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Abstract. Soil bulk density Dp) is a major contributor to 1 Introduction
uncertainties in landscape-scale carbon and nutrient stock
estimation. However, it is time consuming to measure and
is, therefore, frequently predicted using surrogate variablesBulk density (Dp) is defined as the oven-dry mass per unit
such as soil texture. Using this approach is of limited valuevolume of a soil (IUSS Working Group, 2006). It dictates
for estimating landscape-scale inventories, as its accuracy b&vater and solute movement through the soil, can be indica-
yond the sampling point at which texture is measured peive of soil quality for agriculture, and is vital for soil carbon
comes highly uncertain. In this paper, we explore the ability@nd nutrient stock assessment (Bellamy et al., 2005; Ungaro
of soil landscape models to predict s@il, using a suite of et al.,, 2010; Martin et al., 2011). After the oceans, terres-
landscape attributes and derivatives for both topsoil and sublial ecosystems are the second largest store of carbon on
soil. The models were constructed using random forests angarth, with the majority contained in soils (Batjes, 1996).
artificial neural networks. These terrestrial carbon pools are highly susceptible to short-
Using these statistical methods, we have produced a spd€'m variation and are readily affected by anthropogenic in-
tially distributed prediction oD, on a 100 mx 100m grid,  fluences such as land use changes. Consequently, they play a
which was shown to significantly improve topsoil carbon critical role in determining current and future global carbon
stock estimation. In comparison to using mean values fromPudgets (Bellamy et al., 2005). Soil can either be a net sink
point measurements, stratified by soil class, we found that th@' source of carbon (Janssens et al., 2005), and there is con-
gridded method predicteBy, more accurately, especially for tinuing debate as to its potential to mitigate atmospherig CO
higher and lower values within the range. Within our study €missions (Smith et al., 2005). The accuracy of soil carbon
area of the Midlands, UK, we found that the gridded pre- stock estimations is, therefore, of paramount importance.
diction of Dy, produced a stock inventory of over 1 million ~ Dawson and Smith (2007) suggest that much of the error
tonnes of carbon greater than the stratified mean methodissociated with carbon stock inventory in soils can be traced
Furthermore, the 95 % confidence interval associated with toPack to uncertainties i, estimates, prompting further in-
tal C stock prediction was almost halved by using the griddedvestigation into the methods for deriving these estimates.
method. The gridded approach was particularly useful in im-Furthermore, soil carbon content plays a crucial role in spa-
proving organic carbon (OC) stock estimation for fine-scaletially distributed, integrated land—atmosphere process mod-

landscape units at which many landscape—atmosphere inteflS such as JULES (Harrison et al., 2008). There is evidence
action models operate. that improvements to the soil C component in these types

of models increases their response sensitivity to changes in
soil stocks and processes. For instance, Jones et al. (2005)
compared the outputs of a non-distributed soil C model to
those from a multipool, distributed soil C model and found
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that there was a difference in the magnitude of the feedbackhe modelling process are artificial neural networks (ANNS)

between climate and soil C when the distributed model wagKeshavarzi et al., 2010) and random forests (RFs)(Prasad et

considered. Estimating the size of spatially distributed car-al., 2006).

bon pools requires a spatially distributed estimat®pf The objective of this study is to determine the efficacy of
There are two principal approaches to estimating carborsoil landscape models to predib for any given landscape,

stocks. One is to predict soil carbon concentrations across thand we do so using a range of models. Our intent is not to de-

landscape (often using geostatistics) and then combine thegermine the best modelling method, but rather to cover non-

with a measure oy and depth to predict the stock (Un- linear (random forests and ANN) predictive methods to es-

garo et al., 2010). The problem with this is that using meantablish the feasibility of a landscape level prediction/y.

Dy, values to convert predicted soil organic carbon (OC) con-Here, we consider a data poor environment (as the models

centrations into OC stocks (i.e. the failure to use spatiallydo not include OC or soil textural properties as predictors) in

varying Dy, values) is flawed because important variations in which we rely on landscape-derived attributes. This allows us

individual soil types are omitted (Grimm et al., 2008). Al- to produce spatial estimates bf, without interpolation and

ternatively, stock can be predicted directly across the landiets us consider the implications of spatial uncertainty for the

scape (Jones et al., 2005). The issue with this approach iwider modelling community.

that it cannot account for variations in the relationship be-

tween OC content and, across the landscape, fixing this _

relationship at the point scale. This makes prediction at the?2 Materials and methods

landscape scale difficult, as at that scale soil properties ar

driven by physical environmental gradients and boundaries;

such as topography, parent material and hydrologically ef-2

fective rainfall. One of the most important recent research

themes of international interest is the anticipated change ifrpe soil data for this study were obtained from samples
terrestrial carbon stock under changing climate and land Usgg)iected between 1970 and 1987 during the 1:25000 and
(Yu etal., 2012; Zaehle et al.,, 2007). By modelliig us- 150000 soil mapping of England and Wales. The dataset
ing these changing landscape attributes, it can be viewed asa5 peen described in detail by Hallett et al. (1998). Undis-
spatially variable rather than as a fixed soil property. Thisy,rped 222 cr soil cores were taken in triplicate using the
may pe an important consu_jeratlon when pred|.ct|ng changegnethods detailed by Hodgson (1976); thg and other soil

in soil carbon stocks over time, as both the soil carbon conyeasyrements (organic carbon content, particle size fraction,
centration andy, will vary with changes in climate and land - textyral class and depth of the horizons) were derived using
use. Lgstly, large datasets containing measurements of S%ethods described by Avery and Bascomb (1982). Due to
properties are scarce, prompting investigation into the possifimitations of computational power required to derive land-
bility of making predictions using landscape variables. scape attributes for the whole country, a subset of the data
_ Soils are formed through the combined effect of phys-yas selected from a limited area (a 18 15CGkragion of

ical, chemical, biological and anthropogenic processes Ofjne English Midlands) based on the relatively high density
soil parent material. These factors will affect soil formation ¢ samples (Fig. 1). The soils in the area are dominated by
in different ways across the landscape, resulting in the spag o\ earths and surface water gleys, most of which have ei-

tial variation observed iDp. Defined originally by Jenny  iher g coarse or fine loamy texture, with some more clayey
(1941), these factors are soll, climate, organisms, relief, parsgiis in the south of the region (McGrath and Loveland,

ent material, age and landscape position (SCORPAN). Today gg2). The bedrock is dominated by undifferentiated argilla-
this information can be obtained from existing, large-scalecaqys rocks with prominent areas of sandstone in the west
soil maps, climatic data, land use/land cover maps, digitalyng patches of limestone in both the north and south. The
terrain models and their derivatives, parent material/geologyg|eyation ranges from-2m to over 550 m. The spatial rep-
and landscape position. We can formalize the relationship beesentation of soil data comes from the National Soil Map of
tween measuref, and the soil forming factors at the sam- gpgjand and Wales (NATMAP: Hallett et al., 1996), which is
pling location and in the surrounding landscape using sta; 1 250 000 scale soil classification map. The classifications
tistical models (McBratney et al., 2003). These models argse in this study were at the association (many, homogenous

developed based on existing data and expert- or empiricall;@roups) and great group (few, more heterogeneous groups)
derived soil-environmental relationships. They can then bgg,g|s (Avery, 1980).

used to predicDy within a landscape.

Recently, these principals have been applied to the predic2.1.2  Topographic data
tion of both Dy, (Jalabert et al., 2010; Martin et al., 2009) and
organic carbon stock (Wiesmeier et al., 2011; Grimm et al.,Although not usually applied to the modelling %, topo-
2008) at the point scale with considerable success. Methodgraphic model parameters are frequently used in digital soil
commonly used to explicitly include landscape attributes inmapping (McBratney et al., 2003) and have been specifically

.1 Data

.1.1 Soil survey data
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Fig. 1. Location and study areéa) Study location in relation to England and Walés). Digital elevation models and sample locatio(w.
Geological rock classification schenfd) Dominant land use classes.

used to predict soil organic carbon concentration (Grimm etabove field capacity), annual average potential evapotran-
al., 2008). A 10 m resolution digital terrain model (DTM) spiration (mmyr?) and maximum potential soil moisture
was used to derive the following landscape attributes: elevadeficit (i.e. the water required to bring the whole soil profile
tion, slope, aspect, curvature (plan, profile and mean), SAGAback to field capacity, mm). The data were originally derived
wetness index (SWI) and sediment transport index (STI), allas 1971-2000 averages from monthly reports by the UK Me-
of which are commonly used topographic features in digitalteorological Office, which provides information on weather
soil mapping (Wiesmeier et al., 2011). The SWI is based onfor a 5kmx 5km grid (Perry and Hollis, 2005). Average an-
the ratio of contributing upslope area per unit contour width nual rainfall is the total of the monthly means per year and
and local slope angle @ner et al., 2001). The STl is based the accumulated temperature abov&C0gives an effective

on unit stream power theory, where upslope contributing arealaily temperature above®@ per month (Hallett and Jones,

is directly related to discharge (Moore and Burch, 1986).1993). Evapotranspiration was calculated using the Penman—
Classification algorithms were used to divide the landscapeévionteith equation, as detailed in Hess (2000), while the po-
into 7 and 8 homogeneous topographic classes on the basiential soil moisture deficit (based on the balance of rainfall
of curvature, slope and catchment size (Pennock et al., 1987and evapotranspiration) was calculated using methods de-
and slope, surface texture and local convexity respectivelyscribed by Jones and Thomasson (1985). The number of field
(Iwahashi and Pike, 2007). The derivation of these landscapeapacity days is the median number of days per year that each

attributes was carried out in ArcGIS 9.3 (ESRI, 2009). soil type is calculated to be at or above field capacity based
on water balance calculations (assuming free drainage) over
2.1.3 Climatic data the period 1970-2000 (Jones and Thomassen, 1985).

The following climatic data were used as predictor variables:2.1.4 Geology

average annual rainfall (mmy#), accumulated temperature

above O°C, median number of field capacity days (i.e. the Soil properties derive, in part, from in situ weathering of
number of days per year that the soil moisture content ishe parent material (Grimm et al., 2008), so a representation
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4694 K. P. Taalab et al.: Modelling soil bulk density at the landscape scale

of geology is essential for a digital soil mapping approach.2.2 Data preprocessing

A 1:50000 geological map was obtained from the British

Geological Survey (BGS), which included the rock lexicon, Models were built using 342y, samples from the A hori-
giving the major rock units (available for download from zon and 339 samples from the subsoil. Many studies differ-
http://edina.ac.uk/digimapand the BGS rock classification €ntiate between topsoil and subsoil by depth (De Vos et al.,
scheme detailing the lithology of the bedrock. The distribu- 2005; Katterer et al., 2006). However, the lower depth of the
tion of bedrock, by rock classification scheme, is shown intopsoil layer can vary from 15cm (Bellamy et al., 2005) to
Fig. 1c. We also used the same classification scheme to caB0 cm (Martin et al., 2009). The data used in this study were
egorize superficial deposits (formerly known as drift), which Sampled by horizon, meaning that there was not a uniform
represent the most recent geological deposits. Parent matéampling depth between points and the number of samples
rial was represented using the NATMAP 1 : 250 000 soil maptaken at a given location was dependent on soil morphol-

(Hallett et al., 1996). ogy. As such, the A horizon, with an average depth of just
over 22cm, was used to represent the topsoil. The subsoil
2.1.5 Landuse layer comprised various B horizons (predominantly Bw and

Bg) and, on average, represented a horizon between 23 and
The land use (Fig. 1d) was represented by the Land Coven7 cm in depth. Of the original samples, the A horizon was
Map 2000 produced by the Centre for Ecology and Hydrol- spiit at random into 239 training and 103 validation samples,
ogy (CEH). We also produced a recoded land use map to reand the subsoil was split into 238 training and 101 validation
flect the land use at the time of the bulk density sampling.samples. Models were built using the training data sampled
Satellite imagery was classified into a 25m raster datasefor each horizon, then these models were applied to the vali-

which was subsequently aggregated into a ten-class, 1kmation data to provide an unbiased estimate of the predictive
grid land cover map (Fuller et al., 2002). Previous studiespower of each model.

have commonly only attempted to make predictions within

a single land use such as agricultural soils (Katterer et al.2.3 Statistical methods

2006) or forest soils (Jalabert et al., 2010). When the region

is heterogeneous, land use has proved to be an important d&? order to develop statistical relationships between a large
terminant of Dy, (Hallett et al., 1998; Moreira et al., 2009). number of landscape attributes amg, it is necessary to

In this case, as land use was recorded whenRpesam- apply statistical methods which can account for complex,
p|es were taken, the land cover map was recoded to reﬂe(ﬂon-"near interactions between variables. We have Opted to

changes over time. test two distinct methods which have previously been suc-
cessfully applied to the prediction of a range of soil proper-
2.1.6 Soilscapes ties includingDy, (Tranter et al., 2007), soil texture (Liel3 et

. al., 2012) and near-infrared spectral reflectance (Rossel and
To help evaluate the spatial performance of the models, reBehrens, 2010). Both methods are suitable for datasets with

sults are assessed by “soilscape”. Soilscapes are landscap@merous predictors, containing both categorical and contin-
units derived from expert knowledge based on the 300 soilyous data.

associations that make up the National Soil Map (Soil Sur-

vey Staff, 1983; Mackney et al., 1983). Each association hag.3.1 Random forest

a subgroup code (Avery, 1980) that identifies the diagnos-

tic soil properties. From this, the soilscapes have been delinRF modelling has the potential to improve predictions made
eated by agglomerating the National Soil Map associationsUsing classification and regression trees (CART) (Breiman,
resulting in 25 classes. Within these national classes, th€001). In essence, trees are constructed using a bootstrap of
soilscapes have been subdivided and grouped into homodhe entire dataset and the splits at each node are not made
enized regions based on similarities in drainage characterisky the best predictor from the entire suite of input variables,
tics, texture and geology (Farewell et al., 2011). A descrip-bUt from the best of a randomly selected subset, which pre-
tion of each predictor variable used in this study, including Vents overfitting (Liaw and Wiener, 2002). The model only

their derivation and the number of classes or range of value&equires two user-defined parameters: the number of trees in
in the study area, is shown in Table 1. the forest fwee) and the number of variables tested at each

node (uyry). The performance of the training model is as-
sessed by predicting the mean square error (MSE) of the “out
of bag” portion of the data at each tree, and then averaging
over the entire forest:

n
MSEoos=n"") (zi —£7°%)%, 1)
i=1

Biogeosciences, 10, 4694704 2013 www.biogeosciences.net/10/4691/2013/
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Table 1. Predictor variables used in the ANN and RF models. The variables are listed in order of importance for the RF model predicting A
horizon Dy,.

Name Description Number of
classes/range

Land use Land use derived from the 1 kni km Land Cover Map 2000 produced by the Centre for 8
Ecology and Hydrology (Fuller et al., 2002).

Soil association  Soils grouped to the association level (Avery, 1973) derived from the 1: 250 000 scale 24
National Soil Map of England and Wales (NATMAP; Hallett et al., 1996).

Elevation Elevation above sea level derived from a 10 m DEM (Digital Elevation Model) (Childs, 20042 to 558.9 m

Great group 1:250 000 scale National Soil Map of England and Wales (NATMAP; Hallett et al., 1996)
classified into soil great groups (Avery, 1980).

ATO_Annual Average accumulated temperature abd¥€ @erived from average monthly reports from the2564-3872C
UK Meteorological Office on a 5 km 5km grid (Perry and Hollis, 2005).

Parent material ~ Soil parent material derived from a 1 : 250 000 scale National Soil Map of England and \Wales
(NATMAP; Hallett et al., 1996).

PSMD Potential soil moisture deficit related to the balance between rainfall and potential 50-261 mm
evapotranspiration (Jones and Thomasson, 1985) derived from average monthly reports
from the UK Meteorological Office on a 5 k5 km grid (Perry and Hollis, 2005).

PT Potential evapotranspiration is the amount of evaporation which would occur if water wa480—708 mm yr1
not limited (Hess, 2000), derived from average monthly reports from the UK Meteorological
Office on a 5 kmx 5 km grid (Perry and Hollis, 2005).

AAR Average annual rainfall derived from average monthly reports from the UK Meteorologic&48-1347 mmyrl
Office on a 5 kmx 5 km grid (Perry and Hollis, 2005).

RCS Bedrock geology derived from 1:50 000 scale British Geological Survey rock classificatitih
scheme map, detailing bedrock lithology.
FCD_.MED Median number field capacity days derived from average monthly reports from the UK 107-290 days
Meteorological Office on a 5km 5km grid (Perry and Hollis, 2005).
Curvature Surface curvature derived from a 10 m DEM (Childs, 2004). —74.81066.4
Iwahashi Iwahashi landform classification uses a terrain classification algorithm based on slope, s@rface

texture and local convexity (Iwahashi and Pike, 2007) derived from a 10 m DEM.

Pennock Pennock landform classification uses a terrain classification algorithm based on slope, 7
curvature and catchment size (Pennock et al., 1987) derived from a 10 m DEM.

STI Sediment transport index derived from a 10 m DEM. —67.41t00
Slope Slope derived from a 10 m DEM (Childs, 2004). 0-74.9
SWiI SAGA wetness index, a terrain-derived index of soil moisture derived from a 10 m DEM 9.8-19.7

(Bohner et al., 2001).

Aspect Aspect derived from a 10 m DEM (Childs, 2004). —1t0 360

www.biogeosciences.net/10/4691/2013/ Biogeosciences, 10, 46912013



4696 K. P. Taalab et al.: Modelling soil bulk density at the landscape scale

whereAOOB is the mean out of bag prediction for th¢h ob- 2011). Generally, adding more nodes will increase the perfor-
servat|on. RF modelling also provides a measure of fit com-mance of the model. However, this may lead to overfitting the
parable to theR? values of the other models. This “pseudo data. To avoid this, the ANN uses a back-propagation algo-
R?"is labeled the “percent variance explained” and is calcu-rithm (Rumelhart et al., 1986) to test the performance of the

lated using network on both training and testing datasets. Training the
MSEoos netwprk should reduce the “error function”. associated w.ith
Valex=1— ——5—, (2) predictions, such that when the error function of the testing
oy dataset plateaus or increases, ANN overfitting is suggested.
wheres’ 2 is the total variance of the dependent variable cal- The error function for regression is the sum of squares error
culated withn as the divisor, rather tham— 1 (Liaw and ~ 9Ven by

Wiener, 2002). The parameters were set toigg of 1000
and ammyy of p/3, wherep is the number of input variables. Egos= Z(y, — 1), 3)
Liaw and Wiener (2002) suggest testing they value by i—1
both doubling and halving the default. Models can be sensi-
tive to themyy parameter, as testing a greater number of varl-value of thei-th case and, is the observed value. Ideally,
ables at each split will increase the strength of the individual
when the differences in the error function are negligible, the

tree but also increase the correlation between trees in the forr

network with the fewest nodes is chosen. As the test dataset
est. Here the optimakyy was determined using the tuneRF

function (Lie et al., 2012). Furthermore, thgse value was plays a role in developing the ANN infrastructure, a valida-
increased from 506 (the default) to 1060 as recommendegon dataset is used to independently test the predictive power

by Prasad et al. (2006). This number of trees is suff|C|entIy of the modelsZThe best performing models were selected us
ing values ofR< and root-mean-square error (RMSE). ANNs
large to stabilize errors, whilst not being too computation-
. : : L .- can also rank variables in order of importance, although they
ally demanding. An interesting feature of RF is its ability : .
. : ! ; 7 _use adifferent method from RFs. Here, data for each variable
to rank predictor variables in order of importance, which is .

done by measuring how much the “out of bag” estimate er_|s replaced, in turn, by its mean value from the training data

. . . B ,and the effect on the error function is recorded. The variables
ror increases when data for a particular variable is “removed
are then ranked by the amount their omission increases the
from the analysis and the other variables are left intact. This
Soverall error function (Lou and Nakai, 2001). The learning
is done on a tree-by-tree basis for the entire forest. The mod-

els were generated using the “randomForest” package (Liaw rate for the ANNs was set to 0.1 and the analysis was car-
and Wiener, 2002) in the R statistical computing language (R ”ed out using STATISTICAS (StatSoft Inc,, 2011). One is-

Development Core Team, 2008), sue arising when using ANNSs for producing predictive maps
is that they will not make predictions in areas where data
differ from those of the training data. In other words, if not
every category of, for example, land use is included in the
The principles of ANNSs are well established (Bishop, 1995), training data, the final maps will leave blank areas when they
with Maier and Dandy (2001) offering a practical guide for €ncounter these missing categories as opposed to inferring
environmental modelling. The structure used here was a multhe Dy values from available data. While this leaves areas
tilayer perceptron, a powerful predictive technique that iswith missing predictions, it means the accuracy of the final
most commonly applied in soil science (Agyare et al., 2007).map is not compromised.
In this method, data are separated into a series of nodes ) ]
with similar nodes arranged into layers: typically, an input 2.3.3 Calculations of OC stock and associated
layer (containing the variables used for prediction), an out- variability
put layer (where predictions are made) and, in-between,
single hidden layer which weights and transforms the data
to extract meaningful relationships. For each model, the 239’
samples used for developing the models were separated infQ
a 75:25 percent split for training and testing respectively.
As with the other models, the remaining 103 samples were
used for independent validation. Splitting the data allowed
the number of hidden nodes to be tested, which is impor-,
tant as the optimum number of nodes will differ depending
on the problem at hand and the number of input variables
It is recommended that the number of hidden nodes shoul
be half thg number _of i_nput variables plus the number ofg — 4.0C. Dy, - 10, (4)
output variables (which in our case was one) (Statsoft, Inc.,

whereN is the number of training caseg, is the predicted

2.3.2 Artificial neural networks

%o illustrate the importance oby for soil inventory, the
variation in carbon stock estimation was calculated using
measured, predicted and meBy values. As a single, un-
weighted mean across a heterogeneous area would lead to bi-
ased results, the medh, was calculated for each soil great
group (Avery, 1980) and weighted by area. Using a mean
Dy, value stratified by soil great group is an approach which
is commonly used to represent the spatial variatiorDgf
across the landscape (Grimm et al., 2008; Batjes, 1996). Car-
é)on stock was calculated using

Biogeosciences, 10, 4694704 2013 www.biogeosciences.net/10/4691/2013/
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wheres is the soil organic carbon stock (tCh4, d is depth 30 percent of the variation i,. RF performed consider-
of the topsoil (m), OC is organic carbon concentration perably less well, explain only 20 percent of the variation. It is
unit mass of dry soil (kg Ckgl) and Dy, is soil bulk den-  interesting to note that although the model fit (in term&éf
sity (kg m~3). Note that within our calculations, depth is kept values) is considerably worse for the subsoil than for the A
constant. To evaluate the uncertainty associated with carbohorizon, the RMSE is lower in the subsoil models. This re-
stock estimation, it is necessary to propagate the errors assdlects the smaller variation betweéy, in subsoil horizons.
ciated with both OC and, measurements and predictions,

while keeping depth constant (Schrumpf et al., 2011). The3.2 Predictor variables

variance is given using the formula ) .
Both modelling approaches have the ability to rank the pre-

VariancgOC Stock = (OC Stock? (5) dictor variables in order of importance. Although they do

(©0C)2 (0 Dp)? covOC— Dy so in different.ways,l this allqws us assess whether there are
X >+ >+ , common predictors influencing the variationZip. In the A

(©0O) (Dp) OC- Dy horizon, the consistently important predictors are land use
and soil great group or association. Climatic factors also fea-
ture as important predictors, with annual average tempera-
ture and median field capacity days shown to be significant
for the RF and ANN models, respectively. The variation in
the subsoil layers can be more attributed to a combination of
soil association, parent material and bedrock geology.

wheres OC ando Dy, are the standard deviations of OC con-
centration andDy, respectively, and covO€E Dy, is the co-
variance between the OC concentration &pdWe note here
that the uncertainties iy estimates in this case are derived
from the model error (RMSE), not from the variability in-
troduced by spatial or analytical variability (which has been
considered elsewhere; Holmes et al., 2011). We are compar-
ing here the effect of using a modelldd, (based on soil 4 piscussion
landscape attributes) for estimating C stocks f,a@stimate
obtained through spatial aggregation (stratified approach). 4.1 Model performance
In the stratified model, the standard deviatiorDigis cal-
culated using the measuré&g samples within each soil great Random forests were able to describg most effectively,
group. In the gridded model, the standard deviation ofdpe  which is unsurprising as they are designed specifically for
is given by the RMSE of the predictive random forest model. large, heterogeneous datasets containing a mixture of both
As the standard deviation in OC is the same for both modelsontinuous and categorical variables (Liaw and Wiener,
and we found no spatial autocorrelation betwégnsample  2002). Indeed, tree-based models have been used to success-
points, we feel that this method provides a sufficiently robustfully predict Dy, using a mix of landscape data and soil data
estimate of OC stock variance. (Martin et al. 2009). In terms of model performance, RF
In the gridded model, covariance was determined using thechieved similar results to a number of other studies, all of
predictedDy values and the measured OC values. In the stratwhich have used textural properties as predictors (Tranter et
ified model, the covariance between the mean great groupl., 2007; De Vos et al., 2005; Heuscher et al., 2005). The
Dyp and OC was determined using a non-linear mixed-effectsANN model also performed well for the A horizon. Previous
model (Wutzler et al., 2008). This was to account for the ran-studies (e.g. Minasny et al., 1999; Keshavarzi et al., 2010)
dom effects in the covariance betweél and OC across have reported both high and low ANN performance. This can
the soil great groups. To clarify, as there is a sinblevalue  be attributed to the nature of the property being predicted.
for each great group in the stratified model, there is no withinWosten et al. (2001) suggest that generally, when there are
group covariance. There is, however, covariance between soihore than three predictor variables and variables are sub-
great groups and OC across the study area, which is reprgect to complex interactions, non-linear modelling techniques
sented by the mixed-effects model. such as ANN and RF become necessary. This is clearly the
case when predictinfpy, from landscape attributes. The poor
performance of both techniques in the subsoil layer reflects

3 Results the lower spatial variability of the subsdil, (Braakhekke et
al., 2013), meaning changes in landscape predictors exhibit
3.1 Model performance relatively little influence.

The results for the RF and ANN models for both topsoil and 4.2  Variable importance

subsoil are shown in Table 2. For the A horizon, the best per-

forming model was the RF, with ANN giving similar, albeit It has been well established that OC content is usually the
slightly inferior results in terms of predictive power. In the most important predictor when modelling,. This is unsur-
subsoil, neither of the models performed particularly well, prising as the relationship between the two has been well
with ANN, the best performing model, explaining just over defined (Rawls, 1983) and used extensively in predictive
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Table 2. Modelling results (using the validation dataset) for random forest and artificial neural network models. The suffix “A” indicates the
results are for the A horizon and the suffix “S” indicates the results are for the subsoil. The top five predictor variables are ranked in order of
importance.

Model R2 RMSE Predictor variables

RF-A  0.5602 0.1651 1.Land use 2. Soil association 3. Elevation 4. Great group STzl

NN-A 0.5507 0.1677 1.Greatgroup 2.Land use 3. Bedrock 4.Parent material SMEID

RF-S  0.2008 0.1581 1. Soil association 2. Parent material 3. Land use 4. Bedrock 5. PET

NN-S 0.3108 0.144 1. Land use 2. Parent material 3. Soil association 4. Bedrock 5. Pennock landscape classification

modelling (Kaur et al., 2002). However, Calhoun et al. (2001) 1998). Pertinently, a significant number of samples in this
found that particle size distribution and OC generally explainstudy were taken from alluvial plains, in which soil prop-
no more than 60 percent of the variation in bulk density. Of erties, such a®y, are closely related to the properties of
particular interest here is the predictive power of the seldom-the underlying alluvium, thereby promoting the influence of
used variables which represent a range of topographic, langarent material as a significant predictor. In other areas with
use and climatic factors. The importance of puttibgin a less alluvium, parent material may be less influentialipn
landscape context is supported by the successful stratificaPredictably, parent material becomes a more influential pre-
tion of previous regression models by land use (Steller et al.dictor in subsoil horizons, which are less susceptible to cli-
2008; Moreira et al., 2009) and parent material (Hallett etmatic changes. Bedrock geology also becomes more influ-
al., 1998; Calhoun et al., 2001). However, these factors havential below the A horizon. It is interesting that the climatic
been explicitly included in the modelling process only rel- variables are such prominent predictors because they have
atively recently (Martin et al., 2009; Jalabert et al., 2010). a relatively low spatial resolution (5km grid), in compar-
Of the landscape variables included, land use, parent matason with other predictor variables, although the link with
rial and soil classification are deemed to be consistently im-some variables (e.g. field capacity) has clear physical signifi-
portant predictors. The influence of soil class is unsurprisingcance. This suggests that improving the resolution of climatic
as, along with other attributes, soils are classified based opredictors may improve model accuracy. The DTM-derived
their textural properties. Using pre-existing soil maps is, inlandscape attributes proved to be relatively poor predictors.
essence, a way of predicting using spatially distributed tex-Although Martin et al. (2011) mention including topographic
tural classes. The predictive power of land use will dependpredictors as a possible improvement for mapping OC stocks,
on the classification used and the resolution of the data layethey are not generally utilized. In similar work to model sat-
Previous prediction oDy using boosted regression trees by urated hydraulic conductivity, landscape derivatives have of-
Buttner et al. (2000) has suggested that land use derived frorfered some improvement to ANN models, but they cannot
the European CORINE map was the least influential of allbe used without other inputs; particularly at a regional scale
their predictor variables, as these land use classes were td@gyare et al., 2007), this reflects the inclusion of elevation
broad. However, more detailed, higher resolution land use inas a prominent predictor in the RF model.
formation transpired to be the second most powerful explana-
tory variable, almost on a par with OC content (Jalabert et4.3 Modelling without using measured soil properties
al., 2010). As land use was recorded at the time of sampling, ) ) ] ) o
the accuracy of the layer was not in question, and hence it1@PPing Dy without point samples of soil properties is of
proved to be an important predictor. To make use of use of thdterest for two reasons. Firstly, since the cost of large-
available land use data, the CEH Land Cover Map 2000 wa$cale soil sampling can be prohibitive, the ability to use
recoded to reflect the land use at the time of sampling. Thid’ré-existing or remotely sensed O_'ata would be deswable._ As
was important as, when used as a predictor without recodingiany countries already have soil, land use and geological
present-day land use categories were shown to be poor préd@ps gt a variety of scales, it makes sense to see if furthelr in-
dictors of Dp. This can probably be attributed to the fact that formation can be extracted from them in the form of predic-
sampling of Dy, and the creation of the land use layer were tivé models. Secondly, a key research theme in spatial map-
approximately 30 yr apart, with significant changes over thePing is the assessment soil carbon stocks because they re-
intervening decades. late to the global carbon budget (Bellamy et al., 2005; Torn-
Parent material lithology is one of the leading predictors quist et al., 2009; Wiesmesier et al., 2011). One issue of inter-
for three of the four models. This may be attributed to the €St here is the lack of spatial representation®gf Instead,
presence of recently deposited material, such as alluviumMeanDy values are used to convert modelled soil OC con-
or slow draining or impermeable bedrock which are partic- centrations into soil OC stocks (Grimm et al., 2008). How-

ularly influential for overlying soil formation (Hallett et al., €Ver, if variations inDp within individual soil types are not
taken into account, significant errors in C stock estimation
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are possible. As datasets tend to be limited, and OCIand g
are not always sampled together, being able to ibgmc-
curately and independently of measured OC content would
avoid circularity in modelling (i.e. using carbon content to
predict Dy which is then used to predict carbon stocks)
and improve stock estimation at the same time. As we have
found, most of the important predictor variables are categor-
ical (land use, parent material). For the A horizon, we have
found that both RF and ANN techniques can explain over
55 percent of the variation i®y. This result is significant
because it shows that it is feasible to create a continuous sur-
face of Dy using landscape attributes alone. A spatial repre-
sentation ofDy across the landscape can be combined with a
spatial representation of carbon concentration to give a more
accurate estimate of C stocks and pools. At any given loca-
tion, there will be an associatdy, value, at an appropriate
scale, which has been independently derived and which has
an associated unambiguous error estimate.

0 15 30 60 Km N

Bulk Density (g cm™)
Central England Plateau
:] Central Upland Spine
Neural Network
Value
High : 1.61557

. Low : 0.555789

4.4 Mapping Dy across the landscape

For the A horizon, we have produced mapdxffor the top-

soil of the entire study area using both ANN and RF (Fig. 2).
Topsoil is generally considered to be the most important soil
compartment in terms of soil carbon content, in part because
OC concentration generally decreases with depth (Jones et
al., 2005). Of the two methods, ANN gives a slightly wider High - 1.46464
range of predictedy values than RF but still within the lim-

its of the measured data reported within the National Soll . Low: 0.771087

Inventory of England and Wales (Loveland, 1990). Fewer

than three percent of the samples in the National Soil Invenig. 2. predicted bulk density across the landscape obtained from
tory had aDy, lower than the minimum predicted value. In models built using the training datasé) Artificial neural net-
contrast, RF (Fig. 2b) provides more conservative estimatesvork, and(B) random forest.

of Dy, especially for the upper values. Despite this, the RF

model was shown to have slightly more predictive power than

the ANN model. Broadly speaking, the models agree on thedominated with Stagnogley soils. In the subsoil, the spatial
spatial trends oDy, distribution, most notably, areas of low patterns of model performance are also broadly similar for
Dy, in the north and at the westerly edge of the study areaboth the ANN and RF models. In relation to parent mate-
The areas of missing data in the ANN model reflect missingrial, the best predicted regions coincide with areas of sand-
data in the training dataset. Here the RF models will makestone bedrock and superficial deposits containing siliceous

Bulk Density (g cm™)
Central England Plateau

C] Central Upland Spine

RandomForest

Value

predictions based on the available data. stones while the worst performing areas overlie clay or soft
mudstone. The spatial variation in model performance, can
4.5 Spatial performance be used to inform any future sampling schemes, with an in-

creased sample density in areas where a model is likely to
Spatially, there is broad agreement between the RF and ANNinderperform.
predictions, in terms of the areas of high and IDy. Fig-
ure 3 shows the individual performance of each model, in4.6 Stock estimation
terms of prediction residuals as an average per soilscape. In
the A horizon, the spatial variation in the relative perfor- To illustrate the potential improvement in OC stock estima-
mance of each statistical approach is very similar (Fig. 3btion which could be achieved using the gridded surfacBpf
and c). In terms of land use and soil group, the two mostcompared with using a stratified mean value (Mestdagh et al.,
influential predictors of topsoiDp, both the RF and ANN  2009; Hanegraaf et al., 2009), we calculated the OC stock at
models give their best predictions in areas of brown eartheach sample point using three different set®gf the mea-
under arable land use. The areas across which both modsuredDy, the RF gridded prediction ab, and great group
els appear to perform least well coincide with built-up areasmean measured value dp, calculated using all sample
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Fig. 3. Spatial variation in model performance by soilscaf@®.The sample density for A horizon sampléls) Average residuals for the
ANN model prediction in the A horizor(c) Average residuals for the RF model prediction in the A horiZo).The sample density for
subsoil horizon sampleée) Average residuals for the ANN model prediction in the subsoil horigrAverage residuals for the RF model

prediction in the subsoil horizon.

points in the training data. Note that results for C stock calcu-74.814+ 0.70tC hal generated using great group me&p
lations using model output were produced using a calibrated/alue. Using the OC stock calculated with measubgdas
RF model that used the training dataset alone; the validatiora yardstick, the gridded estimate bf, yields a marginally

data was used solely to assess model performance. The avdyetter C stock estimate compared with using a single (mean)
age OC stocks calculated using edghestimate are shown Dy value. In this case, the RF predictions will underestimate
in Table 3, along with the difference between the estimatedDy, whereas using a stratified mean value will overestimate
and measured mean OC value, expressed as a percentagel®f. The difference in the error associated with stock predic-
the mean measured value. The 5th and 95th percentile errotson using the griddedy, values compared to using the mean
in measured OC stocks are also shown. The gridded surfacealue of Dy is particularly evident when predicting C stock
refers to a map of RF-predictdd, values (Fig. 2b) produced levels in soils at the extremes of the expected range (i.e. the
as a raster grid with a cell size of 180100 m across the en- prediction errors for the 5th and 95th percentile OC stock
tire study area. The main advantage of the gridded surfacealues). The potential improvement in using the gridded es-
method over PTFs (Pedotransfer functions), which can be aptimate of Dy is most evident in the 95th percentile, where
plied to individual points using measured soil property datausing a stratified meay, value will yield an error nearly
for the point in question, is that the gridded method can betwo times larger.
applied to the entire study area with the same quantifiable To put the magnitude of the errors illustrated in Table 3
level of both performance and error estimation at all spatialinto context, Bellamy et al. (2005) suggest that the aver-
locations. In contrast, the accuracy of predictions made usingige annual rate of change in the OC content for UK top-
a PTF is hard to quantify beyond each sampling point. soil is 0.67gkglyr~1, which equates to approximately
Using the individual measured, point-baség values 1.79tChalyr—1. As the rate of change is comparable in
gives an average OC content of 73:00.56tC ha® com- magnitude to the error associated with prediction, itis clearly
pared to an average value of 71:8P.61tCha?l pro- important to keep error to a minimum if stock changes are to
duced using the RF-predicteBy, values and a value of be quantified accurately. The total soil OC inventory across
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Table 3.Point estimates of OC stock. Average stock was calculated using Eq. (4). Of the prediction methods, “Measured” usesbpeasured
values, “Gridded” uses the gridded predicteg values, and “Great group mean” uses the measured mgger soil great group.

Prediction Average Error from 5th 95th
method OC stock average percentile percentile
(tC haly OC stock error error
(+95 % (tCha?l (tChal (tChal
confidence (% in (%in (% in
interval) brackets) brackets) brackets)
Measured 73.0£0.56 NA NA NA
Gridded 7132061 1.69¢2.31%) 5.71(15.43%) 10.79 (8.37 %)

Greatgroup mean 74.810.70 1.80 (2.47 %) 6.34(17.14%) 19.31 (14.99 %)

Table 4.Carbon stock for the entire study area and by selected soilscape.

Location OC Stock (thal) OC Stock (thal)
estimated using estimated using
great group mean griddedy, (95 %
Dy (£95 % confidence interval)
confidence interval)

Full study area 86.4% 15.59 87.01-8.19

Central England Plateau 84.#215.01 88.25:8.18

Central Upland Spine of N England  86.#516.98 71.84:8.41

Total Carbon Inventory (Tonnes) 156834 16@8295850 15792315014862371

the whole study area, calculated using both the stratifiedected soilscapes. This is a problem as, at the soilscape scale,
mean and gridded, estimates, is shown in Table 4. There is the stratified mean model may either under- or overestimate
a slight difference in the OC stock per unit area (0.6ta  carbon stocks. This issue does not affect the gridded model,
which equates to a difference of over one million tonnes ofbecause it is able to apply rules learned across the entire
carbon for this study area alone. The most notable differenceatudy region to identify areas of high and low bulk density,
between the stratified