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Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, 9 
vapour deposition at low temperatures, and by depressurizing high-pressure 10 
forms of ice. Its structure differs from that of common hexagonal ice Ih in 11 
the order its molecular layers are stacked. This stacking order, however, 12 
typically has considerable disorder; that is, not purely cubic, but alternating 13 
in hexagonal and cubic layers. In time, stacking-disordered ice gradually 14 
decreases in cubicity (fraction having cubic structure), transforming to 15 
hexagonal ice. But, how does this disorder originate and how does it 16 
transform to hexagonal ice? Here we use numerical data on dislocations in 17 
hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be 18 
viewed as fine-grained polycrystalline ice with a high density of extended 19 
dislocations, each a widely extended stacking fault bounded by partial 20 
dislocations, and (2) the transformation from ice Ic to Ih is caused by the 21 
reaction and motion of these partial dislocations. Moreover, the stacking 22 
disorder may be in either a higher stored energy state consisting of a 23 
sub-boundary network arrangement of partial dislocations bounding 24 
stacking faults, or a lower stored energy state consisting of a grain structure 25 
with a high density of stacking faults but without bounding partial 26 
dislocations. Each state transforms to Ih differently, with a duration to fully 27 
transform that strongly depends on temperature and crystal grain size. The 28 
results are consistent with the observed transformation rates, transformation 29 
temperatures, and wide range in heat of transformation. 30 
 31 
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1.  Introduction 1 

It has been proposed that cubic ice Ic plays an important role in various natural phenomena 2 
such as cloud formation in the atmosphere [1-8] and crystallization from amorphous ice in 3 
astrophysical processes [8-10]. But, Ic is not a stable form of ice; it spontaneously 4 
transforms into stable hexagonal ice Ih as it grows. Fundamentally, the chemical potential 5 
of Ic exceeds that of Ih at all temperatures, but its smaller interfacial energy allows its 6 
formation free energy to be less than that of Ih for crystals smaller than a critical size [11], 7 
meaning any cubic crystals larger than this critical size would necessarily be transient. For 8 
a supercooled water droplet to freeze as Ic, the calculated critical radius is as small as about 9 
15 nm [12]. 10 

But the critical-radius argument does not explain recent findings in which Ic crystals 11 
form by depressurization of high-pressure forms of ice. In these cases, the crystals are 12 
randomly oriented polycrystalline aggregates with grains as small as several 10s of 13 
nanometres [1,13]. The critical-radius argument, being based on morphological stability 14 
due to difference in interfacial energies of low-indices lattice planes such as {111} of Ic, 15 
and (0001) and {101�0} of Ih, does not apply because polycrystalline aggregates do not 16 
exhibit such morphological characteristics. Therefore some other mechanism is needed to 17 
explain why the Ic structure appears in such polycrystalline aggregates. 18 

Cubic ice crystals, much larger than the above critical size, have been studied using 19 
x-ray and neutron diffraction, and found to have stacking disorder in one dimension [1,2]. 20 
Kuhs et al. used the term “ice Ic”, adding quotes to reflect deviations from the cubic 21 
symmetry [1], and Malkin et al. referred to this ice as stacking-disordered ice Isd [2,14]. 22 
Recently, the term Ich was proposed as more appropriate for this ice [13,15]. 23 

The stacking disorder can be viewed as a particular arrangement of stacking faults 24 
lying on basal planes in hexagonal ice Ih. Thus the formation of Ic, followed by the 25 
transformation to Ih can be understood as the generation and then annihilation of these 26 
faults. These processes occur via the motion of partial dislocations, so the main problem 27 
here is to understand how the nature and behaviour of the partial dislocations in Ih leads to 28 
the observed features of cubic ice. These observations include the formation of the 29 
stacking-disordered state, wide scattering in enthalpy of transformation (13–50 J/mol 30 
depending on the method by which the Ic crystal was formed [16]), and an exothermic 31 
transformation during stepped heating for about one day from 165 to 225 K [17].  32 

In the present paper, I describe how the motion of partial dislocations can (1) produce 33 
the stacking-disordered state in ice Ih and (2) lead to the observed transformation from Ic to 34 
Ih. In particular, formation of the stacking-disordered state can be explained through the 35 
characteristic nature of widely extended dislocations on basal planes in Ih, whereas the 36 
transformation to Ih can be explained via two steps, the first step being relatively fast, 37 
occurring through a glissile Shockley partial dislocation, and the second through a sessile 38 
Frank−Shockley partial dislocation. The transformation mostly occurs in the first step, but 39 
cannot be completed without the second. 40 

We use the hexagonal system here to express the crystallographic planes and axes 41 
instead of the cubic one, because the formation and transformation mechanism developed 42 
here is easier to describe using dislocation dynamics in hexagonal ice Ih. In addition, for 43 
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simplicity, we use the following notation for the crystallographic directions: ‘a’ for 1 
(1 3⁄ )〈112�0〉, ‘a+c’ for (1 3⁄ )〈112�3〉, ‘c’ for 〈0001〉, ‘pi’ for (1 3⁄ )〈101�0〉, and ‘pi+c/2’ for 2 
(1 6⁄ )〈202�3〉, and the terms for the crystallographic planes as ‘basal plane’ for (0001), 3 
‘prismatic plane’ for {101�0} or {112�0}, and ‘pyramidal plane’ for {101�1} or {112�2}. 4 

Numerical calculations in the following section were done using the mathematical 5 
software Calking-12 by Simplex Inc. 6 
 7 
2.  Dislocation model for the transformation between Ic and Ih  8 

2.1.  Background (1): Relevant partial dislocations and stacking faults 9 
 10 
The two crystal structures differ in their stacking sequence, as shown in Figure 1. The 11 
hexagonal Ih has a periodic stacking sequence of two bilayers, labelled ‘A’ and ‘B’, 12 
whereas Ic has three bilayers, labelled ‘A’, ‘B’, and ‘C’. As we use the hexagonal crystal 13 
nomenclature, it is clearer to first describe the transformation from hexagonal to cubic. 14 

To see how this transformation can occur by the glide motion of a partial dislocation, 15 
consider a cut plane S parallel to the basal plane as shown in Figure 1(a). Now, shear the 16 
top half relative to the bottom half by glide motion of a dislocation with Burgers vector pi, 17 
as shown in Figure 1(c). Then, the bilayer A just above S is turned into the new bilayer C; 18 
that is, the stacking sequence changes to ABC of Ic from AB of Ih. As the translation vector 19 
(or the Burgers vector) pi is not a lattice vector of Ih, the shear plane S in Figure 1(b) is 20 
called a stacking fault, and this type of dislocation is called a partial dislocation to 21 
distinguish it from a perfect dislocation with a Burgers vector equal to a lattice vector (such 22 
as a in Figure 1(c)). Although this process shows the transformation from Ih to Ic, it can be 23 
reversed, transforming Ic into Ih by the glide motion of the same dislocation. 24 

As this shear displacement changes all of the A and B bilayers above plane S into C 25 
and A, the stacking sequence after the shear displacement can be expressed by 26 
AB|CACA…, with the symbol ‘|’ marking the stacking fault location. Then, as the same 27 
type of stacking fault would change C to B, introducing the stacking fault in every other 28 
bilayer would produce the sequence AB|CA|BC|AB|C…, which is the cubic stacking 29 
sequence. That is, Ic can be regarded as a particular state of Ih that includes a regular 30 
arrangement of stacking faults. Consequently, we can view the transformation from Ic to Ih 31 
as an annihilation process of stacking faults that lie on ice Ih basal planes. When all faults 32 
are removed, we are left with pure ice Ih.  33 

 34 



 
 

4 
 
 

 1 
 2 

Figure 1.  A dislocation mechanism for the reversible transformation between hexagonal ice 3 
Ih and cubic ice Ic. Balls and sticks show the oxygen atoms and the hydrogen bonds, respectively: 4 
(a) and (c) for the Ih structure projected on a prismatic plane {112�0} and on a basal plane, 5 
respectively, and (b) and (d) for the corresponding projections of the Ic structure. Bimolecular 6 
layers A-A′, B-B′ and C-C′ are simply designated bilayers A, B, and C, respectively. 7 
Reversible transformation between Ih and Ic can be made by glide motion of a partial dislocation 8 
with a Burgers vector pi (i=1, 2 or 3) along the basal slip plane S between the bilayers A and B. The 9 
bilayer A turns into a new bilayer C by this glide motion, transforming Ih to Ic, and vice versa for 10 
the transformation from Ic to Ih. The same transformation occurs by the glide motion along the slip 11 
plane S′although the arrangement of partial dislocations differs from S as shown in Figure 9. 12 

 13 
 14 
This annihilation process takes place by the partial dislocations moving along the basal 15 

planes. We consider here just the three lowest-energy partial dislocations. These three, 16 
shown in Figure 2, are energetically preferred due to their having the smallest Burgers 17 
vector b in each direction (parallel, perpendicular and inclined to the basal plane) [18,19] . 18 
The partial dislocation shown in Figures 1 and 2(a) has its Burgers vector parallel to the 19 
basal stacking-fault plane, making it a Shockley partial dislocation due to it being glissile 20 
on the basal plane. In contrast, the Frank and Frank-Shockley partial dislocations shown in 21 
Figures 2(b) and (c) are sessile because they require mass transport (due to their extra half 22 
bilayers) to move along the basal plane, and thus move much slower than the Shockley 23 
partial dislocation. 24 

 25 
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 1 
Figure 2.  Stacking faults and relevant partial dislocations in ice Ih. (a) Shockley partial 2 

dislocation with Burgers vector pi (i.e. (1/3) < 011�0 >) parallel to the stacking-fault plane as for 3 
Figure 1; i.e., being glissile. (b) Frank partial dislocation with Burgers vector c/2 (i.e. (1/2) <4 
0001 >) normal to the stacking-fault plane. (c) Frank-Shockley partial dislocation with Burgers 5 
vector c/2+pi (i.e. (1/6) < 022�3 >) inclined to the stacking-fault plane. Both (b) and (c) are sessile 6 
because those Burgers vectors are not parallel to the stacking fault (basal) plane (i.e., mass 7 
transport is required to move these dislocations). Small filled- and open-circles indicate oxygen 8 
atoms in the cubic and hexagonal structure, respectively. A, B and C attached to each bilayer 9 
corresponds to that in Figure 1. H and K represent the hexagonal and cubic sequence, respectively. 10 
An H-bilayer is always sandwiched by the same bilayers A, B or C, whilst a K-bilayer is 11 
sandwiched by different bilayers. 12 

 13 
Consider the stacking-fault energies. By measuring the shrinkage rates of dislocation 14 

loops in Ih, the stacking-fault energy γf1 for the Frank-Shockley type shown in Figure 2(c) 15 
was determined to be 0.31×10-3 J/m2 [20]. No measurements were done for the other two 16 
stacking-fault types. To estimate these energies, we consider the bilayers. The solid-black 17 
circles in Figure 2 show the cubic-stacking bilayers associated with these partial 18 
dislocations. Following Kuhs et al. [1], cubic bilayers are denoted K and 19 
hexagonal-stacked bilayers H. An H-bilayer is that which lies between two identical 20 
bilayers (e.g. a C between two As), whereas a K-bilayer is sandwiched between different 21 
bilayers. Now assume that the corresponding energy for the other stacking-fault types 22 
scales with the number of K-bilayers. Using these numbers from Figure 2, we find a 23 
stacking-fault energy for the Shockley-type γf2 = 0.62×10-3 J/m2 and the Frank-type γf3 = 24 
0.93×10-3 J/m2. The measurements were done at -20 °C, and without further knowledge of 25 
their temperature dependence, we assume they provide a good approximation for lower 26 
temperatures as well. 27 
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 1 
2.2.  Background (2): Extended dislocations 2  3 
The stacking fault described above has a small enough energy to stabilize all types of 4 
dislocations in ice Ih by dissociating into two partial dislocations lying on a basal plane. 5 
This type of dislocation is called an extended dislocation; specifically, to become stable, a 6 
perfect dislocation with Burgers vector a turns into a stacking fault bounded by two 7 
Shockley partial dislocations with Burgers vector p1 and p2 (a = p1 – p2 in Figure 1) as 8 
shown in Figure 3 [18, 19]. This structure allows frequent local switching between Ih and Ic 9 
during glide motion of the extended dislocations on basal planes in hexagonal ice Ih. Such 10 
glide motion of extended dislocations play a key role in the plastic deformation of ice Ih 11 
[18,19,21]. 12 

The width (w) of the extended dislocation in equilibrium we can be calculated by 13 
equating the repulsive force between the two partial dislocations with the shrinkage force 14 
due to the stacking fault energy. This width depends on the Burgers vector b and the angle 15 
ω between b and the line vector l of the associated perfect dislocation (e.g. [22]). The 16 
calculated widths we for the Shockley type (Burgers vector a) described above are 25 nm 17 
for a screw perfect dislocation (ω = 0˚), 49 nm for a 60˚-perfect dislocation (ω = 60˚) and 18 
57 nm for an edge perfect dislocation (ω = 90˚). In this calculation, we use 19 
temperature-range-averaged constant values for lattice constants as a = 0.451 nm, c = 20 
0.734 nm. 21 

 22 

 23 
Figure 3.  Extended dislocation. A perfect dislocation with Burgers vector a dissociated into the 24 
two Shockley partial dislocations that bound a stacking fault. 25 
 26 

Much larger widths of we are obtained for both the Frank−Shockley type shown in 27 
Figure 2(c) and the Frank type shown in Figure 2(b) because their Burgers vector lengths 28 
exceed that of a. For the Frank-Shockley type (Burgers vector a + c), these widths are 437 29 
nm (ω = 0˚ for a component) and 566 nm (ω = 90˚ for a component), whereas for the 30 
Frank type (Burgers vector c), the width is 129 nm. As their generation and motion along 31 
basal planes require mass transport, these dislocations are less important in 32 
low-temperature processes, yet become active at higher temperatures [18,19]. For example, 33 
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these two types of dislocations are frequently observed as dislocation loops in ice Ih just 1 
after growth from the melt and during heat treatment (either by cooling or heating) above 2 
about 220 K [20,23-25]. 3 
 4 
2.3.  Formation mechanism of stacking-disordered state in hexagonal ice Ih 5  6 
Due to their very large extended widths, dislocations in ice Ih tend to align parallel to basal 7 
planes. Consequently, most dislocations in well-aged or annealed ice Ih lie on basal planes, 8 
with only short, segmented dislocations on non-basal planes [18,19,21]. As such, some 9 
cubic stacking sequences exist even in stable hexagonal ice Ih, with a cubicity (fraction of 10 
ice with cubic structure) proportional to the dislocation density. Generally, the cubicity is 11 
very low; for example, an aged crystal of Ih may have a dislocation density of 108–1012 m−2, 12 
yielding a cubicity of 10−8–10−4, low enough to ignore. 13 

However, much larger cubicity may exist in polycrystalline ice Ih with very small 14 
crystallite (grain) sizes. When a grain diameter is smaller than the equilibrium width we, 15 
the stacking faults extend over entire basal planes, resulting in a high fraction of K-bilayers. 16 
Consider an ideal case in which perfect dislocations with Burgers vector a are introduced 17 
on every other bilayer (basal plane). Such a case results in pure cubic ice Ic because each 18 
Shockley partial dislocation turns two bilayers from H to K as shown in Figure 2(a). 19 
Assuming a grain size equal to the maximum extended-width of 57 nm for perfect 20 
dislocations with Burgers vector a, the resulting dislocation density is about 1016 m-2. 21 
Although much larger than that in well-aged ice, the dislocation density could be nearly 22 
this high due to stress concentrations caused by the crystallization method, such as from 23 
depressurization from a high-pressure phase of ice and from rapid freezing of water 24 
droplets. In a real case, dislocations generated by such stress concentrations must be 25 
randomly distributed on different basal planes, which would result in a mixture of Ih and Ic, 26 
or a stacking-disordered state of ice Ih. 27 

Measured grain sizes are consistent with this formation mechanism. For cubic ice 28 
formed by depressurization, Hansen et al. [13] reports grain sizes of 25 nm in both 29 
directions parallel and perpendicular to the c-axis at the beginning of the transformation 30 
from ice Ic to Ih. For vapour-deposited ice, Kuhs et al. [26] reported grain sizes of about 70 31 
nm at the beginning of the transformation to Ih. Although the grain diameters are larger 32 
than we for the Shockley type in this case, the stacking fault can extend more than we 33 
because of the repulsive force between dislocations comprising an array, resulting in a 34 
stacking-disordered state. 35 

As these observed crystallite (grain) sizes are as small as the equilibrium extended 36 
widths we for Burgers vector a, the grain structure is likely an array of extended 37 
dislocations. The arrays of edge and screw perfect dislocations turn into a sub-grain with a 38 
mixed structure of Ih and Ic bounded by arrays of partial dislocations as shown in Figures 39 
4(a) and (b). This dislocation array gives rise to a small change in the crystal orientation 40 
across a layer. The array is also called a low-angle grain boundary, or sub-boundary.  41 

This sub-grain structure is very different from those in other materials with higher 42 
stacking-fault energies, where the sub-boundaries consist instead of perfect dislocations. 43 
Even if the sub-boundaries are composed of extended dislocations, their separation widths 44 
w are much smaller than sub-grain sizes. That is, in other materials, the set of two partial 45 
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dislocation arrays (sub-boundaries 1 and 2) would instead be considered a single low angle 1 
grain boundary (or a single sub-boundary), and thus contain no sub-grain. Thus, the 2 
particular sub-grain structure in Figure 4 becomes possible only with a material with very 3 
low stacking fault energy, such as ice Ih.  4 

 5 

 6 

Figure 4.  Dislocation arrays composed of the extended dislocations shown in Figure 3. (a) Edge 7 
perfect dislocation array extends to two 60˚-partial dislocation arrays separated by w. D is the 8 
distance between the extended dislocations. The misorientation angle θ equals 4.4˚ and angle 9 
between c1 and c2 is 8.8˚. (b) Screw perfect dislocation array extends to two 30˚-partial dislocation 10 
arrays. The misorientation angle θ equals 2.5˚ and angle between c1 and c2 is 0˚. 11 
 12 

As a result of this particular sub-grain structure, the widely extended screw dislocation 13 
array has a new sub-grain between the two partial dislocation arrays as shown in Figure 14 
4(b). Here the misorientation depends on the edge component of the Burgers vector of the 15 
partial dislocations. In particular, the misorientation angle θ for the tilt sub-boundary is 16 

e /b Dθ ≈ , where D is the partial dislocations’ spacing, and be the edge component of the 17 
Burgers vector. 18 

However, according to ordinary dislocation theory, the separation w decreases with 19 
increasing θ (i.e., decreasing D) for an array of extended dislocations (e.g. [22]). According 20 
to theory, as θ increases, the sub-grain shown in Figure 4 may disappear. However, the 21 
theory assumes an infinite number of extended dislocations. For a limited number of partial 22 
dislocations, the interaction forces between the arrays may noticeably change due to the 23 
sub-grain sizes being very small in the present case. 24 

Consider the interaction force exerted on the partial dislocation located at ‘0’ in 25 
sub-boundary 2 from other partial dislocations located at ‘nD’ of sub-boundary 1 in 26 
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Figure 4(a). Using the edge and screw components of pi (bpsin60˚, bpcos60˚), the repulsive 1 
force (per unit length) parallel to the basal plane is 2 
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where f0(w) is the repulsive force between two partial dislocations separated by w on the 4 
same basal plane, µ the shear modulus, and bp the Burgers vector length of pi. The 5 
separation in equilibrium wNe can be calculated by equating fN(w) to the stacking fault 6 
energy γf2. As fN(w) is approximately equal to f0(w)(2N+1) for 𝑤𝑤 ≫ 𝑁𝑁𝑁𝑁, the separation 7 
wNe should roughly equal to we multiplied by the number of partial dislocations in the array. 8 
In the case of Figure 4(a) (i.e., N=2), for example, the equilibrium separation wNe equals 9 
5we provided that 2D < 5we. Thus, in contrast to the case with an infinite dislocation array, 10 
the stacking fault can extend much more than we as the sub-grain size increases.  11 

For a very large N, by equating γf2 and fN(w), we obtain two values of wNe. One value 12 
follows from the above approximation and the other value is close to that predicted by the 13 
dislocation theory. For the case N ≈ 100 and D ≈ 8c (i.e. θ ≈ 2.2˚) in Figure 4(a), the values 14 
are about 20 µm and 5 nm. The former value is of no use because it is much larger than the 15 
size of the sub-grains. The latter solution, which is consistent with the prediction from 16 
dislocation theory, can be obtained only when 𝑁𝑁 ≥ 100, and the separation w becomes 17 
much smaller than we for sub-grain sizes larger than 1.2 µm. 18 

The stacking disordered state can be thought of as an arrangement of extended 19 
dislocation arrays. Consider the arrangement in Figure 5. This arrangement, which gives 20 
maximum cubicity among all possible arrangements of dislocations, was made by 21 
interconnecting the sub-grain structure in Figure 4(b) with its mirror symmetry structure 22 
about the sub-boundary 1, and inserting other extended dislocations running different 23 
directions between the former extended dislocations. A 3-D view of the planes is shown in 24 
Figure 5(b). The misorientation angle between c1 and c2 equals about 10˚ because be ≈ 0.13 25 
nm and D ≈ 0.73 nm. 26 

This arrangement gives a maximum cubicity of 0.75. Real ice would have more 27 
complicated configurations with smaller cubicity. Thus, the estimate is consistent with the 28 
reported values of initial cubicity of about 0.6 [1,13]. 29 
 30 
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 1 

Figure 5.  Interconnecting extended dislocation arrays that maximize cubicity in the present 2 
dislocation model. (a) Two extended dislocation arrays shown in Figure 4(b) interconnecting with 3 
the third array as shown in (b). 4 

 5 

2.4.  Formation of sub-boundary structures 6  7 
Consider first the formation of dislocations in ice. A rapid change of pressure or 8 
temperature (e.g. from depressurization or rapid freezing) causes large stresses in Ih that 9 
introduce many dislocations of all possible Burgers vectors [19,21]. In particular, a 10 
dislocation with Burgers vector a, which plays a key role in plasticity of ice Ih, can be 11 
generated by uniaxial compression (or tension) inclined to the c-axis, but not by uniaxial 12 
deformation parallel to the c-axis; this case instead requires a dislocation with Burgers 13 
vector a + c. A dislocation with Burgers vector c, on the other hand, can be generated only 14 
when a shear stress that is exerted on prismatic planes has a component parallel to the 15 
c-axis. Just after generation, all these dislocations must lie on their own slip planes. 16 

At sufficiently low temperature, the dislocations do not climb, and thus only 17 
dislocations with Burgers vector a can extend on basal planes or dissociate into Shockley 18 
partial dislocations. These partial dislocations rearrange into sub-boundaries normal to 19 
basal planes such as A1A2, B1B2, and C1C2, resulting in a stacking disordered state as 20 
shown in Figure 6(a). In contrast, dislocations with Burgers vector a + c or c do not 21 
dissociate because their dissociation requires climb motion along basal planes, and such 22 
dislocations thus remain as perfect dislocations glissile on pyramidal or prismatic planes, 23 
respectively. These perfect dislocations rearrange into stable arrays (or sub-boundaries) 24 
parallel to basal planes such as A1B1 and A2B2 in Figure 6(a). 25 

Such a sub-boundary structure will change to a lower energy configuration through 26 
dislocation reactions. These reactions include annihilation of dislocations with opposite 27 
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Burgers vectors, absorption and desorption of partial dislocations by arrays during 1 
sub-boundary migration, and sub-grain growth by annihilating sub-grains with a higher 2 
stored energy. 3 
 4 

 5 
 6 
Figure 6.  Adjacent sub-grains and grains with stacking-disordered ice. (a) Subgrain structure 7 
bounded by partial dislocation arrays A1A2, B1B2, and C1C2, and also perfect dislocation arrays 8 
A1B1 and A2B2. (b) Adjacent grains structure with stacking disorder. 9 
 10 
2.5.  Modelling of the transformation from Ic to Ih 11  12 
Consider the annealing (or ageing) of a stacking-disordered ice, or equivalently, a 13 
fine-grained polycrystalline ice with a high dislocation density. To reduce their stored 14 
energy, the dislocations rearrange and annihilate. During this process, the total area of the 15 
associated stacking faults decreases, transforming the ice to a stable state of ice Ih. 16 

Thus, to model the transformation, we must model dislocation annihilation. Ideally, 17 
the modelling of such annihilation should consider the behaviour of high-density 18 
dislocations because their behaviour could differ from that of isolated single dislocations, 19 
as typically shown by dislocation avalanches in ice Ih [27]. We do not consider such 20 
complicated interactions here; instead, we just consider some probable dislocation 21 
mechanisms that can annihilate stacking faults. 22 

Consider two cases for the initial state of the transformation: one in which all of the 23 
stacking faults are bounded by partial dislocations (Figure 6(a)), and the other in which 24 
stacking faults are bounded by high-angle grain boundaries with no partial-dislocations 25 
(Figure 6(b)). The former case would occur at low temperatures as described in the 26 
preceding section, resulting in either fewer dislocations or stable arrays. In the latter case, 27 
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the high-angle grain boundaries act as effective sinks for dislocations. To act as strong 1 
sinks, the temperature should be relatively high. But for powdered ice, or generally when 2 
there is only weak binding between the grains, the interface (or surface) can act as effective 3 
sinks for dislocations even at low temperatures. Then, stacking faults will be swept out by 4 
nucleation and motion of partial dislocations on the faulted planes. In either case, the 5 
stacking faults are removed; in the former by sub-boundary migration, in the latter through 6 
the motion of partial dislocations. 7 

Although the processes in both cases would act simultaneously, we consider them 8 
separately in the following sections. 9 
 10 
2.5.1.  Dislocation processes involved in the transformation 11  12 
Here, we consider the elemental dislocation processes that may be active in the 13 
annihilation of stacking faults. The focus is on determining the temperature range in which 14 
each relevant process becomes active. 15 
 16 
2.5.1.1. Glide motion of partial dislocations to annihilate dislocation arrays. Extended 17 
dislocation arrays consisting of two Shockley partial dislocations can be annihilated by 18 
glide motion of the partial dislocations. Possible arrangement of this case, in which the 19 
Burgers vectors a and –a lie on the same basal plane, is shown in Figure 7. As the partial 20 
dislocations comprising the sub-boundaries 2 and 3 have opposite Burgers vectors p1 and –21 
p1, glide motion on the same basal plane cause these two partial dislocations to quickly 22 
annihilate each other, and then the partial dislocations composing the sub-boundaries 1 and 23 
4 also annihilate each other to eliminate the stacking fault completely, resulting in a grain 24 
only H-bilayers. 25 
 26 
2.5.1.2. Jogs and super jogs of extended dislocations. In general, dislocations do not lie on 27 
the same basal plane, instead having a jog or super jog. The jog slows the motion of a 28 
dislocation because it requires mass transport. Consider the jogs in Figure 8. When the 29 
height AB equals c/2, the shift is called a jog; when it is an integral multiple of c/2, it is 30 
called a super jog. In the case of (b), climb motion is required to move the non-basal 31 
segment AB in the direction parallel to y-axis together with those extended on basal planes, 32 
whereas the case in (a) can move along y-axis without climb motion. Consequently, we 33 
need to consider climb motion even in the case shown in Figure 7 if those dislocations 34 
have jogs or super jogs. 35 
 36 
2.5.1.3. Climb motion of extended dislocations to annihilate dislocations with opposite 37 
Burgers vectors. Consider now the case in which two extended dislocations with opposite 38 
Burgers vectors lie on different basal planes separated by distance D. Figure 9 shows two 39 
examples: (a) with slip plane S from Figure 1, in which D equals an integral multiple of c, 40 
and (b) with slip plane S′, in which D equals a half-integral multiple of c. In both cases, 41 
climb motion is required to move the extended dislocations normal to basal planes. 42 
However, stacking faults prevent climb motion of partial dislocations, and therefore double 43 
jog formation is required. 44 
  45 
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 1 
Figure 7.  Sub-boundary arrangement with dislocations of opposite Burgers vectors that will 2 

be annihilated by glide motion. The edge and screw components of the partial dislocations depend 3 
on the angle ω between the line vector l (unit vector parallel to the dislocation line) and the Burgers 4 
vector a of the perfect dislocation. 5 

 6 

 7 
Figure 8.  Jog on an extended dislocation. (a) Glissile jog for the motion in the y direction.  8 

(b) Sessile jog in the y direction, but glissile in the x direction. When the jog is longer than one 9 
layer long, it is a super jog. 10 

 11 
Climb motion can proceed through double jog formation. First a short part of the 12 

extended dislocation shrinks to a perfect dislocation (Figure 10(a)), and then it can bow out 13 
due to an attractive force from partial dislocations (i.e., 3 and 4, or 3′ and 4′ in Figure 9). In 14 
general, double jog formation via constriction of an extended dislocation rarely occurs 15 
because the recombination of two partial dislocations has a high activation energy [28]. 16 
However, this activation energy can be lowered if the bow-out, such as B′A0A′AB shown 17 
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in Figure 10(b), is formed at a geometrical jog A0B′. Then, climb of the segment AA′ in the 1 
z direction can take place as the lateral motion of the segment AB proceeds. When AA’ 2 
comes within a distance D of the lower fault plane, it dissociates into two partial 3 
dislocations. Then, as shown in Figure 10(c), two dislocation dipoles are formed when the 4 
overlapped part annihilates. If the Burgers vector of the super jogs (AB and A′B′) is 5 
parallel to the x-axis (ω = 0˚ in Figure 9), the super jogs can glide on a non-basal plane to 6 
completely annihilate the stacking faults. In this special case, the bow-out in Figure 10(b) 7 
can move on a prismatic plane without climb motion, resulting in much faster annihilation 8 
of stacking faults than in the general cases (i.e., ω ≠ 0˚). 9 

 10 

 11 
Figure 9.  Extended dislocations with opposite Burgers vectors to be annihilated by climb 12 

motion. Two extended dislocations at a distance D that equals (a) an integral multiple of c, and (b) 13 
a half-integral multiple of c. 14 
 15 
2.5.1.4. Dissociation of a perfect dislocation inclined to the basal plane. Dissociation on 16 
the basal plane is energetically favoured by all types of perfect dislocations lying on not 17 
only the basal plane but also inclined to the basal plane. Thus, a pair of partial dislocations 18 
can be generated from perfect dislocations that formed with the ice. One possible 19 
configuration of such partial dislocations is shown in Figure 11. This figure shows how a 20 
perfect dislocation inclined to the basal plane extends to a spindle-shaped configuration on 21 
the basal plane of a stacking fault to reduce the total energy. In this case, unlike the 22 
extended dislocations described in subsection 2.2, the outside is faulted, but there is no 23 
fault between the two partial dislocations, Therefore, no attractive force is exerted between 24 
the two partial dislocations although the curvature of the partial dislocations tends to shrink 25 
the extended configuration. Then, the two partial dislocations move apart, increasing both 26 
δ and ∆ (Figure 11), and finally the non-basal segments may be absorbed by the grain 27 
boundary or interface, resulting in two parallel partial dislocations on the basal plane as 28 
shown in Figure 12(b). These two partial dislocations then move apart and annihilate the 29 
stacking fault. In addition to this process, a half loop of partial dislocation can be also 30 
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generated from this spindle-like configuration if it forms close to the grain boundary or 1 
interface as also shown in Figure 12(b). 2 

 3 

Figure 10.  Annihilation of extended dislocations by climb. (a) Double jog formation. (b) Climb 4 
motion of constricted perfect dislocation. (c) Formation of dislocation dipoles to annihilate the 5 
extended dislocations shown in Figure 9. 6 

 7 
Figure 11.  Dissociation of a skewed perfect dislocation on the basal plane. 8 
 9 
2.5.1.5 Mobility of Shockley partial dislocations. For glide motion of a Shockley partial 10 
dislocation, we estimate the mobility using the data in references a basal plane [18]. This 11 
data was obtained by velocity measurements on isolated perfect-dislocations with Burgers 12 
vector a that extend to the stacking fault bounded by two Shockley partial dislocations 13 
lying on a basal plane. Although interaction forces between dislocations moving on 14 
different basal planes may affect the dislocation motion (as in a dislocation avalanche [27]), 15 
we assume a linear relationship between the average dislocation velocity and the driving 16 
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 1 
Figure 12.  Transformation of a cylindrical grain of cubic ice to hexagonal ice. (a) Side view of a 2 
transient state having a mixture of H-bilayers (hexagonal bilayers) and K-bilayers (cubic bilayers). 3 
N is the total number of bilayers. The bilayer separation equals to c/2. Here, K, H and K/H denote 4 
pure K-bilayers, pure H-bilayers, and K-bilayers partly transformed to H-bilayers, respectively. (b) 5 
Cross-section showing an initial stage of the transformation with nucleation of partial dislocations 6 
from the interface. (c1) A straight Shockley partial dislocation lying along the Peierls trough 7 
(G-line). (c2) A curved or looped Shockley partial dislocation (G-loop). (c3) A pair of Shockley 8 
partial dislocations with different Burgers vectors pi and pj (i ≠ j). Each of these Shockley partial 9 
dislocations in (c1)–(c3) transforms two bilayers from K to H. (c4) A Frank−Shockley partial 10 
dislocation loop (C-loop) with Burgers vector c/2 + pi that annihilates an isolated K-bilayer. 11 
Although it is shown by a line here, the perfect dislocation with Burgers vector a is actually an 12 
extended dislocation with a width we. 13 
 14 
force obtained by the above mentioned experiments. In this case, the Shockley partial 15 
dislocation glides at average velocity Vg on the basal plane, with magnitude proportional to 16 
the shear stress τ applied on the dislocation: 17 

 
g

g
0 exp( )

fV M M
b
E

M M
kT

τ= =

= −
 , (2) 18 

where Eg and Mg = M/b are the activation energy and the mobility for the glide motion, and 19 
𝑓𝑓 = 𝜏𝜏𝜏𝜏 is a force per unit length of dislocation.  20 

Since a curved dislocation moves faster than a straight one sitting along the Peierls 21 
trough, we consider two values for the mobility Mg (or M). As a lower bound for M (i.e., 22 
for the case of straight dislocation along the Peierls trough), Eg and M0 are 0.756 eV and 23 
3.0×103 m/s∙Pa, respectively [29]. By reanalyzing the velocity data of curved dislocations 24 
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with the Burgers vector a in the temperature range 254–270 K from reference [30], Eg and 1 
M0 for curved Shockley partial dislocations are 0.624 eV and 14.5 m/s∙Pa, respectively. The 2 
latter value is used here as an upper bound for the mobility. In this calculation, the M0 3 
value for a Shockley partial dislocation is assumed to be twice that for a perfect dislocation 4 
because a curved perfect dislocation would dissociate into two partial dislocations with the 5 
same mobility [31].  6 

We must pay careful attention to extrapolation of the mobility data to lower 7 
temperatures because point defects, such as Bjerrum defects and self-interstitials, with 8 
different activation energies for their formation and motion may affect the dislocation 9 
mobility at low temperatures. However, the diffusion coefficients for proton transfer over a 10 
wide temperature range of about 190–260 K are consistent with those of self-interstitials 11 
above 220 K [32]. Therefore, we assume that the values of Eg and M0 obtained above 250 12 
K provide a good approximation for lower temperatures as well. 13 

 14 

2.5.2.  Transformation through sub-grain growth 15  16 
Upon annealing (or ageing), stacking faults can be annihilated through motion of the 17 
sub-boundaries (e.g. Figure 6(a)). Such motion is a key part of sub-grain growth, and thus 18 
is a key process during the recovery of deformed crystals (e.g. [33]). Subgrain growth is 19 
largely driven by the energy stored in sub-boundaries. However, the energy of a 20 
sub-boundary strongly depends on the misorientation angle of adjacent sub-grains, which 21 
is not constant during annealing (or ageing). In addition, the mobility of a sub-boundary 22 
increases with increasing misorientation angle, but the average misorientation angle 23 
decreases during sub-grain growth. Such factors make it difficult to formulate the growth 24 
process of sub-grains. So, instead, here we focus on the dominant processes that transform 25 
K-bilayers to H-bilayers in the sub-grain structure composed of a particular arrangement of 26 
partial dislocations. 27 

If a specimen has a sub-grain structure such as that in Figure 7, the mechanism 28 
described above will remove all extended dislocations as well as stacking faults. As a result, 29 
the number of sub-grains will decrease. Thus, the average sub-grain size increases as the 30 
cubicity decreases, in agreement with measurements [13]. However, real arrangements 31 
must include some disorder in the arrangement of partial dislocations and stacking faults 32 
such as that shown in Figure 6(a). Nevertheless, because interaction forces between 33 
sub-boundaries must be large enough for their migration in very small sub-grains, 34 
coalescence of sub-boundaries may take place even in such a complicated sub-boundary 35 
structures. 36 

Such reactions between sub-boundaries may result in not only growth of sub-grains 37 
but also sparser distribution of partial dislocations in the sub-boundaries. When this occurs, 38 
the interaction forces that constrain the array decrease, allowing some partial dislocations 39 
to release from their sub-boundary, bringing the extension closer to the equilibrium width 40 
we. Subsequently, the particular sub-boundary network either breaks up into randomly 41 
distributed extended dislocations or a normal sub-boundary network composed of perfect 42 
dislocations. Either way, the resulting cubicity would be consistent with that in stable ice 43 
Ih. 44 
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Among various dislocation processes described above, the fastest transformation 1 
would occur through glide motion of Shockley partial dislocations in the sub-grain 2 
structure. The slowest transformation, in contrast, would occur from the arrangement of 3 
extended dislocations shown in Figure 9. The slower rate occurs because the annihilation 4 
of partial dislocations and stacking faults involves climb motion of the constricted perfect 5 
dislocations. A general mix of dislocation processes would result in various transformation 6 
rates between these fast and slow cases. 7 
 8 
2.5.3.  Transformation through annihilation of stacking faults 9  10 
If the partial dislocations that bound the stacking faults are absorbed by the grain boundary, 11 
the stacking faults extend across the entire grain (e.g. Figure 6(b)). Such a grain structure 12 
can be obtained as a result of the sub-grain growth described above because a sub-grain 13 
structure could be included in each grain as its substructure. And if the Shockley-type 14 
stacking faults are laid out on every other basal plane, the grain would be pure (ideal) cubic 15 
ice Ic. In this case, to transform to stable ice Ih upon annealing, stacking faults must be 16 
gradually annihilated by nucleation and motion of partial dislocations. 17 

Consider an intermediate state in the transformation, that is, a mixed state of H- and 18 
K-bilayers. An example is in Figure 12(a) which corresponds to a grain in Figure 6(b). For 19 
the transformation of complete K-bilayers to H-bilayers, half loops of partial dislocations 20 
must nucleate at the grain boundary or interface, as in Figure 12(b), because only at the 21 
grain boundary or interface can there be sufficient irregularities to allow dislocation 22 
nucleation. Then, the partial dislocations sweep inward, transforming K-bilayers to 23 
H-bilayers. The nucleated partial dislocations are most likely the Shockley-type because 24 
only this type is glissile or requires no mass transport for nucleation and motion. By a 25 
Shockley partial dislocation sweeping inward, two K-bilayers are transformed into two 26 
H-bilayers as shown in (c1) of Figure 12.  27 

When two such Shockley partial dislocations meet in the interior, two things can 28 
happen. If their Burgers vectors differ (e.g. one is p1, the other p2 in Figure 1), then a 29 
perfect dislocation with Burgers vector a (equal to p1 – p2) is formed as shown in Figure 30 
12(c3). If instead their Burgers vectors are the same, they turn into a single Shockley 31 
partial dislocation or a circular loop as shown in (c2). A given K-bilayer pair may contain 32 
many combinations and shapes of Shockley partial dislocations, each with its own 33 
transformation rate. As curved dislocations move faster than straight ones lying along the 34 
Peierls trough [19,29,34], the case in (c1) should have the smallest transformation rate, 35 
whereas the circular loops in (c2) should have the fastest rate. Other cases would have 36 
intermediate rates. Here we designate the straight-line glissile Shockley partial dislocation 37 
as ‘G-line’ and the circular loop as ‘G-loop’. 38 

The Frank−Shockley type dislocation is also required for the transformation. As the 39 
Shockley type nucleates randomly, each time transforming two bilayers from K to H, some 40 
regions of single K-bilayer will remain. Transforming these single bilayers requires the 41 
Frank−Shockley partial dislocations. But these dislocations involve mass transport in both 42 
their generation and their motion through the crystal, which means that they are much 43 
slower than the Shockley partial dislocations. Moreover, the climb velocity of a 44 
Frank−Shockley partial dislocation rapidly decreases as it moves away from the grain 45 
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boundary or interface due to a larger diffusion path from this interface, which means that a 1 
nucleated Frank−Shockley partial dislocation rapidly turns into a circular loop as shown in 2 
Figure 3(c4). We designate this type of dislocation loop as a ‘C-loop’. 3 

The Frank type shown in Figure 2(b) can also contribute to the transformation, 4 
although the process requires three K-bilayers, which then transform into two H-bilayers. 5 
Geometrically and energetically, this seems less likely to occur than that of the 6 
Frank-Shockley type. And as this type cannot annihilate isolated single K-bilayers, we 7 
consider only the Frank−Shockley and Shockley types in the following calculations.   8 
 9 
3.  Results and discussion 10 
3.1.  Transformation through sub-grain growth 11 
 12 
We view stacking disordered ice as a sub-grain structure composed of extended 13 
dislocations in hexagonal ice Ih. This structure gradually transforms into a stable state of Ih 14 
via sub-grain growth driven by dislocation reactions. Various dislocation mechanisms and 15 
processes may occur during this growth process, such as described in Section 2.5.1, 16 
although it is difficult to formulate such complicated processes. Instead, here we calculate 17 
the annihilation rate of partial dislocation arrays for the fastest case shown in Figure 7. 18 

The four sub-boundaries 1 to 4 in Figure 7 are formed by dissociation from two 19 
perfect dislocations with opposite Burgers vectors a and -a lying on the same basal plane. 20 
Each sub-boundary is composed of the same 2N+1 partial dislocations with the separation 21 
D, and the separations between the sub-boundaries 1 to 2 (also 3 to 4) and 2 to 3 are w1 and 22 
w2, respectively. We now estimate the time required to annihilate the sub-boundaries 2 and 23 
3 at a constant temperature tg, hereafter the annihilation time, and also the temperature 24 
above which the sub-boundaries 2 and 3 are annihilated within a given duration of 25 
isothermal annealing temperature Tg, hereafter the annihilation temperature. To calculate 26 
these quantities, assume that the sub-boundaries 1 and 4 cannot move outwards, meaning 27 
that 2w1 + w2  w0, with w0 being the initial value of the separation between the 28 
sub-boundaries 1 and 4. Also assume that initially w1 = w2 ≈ 2ND, and that sub-grain 29 
growth takes place only by increasing w1 (thus decreasing in the sub-grain size w2). 30 

Consider the interaction force per unit length fij(x) exerted on the partial dislocation at 31 
‘0’ in sub-boundary i from the partial dislocations in the sub-boundary j. This force can be 32 
given by Equation (1), modified to fit a different value of ω. For the case ω = 60˚, which 33 
has the maximum attractive force between sub-boundaries 2 and 3, this force fij(x) is 34 

( ) ( )
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∑ ∑ ,  (3) 35 

where bie and bis are the edge and screw components of the partial dislocations in the array 36 
i. Focusing on the sub-boundary 2, the force exerted on the partial dislocation at the centre 37 
of the sub-boundary 2 can be expressed by 38 

 ( ) ( ) ( ) ( )2 1 2 21 1 24 1 2 23 2 f2,F w w f w f w w f w γ= − + − − ,  (4) 39 

with the edge and screw component bp/2 and −√3𝑏𝑏p/2, bp and 0, –bp and 0, and –bp/2 and 40 
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√3𝑏𝑏p/2 for i = 1 to 4, respectively. 1 
Substituting Equation (4) into f of Equation (2), the velocity of the partial dislocation 2 

at the centre of sub-boundary 2 can be obtained by g 2 p/V MF b= . To obtain the fastest case, 3 

the mobility M for curved dislocations (Section 2.5.1) was used in the following 4 

calculation. For simplicity, assume that all partial dislocations comprising sub-boundary 2 5 

move at the same velocity Vg. 6 
Then, to estimate tg, integrate 1/Vg for w2 from the initial value 𝑤𝑤2

0 to 𝑤𝑤2
0/2 and 7 

assume 𝑤𝑤2
0 = 25 nm, the average initial size in the experiments [13]. We then calculate tg 8 

as a function of annealing temperature for a given distance D. As a result, when D = 8c, the 9 
time equals 33 h at 140 K, 5.7 h at 145 K, 3,800 s at 150 K, 811 s at 155 K, and 188 s at 10 
160 K. In the experiments, annealing occurred for about 2 h, and the crystallite size 11 
increased above 150 K but not at 145 K. Thus, the calculations agree with experiment, with 12 
sub-grain growth occurring above 150 K. 13 

We now calculate the annihilation temperature Tg for several cases, again assuming an 14 
annealing time of 2 h. Table 1 shows Tg calculated for sub-grain sizes (i.e. 𝑤𝑤2

0) of 25 and 15 
100 nm. This table shows how the annihilation temperature Tg depends on the sub-grain 16 
size 𝑤𝑤2

0, the distance D, and the number N of the partial dislocation array. Specifically, Tg 17 
increases with increasing 𝑤𝑤2

0 and D, but with decreasing N; however, the changes are 18 
small, with Tg changing by only a few degrees near 150 K, even for larger changes in the 19 
parameters. Thus, significant sub-grain growth during laboratory timescales occurs at 20 
about 150 K. 21 

 22 
Table 1.  Annihilation temperature of two partial dislocation arrays with opposite Burgers vectors 23 
by glide motion. 24 

Subgrain size 𝑤𝑤20 
(nm) 

Distance D 
(nm) 

Number of partial disl. 
2N+1 

Misorient. 
Angle θ ° 

Annihilation 
temperature  

Tg (K) gT ′  (K) 

 
25 

 1  151 165 
8c (~5.9) 5 2.5 148 161 

3c/2 (~1.1) 21 13.5 144 156 
 

100 
 1  162 174 

8c (~5.9) 17 2.5 153 167 
3c/2 (~1.1) 91 13.5 148 160 

 25 
For the ice Ic formed by depressurization from ice V, the cubicity slightly decreased 26 

from about 0.62 to 0.58 during 9 h of annealing from 150 to 180 K, then decreased to 27 
about 0.27 over 8 h in going from 180 K to 210 K, whereas the crystallite (sub-grain) size 28 
increased from about 25 to 50 nm, whilst annealing up to 180 K followed by an increase to 29 
more than 100 nm during annealing above 180 K [13]. Similar results were found in ice Ic 30 
formed by depressurization from ice IX although the initial cubicity was around 0.4 in this 31 
case. In vapour-deposited ice Ic, Kuhs et al. [1] found a more rapid decrease in cubicity, 32 
going from about 0.45 to 0.1 in an 8-h annealing from 175 to 200 K. 33 
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In the glide-annihilation model, the stacking faults start annihilating after 1 

sub-boundaries 2 and 3 have completely annihilated. Starting from this time, we calculate 2 

the temperature 𝑇𝑇g′  for the complete annihilation of a stacking fault between 3 

sub-boundaries 1 and 4. Substituting the attractive force f14 + γf2 between these sub-bound- 4 

aries into f of Equation (2), the velocity of sub-boundaries 1 and 4 can be obtained by 5 

g 14 f2 p( ) /V M f bg= + . Then, the annihilation temperatures 𝑇𝑇g′ were calculated by the same 6 

method, and for the same parameters, as those for Tg, and are included in Table 1. The 7 

resulting temperature is about 12–14 K higher than Tg. This result may help explain 8 

observed delay in the annihilation of stacking faults after significant sub-grain growth has 9 

occurred. However, as all these processes with glide motion occur below 180 K (Table 1), 10 

another process or processes must slow the transformation. One such slow, rate-limiting 11 

process may be the motion of the jogged dislocations. However, this motion may not be the 12 

slowest part of the transformation. 13 
The slowest process of the transformation is likely the annihilation of extended 14 

dislocations by climb motion. As described in Section 2.5.1, formation of the constricted 15 
bow out is required for this annihilation. The rate-limiting step of this annihilation process 16 
may be the climb motion of the perfect dislocation segment AA′ in Figure 10(b). To 17 
estimate this rate, we calculate the time required for two extended dislocations with 18 
opposite Burgers vectors a with ω = 90˚ in a distance r to annihilate each other by the 19 
climb motion of AA′. This climb motion is driven by the attractive force fy acting on AA′ 20 
from two partial dislocations 3 and 4 in (a) (or 3′ and 4′ in (b)). The climb velocity equals 21 
[22] 22 
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The force fy (per unit length) is 24 
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where DSD is self-diffusion coefficient, b the Burgers length of the perfect dislocation (i.e. 26 
the lattice constant a), w the separation of the two partial dislocations (i.e. the sub-grain 27 
size), RSD the outer radius for the molecular diffusion, and Ω the molecular volume. The 28 
self-diffusion coefficient is given by 29 
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,  (7) 1 

with ASD = 1.16×10-3 m2/s and ESD = 0.62 eV [35,36]. 2 
 3 
Table 2.  Annihilation temperature of two extended dislocations with opposite Burgers vectors by 4 
climb motion. 5 

Sub-grain size w (nm) Distancea D (nm) 
Annihilation temperature Tc (K) 

RSD = 100 nm RSD = 1 µm 

 
25 

16c (~11.7) 180 181 
4c (~2.9) 178 179 

50 
32c (~23.5) 187 189 
16c (~11.7) 186 188 
4c (~2.9) 184 186 

100 
64c (~47.0) 196 198 
16c (~11.7) 193 195 
4c (~2.9) 191 193 

a Note the distance D, which corresponds to the length A′B′ in Figure 10(c), includes a jog height 6 
A0B′ in (b). 7 
 8 

To compare with experiments by Hansen et al. [13], the annihilation temperature Tc 9 
was determined for an annealing time of 2 h. In this calculation, the annihilation time tc 10 
was calculated by integrating 1/Vc for r from D to 0, assuming the cases of R equal to 100 11 
nm and 1 µm. The calculated results in Table 2 show that annihilation by climb becomes 12 
active above about 180 K. The annihilation temperature Tc decreases by only a few degrees 13 
when D decreases by one order of magnitude, but increases by more than 10 K when the 14 
sub-grain size increases from 25 to 100 nm. 15 

In the experiments, the crystallite (sub-grain) size at 180 K is around 50 nm. For this 16 
size, the present model predicts annihilation as the temperature increases above a Tc of 17 
184–187 K. After the possible dislocation reactions occur, dislocations of various shapes, 18 
including faulted dislocation loops, must remain. The resulting cubicity will be roughly 19 
proportional to the dislocation density. To annihilate all stacking faults, all dislocations 20 
would have to be removed from ice sample, which cannot occur. Thus, the resulting 21 
hexagonal ice Ih will contain some cubic stacking sequences. 22 
 23 
3.2.  Transformation through annihilation of stacking faults 24  25 
Consider the transformation rate on annealing (or ageing) the grain structure described in 26 
Section 2.5.3 and also shown in Figure 6(b). Two cases are analysed, that with Shockley 27 
partial dislocations, and that with Frank-Shockley partial dislocations. 28 
 29 
3.2.1.  Transformation by Shockley partial dislocations 30  31 
The shrinking of a glissile Shockley partial dislocation loop (G-loop) is likely the fastest 32 
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annihilation process in the transformation. For this reason, we consider it an upper bound 1 
of the transformation rate. In this case, the driving force f in Equation (2) for a faulted 2 
dislocation loop of radius r equals  3 
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 , (8) 4 

where n is Poisson’s ratio, µ the shear modulus, bp the Burgers vector length, and α a core 5 
parameter [22]. Then, we obtain the shrinkage rate of G-loop r  as 6 
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  . (9) 7 

Substitution of M0 = 14.5 m/s∙Pa, Eg = 0.624 eV for a curved dislocation, γf2 = 0.62 mJ/m2, 8 
n = 0.325, α = 1.7 and values of bp and µ at different temperatures [35,36] produces the 9 
shrinkage rates at 160–250 K shown in Figure 13.  10 

The resulting shrinkage rate of G-loops increases rapidly as the loop radius r decreases 11 
below 1 µm, due to the first 1/r term. But at larger r, the second constant term on the right 12 
side of Equation (9) dominates the rate, and the shrinkage rate becomes constant. At a 13 
fixed r, the shrinkage rate is sensitive to temperature. For example, with an initial 14 
loop-radius (or grain radius) of 5 µm, the transformation of bilayers is completed within 15 
one second at 250 K, but over a month at 160 K. 16 

For the lower bound of the transformation rate from the Shockley partial dislocation, 17 
we consider the sweep by a straight 30˚-partial dislocation across the ice grain. This case is 18 
considered because such a dislocation would arise from a perfect screw dislocation, and a 19 
screw dislocation moves much slower than other perfect dislocations [19,29]. When a 20 
straight 30˚-partial dislocation lies along the Peierls trough (i.e., parallel to a), as shown in 21 
Figure 12(c1), the velocity of the Shockley partial dislocation has a minimum, being equal 22 
to the second term in Equation (9): ( ) ( )30 f2 0p g/ expV b M E kTg= − . Substituting Eg = 0.756 23 
eV and M0 = 3.0×103 ms-1Pa-1, the values of V30 (G-lines) at 160–250 K, one gets the 24 
values shown in Figure 13. In this calculation, the value M0 was set to twice the value 25 
obtained for a perfect screw dislocation because it dissociates into two 30˚-partial 26 
dislocations. 27 

As a result, the annihilation rates of the stacking faults by the Shockley partial 28 
dislocations distribute between the horizontal G-line (lower bound) and the G-loop curve 29 
(upper bound) at a given temperature in Figure 13. A wider range occurs at lower 30 
temperatures. For a grain radius (i.e. an initial G-loop radius) exceeding 10 µm, the 31 
annihilation rates range over two orders of magnitude at 160 K but are within the same 32 
order of magnitude at 250 K. The change is due to the difference in Eg for curved 33 
dislocations and straight dislocations, and this difference is due to the kink formation 34 
energy required to move the straight dislocation lying along the Peierls trough [19,29]. For 35 
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smaller grain radii, the difference in the annihilation rate between lower and upper bound 1 
increases with decreasing radius due to the increasing driving force f for G-loops with 2 
smaller r. 3 

 4 

Figure 13.   Annihilation rates of stacking faults by glide motion of Shockley partial dislocations 5 
(G-loops and G-lines) and by climb motion of Frank−Shockley partial dislocations (C-loops) as 6 
functions of radius r and for four values of temperature. 7 
 8 
 9 
3.2.2.  Transformation by Frank−Shockley partial dislocations 10  11 
The second transformation mechanism to consider is the shrinkage of a Frank−Shockley 12 
partial dislocation loop (C-loop) (see Figure 12(c4)). The driving force for shrinkage of 13 
this type is 14 

 2 2
C p n f1

p n

2 8 8ln ln
4 (1 ) 2

r rF b b
r b b

µ n α α γ
p n

    − ≈ + +    −     
 , (10) 15 

where bp and bn are the parallel and normal components of the Burgers vector to the basal 16 

plane [20], bp = pi = a/√3 and bn = c/2.  17 
For diffusion-controlled dislocation climb, the shrinkage rate of a C-loop can be 18 

expressed by 19 

 SD c

n n

exp 1D Fr
b kTb

b
  Ω

= −  
  

  , (11) 20 

where DSD is the self-diffusion coefficient, Ω the molecular volume and b the geometrical 21 
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factor [37]. When the radius r of the C-loop is small compared with the grain radius, we 1 
can assume spherical symmetry, solve the diffusion equation, and obtain b = 2 [37]. For 2 
large r, b should be smaller than 2 although it exceeds 2 for r very close to R (within a few 3 
nm in the present case). To obtain the lower bound of the annihilation time (i.e., upper 4 
bound for the shrinkage rate), we assume this value of 2 applies to large r (≈ R). If DSD is 5 
given by Equation (7) with values for bp, bn, n, α, and µ all being the same as those for the 6 
G-loop, then one gets the shrinkage rates of C-loops plotted in Figure 13. The shrinkage 7 
rates of the C-loops are more than two orders of magnitude less than those of the G-loops, 8 
but become larger than the lower bound (G-lines) at smaller radius r. 9 
 10 
3.3.  Annihilation time of the stacking faults 11  12 
To address the calculated annihilation times of the stacking faults, we first examine the 13 
annihilation times for the partial dislocation arrays by glide motion tg and for the extended 14 
dislocations by climb motion tc. The results are plotted in Figure 14. The solid red curve 15 
shows tg calculated for the initial sub-grain size of 25 nm as the fastest case, and the dashed 16 
red curve shows tc calculated for the sub-grain size of 0.1 µm as the slowest case. That is, 17 
the transformation from Ic to Ih by this mechanism would start between these two red 18 
curves, and continue to a higher temperature until the sub-boundary network breaks up. 19 
 20 

 21 
Figure 14.  Temperature-dependent annihilation time for both transformation mechanisms 22 
(through sub-grain growth and stacking fault annihilation). Annihilation times for G-loops with 2R 23 
of 1 µm and 10 µm (not shown here to avoid confusion) are close to those for C-loops with 2R of 24 
0.1 µm (dashed blue curve) and for extended dislocations by climb with w of 0.1 µm (dashed red 25 
curve), respectively. The transformation of Ic to Ih can be observed in a wide temperature range 26 
indicated by the double-arrowed solid line between 141 and 223 K for the annihilation by the 27 
different mechanisms on possible grain sizes within the typical laboratory timescale from an hour 28 
to a day. This temperature range would extend to higher temperatures as indicated by the short 29 
arrowed lines because these dashed lines for climb mechanisms correspond to the lower bound of 30 
the annihilation time. 31 
 32 
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In the transformation through annihilation of stacking faults, we use these annihilation 1 
rates for G-loops, G-lines, and C-loops to calculate the annihilation times of the stacking 2 
faults. For the calculation, we integrate the inverse of the shrinkage rates using the 3 
temperature-range-averaged values for the shear modulus and lattice constants. Initially, 4 
the loop will encircle the entire grain, which will be assumed to have a diameter of 0.1, 1.0 5 
or 10 µm. The straight 30˚-partial dislocation, on the other hand, will sweep the entire 6 
grain, maintaining a straight alignment along the Peierls trough. 7 

The resulting annihilation times decrease rapidly with increasing temperature as 8 
shown in Figure 14. The solid blue curve shows the annihilation time calculated for a 9 
G-loop of initial diameter 0.1 µm as the fastest case in the transformation mechanism, and 10 
the dashed blue curve shows that for a C-loop of the same initial diameter. For such a small 11 
loop, Figure 13 shows that the annihilation rate by a G-line becomes smaller than that by a 12 
C-loop at low temperatures. Then, Ic samples with a grain size of about 0.1 µm would start 13 
to transform in a temperature range between the solid blue curve and the dashed green 14 
curve by this mechanism. In contrast, if the grain size is 10 µm, the transformation would 15 
occur between the dashed red curve and the dashed black curve. 16 

However, as discussed in Section 2.5.3, the nucleation rate of C-loops must be much 17 
smaller than that of G-loops. Then, the transformation by C-loops may continue to a higher 18 
temperature until C-loops nucleate on the remaining K-bilayers. Therefore, the annihilation 19 
times of C-loops (dashed blue and black curves) should be viewed as the lower bound for 20 
the transformation by C-loops. 21 

As a real Ic sample must include grains of various sizes and sub-boundary structures, 22 
the range of transformation times in Figure 14 suggests that the transformation should 23 
occur over a wide temperature range. Moreover, the grain sizes and sub-structures must 24 
depend on the method by which the Ic sample was formed, with variation from sample to 25 
sample, even if formed by the same method. (Similar arguments may explain the wide 26 
scatter in the heat of transformation, as discussed in more detail in the next section.) 27 
Finally, considering that the typical laboratory timescale may vary from an hour to a day, 28 
the possible transformation temperature range should be wide, estimated at 141–223 K as 29 
indicated in Figure 14.  30 

This estimated range is consistent with the start of the observed transformation 31 
temperatures [1,13,16,17,38]. Specifically, Table 3 shows that the temperature Ti at which 32 
the transformation appeared to start ranges within 150–182 K, and the temperatures Tf at 33 
which the transformation appeared to end ranges within 210–225 K. These experimental 34 
results can fit the calculated temperature range if the grain sizes range from 25 nm to 10 35 
µm in these different experiments. But, what are the grain sizes? The calorimetric 36 
experiments did not report them, but the sizes can be assumed to equal those found in 37 
diffraction experiments done on similarly prepared Ic samples, which are close to 0.1 µm. 38 
With such a grain size, the calculated results shown in Figure 14 is roughly consistent with 39 
the temperature range for Ti, although the observed Tf is much higher than the calculated 40 
temperature range for 0.1 µm. That is, the transformation continues to a much higher 41 
temperature than expected. However, the annihilation times calculated for the slowest case 42 
considered for each mechanism should be viewed as a lower bound. The actual 43 
transformation should continue to a higher temperature due to dislocation reactions that 44 
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break up the sub-boundary network and also due to delayed nucleation of C-loops. 1 
The results are also consistent with experiments at a constant temperature. Specifically, 2 

for vapour-deposited ice, Kuhs et al. [1] found a nearly complete transformation (to 3 
cubicity ≤ 0.05) within 6 hours at 185 K, but an incomplete transformation (to cubicity 4 
~0.3) after 10 hours at 175 K. By extrapolating their decreasing curve at 175 K, it would 5 
take about 40 hours (≈ 1.4×105 s) to complete the transformation at this temperature. These 6 
rates agree with the annihilation time of extended dislocations by climb with w = 0.1 µm 7 
(dashed red curve in Figure 14), which is consistent with the SEM micrographs of the ice 8 
showing a sub-micron grain structure, with grain sizes as small as 50–200 nm [1]. 9 

A complete transformation requires the annihilation of C-loops. These annihilation 10 
times are much longer than those for G-loops; indeed, below 180 K, a complete 11 
transformation would take several days for a grain size of 1 µm. Consequently, annealing 12 
at a higher temperature is needed to complete the transformation within experimentally 13 
practical times. Consistent with this prediction, Kuhs et al. [1] reported that the cubicity 14 
decreased from about 0.5 to 0.05 within several hours at 185 K, but some cubic stacking 15 
sequences disappeared only upon heating to 240 K. Finding that stacking faults 16 
disappeared at 240 K was first reported by Kuhs et al [39]. Later, Falenty et al. [38] also 17 
reported a similar result. Figure 14 indicates that the G-loops with a diameter of 10 µm 18 
should vanish within 220 s at 205 K whereas more than 16 h is needed for the C-loops, and 19 
the remaining C-loops can be annihilated within 400 s at 240 K if the nucleation time can 20 
be ignored. For a grain size below 1 µm, the C-loops should vanish completely within a 21 
second at 240 K, but take 1,200 s at 205 K and more than a half day at 185 K. 22 
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Table 3.  Transformation temperatures for Ic to Ih depending on experimental methods.  1 
 2 

Experimental method 
Sample Transformation temperaturea 

Reference 
  Grain size Ti (cubicity) Tf (cubicity) 

Calorimetry 
 

Continuous 
heating 10 K/h 

Depressurization from 
high pressure phase 

II, IX ,V, VI, 
VIII ─ 

182 ± 5 K 
(Averaged  

224 ± 6 K 
over 14 runs) [16] 

 
Stepped heating 1 h, 2.3 K 

 
IX ─ 165 K 225 K [17] 

Diffraction 
 

2 h, 10 K 
 

V 25–200 nm 150 K (0.62) 210 K (0.26) [13] 

    
IX 20–150 nm 150 K (0.42) 210 K (0.2)  

  
2 h, 5 K 

 
V 

 
─ ─ [1] 

      175 K (0.581)b 185 K (0.555)b  

    
IX 

 
~165 K ~210 K  

      175 K (0.385)b 185 K (0.365)b  

   
Vapour deposited 

 
70–120 nm ~170 K ~210 K  

     
 175 K (0.278)b 185 K (0.051)b  

   
From CO2-hydrate 

 
~5 μm ─ ─  

      
175 K (0.422)b 185 K (0.137)b  

 
Iso-thermal ≤16 h 

  
2–10 μm 167.7 K 240 K [38] 

a Ti and Tf are the temperatures at which the transformation appeared to start and end, respectively. 3 
b Temperature at which the cubicity was obtained.  4 
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3.4.  Anomalously wide range in measured heat of transformation 1  2 
The energy difference, or enthalpy of transformation, ∆UCH between Ih and Ic range widely, 3 
from 13 to 50 J/mol, due apparently to differing methods by which the Ic crystal was 4 
formed [16]. But how exactly did the formation method affect the grain structure? 5 

We can understand this wide range in ∆UCH as a result of the different formation 6 
processes producing different densities and arrangements of dislocations. The 7 
transformation to stable hexagonal ice may occur through several modes; for example, 8 
sub-grain growth including complicated reactions among partial dislocations as well as 9 
perfect dislocations (see Section 3.1), or through annihilation of stacking faults by partial 10 
dislocations sweeping the faulted basal planes (see Section 3.2). 11 

In the former case, the transformation releases the stored energy in the dislocations Ed. 12 
As Ed for a dislocation density ρd can be approximately expressed by 𝐸𝐸𝑑𝑑 ≈ 𝜌𝜌𝑑𝑑𝜇𝜇𝑏𝑏2/2, we 13 
obtain 78 J/mol for the high dislocation density ρd of 1016 m−2, which is the maximum of 14 
the energy release by the transformation from pure Ic to Ih, and thus the upper bound for 15 
∆UCH measured by experiment. But such a high density of dislocations would quickly 16 
rearrange into a stable array, the ice would then be in a lower stored energy state when 17 
measurements start. Therefore, a lower energy release would be obtained. 18 

In the latter case, on the other hand, only stacking faults are left after absorption of 19 
partial dislocations by high-angle grain boundaries or interfaces. As Ic is composed of only 20 
K-bilayers with spacing c/2, the energy difference ∆UCH between Ih and Ic should equal 21 
2γf1/c per unit volume. This gives ∆UCH ≈ 16 J/mol, a value close to the lowest value 22 
measured of 13 J/mol. In this case also, the starting material used for the measurements has 23 
already partly transformed when the measurements start, suggesting a value below 16 24 
J/mol. 25 

The density and arrangement of dislocations introduced into a crystal in general 26 
strongly depends on the stress field exerted on the crystal and the thermal history of the 27 
crystal. From these variable factors, through their effect on the dislocation-fault structure, 28 
comes the likely source of the widely scattered heats of transformation from Ic to Ih. 29 
 30 
3.5.  Stability of the stacking-disordered state 31  32 
To understand the particular nature of stacking disordered state in ice Ih, consider the 33 
behaviour of dislocations at an elevated temperature. Although the cubicity of aged ice Ih, 34 
which is proportional to a density of dislocations, may be below 10−4 as described in 35 
Section 2.3, cubicity would be increased by heat treatment in a temperature range at which 36 
the concentration of self-interstitials is high enough to generate dislocation loops. When 37 
self-interstitials in thermal equilibrium at melting temperature (mole fraction 2.8×10−6 38 
[19,40]), segregate into faulted dislocation loops of Frank−Shockley type, the cubicity 39 
increases by at most 0.028. If they segregate into those of Frank type, the value becomes 40 
0.084. In fact, very many faulted loops generated by both cooling and heating were 41 
observed in single crystals of ice by x-ray diffraction topography [20,23,41]. By cooling, 42 
supersaturated self-interstitials segregate into faulted loops, and by heating, on the other 43 
hand, faulted loops of vacancy type are generated to supply self-interstitials into the crystal 44 
undersaturated with self-interstitials. In addition, due to ice’s anisotropic thermal expansion, 45 
dislocations can also be generated in polycrystalline ice by thermal stresses during heat 46 
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treatment. These dislocations will dissociate into partial dislocations that bound stacking 1 
faults (e.g., when Nt partial dislocations form an array as discussed in Section 2.3, these 2 
fault widths will be roughly equal to Nt×we). Therefore, both cooling and heating can 3 
increase the stacking disorder. Moreover, if ice is formed from supercooled water, excess 4 
self-interstitials introduced by density reduction at freezing would increase the stacking 5 
disorder. 6 

The complex behaviour of the stacking disorder in ice discussed by Malkin et al. [14] 7 
may be understandable if we consider the above behaviour of dislocations at an elevated 8 
temperature. As a result of the nature and behaviour of self-interstitials and dislocations in 9 
ice Ih, the complex behaviour of the stacking disorder may arise from the route of 10 
formation and thermal history, not necessarily from the unknown complexity of ice 11 
suggested by Malkin et al. [14]. 12 

An anomalous stability of the stacking-disordered state was found by Morishige et al. 13 
[42,43] in their x-ray diffraction measurements on ice formed by the freezing of water 14 
confined in mesopores of pore-size 4–70 nm. Ice formed by freezing the pore water at 261 15 
K shows the typical Ic diffraction pattern. No other experimental methods, including 16 
depressurization, produce Ic crystals at this temperature. The mesopore ice Ic is thermally 17 
stable; for example, in case of cylindrical pores of diameter 8 nm, the ice remains stable up 18 
to the melting point of the ice. Such anomalous stability was not observed in the case of 19 
spherical pores of diameter 10–17 nm.  20 

The pores, being comparable or smaller than we (57 nm), should increase the Ic 21 
fraction according to the present formation mechanism. First, a high density of dislocations 22 
must be introduced by deformation and supersaturated self-interstitials upon freezing in a 23 
confined space. Then, to stabilize the stacking-disordered state at such a high temperature, 24 
adhesion between ice and the pore material should be strong enough to avoid absorption of 25 
the partial dislocations at the interface. Thus, the partial dislocations bounding the stacking 26 
faults remain stuck at the interface, preventing the generation of other partial dislocations 27 
by which the stacking fault will be annihilated.  28 

Anisotropic stresses on the ice, which likely depend on pore shape, may alter the 29 
dominant Burgers vectors. For example, compressive (or tensile) stress parallel to the 30 
c-axis produces dislocations mainly with Burgers vector a+c, whereas dislocations with 31 
Burgers vector a dominate under other stresses. Both types of dislocations extend on the 32 
basal plane, but climb motion is required for movement of partial dislocations dissociated 33 
from the Burgers vector a+c. Such difference in behaviour of dislocations may affect the 34 
stability of the stacking disordered state although we do not yet know the details of the 35 
mechanism. 36 
 37 
4.  Summary and conclusions 38  39 
The structures of stacking disorder in cubic ice Ic has been revealed experimentally 40 
[13−15,26], but its formation mechanism remains an open question. Here, a mechanism 41 
involving partial dislocations has been presented to explain the formation of cubic ice Ic, 42 
including partly cubic or stacking-disordered ice, and its transformation to hexagonal ice Ih. 43 
This dislocation mechanism is based on the experimentally determined crystallite sizes of 44 
Ic [13,26] because these sizes are comparable to the equilibrium widths of extended 45 
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dislocations in hexagonal ice Ih. The mechanism predicts two stacking-disordered 1 
structures, and their transformation through different dislocation processes. 2 

 In fine-grained polycrystalline ice with a high density of dislocations, widely 3 
extended dislocations produce the stacking disordered state. The partial dislocations that 4 
bound the stacking faults rearrange into stable arrays or sub-boundaries around a sub-grain 5 
structure containing cubic and hexagonal stacking sequences. This stacking-disordered 6 
structure has a relatively high amount of stored energy, and because it has a high density of 7 
extended dislocations, the transformation to ice Ih occurs through dislocation reactions. 8 

Another polycrystalline ice with stacking disorder can be formed if the temperature is 9 
high enough for the high-angle grain boundaries (or, at lower temperature, if binding 10 
between grains in powdered ice is weak enough), to act as sinks for dislocations. In this 11 
case, the partial dislocations that bound the stacking faults are absorbed, resulting in a 12 
lower stored-energy state of stacking-disordered ice. For the transformation of this state to 13 
ice Ih, the dislocation mechanism predicts a two-step process consisting of the relatively 14 
fast motion of Shockley partial dislocations followed by the relatively slow motion of 15 
Frank−Shockley partial dislocations. The first step converts most of the crystal to 16 
hexagonal stacking and occurs relatively rapidly, leaving only the slower second step to 17 
complete the transformation.  18 

Coming from either the high- or low-stored energy state, the transformation process can 19 
be thought as a recovery process of a heavily deformed crystal. According to this view, the 20 
heat of transformation obtained by calorimetric measurements must be due to the recovery 21 
of unstable substructures formed by dislocations. For the heat of transformation, the 22 
dislocation mechanism developed here predicts a wide range of values, and a slow 23 
transformation occurring over a wide temperature range, both predictions in agreement 24 
with experiments. Consequently, the characteristic nature of dislocations in hexagonal ice 25 
Ih should be considered when studying cubic ice Ic.  26 

These stacking-disordered structures vary with the particular starting phase of ice 27 
(high-pressure forms of ice, amorphous ice or gas hydrates) as discussed in the literature 28 
[13,15,26]. Further study will be needed to refine the model to accurately describe the 29 
transformation from specific structures. 30 
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