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Abstract

This work presents an initial approach to the evaluation of robust covariance estimation for
object detection (localization) using the “region covariance” technique from the literature. The
covariance estimation is performed using the Comedian, Kendall, Spearman and Ledoit and Wolf
robust approaches for covariance, and the procedure wasalso compared using two different matrix
norms for estimating dissimilarity. The performance was measured quantitatively using linear
regression and Pareto boundaries, yielding the Ledoit and Wolf estimation with best overall
performance in object detection in normal and noisy images.

Keywords: Region covariance, robust estimation, object detection, Pareto boundaries, image
features.

The code implemented for this paper can be found in this link.

1 Introduction

The object detection and classification in digital images is yet a difficult challenge. This topic
is a branch of a what is known as “computer vision” [1]. This interdisciplinary field addresses
the challenge of how computers can understand and gain insight from digital images and videos,
similar to how human visual system works [2, 11, 1, 26]. Computer vision is widely used nowadays,
in application fields such as medical imaging, automotive safety, surveillance, bio-metrics, face
detection, autonomous navigation, industrial inspection and beyond [11, 26].

More specifically, object detection refers to “anything from identifying a location to identifying and
registering components of a particular object class at various levels of detail” [1]. Object detection
is a necessary requirement for the further “recognition” of the object or for more general tasks,
such as “tracking” in dynamic scenarios (see [16] for an excellent review in tracking methodologies).
Some general object detection methodologies can be found, for example, [1, 26] and the references
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therein; for more recent developments involving deep learning, refer to [12, 36] and the references
within; finally, for an statistical approach, check [17].

This paper aims to evaluate the effectiveness of robust covariance estimations for object detection us-
ing the well-known “region covariance” scheme proposed in [29]. This methodology has been widely
used by different authors in different research fields [33], such as object classification/recognition
[10, 24, 27], human detection [19, 28, 35, 9], face recognition [20, 8], image smoothing [13], and
object tracking [23, 32, 34, 31].

This work is organized as follows: Section 2 presents a brief, but rather specific, description of three
main applications of the Region Covariance approach for object detection, which serve as main
justification to the purpose of this work. On other hand, Section 3 presents the general scheme for
the CRISP-DM methodology for projects in analytics and describes how it is applied to the present
research. Furthermore, Section 4 presents the generalities on the Region Covariance method for
object localization. Additionally, Section 5 presents the obtained results for different covariance
matrix estimation and different evaluation objects. The concluding remarks and future work are
discussed in Section 6.

2 Justification

This section briefly describes some of the most remarkable applications of the general methodology
used in this work, as main justification for this exploratory work.

One of the most important applications of the methodology proposed in [29] is in Object Tracking,
which is a natural consequence of the original localization scheme. The work in [23] and [33]
show outstanding results for object tracking, using real-time model update. The first, uses a model
update method based on Lie algebra and Lie groups to estimate the intrinsic mean of the covariance
matrices through frames. The symmetric positive definite matrices Sym+(n,R) have a Lie group
structure and, hence, this approach. The table presented in Fig. 1 shows the obtained results by
the authors in different scenarios, where almost all presented good detection of the object.

Figure 1: Results for experiments (taken from [23]).
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The second, uses a model update approach divided in two stages: a probabilistic Bayesian inference
for covariance tracking − via Maximum A Posteriori (MAP) estimation −, and an Incremental
Covariance Tensor Learning (ICTL). The former propagates the sample distribution over time and
the latter learns a low-dimensional covariance model online, as time progresses. The general scheme
of this approach is presented in Fig. 2. The authors claim to have achieved real-time performance
using state-of-the-art data structures for images.

Figure 2: General scheme (taken from [33]).

The work presented in [20] shows a newly developed feature descriptor framework, deeply related
with Region Covariance Matrices (RCMs) to perform face recognition. The use of RCMs provides
a natural method of fusing multiple features in addition to the fact that RCM has a low dimension,
and it is independent from scale or illumination. The table presented in Fig. 3 shows the obtained
results by the authors comparing the accuracy of face recognition between RCM-based methods and
classical methods such as principal component analysis (PCA), linear discriminant analysis (LDA),
kernel PCA (KPCAP) and kernel LDA (KLDA). Note that, although the normal RCM performs
poorly, the Gabor-based RCM outperforms the standard methods, giving better accuracy.

Figure 3: Results of accuracy (taken from [20])

Finally, the work developed in [22] shows a remarkable application for detection of license plates
using the covariance as region descriptor and then it is flatten into an input vector to a multi-layer
perceptron (faster than calculating the dissimilarities between the matrices). The authors claim
that this approach is robust against noises, illumination distortions and rotations. In Fig. 4, an
example of covariance matrix estimation from a 7-feature vector per pixel. Furthermore, Fig. 5
shows the estimated ROC curve for 4 different experiments, using a different method and different
feature vectors.
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Figure 4: Example of covariance matrix from features (taken from [22]).

Figure 5: ROC curve for different feature vectors (taken from [22]).

3 CRISP-DM Methodology

The CRISP-DM (Cross Industry Standard Process for Data Mining) methodology splits the data-
mining endeavor into six phases: business understanding, data understanding, data preparation,
modeling, evaluation and deployment [3].
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Figure 6: CRISP-DM Methodology (taken from [3]).

Business Understanding: The first objective of the data analyst is to thoroughly understand,
from a business perspective, what the customer really wants to accomplish. Often the customer has
many competing objectives and constraints that must be properly balanced. The analyst’s goal is to
uncover important factors, at the beginning, that can influence the outcome of the project.

For the phase of Business Understanding see sections 1 and 2.

Data Understanding: Acquire the data (or access to the data) listed in the project resources.
This initial collection includes data loading, if necessary for data understanding.

The acquire data for the project were personal photos for the following reasons. The input object
was required to have different scale, orientation, location, and lighting characteristics in order to
evaluate performance with the different metrics and covariance estimates. On the other hand, it is
necessary to be able to manually locate the real object to assess the correct location of the object
(supervise focus).

Data Preparation: These are the dataset(s) produced by the data preparation phase, which will
be used for modeling or the major analysis work of the project.

For current project the data preparation phase was developed as follows. In the first step we take
six photos of an object, one of this is considered as the input of the program and the other five were
considered as test cases. This last photo was cropped in order to become into a single image. On
the other hand, all images were scaled so that their major axis had 70 pixels. Finally, real objects
were extracted from the five test images for further evaluation of the program.

Modeling: As the first step in modeling, select the actual modeling technique that is to be used.
Although you may have already selected a tool during the Business Understanding phase, this task
refers to the specific modeling technique, e.g., decision-tree building with 5.0, or neural network
generation with back propagation. If multiple techniques are applied, perform this task separately
for each technique.
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For modeling phase, see section 4.

Evaluation: This step assesses the degree to which the model meets the business objectives and
seeks to determine if there is some business reason why this model is deficient. Another option is to
test the model(s) on test applications in the real application, if time and budget constraints permit

For Evaluation phase, see section 5

Deployment: This task takes the evaluation results and determines a strategy for deployment. If
a general procedure has been identified to create the relevant model(s), this procedure is documented
here for later deployment.

Deployment phase can be found in this link.

4 Methodology

4.1 Covariance as a Region Descriptor

Descriptors are set of numbers produced to describe a given shape in a quantifiable measure [30].
The shape may not be entirely reconstructed from the descriptors, but these measures for different
shapes should be different enough that the shapes can be discriminated [4]. A region descriptor
describes the object within based on the pixel distribution in this 2-D array.

The covariance as a region descriptor, proposed in [29], will now be presented. For an image of
width W and height H, let W = {1, . . . ,W} and H = {1, . . . ,H}. The image is then mapped into
a feature space for each pixel

F :W ×H → Rd

yielding a tensor A ⊂ RW×H×d, as depicted in Fig. 7.

Figure 7: Feature extraction.

Let W ′ and H ′ the width and height of region R ⊂ A. The covariance matrix of R is estimated by
flattening the region into a (W ′ ·H ′)× d data matrix, yielding CR ∈ Rd×d. This process is depicted
in Fig. 8.
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Figure 8: Region tensor.

There are multiple advantages for using the covariance as a region descriptor. Usually, a single
covariance matrix extracted from a region is enough to match the region in different views, since
the covariance of a distribution is enough to discriminate it from other distributions. Moreover, the
covariance matrix allows to observe features that might be correlated and filter out noise corrupting
samples during the computation.

Additionally, the covariance matrices are low-dimensional, compared to other region descriptors and
due to symmetry CR has only

(
d2 + d

)
/2 different values. This method also allows to discriminate

orientation, scale and illumination features from an image, since the covariance descriptor is not
invariant regarding the orientation of the points.

4.2 Metrics

Definition 4.1. The matrix norm is a function ‖·‖ : Km×n → R where K is the set of either real
or complex numbers and Km×n is the vector space of all matrices of size m×n. This function must
satisfies the following five axioms:

1. ‖A‖ ≥ 0

2. ‖A‖ = 0 if and only if A = 0

3. ‖cA‖ = |c|‖A‖

4. ‖A + B‖ ≤‖A‖+‖B‖

5. ‖AB‖ ≤‖A‖‖B‖

Example 1. The l1 norm is defined for A ∈ Km×n by

‖A‖1 =

n∑
i,j=1

|aij |

Example 2. The l∞ norm is defined for A ∈ Km×n by

‖A‖∞ = max
i

n∑
j=1

|aij |
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4.2.1 Frobenius

An m × n matrix A can be consider as a particular kind of vector x = A ∈ R(m·n), and its norm
is any function that maps A to a real number ‖A‖. In this order of ideas, if we treat the m × n
elements of A as the elements of an (m · n)−dimensional vector, then the p−norm of this vector
can be used as the p−norm of A:

‖A‖p =


m∑
i=1

n∑
j=1

|aij |p


1/p

If we consider the case when p = 2 we got the Frobenius norm ‖A‖F

‖A‖2 =‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

tr(ATA)

4.2.2 Dissimilarity of Two Covariance Matrices

It is well known that the covariance matrix lies on a non-euclidean space, therefore, in order to
measure the dissimilarity of two covariance matrices, the distance measure proposed in [7] is used:

ρ (C1,C2) =

√√√√ n∑
i=1

ln2 λi (C1,C2) (1)

where
{
λi (C1,C2)

}n
i=1

are the generalized eigenvalues of C1 and C2, computed from

λiC1xi −C2xi = 0, i = 1 . . . d

and xi 6= 0 are the generalized eigenvectors. The distance measure ρ satisfies the metric axioms
for positive definite symmetric matrices (see [29]). The equation (1) can be computed with a O

(
d3
)

arithmetic operations using numerical methods.

4.3 Covariance Computation

The methods for estimating the covariance matrix of each image region will be now presented:

4.3.1 Maximum Likelihood Estimation

The maximum likelihood estimation (with the bias correction factor) of the covariance matrix is
given by

CR =
1

n− 1

n∑
k=1

(zk − µ) (zk − µ)T , (2)

where µ is the mean vector of the features inside the region.
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4.3.2 Comedian Estimation

The first robust calculation of the distance is based on a robust estimation of the covariance matrix
following the ideas from [5], using the following definition.

Let X and Y be two random vectors. The comedian between X and Y is defined as

Com(X,Y ) = Med[(X −Med(X))(Y −Med(Y ))].

The covariance matrix is then estimated by applying the comedian to each feature of the data
(comedian matrix).

4.3.3 Kendall Estimation

This method uses the Kendall rank correlation coefficient, usually known as Kendall’s τ coefficient,
originally proposed in [14]. In order to define the Kendall’s τ coefficient we have to give a notion of
concordance.

Definition 4.2. Let (xj , yj) and (xk, yk) be two elements of a sample {(xi, yi)}ni=1 from a bi-variate
population. One says that (xj , yj) and (xk, yk) are concordant if

xj < xk and yj < yk

or if
xj > xk and yj > yk

On the other hand, (xj , yj) and (xk, yk) are discordant if

xj < xk and yj > yk

or if
xj > xk and yj < yk

Given this definition and establishing that the number of distinct pairs of observations in the sample
is given by

(
n
2

)
and each pair is either concordant or discordant one can denote as S the number of

concordant pairs minus the number of discordant pairs and give the definition of the Kendall’s τ
for the sample as

τ =
S(
n
2

) =
2S

n(n− 1)

With this coefficient, each entry of the covariance matrix is estimated using

Cov(x, y) = ρkSxSy

where ρk is Kendall’s τ coefficient, and Sx and Sy are the respective standard deviations.
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4.3.4 Spearman Estimation

This estimation was performed similarly to Kendall’s. The covariance matrix is estimated using

Cov(x, y) = ρsSxSy

where ρs is Spearman’s correlation coefficient (see [25]), and Sx and Sy are the respective standard
deviations. Spearman’s coefficient can be defined as follows (see [6]). Suppose that there are n pairs
of associated rankings

u1, u2, . . . , un and v1, v2, . . . , vn

where the integers ui (i = 1, 2, . . . , n) may be taken in ascending order 1, 2, . . . , n and the vi are
a permutation of these integers. The measure of correlation between these rankings given by the
Spearman’s coefficient is simply the product moment correlation coefficient of ui, vi and may be
computed from the sum of squared differences

Ss =

n∑
i=1

(ui − vi)2

Then, the coefficient is given by

ρs = 1− 6Ss
n3 − n

4.3.5 Ledoit and Wolf Estimation

This method, proposed in [15], uses the shrinkage constant δ, to ‘shrunk’ the sample covariance
matrix towards the structured estimator. The covariance matrix is estimated using

Cov(x, y) = δF + (1− δ)S

where S is the sample covariance matrix, F is a structured estimator and δ is a number between 0
and 1.

4.4 Object Detection

Based on the methodology proposed in [29] for object detection, the following approach is used to
locate an object image in an arbitrary image after a nonrigid transformation.

Initially, the location of a pixel in the target image is defined by its coordinates (x, y). The axis
coordinates define the pixel location as an array in multi-dimensional space. Each image axis has a
length, in pixels, so that the image coordinates run between 1 and the length of the axis [18]. Then,
each pixel of the image is converted to a nine-dimensional feature vector

F (x, y) =

[
x, y, R(x, y), G(x, y), B(x, y),

∣∣∣∣∂I(x, y)

∂x

∣∣∣∣ , ∣∣∣∣∂I(x, y)

∂y

∣∣∣∣ ,
∣∣∣∣∣∂2I(x, y)

∂x2

∣∣∣∣∣ ,
∣∣∣∣∣∂2I(x, y)

∂y2

∣∣∣∣∣
]T

(3)

with RGB color values, and intensity I. The first and second order derivatives are calculated
through Sobel filters.
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The first step is to estimate the covariance matrix of the input target object T . A brute force
search is performed to find matching regions, analyzing nine different scales (four smaller, four
larger). Instead of scaling the target image, the size of the search window is varied with a 15%
scaling factor between two consecutive scales.

After the search, the best matching 1000 locations are kept and each region is divided into five
different sub-regions to evaluate different covariances of the region; this division is better depicted
in Fig. 9.

Figure 9: Region subdivision, image taken from [29].

Finally, the objective function is evaluated to find the matching region. The idea behind this
function is find the region R that minimizes the dissimilarity of itself with all the remaining:

λ(R, T ) = min
j

 5∑
i=1

ρ
(
CR

i ,C
T
i

)
− ρ

(
CR

j ,C
T
j

)
where CR

j is the j-th covariance matrix from Fig. 9 for the region R and CT
j is the j-th covariance

matrix of the target object.

4.5 Performance Measures

For each of the test cases the expected result was extracted to measure the performance of the
algorithms. In this manner, two performance measures of each of the test cases were calculated,
the value of the objective function and the distance between the covariance matrix of the expected
result and the algorithm result. This measures allowed to understand how close the algorithm was
to obtaining the correct result and how well the optimization problem was solved.

It is important to remark than metrics, normally, have a wide range of scales between them. This
generated difficulties in the way to compare them. To solve this issue, to compare each of the
dissimilarity functions the distance to the original object for each of the test cases is were used. The
idea was to see if, normally, one of the dissimilarity function outperformed (had a smaller distance
to the original) than the other one. Hence, a linear regression of this distances were extracted using
the desired metrics. If the linear regression is significant, this would allow to see which metric had
a more close result to the expected one. The distance explained in Subsection 4.2.2 was used for
calculating the distance between the expected and the algorithm result.

On the other hand, for comparing each of the covariances a similar strategy was used. Let n be
the number of test cases. For each covariance matrix i and distance j a matrix Mij ∈ Rn×2 was
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constructed containing the value of the objective function and the distance to the expected result.
Then a scatter plot was constructed for each of distance j to see which covariance matrix, generally,
minimized both of the performance metrics. As both of the performance measures are desired to be
minimized, a Pareto curve is obtained in order to solve the multi-objective optimization problem.

5 Results

This work only presents some localization results that the authors considered valuable for the dis-
cussion and concluding remarks. The complete output for all possible 500 combination of covariance
matrices, type of input and metric can be found in this link. This zipped file contains several fold-
ers, one for each input image with its respective test cases. All files follow an standardized name
structure: noise-cov-dist-test caseX.jpg where

noise: 0 → Impulse cov: 0 → MLE dist: 0 → Author
1 → No noise 1 → Comedian 1 → Frobenius

2 → Spearman
3 → Kendall
4 → LW

5.1 Implementation

This section briefly describes some details of the implementation of the algorithm. First, we calculate
the first and second order derivatives of all pixels in both the input and target images, instead of
calculating on each region considered; this allows the implementation to access the derivatives for
each region, used in the features, in constant time. Second, the whole methodology was tested using
RGB color scheme. Third, an additional step was included in the detection process: the “transpose”
of the region is also considered in search for a matching region; this allows the algorithm to detect
possible rotations of the image or object in question by switching the width and height of the
searching region.

5.2 Implementations

In Table 1, the execution time in seconds and the mega-bytes consumed by the implementations
can be found. The “näıve” implementation used for-loops and suggested commands to find each
of the estimators. The “ours” implementation used only matrix operations. This was tested with
a uniform random matrix of size 1000 × 500 once, as one run is enough to compare the speeds as
calculating a similar sized matrix rarely varies in execution time.
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Spearman Kendall Comedian
Näıve (s) 1.44 162.13 369.78
Ours (s) 0.30 4.11 3.66

Näıve (MB) 109 108 104
Ours (MB) 115 1977 2020

Table 1: Tests with random matrix in R1000×500.

5.3 Image Results with Kendall Matrix

Some examples of the object localization results, for different input objects, are presented in Figs.
10-13. These results only present locations obtained with the Kendall covariance matrix, varying
the metric and for input with and without noise.

(a) Input. (b) With noise. (c) Without noise.

Figure 10: Tests for Rubik’s cube with authors’ metric.
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(a) Input. (b) With noise. (c) Without noise.

Figure 11: Tests for Rubik’s cube with Frobenius metric.

(a) Input. (b) With noise. (c) Without noise.

Figure 12: Tests for glass deer with authors’ metric.
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(a) Input. (b) With noise. (c) Without noise.

Figure 13: Tests for glass deer with Frobenius metric.

5.4 Image Results with LW

In Fig. 14, the localization of noisy input images is presented, using the Ledoit and Wolf covariance
matrix estimation. Note that the authors metric shows better results.

(a) Input. (b) Authors’ metric. (c) Frobenius metric.

Figure 14: Tests for bike with noise.
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Figure 15: Linear regression comparing metrics.

5.5 Metrics

As can be appreciated in the Fig. 15, the metrics were compared by setting a scatter plot of the
distances to the real covariance matrix, using the Frobenius and the authors’ dissimilarity measures:

5.6 Covariance Matrices

In Figs. 16 and 17, the Pareto boundaries for covariance matrices using the author’s metric and
the Frobenius metric, are presented. Note that both cases present a boundary determined only by
points obtained using Kendall’s covariance matrix, suggesting that this estimation is overall better.

5.7 Noise

Fig. 18 shows the Pareto boundaries for inputs with noise and, same as the results in previous
section, the points obtained by Kendall’s matrix are non-dominated solutions on the estimated
Pareto boundary, which also confirms that this estimation performs better than the other ones.

6 Conclusions

In conclusion, in first place, faster implementations for the Kendall, Spearman and Comedian
matrix estimator were successfully created. These implementations were much faster than the näıve
implementations with a big downgrade in memory management. This is deemed by the authors as
a worthy trade-off as memory can be improved with hardware; on the other hand, implementation
speeds cannot be massively improved by the same logic. Furthermore, it is important to remark that
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Figure 16: Pareto boundaries for covariance matrices (authors’ metric).
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Figure 17: Pareto boundaries for covariance matrices (Frobenius metric).
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Figure 18: Pareto boundaries for inputs with noise.

this implementations are significantly faster because for-loops where avoided and only operations
given by the numpy package where used.

In second place, the dissimilarity functions were successfully evaluated. The experiments realized
in this work showed that the proposed function by Tuzel, Porikli, and Meer [29] had much better
performance than the classic Frobenius norm. This was confirmed by Fig. 15, as the linear regression
had a β1 > 1. Furthermore, this could be justified as covariance matrices do not belong to a euclidean
space; hence, the Frobenius dissimilarity could not effectively separate each region.

In third place, the covariance matrices were successfully evaluated. The overall best covariance
matrix was using the one based on Kendall’s tau coefficient. On the other hand, using this co-
variance estimator yielded a significantly slower execution time (even with the improvement on the
implementation). Therefore, the results also showed that the Ledoit-Wolf covariance estimator is
the second best algorithm and is much faster. In this manner, both of the mentioned covariance
matrices are selected by the authors as the more effective covariances.

For future work, the integral image data structure [21] could be tested to enhance the speed of the
algorithm when exploring the regions of the image.
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