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Abstract—A rocket is a vehicle that launches into space or
describes a suborbital flight. It’s subjected to the forces of
weight, thrust, and the aerodynamic forces, lift and drag. The
relative magnitude and direction of the forces determines the
flight trajectory of the rocket. The objectives of this paper are
to model the rocket’s take-off trajectory and understand the
tradeoff when using the main engine in conjunction with the
lateral thrusters. Also, to obtain a linear model that represents
the altitude obtained by the rocket in the ascending phase and
to examine system behavior through stability and sensitivity
analysis.

Rocket’s trajectory is obtained in four situations depends
on the engine or thrusters that are in operation. Linearization
methods were used to replace the model by a simpler function
due to the possibility of use tools for studying linear systems
to analyze the behavior of a nonlinear function near a given
point and because a linear model is required for certain types of
analysis such as stability analysis. Finally, sensitivity analysis of
the parameters of the model is used to study how the uncertainty
in the output of a mathematical model can be apportioned to
different sources of uncertainty in its inputs.

Index Terms—Rocket, flight dynamics, Simulink, thrust,
model, trajectory.

Resumen—Un cohete es un vehı́culo que se lanza al espacio o
describe un vuelo suborbital. Está sujeto a las fuerzas gravitacio-
nales o peso, empuje, y las fuerzas aerodinámicas, sustentación
y arrastre. La magnitud relativa y la dirección de las fuerzas
determina la trayectoria de vuelo del cohete durante la fase
de despegue. Los objetivos de este documento son modelar la
trayectoria de un cohete en la fase de despegue y comprender
la compensación cuando se usa el motor principal junto con
los propulsores laterales. Además, obtener un modelo lineal que
represente la altitud obtenida por el cohete en la fase ascendente
y examinar el comportamiento del sistema a través del análisis
de estabilidad y sensibilidad.

La trayectoria del cohete fue obtenida para cuatro situaciones
dependiendo del motor o propulsores que están en operación. Se
utilizaron métodos de linealización para reemplazar el modelo
por una función más simple que permite estimar la altitud
obtenida por el cohete en la fase ascendente, dada la posi-
bilidad de usar herramientas para estudiar sistemas lineales
para analizar el comportamiento de una función no lineal cerca
de un punto dado y porque un modelo lineal es requerido
para ciertos tipos de análisis, como el análisis de estabilidad.
Finalmente, se utiliza el análisis de sensibilidad de los parámetros
del modelo para estudiar cómo la incertidumbre en la salida de
un modelo matemático se puede distribuir a diferentes fuentes
de incertidumbre en sus entradas.

Palabras clave— Cohete, dinámica de vuelo, Simulink, em-
puje, modelo, trayectoria

Figure 1: Rocket system (credit: NASA)

I. INTRODUCTION

Rocket flight is described, mainly, by using Newton’s second law.
The first phase of a rocket flight is the take-off. At launch, the thrust
of the rocket engine is greater than the weight of the rocket and the
net force accelerates the rocket away from the pad. During launch,
the velocity is too small to provide sufficient stability, so a launch
rail is used. Leaving the pad, the rocket begins a powered ascent.
Thrust is still greater than weight, and the aerodynamic forces of lift
and drag now act on the rocket. When the rocket runs out of fuel,
it enters a coasting flight. The vehicle slows down under the action
of the weight and drag since there is no longer any thrust present.
While the rocket has been coasting, a delay ”charge” has been slowly
burning in the rocket engine. It produces no thrust, but may produce a
small streamer of smoke which makes the rocket more easily visible
from the ground. At the end of the delay charge, an ejection charge is
ignited which pressurizes the body tube, blows the nose cap off, and
deploys the parachute. The rocket then begins a slow descent under
parachute to a recovery. The forces at work here are the weight of the
vehicle and the drag of the parachute. After recovering the rocket,
you can replace the engine and fly again.

In this paper is showed a mathematical model of a rocket take-
off trajectory through six degrees of freedom equations of motion.
This model is developed in MATLAB and Simulink simulation and
can be easily adjusted for any type of rocket. Four situations are
considered depends on the engine or thrusters that are in operation.
Also, linearization methods, and stability and sensitivity analysis are
used to examine system behavior.



II. MATERIALS AND METHODS

A. System description
It’s modelled a policy for rocket Vertical Take-off and Landing

(VTOL). Specifically, it is focus on the first phase of a rocket’s flight,
the take-off. The policy is intended to accommodate a variety of
scenarios, that means, that the rocket will be able to launch from
different initial states. Those states vary according to the planet
(or moon) surface and environment. Some of this initial conditions
are randomized, since it can not have deterministic data for them.
Furthermore, since it’s followed the work of [1], the model does not
take into account: planetary rotation, gravity differentials, drag and
mass losses. In addition, it’s assumed that the rocket is a cylinder.

The model has 6 degrees of freedom (6 DOF), meaning that the
motion will take into account the rocket’s position with respect to
the X, Y and Z axis; also, it will consider the yaw, pitch and roll.
Figure 1 represents the 6 DOF [2].

Figure 2: Six DOF

B. Mathematical model description
The altitude and lateral position of rocket’s center of mass are

defined as (X, Y, Z) and the rotational position with Euler Angles
(ψ, θ, φ), which are respectively yaw, pitch and roll.
The model is neglecting planetary rotation, gravity differentials,
drag and mass losses. Also, the rocket is being approximated as a
cylinder and it is considered as a rigid body.
The x-axis is the altitude, and therefore the gravitational force is in
the –x direction. [2]
Regarding force capability, the rocket engine is an axial Merlin
1D, theoretically capable of 147,000lbs of thrust. It’s enforced that
this main rocket is always firing. There are effectively 4 cold gas
thrusters on rocket for lateral stability; one in each quadrant, capable
of firing in one direction.
Angular momentum, linear momentum, and energy are all quantities
that are NOT conserved.

The state is therefore:

x̄ = [X Y Z Ẋ Ẏ Ż ψ θ φ ψ̇ θ̇ φ̇]T (1)

The resulting equations of motion are:

ẍ =
1

m
(Fxcψcθ + Fy(cψsθsφ− sψcφ) + Fz(sψsφ+ cψsθcφ)) − g (2a)

ÿ =
1

m
(Fxsψcθ + Fy(cψcθ + sψsθsφ) + Fz(sψsθcφ− cψsφ)) (2b)

z̈ =
1

m
(−Fxsθ + Fycθsφ+ Fzcθcφ) (2c)

φ̈ =
Mx

Ia
+ ψ̇θ̇cθ +

sθ

Itcθ
(Mzcφ+Mysφ+ Ia(φ̇θ̇ − ψ̇θ̇sθ) + 2Itψ̇θ̇sθ) (2d)



θ̈ =
1

It
(0.5(Ia − It)ψ̇

2s2θ − Iaφ̇ψ̇cθ +Mycφ−Mzsφ) (2e)

ψ̈ =
1

Itcθ
(Mzcφ+Mysφ+ Ia(φ̇θ̇ − ψ̇θ̇sθ) + 2Itψ̇θ̇sθ) (2f)

Where s represents the sine function and c the cosine function.

C. Block diagram

Figure 5 shows the block diagram for the system and model
described in section II. It consists of blocks that represent the
different parts of the system and signal lines that define the
relationship between the blocks.

Block diagram provides a high-level graphical representation of

real-world system and allows analyzing dynamic system behavior in
time domain.

The equations of motion for position and orientation are written
in MATLAB scripts due to its complexity.

Linear and rotational accelerations in all 6 degrees of freedom are
integrated twice to produce linear and angular displacements.

Figure 3: Block diagram



Figure 4: Position

Figure 5: Orientation



D. Simulation methods
Four situations are considered depends on the engine or thrusters

that are in operation. This table shows the parameters at each
simulation. The M1D engine is the central engine that drives the
rocket towards the X direction (above), in the equations in represented
by Fx and the thrusters are engines that expel lateral cold gas to
stabilize the trajectory of the rocket, these have a lower force (as
seen in the previous section) than the M1D engine, and only operate
on the Y axis (Thruster 1) and Z axis (Thruster 2).

Parameters 1 2 3 4
M1D engine X X X X
Thruster 1 X X
Thruster 2 X X

Table I: Situations

The parameters of the simulation were the following:

Start time 0
Stop time 15
Type Fixed step
Fixed-step size 0.1
Solver ode1(Euler)

Table II: Simulation parameters

The research in which the simulation was based use Euler’s method
to generate the derivatives of the previous equations. The simulation
time was short because the specified parameters (based on a Falcon
9 rocket) didn’t allow a very long flight time, which generated
irregularities in the results. In the research, flight times do not exceed
11 seconds.

E. Initial conditions and parameters

g 9.81m/s2

m 2513.74kg
Fx 22000N
Fy 1500N
Fz 1500N
It 171000kgm2

h 10m
Ia 451000.61kgm2

Mx 0

Table III: Model parameters

Initial conditions for all integrators are zero.

F. Linearization
1) Critical points: Through the function vpasolve2 was

obtained the numerically critical point of the system of equations,
as shown in Figure 6.

Figure 6: Critical point

2) Linearization curve: The linearization curve is not required
because there is only one operation point that has physical sense.

3) Equilibrium points: The equilibrium point is supposed to be:

x̄ = [X Y Z Ẋ Ẏ Ż ψ θ φ ψ̇ θ̇ φ̇]T

x̄ = [X 0 0 0 0 0 0 0 0 0 0 0]T

It’s required to assume that the equilibrium point is zero
everywhere except on the X-axis since it’s representing an ascending
motion that does not take into account rotations nor displacements
on YZ-plane. If that assumption is not made, the model will not
have an equilibrium point due to system instability, so linearization
couldn’t be accomplished.

4) A, B, C and D matrices: Through, the linmod3 function are
obtained A, B, C, D matrices at the point of operation.

Figure 7: Matrix A



Figure 8: Matrix B

Figure 9: Matrix C

Figure 10: Matriz D

5) Linear model: Figure 10 shows the linear model obtained
through linearization methods and the block diagram used to make a
comparison between the linear and non-linear models.

Figure 11: Comparison model

G. Sensitivity analysis
1) Parameters: The analysis was done with the following pa-

rameters:
• Weight of the rocket: m[kg]
• Height of the rocket: h[m]
• Main engine force: Fmld[N ]
• Thruster engine force: Flat[N ]

To select the parameters to perform the sensitivity analysis was
taken into account the most important physical conditions that can
be modified when propelling a rocket. These would be the height,
weight and engine forces but it is important to take into account

that these parameters must have a defined range around the values
they can take, since they must have physical congruence, since the
model represents the altitude of a rocket.

The range of values that the parameters can take is expressed
through a triangular distribution, since it allows to define the
limits in which the parameters must vary, and designates a greater
probability to the values that are located in the center.

The above allows to generate the distribution of values of the
parameters observed in figure 12.



Figure 12: Parameter values

2) Objective function: The objective of the model is to maxi-
mize the height that the rocket can reach, therefore that it’s considered
as an objective function of the analysis.

Figure 13: Searching the maximum height value.

III. RESULTS

The results were taken based on the 4 different situations
described above. These situations also allow the verification of the
simulation, since they must generate certain trajectories that obey
the physical logic of the simulated rocket and its parameters.

It is important to emphasize that the scientific article on which this
simulation is based does not generate exact data of its simulation,
so it is not possible to compare it, but the trajectories generated by
our simulation can be verified based on its behavior.

A. Situations

1) All engines are operating:

(a) Position along the X-axis

(b) Acceleration in the X-axis

Figure 14: Position and aceleration in the X-axis

These results show a good simulation, since is observed a
change of position x in time, indicating that the M1D engine
is operating. Also it can be perceived that the simulation does
not arrive to land (position x), this is because the research
on which it was based did not seek to generate a simulation
of the trajectory of a rocket, but rather focused on obtaining a
combination between operating times of the engines so that the
rocket can get the maximum height. Therefore in the simulation
of the paper, the rocket never landed, the model recorded
the best flight times with different combinations of engines
and with reinforcement learning learned from its mistakes (the
model itself). It should be noted that the best flight times of
the model of the research paper oscillated between 8 and 11
seconds.

Figure 15: Position along the Y-axis



The results show that the Thruster 1 operated during the flight
of the rocket, showing a variation in the position Y (Pitch
axis). On the other hand in the graph negative axes are shown,
this is due to the reference point and to the pitch movement
that the cylindrical body experiences, evidencing the angular
acceleration, verifying that the model operates with the 6 DOF.

(a) Position along the Z-axis

The results show that the thruster 2 operated during the flight
of the rocket, showing a variation in the position Z (Roll
axis). On the other hand in the graph negative axes are shown,
this is due to the reference point and to the roll movement
that the cylindrical body experiences, evidencing the angular
acceleration, verifying that the model operates with the 6 DOF.

Figure 17: Position Y vs. X

This graph shows that the thruster 1 and the M1D operated at
the same time.

Figure 18: Position Z vs. X

This graph shows that the Thruster 2 and the M1D operate at
the same time. The Y axis represent the Z axis.

2) Only M1D engine is operating:

(a) Position along the X-axis

(b) Acceleration in the X-axis

Figure 19: Position and acceleration in the X-axis

The position along X-axis changes, since the M1D is active,
but the acceleration is constant, since there is only one active
motor.

(a) Position along the Y-axis

(b) Position along the Z-axis

Figure 20: Position along the Y an Z-axis



As the motor is not operating, there is no change of position
on those axis. This extreme behavior allows to verify the
simulation.

(a) Position Y vs. X

(b) Position Z vs. X

Figure 21: Position Y vs. X and Z vs. X

Those graphs shows that only the M1D is operating.

3) M1D engine and thruster 1 are operating:

(a) Position along the X-axis

(b) Acceleration in the X-axis

Figure 22: Position and acceleration in the X-axis

Figure 23: Position along the Y-axis

The results show that the thruster 1 operated during the flight
of the rocket, showing a variation in the position Y (Pitch axis).

Figure 24: Position along the Z-axis

As the thruster 2 is not operating, there is no change of position
on this axis.

Figure 25: Position Y vs. X

This graph shows that the thruster 1 and the M1D operated at
the same time, as is indicate by the situation.



Figure 26: Position Z vs. X

This graph shows that only the M1D is operating, because the
Thruster 2 is off. (The Y axis represent the Z axis).

4) M1D engine and thruster 2 are operating:

(a) Position along the X-axis

(b) Acceleration in the X-axis

Figure 27: Position and acceleration in the X-axis

The position along X-axis changes, since the M1D is active,
but the acceleration is constant, since there is only one active
motor.

(a) Position along the Y-axis

(b) Position along the Z-axis

Figure 28: Position along the Y and Z-axis

The results show that the Thruster 1 operated during the flight
of the rocket, showing a variation in the position Z (Roll axis).

Figure 29: Position Y vs. X

This graph shows that only the M1D is operating, because the
Thruster 1 is off.

Figure 30: Position Y vs. X



This graph shows that the Thruster 2 and the M1D operate at
the same time, as is indicate by the parameter. (The Y axis
represent the Z axis).

B. Linearization

The simulation represents just the ascending phase of the rocket,
assuming the rotations are zero and due to it, the displacements except
altitude are zero. X is not used by the other equations, so it could
take any value.

Input value:(Λ)

1) Λ = Λ0: The linear model shows that the trajectory, as the
rocket is ascending, follows the curve that describes the rocket’s
path on the non-linear model, but the adjustment is not perfect; this
behavior is not unexpected given the suppositions that were imposed
to the linear model.

Figure 31: Altitude non-linear model (Yellow) vs. Altitude
linear model (Purple)

Figure 32: Position on the Y-axis: non-linear model (Blue) vs.
linear model (Orange)

The suppositions were imposed to ensure that the rocket keeps
ascending while staying on the same coordinates in the YZ-plane
and without rotating, then the graphs represent that it stays on path.

Figure 33: Position on the Z-axis: non-linear model (Blue) vs.
linear model (Orange)

As expected, given the suppositions, the trajectories represent that
the rocket stays on path. (Similar to the previous Figure/Case).

2) Λ > Λ0: Similar to Figure 31 the linear model shows that the
trajectory, as the rocket is ascending, follows the curve that describes
the rocket’s path on the non-linear model.

The position on the Y-axis and Z-axis is the same as the Λ = Λ0
case, since the model is follow a straight path from the X-axis, and
thrusters don’t fire.

Figure 34: Altitude non-linear model (Orange) vs. Altitude
linear model (Yellow)

C. Stability

The eigen values of matrix A are calculated to determine the
system’s stability. If any eigen value is positive or has positive real
part, the system is unstable.

The results for this system, shown in Figure 35, indicate that it is
unstable.



Figure 35: Eigen values of matrix A

D. Sensitivity analysis
The results of the analysis show that the maximum height reached

was 331, 7001 m. This result was obtained with the following
parameter configuration:

• Weight of the rocket:m = 419.5747kg
• Height of the rocket:h = 3.2673m
• Main engine force: Fmld = 21515N
• Thruster engine force: Flat = 1381N

This parameter values are very close to those employed in the
model by the document, showing that they are consistent results, as
shown in figure 36.

Figure 36: Parameters of the model described in the paper

On the other hand, the analysis shows a tendency to reduce the
size and weight of the rocket, showing that these two parameters are
the most sensitive in the model. These two parameters of the rocket
were developed in order to observe how capacity (weight) and height
could be redistributed in order to maximize the height. But often, the
physical characteristics of the rocket cannot be altered since most
simulations have a predefined prototype of rocket.

Figure 37: Sensitivity analysis results

IV. CONCLUSIONS

• It was possible to model the rocket’s take-off trajectories. As
the model’s results show, it is possible to predict how the
rocket will move. Launch predictions are used to free both
maritime and aerial space, which is required by government
regulations. This is beneficial since it reduces the probability
of fatalities; defines precise clearance areas, which translates
into smaller areas with flight navigation restrictions, which in
turn avoids flight cancellation, delayed port arrivals and other
economic activities that are possibly affected; and finally, it
saves important R& D resources.

• Simulating take-off on different configurations made it possible
to understand how the rocket will behave on different environ-
ments. The results clearly show which policy will perform better
on different scenarios, which means a lower failure probability
while the rocket is taking-off vertically. Since most of the
current research objectives focus on reusable rockets, that can
reliably and autonomously take-off and land, the results are an
important resource to those trying to do this kind of simulations
on hardware.

• Through linearization, assuming everything is zero except on the
X-axis (ascending axis), an equivalent model of the previously
proposed non-linear model could be obtained. Once a linear
model is accomplished, it can be used to solve and analize
by a variety of methods. This means that simulations can be
easily done to show system’s behavior as time changes. This
is a desired behavior since it is critical to understand how the
rocket will behave as it is ascending.

• Making use of sensitivity analysis the parameters that maxi-
mized our objective (reach the highest elevation of the rocket
during take-off) are able to be estimated. The results clearly
showed which combination of force from the main motor and
the lateral motors (thrusters) worked best, as well as the best
proportions of mass and height for the rocket. The histograms
used to plot the results have clear trends and therefore can be
taken as a reliable source. The data generated from this analysis
can be further used to explore rocket design and determine
precise launch schedules, since the trajectory of the rocket is
easily and reliably determined.

A. Future Work:
Further development could focus on:

• Extend the model to consider aerodynamic phenomena, gravi-
tational fields and planet-moon rotation.

• Test different rocket shapes and engines configurations.
• Employ more advanced modelling techniques such as Rein-

forcement Learning (RL) along with the Dynamical Model to
generate better vertical take-off policies.

• A more ambitious, and economically sound policy would be to
generate a landing policy.

• Using the results off this work, it is possible to explore more
rocket configurations and even extend it to analyze aerodynamic
performance or fuel efficiency.
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