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A transient percutaneous drug absorption model was solved in two dimensions. Clearance of the topi-
cally-applied pharmaceutical occured at the skin-capillary boundary. Timolol penetration profiles in
the dermal tissue were produced revealing concentration gradients in the directions normal and parallel
to the skin surface. Ninety-eight percent of the steady-state flux was reached after 85 h or four time con-
stants. The analytical solution procedure agreed with published results. As the clearance rate increased
relative to diffusion, the delivery rate and amount of drug absorbed into the bloodstream increased while
the time to reach the equilibrium flux decreased. Researchers can apply the closed-form expressions to
simulate the process, estimate key parameters and design devices that meet specific performance
requirements.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Currently, skin permeation may be evaluated using radioactive
materials, tape stripping techniques or the label-free stimulated
Raman scattering [1]. The mathematical modeling of percutaneous
drug transport mechanisms has been a major area of research [2,3].
It can provide an accurate picture of the evolution of active phar-
maceutical ingredients (APIs) after applying a patch, thus elucidat-
ing the role of enhancers in promoting diffusion through different
skin layers.

One-dimensional (1-D) analyses are routinely conducted to por-
tray the events occurring in the skin after application or removal of
the delivery system [2,4]. Although these efforts do not incorporate
the complexity of the skin structure, they serve as a basis for esti-
mating physicochemical properties from experimental data. Even
more elaborate two-pathway transdermal models, which included
transcellular and intercellular phases of the stratum corneum and
viable epidermis, were developed using transport perpendicular to
the skin surface [5]. In the latter framework, transfer of species
within the two phases can be explained. However, the level of de-
tails is still very low and fails to consider variations of the drug
concentrations in the lateral direction. A two-dimensional (2-D)
approach would help overcome some of these impediments and
offer a profound insight into the mechanism governing transder-
mal absorption.
ll rights reserved.

: +1 973 596 8436.
.

In response to the lack of 2-D depictions of percutaneous drug
absorption, some researchers have introduced models based on
kinetics generated from 1-D release data. George et al. proposed
a 2-D mathematical construct to explain the influences of drug dif-
fusivity and clearance, at the skin-capillary interface, on the deliv-
ery rate and the cumulative amount of drug released [6]. Using a
finite-difference method to approximate the drug concentration,
they were able to gather spatial information that would not have
been possible with a 1-D model. The non-linear kinetic behavior
of drugs, such as scopolamine and timolol, was later incorporated
in a 2-D model proposed to describe a dual-sorption mechanism
[7]. The theory suggests that, upon dermal application of a drug,
some molecules dissolve and become available for diffusion while
a fraction binds to sites in the skin. Again, a more comprehensive
depiction of the process was achieved by including more than
one molecular transport direction.

To date, published contributions have focused mainly on numer-
ical solution techniques to track concentration profiles in a 2-D sys-
tem [6,7]. In the absence of a closed-from solution, design
parameters, such as the time required to reach a steady-state flux,
were read from the plots. Similarly, the effects of the clearance and
diffusion on the delivery rate were deduced from the graphs. The
development of an analytical platform would make available, to
researchers, expressions relating the equilibrium delivery rate, for
example, to the model parameters. Suggestions on how to conduct
experiments and analyze laboratory data in order to extract useful
parameters may be provided. Research on multi-dimensional ana-
lytical solutions of transdermal delivery systems is necessary to start

http://dx.doi.org/10.1016/j.mbs.2013.04.004
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building such a foundation. In this context, a closed-form solution to
the model, presented in [6], is introduced. The concentration, flux
and cumulative amount of drug released are derived. An effective
time constant, which denotes the time it takes to attain a steady-
state flux, is determined.

2. Transdermal delivery model

A patch of length hc containing a medication is applied to the
skin (Fig. 1). The drug concentration in the reservoir ðcbÞ remains
constant during the treatment. Two segments perpendicular to
the skin surface, hu and hd, are selected. The model assumes no ex-
change of material with the surroundings except at the skin-capil-
lary boundary where a first-order elimination kinetics is observed.
A mathematical representation of the process is given below [6]:

@c
@t
¼ D

@2c
@x2

1

þ @
2c
@x2

2

 !
ð1Þ

@cð0; x2; tÞ
@x1

¼ 0; �hd 6 x2 < 0 ð2Þ

cð0; x2; tÞ ¼ cb; 0 6 x2 6 hc ð3Þ

@cð0; x2; tÞ
@x1

¼ 0; hc < x2 6 hc þ hu ð4Þ
Fig. 1. Schematic of the percutan
@cðx1;�hd; tÞ
@x2

¼ 0; 0 6 x1 6 ls ð5Þ

@cðx1;hc þ hu; tÞ
@x2

¼ 0; 0 6 x1 6 ls ð6Þ

�D
@cðls; x2; tÞ

@x1
¼ Kclcðls; x2; tÞ; �hd 6 x2 6 hc þ hu ð7Þ

where D and Kcl are the drug diffusivity and clearance, at the skin-
capillary boundary and ls is the skin thickness. The vehicle/skin par-
tition coefficient is one. Initially, the skin is free of the drug:

cðx1; x2;0Þ ¼ 0 ð8Þ

By using the following dimensionless variables:

x ¼ x1

ls
; y ¼ x2

ls
; s ¼ tD

l2
s

; C ¼ c
cb
; w ¼ lsKcl

D
;

Ld ¼
hd

ls
; Lc ¼

hc

ls
; Lu ¼

hc þ hu
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ð9Þ

Eqs. (1)–(8) become

@C
@s ¼

@2C
@x2 þ

@2C
@y2 ð10Þ

@Cð0; y; sÞ
@x

¼ 0; �Ld 6 y < 0 ð11Þ
eous drug absorption model.
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Cð0; y; sÞ ¼ 1; 0 6 y 6 Lc ð12Þ

@Cð0; y; sÞ
@x

¼ 0; Lc < y 6 Lu ð13Þ

@Cðx;�Ld; sÞ
@y

¼ 0; 0 6 x 6 1 ð14Þ

@Cðx; Lu; sÞ
@y

¼ 0; 0 6 x 6 1 ð15Þ

@Cð1; y; sÞ
@x

þwCð1; y; sÞ ¼ 0; �Ld 6 y 6 Lu ð16Þ

Cðx; y;0Þ ¼ 0 ð17Þ
3. Analytical solution

3.1. Concentration profile

A Laplace transform-based procedure is used to solve the prob-
lem. First, the boundary conditions (11)–(13) are combined into a
single equation:

@

@x
Cðx; y; sÞ

����
x¼0
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Cðx; y; sÞ þ Cðx; y; sÞ � 1

� �����
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ðHeavisideðyÞ

�Heavisideðy� LcÞÞ
ð18Þ

where ‘‘Heaviside(y � a)’’ is the step function defined as

Heavisideðy� aÞ ¼
1 a 6 y
0 otherwise

�
ð19Þ

It can be shown that the Laplace transform of Cðx; y; sÞ, labeled
�Cðx; y; sÞ, is (see the Appendix for details)
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where
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The amplitudes A0 and An are determined by solving the system of
Eqs. (24) and (27):
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where the numerator and denominator of Eq. (24) are given by
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in which m ¼ 1;2; . . . ;1.
The coefficients i1;n, i1;n;m and Tm are
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3.2. Delivery rate

A dimensionless transdermal flux is defined by
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by using Eq. (16). The Laplace transform of Eq. (32) is
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and F2 is given by Eq. (26). The flux JðsÞ is obtained by inverting Eq.
(34).

3.3. Cumulative amount of drug released

The normalized cumulative amount of drug released at time s is
defined by

MðsÞ ¼
Z s

0

JðrÞ
Jð1Þ dr ð36Þ

and is calculated once an expression for JðsÞ is available.

3.4. Effective time constant

The effective relaxation time (or time constant) is defined by
[8,9]

teff ¼
Z 1

0
tXðtÞdt ð37Þ

where XðtÞ represents a probability density function:

XðtÞ ¼ ðge � gðtÞÞR1
0 ðge � gðtÞÞdt

ð38Þ

It can be shown that Eq. (37) is equivalent to
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where �w is the Laplace transform of w and wss is its equilibrium va-
lue. If the normalized flux is considered (i.e., w ¼ JðsÞ=Jð1Þ and
wss ¼ 1), the dimensionless time constant is

seff ¼ lim
s!0

1
s2 þ

d
ds

�JðsÞ
Jð1Þ

� �� �
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1
s
�
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�1
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3.5. CAS analysis and computational implementation

Symbolic manipulations were conducted with the CAS system
Maple by Waterloo Sofware, version 12 (OS version: Microsoft
Windows XP Professional Version 2002, Service Pack 2; Machine:
Genuine intel (R) CPU T 2080 1.73 Ghz 795 Mhz). The ‘‘PDEtools’’
package, a set of routines, was used to derive the analytical solu-
tion. The following steps were carried out:

� Write the original partial differential equation, with the ini-
tial conditions, in the Laplace domain.

� Solve the transformed partial differential equation to
obtain �Cðx; y; sÞ, the Laplace transform of Cðx; y; tÞ. It was
first assumed that �Cðx; y; sÞ could be expressed in terms of
a product: �Cðx; y; sÞ ¼ f ðx; sÞ:gðy; sÞ.

� Expand �Cðx; y; sÞ as a Fourier series.
� Apply the boundary conditions and compute the coeffi-

cients of the Fourier series using orthogonality properties
of trigonometric functions.

� Write the inverse Laplace transform of the resulting Fourier
series as a Bromwich integral.

� Compute the Bromwich integral using the residue theorem.

In addition to ‘‘PDEtools’’, the following routines were used:
‘‘VectorCalculus’’, to compute the Laplacian of a function; ‘‘inttrans’’,
to perform integral transformation and obtain Laplace transforms;
and ‘‘plots’’, to draw the two-dimensional concentration profiles.
The rest of the graphics were generated in Mathematica (Wolfram
Research, Inc.). The Bromwich integral, which is not readily avail-
able in Maple, was computed using the residue theorem. The resi-
dues were calculated using either the command residue or
formulas implemented in Maple.
4. Zero-order solution

4.1. Concentration profile

A zero-order solution can be obtained by setting An ¼ 0 with
n ¼ 1;2; . . . ;1. In this case, Eq. (20) reduces to
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Using the residue theorem, the inverse Laplace transform of the
zero-order approximation of �Cðx; y; sÞ is
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where j is an imaginary number and ap are such that � 1
4 a2

p are the
zeros of F2. It is worthwhile to note that the zero-order approxima-
tion is independent of y.

4.2. Delivery rate

With An ¼ 0 and n ¼ 1;2; . . . ;1, Eq. (34) reduces to

�JðsÞ ¼ �2we
ffiffi
s
p ffiffi

s
p

LcðLu þ LdÞ
F2

ð43Þ

The steady-state flux is derived by applying the final value theorem:

Jð1Þ ¼ LcwðLu þ LdÞ
Ldwþ Luwþ Lc

ð44Þ

As a result,
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The inverse Laplace transform of Eq. (45) leads to
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4.3. Cumulative amount of drug released

The zero-order approximation of MðsÞ is obtained from Eq. (46):

MðsÞ ¼ sþ 8
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4.4. Effective time constant

Using An ¼ 0 and n ¼ 1;2; . . . ;1, Eq. (40) takes the form

seff ¼
P1

P2
ð48Þ

where

P1 ¼ �40L2
c w2 þ 108Ldw2Lc þ 108Luw2Lc � 300L2

dw

� 132L2
c wþ 420LdLc � 75L2

uw2 � 600LuLdw� 75L2
dw2

þ 420LuLc � 720LuLd � 300L2
uw� 360L2

u � 360L2
d

� 150Ldw2Lu þ 390LcwLu þ 390LcwLd � 135L2
c ð49Þ

and
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P2¼60 �3Ldw�3Luwþ3Lc�6Luþ2Lcw�6Ldð ÞðLdwþLuwþLcÞ ð50Þ

From Eq. (48), limit cases, corresponding to low- and high-clearance
drugs (i.e., w ¼ 0, w!1, respectively), are derived:

lim
w!1

seff ¼ �
1

60

� 40L2
c � 108LdLc � 108LuLc þ 75L2

u þ 75L2
d þ 150LuLd

ð�3Ld � 3Lu þ 2LcÞðLu þ LdÞ
ð51Þ

and

lim
w!0

seff ¼ �
1

12

� 24L2
d � 28LdLc þ 48LuLd þ 9L2

c � 28LuLc þ 24L2
u

ð�2Ld þ Lc � 2LuÞLc
ð52Þ

With Lu > Lc , the following inequality is achieved:

lim
w!1

seff < lim
w!0

seff ð53Þ

which is an important result provided by the zero-order approxima-
tion. This finding suggests that it takes less time to attain a steady-
state flux if the clearance at the skin-capillary interface is very large
compared to a low drug absorption into the blood stream. Equation
(53) is in line with published numerical studies using the same
model [6]. By defining w as w ¼ ð1� rÞ=r, George et al. observed
that the period elapsed before reaching Jð1Þ was shorter as r
decreased.
5. First-order solution

5.1. Concentration profile

A first-order approximation is developed to improve the accu-
racy of the zero-order estimation. The enhanced solution would al-
low researchers to visualize how the drug concentration changes in
the x- and y- directions. The coefficient An is set equal to zero for all
n ¼ 2;3; . . . ;1. As a result,
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A0 ex
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p ffiffi
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s
p� �

ffiffi
s
p
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� �

cos pðyþLdÞ
LuþLd

� �
�G1 þw

ð54Þ

Closed-form representations for A0 and A1 are determined from Eqs.
(24) and (27). These expressions are not reported in this work be-
cause of page limitations. The concentration Cðx; y; sÞ is found by
inverting Eq. (54).
Table 1
Model parameters for the transdermal delivery of timolol.

ls (cm) cb

(lg/cm3)
Kcl

(cm/h)
D (cm2/h) hc (cm) hd (cm) hu (cm)

0.0015 200,000 1.5 4.104E�08 0.00075 0.00375 0.00375
Lc Ld Lu w

0.5 2.5 3 54,825
5.2. Delivery rate

A first-order approximation of Eq. (35) leads to the following
expression:

�JðsÞ ¼ 2wðLu þ LdÞe
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s
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s
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h i
s
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h i
s� Lc

8><
>:
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>; ð55Þ

The flux JðsÞ is obtained by taking the inverse Laplace transform of
Eq. (55).

5.3. Cumulative amount of drug released

The Laplace transform of the normalized cumulative amount of
drug released is derived from Eq. (55):
�MðsÞ ¼ 1
sJð1Þ

2wðLu þ LdÞe
ffiffi
s
p ffiffi

s
p

F2

i1;1A1G1ð�G1þwþe2G1 G1þe2G1 wÞ
�G1þw

h i
s

� i1;1A1ðG1�wþe2G1 G1þe2G1 wÞ
�G1þw

h i
s� Lc

8><
>:

9>=
>;
ð56Þ

by applying the integral formula �MðsÞ ¼ ½�JðsÞ=Jð1Þ�=s where Jð1Þ is
calculated using the final value theorem. The profile MðsÞ is created
by inverting Eq. (56).

5.4. Effective time constant

It is possible to derive an analytical expression for the effective
time constant. However, the formula is not presented in this con-
tribution because of space limitations. As in the case of �MðsÞ, the
ratio �JðsÞ=Jð1Þ is calculated from Eq. (55).

6. Results and discussions

6.1. Permeation of timolol

The model parameters for the beta-adrenoceptor blocking
agent, timolol, were used in this work. Previous studies show that
absorption of the drug can be represented by Eq. (70) [3]. The dif-
fusivity through a cadaver skin of thickness 15 lm is
1:14� 10�11 cm2=s [10]. Values for Lc, Ld and Lu were obtained from
[6] and the remaining data came from [3] (See Table 1). Fig. 2
shows the concentration profile in the skin when the first-order
estimation was implemented. Over time, an increasing number of
molecules penetrated the skin. The highest API level was detected
at the vehicle/skin boundary and a concentration gradient was
maintained across the skin as predicted by Fick’s law. Fig. 3 de-
scribes the cumulative amount of timolol released into the blood
using zero- and first-order approximations. The difference be-
tween the two estimations was imperceptible. Both methods gave
teff = 21.24 h. As observed in previous results [9], 98% of the flux
was achieved at 4teff (Fig. 4). This measure can be helpful in design-
ing devices that meet user-defined requirements.

6.2. Effects of w on seff and MðsÞ

The influences of w on the time to reach a steady-state flux value
and the cumulative amount of drug released were investigated by
George et al. [6]. These studies were repeated here to show that
the analytical solution, presented in this contribution, led to the re-
sults reported in the numerical approach. In addition, the effects of w
on seff were now captured through a mathematical expression. Val-
ues for Lc, Ld and Lu corresponded to those listed in Table 1 [6]. The w
numbers selected were gathered from the r range given in the origi-
nal publication (i.e., w ¼ ð1� rÞ=r). Based on Figs. 5 and 6, both the
flux and cumulative amount of drug released increase with the
clearance. The effective time constant decreases with a rise in w
(Fig. 7). As the absorption rate increases, a larger concentration dif-
ference is established across the skin, leading to a higher flux, in
accordance with Fick’s laws of diffusion, in a relatively short time.

With the two-dimensional analysis, a more accurate picture of
drug concentration profiles in the skin can be achieved. Contrary
to a numerical approach, stability is not a concern. Closed-form



Fig. 2. Two-dimensional concentration distributions of timolol in the skin at various times. The first-order solution was used.
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expressions for MðsÞ and JðsÞ=Jð1Þ allow researchers to simulate
the process without prior knowledge of how to solve partial differ-
ential equations efficiently. The analytical results obtained with
Maple led to the derivation of an effective time constant in terms
of properties of the patch and formulation. This parameter can be
used to study the effect of design variables of controlled-release
devices on the time elapsed to reach a steady-state delivery rate.
In addition, the solution method can be implemented in software
environments that do not offer suitable procedures to solve PDE
problems in two dimensions. The code written in Maple can be
adapted to cylindrical and spherical geometries.

Other parameters, such as the lag time and the diffusion coeffi-
cient, can also be found by combining graphical methods with the
solutions developed in this work. Caution should be taken when
using the notion of a time constant for a diffusive process to predict
the flux. The dynamic behavior of a Fickian mechanism involves a
lag time, which is not observed in linear systems described by first-
order differential equations (also called first-order systems). In
fact, the rate of change of the flux would be maximum at s ¼ 0 if
JðsÞ could be accurately modeled as a first-order linear time-invari-
ant system. Previous studies show that the discrepancy, when
using a single time constant to predict JðsÞ, decreases as the deliv-
ery rate settles to a steady state [11]. As time approaches 4seff , the
error becomes relatively small. This observation explains why 98%
of JðsÞ was reached at 4seff , as would be expected of linear first-or-
der processes.



Fig. 3. Normalized cumulative amount of timolol released (M). The zero- and first-order solutions overlap. The value of M at four times the effective time constant teff is
represented by dotted lines.

Fig. 4. Normalized timolol flux. The zero- (dotted line) and first-order approximations (solid line) were indiscernible except at very small times.

Fig. 5. Effects of w ¼ ls Kcl
D on the normalized cumulative amount of drug released (i.e., the inverse Laplace transform of Eq. (56)). The first-order solution was employed.
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Fig. 6. Effects of w ¼ ls Kcl
D on the normalized flux, which was derived by inverting Eq. (55) and dividing the result by Jð1Þ. This equation was developed from a first-order

solution of the concentration.

Fig. 7. Influences of w ¼ ls Kcl
D on the effective time constant seff . The first-order solution was used.
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This work can also be used to estimate the application time of a
transdermal therapeutic system (TTS). Because this parameter is
closely related to the time required to achieve a steady-state plasma
drug concentration [12], the prediction of a time constant for a more
representative 2-D model of the process is important in the field. A
better description of the system dynamic behavior would help figure
out when to replace patches and if continuous drug supply to the
bloodstream occurs [13]. One-dimensional representations and
simulations of repeated application and removal of the TTS show
the use of mathematical models in estimating the number of appli-
cations before the flux of timolol reaches a steady-state value
[14,15]. In addition, optimal doses necessary to achieve a desired
transdermal flux were calculated [15]. The 2-D framework devel-
oped in this contribution can be extended to these cases and provide
a more accurate depiction of mass transport. As manufacturers con-
tinue to develop products for percutaneous delivery, there is a grow-
ing need to develop mathematical models that capture the transport
processes [16]. The derivation of a time constant, in terms of key
properties of the vehicle, would help assess the performance of these
new devices with a reduced number of experiments. The approach is
appropriate for a range of controlled-release devices. Using 1-D
models, researchers tested the time-constant method to gain insight
into the effects of iontophoresis and penetration enhancers on drug
transport across the oral mucosa [17] and to describe drug delivery
from therapeutic contact lenses [18].
7. Conclusion

An analytical solution was derived for a percutaneous drug
absorption model in two dimensions. After implementing a Laplace
transform procedure, zero- and first-order approximations were
computed for the concentration (C), flux (J) and cumulative
amount of drug released (M). The time necessary to reach 98% of
the steady-state delivery rate was calculated (4seff ). Although the
zero-order estimation of C only captured transport in the direction
normal to the skin surface, both estimation methods led to similar
values of J, M and seff . Based on the zero-order analysis, a high
clearance rate at the skin-capillary boundary would lead to a short-
er relaxation time. This result agrees with published data gener-
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ated using numerical methods. Simulations conducted to describe
skin permeation of timolol show that J and M increased as the drug
absorption rate increased. Advantages of the proposed approach are
the development of expressions that can be adopted for design
Appendix A. Source code

> > restart:with(VectorCalculus):with(inttrans):with(P

>

> eq1:=diff(C(x,y,t),t)=Laplacian(C(x,y,t),cartesian[x,

> eq2:=C(x,y,0)=0;

> Eval(diff(C(x,y,t),y),y=L[u])=0;

> lor:=Eval(diff(C(x,y,tau),x),x=0)=Eval(diff(C(x,y,tau

L[c]));

> convert(lor,piecewise,y) assuming y>0 and L[c]>0;

> Heaviside(y-a)=piecewise(y>=a,1,0);

> lor assuming y<0 and L[c]>0;

> lor assuming y>L[c] assuming y>0;

> lor assuming y>0 and y<L[c];

> Eval(diff(C(x,y,t),x)+w⁄C(x,y,t),x=1)=0;
> eq3:=laplace(eq1,t,s);

> eq4:=subs(eq2,eq3);

> eq5:=subs(laplace(C(x,y,t),t,s)=C(x,y),eq4);

> eq6:=pdsolve(eq5,HINT=f(x)⁄g(y));
> eq7:=factor(build(eq6));

> eq8:=subs(y=-L[d],diff(rhs(eq7),y))=0;

> eq9:=subs(y=L[u],diff(rhs(eq7),y))=0;

> eq10:=isolate(eq8,_C4);

> eq11:=factor(subs(eq10,eq9));

> eq12:=factor(combine(cos((-s+_c[1])^(1/2)⁄L[u])⁄sin
2)⁄L[d])⁄sin((-s+_c[1])^(1/2)⁄L[u]),sin))=0;

> eq13:=(-s+_c[1])^(1/2)⁄(L[u]+L[d])=n⁄Pi;
> eq14:=isolate(eq13,_c[1]);

> eq15:=simplify(subs(eq14,eq12),power,symbolic);

>

>

> eq17:=simplify(subs(eq14,eq10),power,symbolic);

> eq18:=factor(subs(eq17,eq7));

> eq19:=factor(combine(simplify(subs(_C3=1,subs(eq14,e

>

>

>

> eq23:=subs(_C1=A[n],_C2=B[n],eq19);

> eq24:=C(x,y)=Sum(rhs(eq23),n=0..infinity);

> eq24A:=factor(subs(A[n]=A[n]⁄sin(n⁄Pi/(L[u]+L[d])⁄L
> eq24B:=C(x,y)=eval(simplify(subs(n=0,-cos(n⁄Pi⁄(y+L[
(L[u]+L[d]))⁄(A[n]⁄exp((n^2⁄Pi^2+s⁄L[u]^2+2⁄s⁄L[u]⁄
(n^2⁄Pi^2+s⁄L[u]^2+2⁄s⁄L[u]⁄L[d]+s⁄L[d]^2)^(1/2)/(L
cos(n⁄Pi⁄(y+L[d])/(L[u]+L[d]))⁄(A[n]⁄exp((n^2⁄Pi^2+
(L[u]+L[d])⁄x)+exp(-(n^2⁄Pi^2+s⁄L[u]^2+2⁄s⁄L[u]⁄L[d
infinity);

> G[n]=sqrt(rhs(eq14));

> simplify(isolate(sqrt(n^2⁄Pi^2+s⁄L[u]^2+2⁄s⁄L[u]⁄L[
> eq24C:=subs(sqrt(n^2⁄Pi^2+s⁄L[u]^2+2⁄s⁄L[u]⁄L[d]+s⁄L
> eq25:=subs(x=1,diff(rhs(eq24C),x)+w⁄rhs(eq24C))=0;
> eq25A:=-A[0]⁄s^(1/2)⁄exp(s^(1/2))+s^(1/2)⁄exp(-s^(1
2))⁄B[0])=0;

> eq25B:=simplify(simplify(factor(isolate(eq25A,B[0])

> eq26:=-cos(n⁄Pi⁄(y+L[d])/(L[u]+L[d]))⁄(A[n]⁄G[n]⁄ex
(L[u]+L[d]))⁄(A[n]⁄exp(G[n])+exp(-G[n])⁄B[n]));

> eq27:=simplify(factor(isolate(eq26,B[n])),exp);

> eq28:=(subs({eq25B,eq27},eq24C));

>

> cuca1:=C(s,x,y) = simplify(factor(-A[0]⁄exp(s^(1/2)
(s^(1/2)-w)),exp)+Sum(-cos(n⁄Pi⁄(y+L[d])/(L[u]+L[d]
G[n]⁄x)⁄A[n]⁄(G[n]+w)/(-G[n]+w)⁄exp(2⁄G[n])),exp),n
purposes and parameter estimations. Caution should be exercised
when using seff as a dynamic performance criterion. The method
can be used to assess the dynamic performance of novel con-
trolled-release systems.
DETools):with(plots):

y]);

),x)+C(x,y,tau)-1,x=0)⁄(Heaviside(y)-Heaviside(y-

((-s+_c[1])^(1/2)⁄L[d])+cos((-s+_c[1])^(1/

q18)),power,symbolic)));

[d]),B[n]=B[n]⁄sin(n⁄Pi/(L[u]+L[d])⁄L[d]),eq24));
d])/

L[d]+s⁄L[d]^2)^(1/2)/(L[u]+L[d])⁄x)+exp(-
[u]+L[d])⁄x)⁄B[n])),power,symbolic))+Sum(-
s⁄L[u]^2+2⁄s⁄L[u]⁄L[d]+s⁄L[d]^2)^(1/2)/
]+s⁄L[d]^2)^(1/2)/(L[u]+L[d])⁄x)⁄B[n]),n = 1 ..

d]+s⁄L[d]^2)=G[n]⁄(L[u]+L[d]),G[n]));
[d]^2)=G[n]⁄(L[u]+L[d]),eq24B);

/2))⁄B[0]+w⁄(-A[0]⁄exp(s^(1/2))-exp(-s^(1/

),power,symbolic),exp);

p(G[n])-G[n]⁄exp(-G[n])⁄B[n])+w⁄(-cos(n⁄Pi⁄(y+L[d])/

⁄x)-exp(-s^(1/2)⁄x)⁄A[0]⁄exp(2⁄s^(1/2))⁄(s^(1/2)+w)/
))⁄simplify(factor(A[n]⁄exp(G[n]⁄x)-exp(-
= 1 .. infinity);
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