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Abstract—Skin cancer is one of the most prevalent diseases
among people. Physicians have a challenge every time they have
to determine whether a diseased skin is benign or malign. There
exist clinical diagnosis methods (such as the ABCDE rule), but
they depend mainly on the physician’s experience and might be
imprecise. Deep learning models are very extended in medical
image analysis, and several deep models have been proposed for
moles classification. In this work, a convolutional neural network
is proposed to support the diagnosis procedure. The proposed
MobileNetV2-based model is improved by a shifting technique,
providing better performance than raw transfer learning models
for moles classification. Experiments show that this technique
could be applied to the state-of-the-art deep models to improve
their results and outperform the training phase.

Index Terms—image processing, deep learning, classification,
skin lesion

I. INTRODUCTION

One of the several prevalent diseases among people globally
is skin cancer. It is worth mentioning different types of
skin diseases such as basal cell carcinoma, melanoma, and
squamous cell carcinoma [1]. For years, researchers have
predicted that 20% of American people will have skin cancer
throughout their lives [2]. Therefore skin cancer the most
common illness in the USA [3] and melanoma are the most
lethal from skin cancer. Years ago, melanoma was unusual
cancer, but nowadays the mortality ratio has increased sub-
stantially [4]. The American Cancer Society estimated about
6,850 deaths by melanoma for 2020. but there exist other skin
cancers widespread in the population. Fortunately, they are
generally no mortal, but they suppose considerable pressure
on physicians and health care institutions.

The physicians have a challenge every time they have
to diagnose a skin disease. The specialist analyzes various
characteristics as individual lesional morphology, body place
distribution, color, scaling, and lesions arrangement to de-
termine if the diseased skin is benign or malign. There are
several clinical diagnosis methods that use all these shreds
of evidence to create the best possible diagnosis: ABCDE
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rules [5], 7-Point Checklist, Menzies method, etc. However,
only experienced physicians have the necessary knowledge to
analyze and diagnose skin disease by using these methods,
and they can be imprecise and subject to many measurement
errors. The visual examination of the lesion sampled from
a suspicious lesion is the gold standard for skin disease
diagnosis, so its correct reporting is essential. Since years
ago is known that the diagnostic accuracy of melanoma is
between 75% to 84% by an inexperienced specialist [6]. Also,
the diagnosis can be affected by the mood and fatigue of the
physician due to the large number of patients who have to
treat as soon as possible.

Therefore, an automatic tool is necessary for physicians to
have a first evaluation of their patients competitively, quickly,
and that allows other physicians to make an easy consensus in
the treatment. This motivates developing an automatic lesion
classification system that can discriminate benign skin disease
from non-benign. The method that can support specialists in
their clinical procedure would be beneficial as a pre-diagnosis
tool, providing additional accurate lesion information. Also, it
will allow the early establishment of the type of lesion, essen-
tial to provide adequate treatment to the patient. Furthermore,
the tool is of interest to hospitals to avoid problems with wrong
diagnoses, physicians in underdeveloped environments where
there are no specialists, and researchers who work to improve
the diagnosis and treatment of the patients.

It is well known that to develop a prediction model valid
for any image, it is necessary to have enough data to carry
out a useful optimization. Furthermore, the training datasets
need to be homogeneous on the acquisition, and they should
not contain anomalous objects within the image. In that case,
they may require to do some preprocessing steps and segment
the region of interest [7]. The extraction of specific features
from the images is another way to improve the classification
accuracy [8]. The disadvantage is the requirement of specific
knowledge to extract them and the extended time needed
to choose the more suitable. Besides, many errors may be



introduced by preprocessing, or essential information might
be lost. So these classical techniques are obsolete, and the
arrival of deep learning has meant a colossal success, owning
the capability to automatically learn the spatial features of each
class of skin disease.

Nowadays, deep learning methods have become popular
to resolve very complex tasks, including image classification
[9] and segmentation [10]. Some of these systems do not
use any image preprocessing method [11]. The architecture
is behind the success of these networks, mostly based on
convolutional layers. These layers have the ability to learn
semantic features automatically from large-scale datasets [12].
They filter and extract basic shapes of the images in order to
learn the different lesions. For example, in [13] is proposed a
universal skin disease classification system based on a pre-
trained convolutional neural network (CNN). They give an
extraordinary performance in image and video processing [14].
CNN’s require immense computational power to compute a
large number of operations, which is solved by using graphic
processing units (GPU). Thus, they allow the creation of reli-
able models for image classification and object segmentation,
among others. Within the field of medical image analysis,
there is evidence that deep learning has shown a significant
improvement [15]. Deep models are very extended on health
technology, perceiving blood flow from angiographies [16]
or detecting vessel borders [17] with high precision. Nev-
ertheless, there is a margin of improvement in skin lesion
classification [18]. This work first segment and extract features
with deep networks and then make the prediction. Commonly,
different types of skin pathologies with similar characteristics
are grouped into the same class, so the classification is made
on two classes.

The existence of various and visually similar skin disease
types makes it challenging to differentiate between them. It
is also complicated to distinguish if a skin abnormality is a
benign nevus, the most common type of mole, or another
skin disease. Image shifting is a technique used to improve
the training of the model using many variants of the feature
position on an image [19]. Thus, this work proposes a deep
convolutional neural network model fused with a shifting
mechanism based on a square lattice to classify skin disease
images on the two-classes: nevi or others.

Therefore, the main contributions of this work are:

1) The proposal a pre-diagnostic tool used to discriminate

between benign and non-benign skin diseases.

2) The use image shifting techniques on a square lattice for
skin lesion malignancy assessment using deep learning
methods.

The remaining of the paper is structured as follows. A deep
convolutional neural network with a regularly spaced shifting
based on a square grid that distinguishes between classes with
lesion and without it is outlined in Section 2. Next, Section
3 describes the dataset, the methods for the comparisons, as
well as the results of the experiments, which are discussed.
Finally, Section 4 exposes the conclusions and future trends
in the detection of skin lesions.

II. METHODOLOGY

In this section the proposed methodology is detailed. The
standard approach to the classification of skin lesion images
by deep convolutional neural networks consists on applying a
deep neural network F' to an input image X in order to obtain
a class scores vector y:

y = F(X) (1)

where y € R®, with C' the number of skin lesion classes.

Now, let & be the image shift operator, so that X & s is the
image X circularly shifted by the displacement vector s € R2.
Please note that the components of the displacement vector can
be negative, so that:

Xaes)a(-s)=X 2)

for all images X and all displacement vectors s. If X is shifted,
its class should remain the same. We propose to combine the
outputs of the deep classification network F' for M shifted
versions of the input image X, so that the shift vectors s are
chosen to lie on a square lattice on 72, where the side of each
square of the lattice is a fixed stride parameter R € N7T:

s = (Rn, Rm) (3)

where n, m € Z.
The combined class scores output vector is given by:

N
7= Y FiXes) @
i=1
where s; is the ¢-th displacement vector.

The estimation (4) of the combined class score vector y can
be regarded as a finite sample approximation of the average of
the network outputs F' (X @ s) for shifted inputs X @ s over
the possible displacement vectors s:

. 1 /
VR —— F(X@S)ds (5)
H-1)W-=1)Js
where the input image has size H x W pixels, and S is the
set of possible displacement vectors:

S=10,H—1] x [0,W —1] (6)

Please note that negative circular shifts are equivalent to
highly positive ones:

X®(-a)=Xo((HW)-a) ()

Therefore, S contains all possible circular shifts. The square
lattice .S should be constrained to avoid duplicity in the shifted
images, and it can be personalized with a specific stride
parameter R between its elements. Thus, the algorithm of the
proposed model is as follows:

1) Generate a square lattice S over all the H x W pixels

of the data input shape, using a square side equal to 1.

2) Center S in the middle of the image.

3) Multiply the elements of the lattice by the stride R.

4) Restrict the grid to a maximum value M of displacement

(in pixels): {s = (sz,8y) : |sz] < M Alsy| < M}



Fig. 1. Scheme of the square lattice model and some example of the
displacements.

5) Shift the image by the selected shifts s and test it with
the neural network.
6) Compute the combined output using Eq. (4).

In Fig. 1 is represented the square lattice over which the
displacements vectors are selected. The grid is placed in the
center of the image, and as many displacements as elements
of the lattice are created. The picture shows four examples of
image shifting.

III. EXPERIMENTAL RESULTS

This section describes the methods for the comparisons, the
dataset, and the discussed results of the set of experiments.

A. Dataset

For the main performance evaluation of our proposal, we
used the well-known HAM10000 dataset [20]. These data
contain 10,050 dermoscopic images of benign and malignant
moles, the latter divided into six classes: actinic kerato-
sis, basal cell carcinoma, benign keratosis, dermatofibroma,
melanoma, and vascular skin. This dataset, whose images
were collected from two prestigious institutions in Austria and
Australia, was employed for the International Skin Imaging

Collaboration (ISIC) 2018 challenge, and it has become a
benchmark for testing new classification models.

A disadvantage of this dataset is the unbalanced distribution
of the classes. No more than 7,000 images are belonging to
the nevi class, while the others contain no more than 1,000,
gathering around 3,000 images of abnormal moles. Therefore,
during the classification model training, it may be adequate to
use data augmentation so that the data can be balanced and
the network will learn better the features of the images.

Additionally, a second different dataset was used to study
the accuracy of our proposal with completely unseen data.
The PAD-UFES-20 dataset [21] is composed of a set of
clinical smartphone images and patient data collected by the
University of Espirito Santo (Brazil). It contains a total of
2,298 images of six different classes: actinic keratosis, basal
cell carcinoma, seborrheic keratosis, squamous cell carcinoma,
Bowen’s disease, melanoma, and nevus. Therefore, this data
is somehow similar to the one used for training the network,
although the characteristics of the images are different. The
problem here is that the number of elements of the nevi class is
quite small, while our network is trained with a larger number
of images of this type. Thus, the positive predictions might be
imprecise.

In this work, we intend to classify between two classes,
nevus, and non-nevus. This is for interest for dermatologists
to have early predictions of the status of each patient. Later,
they can determine the exact type of benign or malign mole
in order to prescript an adequate treatment. Without loss of
generality, we will name the benign class as nv, and the other
class by mel.

B. The deep network: MobileNetV2

The proposed neural model is a MobileNetV2 [22], which
is composed of 53 layers: an initial full convolutional layer
followed by 19 residual bottleneck blocks. These blocks are
connected by shortcut connections (similar to ResNet) in order
to eliminate the non-linearity and maintain the representation
of the data (see Fig.2). This model is oriented to mobile
devices with significant improvements to the previous version
(MobileNetV1), and it has been trained on the ImageNet
dataset. Comparative results on traditional image datasets (e.g.,
ImageNet, COCO, VOC,...) demonstrate MobileNetV2 is more
effective, faster, and uses fewer parameters than MobileNetV 1
with the same accuracy.

The deep network was trained in Matlab R2019b, with the
following configuration of the hyper-parameters:

o Batch size = 16.

o Learning rate = 0.0001.

« Validation frequency = 10.
e Max. epochs = 10.

Moreover, the data augmentation transformations used in
this work were horizontal and vertical flipping with a prob-
ability of 0.5, as well as random rotations between -90° and
90°, with a probability of 0.75.
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Fig. 2. Structure of the residual bottleneck blocks of the MobileNetV2 neural
network.

Finally, we carried out 10-fold cross-validation to have a
more precise comparison of the models, using 70% of samples
for training, 10% for validation, and 20% for testing.

C. Square lattice parameters

The definition of the dimensions and spacing of the square
lattice depends on the type of deep network and the images
of the dataset.

On the one hand, the input layer of the convolutional neural
network restricts the maximum values of the displacement vec-
tors. MobileNetV2 requires an image resizing up to 224 x 224
pixels. On the other side, the characteristics of the images
are important in order not to generate oversized shiftings
that distort too much the shape of the moles. Therefore, we
analyzed the data carefully, and we concluded that most of the
moles are placed in the center of the image with a margin of
M = 40 pixels around each side.

In addition, the grid can be generated with different spacing
between its elements, i.e., the stride. A tiny stride (1 pixel)
would create a very dense lattice, and probably many of the
predictions would be identical. However, a very big stride
would provoke the opposite effect, and also fewer score vectors
would be present to compute the combined mean class output.
In our work, we have adopted an intermediate position, taking
a stride of R = 4 pixels.

D. Evaluation metrics

The typical classification measures were used to analyze the
performance of the shifting model. That is, in addition to the
true positives (1'P), true negatives (1'IV), false positives (F'P),
and false negatives (F'N), we computed the following ones:

TPR = TPT+7PFN ()
TNR = % ©
PPV — % (10)
NPV = % (an
Ace TP+TN (12)

" TP+FP+FN+TN

PPV -TPR
PPV +TPR

which are the True Positive Rate (sensitivity), True Negative
Rate (specificity), Positive Predictive Value (precision), Neg-
ative Predictive Value, Accuracy, and Fl-score, respectively.
The higher the measures, the better, ranged in [0,1].

The TPR and the TN R provide a measure of how well
the method is classifying the relevant instances, while the
PPV and the NPV specify the proportion of true detections
among the retrieved instances. The Accuracy and Fl-score
provide a general overview of the performance, taking into
account the positive and negative samples. The latter gives
equal importance to precision and recall.

F1=2 13)

E. Results

First, the performance obtained by the cross-validation
procedure is analyzed in detail in Fig.s 3 and 4. The confusion
matrices, as well as TPR and T'N R (right column), and PPV
and NPV (last column), are presented for each test set split.

Fig. 3 presents the results of the raw MobileNetV2 model.
The first thing we realize is that the most accurate prediction is
for the nevi class. This is logical due to the greater number of
images of this type. Therefore, the number of false positives is
also high, being the sixth split the worst with 83.3% of correct
negative predictions. On the other hand, this split is the second-
best focusing on the number of false negatives. The fourth one
is the worst split since it only classifies adequately 71% of
the non-nevi moles. In general, one can find some disparities
among the split classifications, reaching differences between
70 and 120 images. This fact demonstrates that MobileNetV2
is highly dependent on the training set images, even when it
was trained with data augmentation.

The outcomes of the proposed model are depicted in Fig. 4.
Compared with the previous charts, it is clear that the num-
ber of true positives has increased significantly. Thus, the
proportion of false negatives is lower, which is essential for
the medical diagnosis. For example, the fourth split, which
was bad, has improved by 1%. Other splits have had an
improvement of almost 3%. Nevertheless, there are cases
where the percentage of true negatives has decreased a bit.
Summing up, the shifting model yielded excellent results
detecting the mel class, and preventing from not detecting
a malign mole is more critical than classifying a nevus as
positive.

An overall summary of the cross-validation experiments is
presented in TABLEI. The average measures among all splits
were computed for both methods. While the number of T'IV
and F'P is quite similar, the T'P and F'P have increased and
decreased, respectively, using our proposal. This is reflected
in the average T'PR, with an enhancement of 1.5%. The
accuracy and F1-score, the two most important measures, also
demonstrate that the shifting model is better since their scores
have increased around 1%.

A detailed analysis of four images is also presented in TA-
BLEII. The intention is to study the behavior of the lattice for
the four possibles outcomes: true positive, true negative, false
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TABLE I
AVERAGE RESULTS OF THE CROSS-VALIDATION WITH BOTH THE RAW AND
THE SHIFTING MODELS USING HAM 10000 DATASET

Measures | Raw Model | Shifting Model
TP 527.3 537.7
TN 1213.6 1214.7
FP 127.4 126.3
FN 134.7 124.3
TPR 79.65% 81.22%
TNR 90.50% 90.58%
PPV 80.54% 80.98%
NPV 90.01% 90.72%
Acc 86.91% 87.49%

F1 80.09% 81.10%

positive, and false negative. For that purpose, we plotted the
square grid points colored in red if the mole is classified as mel
and in green if it is a nevus. The first column depicts an image
labeled as a malign mole. Surprisingly, MobileNetV2 classifies
it as a nevus, but the lattice shows that most displacements

Predicted Class

nv
Predicted Class

Predicted Class Predicted Class

of the 10-fold cross-validation for the raw MobileNetV2 model.

mel

nv
Predicted Class

Predicted Class

Confusion matrices of the 10-fold cross-validation for the proposed shifting model with MobileNetV2.

outputted the mel class. Only 17 shifts predict nevi, being some
of them very close to the original image, that is, the center
of the lattice (representing null displacement). The position
of the mole within the image may be then essential in order
to obtain an adequate prediction. Next, a true nevi image is
analyzed. Even for the human eye, it is tough to distinguish
the mole. Again the center of the grid outputted mel, although
280 of the 400 shifts said that the class was nv, so our model
was able to identify the correct class.

In the last two examples, both methods failed in the predic-
tion, but it is interesting to show the detailed outcomes. The
third row corresponds to a false positive case. Some of the
skin hairs near the mole probably provoked confusion because
the network might have considered it part of the mole and
looked irregular. Nevertheless, our method was able to classify
it as a nevus for 162 cases. Something similar occurs with the
fourth example of a false negative. The balance of the lattice
predictions is even closer (189 of 400 yielded the mel class).
In this case, it is curious to study why the bottom side shifts



TABLE 11
EXAMPLES OF THE OUTPUTS GENERATED BY BOTH THE SIMPLE AND THE PROPOSED MODELS, FOR THE FOUR POSSIBLE CASES: TP, TN, FP AND FN

Case TP TN

FP FN

ISIC image n° 0024573

Image

ISIC image n° 0024809

ISIC image n° 0025584

Lattice
(red: mel
green: ny)
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e
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+
.

No. of mel/nv 383/17 120/280 238/162 1897211
GT mel nv nv mel
Raw nv mel mel nv
Proposed mel nv mel nv

classified the mole as benign but the upper side as abnormal.
The reason is the number of images used for training the
network that contains a similar mole on the upper part of
the image. Therefore, the network specialized in detecting this
type of images as mel because most of the mentioned set were
malign moles.

TABLE III
QUANTITATIVE RESULTS WITH BOTH THE RAW AND THE SHIFTING
MODELS USING PAD-UFES-20 DATASET

Measures | Raw Model | Shifting Model
TP 1129 1183
TN 224 221
FP 20 23
FN 925 871
TPR 54.97% 57.59%

TNR 91.80% 90.57%
PPV 98.26% 98.09%
NPV 19.50% 20.24%
Acc 58.88% 61.10%
F1 70.50% 72.58%

Finally, our method was also compared with the PAD-
UFES-20 dataset, yielding the results of TABLEIII. Recall
that the number of element of the positive class with quite
large compared with the HAM10000 datasets. This fact has
produced inaccuracy in most of the measures, like TPR,
NPV, or Acc. The best conclusion is that again the number
of false negatives is reduced, and almost all the nevi have been
correctly detected. The accuracy an F-measure reveal that our
shifting method can improve around 2-2.5% the performance
of the classification with unseen data.

Fig.5 depicts two examples of this dataset where our
shifting models classified correctly the image but the raw Mo-
bileNetV2 model not. The low scores obtained (62% and 71%,
respectively) indicates that this images are very challenging

(a) 268 positives detected. (b) 355 positives detected.
Mean score = 62.26% Mean score = 71.54%

Fig. 5. Images PAT_1070_304_845 and PAT _1184_678_86 of PAD-UFES-20
dataset where the raw model yielded the incorrect nevi class.

for the image, due to the inappreciable shape of the mole.
However, the shifting procedure allowed a better prediction.
The number of positives is large enough in both examples,
meaning that the probability of accepting the positive is high.

IV. CONCLUSIONS

In this paper, an improved convolutional neural network
based on MobileNetV2 is proposed for moles classification.
The deep model was improved by an enhanced transfer
learning, which consists of a shifting technique. The vectors
of displacements were created over a square lattice since
regular shifts along all directions move the moles over all
the image space. The proposed methodology was tested on
the HAM10000 and PAD-UFES-20 datasets providing more
accurate predictions, increasing the T'P R (True Positive Rate),
and decreasing the F'N R (False Negative Rate). The outcomes
demonstrate that the proposed shifting technique enhances the
classification, avoiding a new re-training phase of the model.



Further works include applying the proposed shifting tech-
nique to other pre-trained neural models and comparing the
results on other datasets. Moreover, the use of different topolo-
gies for the lattice generation depending on the type of data
might improve the accuracy of the model. The consensus
method is also an area of research, which might combine
the patient information through another classification model
to obtain the final output.
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