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1. Introduction 

 

Purinergic systems are well known to regulate neuronal activities in the central nervous 

system (CNS), including the spinal cord, via adenosine and P2 (ATP) receptors 

(Abbracchio et al., 2009). Adenosine receptors are classified into four subtypes, the A1, 

A2A, A2B, and A3 receptors (Fredholm et al., 2001). The activation of A1 receptors 

inhibits neuronal activities (Haas and Selbach, 2000), and also contributes to 

neuroprotection by suppressing excessive excitation (de Mendonça et al., 2000; Wardas, 

2002).  

 Distinct purine turnovers take place inside and outside cells, and 

transmembrane transport of purines greatly affects the actions of adenosine. 

Intracellularly, adenosine is degraded to inosine by adenosine deaminase (ADA) and/or 

is converted to AMP by adenosine kinase (AK). Extracellularly, ATP released from the 

cell is degraded rapidly to adenosine by a series of ecto-enzymes (Matsuoka and Okubo, 

2004; Robson et al., 2006). Extracellular adenosine is then incorporated into the cells 

via nucleoside transporters.  

Equilibrative nucleoside transporters (ENTs) transport adenosine with 

bidirectional facilitated diffusion across the membrane (King et al., 2006). Among four 
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ENT isoforms, ENT1 and ENT2 reportedly play major roles in adenosine transport 

across the cell membrane. ENTs are inhibited by S-(4-nitrobenzyl)-6-thioinosine 

(NBTI) and some coronary vasodilators, such as dipyridamole (DIP), dilazep and 

draflazine. ENTs usually function as uptake transporters for adenosine, because 

intracellular adenosine level is maintained at a lower level than extracellular adenosine 

level by the activities of AK and ADA. These purine turnover cycles control the 

extracellular level of adenosine, and thus, they are expected to directly influence CNS 

functions via adenosine receptors. 

 In the spinal cord, adenosine and its analogs produce analgesia, which is 

mediated by inhibiting neuronal activities via A1 receptors in the superficial layers of 

the dorsal horn (Salter et al., 1993: Sawynok, 1998; Sawynok and Liu, 2003). In deep 

layers of the ventral horn, adenosine likewise inhibits excitatory synaptic transmission, 

potentially facilitating neuroprotection and/or motor impairment (Miyazaki et al., 2008; 

Carlsen and Perrier, 2014). Moreover, AK inhibitors release adenosine from the spinal 

cord (Golembiowska et al., 1995; 1996), and intrathecal administration of these 

inhibitors yields analgesia (Poon and Sawynok, 1995; McGaraughty et al., 2001; Zhu et 

al., 2001), although some nucleoside AK inhibitors, such as 5-iodotuberdicin and 

5’-amino-5’-deoxyadenosine, have therapeutic limitations because of its adverse effects, 
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poor oral bioavailability or a short half-life in vivo (Ugarkar et al., 2000; McGaraughty 

et al., 2005). 

Systematic administration of ABT-702 

(4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl) pyrido[2,3,-d] pyrimidine), 

a potent and selective non-nucleoside AK inhibitor, also generates analgesic effects in 

animal models of pain (Jarvis et al., 2000; Kowaluk et al., 2000; Suzuki et al., 2001), 

suggesting that ABT-702 suppresses nociceptive neuronal pathways in the CNS 

including the spinal cord. However, there is little direct demonstration showing the 

effects of AK inhibitors on spinal synaptic transmission. We previously reported that 

ABT-702 increases extracellular adenosine levels in the isolated spinal cord of neonatal 

rats (Takahashi et al., 2010). Accordingly, ABT-702 may affect neuronal activities of 

nociceptive pathways in the spinal cord. In addition, the effects of ABT-702 are possibly 

influenced by the activities of ADA and ENTs during purine turnover, which can cause 

adverse effects.  

In this study, we evaluated two types of spinal reflex potentials recorded from 

the isolated neonatal rat spinal cord: monosynaptic reflex potentials (MSRs) and slow 

ventral root potentials (sVRPs). MSRs are mainly mediated by non-NMDA receptors at 

monosynaptic neuronal pathways from primary afferent fibers to motoneurons, while 
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sVRPs are mediated by NMDA and various metabolic receptors (e.g., neurokinin and 

metabolic glutamate receptors) at polysynaptic pathways from primary afferent fibers to 

intrinsic neurons. sVRPs are thought to reflect spinal nociceptive transmission, because 

they are preferentially inhibited by analgesics such as opiates and α2 agonists (Akagi 

and Yanagisawa, 1987; Nussbaumer et al., 1989; Woodley and Kendig, 1991; Faber et 

al., 1997; Otsuguro et al., 2005). In terms of analgesics, on the other hand, MSR 

inhibition seems to be implicated in adverse effects such as motor impairment. By using 

this preparation, therefore, these therapeutic and adverse effects could be evaluated. The 

purpose of the current investigation was to examine the influence of ABT-702 on these 

nociceptive and motor reflex pathways, and adenosine release with and without 

inhibitors for ADA and/or ENTs in the rat spinal cord. 

 

2. Materials and methods 

 

2.1. Animals and spinal cord preparation 

All animal care and experimental protocols were approval by the Institutional Animal 

Care and Use Committee (IACUC) at Hokkaido University. Every effort was made to 

minimize animal suffering and to reduce the number of animals used. Wistar rats (0–4 
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days old) of either gender were killed by decapitation, and the spinal cords were isolated 

and used for experimentation as described below.  

 

2.2. Recording of spinal reflex potentials 

The hemisected spinal cord preparation with lumber spinal nerve roots was fashioned as 

previously described (Otsuguro et al., 2006; 2011), placed in a bath, and superfused (3 

ml/min) with artificial cerebrospinal fluid (ACSF) at 27 ± 2°C. The composition of the 

ACSF was as follows (mM): NaCl 138, KCl 3.5, CaCl2 1.25, MgCl2 1.2, NaHCO3 21, 

NaH2PO4 0.6, and glucose 10. The ACSF was saturated with 95% O2 and 5% CO2, and 

the pH was maintained at ~7.3. 

 For spinal reflex potential recording, stimulating and recording suction 

electrodes were placed on the dorsal and ipsilateral segmental ventral roots (L3–L5), 

respectively. The preparation was equilibrated for 1 h before experimentation. MSRs 

and sVRPs were evoked by electrical stimulation (40V, 200 μs) every 2 min and 

evaluated by measuring the peak amplitude (mV) and area under the curve above the 

resting level (mV·s), respectively (Kawamoto et al., 2012). The reflex potential 

magnitude was expressed in each case as a percentage of the mean of the first five 

responses. The effects of ABT-702 or other agents on the reflex potentials were 
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evaluated as the mean of three responses around their maximal responses. Electrical 

responses were detected using a high gain amplifier (MEZ-7200, Nihon Kohden, Tokyo, 

Japan) equipped with a low-pass filter at 10 kHz. MSRs were recorded using a thermal 

arraycorder (WR7800, Graftec, Yokohama, Japan) with a sampling time of 80 µs. 

sVRPs were digitized by using an analog/digital converter (PowerLab, ADInstruments, 

Castle Hill, Australia) with a sampling time of 10 ms. Data were stored in a personal 

computer and analyzed with LabChart 6 software (ver. 6.0, ADInstruments). 

 

2.3. Measurement of adenosine release 

The amount of adenosine released from the isolated spinal cord was measured by using 

HPLC according to previously reported methods (Takahashi et al., 2010), with some 

modifications. Briefly, the isolated spinal cord was cut into four pieces and equilibrated 

in ACSF for 1 h before experimentation. For measurement of the adenosine 

concentration, ACSF (1 ml) was changed every 10 min, and sample aliquots (250 μl) 

were collected. All experiments were conducted at 35°C.  

 Collected aliquots were immediately chilled on ice, and 0.1 M 

citrate-phosphate buffer, pH 4.0 (90 μl), 2 μM α,β-methylene ADP (internal standard, 25 

μl), and 45% chloroacet aldehyde (10 μl) were added. The mixtures were incubated at 
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80°C for 40 min to generate ethenoderivatives, which were separated by using an 

analytical column (Accucore aQ, 150 × 4.6 mm, particle size = 2.6 μm, Thermo Fisher 

Scientific, Waltham, MA, USA) at 40°C. The ethenoderivatives of ATP, ADP, AMP, and 

adenosine were detected using an HPLC system equipped with a fluorescence detector 

(FP-2020, Nihon-Koden, Tokyo, Japan). The wavelengths for excitation and emission 

were set at 270 and 420 mm, respectively. The mobile phase buffer consisted of 150 

mM KH2PO4, 5 mM tetra-n-butylammonium bromide, and 2.0% CH3CN adjusted to 

pH 3.3 with H3PO4. The flow rate was 0.8 ml/min. The amount of adenosine released 

over 10 min was expressed relative to the tissue wet weight (pmol/mg).  

 

2.4. Immunohistochemistry 

Isolated spinal cords were immediately fixed with 4% paraformaldehyde/0.1 M 

phosphate buffer overnight at 4°C, and cut into 3-μm-thick paraffin sections. The 

deparaffinized sections were autoclaved with 20 mM Tris-HCl buffer (pH 9.0) for 20 

min at 105°C. They were then incubated in 3% hydrogen peroxide/methanol solution 

for 20 min. Sections blocked in normal goat serum were then incubated with a primary 

antibody rabbit anti-ADA antibody (1:500; Merck Millipore, Billerica, MA, USA) or 

rabbit anti-ADK antibody (1:500; Sigma-Aldrich, St. Louis, USA) at 4°C overnight. For 
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immunohistochemistry, the sections were incubated with goat anti-rabbit IgG 

conjugated with biotin (SABPO Kit, Nichirei Bioscience, Tokyo, Japan) and 

subsequently with streptavidin-peroxidase complex (SABPO Kit) each for 30 min at 

room temperature. The labeled sections were developed using 

3,3′-diaminobenzidine-H2O2 solution and counterstained with hematoxylin.  

 For immunofluorescence, the deparaffinized sections were treated with 20 mM 

Tris-HCl buffer for 20 min at 105°C, treated with normal donkey serum, and incubated 

with mixture of either mouse anti-GFAP antibody (1:100; Immuno-Biological 

Laboratories, Fujioka, Japan) and rabbit anti-ADA antibody (1:500) or mouse 

anti-GFAP antibody (1:100) and rabbit anti-ADK antibody (1:500) at 4°C overnight. 

The sections were then incubated with mixture of Alexa Fluor 488-labeled donkey 

anti-mouse IgG, Alexa Fluor 546-labeled donkey anti-rabbit IgG secondary antibody 

(1:500; Life Technologies, Carlsbad, CA, USA), and Hoechst33342 (1:500; Dojindo, 

Kumamoto, Japan) for 30 min. The immunofluorescence signals were analyzed under a 

confocal laser scanning microscope (LSM700, Carl Zeiss, Jena, Germany). 

 

2.5. Data Analysis 

Results were expressed as means ±SEM. The IC50 value was calculated with software 
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(Origin, ver 8.6J, OriginLab, Northampton, MA, USA). Statistical comparisons between 

two groups were performed by applying the paired- or unpaired Student’s t-test. For 

multiple comparisons, ANOVA followed by Dunnett’s test was used. In all cases, a P 

value of less than 0.05 was considered significant. 

 

2.6. Drugs 

ABT-702 

dihydrochloride, N-(2-Methoxyphenyl)-N'-[2-(3-pyrindinyl)-4-quinazolinyl]-urea 

(VUF5574) and 

4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol 

(ZM241385) were purchased from Tocris (Bristol, UK). Adenosine, 

N6-cyclohexyladenosine (CHA), 8-cyclopentyl-1,3-dipropylxanthine (8CPT), 

dipyridamole (DIP), erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) hydrochloride, 

5-iodotubericidin, α,β-methylene ADP sodium, S-(4-nitrobenzyl)-6-thioinosine (NBTI) 

and PSB 1115 potassium salt hydrate were purchased from Sigma-Aldrich (St. Louis, 

MO, USA).  

 

3. Results 
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3.1. ABT-702 inhibits spinal reflex potentials via adenosine A1 receptors 

Bath application of ABT-702 (3 μM) to the isolated neonatal rat spinal cord for 20 min 

gradually decreased sVRPs with a slight decline in MSRs, which were both rapidly 

recovered by 8CPT (3 μM), an adenosine A1 receptor antagonist (Fig. 1A). On the other 

hand, both sVRP and MSR inhibitions by ABT-702 were not affected by potent and 

selective adenosine A2A, A2B and A3 receptor antagonists, ZM241385 (0.1 μM), 

PSB1115 (0.1 μM) and VUF5574 (0.1 μM), respectively (Fig. 1C and D). Compared 

with ABT-702 alone, a mixture of ABT-702 (3 μM) and EHNA (5 μM), an adenosine 

deaminase inhibitor, more potently inhibited sVRPs (Fig. 1B and 2D), although EHNA 

even at 10 μM had little effect on the reflex potentials (MSRs: 96 ± 5% of control, n = 

4; sVRPs: 92 ± 13% of control, n = 4; Fig. 2C). In addition, ABT-702/EHNA markedly 

inhibited MSRs, albeit with a delayed onset. 8CPT recovered both MSR (114 ± 7% of 

control, n = 4) and sVRP inhibition (125 ± 10% of control, n = 4) by ABT-702/EHNA. 

 ABT-702 (0.03–10 μM) inhibited sVRPs in a concentration-dependent manner 

with an IC50 value of 0.32 μM (Fig. 2A, B, and D). The agent caused a perceptible and 

maximal inhibition of sVRPs at 0.03 and 3 μM, respectively. On the other hand, 

ABT-702 caused only a slight inhibitory effect against MSRs, even at a high 
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concentration (10 μM). We also examined the effects of 5-iodotubercidin, a general 

nucleoside AK inhibitor, on reflex potentials (Fig. 3). 5-Iodotubercidin caused obvious 

8CPT-sensitive inhibition of not only sVRPs (maximal inhibition ~ 70%, IC50 = 0.02 

μM) but also MSRs (maximal inhibition ~ 40%, IC50 = 0.31 μM). 

 

3.2. Nucleoside transporters contribute to ABT-702-evoked inhibition of reflex 

potentials 

To examine the contribution of ENTs to the ABT-702-evoked inhibition of reflex 

potentials, a mixture of high concentrations of NBTI (5 μM) and DIP (10 μM) was 

applied to inhibit ENT1 and ENT2. As shown in Fig. 4A, NBTI/DIP gradually 

decreased sVRPs for 60 min (50 ± 8% of control, n = 5), but had little inhibitory impact 

on MSRs (92 ± 10% of control, n = 5). Both reflex potentials were recovered by 3 μM 

8CPT (sVRPs: 84 ± 12% of control, n = 4; MSRs: 125 ± 8% of control, n = 4). In the 

presence of NBTI/DIP, ABT-702 (3 μM) failed to evoke additional inhibition of MSRs 

(NBTI/DIP: 116 ± 1% of control, n = 6; ABT-702: 115 ± 4% of control, n = 6) or sVRPs 

(NBTI/DIP: 68 ± 8% of control, n = 6; ABT-702: 61 ± 7% of control, n = 6; Fig. 4B). 

On the other hand, as shown in Fig. 4C, the inhibition of sVRPs by ABT-702 (71 ± 3% 

of control, n = 5) was attenuated by NBTI/DIP (88 ± 5% of control, n = 5, P < 0.01). 
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When ABT-702/EHNA was applied to simultaneously block AK and ADA, a 

marked inhibition of sVRPs occurred (39 ± 7% of control, n = 10; Fig. 4D). The further 

addition of NBTI/DIP partially reversed the sVRP inhibition (59 ± 10% of control, n = 

10, P < 0.05). However, MSR inhibition by ABT-702/EHNA (80 ± 8% of control, n = 

10) was not significantly recovered by NBTI/DIP (77 ± 10% of control, n = 10), while, 

in some cases (4 out of 10), a relatively small MSR inhibition was completely 

recovered.  

 As adenosine supposedly mediates the inhibitory actions of ABT-702, the effect 

of adenosine on reflex potentials was next examined. Bath application of adenosine, like 

ABT-702, also inhibited sVRPs more potently than MSRs, both of which recovered 

with the further application of 8CPT (Fig. 5A and B). Nevertheless, unlike ABT-702, 

adenosine rapidly inhibited the reflex potentials. Moreover, inhibitory effects of 

adenosine were enhanced by NBTI/DIP (Fig. 5C–E). Then we used a potent and stable 

A1 receptor agonist, CHA, which is a poor substrate for ENTs (Marangos et al., 1982; 

Geiger et al., 1985). Although CHA caused a similar inhibition to adenosine, it was 

hardly affected by NBTI/DIP (CHA: 52 ± 6% of control for sVRPs, 97 ± 1% of control 

for MSRs, n = 5; NBTI/DIP: 51 ± 6 % of control for sVRPs, 107 ± 3 % of control for 

MSRs, n = 6; Fig. 6).  
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3.3. ABT-702 releases adenosine via nucleoside transporters 

To evaluate the effect of ABT-702 on adenosine release from the spinal cord, the 

amount of adenosine effluxed into the ACSF was measured. Both ABT-702 (3 μM) and 

EHNA (10 μM) significantly elevated adenosine release, and ABT-702 tended to 

increase adenosine more rapidly than EHNA (Fig. 7A and B). The combination of 

ABT-702 and EHNA caused a substantial further release (Fig. 7C). NBTI (5 μM)/DIP 

(10 μM) also augmented adenosine release. In the presence of NBTI/DIP, the adenosine 

increase evoked by ABT-702 was almost completely abolished, while EHNA 

significantly enhanced adenosine release to the same extent as that observed in the 

absence of NBTI/DIP (Fig. 7D). In addition, ABT-702/EHNA caused a marked further 

increase in adenosine release. The increase in adenosine in response to ABT-702/EHNA 

was significantly reduced in the presence vs. the absence of NBTI/DIP. In all 

experiments, AMP levels were not significantly altered, and ADP and ATP levels were 

undetectable (data not shown). 

 

3.4. AK and ADA express in spinal neurons and astrocytes 

Immunoperoxidase staining revealed that both AK and ADA expressed in various types 
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of cells including dorsal and ventral horn neurons throughout the spinal sections (Fig. 

8A and B). In neurons, AK expressed in nuclei more potently than cytosols, and there 

was no apparent difference in expression levels between dorsal and ventral neurons. The 

profound AK expression in nuclei was also reported in the brain (Studer et al., 2006). 

On the other hand, ADA uniformly expressed in nuclei and cytosols, and strong stains 

were found in large motoneurons in the ventral horn. To investigate astrocytic 

expression, we then performed double immunofluorescence staining. Similar to neurons, 

cells with astrocytic marker GFAP-positive processes strongly expressed AK, and the 

strongest stain was found in the nuclei. ADA also expressed in the astrocytes, while 

astrocytic ADA expression was found in not only the nuclei but also the cytosols and 

processes.  

 

4. Discussion 

 

Here, we demonstrated that ABT-702, an AK inhibitor, increased the extracellular levels 

of adenosine and inhibited sVRPs more potently than MSRs in the isolated neonatal rat 

spinal cord. The inhibition by ABT-702 was attenuated by the blockade of ENTs and A1 

receptors. Our findings indicate that ABT-702 releases adenosine through ENTs to 
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inhibit spinal nociceptive transmission via the activation of A1 receptors (Fig. 9). 

 AK plays a key role in the regulation of the intracellular turnover of adenosine 

in the CNS (Lloyd and Fredholm, 1995; Wall et al., 2007; Etherington et al., 2009; 

Diógenes et al., 2014). In the present investigation, inhibition of AK activity by 

ABT-702 strongly inhibited sVRPs. It is likely that ABT-702 increases the intracellular 

content of adenosine, which is in turn released into the extracellular space. AK 

inhibitors reportedly release adenosine from the spinal cord (Golembiowska et al., 1995; 

1996; Takahashi et al., 2010), and in agreement with these observations, the present 

study demonstrated an increase in extracellular adenosine levels by ABT-702. In this 

study, 5-iodotuberdicin showed more potent inhibitory effects on the reflex potentials 

than ABT-702. Although ABT-702 inhibits AK activity more potently than 

5-iodotuberdicin in the cell-free conditions, the IC50 value of ABT-702 for AK is higher 

than that of 5-iodotuberdicin in intact cells (Jarvis et al., 2000). In tissue levels such as 

the isolated spinal cord, 5-iodotuberdicin may also show a more potent inhibitory effect 

on AK compared with ABT-702. In addition, 5-iodotubercidine reportedly inhibits 

Na+-gradient dependent concentrative NTs with similar IC50 values for AK inhibition 

(Parkinson and Geiger, 1996). Therefore, 5-iodotubercidine may accumulate a large 

amount of adenosine in extracellular spaces, resulting in MSR inhibition.  
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 Unlike AK inhibition, the inhibition of ADA activities by EHNA had little 

effect on spinal reflex potentials, although EHNA did increase extracellular adenosine 

levels. One explanation for this discrepancy is that the adenosine increase seen herein 

was not sufficient to inhibit reflex potentials. In this study, the time course of the 

adenosine increase by EHNA tended to be slower than that by AK. Alternatively, we 

measured adenosine released from the whole spinal cord preparation, and thus the 

elevation of adenosine levels by EHNA could occur not only at synaptic regions 

expressing A1 receptors, but also in various parts of the spinal cord. Therefore, it is 

suspected that the elevation of adenosine levels by EHNA occurs at different regions in 

the spinal cord from that by AK. ADA on the cell surface (as ecto-ADA) was also 

reported in many types of cells (Franco et al., 1997; 1998). Although ecto-ADA is 

argued to play a minor role in adenosine metabolism compared with cytosolic ADA 

(Arch and Newsholme, 1978), EHNA may augment extracellular adenosine levels by 

blockade of ecto-ADA more rapidly than by blockade of intracellular ADA, resulting in 

the adenosine increase at different regions from that by ABT-702. In addition, AK was 

appeared to similarly express in both dorsal and ventral horn neurons, while the highest 

expression of ADA was found in motoneurons at the ventral horn, at where MSRs were 

mediated. MSRs were less sensitive to the activation of A1 receptors than sVRPs, which 
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may also contribute to the different effect between EHNA and ABT-702. On the other 

hand, there was no apparent difference in astrocytic AK expression between dorsal and 

ventral horn. AK was scarcely expressed in astrocytic processes, which should surround 

synaptic regions, suggesting that the neuronal AK is more important for synaptic 

regulation than the astrocytic AK. In the mouse brain, it has been shown that AK 

expression shifts from neurons to astrocytes during postnatal development (Studer et al., 

2006). The astrocytic AK may become more important in the spinal cord of mature 

animals. Further investigation is needed to determine its underlying mechanisms. On the 

other hand, EHNA substantially enhanced the ABT-702-mediated adenosine release and 

inhibition of reflex potentials. Within cells, ADA probably acts more efficiently under 

conditions in which intracellular adenosine levels are excessively increased, because the 

Km values for ADA are higher than those for AK in the rat brain (Phillips and 

Newsholme, 1979).  

 ENTs transport adenosine in a transmembrane adenosine gradient-dependent 

fashion (Baldwin et al., 2004; King et al., 2006). We showed that NBTI/DIP increased 

extracellular adenosine levels and inhibited sVRPs, suggesting that adenosine levels, at 

least in the vicinity of the cell membrane, are higher in the extracellular vs. the 

intracellular space. Thus, ENTs apparently function as uptake transporters under normal 
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conditions. To the contrary, NBTI/DIP decreased the adenosine increase in response to 

ABT-702. In the presence of ABT-702 and increasing intracellular adenosine levels due 

to AK inhibition, ENTs are thought to transport adenosine from the cell interior to the 

exterior through an inversed adenosine gradient across the membrane. Therefore, 

ABT-702 failed to inhibit sVRPs in the presence of NBTI/DIP. These results indicate 

that ENTs function as adenosine efflux pathways in response to ABT-702. On the other 

hand, NBTI/DIP did not significantly inhibit the adenosine increase by EHNA. This 

result also supports our speculation that the EHNA-evoked adenosine increase is 

mediated at least in part by ecto-ADA inhibition. 

 Like ABT-702, adenosine and its analogs inhibit spinal reflex potentials 

(Nakamura et al., 1997; Otsuguro et al., 2009). A1 receptors seem to be responsible for 

these actions, because the rank order of the inhibitory potencies of these agonists is 

consistent with the rank order of their affinities for A1 receptors. Furthermore, the 

inhibitory effects of adenosine were competitively antagonized by 8CPT, an A1 receptor 

antagonist, as were those of CHA and ABT-702. However, unlike ABT-702, the 

inhibition by adenosine was enhanced by the ENT inhibitors. The effect of CHA, a 

stable A1 receptor agonist, was not changed by them, indicating that the ENT inhibitors 

did not affect the downstream signaling of A1 receptor activation. Extracellular 
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adenosine is controlled by a rapid uptake into cells (Arch and Newsholme, 1978). It is 

likely that exogenous adenosine is rapidly removed from local extracellular spaces near 

A1 receptors by ENTs, and thus the ENT inhibitors instantly enhanced the adenosine 

effect. In clinical applications, ENT inhibitors might exert different effects in patients 

treated with AK inhibitors from A1 receptor agonists. In addition, chronic activation of 

A1 receptors reportedly influences the activities and/or expression levels of adenosine 

receptors and ENTs (Hettinger et al., 1998; Sheth et al., 2014; Hughes et al., 2015). 

Therefore, the long-term treatment of ABT-702 may affect the activities and expression 

of molecules in purinergic systems, and thus lead to unexpected effects.  

 sVRPs were more sensitive to ABT-702 than MSRs. This result agrees with 

previous reports that the activation of A1 receptors more potently inhibits sVRPs than 

MSRs (Nakamura et al., 1997; Otsuguro et al., 2009). Importantly, sVRPs are thought to 

reflex C-fiber-evoked nociceptive transmission. Nociceptive signals mediate primary 

afferent C-fiber inputs to the superficial dorsal horn, where A1 receptors are highly 

expressed, especially in intrinsic spinal neurons (Geiger et al., 1984; Choca et al., 1988). 

Furthermore, intrathecal application of adenosine analogs generates antinociceptive 

effects via the activation of A1 receptors (Salter et al., 1993; Sawynok, 1998). MSR 

inhibition by high concentrations of adenosine and adenosine analogs may contribute to 
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motor impairment and other adverse events (Sosnowski et al., 1989; Karlsten et al., 

1990). Even at high concentrations, ABT-702 showed little inhibition of MSRs. 

Although 5-iodotuberdicin inhibited sVRPs more potently than ABT-702, it caused a 

marked inhibition of MSRs, which may contribute to its adverse effects such as motor 

impairment (Davies et al., 1986). We suggest that a marked and rapid increase in 

intracellular adenosine levels by ABT-702 is normally prevented by ADA activity. 

In conclusion, ABT-702 preferentially inhibited sVRPs compared with MSRs. 

The preferential inhibition of sVRPs is expected to lead to good analgesic effects of 

ABT-702, and thus, ABT-702 and other AK inhibitors are possible candidates for pain 

control. Because MSR inhibition by ABT-702 seems to occur in a time-dependent 

manner, long-term application of the drug may lead to adverse events. Furthermore, in 

the case of ADA dysfunction or deficiency, caution may be required for the use of 

ABT-702 and other AK inhibitors, given that these agents might release excessive 

amounts of adenosine. 
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Figure legends 

 

Fig. 1.  Effect of ABT-702 on spinal reflex potentials. (A) ABT-702 (3 μM) was 

applied to the spinal cord. 8CPT (3 μM) was then added in the presence of ABT-702. 

(B) ABT-702 (3 μM) was applied together with EHNA (5 μM). Each upper panel shows 

representative traces of MSRs and sVRPs evoked by electrical stimulation 

(arrowheads). (C, D) Summary of the effects of 8CPT (3 μM), ZM214385 (0.1 μM), 

PSB1115 (0.1 μM) and VUF5574 (0.1 μM) on MSRs (C) and sVRPs (D) in the 

presence of ABT-702 (3 μM). Data represent the means ± SEM (n = 4–6). **P < 0.01 

(paired Student’s t-test). 

 

Fig. 2.  Concentration-response relationship of ABT-702 actions on spinal reflex 

potentials. (A, B) ABT-702 (0.3 μM, n = 4, A; 10 μM, n = 4, B) were applied to the 

spinal cord. 8CPT (3 μM) was then added in the presence of the drug. (C) EHNA (1–10 

μM) was cumulatively applied to the spinal cord (n = 4). (D) Summary of the rate of 

MSR and sVRP inhibition by ABT-702 in the presence or absence of EHNA. Data 

represent means ± SEM (n = 4–6). *P < 0.05, **P < 0.01 vs. 3 μM ABT-703 (unpaired 

Student’s t-test). 
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Fig. 3.  Concentration-response relationship of 5-iodotubercidin actions on spinal 

reflex potentials. (A, B) 5-Iodotubercidin (5-IOD, 0.03 μM, n = 4, A; 3 μM, n = 4, B) 

were applied to the spinal cord. 8CPT (3 μM) was then added in the presence of the 

drug. (C) Summary of the rate of MSR and sVRP inhibition by 5-iodotubercidin. Data 

represent means ± SEM (n = 4). 

 

Fig. 4.  Effect of ENT inhibitors on spinal reflex potentials. (A, B) A mixture of NBTI 

(5 μM) and DIP (10 μM) was applied to the spinal cord. 8CPT (3 μM, n = 4–5, A) or 

ABT-702 (3 μM, n = 6, B) was then added in the presence of NBTI/DIP. (C, D) 

ABT-702 alone (3 μM, n = 5, C) or together with EHNA (5 μM, n = 10, D) was applied 

to the spinal cord. NBTI (5 μM)/DIP (10 μM) was then added in the presence of 

ABT-702. 

 

Fig. 5.  Effect of adenosine on spinal reflex potentials. (A, B) Adenosine (Ado, 30 μM, 

n = 8, A; 100 μM, n = 6, B) was applied to the spinal cord. 8CPT (3 μM) was then 

added in the presence of adenosine. (C) NBTI (5 μM)/DIP (10 μM) was added to the 

spinal cord in the presence of adenosine (Ado, 30 μM, n = 8). The number for each 
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representative reflex potential trace corresponds to that in the accompanying graphs. (D, 

E) Summary of MSR inhibition rate (n = 6–8, D) and sVRP inhibition rate (n = 6–8, E) 

by adenosine in the presence and absence of NBTI/DIP, *P < 0.05, **P < 0.01 

(unpaired Student’s t-test). 

 

Fig. 6.  Effect of CHA on spinal reflex potentials. CHA (30 nM) was applied to the 

spinal cord. (A, B) 8CPT (3 μM, n = 5, A) or NBTI (5 μM)/DIP (10 μM) (n = 6, B) was 

then added in the presence of CHA. 

 

Fig. 7.  Effect of ABT-702 on adenosine release from the spinal cord. (A, B) The time 

course of the adenosine increase by ABT-702 (3 μM, n = 6, A) and ENHA (10 μM, n = 

7, B). #P < 0.05, ##P < 0.01 vs. open column (Dunnett’s test). (C) ABT-702 (3 μM) and 

EHNA (10 μM) were applied to the spinal cord for 10 min in the presence and absence 

of NBTI (5 μM)/DIP (10 μM) (n = 6–8). *P < 0.05 vs. control (paired Student’s 

t-test), #P < 0.05, ##P < 0.01 vs. hatched column (Dunnett’s test). (D) The increment in 

adenosine by ABT-702, EHNA or ABT-702/EHNA is shown in the presence and 

absence of NBTI/DIP (n = 6–8). *P < 0.05, **P < 0.01 vs. control (unpaired Student’s 

t-test). 
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Fig. 8.  Immunohistochemical staining for AK and ADA in spinal cord. (A, B) 

Immunoperoxidase staining of AK (A) and ADA (B). Boxed regions at dorsal (upper 

part) and ventral horn (lower part) are enlarged in the right panels. Scale bars indicate 

100 μm. (C, D) Immunofluorescent staining for AK, ADA and GFAP at ventral horn. 

(C) AK (red) expressed in GFAP (green)-positive astrocytes (arrow heads), especially in 

the nuclei (blue). (D) ADA (red) expressed in GFAP-positive astrocytes (arrow heads). 

ADA expression was found in astrocytic nuclei, cytosols (arrow heads) and processes 

(arrows). Scale bars indicate 20 μm. 

 

Fig. 9.  Schematic representation of inhibition of neuronal activity by ABT-702 in 

spinal cord. ABT-702, an AK inhibitor, increases intracellular adenosine, which is 

released via ENTs into extracellular spaces. Extracellular adenosine activates A1 

receptors, resulting in suppression of spinal neuronal activity. 
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