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Abstract

Based on the three-dimensional dynamics of a rigid body and Newton’s laws, the simplified dynamics of a spacecraft is
studied and described through the systematical representation, mathematical modeling and also by a block diagram

representation, to finally simulates the spacecraft dynamics in the Matlab programming environment called Simulink. It
is paramount to be able to identify and recognize the attitude (often represented with the Euler angles) and position

variables like the degrees of freedom (DOF) of the system and also the linear behavior. All this to conclude up about the
non-linear behavior presented by the accelerations, velocities, positions and Euler angles (attitude) when those

mentioned are plotted against time. In addition to this, the linearized system is found in order to facilitate the control
analysis and stability analysis, at using linear analysis tools of Simulink and concepts like controllability and

observability, reaching the point of determining under the previous concepts to proceed with the control design phase.
Lastly, an uncertainty and sensitivity analysis is realized, by means the Monte-Carlo and the Linear regression method
(in Simulink too), to find the torque like critical model input, since it has the greatest effect on the response variables in
the system; and thus finally, to implement the Linear Quadratic Regulator (LQR) controller, at using the lqr Matlab

function.

Keywords: Attitude; mathematical model; block diagram; simulation; linearization, stability; controllability
and observability; uncertainty and sensitivity; linear and angular momentum conservation; Euler angles;
Monte-Carlo Method; Linear Quadratic Regulator; Simulink.

I. Introduction

In this research, the dynamics of a spacecraft is
studied, it is based on the dynamics of a rigid
body in three dimensions, this through the laws

of conservation of angular and linear momentum,

to then acquired with these, information about the
attitude (Euler angles) and about the position to
have finally information about the 6DOF (Degrees
Of Freedom), that is, about the three rotations (φ, θ,
ψ) and the three translations (x, y, z).
Therefore, motivated to apply and articulate what
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has been learned about modeling and mathematical
simulation, the mathematical and physical knowl-
edge acquired in mechanical engineering and learn
about the aerospace branch; making a description
of both the system and the mathematical model is
wanted; furthermore is required a block diagram
representation using the Matlab programming en-
vironment called Simulink, to finally perform math-
ematical simulations in it and graphically show the
dynamics of the system in question.
Lastly, the linearized system is represented mathe-
matically, in order to ease its future optimal control
(specifically implementing the Linear-Quadratic
Regulator (LQR) controller with the lqr Matlab func-
tion) through a Simulink’s tool called Linear analy-
sis tool, likewise in order to analyze its stability and,
of course at the end, the uncertainty and sensitivity
of the system, using Simulink tools.

II. Methods

This research, starts with a search of information
about the rigid bodies dynamics in three dimen-
sions, going through the systems in which the dy-
namics of spacecraft it is often analyzed until arriv-
ing at such mathematical models of those systems.

i. System description

For this research, a dynamic system of 6DOF is
taken in a three-dimensional space, in the Earth’s
orbit ignoring the earth’s oblateness, this simplify-
ing the mathematical model as much as possible.
In addition, external disturbing effects are disre-
garded, such as the gravitational gradient (given
because the center of mass of the spacecraft is not
aligned with its center of gravity), atmospheric drag
(given in low orbit), electromagnetic effects of third
bodies (at least the earth’s one) and solar pressure
(caused by the sun’s electromagnetic radiation in
low orbit).
Likewise, internal disturbing effects such as those
produced by fluid movements and crew movements
(given the case) are neglected. [3].
Then, knowing the above, both the system inputs
and outputs are shown in tables 1 and 2.

ii. Mathematical model description

To begin to describe the system mathematically,
it is necessary to define the frame of reference, in
this case, the fixed body, then it is here where the

Table 1: System inputs

Inputs Variable

Inertia tensor ~I
Mass M
Torque ~T(x,y,z)
Force ~F(x,y,z)
Initial angular velocity ~ω0(x,y,z)
Initial linear velocity ~v0(x,y,z)
Initial Euler angles φ0, θ0, ψ0
Initial position x0, y0, z0

Table 2: System outputs

Outputs Variable

Angular acceleration ~̇ω
Linear acceleration ~̇v
Angular velocity ~ω
Linear velocity ~v
Euler angles change rate φ̇, θ̇, ψ̇
Euler angles φ, θ, ψ
Position x, y, z

mathematical description begins.

Being brief and concise, starting with the New-
ton’s second Law, it is known that for a particle
F=ma:

~F = ∑
i

~Fi = m
d~v
dt

(1)

Based on the above, the concept of Linear mo-
mentum is introduced, who is represented by the
mathematical equation 2.

This Linear momentum (L), depends on the
frame of reference, but when is used in any in-
ertial frame, it is conserved what means that the
total linear momentum does not change. Newton’s
second law is valid only if the force and velocity are
defined in an inertial coordinate system, remember-
ing that if a coordinate system is not accelerating
or rotating, this one is Inertial.

~L = m~v (2)

Using Calculus, the previous concept can be ex-
tended to rigid bodies by integration over all parti-
cles, when the concept is translated to the angular
ambit and so is obtained:
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~M = ∑
i

~Mi =
d~H
dt

(3)

Equivalent to the linear momentum, here is in-
troduced the angular momentum concept, whose
behaves as its homologous, when only the type of
movement is changed to the angular motion, and it
is represented by this equation:

~H = ~I~ω (4)

After that, it is important to define a new essen-
tial concept to understand the angular momentum,
called Inertia. The inertia is the resistance of any
object to any change in its motion, including its
speed and direction.

Also is important to understand the physical con-
cept known as Moment of inertia or Rotational
inertia (of a rigid body in this study case), which
is a tensor that determines the torque needed for a
desired angular acceleration about a rotational axis
(eq. 5). It depends on the body’s mass distribution
and the axis in question.

~I =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (5)

The moment of inertia matrix (I) is fixed in the
body frame. However, it is necessary to remember
that Newton’s second law only applies for inertial
frames:

F = m
d~v
dt

+ m~ω×~v (6)

And again, equivalent to the linear momentum,
the angular momentum and the inertia moment
matrix (I) are fixed in the body frame like its ho-
mologous (linear momentum):

M =
d~H
dt

+ ~ω× ~H (7)

Thus, simplifying it determines that the forces
moment regarding the gravity center is represented
by this following equation:

~T = ~I ~̇ω + ~ω×~I~ω (8)

Having reached this point, the aim probably will
be to find some way to get the Euler angles by
known physical information like angular velocity;
and due to that, the linear transformation repre-
sented by the equation 9 acquire a sense.

~ω =

1 0 − sin θ
0 cos φ cos θ sin φ
0 − sin φ cos φ cos θ

×
φ̇

θ̇
ψ̇

 (9)

Euler angles are particularly useful to describe
the motion of a body that rotates about a fixed point,
such as a gyroscope or, a body that rotates about
its center of mass, such as an aircraft or spacecraft,
like it was found in the bibliography. Unfortunately,
there is no standard formulation nor standard nota-
tion for Euler angles; thus, it is chosen to follow, one
used in the bibliography (see the following figure).
[1], [2] and [5] 1

Figure 1: Euler angles (figure from [1])

To identify the new positions of the principal
axes as a result of angular displacement through
the three Euler angles (φ, θ and ψ), going through
the following series of coordinate rotations Z-Y-X
(or the so-called 3–2–1) rotation sequence or (γ, β
and α) like is proposed in the bibliography:

Figure 2: Series of coordinate rotations (figure from [7])

First, the object’s (spacecraft) points are rotated
since an initial system (x, y, z) into a x′, y′, z′ system
through a rotation (right-handed rotation) angle ψ

1For aircraft and spacecraft motion a slightly different one is
used.
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about the, z′ axis on the x-y plane. This angle
denoted by ψ is called Yaw. The aforementioned is
shown in equation 10.

x′

y′

z′

 =

 cos ψ sin ψ 0
− sin ψ cosψ 0

0 0 1

x
y
z

 = [T1]

x
y
z


(10)

The resulting x′ and y′ coordinates remain in the
x, y plane. Now the angle form the x′′ axis to the
body frame x′ axis is the angle in question. The
right-handed rotation is about the y′ axis and after
this rotation, the y′′ axis remains coincident with
the y′ axis. This angle denoted by θ is called pitch.
The aforementioned is shown in equation 11.

x′′

y′′

z′′

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

x′

y′

z′

 = [T2]

x′

y′

z′


(11)

Finally, the previous coordinates is rotated (right-
handed rotation) about x′′ axis through an angle
who is the angle from the y′′ axis (or z′′ axis). The
x′′′ axis is coincident with the x′′ axis. This angle
denoted by φ is called Roll. The aforementioned is
shown in equation 12.

x′′′

y′′′

z′′′

 =

1 0 0
0 cosφ sin φ
0 − sin φ cos φ

x′′

y′′

z′′

 = [T3]

x′′

y′′

z′′


(12)

At the end, the final "Euler" Transformation is:x′′′

y′′′

z′′′

 = [T3][T2][T1]

x
y
z

 (13)

For more understanding about the mathematics
applied here, look at references 2.

iii. Block diagrams

This system is composed by 4 big subsystems (like
is possible to see in the following figures), which
are going to be described here:

In the first subsystem (see fig. 3) are calculated
the angular velocity and the angular acceleration.
The angular acceleration is obtained using the In-
ertia tensor and the torque (see eq. 8). After that,
by integration and with the initial condition ω0, is
obtained the angular velocity.

2All formulas are obtained from [1], [2] and [4]

Figure 3: Subsystem 1

Figure 4: Subsystem 2

In the second subsystem (see fig. 4) are calcu-
lated the attitude or the Euler angles (φ, θ, ψ) and
its rate of change. First, the change of rate was
found through the equation 9 (multiplying the
angular velocity by the inverse of the A matrix).
And finally, the attitude was calculated integrating
its rate of change with an initial attitude (φ0, θ0, ψ0).

Figure 5: Subsystem 3

In the third subsystem (see fig. 5) are calculated
the linear acceleration, the linear velocity, and po-
sition. Starting from the force, mass, and the cross
product between the angular velocity and the linear
velocity, with the aim of adding it arithmetically, the
linear acceleration is found. After that, by integra-
tion is calculated the linear velocity using the initial
linear velocity v0 both in the body fixed frame. So
later, by means of the final "Euler" transformation
matrix or well know as Direction Cosine Matrix
(DCM) is calculated the linear acceleration and lin-
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ear velocity in the flat Earth reference frame, and
so, finally by integration again, find the spacecraft
position (see eq. 6) later plotted.

Figure 6: Subsystem 4

In the fourth subsystem (see fig. 6) is calculated
the Final Euler transformation matrix (see eq. 13),
this one calculated multiplying the series of matri-
ces regarding with the coordinate rotation systems
proposed previously (see eqs. 10, 11 and 12). After
that, in the Matlab function is plotted the 3D model
geometry of the spacecraft (which is taken from
[11]) using geometric functions of computer-aided
geometric design, such as translational and rota-
tional functions and other rigid functions to built
an object (in this case a spacecraft), using geometri-
cal and topological matrices. 3

iv. Simulation methods

In this context, it should be noted that the following
units correspond to the international system (SI).
The initial conditions (tab. 3) and simulation pa-
rameters (tab. 4) that were used in Simulink, were
the following:

Table 3: Initial Conditions

Initial condition Variable Value

Initial angular velocity ~ω0(x,y,z) [0; 0; 0]
Initial linear velocity ~v0(x,y,z) [0; 0; 0]
Initial Euler angles φ0, θ0, ψ0 [0; 0; 0]
Initial position x0, y0, z0 [0; 0; 0]

These are the simulation parameters used to get
in Simulink a dynamics simulation of a spacecraft
with the target of acquiring information about its
6DOF (Euler angles and position) during 60 sec-
onds; using the physical parameters (that are shown
in table 5) for a the McDonnell Douglas / Boeing F
/ A - 18 (aircraft).

3For more information, look at the bibliography [4] and [6].

Table 4: Simulation parameters

Simulation parameters Value

Initial simulation time 0
Final simulation time 60
Type of solver Fixed-step
Solver Ode1 (Euler)
Fixed-step size (sample time) auto

Table 5: Physical properties

Physical property Value

Inertia Tensor [Look at the footnote]
Mass 16850
Torque [10; 0; 0.5]
Force [97800; 0; 50]

4

v. Mathematical model linearization

The aforementioned dynamic system was linearized
about a stationary point of linearization (which cor-
responds to the initial conditions of the model ex-
pressed in the simulation methods) to get a system
described in the form of the equation 14; all this
to simplify the future design phase of its controller
(if it is possible) and also with the aim of analyz-
ing the system stability. This point of linearization
was chosen due to the numerical and operational
simplification that this one offers.[

ẋ = Ax + Bu
y = Cx + Du

]
(14)

The input variables of the model were each
torque’s component (Tx, Ty, Tz) and the output
variables were each attitude angle (φ, θ, ψ) and
each angular velocity component (ωx, ωy, ωz)
(see next figure). It should be noted that for this
linearization only the part of the system that
modeled the dynamics of the spacecraft attitude
was taken.

In this case, the linearization was made through
the Simulink’s tool called Linear Analysis Tool after
choosing the corresponded inputs and outputs for
this system, expressing the initial conditions as the

4Inertia values are given by Ixx = 31183, Ixy = 0, Ixz = 37827,
Iyy = 20513, Iyz = 0, Izz = 23035.
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Figure 7: Inputs and outputs selection for the linear model

point of linearization and without variation of pa-
rameters, all that using a step plot; which saves the
manual work of expanding in Taylor series, around
a stationary point, to later built the Jacobian matrix.

After that, the original system (non-linear) and
the linear one are compared, all this to know the
approach level of the linear system (regarding the
original one) and then to know how good was the
linearization, this by means of the graphics compar-
ison of angular velocity and attitude (states).

Figure 8: Comparison between linear and non-linear systems

vi. Stability analysis

The stability criterion for linear systems says that
being λ the vector of the eigenvalues of the matrix
A, then the system is stable if for all the eigenvalues
λ are satisfied the equation 15:

Re(λ) < 0 (15)

If at least one of the eigenvalues is positive, the
system is unstable (Re(λ)>0) and finally, if for all
the eigenvalues, it is true that its real part is equal
to zero, the system is critically stable (Re(λ)=0).

vii. Controllability and observability anal-
ysis

As above was mentioned, it is desired to implement
a system control (one of the main reasons for having
linearized the system) and before going to design
the controller, it will be introduced two important
criteria that it is recommended to analyze before
this, to reach a solution of optimal control.

Such criteria are controllability and observability,
they are dual of the same problem, and its analysis
determines early the existence of a design solution
according to design parameters and objectives.

• Controllability means that it is possible by ad-
missible entries, to change the states of any
initial value to any other final value in a time
interval, the controllability does not mean to
stay there, but only to reach that state.
The controllability matrix is given as:

R =
[
B AB A2B . . . An−1B

]
(16)

Each linear system is controllable if the control
matrix has a maximum range.

• Observability means that from the outputs of a
system is possible to know the behavior of the
entire system. If a system is non-observable, it
means that some of its states cannot be deter-
mined by output sensors.
The observability matrix is given as:

O =


C

CA
CA2

...
CAn−1

 (17)

Each linear system is observable if the observ-
ability matrix has a range = n or if it is a full
rank matrix.

viii. Uncertainty and sensitivity analysis

Now, the next step is to proceed with the uncer-
tainty and sensitivity analysis given that:

• The uncertainty analysis determines qualita-
tively how an uncertainty in the model inputs
is reflected in an uncertainty in the outputs.
For this analysis, the Monte-Carlo Method will
be used, which consists of simulating the dy-
namic behavior of the system for randomly
chosen values or uncertain entries using 100
samples of parameters or inputs generated as-
suming a uniform distribution, and then per-
forming a statistical analysis of the results ob-
tained, often a frequency histogram. All this
using the Simulink software tool called Sen-
sitivity analysis, with ~Tx, ~Ty, ~Tz, Ixx, Ixy, Ixz,
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Iyy, Iyz, Izz, ~ω0(x), ~ω0(y) and ~ω0(z) as parame-
ters and with Step response envelope as the
requirement.
The Ranges of Monte-Carlo simulation param-
eters were made up according to clues given by
literature about the current spacecraft analyzed
and some of them (initial angular velocity) se-
lected due to the model sensitivity with the
aim of avoiding singularities in the sensitivity
analysis in Simulink (units correspond to the
SI):

Table 6: Range of Monte-Carlo simulation parameters

Model input Min. value Max. value

Ixx -50000 50000
Ixy -50000 50000
Ixz -50000 50000
Iyy -50000 50000
Iyz -50000 50000
Izz -50000 50000
~Tx -100 100
~Ty -100 100
~Tz -100 100
~ω0(x) 0 eps
~ω0(y) 0 eps
~ω0(z) 0 eps

• The sensitivity analysis quantifies the effect of
the inputs or parameters on the uncertainty in
the outputs. This analysis aims to identify the
input variables which have the greatest effect
over the output variables (critical parameters).
For this analysis, the chosen method is the
Global sensitivity analysis based on Linear re-
gression. In this method, a linear regression
is done between the response variable and the
input variables, in the form of equation 19 for
linear systems, that comes from 18:

y = β0 +
n

∑
i=1

βiui (18)

So:

Si = βi (19)

This Standardized regression coefficient will be
obtained by computing the statics of the sen-
sitivity analysis, the same as the Linear corre-
lation coefficient (another statistical index too)

help to understand better the sensitivity analy-
sis.

ix. Control design

Finally, after going through a successful analysis of
controllability and observability, and of course hav-
ing confirmed that the system is controllable and
observable, it proceeds to design the controller. In
this case, optimal control has been chosen, exactly
the Linear Quadratic Regulator (LQR) controller.

The LQR controller has the aim of reducing the
energy present in the system and minimizing this
criterion, obtaining so a linear control; thus an opti-
mal control like that offers the path of the control
variables that minimize a cost function that tells
about the aforementioned system energy [8].

Firstly, it is necessary to find a gain K for feedback
in the system which minimizes the following cost
function:

J =
∫ ∞

0
(xTQx + uT Ru)dt (20)

To solve the previous equation, two matrices (Q
and R) are necessary; those matrices must be posi-
tive semi-definite and positive definite, respectively.
Those parameters are related with the relative im-
portance of the control effort (u) and error (devia-
tion from 0), respectively, in the cost function (see
eq. 20) which is seeking to optimize.

Q = CTC (21)

R = ρI (22)

In this case, to assume the previous equations
(eqs. 21 and 22) is a good choice [9], adding that
in the simplest case ρ is equal to 1, nevertheless in
this case, this value is finding out by trial and error
until reaching the desired behavior [10], which is a
setting time of approximately 7 seconds regardless
of the overshoot in this case to simplify the control.

After that, to find the K optimal (gain), it is neces-
sary to solve the Algebraic Riccati Equation (ARE)
(eq. 23) or use the lqr Matlab function just like this:
lqr(A,B,Q,R).

AT P + PA− PBR−1BT P + Q = 0 (23)

Thus, the optimal K is equal to:

Kopt = R−1BT P (24)
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III. Results and Discussion

i. Simulation of the model

The results obtained were the following, clarifying
beforehand that due to the model simplifying and
the nature of the engineering branch who analyze
this problem (high accuracy), there is no verification
with the data taken from reality:

Figure 9: Angular acceleration vs time

As shown in figure 9 is possible to observe the
non-constant behavior of the angular acceleration, it
due to the changes in the angular velocity who influ-
ence in the angular acceleration equations (feeding
back) which cancel the constant behavior related
to the constant torque and also with the constant
value of the Inertia matrix.

Figure 10: Linear acceleration vs time

As shown in figure 10 is possible to appreciate
the non-constant behavior of the linear acceleration,
it given by the non-constant angular velocity who
affects in an important way it variable despite of the
constant force present in the system and also it due
to the assumption of the spacecraft constant mass;
which finally can be understood in a non-constant
linear acceleration of the system.

Figure 11: Angular velocity vs time

As can be seen in figure 11, the angular velocity
behavior changes at a non-constant rate (but it is
quite similar) because it is obtained by integration
from the angular acceleration which changes with
small oscillations.

Figure 12: Linear velocity vs time

As can be seen in figure 12, the linear velocity
(in flat earth reference frame) behavior changes at a
non-constant rate (but it is quite similar) because it
is obtained by integration from the linear accelera-
tion whose changes with small oscillations.

Figure 13: Attitude velocity vs time
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In the case of the attitude velocity (see fig. 13)
the rate of change of roll and yaw angles are almost
linear (similar) while the rate of change of pitch
angle has a parabolic behavior and all of those
changes of rate are decreasing.

Figure 14: Attitude vs time

As shown in figure 14 the Euler angles has a
parabolic behavior and also are decreasing continu-
ously as indicated by them changes of rate.

Figure 15: Position vs time

Finally, as can be seen in figure 15, the space-
craft position (in flat earth reference frame) present
parabolic or quadratic behavior too, given by the
integration realized to the linear velocity to obtain
this one. This occurs in its components even though,
in the z component it is not easily observable.

ii. Mathematical model linearization

On the other hand, the linearization done in
Simulink gave the followings parameters (figs. 25,
26, 27 and 28) and behavior plot of the linear model
(see fig. 16), it should be noted that the following
units correspond to the international system (SI):

A =



ωx ωy ωz φ θ ψ
ωx 0 0 0 0 0 0
ωy 0 0 0 0 0 0
ωz 0 0 0 0 0 0
φ 1 0 0 0 0 0
θ 0 1 0 0 0 0
ψ 0 0 1 0 0 0


(25)

B =



Tx Ty Tz
ωx −3.233e− 05 0 −5.308e− 05
ωy 0 4.875e− 05 0
ωz −5.308e− 05 0 −4.376e− 05
φ 0 0 0
θ 0 0 0
ψ 0 0 0


(26)

C =



ωx ωy ωz φ θ ψ
ωx 1 0 0 0 0 0
ωy 0 1 0 0 0 0
ωz 0 0 1 0 0 0
φ 0 0 0 1 0 0
θ 0 0 0 0 1 0
ψ 0 0 0 0 0 1


(27)

D =



Tx Ty Tz
ωx 0 0 0
ωy 0 0 0
ωz 0 0 0
φ 0 0 0
θ 0 0 0
ψ 0 0 0


(28)

Figure 16: Step plot - Torque vs attitude and angular velocity
in the linear model
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The comparison between the non-linear (original)
and the linear system, can be done using figures 17
and 18, shown below.

Figure 17: Angular velocity of the linear system

In figure 17 is possible to notice that the angular
velocity behavior in both cases are pretty similar
(see figure 11) and at first sight, the numerical val-
ues are very similar despite the constant value at
"zero" in the linearized y component (see figure 11
again).

Figure 18: Attitude of the linear system

In figure 18 is easy to notice that the attitude of
the spacecraft (roll, pitch, and yaw) have similar
behavior (linear and non-linear) (see figure 14), fur-
thermore, at first sight the numerical values are
pretty similar despite of the constant value at "zero"
in the pitch angle (see figure 18).

Consequently, from the above and knowing that
the critical variables to control are the attitude, it is
noticed that a good approximation was obtained.

iii. Stability analysis

On the other hand, after having compared the be-
havior of the non-linear and linear systems, the
analysis of stability of the linear system is done,
this under the aforementioned eigenvalue criteria.

eig(A) =



0
0
0
0
0
0

 (29)

As a result of the stability analysis for the current
system, the system is critically stable as can be seen
in equation 29, according to the mentioned stability
criterion.

iv. Controllability and observability anal-
ysis

Additionally, the ranks of the controllability (R)
and observability (O) matrices, required for the
analysis with their same name, are shown below in
equations 30 and 31 respectively:

rank(R) = 1 (30)

rank(O) = 1 (31)

What the previously result mean is that this linear
system is controllable and observable, what means
or determine the existence of a design solution ac-
cording to design parameters and objectives.

v. Uncertainty and sensitivity analysis

Subsequently, the uncertainty and sensitivity of the
original Simulink system are analyzed, using the
Monte-Carlo Method and by the Linear Regression
Method, respectively, figures 19 and 20:

Figure 19: Step response envelope and histogram (Monte-
Carlo method)
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Figure 20: Standardized regression coefficient and Linear cor-
relation coefficient

From the results of the analysis of uncertainty
and sensitivity of the system, it can be clearly per-
ceived that the input variables or parameters that
represent the greatest uncertainty for the system
are the torques (Tx, Ty and Tz), due to its high
standardized regression coefficient (βi) and linear
correlation coefficient (r), as can be seen in figure
20 (For more detailed about these, look at the table
7).

Table 7: Standardized regression coefficient and Linear corre-
lation coefficient (table)

Model input βi r

Tx -0.3067 -0.3847
Ty -0.3139 -0.3989
Tz -0.5633 -0.5479
Ixx -0.1309 -0.0087
Ixy 0.1554 0.1315
Ixz -0.0596 -0.1487
Iyy -0.0502 -0.0014
Iyz -0.0765 -0.1160
Izz -0.0209 0.0182
~ω0(x) 0 -0.0281
~ω0(y) 0 0.0873
~ω0(z) 0 -0.1529

vi. Control design

Finally, subsequent of have confirmed that the sys-
tem was controllable and observable, the results of
the control design phase using the LQR controller,
gave the following Q matrix:

Q =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (32)

The trial and error process to find out the ρ value
necessary to build the R matrix is shown in figures
21 and 22.

Figure 21: Step response simulation - Torque vs attitude and
angular velocity in the linear model with LQR
controller using different ρ values (1− 10−9)

Figure 22: Step response simulation - Torque vs attitude and
angular velocity in the linear model with LQR con-
troller using different ρ values (10−12 − 10−21)

There (see figs. 21 and 22), can be observed
simulations of the attitude and angular velocity in
the linear model with LQR controller, responding
to torque at using a step signal; all of that done for
different ρ values in the range of 1 to 10−21 with a
step of 10−3.

Thanks to the step response simulation graph-
ics, was possible find an approximate ρ value of
10−11 based on the setting time of approximately 7
seconds and so finally, build the R matrix (see eq.
33).
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R =

1e− 11 0 0
0 1e− 11 0
0 0 1e− 11

 (33)

The result of using the lqr Matlab function
to solve the ARE with its respective arguments
(A,B,Q,R) was the following K matrix or gain (see
eq. 34) and the new eigenvalues or poles of the
system in closed loop at using the LQR controller
(see eq. 35):

K′ =



6.202e4 −8.262e− 12 −3.494e5
−1.413e− 11 3.361e5 −7.171e− 12
−3.494e5 1.801e− 11 −1.323e4
3.387e4 1.65e− 10 −3.144e5

−3.965e− 11 3.162e5 −4.017e− 11
−3.144e5 1.52e− 10 −3.387e4


(34)

5

eig(A− B ∗ K) =



−28.969
−4.744
−1.023
−1.001
−15.383
−1.002

 (35)

Consequently, with the previously defined pa-
rameters, are obtained plots such as the system
response with the LQR controller in closed loop
to the torque, using a step signal (see fig. 23); in
addition to the comparison between the system in
open loop and closed loop (see fig. 24).

Figure 23: Step plot - Torque vs attitude and angular velocity
in the linear model with LQR controller

5The controller gain or K matrix is presented like K trans-
posed (K′) due to K does not fit in the available width to show
it.

Figure 24: Step plot - Torque vs attitude and angular velocity
in the linear model in closed loop vs in open loop

IV. Conclusions

• In conclusion, in this case of study has
been learned, applied and articulated some
knowledge about mathematical modeling and
simulation, mathematics and physics as other
concepts and theories used in mechanical
engineering, at realize the systematic, mathe-
matical and in block diagram representation,
all of this using the programming environment
called Simulink, these with the target of
represent a simplified spacecraft attitude
dynamics.

• Furthermore, the simulation executed in
Simulink presented an expected behavior
(non-linear), since the mathematical model is
highly non-linear. None of the accelerations,
velocities, positions nor Euler angles (attitude)
presented a linear behavior when those were
plotted against time like it was supposed since
the beginning.

• Additionally, the linearization that was made
to the system in Simulink was good, since
a good approximation to the non-linear
model was achieved in the attitude of the
linear model, so adding that the system is
controllable and observable, the design of the
control could be implemented.

• As a result of the uncertainty and sensitivity
analysis carried out in Simulink, using the
Monte-Carlo method and the linear regression
method, the torques were identified as the
input variables that have the greatest effect
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on the response variables for this system,
these being so the critical model inputs if it is
desired to reduce the variability of the system
results.

• Finally, as a result of the control design, rel-
atively good control was obtained because of
the set point offset (approximately 1 ∗ 10−6 for
the angular velocity and 3 ∗ 10−6 for the at-
titude, both in the step response simulation)
and also due to the overshoot presented in the
three components of the angular velocity in the
aforementioned simulation.

i. Recommendations for a future work

• With the aim of improve this or futures papers
about this topic, like recommendation, it will
be fine to have in mind external disturbing
effects who were disregarded (like the afore-
mentioned in the system description), to add
complexity and accuracy like is demanded
by the current engineering and science and
so to be allowed to use experimental data to
validate the simulation.

• Furthermore, is valid recommend to use a
type of control with integral action to achieve
eliminate the set-point offset like the Linear-
Quadratic-Integral (LQI) control.
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