first two conditional moments for y lt. Using 

the above distribution one can show that the conditional mean has the 

form

00 v

E<y,t'y,t.*t-i>- k(yjt)y J-i y,t r(a+y’t+y,t> r(c+y’^
y,t ! T(c+d+y,t+y,t) (l+b)y,t

(5.2.36a)

where

r (c+d+y 21) (5.2.37)k(y2t)1
r(c) r(a+y2t) S Bj(y2t)

J-o

Using that y 1t / y,^! - l/(y1t-l)! one may show that the infinite sum 

in (5.2.36a)is the series 2F,(a+y2t+ l ,c+1;c+d+y2t+ l ,l/(l+b)), apart
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from a constant term. It is then straightforward to show that the 

conditional mean may be put into the following final form

C (a+y2t) S cj(y2t> <5.2 .36b)
E (yit'y2t.Y t-i)--------------------  J— --------------

00

(1+b) (c+d+y2t) J Bj(y2t)
j"0

where the B's are as in (5.2.33) and the C's follow the recursion

r / r (a+y2t+j+l)(c+j+l) l/(l+b). (5.2.38)
Lj+1 / °j “ -----------------------

(c+d+y2t+j+l) (j+1)

Observe that the conditional mean is a non-linear function in y 2f  ®ne 

may easily prove that under the independence assumption this mean 

collapses to the mean of the NBD(y,t ;c,b), namely c/b.

In order to evaluate the conditional variance we first determine 

the expression for the first factorial moment, since this, as will be 

shown, can also be expressed as a hypergeometric series. Using

(5.2.35) it is straightforward to show that

E(y,t(y,t-i)'yJt.Yt-i)- k(y2t} , J 2 y't(y't4) r<a+y.t+y,t>r(c+y,t)
y,t ! r(c+d+ylt+y2t) (l+b)y,t

(5.2.39a)

where k(y2t) is given by (5.2.37). Using that y,t(yit_1)/yit!
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- l/(ylt-2)! one may easily express the infinite sum in (5.2.39) as 

the hypergeometric series 2F,(a+y2t+ 2 ,c+2;c+d+y2t+ 2 ,l/(l+b)), apart 

from a constant term. One then arrives at the following expression for 

the first factorial moment

(a+y2t X a+y 2t+1><c+1) 2 Dj(y2t)
E(yit(yit-1)iy2fYt-i>- ---------------:)-0----

2 oo
(1+b) (c+d+y2t)(c+d+y2t+l) B* ( y 2t )

J-o

(5.2.39b)

where the D's are given by the recursion

/ D . _ (a+y2t+j+2)(c+j+2) l/(l+b) (5.2.40)
(c+d+y2t+j+2) (j+1)

and B's are as in (5.2.33). As before when a-c+d this, the first 

factorial moment collapses to the equivalent expression for a 

NBD(y,t ;c,b), i.e., c(c+l)/b2. The conditional variance may then be

evaluated by direct manipulation of (5.2.39b) and (5.2.36b).
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5.2.5 Explanatory Variables and Structural Components:

The introduction of these effects in our bivariate scheme may be 

accomplished via two different sources. If one wants to investigate 

the impact of explanatory variables/structural components on the 

overall sum then, following the developments of the univariate 

Poisson-Gamma model (section 3.2.3), the exponential link function is 

the appropriate link. As a result now the rate prediction and updating 

equations are as in (3.2.28) and (3.2.29) respectively, with yt 

replaced by St . Note that the corresponding 'regression' 

hyperparameters are optimized jointly with o>1 via the NBD component in 

(5.2.20). With regard to the one step ahead prediction for the series, 

only the term associated with the overall rate in (5.2.20), namely 

E(*T+llYT ), has to be duly modified.

It is also possible to introduce effects which influence the 

relative share associated with the first variable, xt . Note, however, 

that since the two analyses proceed independently, the two sets of 

explanatory variables/structural components may be overlapping. From 

the univariate Binomial-Beta model in section 4.2.4 we know that the 

natural link function for the relative share irt is the logit function

(4.2.10) and that one may consider two different alternatives to 

introduce these effects, either by a series expansion or modal 

approximation. If the reader refers back to this section the necessary 

equations for both treatments are displayed. In what follows we 

comment on the modifications one has to introduce in order to adapt 

these equations to the bivariate case. Given the difference in 

notation between the two formulations, the general rule is to 

substitute a by c, b by d, yt by y 1t and nt by St where appropriate.
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series expansion- the prediction equations (5.2.11) remain unchanged, 

but the updating equations are now as in (4.2.23) which make use of 

(4.2.21b) and (4.2.22b). The univariate moments (5.2.20) are only 

affected on the term associated with the relative share.

The joint predictive distribution (see 5.2.14b) is obviously only 

affected at the level of p(yntISt >Y t-l), which is now given by 

(4.2.14c). Substituting this term in the expression for the bivariate 

distribution one obtains that

y 11 00
p+ (zt lY t-l)“ P(ztiY t-l> ut S Aj(ut) (5.2.41)

j-0

where p() is the standard bivariate distribution (5.2.16), 

ut*= exp(Zt'6) and the A's are as in (4.2.15). Observe that in the 

absence of explanatory variables this reduces to the standard case.

One may equally show that the marginal and conditional 

distributions for y lt follow similar expressions and these are given, 

respectively, by

y 11
p+ (yit,Yt-i>- p(yit|Yt-i> ut S Aj<ut> (5.2.42)

j -o

and

yit 00
p (yit»y2t.Yt-i)-p(yitiy2t»Yt-i) ut S Aj(ut> (5.2.43) 

j-o

where the p()'s are the standard distributions given in (5.2.30b) and

(5.2.35) respectively.
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modal approximation- the prediction and updating equations remain 

essentially the same, the only modification being the replacement of 

y lt by w t which is given by (4.2.25). In the joint predictive 

distribution the term p(y, t ^ t ^ t - l )  is replaced by the modal 

distribution given in (4.2.27). Marginal and conditional distributions 

may also be made available by the proper manipulation of the formulas.
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5.3 APPLICATION:

In Chapter 3, section 3.5.1 we fitted the Poisson-Gamma model to 

the number of goals scored by England in international football 

matches played against Scotland at Hampden Park in Glasgow.

The bivariate model developed in this chapter can be used to 

formulate a model in which the goals scored by England are modelled 

jointly with those scored by Scotland. The series of goals for both 

teams are depicted in figure 5.3.1 below.

Figure 5.3.1 Series of goals by England and Scotland in football 
international matches
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Given that the football matches have been played either in England 

(mostly at Wembley) or Scotland (at Hampden Park), the match venue is 

the natural explanatory variable for the proportion of goals scored by 

the teams. Since we are interested in predicting the goals scored by 

England we investigate how this dummy affects England's proportion. 

The dummy variable xt is defined such that

xt_ +1 for matches played in England.

-1 ' ' "  "  "  Scotland.

The above dummy has also been used for the total of goals. We have 

found that according to standard goodness of fit criteria defined in 

Chapter 3, the best specifications were given by

- : model in which we have assumed at the outset the constraint

a), -= oo2, i.e., independence between the two series of goals. The dummy 

is used both for the overall sum and England's relative share.

‘ : unconstrained model where the dummy is used in both mechanisms.

Table 5.3.1 Bivariate model fitted to series of goals by England and 
Scotland.

estimates goodness-of-fit

co2 ML AIC BIC U
M i 0.885 M 2 0.844 0.930

0.136
0.139

0.203
0.203

-157.95 323.35 
-158.67 323.907

331.29
334.485

0.677
0.678
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where 5, and S2 are the dummy hyperparameters associated with fi and t 

respectively. Note that for both specifications the series expansion 

has been the best technique to introduce the dummy for the relative 

share tt.

The selected specifications indicate that the venue is a relevant 

factor in explaining both the total number of goals and the share of 

England in this total. Model M 2 seems to suggest some sort of 

dependence between the two series, altough the improvement on the fit 

is barely affected if independence is assumed at the outset, by 

setting o)1-a)2. In fact the likelihood ratio test statistic is 1.44, so 

that the null hypothesis that this restriction is valid seems to be 

supported by the data. Hence we are led to believe that the goals 

scored by the two teams are independent and as a result they should be 

forecasted independently.
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CHAPTER SIX

THE GAMMA-GAMMA MODEL

6.1 INTRODUCTION:

In this chapter we set up a dynamic model for time series of 

gamma observations. Typical situations where this type of distribution 

occur are given by data in the form of wind speeds (Lawrance and 

Lewis 1985), monthly insurance claims, daily flows of a river, etc. 

Our standard gamma model is characterized by a constant shape 

parameter and a time varying scale parameter, which evolves according 

to the discounting mechanism. A formally equivalent model was 

introduced by Bather (1965) but in his framework there is no 

consideration of maximum likelihood estimation or the introduction of 

explanatory variables/structural components. In our framework two 

different ways of implementing these effects are available: either via 

the shape or the scale parameters of the gamma measurement equation. 

Both are based on the use of the exponential link function. In the 

special case when the shape parameter is set equal to one our model 

reduces to the dynamic model for exponential observations given in
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S&M (1986). As usual, when the measurements are independent random 

variables the GLM (McCullagh and Nelder 1983) should be used.

If the series being modelled is stationary or can be made 

stationary then some ARIMA based models are available. For example the 

models of Lawrance and Lewis (1985) and McKenzie (1982). The former is 

developed for time series with exponential marginal distribution with 

second order autoregressive structure. Besides its rather 'unnatural' 

noise structure, mostly imposed to guarantee the required marginal 

distribution, their NEAR(2) model presents potential difficulties at 

the stage of parameter estimation, given that the equivalent of our 

conditional density is discontinuous. Note also that, from the 

perspective of forecasting, the fixing of a certain marginal 

distribution is irrelevant. For a more detailed view on their model 

see the aforementioned reference and the discussion that follows. 

McKenzie (1985) presents a product autoregressive model with gamma 

marginal. This has an AR(1) correlation structure, with a measurement 

equation in which the noise enters multiplicatively. Given that in 

this setup the noise distribution doesn't need to be made explicit, 

applications seem to be restricted to data simulation, for example, in 

synthetic hydrology.
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6.2 THE GAMMA-GAMMA MODEL:

- measurement equation: let the observations at time t be generated 

from a gamma density with fixed shape u and time varying scale 

parameter 0t (the state)

Observe that when the secondary parameter v is set equal to one this 

density reduces to the exponential model, considered by S&M (1986).

(i) state prediction- for a gamma model specified as in (6 .2 .1) the 

natural conjugate prior is also a gamma density, so that one would 

think that the equations (3.2.2-3) which appear in the Poisson-Gamma

p(yt li>,0t)
u u-1 -0t yt

6t yt e , 0 < y t < oo (6.2.1)
f(u)

where v > 0 and 0t > 0. The n ^  order moment is given by the 

expression

r(u+n) 0t-n (6 .2 .2)
f(u)

from which follows the standard results

E(yt li\0t)“ v /  et

Var(yt iu,0t)- E(yt lu,0t)/ 0t .
(6.2.3a)

(6.2.3b)

One can also show that

Mode(yt |u,0t)| ^ , v > 1 
, 0 < u < 1.

(6.2.4)
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model are also valid here. Although the state predictive density 

p(0t lYt>i) remains gamma, the predictive equations are not the same. 

In view of (2.2.5a), it is the expected value of 0t (6.2.3a), rather 

than 0t , which needs to be kept constant while the variance increases. 

For a gamma distribution (3.2.2), it may be shown that

E(»t-1)- b t.^(at.! -1) (6.2.5)

so that, the appropriate prediction equations are given by

at/t-l“ w at-l+ (6.2.6a)

bt/t-l“ w bt-l. (6.2.6b)

It is possible to show that in order to have the variance of 0t

increased in the transition one must have > (l+o>) / (1 - a)) . As

before we leave a more systematic investigation of this condition 

until after we have established the updating equations.

(ii) state updating- by direct use of Bayes theorem one may easily 

show that p(0£lYt) ~ gamma(at ,bt) with

at“ at/t-l + v (6.2.7a)

bt“ bt/t-l + yt (6.2.7b)

Repeated substitution from (6.2.6a) and (6.2.7a) shows that
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at/t-l~ (1-cj) J oi ( 1- w)+ u J co (6.2.8)
j-1 j-1

As before the equivalent of a 'steady state filter' may be obtained 

for large samples, when at/t-l "*[ (u-l)aH-l]/(l-co) > so that

at-l [ u(l-o>])/(1 -a>). Using this latter result one may easily

establish that the condition for the variance increase becomes, 

asymptotically, v > 2oo.

(iii) conditional distribution- the mixing operation in (1.1.5) 

produces a density known as the inverted-beta-2 (Raiffa and 

Schlaifer 1961, p.221) or the inverse beta (Aitchison and 

Dunmore 1975, p.24) which has the form

P(yt«Yt-l)= ___________1 - b -_________  (6.2.9)
.. .u + a n/ .(b + yt) B(u,a)

where a“at/t-l» b“b t/t-l anc* *) *-s tbe beta function. It can be

shown that the Mellin transform for this density is given by

n
n b t/t-l r<n+u) r(at/t.1-n) (6.2.10)E(yt|Yt-i)'

r <at/t-i) r(u)

with at/t-l > n - From the above one may easily arrive at the 

expressions for the mean and variance which are given respectively by

yt/t-1" U bt/t-l " u bt-l . at-l > 1 (6.2.11a)

<at/t-l -1) <at-l - 1>
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a:nd

Var(yt lYt_^)- u at/t-l 1) ^t/t-1

(at/t-l -1)2 <at/t-l * 2>

, at_! > l+l/o).

(at-].-!) 2(at-l -1- l/o) ) (6.2.11b)

Fallowing the previous models we also adopt here the 'unbiased' or 

non-informative gamma prior to initialize the above recursions. For 

0 < o) < 1 one may again show that the forecast is expressed as an EWMA 

scheme as in (3.2.13).

transition equation- as in the Po is son-Gamma model here it is also 

possible to show that the implicit transition mechanism adopted for 

the state evolution is formally equivalent to the multiplicative 

transition equation suggested in S&M (1986). In the present context 

given that the distribution of the 'noise' rjt is data independent, 

this equation will be of importance in establishing multi-step ahead 

forecasting. The transition equation in (3.2.7) is given by

with Tjt - beta(ct ,dt) . In view of (6.2.5) and (6.2.6a-b) we shall have 

that

et~  or1 et .1 ijt (6.2.12)

ct- o)at_2 + (l-a)) (6.2.13a)

dt- (l-w)(at.1- 1) (6.2.13b)
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From (6.2.7a) we can see that the updating equation for the gamma 

prior shape parameter at is free from the endogenous variables so that 

i7t will also be data independent. In fact by use of (6.2.8) asymptotic 

values for the above parameters can be easily established and these 

are given by

ct = 1 + a)U/(l-0))

dt s v

(6.2.14a)

(6.2.14b)

with 0 < a) < 1. So that eventually the 'noise' Tjt attains

stationarity.

Using (6.2.12) one may derive the state transition density and an 

expression for its n ^  order moment. The form of the transition 

density of our model coincides with that of Bather's gamma model 

(1965, p.838) and this is given by

r(ct+dt) et to cf 1 1- 0t w dt-lC Oi
r(ct) r(dt) •t-i «t-l J et - l

(6.2.15)

with 0 < 0t < or1 ^t-1- ^he nth order moments are given by

E(0tl0t_i) =
-n n
a> ^t-l r(ct +n) r(ct+dt)

T(ct) r(ct+dt+n)
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(iv) k-steps ahead forecasting- following S&M (1986, p.82) we use the 

explicit state transition equation in (6.2.12) to derive closed 

expressions for the n ^  order moments of the forecasting distribution, 

p(yT+iclYx). Using (1.1.9b) and (6.2.2) one may show that

E(»T+k'YT>- <6 -2 '16>
r(i>)

The expectation on the rhs of (6.2.16) can be evaluated by use of the 

state transition equation (6.2.12). When raised to the n ^  power and 

projected k steps ahead the reciprocal of the state equation has the 

form

-n nk -n k -n
^T+k “ w U TJx+i• (6.2.17)

i-1

It follows from the above expression and the independence of Yf and 

the T7x+i's that

-n nk -n k -n
E(0T+k^T^“ ^ E(0xlY«j»\ n E(r;x+i) • (6 .2 .1 8 )

i-1

Using the expressions for the n ^  order moments of the gamma and beta 

densities, given in (3.2.3) and (3.3.4) respectively, the above 

expression takes the form

nk n
E ( ^ , Y T)- “ bT r(aT-*> P <k ’n > <6 -2 -19>

r(aT)
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where

k
. (6 . 2 . 20)P(k n n ^ d - ^ - n ]  r (ai)

r[usL±+a-o>)] r(ai-n>

with aj- aT+i-l obtained through the recursion

i-1 i-2 j
aT+i-l“ w aT + [u + (^_a)) ] 2  w , i —2,3,...,k

j-0
(6.2.21)

Finally subsituting (6.2.19) in (6.2.16b) we obtain the Mellin 

transform for the multi-step forecasting density

n nk
E(yx+klYx)“ o) bx T(u+n) r(ax -n) P(k,n) (6.2.22)

T(ax ) T(u)

where we have assumed that a^ > 1 + (n/o)) for T < t < T+k. Given that 

when k-» oo â -> 1+ u/(l-o)) the previous condition may be used to

establish a lower bound for the existence of multi-step moments for

any k. In fact it is easy to see that this is given by the inequality

u > (l-o)) n
0)

so that the existence of forecasting moments depends on the following 

factors:

(i) on the data via i>.

(ii) on having a value of o) close to one.
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If we define E(yn T + k ^ T ^ E m (k,n) then the following recursive formula 

may be used to obtain the multi-steps moments

n+k+1
m (k+1 n+1)- m (k,n  ̂ W (u+n) r fw(ak+l _:L)-n ] r <ak+l> s(k >n) 

(aT -n-1) r[o>(ak+1- 1)-1] r(ak+1-n-l) (6.2.23)

where n-0,1,...; k-1,2,... and ak+^ is obtained from (6.2.21) and

S(k.n)- " (ai-n '1) (6.2.24)
[u(ai-l)-n]

Initial values for m(k,n) can be read off directly from (6.2.9). 

Observe that, as expected, the forecast function is a constant given 

by the value it takes at the last observation (6.2.9b).

The appropriate way to evaluate the multi-step ahead forecasting 

density should be, in principle, by solving the integral given in 

(1.1.6), since this involves the state multi-step density p^x+k'^T)' 

and this can be computed using the integral in (1.1.7). It is clear 

that an analytical solution for this problem is obtainable only if 

the latter distribution is of the gamma type. Unfortunately this is 

only true for the one step ahead density. For higher steps ahead the 

densities produced are not even analytical, as we shall see. The 

reason for this behaviour is that a product of gamma and beta 

variables produces a gamma variable only under the condition that the 

second shape parameter of the beta density is equal to the difference 

between the shape parameter of the gamma density and the first shape 

parameter of the beta. This condition, which we shall call 'the gamma
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condition1, is violated for steps higher than one, so that equation 

6.2.12 will be of limited use in establishing an analytical expression 

for the forecasting distribution.

We now derive the full expression for the two steps ahead state 

density in order to understand the inherent difficulties in multi-step 

prediction. The appropriate way to proceed is by solving the integral 

given by (1.1.7). The first density on the integrand p(^T+2,^T+l) ^as 

parameters c«p+2“ ot and dp+2“ P and is obtained by making t*=T+2 in

(6.2.15). The second density p(0t+1,yt) *-s gamma with parameters 

aT+l/T“ ^ anc  ̂ ^T+l/T” P where

X™ o> a-p + (1-co) , o) b*p (6.2.25a)

One can easily check that the gamma condition is not satisfied for 

this equation, given that P * (X-a). In fact, using (6.2.21a-b) it is 

easy to see that X-(c*+/3)- -u, u > 0 , so that the condition will 

never be satisfied. After some simple manipulation one may show that 

the exact density is given by

2
a- o) aT+ (l-o)) (l+o))+ o)u, (3- (l-o>) [co (a-p-l)+u] (6.2.25b)

p(0T+2 iy t )”

a-1 a -<po)dj+ 2

eT+2 <p e g(w0T+2 X,p) (6.2.26)

r(a)

where g(-) is given by

00

g(o>0T+2 ;a,/3,X,p)-
X-a 

<p r(o+/3 )
-  V @ - 1  -<pz 

(o) 0J+2+ z) z e dz (6.2.27)

r ( « r ( x )  o
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The density in (6.2.26) is easily recognized as the product of a 

gamma (a, yj) density by a 'perturbing' term g(*)*

Given the inherent intractability of the multi-step density one 

could follow some of the strategies adopted for the Poisson-Gamma case 

(section 3.2.2). In particular the use of Monte Carlo simulations is 

recommended, where predictions, following S6tM (1986), could be given 

in terms of sample percentiles, modes or means. An approximation based 

on an inverted beta (ap+k/T»bT+k/T) also might be used, although with 

some care. As before the projected parameters a-p+k/T and bT+k/T are 

found by equating the first two moments of the actual forecasting 

density (see 6.2.9-10) with the correspondent moments of the 

approximating inverted beta. After some algebra one may show that

aT+k/T'
2pk(ap - 1) - b(u+l)(ap -2) (6.2.28a)
[pk(ax _1) ’ b(u+l)(ap -2)]

bT+k/T! bT Pk (6.2.28b)
[pk(aT -1) ■ b(iM-l)(ap -2)]

where Pk > [b(u+l) (ap-2) ]/(ap-l) and Pk“ w P(k,2) with P(k,2)

obtained by setting n-2 in (6.2.20).



6.2.1 Likelihood:

Estimation of the shape and the discount parameters proceed as 

usual, via the log-likelihood function. Using (6.2.8) it is easy to 

see that

00

log L(ci>, u)- I [(U-1) log yt + log + *>) •
t-T

log(bt/t-l+yt)-log B (u .at/t-l) 1 • (6.2.29)

As before the parameters recursions are initialized with an 'unbiased' 

prior. In view of (6.2.6a) at will be always positive. In order to 

ensure that bt/t-1 *-s strictly positive we require r to be the first 

value of t for which y t is non zero (cf. the NBD-Beta model, section 

3.3.1).
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6.2.2 Explanatory Variables and Structural Components:

Given that the observables y^ are positive variables a sensible 

candidate for the link function is the exponential link (3.2.19) and 

this should be introduced under the requirement that in the presence 

of these effects the mean has the form

E+ (ytl eO ~  (v/et) exp(zt '«). (6.2.30)

It is obvious from the above that either the shape v or the state 0t 

may be used for this purpose. Hence different estimates of the 

hyperparameter 6 will be produced, according to the chosen linking

mechanism.

The use of the shape parameter as a linking mechanism is

appropriate when the situation suggests that exogenous variables are 

associated with changes in the form of the distribution. This being 

the case the way to proceed is by defining

ut+« v exp(zt’6) t (6.2.31)

Under such an effect the equations for the prior scale parameter

(6.2.6a) and (6.2.7a) become

at/t-l+“' w at.]_+ + (1-c) (6.2.31a)

at+- &t/t-l+ + u exp(zt ’6). (6.2.32b)

Since the prior shape parameter equations do not include u, they

remain unaltered (see 6.2.6b-6.2.7b). Regarding the projected moments
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(6.2.22) these will have u substituted by UT+k“ u exP(zT+k' ̂  an(* aT 

by a-p+ - It is then straightforward to show that the forecast function 

has the same asymptotic form as that for the Poisson-Gamma model

When the effects of explanatory variables/structural components 

are believed not to alter the basic form of the gamma density the 

state should be chosen as the linking mechanism. It is then clear 

that, from (6.2.30) it follows that

Observe that a similar mechanism has been used for the Poisson-Gamma 

model the only difference being that here we have to work with the 

reciprocal of the state instead. At the outset (6.2.34) implies the 

substitution of #x+k by ^T+k+“ ^T+k exP(_zT+k'^) *-n (6.2.14). From 

the properties of the gamma density, conditional on Y t_i , 

0t+~ gamma(at/t_i,bt/t_i+ ) , where »t/t-l *-s as *n (6.2.6a) and

(3.2.23a), i.e.,

yi+k/T" exP(zT + k ' E W M A ( y ) /  EWMA[exp(z'6)]. (6.2.33)

0t+“ et exp(-zt '5) (6.2.34)

b t/t-l+“ 05 b t-l exp(zt’5) (6.2.35a)

which yields the updating equation

bt- b t_i + yt exp(-zt '6). (6.2.35b)

In face of (6.2.30-31) the appropriate substitution in the
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forecasting moments (6.2.19) is now given by b^*- b<p exp(zT+k » 5) . The 

asymptotic form of the forecast function may be shown to be

yT+k/T“ exp(zT+k’fi) EWMA[y exp(-z'6)]. (6.2.36)

If it is not clear from the context which mechanism to use, for 

predictive purposes, the selected method should be the one that 

produces the best fit/forecast.
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CHAPTER SEVEN

THE RANDOM SUM MODEL

7.1 INTRODUCTION:

In this chapter we set up a time series model for observations 

which are obtained by the aggregation in time of positive and 

continous random variables. Since the number of such occurences at a 

time period t is a random variable itself, the generating mechanism is 

described by a random sum. The framework here developed is 

particularly useful in the context of insurance claims, where the 

total value of claims in a given time period is usually regarded as a 

random sum. Similar problems arise elsewhere. For example, one may be 

interested in the total expenditure on some category of consumer 

durables, such as videos, for a given group of the population. In 

order to aid the exposition we will assume that we are working in an 

insurance context. The model we set up is based on the adoption of the 

Gamma-Gamma model (see section 6.2) for the claims size which is then 

combined with the Poisson-Gamma model (see section 3.2) for the number 

of claims. In Harvey and Fernandes (1989b) this problem is
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investigated under the same distributional assumption for the number 

of claims, but with the lognormal distribution for the claims size. 

The framework adopted for the latter case is that of the Gaussian 

structural models which is also extended to cope with several groups.

7.2 THE RANDOM SUM MODEL:

measurement equation- let y£t be the amount of the i ^  claim at time 

t, where i=l,...,Nt and t-l,...,T. The total value of claims is the 

random sum

We assume that the individual claims size at time t, follow a

gamma distribution with fixed shape parameter v and stochastic scale 

parameter 01t,i.e. the y^t follow exactly the same measurement 

equation given in (6.2.1). It is then standard that, conditional on 

the number of claims at time t, Nt ,and the state 0lt, the random sum 

is also gamma distributed,i.e .,

Nt
^t“ 2 yit» t-1,2 T (7.2.1)i«l

u u-1 -Nt<htSt
p(St lNt ,u,01t)- (Nt*it) St e (7.2.2)

r(u)

where 0< St <«. Observe that, like ŷ j. , Nt , the number of claims at 

time t is also a random variable. As a probability model for Nt we



propose the Poisson-Gamma model of section 3.2 so that conditional on

0.2t, a second state parameter, we have

N t ~e2t
P(Nt l02t)- 02t e / Nt ! , N t-0,l,... (7.2.3)

Tlhe measurement equation is given by the joint distribution of St and 

Nfl-, conditional on the states 0£t i—1,2. Defining ^t““^ i t » ^ 2t^ this 

may be expressed by the product

P(St ,Nt |0t)- p(St |Nt ,0lt) p(Nt l02t). (7.2.4)

Bearing in mind that in our methodology the states follow a random 

walk structure, the simplifying assumptions used to derive (7.2.4) 

have been based on the following conditional probability statements

(i) that the aggregate claim at time t, St depends only on its past 

values through 01t and that it is only affected by the current value 

of the number of claims Nt .

(ii) the distribution of the number of claims at time t is independent 

of the actual and past values of the aggregate claim, depending only 

on its past values through 02t*

While the second assumption is perfectly reasonable within the 

context of insurance one might find more realistic the aggregate 

claims to depend also on past values of the number of claims. Contrary 

to initial expectations the dependence structure for the aggregate 

claims is not as restrictive as one might think. As we shall see later 

the updating mechanism for the state 0lt will involve Nt so that, past
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values of the number of claims will also be fed into the mechanism of 

St In view of (7.2.2) and (7.2.3) our measurement equation (7.2.4) is 

given by the product of a gamma and Poisson distribution. The 

stochastic mechanisms for the states i—1,2 are now briefly

described, given that they have already been depicted in the previous 

chapters.

(i-ii) state prediction and updating- first some notation. Let 

Dt~ < N t* st>. with Nt-{NlfN2  Nt) and St-{ S1,S2 ,...,St).

- 0lt: since p(01t- i ~  gamma(ct_ifdt_i) then p(0ltlDt-l) ~

gamma ,dt/t_i) where

ct/t-l“ w i ct-l + (l-«i) (7.2.5a)

dt/t-l“ dt-l (7.2.5b)

with 0 < co1 < 1 .  The posterior will also be gamma with parameters 

given by

ct“ ct/t-l + Ntu (7.2.6a)

dt“ dt/t-l + S f  (7.2.6b)

■ 02t : P ^ 2t-l,̂ t-l) ~ gan™a(at.^,bt.^) and then p(^2t ,̂ t-l) will be

also gamma with parameters

at/t-l“ w 2 at-l (7.2.7a)

b t/t-l“ w 2 bt-l (7.2.7b)
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with 0 < a>2 < 1. The updating equations are then given by

at“ at/t-l + Nt 

b t“ b t/t-l +

(7.2.8a)
(7.2.8b)

(iii) conditional distribution and likelihood- a proper time series 

modelling approach would be based on the joint predictive distribution 

of N t and St and this may be evaluated by the convolution

We further assume that the states are independent processes, so that 

in view of (7.2.5-8) the second density on the rhs of (7.2.9a) may be 

expressed as

where the marginal densities in the above expression are given in the 

previous item. Observe that in view of (7.2.6a) past values of Nt are 

fed back into the distribution of 01t, so that assuming its 

independence from 02t is not crucial. Using (7.2.4) and the above 

expression one may easily deduce that the convolution in (7.2.9) 

results in a product of known univariate predictive distributions,

p (S t , Nt I ®t-l)“ p(^t*^t^t^ A p(^t^t-l)*
•t

(7.2.9a)

(7.2.10)

i.e. ,

p(St ,Nt |Dt.1)- p(St lNt ,Dt.1) p(Nt lNt.1) (7.2.9b)
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where the first density in the inverted-beta-2 given in (6.2.8) and 

the second is the NBD in (3.2.7). Substituting them in the above 

expression one obtains

a c Ntu-1 -(Nt+a)
P ^  N.,Pt 1 1- r(a+Nt) b d St ( 1  + b) (7.2.9c)

Ntu+c
T(a) (St+d) B(Ntu,c)

with 0 < St < oo t Nt- 0,1,2......a“at/t-l> ^“^t/t-1* c“ct/t-l an<*

It is simple to show that the logarithm of the bivariate 

likelihood function may be factorized as in (5.2.24), so that the 

optimization problem is split into the maximization of two separate 

likelihoods, one with respect to w 1 , using a inverted-beta 

distribution and the other with respect o>2, using a NBD distribution.

Predictive moments for Nt and for St> conditional on Nt , are 

readily available by appropriate use of the corresponding expressions 

in sections (3.2) and (6.2), namely equations (3.2.11a-b) and 

(6.2.10a-b). With respect to the forecast function for St , it may be 

shown that the recursions (7.2.5a-b) and (7.2.6.a-b) produce, for 

0 < a), < 1 ,  an EWMA scheme having the form

st/t-l“ E (st lNt ’Dt-l>“ EWMA(S)/ EWMA(N).
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7.2.1 Unconditional distribution of the Random Sum

It may be of interest to predict the overall claims when the future 

value of the number of claims is unknown. This being the case one has 

to evaluate the unconditional predictive distribution for St , which is 

obtained by summing out the joint distribution (7.2.9c) wrt Nt . It is 

not difficult to see that this operation yields

with Wt« (St/St+d)(1/1+b). Unconditional moments for St can be 

obtained by using that

so that using (7.2.10a-b) one may compute the above moments which are 

given, repectively by

PCStlDt.i)- d (b/l+b) Wt r(Ntu+c)r(Nt+a)

St (St+d)c r(c) Nt“° r<Nt u) r(a) Nt!
(7.2.11)

v

E(StlDt_1)- E ( E ( St l Nt.Dt-.x )) 
Nt/Dt-1

(7.2.12a)

and

Var(St iDt_1)- E ( Var (St |Nt , Dt.x) ) + Var ( E (St i N t . D ^ )  ) .
Nt/Dt-1

(7.2.12b)

In view of assumption (ii) in section 7.2 it follows that

ECNt-lDt.!)- Ed̂ lNt.!) (7.2.13)

E(StlDt_1). v d a c > 1
(c -1) b (7.2.14a)
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and

_ . { [ (c- 1) a b+ u (a+b+ 1 ) 1  +VarCSt-iDt.x)- ECStlDt-.i) L 1 L i
(c -1) (c - 2)

+ u d a (1 + b) } c > 2 .
b (c - 1) (7.2.14b)

One may also consider the introduction of explanatory variables 

/structural components at the forecasting mechanisms for St and Nt . 

See sections (6.2.2) and (3.2.3) respectively.

7.2.2 Crosscovariance

The crosscovariance between St and Nt may also be obtained by 

evaluating the terms on the formula below

Cov(St ,Nt lDt_1)- E(StNt|Dt.1)- E(St |Dt.1)E(Nt I D ^ )  (7.2.15)

The conditional means on the second term on the rhs of the above 

expression are given respectively in (7.2.14a) and (3.2.10). In order 

to evaluate the cross product term we use that

E(StNt lDt.x)- E [ E (StNt lNt ,Dt.x)] 
N t/Dfl 

_ E [ Nt E(St lNt ,Dt_x)]

- 1 2 
- v d (c-1) E (NtlNt.!)
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u d a (1+a +b) , c > 1

(c-l) b 2
(7.2.16)

where we have used (6.2.10a) and (7.2.13). With the above result it is 

straightforward to show that the crosscovariance between the number of 

claims and the aggregate claims has the final expression

Cov(StfNt)- u d a ( 1 + b) c > l

(C”1) b (7.2.17)

Observe that this will always be positive as one might expect. 

Forecasts may be obtained by combining the results derived for the 

Poisson-Gamma model (see Ch.3, section 3.2) with those of the 

Gamma-Gamma model (see Ch.6, section 6.1).
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CHAPTER EIGHT

MONTE CARLO EXPERIMENTS

8.1 INTRODUCTION:

This chapter presents the results of Monte Carlo experiments 

conducted on the Poisson-Gamma model of Chapter 3. The purpose of our 

experiments is to obtain approximate answers for certain problems 

involving our model for which analytical and/or numerical solutions 

are difficult to obtain. In particular we have considered the 

following topics in our investigation:

(i) the small sample and asymptotic properties of the ML estimators of 

hyperparameters, namely, the discount and the regression parameters.

(ii) the size and power of the post-sample predictive test derived in 

the appendix A 1 .

The first part of our study was conducted on data generated from a 

discount only or standard Poisson-Gamma model, where the data
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forecasting mechanism (DFM) is asymptotically equivalent to the usual 

EWMA scheme as given in equation (3.2.13). Here it is of interest to 

consider values of o> one is most likely to obtain when fitting the 

model to real data, that is o) ( {0.85, 0.90, 0.95, 0.98). As an 

illustration we reproduce a simulated series of length 100 when o) is 

fixed at 0.98. The details of the generating process will be described 

later.

Figure 8.1.1 Simulated series of a Poisson-Gamma model with e>=0.98.

12.5

10 . 0 -

40 100
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The same topics are investigated for specifications of our model in 

which a regressor variable is included, and this has been taken as 

Gaussian white noise. In these experiments we have fixed the 

regressor parameter at 5-0.04 and the discount value at o^0.90 and 

o>=0.95. The other features of our Monte Carlo experiments are:

- sample size: we consider small, moderate and large sample sizes, 

where T e {30, 50, 80, 100, 300, 500, 700}. The two largest sample 

sizes values are only used in simulations in which co ) 0.95, i.e.,

when the discount parameter is sufficiently close to its upper bound 

value one. The reason for this choice will become clear later.

- number of replications: the number of replications, Nrep, has been 

set at 1000, for sample sizes T < 100, and to 300 otherwise.

- filter start-up: in order to start the generation process one has to 

provide values for the gamma prior at time t—0. We have found that 

appropriate values are given by a 0- 10 and b 0-l. A 'warming up' period 

was considered, by dropping the first 50 observations.
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Generation of NBD deviates:

In the present context, the natural way of generating NBD deviates 

is to generate a gamma(at/t_ i d e v i a t e  0t and then generate a 

Poisson deviate with parameter 0t . The resulting variable is by 

definition NBD(at^t.^,bt//t_^) as in (3.2.10). We have initially 

adopted such a procedure in our experiments. The difficulty with this 

technique is the non availability of ready-to-use routines for gamma 

deviates with a non-integer scale parameter, e.g.,the NAG 

library (1984) does not allow for such a possibilty. This problem was 

circumvented by adopting the algorithm GBH of Cheng and Feast (1980) 

which is appropriate for gamma deviates with shape parameter greater 

than 0.25. The subsequent generation of Poisson deviates presents no 

difficulty, and at this stage we had employed the NAG routine G05ECF. 

This procedure was later on abandoned in favour of a more direct and 

time efficient routine for NBD deviates provided by the IMSL 

library (1987), the routine RNBBN. This routine is based both on the 

above technique and the inverse CDF method, the chosen method 

depending on the range of the parameters involved. The generation of 

the Gaussian white noise variables used in the version of the model 

which includes explanatory variables was conducted using the IMSL 

routine DRRNOA. Note that the random number generator provided in the 

IMSL library is of the type multiplicative congruential with 

multiplier a- 950.706.376 and modulus m- 2^1-1.
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8.2 HYPERPARAMETERS ESTIMATES EMPIRICAL DISTRIBUTION:

Small sample and asymptotic properties of the ML estimators of 

Poisson-Gamma hyperparameters are investigated using both formal and 

graphical techniques. The formal techniques adopted in our study are 

based in some of the best known tests designed to check the adequacy 

of the normal distribution as a model for a data set. Besides the 

commonly used Bowman-Shenton test (see, e.g., Jarque and Bera 1987) we 

have implemented some of the omnibus tests suggested in D'Agostino and 

Stephens (1986, ch.9). In what follows we provide a brief description 

of these techniques.

2
- Anderson-Darling A (AD) : this is one of the most powerful tests

based on the empirical distribution function (EDF), and, according to 

D'Agostino and Stephens(1986, p.406), has far better power than the 

popular Kolmogorov-Smirnov test. The AD statistics is a member of the 

Cramer-von Mises family of goodness-of-fit statistics based on the 

EDF, which has the following general expression:

W- [ Fn (x) - F(x;0) ]2 ^(x) dx

where Fn (x) is the EDF, F(x;0) is the continuous theoretical 

distribution to be tested, and ^(x) is a weighting function. The AD 

statistics is obtained by making vK*)- [ F(x;0) { 1 - F(x,0) ) ]"1.

This weight function gives greater importance to observations in the
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tail than do other EDF tests, counterbalancing the fact that 

Fn (x) - F(x;0) approaches zero in these regions. The numerical

implementation of this test is well documented in D'Agostino and 

Stephens(1986, pp.372-374). The null hyphothesis of normality is 

rejected whenever the calculated test satistic exceeds the critical 

values which are reproduced in the table below.

Table 8.2.1 Critical values 
for the A-D statistics.

size critical value

1 % 1.035
5 % 0.752
10 % 0.631

- Bowman-Shenton (BS): this is a test based on the distributions of

the skewness (yb,) and kurtosis (b2) coefficients. It has been

particularly used to check residuals normality in several

econometrics/time series packages commonly available as the PC-GIVE, 

DATA-FIT and STAMP. The test statistics of BS is given by

2 2 2 2
BS= (yb,) / 0-, + (b2-3)/ c 2

2 2
where (7,- 6/Nrep and cr2- 24/Nrep. Asymptotically BS ~ \ 2 (2) if the

null hyphothesis of normality is true. As remarked by D'Agostino and

Stephens (1986, p. 389) the normal approximation for the kurtosis
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distribution is only valid for extremely large sample sizes (Nrep in 

our context) well over 1000. Jarque and Bera (1987, p.169) provide a 

table of the significance points for the 'true* distribution of the BS 

test based in simulation studies. This is reproduced below for the 

sample sizes of our interest.

Table 8.2.2 Critical values 
for the BS statistic.

T 5 % 10 %

30 3.71 2.49
50 4.26 2.90
75 4.27 3.09
100 4.29 3.14
300 4.60 3.68
500 4.82 3.91
00 5.99 4.61

- D'Agostino-Pearson (AP): this test is claimed to produce a more

accurate approximation for the distributions of the skewness and 

kurtosis coefficients and these are based, respectively on the Johnson 

Su curve and on the Anscombe and Glynn approximation (see D'Agostino 

and Stephens 1986 ch.9). The resulting test statistics, by 

construction, is also x 2(2). As we shall see, our simulation results 

seem to indicate that this test is only superior to the BS test for 

moderate and large sample si{s. In other words its supposed higher 

sensitivity to non-normality is only displayed in situations in which 

the BS test already works quite reasonably. For reference purposes
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we reproduce the critical values of the x 2(2) below.

Table
values

8.2.3 Critical 
for X 2(2).

size critical value

1 % 9.209
5 % 5.991
10 % 4.605

In conjunction with the normality tests previously described we 

have used graphical techniques based on the histogram and the normal 

probability plot. As one knows if the normal distribution is the true 

distribution of the estimators, then, to within sampling error, the 

plot of the ML estimates-quantiles versus normal-quantiles will be a 

straight line with non-zero location and slope different from one 

(see, e.g., Wilk and Gnanadesikan 1968).

One should observe that given that the values of interest for the 

discount hyperparameter are close to its upper bound of unity, a 

certain proportion of the ML estimates obtained in the simulation 

study will inevitably coincide with this boundary value, even when the 

true o) is set to a different value. This is the equivalent of having 

the SNR, q, estimated as zero in the Gaussian local level model (see 

3.2.25). Shephard and Harvey (1990) (henceforth S&H) derived for this 

specification an approximated expression for the probability of 

estimating q to be zero when its true value is set to a range of 

values. The main conclusions drawn from their study were:
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(i) that the ML sampling distribution for q is highly sensitive to the 

filter initial conditions.

(ii) that the probability of obtaining estimates equal to zero 

decreases both as the sample size grows and as the true value of q is 

set further away from the boundary value.

Since in our framework the filter initial conditions are 

unambiguously defined the first of these conclusions will not be 

relevant here. However, when the true value of co is less than one, 

given consistency of ML estimators, one would expect to observe a

decrease in the proportion of boundary estimates as the sample size 

grows. Clearly this same proportion is expected to increase the closer 

the true value of co is set to one. As a result of the ’boundary

effect' the discount distribution may be looked at as being split in 

two parts: one discrete, giving the probability of c^l estimates and 

the other continuous, for estimates less than one. We have excluded

the boundary ML estimates from the summary statistics and normality

tests and denoted its proportion by p(l) in the tables that follow.
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Table 8.2.4 Descriptive statistics and normality tests for
empirical ML estimates of a Poisson-Gamma model with c^-0.85.

Descriptive Statistics

T mean bias std.dev skew kurto P d )

30 0.840 0.010 0.092 -0.583 3.339 0.332
50 0.854 -0.004 0.071 -0.261 3.215 0.199
80 0.860 -0.010 0.060 -0.031 2.744 0.078
100 0.860 -0.010 0.053 0.068 3.103 0.049
300 0.856 -0.006 0.029 -0.137 3.111 0.000

Normality Tests

T AD BS AP

30 2.629 40.996 36.443
50 0.773 10.609 10.548
80 0.511 2.661 3.1626
100 1.204 1.162 1.306
300 0.439 1.097 1.325
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Figure 8.2.1 Normal probability plots for empirical
ML estimates of a Poisson-Gamma model with a>=0.85.
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Figure 8.2.2 Sampling distributions for empirical
ML estimates of a Poisson-Gamma model with o>=0.85.
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Table 8.2.5 Descriptive statistics and normality tests for
empirical ML estimates of a Poisson-Gamma model with o>-0.90.

Descriptive Statistics

T mean bias std.dev skew kurto P(l)

30 0.869 0.031 0.085 -0.633 3.083 0.448
50 0.894 0.006 0.063 -0.648 3.664 0.320
80 0.905 -0.005 0.050 -0.321 2.815 0.177
100 0.906 -0.006 0.042 -0.231 2.983 0.122
300 0.903 -0.003 0.025 0.157 3.315 0.000

Normality Tests

T AD BS AP

30 4.,028 37,,072 32.,543
50 2.,636 60,.130 49.,236
80 1.,609 15,.313 14,.902
100 0,,619 7,.822 7,.745
300 0..225 2,.478 2,.738
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Figure 8.2.3 Normal probability plots for empirical
ML estimates of a Poisson-6amma model with o>=0.90.
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Figure 8.2.4 Sampling distributions for empirical
ML estimates of a Poisson-Gamma model with o>=0.90.
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Table 8.2.6 Descriptive statistics and normality tests for
empirical ML estimates of a Poisson-Gamma model with o>-0.95.

Descriptive Statistics

T mean bias std.dev skew kurto P(l)

30 0.888 0.062 0.084 -1.555 6.765 0.559
50 0.926 0.024 0.056 -1.151 4.504 0.499
80 0.941 0.008 0.038 -0.755 3.330 0.426
100 0.944 0.005 0.032 -0.671 3.320 0.310
500 0.952 -0.002 0.015 -0.025 3.028 0.006
700 0.952 -0.002 0.012 0.113 3.028 0.000

Normality Tests

T AD BS AP

30 9.406 438.346 143.888
50 9.628 157.947 94.524
80 5.689 57.149 47.514
100 4.202 54.693 46.892
500 0.135 0.042 0.125
700 0.329 0.651 0.760
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Figure 8.2.5 Normal probability plots for empirical
ML estimates of a Poisson-Gamma model with o>=0.95.
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Figure 8.2.6 Sampling distributions for empirical
ML estimates of a Poisson-Gamma model with o>=0.95.
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Table 8.2.7 Descriptive statistics and normality tests for
empirical ML estimates of a Poisson-Gamma model with 0.98.

Descriptive Statistics

T mean bias std.dev skew kurto p(l)

30 0.889 0.091 0.089 -1.402 5.383 0.622
50 0.932 0.047 0.051 -1.254 4.697 0.586
80 0.959 0.021 0.033 -1.224 4.553 0.580
100 0.963 0.016 0.027 -1.040 4.032 0.532
500 0.980 -0.000 0.010 -0.293 2.765 0.150
700 0.981 -0.001 0.008 0.003 2.676 0.007

Normality Tests

T AD BS AP

30 10.,047 213.,375 100.,925
50 9.,642 158.,153 89.,703
80 9.,792 147.,124 86.,706
100 8.,103 105..181 72.,254
500 0.,546 4.,236 4.,167
700 0.,418 1.,251 1.,337
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Figure 8.2.7 Normal probability plots for empirical
ML estimates of a Poisson-Gamma mode with o>=0.98.
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Figure 8.2.8 Sampling distributions for empirical
ML estimates of a Poisson-G&mma model with o>=0.98.
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Table 8.2.8 Descriptive statistics and normality tests for
empirical ML estimates of a Poisson-Gamma model with oM3.90
and 6-0.04.

Descriptive Statistics

T mean bias std.dev skew kurto P(l)

30 CO 0.879 0.021 0.078 -0.935 4.425 0.488
6 0.041 -0.001 0.072 0.347 5.818 —

50 CO 0.893 0.006 0.062 -0.827 4.651 0.343
S 0.040 0.000 0.055 -0.018 5.146 —

80 CO 0.906 -0.006 0.051 -0.448 3.158 0.186
S 0.042 -0.002 0.042 -0.118 3.497 —

100 CO 0.909 -0.009 0.043 -0.266 3.173 0.133
6 0.004 -0.000 0.037 -0.026 3.866 —

300 CO 0.907 -0.007 0.025 0.347 3.526 0.066
6 0.004 0.000 0.021 -0.155 4.020 —

Normality Tests

T AD BS AP

30 CO 4. 096 117. 926 74.,553
6 3..275 351..034 85.,034

50 CO 2,.756 149.,521 85..658
6 3,,365 191,.978 50.,150

80 CO 1,,673 28.,128 26,.407
6 1,,355 12.,606 9..663

100 CO 0,.671 11,.283 11,.236
6 1,.256 31,.337 16,.647

300 CO 0 .637 9,.433 9,.010
6 1 .107 14,.211 8,.882
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Figure 8.2.11 Normal probability plots for empirical ML 
estimates of a Poisson-Gamma model with o>=0.95 and 6=0.04
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Figure 8.2.10 Sampling distributions for empirical ML
estimates of a Poisson-Gemma model with o>=0.90 and 6=C

7 °  t  

6 0 -  

5 0 -  

4 0 -  

3 0 - 

20- 

10- 

0-

(a) a)

(i) T=

jjiallaDDQ
0.60 0.70 0.80 0.90 1.00

90

80 -

70 -

60

50

4 0 -

30 -

20-
10-
0 i.n.n.n.n,nOD o

0.765 0.810 0.855 0.900 0.945 0.990

(ii) 1

(iii)

0.855 0.900 0.945 0.990

.04.

30

=100

T=300

21 2



350

(b) 5

(i) T=30

- 0 .3 0  -0 .2 0  -0 .1 0  0.00 0.10 0.20 0.30 0 .40  0.50

150

125-

1 0 0 -

7 5 -

5 0 -

2 5 -

(ii) T=100

0 apfl. in
-0 .1 0  -0 .0 5  0.00 0.05 0.10 0.15

□ ^ n n □ jZj

(iii) T=300

0.000 0.040 0.080

213



Table 8.2.9 Descriptive statistics and normality tests for
the empirical ML estimates of a Poisson-Gamma model with aM).95
and 5-0.04.

Descriptive Statistics

T mean bias std.dev skew kurto P(l)

30 0) 0.895 0.055 0.079 -1.079 4.263 0.605
6 0.043 -0.003 0.066 -0.060 3.605 —

50 0) 0.927 0.022 0.053 -0.956 4.194 0.532
6 0.043 -0.003 0.051 -0.024 3.092 —

80 0) 0.939 0.010 0.038 -0.768 3.367 0.396
6 0.039 0.001 0.039 -0.163 3.538 —

100 0) 0.945 0.004 0.034 -0.742 4.058 0.339
6 0.040 -0.000 0.035 -0.017 3.298 —

300 0) 0.953 -0.003 0.019 -0.135 2.894 0.09
5 0.004 0.000 0.021 0.106 3.245 —

Normality Tests

T AD BS AP

30 0) 6.,366 102.,898 67.,424
6 1,.269 15,.889 10,.506

50 Ct) 5,.602 99,.121 67,.181
6 0.,325 0,.450 0,.580

80 0) 6..489 62,.577 51.,567
5 1.,120 16,, 464 12..696

100 0) 4,.235 91..493 65,.342
5 0..440 3,,750 3,.312

300 Ct) 0..380 0.,961 0..901
6 0..346 1.,309 1..594
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Figure 8.2.9 Normal probability plots for empirical ML
estimates of a Poisson-^amma model with u>=0.90 and 6=0.04
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Figure 8.2.12 Sampling distributions for empirical ML
estimates of a Poisson-Gamma model with o>=0.95 and 6=0.04
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5 0 -  

0-
-0 .3 0  -0 .2 0  -0 .1 0  0.00 0.10 0.20 0.30 0 .40  0.50

200 

150 

100 

50 

0
0.09 -0 .0 6  -0 .0 3  0.00 0.03 0.06 0.09 0.12 0.15

50 

40

30 

20 

10 

0
0.0000 0 .0375 0 .0750 0.1125

(b) 5

(i) T=30

(ii) T=100

(iii) T=300
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The main conclusions which may be derived from the above tables and 

plots are summarized below.

1. As expected, the occurence of boundary ML estimates decreases 

with increasing sample size, the rate of decrease being faster the 

further away the fixed value of o> is from its upper bound. While for 

o>=0.90 this effect vanishes altogether when T-300, for oM).98 samples 

as large as 700 observations will still produce a neglegible fraction 

of extreme cases. As a curiosity we compare our estimated probability 

of the boundary value, p(l), with the results obtained in a similar 

study conducted by S&H for a Gaussian local level model. In table 

8.2.10 we reproduce the theoretical probabilities of a local maximum 

occuring at q-0, for this specification when the actual value of q is 

set at q-=0.01 and a diffuse prior is used. This is to be compared with 

the empirical probabilities estimated for the equivalent Poisson-Gamma 

model, which is the standard specification with a>£ 0.9.

Table 8.2.10 Tabulation of the probability of a local maximum 
occurring at q-*0 for the Gaussian model versus the 
estimated probability of a local maximum occurring at ô -l
for the Poisson-Gamma model.

Hyperparameter true value

T Poisson-Gamma for c^0.9 Gaussian for q-0.01

30 0.448 0.487
50 0.320 0.349
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2. As expected, as the sample size grows both the bias and 

standard deviation decrease, approaching zero.

3. For co 6 {0.85, 0.90} and T < 100, and for o h {0.95, 0.98} and 

T < 100, the empirical distribution of the ML estimators are strongly 

non-normal, as may be seen from the high values returned by the 

normality tests and the shapes displayed in the graphs. In fact it is 

reasonable to suggest that these distributions may be approximated by 

a truncated normal. This means that the right-hand end of confidence 

interval constructed under the normal approximation will be shorter 

than it should b e .

4. For o) e {0.85,0.90} and T >100 and for o) e {0.85, 0.98} and

T ) 500 the normal approximation seems to be quite satisfactory as an 

inspection of the respective probability plots and histograms shows. 

Further evidence of this behaviour is supplied by the low values 

assumed by the three different normality tests used.

5. The frequency of boundary estimates seems to be unaffected by 

the presence of the Gaussian white noise regressor. This corroborates 

similar findings reported by Shephard (1990a, p.8) when studying the 

behaviour of these probabilities for the Gaussian local level model 

with fixed regressor parameter. As a corollary, on average, all the 

findings concerning the ML estimator properties of w in a discount

only model may also be carried out for a model with a Gaussian
\

regressor. Note however, that preliminary studies conducted by the 

author have demonstrated that by considering a deterministic time 

trend, instead of a Gaussian regressor, the probabilities of 

obtaining

220



boundary values are considerably increased. These findings are also 

consistent with analytical results derived by Shephard (1990a) for the 

Gaussian case. As in the Gaussian local level model the ocurrence of 

boundary estimates has a decisive influence in forecasting since when 

o) is estimated as one there is no discounting. The problem of 

estimating parameters on the boundary of the parameter space may be 

reduced by considering alternative techniques to full ML, such as the 

profile and marginal likelihood functions. The later has been 

advocated, e.g., by Shephard (1990a). A introductory discussion on 

these techniques may be found in the second edition of McCullagh and 

Nelder's book on Generalized Linear Models (1989).

6. The normal approximation for the estimator of the regressor 

parameter seems to work quite satisfactorily even for sample sizes 

around 100 observations. The quality of the approximation is improved 

when the discount parameter is set closer to its upper bound value. 

For example, when u>-0.95, the normal approximation is already quite 

good for samples as small as 50, as can be seen from the graphics and 

the result of the normality tests ( see table 8.2.9). This is to be 

expected since in this situation much of the data variability is 

explained by the regressor's presence. More formally, our 

Poisson-Gamma model approaches a NBD regression model, whose 

properties have been considered by a number of authors. E.g., 

Lawless (1987b), proves asymptotic normality of ML estimators in this 

specification. Corroborating our findings, he also finds that for 

samples as small as 25 or 30 the normal approximation is already quite 

satisfactory. It is also important to note that this same study has 

provided evidence supporting the use of the \ 2 approximation for the
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likelihood-ratio statistics. In fact this statistic has been

recommended by the author for inferences about the regression 

coefficients, except possibly in very small samples.
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8.3 POST-SAMPLE PREDICTIVE TEST: SIZE AND POWER

Here we investigate the size and power of the post-sample 

predictive test for two specifications of the Poisson-Gamma model, 

namely, the discount only model and the model with regressor. The 

derivation of the test for both situations is in Appendix Al. Under 

the null hypothesis that there is no structural change in the post 

sample period t-T-1 to T+G, the test statistic £(G), is claimed to be 

asymptotically x 2 with G df. We have considered post-sample periods 

equal to G-5 and G«10 in our study, whose outline is produced below.

i. define and implement a mechanism able to produce a structural 

change in the post sample period. This will be the alternative 

hypothesis.

ii. generate data with structural change affecting only the 

observations between t-T+1 and t-T+G.

iii. estimate the hyperparameters involved in the model using 

observations from t—1 to t-T.

iv. run the filter from t-1 to t—T+G, and compute the test statistic 

£(G). This is then compared with the critical values of a x 2(Q) at

5% and 10% levels (see table 8.3.2), producing the empirical rejection 

frequencies. A natural way of introducing structural change in the 

post sample period is by considering a step change affecting the DFM 

from t-T+1 to t-T+G.
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By defining a dummy variable which takes the value 1 in this period 

and 0 otherwise, this effect is easily introduced in our framework. It 

is obvious that, in view of (3.2.27), the structural change parameter 

Ss will be equal to the logarithm of the ratio of the level of the 

post sample period to the level of the sampling period. By varying the 

value of 6S one will obviously increase the power of our post sample 

predictive test. With this in mind the following values for 5S have 

been set in our experiments.

Table 8.3.1 Correspondence 
between 5S and the ratio 
of levels.

Ss ratio of levels

0.0 1.0
0.7 2.0
1.01 3.0
1.39 4.0
1.61 5.0

Obviously when 6S—0 the empirical rejection frequencies will coincide 

with the empirical size of the test.

The probability of rejecting the null hypothesis of 'no structural 

change', say 'p' , is estimated by evaluating the ratio between the 

number of favourable cases in which the value of the test statistics 

f(£) exceeds the critical values of the X 2(Q.) to the number of 

replications Nrep in the Monte Carlo experiment. When Nrep is 

sufficiently large, confidence intervals for these probabilities are 

given by
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(p - 1.96y p(l-p)/Nrep, p +1.96y p(l-p)/Nrep).

Since our simulations are based either in Nrep-1000 or Nrep-300 

replications, the following table will be of help in comparing the 

values of the nominal and empirical sizes (type I error) of our 

predictive test.

Table 8.3.2 Type I errors approximate 
confidence intervals.

Test size

Nrep 1% 5% 10%

300
1000

(0 .0 ,
(0.4,

2 .1)
1 .6)

(2.5,
(3.6,

7.5)
6.4)

(6 .6 ,
(8 .1 ,

13.4)
1 1 .8)

As remarked by Kiviet (1987, p.58) for moderate number of replications 

care must be exercised in using the above results, given that 

relatively large confidence intervals will be produced. This is 

particularly relevant when a-1% and Nrep-300.

In what follows we display the tables summarizing the findings of 

our simulations for the post-sample predictive test.
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Table 8.3.3 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with oM).85.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30 5s~ 0.0 1.4 6.3 11.3 2.1 9.0 16.2
0.7 63.5 74.2 80.3 64.0 73.0 79.3
1.01 87.4 91.7 93.8 86.2 92.1 94.0
1.39 95.9 98.3 98.8 95.8 98.2 98.9
1.61 98.5 99.3 99.6 98.4 99.2 99.5

50 <5S" 0.0 2.0 6.3 12.5 2.9 8.4 15.4
0.7 66.2 76.3 80.3 66.4 75.3 80.2
1.01 87.2 91.7 93.5 85.6 90.5 92.5
1.39 95.5 96.7 97.6 95.5 96.7 97.2
1.61 97.2 98.1 98.3 97.1 97.7 98.3

80 0.0 1.5 5.3 10.8 2.9 8.1 14.8
0.7 61.1 71.7 77.1 59.8 69.4 76.1
1.01 82.7 88.0 91.3 81.7 87.5 90.8
1.39 93.1 95.2 95.8 92.7 95.2 96.6
1.61 95.5 96.6 97.2 95.5 96.7 97.3

100 0.0 1.3 6.3 11.1 2.0 7.9 13.7
0.7 62.7 72.5 77.8 63.0 72.5 77.8
1.01 83.7 87.7 89.7 81.8 87.5 90.1
1.39 91.4 93.2 94.7 91.2 93.4 94.9
1.61 93.9 95.4 95.9 93.5 95.4 96.4

300 5s= 0.0 1.3 7.3 13.0 2.7 9.0 16.3
0.7 83.3 89.0 92.0 82.0 87.3 90.0
1.01 93.3 94.3 95.7 92.7 94.3 95.3
1.39 96.7 97.0 97.0 96.7 96.7 97.0
1.61 97.0 97.7 98.0 96.7 97.0 97.7
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Table 8.3.4 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with oMD.90.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30 *s- 0.0 1.3 5.9 11.6 2.7 8.2 14.3
0.7 76.8 85.5 89.9 78.5 86.5 89.8
1.01 95.3 97.4 97.9 94.7 97.3 98.0
1.39 99.2 99.7 99.7 99.2 99.7 99.8
1.61 99.9 99.9 99.9 99.9 100.0 100.0

50 «s“ 0.0 1.1 6.3 12.3 2.0 9.1 16.7
0.7 75.5 85.5 90.2 79.9 86.7 90.2
1.01 95.1 97.7 98.9 94.7 97.6 98.3
1.39 99.4 99.8 99.9 99.5 99.9 99.9
1.61 99.8 99.9 99.9 99.9 99.9 99.9

80 5s" 0.0 2.0 6.8 11.3 2.6 8.6 15.4
0.7 78.6 87.4 90.7 79.7 88.0 91.3
1.01 95.9 97.9 98.5 96.2 97.7 98.4
1.39 98.9 99.5 99.6 98.9 99.5 99.6
1.61 99.7 99.8 99.9 99.4 99.7 99.7

100 5s- 0.0 1.5 6.2 11.5 2.2 8.5 15.0
0.7 75.0 84.3 88.4 75.7 85.6 89.3
1.01 92.6 96.0 96.8 93.7 95.6 96.6
1.39 97.9 98.9 99.2 98.0 98.7 98.9
1.61 98.9 99.3 99.5 98.7 99.4 99.5

300 5S ~ 0.0 1.0 3.0 7.3 1.3 5.7 11.7
0.7 67.3 76.7 83.7 67.7 78.0 82.3
1.01 88.3 91.0 92.3 86.0 89.7 90.3
1.39 94.0 95.0 95.0 93.3 94.3 95.7
1.61 95.0 95.7 96.3 95.0 95.7 96.3
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Table 8.3.5 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with o^0.95.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30

50

80

100

500

700

0 . 0 0 . 6 3. 9 9. 3 1 . 8 6 .0 1 1 .2
0 . 7 84. 7 92. 1 95. 0 87. 5 92. 6 95. 0
1. 01 99. 1 99. 7 99. 8 98. 5 99. 3 99. 7
1. 39 100..0 100.,0 100..0 100.,0 100.,0 100.,0
1. 61 100..0 100.,0 100.,0 100.,0 100..0 100.,0

0 .,0 1..0 4..6 9.,5 0 .,9 5..9 1 1 ..9
0 .,7 87..5 94..1 95..8 90..9 94..9 97.,1
1 .,01 98..7 99..5 99..8 99..3 99..6 99..8
1.,39 99..9 99..9 100,.0 100..0 100,.0 100,.0
1..61 100..0 100..0 100,.0 100..0 100,.0 100,.0

0 ,.0 0 .8 5,.9 12 .2 1 ,.9 7 .3 12 .3
0 ,.7 90 .1 96,.1 97 .9 93,.7 97,.8 98 .0
1,.01 99 .2 99,.6 99 .7 99,.7 99,.7 99 .7
1,.39 100 .0 100,.0 100,.0 100,.0 100,.0 100,.0
1,.61 100 .0 100,.0 100,.0 100,.0 100,.0 100,.0

0 ..0 1,.1 5..8 1 1 ,.1 1 ,.5 7,.5 1 2,.9
0 ,.7 87 .6 94,.4 96 .5 93,.9 97 .7 98 .6
1,.01 99 .5 99,.8 99 .9 99,.7 100 .0 100,.0
1,.39 100 .0 100,.0 100 .0 100,.0 100 .0 100 .0
1,.61 100 .0 100,.0 100 .0 100,.0 100 .0 100,.0

0 ,.0 2 .3 5,.0 10 .3 2 ,.7 6 .7 1 0 ,.3
0 ,.7 84 .3 90,.7 92 .7 8 8,.0 94 .0 95 .7
1,.01 97 .0 98,.3 98 .7 84,.3 90,.7 92,.7
1,.39 100 .0 100 .0 100 .0 100 .0 100 .0 100 .0
1,.61 100 .0 100,.0 100 .0 100 .0 100 .0 100 .0

0 ,.0 1.6 4,.3 9 .0 2 .0 6 .3 10 .7
0 ,.7 83 .3 87,.3 90 .0 88 .0 93 .3 94 .7
1..01 94 .0 96 .7 98 .0 97 .3 98 .0 98 .7
1,.39 99 .0 99 .0 99 .0 99 .0 99 .3 99 .3
1,.61 99 .0 99,.3 99 .7 99 .3 99 .3 99 .7
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Table 8.3.6 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with oM).98.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30 <5S“ 0.0 2.0 5.5 11.1 1.4 6.7 12.0
0.7 87.7 94.4 97.0 90.6 95.1 96.5
1.01 98.8 99.4 99.7 98.5 99.2 99.5
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0

50 0.0 0.9 4.3 10.1 0.8 5.5 11.2
0.7 90.4 96.1 97.4 95.4 97.1 98.2
1.01 99.4 99.9 99.9 99.5 99.8 99.8
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0

80 5s“ 0.0 1.4 5.8 11.0 1.7 6.2 11.5
0.7 94.2 98.3 99.0 98.0 99.3 99.6
1.01 99.9 99.9 100.0 99.9 99.9 100.0
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0

100 5s“ 0.0 1.3 5.7 11.0 1.6 7.4 12.6
0.7 94.3 97.8 98.8 98.5 99.4 99.5
1.01 100.0 100.0 100.0 100.0 100.0 100.0
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0

500 5s“ 0.0 1.3 4.0 8.3 1.7 6.3 9.7
0.7 94.0 96.7 97.7 97.7 99.7 99.7
1.01 100.0 100.0 100.0 100.0 100.0 100.0
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0

700 6s“ 0.0 0.7 3.7 9.0 1.0 6.7 11.0
0.7 91.0 95.0 95.7 97.3 98.3 99.0
1.01 99.7 100.0 100.0 100.0 100.0 100.0
1.39 100.0 100.0 100.0 100.0 100.0 100.0
1.61 100.0 100.0 100.0 100.0 100.0 100.0
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Table 8.3.7 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with c*-0.90 and 6-0.04.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30

50

80

100

300

0 .0 1 .5 6 .2 15. 0 2 .2 8 .5 15. 0
0 .7 75. 0 85. 6 89. 3 75.,7 85. 6 89. 3
1.01 92. 6 96. 0 96. 8 93.,7 95. 6 96. 6
1.39 97. 9 98. 9 99.,2 98.,0 98. 7 98. 9
1.61 98. 9 99.,3 99.,5 98.,7 99. 4 99. 5

0 .0 1 .,2 7.,7 13.,5 2 .,3 9. 5 17. 8
o.,7 78.,5 8 8 .,6 91.,3 80. 6 89. 0 92.,6
1.,01 95,,9 97,.2 97,.6 95,.8 97. 4 98..0
1 ..39 98,.8 99,.3 99,.4 98,.9 99. 2 99..4
1 .,61 99,.4 99,.6 99,.7 99,.3 99. 5 99..6

0 ..0 1,.8 6 .7 1 2,.0 2 .4 8 .1 15,.2
0 ,.7 76,.1 85 .8 89,.9 79,.3 87. 3 90,.7
1,.01 95,.1 97 .3 98,.0 95,.8 97. 7 98,.9
1,.39 99,.2 99 .5 99 .7 99 .4 99. 5 99,.8
1 ,.61 99,.6 99 .8 99 .8 99 .7 99. 9 100,.0

0.0 1.4 6 .8 11 .7 2 .0 8 .4 14 .8
0 .7 75 .2 85 .6 90 .3 78 .5 87. 2 91 .9
1 .01 94 .2 96 .1 97 .3 95 .0 97. 3 97 .7
1 .39 98 .4 99 .0 99 .4 98 .3 99. 2 99 .3
1 .61 99 .2 99 .7 99 .8 99 .1 99. 5 99 .8

0.0 0.3 3 .7 7 .3 1.3 C>. 7 10 .7
0.7 72 .3 78 .7 81 .3 73 .3 82.0 84 .7
1 .01 86 .7 90 .7 92 .7 88 .0 91.3 93 .0
1 .39 95 .0 95 .3 96 .3 95 .0 96.3 97 .3
1 .61 96 .7 97 .0 97 .7 96 .3 97.7 97 .7
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Table 8.3.8 Rejection percentages of the Post-sample Predictive Test
of the Poisson-Gamma model with aH3.95 and 6-0.04.

5 df 10 df

T 1% 5% 10% 1% 5% 10%

30

50

80

100

300

0 . 0 1 .,1 5. 6 1 0 ..8 1 . 8 7..4 1 2 .6
0 . 7 84.,7 92. 3 95.,7 8 8 .,0 93..1 95.,6
1 . 01 98.,9 99..5 100.,0 99.,1 99..6 99.,7
1 . 39 100.,0 100.0 100..0 100.,0 100,.0 100..0
1 . 61 100.,0 100.,0 100,.0 100..0 100,.0 100..0

0 .,0 1 ,.0 4.,3 9,.0 1 ,.2 7,.7 1 2..7
0 ..7 92..1 96..2 97,.8 92,.1 96,.2 97,.8
1 ,.01 99,.2 99,.6 99,.8 99,.5 99,.7 99,.8
1 ..39 100..0 100..0 100,.0 100,.0 100..0 100,.0
1 .,61 100,.0 100..0 100,.0 100,.0 100,.0 100,.0

0 .,0 1 ..2 5..0 1 1 ,.4 1,.8 7,.0 13,.6
0 ..7 89..3 94..9 96,.1 94,.0 96,.9 98,.3
1 ..01 98,.9 99,.5 99,.8 99,.2 99,.7 99,.8
1 ,.39 99,.9 99..9 100..0 100,.0 100,.0 100,.0
1 ..61 100..0 100..0 100..0 100,.0 100,.0 100,.0

0 ,.0 1 ,.6 6 ..8 11 .9 1 ,.8 7,.4 14,.4
0 ,.7 89,.6 94..3 98 .1 93,.4 97,.1 98,.1
1 ..01 99,.4 99..8 99 .8 99,.8 99,.9 99,.9
1 ..39 99,.8 99..8 100 .0 99,.9 99,.9 100,.0
1 ,.61 100,.0 100,.0 100 .0 100,.0 100,.0 100,.0

0 ,.0 0 ,.3 3,.0 8 .0 1 ,.0 7,.3 1 1,.3
0 ,.7 90,.3 96,.0 96 .7 93,.0 97 .0 97..3
1 ,.01 98,.3 99,.3 100 .0 98,.3 100 .0 100 .0
1,.39 100,.0 100,.0 100 .0 100,.0 100,.0 100 .0
1 ,.61 100,.0 100,.0 100 .0 100,.0 100 .0 100 .0
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We now summarize the main conclusions about the size and power of 

our post sample predictive test which may be drawn from the above 

tables.

Generally speaking, rejection percentages, or the power of the 

test, is usually quite attractive, irrespective of such factors like 

the discount value, the post sample-to-within sample level ratio, the 

post sample period, the sample size, etc. A more detailed analysis 

meanwhile reveals a number of features which we now report.

la. As expected, when a) -» 1 the power of the test increases, since 

the generated sample data will tend to follow a more smooth path, 

therefore producing higher sensibility to the test in the post sample 

period when the 'jump effect' is introduced. For example, at a 5% 

level, when T-50 and 6s-0.7, the rejection frequencies span from 76.3% 

96.1%.

2a. Obviously the power of the test increases as the ratio of the 

level post sample to the level within sample, 5S increases.

3a. In general the rejection frequencies experience a slight 

decrease for larger sample sizes, except possibly when O-0.98. The 

same rather curious phenomenon has also been reported in a study 

carried out by Kiviet (1987, p.64) in the context of dynamic 

regression models.

4a. The power of the test seems to be insensitive to the length of 

the post sample period Q.
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5a. The same conclusions drawn for the standard model also holds 

true for the regression specifications, i.e., the presence of a 

regressor variable seems not to affect the relationship among the 

power of the test and the aforementioned factors.

We now examine the results associated with the significance levels 

of our asymptotic test. Observe that, as quoted by Kiviet (1987, 

p.58), 'ideally, the observed significance level should be close to 

the nominal level, regardless of the values of the parameters' . Using

the confidence intervals for the sizes displayed in table (8.3.2) the

overall conclusion is that the estimated level is quite close to its 

nominal values to within sampling error, but a number of features have 

to be considered, and these are reported below.

lb. For moderate and small sample sizes (T < 100), the degree of 

approximation is particularly good for the shortest post sample 

period, i.e., for C-5. This is to be understood as meaning that the 

nominal size falls inside the correspondent confidence intervals as 

displayed in table (8.3.2). In considering a larger post sample 

period, when C-1 0, the actual size, generally speaking, overestimates 

the nominal values. This will lead to occasional rejections of the 

null hypothesis of 'non structural change' when actually the DFM does 

not display such a feature. This behaviour is particularly sensitive 

to the values of co, being more pronounced for those values further 

away from the upper bound.

2b. For large sample size, i.e., when T-300 for w c {0.85, 0.90}

and T-500, 700 for o>-{0.95,0.98}, the actual sizes exhibit even
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better behaviour, irrespective of the post sample period considered. 

The reported frequencies also seem to be invariant to the parameter 

values, this being true for both the standard and regression 

specifications.

In summary, our Monte Carlo study has provided evidence that the 

X 2 approximation for our post sample predictive test is quite 

acceptable for large sample sizes, irrespctive of the hyperparameter 

values. Meanwhile care must be exercised when using it for small and 

moderate series, and when the post sample period is larger than five 

since the actual size of f(2) may over estimate the nominal size of 

the x 2(£).
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