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CHAPTER 1

Resumen de la Tesis Doctoral en español.

Los mapas auto-organizados o redes de Kohonen (SOM por sus siglas en inglés,
self-organizing map) fueron introducidos por el profesor finlandés Teuvo Kalevi
Kohonen en los art́ıculos [33, 34]. Un mapa auto-organizado es una herramienta
que analiza datos en muchas dimensiones con relaciones complejas entre ellos y los
reduce o representa en, usualmente, una, dos o tres dimensiones. La propiedad más
importante de una SOM es que preserva las propiedades topológicas de los datos,
es decir, que datos próximos aparecen próximos en la reducción o representación.

La literatura relacionada con los mapas auto-organizados y sus aplicaciones es
muy diversa y numerosa [30, 46, 52]. Las neuronas en un mapa auto-organizado
clásico están distribuidas en una topoloǵıa (o malla) bidimensional cuadrada o
hexagonal y las distancias entre ellas son distancias eucĺıdeas. Una de las disciplinas
de investigación en SOM consiste en la modificación y generalización del algoritmo
SOM. Esta Tesis Doctoral se centra en esta ĺınea de investigación.

En concreto, los objetivos desarrollados han sido el estudio de topoloǵıas bidi-
mensionales alternativas, el estudio comparativo de topoloǵıas de una, dos y tres
dimensiones y el estudio de variaciones para la distancia y movimientos eucĺıdeos.
Estos objetivos se han abordado mediante el método cient́ıfico a través de las
siguientes fases: aprehensión de resultados conocidos, planteamiento de hipótesis,
propuesta de métodos alternativos, confrontación de métodos mediante experi-
mentación, aceptación y rechazo de las diversas hipótesis mediante métodos es-
tad́ısticos.

Se han obtenido los siguientes resultados:

(1) Estudio de topoloǵıas bidimensionales alternativas. El trabajo [38] de-
muestra la importancia de topoloǵıa alternativas basadas en áreas ajenas
como las teselaciones.

(2) Estudio comparativo de topoloǵıas en una, dos y tres dimensiones. El
trabajo [18] revela la influencia de la dimensión en el funcionamiento de
una SOM a escala local y global.

(3) Estudio de alternativas al movimiento eucĺıdeo. En el trabajo [19] se
propone y presenta la alternativa FRSOM al algoritmo SOM clásico. En
FRSOM, las neuronas esquivan barreras predefinidas en su movimiento.

Las conclusiones más relevantes que emanan de esta Tesis Doctoral son las
siguientes:

(1) La calidad del clustering y de la preservación topológica de una SOM
puede ser mejorada mediante el uso de topoloǵıas alternativas y también
evitando regiones prohibidas que no contribuyen significativamente al Er-
ror Cuadrático Medio (ECM).
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(2) Como era de esperar, la dimensión de la SOM que obtiene mejores resul-
tados es la propia dimensión intŕınseca de los datos. Además, en general,
valores más bajos para la dimensión de la SOM producen mejores resul-
tados en términos del ECM, y valores altos ocasionan mejor aprendizaje
de la estructura de los datos.



CHAPTER 2

Publicaciones que avalan esta Tesis Doctoral.

Esta Tesis Doctoral se presenta por compendio de publicaciones y está respal-
dada por los trabajos enumerados a continuación. Copias de estos trabajos pueden
leerse al final de este documento.

(1) [38]: López-Rubio E., Dı́az Ramos A., Grid topologies for the self-organizing
map, Neural Networks, Volume 56, August 2014, Pages 35–48.

Indicios de calidad: JCR (2014), categoŕıa: Computer Science:
Artificial Intelligence, posición 18/123, indice de impacto 2.708, primer
cuartil (Q1).

Copia del art́ıculo aqúı 1.
(2) [18]: Antonio Dı́az Ramos, Esteban J. Palomo, Ezequiel López-Rubio,

The role of the lattice dimensionality in the self-organizing map, 2018,
Neural Network World 28(1), pp. 57–85.

Indicios de calidad: JCR (2018), categoŕıa: Computer Science:
Artificial Intelligence, posición 110/134, indice de impacto 0.957, cuarto
cuartil (Q4).

Copia del art́ıculo aqúı 2.
(3) [19]: Antonio Dı́az Ramos, Ezequiel López Rubio, Esteban J. Palomo, The

Forbidden Region Self-Organizing Map neural network, IEEE Transactions
on Neural Networks and Learning Systems 31(1), Jan. 2020, pp. 201– 211.

Indicios de calidad: JCR (2018), categoŕıa: Computer Science:
Artificial Intelligence, posición 2/134, indice de impacto 11.683, primer
cuartil (Q1).

Copia del art́ıculo aqúı 3.
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CHAPTER 3

Introduction

Artificial Intelligence (AI) might perhaps be characterized as the only field to
attempt to build machines that will function autonomously in complex, changing
environments [55, p.18]. Nevertheless, AI may be defined in different ways, de-
pending on the point of view. For instance, in [55, 1.1], eight different definitions
are gathered from different sources and classified into four categories: Thinking Hu-
manly, Acting Humanly, Thinking Rationally and Acting Rationally. In that book,
as well as in this work, we focus on the last perspective, i.e., Acting Rationally.

This viewpoint concentrates on studying and building a rational agent, which
is an agent that acts to achieve the best expected outcome to a given problem or
situation. The agent’s behaviour is described by the agent function or algorithm,
which maps the percepts from the environment to an action. Hence, we may con-
sider this algorithm as a black box that is fed an input or stimulus and returns an
output in response.

(1) INPUT +3 ALGORITHM +3 OUTPUT

The Acting Rationally approach to AI looks for an algorithm that optimizes
the output with respect to some performance measure. Although AI is still far
away from emulating humans in the broad sense, in specific tasks some algorithms
have already outperformed humans. This is so in the recent famous cases of board
games Go [66] and chess [67], but also in more specialized fields as traffic sign
visual pattern recognition and neuronal membranes image segmentation [57].

Machine Learning (ML) is an approach to AI in which part of the algorithm
(the black box) is adjusted by a learning process or training phase that involves
several learning steps or iterations. The algorithm contains explicit rules for how
to learn on each step, but not for the final state of the machine after it has learnt.
Once the learning phase of the Machine Learning algorithm has finished, the device
works in recall phase: new inputs are presented and the algorithm produces outputs
without further internal adjustment. For most practical applications, the original
input variables are typically preprocessed to transform them into some new space
of variables where, it is hoped, the problem will be easier to solve [8, p.2].

This approach to AI contrasts, for instance, with Expert Systems, a strategy in
which the rules of the algorithm are fixed. Expert Systems were initially developed
in the 1970s [55, 1.3.5], had their first commercial success in the early 1980s [55,
1.3.6] and are still employed [55, 16.7].

Within Machine Learning, there exist several methods like the following ones.
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10 3. INTRODUCTION

• Regression Analysis [55, 18.6], [8, 3]: curve fitting for different families
of basis functions by finding a minimum of the loss function by gradient-
descent methods.

• Bayesian networks [55, 13,14,15,16], [8, 8.1]: dependencies among random
variables are represented in a graph, over which inference and learning
processes are implemented.

• Decision Trees [55, 18.3], [8, 14.4]: a tree is created that models the
value/answer to a set of fixed variables/questions, and then this tree is
employed to predict the value of new variables.

• Genetic Algorithms [55, 4.1.4]: function optimization via a population of
candidates-to-optimum values that change via crossover and mutations.

• Support Vector Machines [55, 18.9], [8, 7]: finding a separating hyper-
plane/hypersurface by mapping data to higher dimensional space (Kernel
trick).

• Artificial Neuronal Networks (ANNs) [55, 18.7], [8, 5]: ANNs emulate
biological neural networks and consist of a set of artificial neurons that
are connected via links with different “weights”. During the iterative
learning process, these “weights” are modified as to best fit the network
to the input data.

Artificial Neuronal Networks sprang back in the mid-1980s with the reinvention
by several research groups of the back-propagation algorithm [55, 1.3.7], nowadays
one of the most widespread learning algorithms for ANNs. From the point of view
of the learning process, there is a dichotomy among ANNs:

(1) Supervised learning: a target function is provided a priori, and the quality
of the output of the algorithm is measured by evaluating this function on
the output.

(2) Unsupervised learning: no explicit mechanism is provided to assess the
quality of the output. In this case, the learning process works by mini-
mizing an ad hoc cost function that replaces the missing target function.

A self-organized map (SOM) is a kind of artificial neural network with unsu-
pervised learning. They were introduced by Finnish Professor Teuvo Kalevi Ko-
honen in [33] and [34], see also [35]. There are thousands of published papers
reporting applications of SOMs to many fields as satellite images, medical imag-
ing, speech analysis, word recognition, robot navigation, full-text analysis, and
traveling-salesman problem, to name just a few. A compendium of these works
may be found in [30] for the period 1981-1997, [46] for the period 1998-2001 and
[52] for the period 2002-2005.

A particular discipline within SOM research is modifications and generaliza-
tions of the SOM algorithm. Again, there exist hundreds of developed versions
of alternative SOMs, see [30], [46] and [52] for a digest and [35, Chapter 5] for
detailed descriptions of some of these variants. The present work is devoted to the
study of some of the aspects of SOMs. We focus on variations or alternatives to
some of the mathematical notions involved in SOMs. See Section 3.1 below for a
precise description of the problem we tackle in this Ph.D. Thesis.

Although ANNs are originally inspired by biological concepts, the intrinsic
study of the algorithms without further reference to the biological background, as
done in this work, is a current field of research. For instance, in the reference [55,
1.3.7, p.25], we find,
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Modern neural network research has bifurcated into two fields, one
concerned with creating effective network architectures and algo-
rithms and understanding their mathematical properties, the other
concerned with careful modeling of the empirical properties of ac-
tual neurons and ensembles of neurons.

and, in [8, p.226],

From the perspective of practical applications of pattern recogni-
tion, however, biological realism would impose entirely unnecessary
constraints.

Recall that, so far, we have mentioned the following concepts, which we repre-
sent below in decreasing order of scope, from top to bottom.

Artificial Intelligence (IA)

��
Rational Agent

��
Machine Learning

��
Artificial Neuronal Network (ANN)

��
Self-Organized Map (SOM).

In order to introduce SOMs, consider the example application of Figure 1 below.
It consists of the outcome of a SOM applied to a point cloud of 126 points in
dimension 39. This data corresponds to 39 quality of life indicators of 126 different
countries from World Bank statistics from 1992. Adjacent countries in the SOM
have similar values for their indicators. Colours have been added to stress the
spatial adjacency. The example is taken from Helsinki University of Technology.

Figure 1. Quality of life values of different countries organized
by a SOM. Source: HUT

Already in this example, we can discern a few elements involved in a SOM:

http://www.cis.hut.fi/research/som-research/worldmap.html
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(a) Input space: this is the space where the data cloud lies. In this case, the 126
data points belong to the Euclidean space R39.

(b) Internal structure: the neuron or prototypes of the SOM are arranged according
to some internal structure. In this case, there are 13× 9 neurons located at the
vertices of a hexagonal grid.

(c) Topological preservation: the main feature of SOMs is that they map data
points that are close in the input space (neighbours) to neurons that are close
in the SOM grid (neighbours).

After we have introduced some basic facts about SOMs, in the next section we
explain in detail the concrete problem we face in this Ph.D. Thesis.

3.1. Ph.D. Thesis problem.

In this section we introduce the problem studied in this work, its state of the
art and the proposed solutions. The description of the problem revolves around the
items a and b listed above. In fact, many of the aforementioned variations of SOMs
modify these items. However, this myriad of alternatives has paid little attention
to some concrete aspects which, we think, are relevant, specially from the point of
view of the mathematical insight. Hence, the problem of this Ph.D. Thesis is the
following:

Mathematically analyze the classical and alternative topologies for
SOMs as well as pose new possibilities.

Here, by topology we mean both the topology of the input space a and the
topology or internal structure of the SOM b. Although topological preservation c
is not intrinsic part of the problem, we use it to asses SOMs, see Subsection 5.1.

The concrete aspects of SOMs we think deserve further consideration are the
following:

(1) Internal topology of the SOM b: The standard choice for the internal
topology of a SOM is the square topology, with few exceptions which
correspond to the hexagonal topology [3], [60]. This observation raises
two important questions:
• whether square and hexagonal topologies are special;
• whether there are other suitable topologies.

There are many self-organizing models that consider a dynamic topol-
ogy instead of a fixed one, for instance the growing self-organizing map
(GSOM) [2] and others, see [42] and [41]. We further discuss these vari-
ants in Subsection 5.2.2. Nevertheless, we do not consider them when
answering the two questions above because of its dynamic nature.

Our reply to these questions is contained in the work [38], and there
we find that alternative topologies arising from tessellations can improve
the efficiency of SOMs. A copy of this work may be found at the end
of this document 1. A summary of this paper may be found in Section
6.1. Further notions on tessellations may be found in Section 5.2.1 and in
Appendix C.

(2) Dimension of the internal topology of the SOM b: In the example above
(see Figure 1) the internal topology is two-dimensional. The topology
of SOM in applications is usually one, two or three-dimensional, but the
two-dimensional version is by far the most used, probably because of its
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easy representation and visualization. Three-dimensional topologies are
employed in applications for 3D data visualization [47], 3D data pro-
cessing [31] or other tasks without 3D data involved [4]. The use of
one-dimensional topologies is frequently linked to data that is known to
lie in a curve [29], although in some cases this constraint does not hold
[39]. Although formal results about one-dimensional SOMs are relatively
abundant [21, 20, 12], there are no works about which lattice dimension-
ality should be chosen for a particular application. In the work [18], we
answer this question, investigating the interplay between the data inner
dimension a and the SOM internal dimension b. We do this from both the
theoretical and empirical approaches. A copy of this work may be found
at the end of this document 2. A summary of this paper may be found in
Section 6.2.

(3) Topology of input space a: For some data sets and applications, it is
known beforehand that some regions of the input space cannot contain any
samples. Moreover, there are applications of SOM to this sort of data, for
instance, to geographic data or geospatial analysis: In [37], a SOM-based
method for invariant shape identification [40] was successfully applied to
hydrographic zones partitioning of Shandong province in China. In [50], a
SOM was used for patterning and predicting aquatic insect species richness
in running waters. A classification of land usage in mountain grassland
bovine areas in the Massif Central, France, was proposed in [49]. In [59], a
SOM was applied for visualizing demographic trajectories based on census
observations. Despite this wide variety of SOM-based methods applied to
spatial data analysis, the possibility of including forbidden regions in the
SOM has not been further explored. To fill this gap, in the work [19],
we present FRSOM, a variant of SOM whose prototype vectors avoid
predefined forbidden regions in the input space. A copy of this work may
be found at the end of this document 3. A summary of this paper may
be found in Section 6.3.

The solutions proposed in the three points above are partial answers to what
we think are deficiencies in the current development of the SOM algorithm and its
variants. Our answers, on the one hand, improve the overall efficiency of SOMs and,
on the other hand, enlarge the field of its applications, either by providing advise
on which lattice dimension to use or by giving a new tool for data with forbidden
regions. This way, we contribute to the vast world of SOM ANNs in the direction
of better efficiency and applicability.

3.2. Outline.

In this section we delineate the contents of this document: It is divided into
7 chapters, 3 appendices, and copies of the papers that endorse this Ph.D. Thesis.
Chapters 1 and 2 are written in Spanish and contain, respectively, a summary of the
work and a list of the publications that support this Ph.D. Thesis by compendium
of publications.

In Chapter 4 we start introducing ANNs. Then we describe SOMs as a special
type of ANN and we discuss the SOM algorithm as well as the usual cost function
(MSE). We give a mathematical definition of SOM in Definition 4.3.1. There, the
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input space a and the internal arrangement b discussed above will take a precise
form.

In Chapter 5, we discuss the biological foundations of the notion of topolog-
ical preservation stated in point c above. We then comment on how topological
preservation is employed as a measure of the quality of the output of SOM. We also
compare this concept with the mathematical notion of continuity. In addition, we
describe some known variations of the SOM algorithm as motivation and preamble
for the next chapter.

Chapter 6 contains a summary of the three works developed by the Ph.D.
student during the last 5 years; see [38], [18] and [19]. At the beginning of this
chapter, there is a thorough description of the elements of the SOM involved in
each work. For each of the three papers, we have also included subsections for
experiments, results, and discussion. The conclusions for each of the three works,
as well as the overall conclusions of this report, are all gathered in Chapter 7.

These three works have been developed under the scientific method, which
seems to be the current approach in AI as stated in [55, 1.3.8, p.25],

In terms of methodology, AI has finally come firmly under the
scientific method. To be accepted, hypotheses must be subjected to
rigorous empirical experiments, and the results must be analyzed
statistically for their importance. It is now possible to replicate
experiments by using shared repositories of test data and code.

Finally, the foundations of Artificial Intelligence involving mathematics are
logic, computation, and probability [55, 1.2.2]. For the description of the probabil-
ity and statistical methods supporting the implementation of the scientific method,
we have included an Appendix on Statistical Methods B. Besides these three fields,
namely: logic, computation, and probability, we have employed mathematical no-
tions arising from the area of Geometry and Topology. For that reason, we have also
incorporated two appendices with basic notions on Topology A and Tessellations
C.



CHAPTER 4

Self-organized maps

In the next two sections, we give a general background on artificial neural
networks. Then, in Sections 4.3, 4.4, 4.5 and 4.6, we describe in detail self-organized
maps (SOMs) as follows:

(1) In Section 4.3, we describe the neurons’ layout of a SOM and the connec-
tions between these neurons. Moreover, we provide a formal definition of
SOM (Definition 4.3.1) and the usual way of constructing a SOM from a
grid (Example 4.3.3).

(2) In Section 4.4, we interpret SOMs in the general setup of ANNs and derive
the basic rules that govern SOMs.

(3) In Section 4.5, we give a full description of the SOM algorithm for the
learning phase.

(4) Finally, in Section 4.6, we give a detailed account of SOM in recall phase,
introducing also the Mean Square Error (MSE, Equation 15) as cost func-
tion for unsupervised learning in SOMs.

4.1. Artificial Neuronal Network (ANN)

An Artificial Neuronal Network (ANN) is a machine learning computer system
that is inspired in biology. More precisely, neurons, their connections and their
learning method are the main source of inspiration for ANNs.

In a biological neuron, the synapse is the structure that allows the incoming
signal from the axon of another neuron to pass to the dendrite of the neuron. The
signals coming from different neurons are combined and, if this aggregate exceeds a
threshold, the neuron generates a signal which is sent through its axon, see Figure
2.

Figure 2. A biological neuron. Source: [55, Figure 1.2].

15



16 4. SELF-ORGANIZED MAPS

This is usually simplified as follows to give a model of an artificial neuron:
The inputs from incoming connections of other neurons correspond to real numbers
x1, x2, . . . , xn, and each connection has an associated weight wi ∈ R. This data is
mixed in a linear combination and compared to the threshold θ ∈ R to produce an
output. Hence, the output of the neuron may be written as σ(

∑n
i=1 wixi, θ), where

σ is the so-called activation function, see Figure 3.

x1
w1

$$
x2

w2

))
x3

w3 // ∑n
i=1 wixi

σ(
∑n
i=1 wixi,θ) //

...

xn

wn

88

θ

OO

Figure 3. An artificial neuron.

The activation function can be, for instance, the sign function, or a derivable
substitute as the sigmoid function, the hyperbolic tangent or the inverse of the
tangent function, see Figure 4.

Figure 4. Sign function, sigmoid function, hyperbolic tangent
and inverse of tangent function.

The brain contains billions of neurons and each one of them is connected up
to 10, 000 other neurons. In the artificial setup, the artificial neurons are laid into
layers, with neurons from one layer connected to neurons in the next later. The
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first layer (leftmost) is the input layer, and the last layer (rightmost) is the output
layer. The rest of the layers are termed hidden layers. Each layer may have a
different number of neurons. See Figure 5.

Input layer Hidden layer . . . Hidden layer Output layer
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Figure 5. An artificial neural network.

Here we have described feedforward neural networks. In the more general
setting of recurrent neural networks, cycles are admitted in the directed graph of
connections among neurons. Learning in biological neurons is based on Hebb’s
principle [26, p.62]:

A NEUROPHYSIOLOGICAL POSTULATE:

Let us assume then that the persistence or repetition of a reverber-
atory activity (or “trace”) tends to induce lasting cellular changes
that add to its stability. The assumption can be precisely stated
as follows: When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

This principle translates in turn into concrete algorithms for both supervised
and unsupervised learning. In the former case, the most spread learning algorithm
is backpropagation: the weights wij are adjusted in the direction of the gradient
of the target function in an error-correction fashion. It requires the activation
functions to be derivable, and it proceeds from the last layer backwards, until the
weights in the first layer are adjusted. The multilayer perceptron is an example of
an artificial neural network using this learning technique.

In supervised learning, Hebb’s principle is often implemented as competitive
learning or winner-take-all strategy: for each input, neurons compete to be the
one generating the output. Self-organizing maps are an example of artificial neural
network employing this learning method, and they will be described in Sections 4.3,
4.4, 4.5 and 4.6.

4.2. ANN as a function

After the details provided in the preceding section 4.1, the black-box algorithm
scheme (1) for ANNs can be refined as follows.
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Figure 6. An artificial neural network.

Here, we have written n for the number of input variables x’s and m for the
number of output variables y’s. Thus, the ANN can be seen as a function

y = f(x,w),

where y = (y1, . . . , ym) and x = (x1, . . . , xn). Moreover, w = {wl,i,j} is the
set of weights between neurons (i’s and j’s) of consecutive layers (l’s) and f is a
composition of functions as the one described in Figure 3. Slightly unfolding this
definition, we have

y1 = f1(x1, . . . , xn,w),

y2 = f2(x1, . . . , xn,w),

. . .

ym = fm(x1, . . . , xn,w),

where again each function fi is a composition of function as the one described in
Figure 3.

The variables x’s and y’s will be, in most cases, of real, integral or binary type.
We denote the input space accordingly as Rn, Zn or {0, 1}n and write x ∈ Rn,
x ∈ Zn or x ∈ {0, 1}n. Similarly, we use term output space and write y ∈ Rm,
y ∈ Zm or y ∈ {0, 1}m. This is from the theoretical point of view of course.
Once the ANN has a hardware or software implementation, the real, integral and
binary types are interpreted as floating point, integer or binary types respectively.
Unless stated otherwise, we assume throughout this work that the input space is
the Euclidean space Rn and that the output space is the Euclidean space Rm.

In the learning phase, the weights w will be modified following some procedure.
As commented in the introduction, there are two main learning types: supervised
and unsupervised.

4.2.1. Supervised learning in ANNs. For supervised learning and as com-
mented above, a common method is back-propagation: Assume {(xi,yi)}i=1,...,e is
a set consisting of e training pairs. This means that, for each 1 ≤ i ≤ e, if the
algorithm is presented the input xi = (xi1, . . . , x

i
n), we expect the output of the

algorithm to be as close as possible to yi = (yi1, . . . , y
i
m). Mathematically, this may
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be formulated as searching for w such that the sum of the squared errors over the
training samples is as small as possible:

(2) E(w) =
1

2

e∑
i=1

||yi − f(xi,w)||2 =
1

2

e∑
i=1

∑
j=1,...,m

|yij − fj(xi1, . . . , xin,w)|2.

If this expression is differentiable in the variables w, then a gradient-descent
method may be used to look for a (local) minimum of the error E(w). This is
known as back-propagation learning phase for the artificial neural network (ANN).
See [53, Section 3.9] or [10, Section 8.4] for more details.

4.2.2. Unsupervised learning in ANNs. Besides supervised learning (Sub-
section 4.2.1), the other learning paradigm for ANNs is unsupervised learning. This
term is more or less synonymous with vector quantization and clustering [27, 1.4],
and below we describe some clustering algorithms.

So let x1, . . . ,xM with xi ∈ Rn be M samples that we want to cluster without
further a priori knowledge about them. This lack of further information or target
function is which tells apart unsupervised learning from supervised learning. The
clustering process consists of assigning a label to each of the samples according to
some similarity measure [27, 4], see Figure 7 for an example.

Figure 7. Example of data clustering. Source: [27, Figure 1].

Clustering algorithms may be split into hierarchical and partitional algorithms;
see [27, Figure 7] for more details on this. In addition, among partitional algo-
rithms, we have square error type algorithms and other types as graph theoretic,
mixture resolving and mode seeking. In square error algorithms, the missing target
function is replaced by the square error criterion [27, 5.2.1]. This means that the
algorithm search for an appropriate number m of clusters and for the centroid of
each cluster w1, . . . ,wm, in such a way that the square error function below is close
to a local minimum,

(3) SE =

m∑
k=1

∑
i∈Ck

||xi −wk||2.
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Here, Ck ⊆ {1, . . . ,M} consists of the samples belonging to the k-th cluster Ck.
Hence, Ck ∩ Ck′ = ∅ if k 6= k′ and ∪mk=1Ck = {1, . . . ,M}. Some well-known
square error algorithms are k-means algorithm, winner-takes-all strategy and self-
organizing map (SOM). Below we describe the two first approaches, and, in the
next section, we start describing SOM, which is the main object of study of this
work.

• K-means algorithm: choose and fix a number m of clusters and initialize
the centroids w1, . . . ,wm to m random samples. Then repeat the follow-
ing steps until the clusters stabilize or the decrease in the function (3) is
below a threshold,
(1) Update the Ck’s: Assign each sample xi to the cluster Ck whose

centroid wk is the closest to xi.
(2) Update the wk’s: Define wk as the centroid (barycenter) of the sam-

ples in the cluster Ck.
• Winner-takes-all strategy: this is the particular case of the SOM algorithm

in which the metric D among neurons (see Definition 4.3.1) is given by
D(i, i) = 0 and D(i, j) = ∞ if i 6= j. After choosing the number m
of clusters and randomly initializing the centroids w1, . . . ,wm, the step
below is repeated for each one of the samples x1, . . . ,xM ,
(1) For the sample xi, update the centroid wk0 which is closest to xi.

Move wk0 towards xi an amount between 0 and 1. This amount
decreases with the index i.

The final clusters are given as before, i.e., assigning each sample xi to the
cluster Ck whose centroid wk is the closest to xi.

4.3. Structure of the SOM

Self-organizing maps (SOMs) can be understood as a type of ANN with un-
supervised learning. They were introduced by Kohonen in 1982 [34]. They have
no hidden layers and, as main structural difference, they have connections between
neurons of the output layer. Depending on the layout of these connections, an
internal dimension d can be associated with a SOM. For instance, one-dimensional
SOMs (d = 1) can be depicted as follows:

Input layer Output layer

//

++

##

//

33

''

. . . . . .

//

77

;;

Figure 8. SOM of dimension one.

Here, a connection exists between each pair of consecutive neurons in the output
layer. A two-dimensional SOM (d = 2) is represented as follows:
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Input layer Output layer

Figure 9. SOM of dimension two.

In this case, each neuron in the output layer is connected to four neighbour-
hoods (except if the neuron is in the boundary of the grid). Moreover, in the
one-dimensional case, the top most neuron can be connected to the bottom-most
neuron giving rise to a “circle” configuration. In the two-dimensional case, the left-
most neurons can be connected to the right-most neurons, producing a “cylinder”
shape. In addition, if the top most neurons are linked to the bottom-most neurons
a “toroidal” arrangement is obtained. Similar networks can be defined in any di-
mension d, and there are exist many variations for the layout of the connections,
some of which will be explored in Subsection 5.2.1 and Section 6.1.

Besides, to define the SOM, each pair of neurons j and k in the output layer
must have associated a non-negative number D(j, k) that indicates the distance
between these neurons. Therefore, the distance of the SOM can be seen as a
function

(4) D : {1, . . . ,m} × {1, . . . ,m} → R+ = {x ∈ R|x ≥ 0}.
This function D is expected to be a metric on the set {1, . . . ,m}, i.e., it must
satisfy, the following conditions, see also Definition A.0.9,

• D(j, k) = 0⇔ j = k for all j, k.
• D(j, k) = D(k, j) for all j, k.
• D(j, l) ≤ D(j, k) +D(k, l) for all j, k, l.

We will stick to the following notion of SOM.

Definition 4.3.1. A SOM S is a quintuple S = (n,m, d,G, D), where n ∈ Z+

is the number of input neurons, m ∈ Z+ is the number output neurons, d ∈ Z+ is
the internal dimension of the SOM, G is an undirected graph on m vertices and D
is a metric on the set {1, . . . ,m}.

Remark 4.3.2. Note that the topology induced by the metric D on the finite
set {1, . . . ,m} is the discrete topology, see Example A.0.2.

This is not the usual way of describing SOMs. We have introduced the abstract
Definition 4.3.1 as it isolates the different elements of the SOM, and hence permits
to discuss them separately. In the next example, we explain the standard way of
obtaining a SOM via a grid. Unless stated otherwise, all SOMs throughout this
work are constructed as in this example.
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Example 4.3.3. Fix the number n as the number of input neurons and m as
the number of output neurons. Then we use a grid with m points in the Euclidean
space Rd for some dimension d > 0 to define the graph G and the distance function
D. This grid consist of m points p1, . . . ,pm in Rd, the point pj corresponding to
output neuron j, and a collection of straight segments from pj to pk for different
neurons j and k. We assume that these segments either do not intersect or intersect
in a single point of the chosen ones.

Then we define the corresponding graph G on m vertices with an edge for each
selected segment and set the distance function D via

(5) D(j, k) = ||pj − pk||.
Thus, we set the distance to be equal to the Euclidean norm in Rd between the
corresponding points. Then we have that D is a metric as expected and that
(n,m, d,G, D) is a SOM.

Remark 4.3.4. The grid is the subspace Sd of Rd given as the union of the
chosen points and segments with the topology inherited from Rd.

Remark 4.3.5. To consider the right dimension d, one should impose the con-
dition that the points {p1, . . . ,pm} span Rd as an affine space, i.e., that the set of
vectors {p2 − p1, . . . ,pm − p1} contains d linearly independent vectors.

Example 4.3.6. Consider the grid 16 points of R2 given by

{0, 1, 2, 3} × {0, 1, 2, 3} = {(0, 0), (1, 0), (2, 0), . . . , (2, 3), (3, 3)},
and the segments/connections between the points (i, j) and (i+1, j) and the points
(i, j) and (i, j + 1). This gives a SOM with the following underlying undirected
graph that contains 16 vertices or output neurons,

The distance between neuron j with pj = (a, b) and neuron k with pk = (a′, b′) for
this SOM is defined by

D(j, k) = ||(a, b)− (a′, b′)|| =
√

(a− a′)2 + (b− b′)2.

For instance, if the neurons j and k are connected in the graph, we have D(j, k) = 1.
Note that this is the same configuration as that of Figure 9.

Example 4.3.7. Typical 1-dimensional grids (d = 1) are the “linear” and
“circle” grids. Below we show an 8× 1 linear grid and an 8× 1 circle grid. .
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Typical 2-dimensional grids (d = 2) are the “square” grid as that of Example
4.3.6 and the “hexagonal” grid. Below we present an 8× 8 square grid and a 7× 7
hexagonal grid.

4.4. SOM as ANN

Next, we explain how the general behaviour of ANNs gives rise to the SOM
algorithm. So consider a SOM S = (n,m, d,G, D), let x1, . . . , xn the values at the
input neurons and let y1, . . . , ym the values at the output neurons. Denote by wij
the weight of the connection between input neuron i and output neuron j, and
denote by vjk the strength of the link between output neurons j and k. (Note that
vjk is different from the distance D(j, k).) The following picture represents these
variables in the dimension two case.

j

vjk

k

i

wij

Mimicking biological hypotheses (which are detailed in [34]), the strength vjk
is positive for neurons k close to j (small D(j, k)) and negative for neurons k far
from j (large D(j, k)). This assumption and other simplifications permit to deduce
that, in the equilibrium state, i.e., for output values y1, . . . , ym satisfying

(6) yj = σ(

n∑
i=1

wijxi +

m∑
k=1

vjkyk − θ),

these values reach a maximum value yj0 at some output neuron j0, and that yk
decreases with the distance D(j0, k). See [53, Section 4.1] for a deduction of this
fact in the one-dimensional case. In the formula above, σ is an activation function
and the threshold θ is common to all output neurons.

The neuron j0 where the maximum value yj0 is attached may be computed, in
principle, solving Equation 6. This is a difficult task and Kohonen suggests instead
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employing only the external signal, i.e., determining j0 as follows,

n∑
i=1

wij0xi = max
j

n∑
i=1

wijxi.

This means that we seek to maximize the dot product of wj with x, where x =
(x1, . . . , xn) and we have introduced the weight vector or prototype wj associated
to the output neuron j,

(7) wj = (w1j , . . . , wnj).

Consider the following equation involving the dot product,

||wj − x||2 = (wj − x) · (wj − x) = ||wj ||2 + ||x||2 − 2 wj · x.

From this equation, and under the hypothesis that ||wj || does not depend on j, it
turns out that maximize wj ·x is equivalent to minimize ||wj−x||2, and hence also
to minimize ||wj − x||. In fact, this is the rule that, even without the assumption
above on the norms ||wj ||’s, governs the choice of j0 in the SOM algorithm:

(8) ||wj0 − x|| = min
j
||wj − x||.

Thus, Equation 8 provides unsupervised competitive learning: The winning
neuron is the neuron j0 whose prototype wj0 is closest to the input x in the input
space Rn. These considerations allow us to ignore the strengths vjk among output
neurons and focus only on x, y and the prototypes wj . Starting from this point,
we explain in the next section the SOM algorithm.

4.5. SOM algorithm

Consider a SOM S = (n,m, d,G, D) and denote by x ∈ Rn an input vector, by y
the output vector and by wj the prototypes of the output neurons for j = 1, . . . ,m.
Notice that, from Equation 7, wj = (w1j , . . . , wnj) and hence wj ∈ Rn. Thus,

the prototype of an output neuron belongs to the input space.

This implies that we can associate to the abstract graph G of S two spaces:

• The subspace Sd of Rd if the SOM is constructed from a grid, see Example
4.3.3 and Remark 4.3.4.

• The subspace Sn of Rn consisting of the union of the points {wj}j=1,...,m

and the segments among them in Rn corresponding to edges in the graph
G.

Note that the space Sd is defined in such a way that its edges do not intersect.
On the other hand, the edges in the space Sn may intersect.

Example 4.5.1. The SOM defined in Example 4.3.6 for d = 2 and n = 3 has
the following subspaces associated, where we have chosen the prototypes arbitrarily,
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Subspace Sd of Rd = R2. Subspace Sn of Rn = R3.

The (unsupervised) learning phase for a SOM consists of the following two
steps. Afterwards, the SOM works in recall phase as explained in Section 4.6.

• Initialization of prototypes of the SOM.
• Adjustment of prototypes for each input vector presented to the SOM.

Two standard initialization procedures are random initialization and principal
component analysis initialization. We do not further discuss this topic here. In
[1], the reader may find a comparison of these two approaches for one-dimensional
SOMs.

Let x(t) ∈ Rn be the input presented to the SOM at time t, where we let t
takes the values t = 1, 2, 3, . . . , N . So x(1), . . . ,x(N) are the training samples the
SOM will use in the learning phase. Assume the weight vectors or prototypes have
the values wj(t) at time t. Next we explain how the updated values wj(t+ 1) are
computed. This process has two phases:

(a) Determine the neuron j0 whose prototype is closest to the input vector
x(t) in the input space Rn according to Equation 8. Thus, we look for j0
such that

||wj0(t)− x(t)|| = min
j
||wj(t)− x(t)||. (9)

(b) Set the new prototype wj(t + 1) to be equal to a convex combination of
x(t) and wj(t), i.e., to a point in the segment from wj(t) to x(t).

The neuron j0 in point (a) above is called best matching unit (BMU). We will
abuse notation and call BMU to the neuron j0, to its associated point in pj0 ∈ Rd
and to its associated prototype wj0 ∈ Rn. Which one we mean will be clear from
the context. We write BMU(t) if we want to emphasize the instant t.

Now we explain the role that the winning neuron j0 or BMU has in point (b)
above. The mentioned convex combination will be of the form,

(10) wj(t+ 1) = wj(t) + γ(t, j, j0)(x(t)−wj(t)),

where the function γ(t, j, j0) satisfies 0 ≤ γ(t, j, j0) ≤ 1 and decreases with time
and with the distance D(j, j0). Note that this function depends only on t, j and
j0. See Figure 13.
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x(t)

wj(t)

wj(t+ 1)

Figure 13. wj(t+ 1) lies in the segment from wj(t) to x(t).

The function γ is decomposed as follows,

γ(t, j, j0) = θ(t, j, j0)η(t),

where θ(t, j, j0) is called the neighbourhood function and η(t) is called the learning
function. These two functions are described below in Subsection 4.5.1 and 4.5.2.
Together, they produce that, on the learning step t, only the neurons closer to the
BMU learn, and the amount of learning decreases with the distance to the BMU
(distance D or, analogously, distance in the space Sd) and with time t. See the
next figure for a representation of these facts.

BMU

x(t)

(a) Space Sn, input sample x(t) and BMU
before learning step.

x(t)

(b) Space Sn and input sample x(t) after
learning step.

4.5.1. The neighbourhood function. A standard neighbourhood function
is the (pseudo) normal distribution

θ(t, j, j0) = e
−D

2(j,j0)

2σ(t)2 ,

where D(j, j0) is the distance between neurons j and j0 in the SOM, and the
variance σ(t) decreases with time. The role of σ(t) is measuring the influence of
the BMU on its neighbours. Recall that approximately 68% of the distribution θ
is taken by neurons j which are at a distance from j0, D(j, j0), smaller than σ(t).

Example 4.5.2. For d = 2 and an 8 × 8 grid, the next picture shows the
decreasing neighbourhoods defined by σ(t) around a fixed neuron j0:
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A standard definition of the variance σ(t) is

σ(t) = σ0e
−t
λ ,

where σ0 and λ are appropriately chosen constants. They can be determined by
optimization of parameters or they may be chosen heuristically as follows,

σ0 =
maxj,kD(k, j)

2
and λ =

N

ln(σ0)
,

where N is the number of times that the learning step will be executed by the SOM
and σ0 is half the diameter of the space {1, ...,m}, i.e, its radius. This implies that
σ(N) = 1 and thus, if the function D is normalized in such a way that D(j, k) = 1
whenever j and k are linked, in the last step the influence of the winning BMU j0
is just itself.

Example 4.5.3. For the SOM of Example 4.3.6, we have that the radius is
σ0 = 3

√
(2) ≈ 2.12. Setting N = 10, 000 we get λ = N

log(σ0) ≈ 13297.18. The

corresponding variance function is as follows

Another common form for the variance is a linear decay followed by a residual
value,

(11) σ(t) =

{
σ0 − σ0−σ1

λN x if 0 ≤ t ≤ λN ,

σ1 if λN ≤ t ≤ N,

where again N is the number of times that the learning step will be executed by
the SOM, σ0 is the starting variance, σ1 is the residual value of the variance and
0 ≤ λ ≤ 1. A common value is λ = 1

2 and the other parameters can be determined
by optimization.



28 4. SELF-ORGANIZED MAPS

Example 4.5.4. For the SOM of Example 4.3.6, we have that the radius is
σ0 = 3

√
(2) ≈ 2.12. Set N = 10, 000, λ = 0.5 and σ1 = 0.1. The corresponding

piecewise linear variance function (11) is as follows

4.5.2. The learning function. The learning function η(t) is usually mod-
elled as an exponential decay function,

η(t) = η0e
−t
λ ,

or as a linear decay as before,

(12) η(t) =

{
η0 − η0−η1

λN x if 0 ≤ t ≤ λN ,

η1 if λN ≤ t ≤ N.
Here N is the total number of iterations of the SOM algorithm, 0 ≤ λ ≤ 1 and

a usual value is λ = 1
2 . The parameter η0 is the initial learning value and η1 is the

residual learning value. Both parameters may be determined by optimization.

Remark 4.5.5. As the reader may have noticed, for the SOM S = (n,m, d,G,D),
the graph G does not play a role in the learning phase of the SOM. In fact, the
graph G will be relevant when assessing the topological preservation of the SOM as
discussed in Section 5.1.

4.6. SOM in recall phase

The learning phase of the SOM algorithm finishes after N iterations in which
the training samples x(1), . . . ,x(N) have been presented to the SOM. During this
process, the weights wj = (w1j , . . . , wnj) (see Equation (7)) are adjusted until their
final values are reached.

In the recall phase, a single input x = (x1, . . . , xn) is presented to the SOM
algorithm and it produces an output vector y = (y1, . . . , ym). In fact, denoting by
j0 ∈ {1, . . . ,m} the BMU , i.e., the neuron whose prototype wj is closest to the
input x (see Equation (8)), the output vector is defined by

yj = δ(j, j0) =

{
1 if j = j0,

0 otherwise.

This formula describes the SOM ANN as a function from the input space Rn to the
output space Rm, in the way it was introduced in Section 4.2,

χ : Rn →Rm(13)

x = (x1, . . . , xn) 7→χ(x) = y = (y1, . . . , ym) with yj = δ(j, j0)
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This function takes as values the vectors

(1, 0, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 1, 0), (0, 0, . . . , 0, 1)

and the preimage of the j0-th vector in this list is exactly the following subset of
Rn,

(14) Vj0 = {x ∈ Rn| ||wj0 − x|| = min
j
||wj − x||}.

So the set Vj0 consists of the points of Rn which are closer to wj0 than to any other
prototype wj . Thus, Vj0 is exactly the Voronoi cell of the point wj0 corresponding
to the Voronoi diagram corresponding to the points w1, . . . ,wm of Rn.

Example 4.6.1. The following picture shows 10 points within the subset [0, 5]×
[0, 5] ⊆ R2 together with their corresponding Voronoi cells.

If, in the recall phase, we have a set of M test samples, x1, . . . ,xM , a common
measure of the performance of the SOM is the Mean Squared Error. In order to
introduce it, denote by ji = BMUi the neuron whose prototype is closest to the
input test sample xi, for i = 1, . . . ,M . Then we define,

(15) MSE =
1

M

M∑
i=1

||xi −wji ||2,

which can be also written as

MSE =
1

M

M∑
i=1

m∑
j=1

P (i, j)||xi −wj ||2,

where

(16) P (i, j) =

{
1 if xi ∈ Vj ,
0 otherwise.

Note that Equation (15) is the mean of Equation (3), which corresponds to
the squared error criterion. As it will be explained in Section 5.1, there exist other
performance measures of the SOM that focus on the so-called topology preservation,
a concept closely related to the mathematical notion of continuity. Please see
Appendix A for basic notions on mathematical continuity. For instance, the map χ
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defined above (13) is not continuous. In preparation for the discussion of topological
preservation in Section 5.1, we define in the next subsection some other maps and
study their continuity.

4.6.1. Continuity of some maps. So let S = (n,m, d,G,D) the SOM under
study. Then we can consider, besides χ, two other maps, one map Φ1 from the
input space (Rn, || · ||) to the metric space ({1, . . . ,m},D), and one map Φ2 from
the metric space ({1, . . . ,m},D) to the input space (Rn, || · ||). We have emphasized
that we consider the euclidean norm in Rn by writing (Rn, || · ||),

(Rn, || · ||)
Φ1 //

({1, . . . ,m},D)
Φ2

oo

The map Φ1 : (Rn, || · ||)→ ({1, . . . ,m},D) is defined by

x 7→ j0,

where j0 is again the neuron whose prototype is closest to x within Rn. Note
that x may belong to the intersection of two or more Voronoi cells (14), i.e., there
could be more than one neuron that minimizes the distance to x. In this case, we
arbitrarily define Φ1(x) as one of these neurons. In an implementation of the SOM,
the selected neuron could be the first neuron in the natural order 1 < 2 < . . . < m.
In different setups, the problem of multiple minimizing points is solved differently,
for instance, considering the center of the smallest ball containing all minimizing
points [48, p. 73].

The map Φ2 : ({1, . . . ,m},D)→ (Rn, || · ||) is defined by

j 7→ wj .

If Φ2 is injective1, we have that Φ1 ◦ Φ2 = 1{1,...,m}. Regarding continuity, we
have the following result.

Lemma 4.6.2. Let S = (n,m, d,G,D) be a SOM. Then:

(1) The map Φ1 : (Rn, || · ||)→ ({1, . . . ,m},D) is not continuous2.
(2) The map Φ2 : ({1, . . . ,m},D)→ (Rn, || · ||) is continuous.

Proof. For the first part, take a point x in the intersection of at least two
Voronoi cells, x ∈ Vj1 ∩ Vj2 , with j1 = Φ1(x). Then there is a sequence of points
x1,x2,x3, . . . contained in int(Vj2) \ Vj1 and converging to x. Then Φ1(xi) = j2
and Φ1(x) = j1. Thus Φ1 is not continuous, see A.0.12. For the second part, by
Remark 4.3.2, the topology of {1, . . . ,m} is the discrete one, and hence every map
with this domain is continuous. �

If the SOM S was constructed from a grid (see Example 4.3.3), we consider the
spaces Sd and Sn described at the beginning of Section 4.5, see also Example 4.5.1.
Moreover, in this situation, we have another two maps,

(Rn, || · ||)
Ψ1 //

(Sd, || · ||),
Ψ2

oo

1this is equivalent to the points {w1, . . . ,wm} being all distinct.
2if there are at least two different points in {w1, . . . ,wm}
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where recall that the topology in Sd is given by the restriction of the euclidean
metric || · || of Rd. The map Ψ1 : (Rn, || · ||)→ (Sd, || · ||) is defined by

x 7→ pj0 ,

where pj0 is the point of the grid corresponding to the BMU j0. The map
Ψ2 : (Sd, || · ||)→ (Rn, || · ||) is the unique linear extension of the map that sends

j 7→ wj .

Note that the image of this map is exactly the space Sn ⊆ Rn. In this case, even if
Ψ2 is injective, we do not have Ψ1 ◦Ψ2 = 1Sd . The reason is that the image of Ψ1

is just the set {p1, . . . ,pm} ( Sd. The continuity of these maps is as follows.

Lemma 4.6.3. Let S = (n,m, d,G,D) be a SOM arising from a grid. Then:

(1) The map Ψ1 : (Rn, || · ||)→ (Sd, || · ||) is not continuous.
(2) The map Ψ2 : (Sd, || · ||)→ (Rn, || · ||) is continuous.

Proof. The first part follows as in Lemma 4.6.2. The second part follows from
the continuity of piecewise linear maps. �

Remark 4.6.4. The graph G does not play a role in the learning phase, see
Remark 4.5.5, nor in the recall phase. It will become relevant to determine the
level of topological preservation of the SOM as discussed in Section 5.1.





CHAPTER 5

SOM Analysis

In this chapter, we comment on some aspects of SOMs. We start discussing
topological preservation in Section 5.1. We focus on the formal definition and its
comparison to mathematical continuity, see A.0.4, as well as on some quantitative
measures of topological preservation. Then we briefly elaborate on variants of SOMs
having to do with the distance in the input space and the distance in the grid that
gives rise to the SOM, paying close attention to this last topic, see Section 5.2.

5.1. Topological preservation in SOMs

One of the main ideas underlying SOMs is that they are topological preserving
ANNs. In this section, we discuss this notion and we relate it to the mathematical
concept of continuity, see Appendix A and A.0.4. The term topographic preserva-
tion is used in the literature as a synonym for topological preservation. We do the
same here.

Some biological studies indicate that, in some animals, signals from adjacent
receptors are conducted to adjacent neurons in the brain, cf. A.0.7. For instance,
for the sense of touch in monkeys, the somatosensory cortex is described in [28],
see Figure 16.

Figure 16. Part of the somatosensory cortex of a monkey with
the layout of the mapped body parts. Letters Fi correspond to
fingers. Source: [28, Fig. 1], [53, p. 17].

33



34 5. SOM ANALYSIS

In that figure, it is observed that many neighboorhoud relations in the body
are preserved after they are mapped to the cortex. For a further discussion on the
biological grounds, we refer the reader to [53, Chapter 2]. In the literature, these
biological findings are emulated via different ways of measuring how a trained SOM
preserves the topology, and some of these ideas are related to the mathematical
notion of continuity. For instance, from [6, p. 660, l. 6],

In a colloquial manner, topography of a map means the mapping
of similar data points to close locations in the map layer.

And later, in the same paper [6, p. 660, l. 14],

Then topography means topology preservation and is equivalent
to continuity of a mapping between the input and output set.

Also, in [11, 4.2.1], we have,

Besides quantization, the second main goal of the SOM is the so-
called topology preservation, which means that close data in the
input space will be quantized by either the same centroid, either
two centroids that are close from one another on a predefined
string or grid.

In [61, p. 279], we find the following,

Loosely spoken, topology preservation means that a continuous
change of a parameter of the input data leads to a continuous
change of the position of a localized excitation in the neural map.

So all these notions refer to the continuity of the map that goes from the input
space to the neurons and resemble the characterization of mathematical continuity
using the closure operator A.0.7. We have modelled the map from the input space
to the neurons in two different ways via the maps Φ1 and Ψ1 that employ the BMU
neuron, see Subsection 4.6. Nevertheless, these maps are not continuous with the
topologies given there, see Lemma 4.6.2(i) and Lemma 4.6.3(i). In other works,
this map is required to be even a homeomorphism [21, Section 4]. In the rest of
this section, we do focus on this map from the input space to the neurons. In fact,
in view of the results Lemma 4.6.2(ii) and Lemma 4.6.3(ii) and of the biological
background commented above, the map from the neurons to the input space is less
interesting.

Some authors have introduced different topologies or alternative input spaces
to deal with the continuity issue. For instance, in the work [61] as well as in [62],
different topologies termed “discrete” are defined in the set of neurons {1, . . . ,m}.
In fact, in the mathematical sense, any given set has a unique discrete topology.
Namely, the topology where all subsets are open, see A.0.2 and A.0.11. Moreover,
the “system of open sets” defining these topologies in [61, Corollary 5] do not
satisfy that union of open sets is open. Therefore, they are not topologies in the
mathematical sense, see A.0.1.

These ideas arose from the constructions in [43, Definitions 3,4,5], that we now
succinctly describe: let M ⊆ Rn be a subset of Rn. This set M should be thought of
as a topological manifold of some positive dimension that contains the point cloud
of inputs. Let (n,m, d,G,D) be a SOM in recall phase such that wj ∈ M for all
1 ≤ j ≤ m. Then this SOM is said to be topology preserving if, for all 1 ≤ i, j ≤ m,
we have

{i, j} ∈ G ⇔ Vi ∩ Vj ∩M 6= ∅.
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Thus, we ask for the vertices i and j to be connected in the graph G if and only
if the corresponding Voronoi cells (14) intersect non-trivially with M . In [62,
Definition 1], and for SOMs arising from a grid 4.3.3, the authors introduce a
variation of this idea by substituting the neighbourhood relation in the graph G by
the neighbourhood relation induced by the maximum norm || · ||∞ in the space Rd
where the grid is immersed. See also the definition of Topographic Function below
5.1.2.

This concept resembles the mathematical notion of continuity, except that, if
we define the “topological” neighbourhoods of i to be the neighbourhoods of i in
the graph G, we do not get a topology because intersection of open sets would not
be open in general.

So far in this section, we have faced several times the underlying problem of
endowing the finite set of neurons {1, . . . ,m} with a topology. In fact, topologies
on a finite set are given by pre-orders, i.e., by relative transitive relations on the
finite set. This is explained in [5] for instance, where the author also develops the
notions of algebraic topology in this context. As an example, the discrete topology
on a finite set corresponds to the trivial pre-order on that set, i.e., each element is
related only to itself. It is remarkable that Kohonen’s original paper [34, p. 60]
mentions orders,

Assume that the events Ak can be ordered in some metric or
topological way such that A1RA2RA3 . . .... where R stands for
a general ordering relation which is transitive (the above implies,
e.g., that A1RA3).

Therefore, it seems worth investigating the possible connections between topolo-
gies on the finite set of neurons, i.e., pre-orders, the biological roots of SOMs as
commented above and the very original definition of SOM by Kohonen.

In the rest of this section, we discuss some other ways of measuring the topolog-
ical preservation in SOMs. These are of quantitative nature instead of qualitative
nature. A survey of these notions can be found in [44].

5.1.1. Topographic error. This is possibly the simplest qualitative measure
of continuity, although it is not the earliest one, see [32]. To introduce it, given a
set of test samples x1, . . . ,xM , denote by ji = BMUi the neuron whose prototype
is closest to xi in Rn, and denote by j′i the second closest prototype to xi. Then
the topographic error is defined as follows,

(17) TE =
1

M

M∑
i=1

TEi,

where TEi is 1 if the best and second-best matching units (ji and j′i) are not
connected in the graph G and 0 otherwise. In symbols,

TEi =

{
0 if {ji, j′i} ∈ G,
1 otherwise.

So the topographic error TE ∈ [0, 1] gives the average of local topographic errors
along the test samples.

5.1.2. Topographic function. The topographic function [62] is an evolution
of the topographic product, which was the first quantitative measure of topographic
preservation and goes back to 1992 [7]. The topographic function TF has domain
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the positive integers k = 1, 2, 3, . . . and codomain the interval [0,m]. Let S =
(n,m, d,G,D) a SOM constructed from a grid with points p1, . . . ,pm within Rd,
see 4.3.3. Assume that M ⊆ Rn is a topological manifold of positive dimension
containing the prototypes w1, . . . ,wm. Then the topographic function is defined
as follows, for any k ≥ 1,

TF (k) =
1

m

m∑
i=1

|{j ∈ {1, . . . ,m} such that Vi ∩Vj ∩M 6= ∅ and ||pi−pj ||∞ > k}|.

Recall that |A| denotes the cardinal of the set A and that Vi is the Voronoi cell
corresponding to the prototype wi ∈ Rn. This definition is extracted from [62,
Equations (9) and (10)]. The value TF (k) gives the average number of prototypes
that are adjacent in the Delaunay triangulation in Rn and whose respective points
in the grid of Rd are at a distance larger than k in the maximum norm || · ||∞.

Figure 17. Prototypes of a 100× 1 linear one-dimensional SOM
on a square (left) and the graph of the corresponding Topographic
function TF (right). Source: adapted from [62, Figures 5 and 6].

Remark 5.1.1. From the mathematical viewpoint, continuity is defined as an
absolute notion, i.e., a function is either continuous or not continuous, see A.0.4.
Mimicking what has been described here, it would be interesting to consider quan-
titative measures that assign a value of “continuity” to a given function in the
mathematical setup.

5.2. Variations of SOMs

Let S = (n,m, d,G,D) be a SOM arising from a grid of points p1, . . . ,pm in
Rd, see Example (4.3.3). Varying some of the elements employed in the definition of
the SOM and/or in the SOM algorithm has given rise to an overwhelming number
of alterations of the original SOM, see [35, Chapter 5] for instance. We focus on
the following two structural elements and discuss some of them in Chapter 6 and
some later in this section.

(1) the distance function D is the restriction to the set {1, . . . ,m} of the
Euclidean distance in Rd, see Equation (5).

(2) the best matching unit BMU is computed minimizing the Euclidean dis-
tance in Rn, see Equation (8).
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Regarding the first point above, one can consider the inner dimension of the
input data and compare it to the dimension d of the grid. More precisely, assume
that the training samples x(1), . . . ,x(N) are picked from a topological manifold
M ⊆ Rn of some positive dimension d′. Then, an investigation of the performance
of the SOM in terms of the difference |d − d′| is relevant. Partial results in this
direction have been obtained and are described in Section 6.2.

We could focus instead on the local structure of the input data and the grid:
If the input data presents a non-Euclidean local structure, then a non-Euclidean
SOM may be better suited for the learning task. This has been considered in [54]
and we discuss this point of view in Subsection 5.2.1, together with some additional
reflections. Other variations may be obtained by keeping the Euclidean distance in
Rd and considering alternative distributions of the points of the grid. For instance,
one can take into account regular tessellations of the plane R2. Results have been
obtained in this direction and they are described in Section 6.1.

Still with relation to point (1), it is natural to allow the number of neurons m
and the distance function D to change along the learning process. These ideas have
given rise, for instance, to the Growing SOM (GSOM) and to the Self-Organizing
Dynamic Graphs (SODG), which are discussed in Subsection 5.2.2.

Regarding point (2) above, one could substitute the Euclidean straight segment
between two points in the input space Rn by the geodesic in Rn, where we endow
Rn with a curvature inversely proportional to the density of input samples. This
was the objective of the work [17] and it will not be discussed here. Another
modification consists of substituting the Euclidean straight segment of Rn by a
piecewise linear path that avoids predefined forbidden regions. Results have been
obtained in this direction and they are discussed in Section 6.3.

5.2.1. Non-euclidean spaces and SOMs. Consider the differential mani-
fold of dimension d′ and of constant curvature k = 0, 1 or−1, given by the Euclidean
space Rd′ , the sphere Sd′ , and the hyperbolic space Hd′ respectively. Then the vol-
ume Vk(r) of a metric ball of radius r is given as follows, see [56, Chapter IV,
problem 1],

V0(r) =λ0r
d′ ,

V1(r) =λ1

∫ r

0

sind
′−1(t)dt (0 < r < π),

V−1(r) =λ−1

∫ r

0

sinhd
′−1(t)dt,

where λ0, λ1, and λ−1 are constants. For instance, for d′ = 2, we obtain,

V0(r) =πr2,

V1(r) =2π(1− cos(r)) (0 ≤ r ≤ π),

V−1(r) =2π(cosh(r)− 1).

In Figure 18, we can see the graph of these functions for 0 ≤ r ≤ π. The function
V−1(r) has exponential growth and the function V0(r) has polynomial growth.
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Figure 18. Volume of a ball in R2 (blue), S2 (red) and H2 (green)
in terms of radius r.

In hierarchical structures such as trees, the number of nodes at distance r or
smaller of a given node is an exponential function of r,

OO

r

��

oo
2r

//

Then, and as discussed in [54], it could be more appropriate, for hierarchically
structured data, to use a SOM arising from a grid whose points are the vertices of
a tessellation of some hyperbolic space. This brings up the theme of tessellations
of spaces, a notion that is useful and fruitful to construct variants of SOM. In
Appendix C we have gathered some basic facts and definitions about tessellations.
Below we give a succinct account of tessellations for the spaces R2, S2, and H2.
The vertices of these tessellations may be used to generate a SOM as in Example
4.3.3. Further insights into tessellations of the plane R2 are explained in Section
6.1.

We consider regular tessellations, i.e., edge-to-edge monohedral vertex transi-
tive tesselations with tile a fixed n-gon, see Appendix C for the appropriate defini-
tions. For the plane R2, there exist three regular tessellations,

Figure 19. Regular tessellations of the plane. Source: Wikipedia

https://en.wikipedia.org/wiki/Euclidean_tilings_by_convex_regular_polygons


5.2. VARIATIONS OF SOMS 39

For the 2-sphere, the five platonic solids, namely, tetrahedron, cube, octahe-
dron, dodecahedron, and icosahedron, give rise to five regular tessellations, see
Figure 20. Moreover, subdivisions of these may be considered in order to add more
points to the grid, at the price of losing some symmetry of course.

Figure 20. The platonic solids and their projection onto a con-
centric sphere. Source: Math & the Art of MC Escher, Wikipedia

For the hyperbolic space, there are infinitely many tessellations, see [13]. In
Figure 21, there are three examples of these tessellations.

Figure 21. Some tessellations of the hyperbolic plane. Source:
Wikipedia

Relaxing some of the symmetry constraints of the tessellations, a huge variety
of such appear. For instance, instead of monohedral tessellations, one may allow
different n-gons, keeping the edge-to-edge condition and the vertex transitivity
condition. These are called Archimidean or semi-regular tesselations, and there are
8 of these besides the three regular tessellations of the plane, see Figure 19. The
improved performance of a SOM on such a tessellation is studied in Section 6.1.

In general, one may consider many other variations, as polytopes that are not
n-gons, more than one orbit on the vertices and, as discussed above and in [54],
non-Euclidean spaces. Apparently, there is no much literature on SOMs in this
direction. In my opinion, this is a topic worth studying.

https://mathstat.slu.edu/escher/index.php/Spherical_Geometry
https://en.wikipedia.org/wiki/Platonic_solid
https://en.wikipedia.org/wiki/Platonic_solid
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5.2.2. Growing and dynamic SOMs. The growing self-organizing map or
GSOM was introduced in 2000 in the work [2]. The main feature of this SOM is
that the grid of neurons grows through the learning process. There exist many
other growing-type SOMs, as for instance [42]. Moreover, there exist variants of
SOM, as Self-Organizing Dynamic Graphs [41], in which the metric D itself (see
Definition 4.3.1) varies along the learning process. Properly describing both growing
and dynamical SOMs was one of the reasons that motivated us to introduce the
abstract notion of SOM given in Definition 4.3.1.

The idea behind GSOM and other growing-type SOMs is to create new neurons
near existing neurons that accumulate a “big enough error” through the learning
process. We describe next the basic mechanism underlying GSOM as an instance
of this type of SOMs. So let S = (n, 4, 2,G, D) be a GSOM at initial state. Hence,
GSOM is two dimensional and, in fact, the graph G and the metric D are built as
in Example 4.3.3 for a unit square in R2, i.e., for the following points,

p1 = (0, 0) , p2 = (0, 1) , p3 = (1, 1) and p4 = (1, 0),

and segments,
p1p2 , p2p3 , p3p4 and p4p1.

If there are m neurons at some instant t (1 ≤ t ≤ N), the accumulated error for
neuron j (1 ≤ j ≤ m) is given recursively by [2, Equation (2)],

Ej(t+ 1) = Ej(t) + ||x(t)−wj(t)||,
where x(t) is the input presented at time t and wj is the weight vector or prototype
of neuron j (see Equation (7)) at that instant. If this value exceeds a threshold,
new nodes are created at the positions {pj+(1, 0),pj−(1, 0),pj+(0, 1),pj−(0, 1)}
that are not yet occupied by a neuron. Here, pj is the point of R2 corresponding
to neuron j. See Figure 22.

Figure 22. New neurons generation in GSOM. Source [2, Figure 2]

The weights of the new neurons are initialized to a linear combination of
the weights of neurons in its vicinity according to some detailed casuistic, see
[2, III.B.2]. In this way, GSOM at instant t is described by a SOM S(t) =
(n,m(t), 2,G(t), D(t)), where m(t) ≥ m(0) = 4 and G(t) and D(t) are obtained
by some planar grid as in Example 4.3.3. It is also interesting that the function
γ(t, j, j0) appearing as the coefficient in the affine combination rule (10), i.e., in

wj(t+ 1) = wj(t) + γ(t, j, j0)(x(t)−wj(t)),

is modified in GSOM: it depends very explicitly and strongly on the number of
neurons at each instant m(t), see [2, IV].

In SODGs or Self-Organizing Dynamic Graphs [41], the structure at learning
time t is described by a SOM S(t) = (n,m, d,G, D(t)), where the number of neurons
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m and the graph G are fixed but the metric D(t) depends on the instant t. In
fact, the collections of values, D(t) = {D(i, j)(t)}i,j=1,...,m, where D(i, j)(t) is the
“distance” between neurons i and j at time t, will not be, in general, a metric in
the sense A.0.9. For instance, we may have D(i, j)(t) 6= D(j, i)(t) [41, p.101]

Nevertheless, we have D(i, i)(t) = 0 for all i and t [41, 3] and the alternate
condition [41, 13],

(18)
∑

j=1,...,m

D(i, j)(t) = 1,

for all 1 ≤ i ≤ m. In more detail, the update formula for D(t) is given in two steps
[41, (14),(15)]. First, set

D(j, i)(t+ 1) = D(i, j)(t) +
||x(t)−wi(t)||
||x(t)−wj(t)||

δ(t),

where x(t) is the input sample at time t, wi(t) and wj(t) are prototypes at time
t and δ(t) is the “metric” learning rate, which follows a linear decay analogous to
Equation 11 and Example 4.5.4. Then normalize D(t) so it satisfies Equation (18),
i.e., divide each entry in a row by the sum of that row.

According to [41, p.95], these evolution equations for D(t) produce “...a se-
lection of the most vigorously growing synapses at the expense of the others...”.
In addition, SODG seems to faithfully represent two-dimensional shapes that the
standard SOM algorithm cannot properly grasp. As an example of this fact, see
Figure 23, where, for SODG, the lines correspond to the three strongest adjacencies
for each neuron, i.e., three highest values D(i, j) for fixed i.

Figure 23. Hollow square learnt by SODG (left) and SOM
(right). Source [2, Figure 8]





CHAPTER 6

Summary of works

In this chapter, we review three works undertaken by the Ph.D. student. These
works have been published in [38], [18] and [19] and may be succinctly described
as follows,

(1) In [38], we study the performance of SOMs arising from alternative tes-
sellations, see also Subsection 5.2.1 and Appendix C. Details are given in
Section 6.1.

(2) In [18], we investigate the relation between the intrinsic dimension of the
data d′ and the inner dimension d of the SOM. More insight is provided
in Section 6.2.

(3) In [19], we introduce a new type of SOM, the so-called Forbidden Region
SOM or FRSOM: displacement of the prototypes in the input space avoids
predefined forbidden regions, see 6.3.

Now we clarify how these works fit in the setup of SOMs introduced in earlier
chapters. To that aim, in the following diagram we represent the main elements
that take part in the SOM, and we indicate the components that are directly related
to each of the three works,

6.2 points p1, . . . ,pm ∈ Rd

Example 4.3.3
��

6.1

SOM S = (n,m, d,G,D)

��

manifold M of dimension d′

��
input space Rn // output space Rm

6.3

6.1. Grid metric

In Subsection 5.2.1, edge-to-edge monohedral vertex transitive tesselations were
considered, see also Appendix C. As discussed there, we may allow n-gons with
different n’s and still impose the edge-to-edge condition and the vertex transitivity
condition. This way one obtains the Archimidean or semi-regular tesselations.
Recall that there exist three regular tessellations of the plane, denoted 44, 36 and
63, see Figure 19 or Figure 24 below. Besides these three regular tessellations, there
are 8 semi-regular tessellations of the plane, denoted 34.6, 33.42, 32.4.3.4, 3.4.6.4,
3.6.3.6, 3.122, 4.6.12 and 4.82. They are shown in Figure 25 below.

43
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Sqr Hex Tri Prism Cairo

MSE 0 0 4 0 6
MTR 2 0 6 3 3

Table 4. Statistically significant victory counts for machine learn-
ing datasets experiments. Best results are marked in bold.

Sqr Hex Tri Prism Cairo

MSE 42 52 31 54 31
MTR 51 53 25 39 42

Table 5. Rank sums for machine learning datasets experiments.
Best results are marked in bold.

6.2. Lattice dimensionality

Let S = (n,m, d,G,D) be a SOM of intrinsic dimension d and consider input
samples lying in a topological manifold M ⊆ Rn of dimension d′. In fact, d = 2,
i.e., plane grid, is by far the most used in practice. One-dimensional and three-
dimensional SOMs are less used because they are less oriented towards visualization.
In the work [18], the Ph.D. student analysed the relative merits of the cases d = 1,
d = 2 and d = 3 for the distinct values of the intrinsic dimension of the samples
d′. In this section, we present a summary of this work. All SOMs in this section
are built as in Example 4.3.3 employing a linear (d = 1), square (d = 2) or cubic
(d = 3) grid.

6.2.1. Lattice dimensionality: Theory. Four different theoretical analyses
were carried out:

(1) Global analysis: consider samples x1, . . . ,xM and prototypes w1, . . . ,wm.
As explained in [18, 2.2, 3.1], the SOM algorithm seeks to minimize the
following energy function,

(19) E = E(w1, . . . ,wm) =
1

M

M∑
i=1

m∑
j=1

P (i, j)

m∑
k=1

θ(j, k)||xi −wk||2,

where P (i, j) was defined in Equation (16) and θ(j, k) = e−D
2(j,j0) is a

time-independent neighbourhood function. In turn, this formula may be
decomposed, depending on the dimension d of the SOM, as follows,

E = E0 + E1 + . . .+ Ed,

where E0 = MSE is given by Equation (15) and each summand Ei for i =
1, . . . , d is non-negative and corresponds to the distance between neurons
when rearranged for intrinsic dimension i. So E0 = MSE correspond
to the discrete “metric” ρ on the neurons {1, . . . ,m} and to a purely
competitive network, where

ρ(x, y) =

{
0 if x = y,

∞ if x 6= y,
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be chosen if possible, see Subsection 6.2.1(3). Emergence of complex pat-
terns in the neuron density function of two-dimensional SOM has been
discovered, see Figure [18, Figure 4].

• Experiments with real data indicate that competitive learning and one-
dimensional topologies are the best SOMs overall, not only with respect
to MSE but also to topological map quality. These results agree with the
theory developed in Section 6.2.1.

From the above considerations, it can be said that one and three-dimensional
SOMs are heavily underutilized, since they clearly outperform the standard two-
dimensional SOM in many respects.

6.3. Forbidden regions

Recall that in the standard SOM, the value of the prototypes in the input
space are updated following straight segments, see Equation (10). In the work [19],
the Ph.D. student introduced an alternative SOM for which the prototypes are
updated according to a forbidden region procedure. This means, in particular, that
the straight segment is substituted by a piecewise linear path. In this section, we
give a brief account of this work, and we refer the reader to the work [19] for full
details.

6.3.1. Forbidden Region Avoidance. Let B be a collection of pairwise dis-
joint convex polyhedral sets B1, . . . , BN that lie in the space Rn. Each set Bi ⊂ Rn
is termed a barrier and it is the convex hull of a set of points in Rn,

Bi = Conv(pi,1, . . . ,pi,ni) =
{ ni∑
j=1

αjpi,j |∀j, αj ≥ 0, and

ni∑
j=1

αj = 1
}
,

where Conv stands for the convex hull of a set of points in Rn.
In this setting, and given two points a and b of Rn that lie outside the barriers

B, the aim is to compute the shortest path that joins a to b and that avoids all
barriers. Under the further condition that n = 2, i.e., that the ambient space is
two dimensional, it is well known that the solution is a piece-wise linear path with
breaking points only in extreme points of barriers [14, Lemma 15.1]. Moreover, this
path may be found via the visibility graph and Dijsktra’s algorithm as we explain
below [14, Section 15.1].

The vertices of the visibility graph V are the extreme points of all barriers,⋃N
i=1{pi,1, . . . ,pi,ni}, and V has an edge between two vertices if they are visible

to each other, i.e., if the straight segment between them does not collide with the
barriers. Here, moving along the boundaries of the barriers is allowed and the
weight of the edge is the Euclidean distance between the vertices. Once the graph
is constructed, Dijsktra’s algorithm provides the shortest distance dV(p,q) between
any pair of vertices p and q of V. Thus, given the points a,b ∈ R2, the optimum
path is recovered as follows:

(i) Determine the vertices {p1, . . . ,pna} of G that are visible from a.
(ii) Determine the vertices {q1, . . . ,qnb} of G that are visible from b.
(iii) The shortest path and the shortest distance dG(a,b) are found by optimizing

(20) mini,j(d(a,pi) + dV(pi,qj) + d(qj , b)),

where d is the Euclidean distance in R2.



CHAPTER 7

Conclusions

This work is a summary of the works developed by the Ph.D. student during
the last five years. The results have been published in the form of three papers
([38], [18], [19]) and all of them have to do with a type of artificial neuronal
network (ANN) known as self-organizing map (SOM). The focus has been placed
on mathematical analysis of SOMs and on mathematically based variants of these
networks. Experiments and statistical analysis has been carried out to tell apart
significant improvements among the models tested.

In the report, a short account of these works may be found in Chapter 6.
Before that, a general discussion about ANNs and an extended description of SOMs
forms the contents of Chapter 4. As motivation and prelude to Chapter 6, in
Chapter 5, some aspects of SOMs related to mathematical continuity, mathematical
tessellations and the distance function were discussed. We divide this chapter into
a compilation of the conclusions of each work and global conclusions.

7.1. Individual conclusions

The particular conclusion for each of the works are reproduced verbatim below.
From [38, Conclusions]:

Three alternative grid topologies for self-organizing maps have
been proposed. Their choice has been guided by symmetry and
vector quantization performance considerations rooted in the geo-
metrical theory of tessellations. A theory of the grid energy of a
self-organizing map topology and a parametric measure of its qual-
ity have been developed to account for the performance differences
among topologies. Experiments have been carried out over unsu-
pervised clustering and classification applications to compare them
to the classical topologies used in the literature. Several quantita-
tive performance measures have been obtained, and the statistical
significance of the results has been computed. The experimental
results are in accordance with the developed theory, which indi-
cates that the proposed topologies are suitable in a wide range of
situations. In particular, it has been found that Cairo and trian-
gular topologies allow for a closer adaptation to the input dataset,
which makes them adequate for many applications. The other al-
ternatives are preferable in the cases where maintaining the map
in an ordered state is more important than quantization error min-
imization.

From [18, Conclusions]:
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Three alternative grid topologies for self-organizing maps have
been examined. A theoretical study of them has been carried out
from several points of view. Experiments have been carried out
over synthetic and real data to compare them. Several quanti-
tative performance measures have been chosen to this end, and
the statistical significance of the results has been computed. The
results and the further discussion indicate that the 1D and 3D
topologies are well suited to many datasets. This indicates that
there is room to improve SOM-based systems by employing these
relatively uncommon topologies.

From [19, Conclusion]

In this paper, we have proposed FRSOM, a variant of SOM whose
prototypes avoid prescribed forbidden regions. To the best of our
knowledge, the FRSOM is the first SOM which is designed to avoid
prespecified forbidden regions. The proposed learning algorithm
for the FRSOM is guaranteed to keep all prototypes outside of
the forbidden regions, while it still learns a topological map of the
input distribution like the SOM. Therefore, all prototypes lie in
meaningful regions of the input space. Unsupervised clustering ex-
periments have been carried out on two kinds of data for SOM, FR-
SOM, SOMN, and ViSOM. The results show that, with statistical
significance, FRSOM is more reliable and suitable in many situa-
tions, especially when the forbidden regions have a strong impact
on the MSE. The advantage of the FRSOM is not only observed
in the vector quantization performance, as measured by the MSE,
but also in the quality of the learned topological maps, since the
FRSOM produces less topological errors. Furthermore, FRSOM is
essential in applications where the prototypes are required to lie
outside some prescribed regions. The novelty of FRSOM opens
several lines of future research, including application of the forbid-
den region approach to other well-known variants of SOM as the
growing neural gas or the growing hierarchical SOM, further exper-
iments in order to sharpen suitable situations for FRSOM, closer
analysis of the relationship between forbidden regions and MSE as
well as the development of an algorithm to automatically generate
barriers for a given data set, and generalization of the forbidden
region problem and of FRSOM to higher dimensions. The same re-
gion avoidance procedures that are presented in this paper can be
employed for unsupervised competitive learning neural networks.
In particular, any unsupervised learning network whose prototypes
are updated to a linear combination of the old prototype and the
current input vector, is suitable to employ the region avoidance
scheme presented here. These extensions are left as future works.

7.2. Global conclusions

Assume we are studying samples that lie on a topological manifold M ⊆ Rn
of some unknown dimension d′. Some of the aims of machine learning algorithms
that examine these data are:
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(a) Appropriate clustering of the data.
(b) Discovery of the unknown dimension d′.

Let S = (n,m, d,G, D) be a SOM as introduced in Definition 4.3.1. If employing
such a SOM to analyze the given data, we may conclude from the works described
here, [38], [18], [19], that:

(A) Regarding (a), recall that the quality of the clustering is usually assessed
either by the Mean Squared Error or some measure of Topology Preser-
vation. Such quality may be improved by either using alternative grids
to the standard ones or by modifying the SOM algorithm as to avoid
(forbidden) regions that do not contribute significantly to the MSE.

(B) As expected, the internal dimension d that obtains the best results in
terms of MSE is equal to the dimension of the data, d = d′. In general,
low internal dimension d will produce better MSE results and high internal
dimension d will yield better grasping of the data structure. This fact is
partially due to that lower values for d generate stronger bonds to local
minima of MSE.

Regarding topology preservation, we may deduce from earlier chapters that:

(C) Qualitatively, topology preservation in SOMs seems not to be settled,
i.e., there is no accepted precise definition of what topology preservation
should mean. On the contrary, from a quantitative point of view, there
are several good measures of topology preservation for SOMs

From a more general perspective, we draw the following conclusions:

(D) By modifying the elements d, G and D of the SOM S as well as the SOM
algorithm, there is still room to obtain improvements in terms of MSE
and topology preservation.

(E) There is not enough understanding of the behaviour of the SOM concern-
ing the input distribution of samples, either locally or globally, in terms,
for instance, of the input density of the samples and the output density
of the neurons.

Next, we enumerate some topics that emanate from this document and that would
be worth it pursuing in the future:

• Given a data cloud and a fixed number of neurons, compare the global
minimum for MSE with the typical values of MSE produced by SOM
algorithms (or other algorithms). Given the magnitude of the space of
solutions, it is not clear whether the global minimum can be calculated
except for highly symmetrical layouts or small size problems.

• Starting from the closed formula for the final positions of the neurons,
study the behaviour of neuron densities in a theoretical way and compare
it to the existing results in the bibliography. Several variables calculus
could be utilized to find a theoretical answer for the optimal parameters,
which should also be compared to prior results.

• As commented in 35, it would be exciting to study the topology preser-
vation issue under the framework of (finite) topologies on the finite set of
neurons, i.e., pre-orders.

• Regarding tessellations (see 5.2.1,6.1 and C), there is a huge territory to
explore, as tessellations of hyperbolic spaces or spheres, non-orientable
spaces as the projective plane, etc. As we have already seen, switching
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to a non-standard grid may result in an improvement of the SOM effi-
ciency, and it would stimulating to consider grids immersed in alternative
topological spaces.

• Regarding topology preservation, try to export the qualitative measures
of topology preservation in SOMs to the formal setup of mathematics.

The developments contained in this report are a contribution to some mathe-
matical aspects and mathematical alternatives to the classical SOM algorithm. As
aforementioned, there exist an enormous amount of papers on this subject and the
trend seems to keep going. Besides, the coming of Big Data and its need for analysis
through neural networks will likely maintain SOM research at a high level. It is
interesting to wonder whether there exist an upper limit for the efficiency of SOMs
in terms, for instance, of MSE, and how to attain such limit through modifications
of the algorithm. On the other hand, it is also intriguing to be unaware of the next
“generation” of neuronal networks and in which way will they be or not based on
particular aspects of biological systems.
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[18] A. Dı́az Ramos, E. López-Rubio and E. J. Palomo, The role of the lattice dimensionality in

the self-organizing map, Neural Network World, Volume 28, 2018, p. 57–86.
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APPENDIX A

Topology

Here we give a brief account on basic notions about topology, for more details
see [9] and [45].

Definition A.0.1. A topological space is a pair (X, τ) such that X is a set and
τ is a collection of subsets of X satisfying the following properties:

(1) ∅, X ∈ τ ,
(2) arbitrary union of elements from τ belongs to τ , and
(3) finite intersection of elements from τ belongs to τ .

The subsets in the collection τ are said to be open (in X) and τ is called a topology
on X.

Example A.0.2. Let X be a set and let τ be the collection of all subsets of
X, then (X, τ) is a topological space and τ is termed the discrete topology on X.

Note that if (X, τ) is a topological space and the singleton {x} belongs to τ for
all x ∈ X, then τ is the discrete topology by (ii) in Definition A.0.1. If Y ⊂ X is a
subset of X and τ is a topology on X, we may define a topology on Y as follows.

Definition A.0.3. Let (X, τ) be a topological space and let Y ⊆ X. The
subspace or inherited topology τY on Y is given by the following collection of
subsets of Y ,

τY = {U ∩ Y , U ∈ τ}.

Next, we introduce the notion of continuous map between topological spaces.

Definition A.0.4. Let (X, τ) and (Y, σ) be topological spaces. A map f : X →
Y is said to be continuous if

f−1(V ) ∈ τ for all V ∈ σ.

Below we define closed subsets, and then characterize continuity in terms of
this kind of subsets.

Definition A.0.5. Let τ be a topology on the set X. Then U ⊆ X is closed
if X \ U is open. If A ⊆ X is an arbitrary subset of X, then:

(1) its closure, denoted cl(A), is the smallest closed subset of X containing
A.

(2) its interior, denoted int(A), is the largest subset of A which is open in X.

Proposition A.0.6. Let (X, τ) and (Y, σ) be topological spaces and let f : X →
Y be a map. Then f is continuous if and only if

f−1(C) ⊆ X is closed in X for all C ⊆ Y closed in Y .
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Proposition A.0.7. Let (X, τ) and (Y, σ) be topological spaces and let f : X →
Y be a map. Then f is continuous if and only if

f(clX(A)) ⊆ clY (f(A)) for all A ⊆ X,
where clX and clY denote the closure operators in X and Y respectively.

Definition A.0.8. Let (X, τ) and (Y, σ) be topological spaces and let f : X →
Y be a map. We say that f is a homeomorphism, and that (X, τ) and (Y, σ) are
homeomorphic, if f is a bijection and both f and f−1 are continuous.

Metric spaces are a particular case of topological spaces.

Definition A.0.9. A metric space is a set X endowed with a map

ρ : : X ×X → R ∪ {∞}
satisfying the following properties,

(1) ρ(x, y) ≥ 0 for all x, y ∈ X,
(2) ρ(x, y) = 0 if and only if x = y, for all x, y ∈ X,
(3) ρ(x, y) = ρ(y, x) for all x, y ∈ X, and
(4) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z,∈ X.

The map ρ is called a metric on X, and the non-negative real number ρ(x, y) is
called the distance between the points x and y of X.

Example A.0.10. Let X be a set. The discrete metric on X is the metric ρ
defined by

ρ(x, y) =

{
0 if x = y,

1 if x 6= y.

If (X, ρ) is a metric space, then the collection τρ of all subsets which are union
of sets of the form

Bε(x) = {y ∈ X|ρ(x, y) < ε},
where x ∈ X, ε > 0, is a topology on X, called the metric topology. The subset
Bε(x) is the open ball of radius ε and centre x.

Remark A.0.11. It is easy to see that the metric topology on any finite set X
is the discrete topology.

Continuity between metric spaces can be characterized in terms of limits of
converging sequences.

Proposition A.0.12. Let (X, ρX) and (Y, ρY ) be metric spaces and let f : X →
Y be a map. Then f is continuous for the metric topologies if and only if

{xn}n∈N converges to x0 ∈ X ⇒ {f(xn)}n∈N converges to f(x0) ∈ Y.
To finish this section, we introduce isometries, which are, roughly speaking,

homeomorphisms between metric spaces that preserve the distances.

Definition A.0.13. Let (X, ρX) and (Y, ρY ) be metric spaces and let f : X →
Y be a map. We say that f is an isometry if

ρX(x, x′) = ρY (f(x), f(x′)) for all x, x′ ∈ X.

We say that (X, ρX) and (Y, ρY ) are isometric if there exists a bijective isometry
between them.

It is easy to prove that isometric metric spaces are homeomorphic spaces.



APPENDIX B

Probability and Statistics

Further details on the concepts introduced in this chapter may be found in the
books [63] and [51].

Definition B.0.1. A probability space is a triple (Ω,Σ, µ) such that Ω is a set
(the set of “events”), Σ is a collection of subsets of Ω and µ : Σ → R is a map
satisfying the following properties,

(1) Σ is a σ-algebra, i.e., it satisfies,
(a) Ω in Σ,
(b) Σ is closed under complements, i.e., U ∈ Σ⇒ Ω \ U ∈ Σ, and
(c) Σ is closed under countable unions, i.e.,

Un ∈ Σ for n ∈ N⇒
⋃
n∈N

Un ∈ Σ.

(2) µ is a probability measure, i.e., it satisfies the following properties,
(a) µ(U) ≥ 0 for all U ∈ Σ,
(b) µ(Ω) = 1,
(c) µ is countable additive, i.e., if {Un}n∈N are mutually disjoint subsets

of Σ, then

µ(
⋃
n∈N

Un) =

∞∑
n=1

µ(Un).

The pair (Ω,Σ) is called a measurable space. To define random variable, we re-
strict ourselves to real-valued random variables, i.e., we choose as target measurable
space the pair (R,ΣR), where ΣR is the Borel σ-algebra on R.

Definition B.0.2. Let (Ω,Σ, µ) be a probability space. A random variable is
a measurable map X : Ω→ R, i.e., a map that satisfies that

X−1((−∞, x]) = {w ∈ Ω|X(w) ≤ x} ∈ Ω for all x ∈ R.

The distribution function of the random variable X is the function FX : R→ [0, 1]
given by

FX(x) = µ(X−1((−∞, x]))

and the probability measure of the random variable X is

PX(A) = µ(X−1(A)) for any Borel set A ⊆ R.

Note that, by Proposition A.0.6, continuous maps are random variables. We
will omit the subindex X and write F (x) and P (A) instead of FX(x) and PX(A)
whenever the random variable under study is clear from the context.
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B.1. Test of Hypotheses

Along this section, we consider a fixed probability space (Ω,Σ, µ). In the ap-
plication to SOMs, Ω consists of all possible outcomes (either final positions of
neurons or MSEs) of a concrete SOM algorithm with fixed parameters acting on a
fixed dataset and µ models the probability of the different outcomes.

Definition B.1.1. For a collection of independent identically distributed ran-
dom variables X1, . . . , Xn, Xi : Ω → R, with common distribution F = FXi , we
write iid random variables. Typically, this distribution will depend on one or more
parameters, F = Fθ = F (x; θ), θ ∈ Θ ⊆ Rp.

Note that X1×. . .×Xn : Ωn → Rn is a measurable map. We denote the induced
probability measure on Rn by PX1,...,Xn and recall that the (joint) distribution on
Rn is

FX1,...,Xn(x1, . . . , xn) = F (x1) · . . . · F (xn).

So the value PX1,...,Xn(x1, . . . , xn) is the probability of obtaining the random
sample (x1, . . . , xn). Next, we briefly discuss one population Test of Hypotheses.
Later we will list common hypotheses tests for one and various populations/samples.
So let X1, . . . , Xn be iid random variables with common distribution F = Fθ, θ ∈ Θ.
Then consider a random sample (x1, . . . , xn) obtained for a particular value of the
parameter θ ∈ Θ. We use Test of Hypotheses to ascertain whether the value of
the parameter belongs to a particular subset of Θ. So write Θ = Θ0 ∪ Θ1 with
Θ0 ∩Θ1 = ∅ and the two hypotheses:

H0 (null hypothesis) : θ ∈ Θ0,

H1 (alternative hypothesis) : θ ∈ Θ1.

Definition B.1.2. A test statistic is a random variable T : Rn → R and a
critical region is a subset C ⊆ R.

We reject the hypothesis H0 if T (x1, . . . , xn) ∈ C and we do not reject the
hypothesis H0 if T (x1, . . . , xn) /∈ C. A Type I error consists of rejecting the hy-
pothesis H0 when it is true, i.e., when θ ∈ Θ0. A Type II error consists of not
rejecting the null hypothesis when it is false, i.e., when θ ∈ Θ1. Typically, critical
regions are parametrized by the so-called significance level.

Definition B.1.3. We call a value α ∈ (0, 1) significance level, and we assume
that there exists a critical region Cα for each such value. Moreover, these subsets
must satisfy the following,

α ≤ α′ ⇒ Cα ⊆ Cα′ .
We only consider test statistics that comply with the Neyman-Pearson frame-

work [51, Definition 4.9], i.e., with Equation (23) below. Notice that, in that
Equation and in the definition of power in Definition B.1.4, the dependence on θ is
through the random variable T .

Definition B.1.4. Let T be a test statistic and {Cα}α∈(0,1) a family of critical
regions. We assume that T satisfies the following condition

(23) sup
θ∈Θ0

PT (Cα) ≤ α.

For such a test statistic T , we define its power as the following function on θ ∈ Θ1,

powerT (θ) = PT (Cα), θ ∈ Θ1.
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This means, on the one hand, that the probability of Type I Error is smaller
than α for any α ∈ (0, 1). On the other hand, 1 − power(θ) gives the probability
of Type II Error, so we want to maximize the power. Recall that, in the earlier
definition, we may unfold PT as follows,

PT (Cα) = PX1,...,Xn({(x1, . . . , xn) ∈ Rn|T (x1, . . . , xn) ∈ Cα}).

Next, we define the p-value of a sample.

Definition B.1.5. Let (x1, . . . , xn) a random sample of the iid random vari-
ables X1, . . . , Xn with common distribution function F = Fθ. The p-value of the
sample is defined as

p(x1, . . . , xn) = inf{α ∈ (0, 1)|T (x1, . . . , xn) ∈ Cα}.

So the p-value of the sample if the smallest significance level for which, given
that sample, we would reject the null hypothesis H0. In particular, because of
Equation 23, if the p-value is z, the probability of making a Type I Error is at
most z. Figure 36 contains a summary of the notions introduced in this section.
Common ways of defining critical regions for significance level α are

Cα = {t ∈ R|t ≥ t1−α} or Cα = {t ∈ R|t ≤ tα},

where tβ is the β-quantile for the distribution FT of T , i.e.,

FT (tβ) = PT ((−∞, tβ ]) = β.

R

Θ0

Θ1

T (x1, . . . , xn)

Cα Cα0

θ0

θ1

P (Cα) ≤ α

power(θ1)

p(x1, . . . , xn) = α0

Type I Error

Type II Error

Figure 36. Diagram summarizing Test of Hypotheses.
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B.2. Common test statistics

In this section, we sum up the test statistics employed in Chapter 6, see [58]
for more details. Some common procedures for post-hoc analysis after one of these
tests are given in Subsection B.2.5.

Test Parametric Populations Type of samples
1-way ANOVA,B.2.1 Yes (normal distribution) ≥ 2 Independent
2-way ANOVA,B.2.2 Yes (normal distribution) ≥ 2 Dependent
Kruskall-Wallis,B.2.3 No ≥ 2 Independent

Friedman,B.2.4 No ≥ 2 Dependent

B.2.1. One-way ANOVA test, [58, Test 21]. Hypothesis evaluated with
test: In a set of k independent samples (where k ≥ 2), do at least two of the
samples represent populations with different mean values? If we designate by θi
the mean of the i-th population, then the hypotheses are,

H0 (null hypothesis) : θ1 = θ2 = . . . = θk,

H1 (alternative hypothesis) : ∃1 ≤ i, j ≤ k|θi 6= θj .

Procedure: let {xij}1≤i≤n,1≤j≤k be the data,

(1) Compute xj =
∑n
i=1 xij
n for each 1 ≤ j ≤ k, and xT =

∑n
j=1 xj

nk .

(2) Compute SSBG = n
∑k
j=1(xj − xT )2 and MMBG = SSBG

k−1 .

(3) Compute SSWG =
∑k
j=1

∑n
i=1(xij − xj)2 and MMWG = SSWG

nk−k .

(4) The following test statistic T follows a Fischer distribution with parame-
ters k − 1 and nk − k, F = F (k − 1, nk − k),

T =
MMBG

MMWG
.

We reject H0 at level of significance α if

F (α) ≤ T (xij),

where F (α) is the quantile defined by P (F ≥ F (α)) = α. The p-value is
given by

p(xij) = P (F ≥ T (xij)).

In the next figure, we represent some Fischer distributions.
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Figure 37. Fischer probability density function for several parameters.

B.2.2. Two-way ANOVA test, [58, Test 24]. Hypothesis evaluated with
test: In a set of k dependent samples (where k ≥ 2) from normal distributions, do
at least two of the samples represent populations with different mean values? If we
designate by θi the mean of the i-th population, then the hypotheses are,

H0 (null hypothesis) : θ1 = θ2 = . . . = θk,

H1 (alternative hypothesis) : ∃1 ≤ i, j ≤ k|θi 6= θj .

Procedure: let {xij}1≤i≤n,1≤j≤k be the data,

(1) Compute xj =
∑n
i=1 xij
n , xi =

∑k
j=1 xij

k and xT =
∑n
j=1 xj

nk .

(2) Compute SSBC = n
∑k
j=1(xj − xT )2 and MMBC = SSBC

k−1 .

(3) Compute SSres =
∑k
j=1

∑n
i=1

(
(xij − xT )− (xi − xT )− (xj − xT )

)2
and

MMres = SSres
(n−1)(k−1) .

(4) The following test statistic T follows a Fischer distribution with parame-
ters k − 1 and (n− 1)(k − 1), F = F (k − 1, (n− 1)(k − 1)),

T =
MMBC

MMres
.

We reject H0 at level of significance α if

F (α) ≤ T (xij),

where F (α) is the quantile defined by P (F ≥ F (α)) = α. The p-value is
given by

p(xij) = P (F ≥ T (xij)).

B.2.3. Kruskal-Wallis test, [36], [58, Test 22]. Hypothesis evaluated with
test: In a set of k independent samples (where k ≥ 2) from normal distributions,
do at least two of the samples represent populations with different median values?
If we designate by θi the median of the i-th population, then the hypotheses are,

H0 (null hypothesis) : θ1 = θ2 = . . . = θk,

H1 (alternative hypothesis) : ∃1 ≤ i, j ≤ k|θi 6= θj .

Procedure: let {xij}1≤i≤n,1≤j≤k be the data,
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(1) Compute the matrix {rij}1i≤n,1≤j≤k, where rij is the rank of xij within
all data, i.e, within {xij}1≤i≤n,1≤j≤k.

(2) Compute rj =
∑n
i=1 rij
n for 1 ≤ j ≤ k.

(3) Compute the Kruskal-Wallis test statistic:

T (xij) =
12

nk(nk + 1)

k∑
j=1

nr2
j − 3(nk + 1).

(4) The test statistic T is approximately a chi-square distribution with k − 1
degrees of freedom (for n > 5). We reject H0 at level of significance α if

χ2
k−1(α) ≤ T (xij),

where χ2
k−1(α) is the quantile defined by P (χ2

k−1 ≥ χ2
k−1(α)) = α. The

p-value is given by

p(xij) = P (χ2
k−1 ≥ T (xij)).

The next figure represents some χ2 distributions.

Figure 38. Chi-square probability density function for 1, 2 and
3 degrees of freedom.

B.2.4. Friedman test, [22], [58, Test 25]. Hypothesis evaluated with test: In
a set of k dependent samples (where k ≥ 2), do at least two of the samples represent
populations with different median values? If we designate by θi the median of the
i-th population, then the hypotheses are,

H0 (null hypothesis) : θ1 = θ2 = . . . = θk,

H1 (alternative hypothesis) : ∃1 ≤ i, j ≤ k|θi 6= θj .

Procedure: let {xij}1≤i≤n,1≤j≤k be the data,

(1) Compute the matrix {rij}1i≤n,1≤j≤k, where rij is the rank of xij within
{xij}1≤j≤k.

(2) Compute rj =
∑n
i=1 rij
n for 1 ≤ j ≤ k.
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(3) Compute the Friedman test statistic:

T (xij) =
12

nk(k + 1)

k∑
j=1

r2
j − 3n(k + 1).

(4) The test statistic T is approximately a chi-square distribution with k − 1
degrees of freedom (for n > 15 or k > 4). We reject H0 at level of
significance α if

χ2
k−1(α) ≤ T (xij),

where χ2
k−1(α) is the quantile defined by P (χ2

k−1 ≥ χ2
k−1(α)) = α. The

p-value is given by

p(xij) = P (χ2
k−1 ≥ T (xij)).

B.2.5. Post-hoc analysis. For any of the tests above, if the null hypothesis
is rejected, we infer that not all the means (medians) are equal. To find out which
population’s means (medians) are different, one can proceed comparing each pair
of populations. This increases the probability of producing a Type I Error. More
precisely, denote by αO the overall probability of producing a Type I Error and by
α the probability of producing a Type I Error in one of the c pairwise comparisons.
Then we have,

αO = 1− (1− α)c.

To cope with this disparity between αO and α there exists several procedures.
Below we briefly comment on the Dunn-Sidak and the Bonferroni-Dunn tests, see
[58, Test 21.VI] for more details on post-hoc tests.

The Dunn-Sidak correction consists of solving α in the above equation, given
the overall wished level of significance αO,

α = 1− (1− αO)
1
c .

According to the Bonferroni-Dunn test, and because of the approximation

αO = 1− (1− α)c ≈ cα,
we take α = αO/c, if αO is the overall wished level of significance and c is the
number of pairwise comparisons to be carried out. The test statistic employed in
each pairwise comparison is also modified. For more details, see [58, Test 21b] for
one-way ANOVA test, [58, Test 24b] for two-way ANOVA test, [58, Test 22.VI.2]
for Kruskall-Wallis test and [58, Test 25.VI.2] for Friedman test.





APPENDIX C

Tessellations

In this section, we succinctly describe the basic notions about tessellations or
tilings, for more details see [24] or [25]. We define these notions for a general metric
space (X, ρ), see Definition A.0.9.

Definition C.0.1. Let (X, ρ) be a metric space. A tessellation of (X, ρ) is
a countable family of closed sets {T1, T2, . . .}, called tiles, which cover X without
gaps or overlaps, more precisely:

(1) X = ∪i∈NTi, and
(2) int(Ti) ∩ int(Tj) = ∅ for i 6= j.

Recall that int stands for the interior of a subset, see Definition A.0.5. Next,
we restrict to two-dimensional tessellations and, in addition, we restrict the kind of
tiles that are allowed. By n-gon, we mean a regular convex polygon in the plane
that has n edges, see Figure 39.

(a) 3-gon (b) 4-gon (c) 5-gon

Figure 39. Some n-gons. Source: Wikipedia

Definition C.0.2. Let {Ti}i∈N a tessellation of the metric space (X, ρ). As-
sume each tile is isometric to one of finitely many fixed n-gons. We say that the
tessellations if edge to edge is for every pair of tiles, Ti, Tj , with i 6= j, one of the
following holds:

(1) Ti ∩ Tj = ∅, or
(2) Ti ∩ Tj is a common vertex of Ti and Tj , or
(3) Ti ∩ Tj is a common edge of Ti and Tj .

The vertices in (2) and the edges in (3) are called vertices and edges of the tessel-
lation.

Recall that the definition of isometric spaces was given in Definition A.0.13.
The simplest kind of tesselation has only one isometry type of tile, as defined
below.
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Definition C.0.3. Let {Ti}i∈N an edge to edge tessellation of the metric space
(X, ρ). We say that the tessellation is monohedral if every tile is isometric to a
fixed n-gon of the plane R2.

For edge to edge tessellations, we may define symmetries of the tessellation.

Definition C.0.4. Let {Ti}i∈N an edge to edge tessellation of the metric space
(X, ρ). A symmetry of the tessellation is an isometry of (X, ρ) that takes vertices
to vertices and edges to edges.

Another point of view to classify tessellations is to look at the orbits of the
vertices of the tessellations under the action of its symmetries. The simplest case
is one orbit, as defined next.

Definition C.0.5. Let {Ti}i∈N an edge to edge tessellation of the metric space
(X, ρ). We say that the tessellation is vertex transitive if for every two vertices of
the tessellation, there exists a symmetry of the tessellation that takes one vertex
to the other.

A vertex transitive tessellation may be described by writing down the number of
edges of the polygons around any fixed vertex, in consecutive order. For instance,
4.4.4.4 is a tessellation with four squares around every vertex. For brevity, we
shorten this notation when possible, as in 44. In earlier chapters, we only discuss
edge to edge, vertex transitive tesselations, and below we give a name to this kind
of tessellations.

Definition C.0.6. Let {Ti}i∈N a tessellation of the metric space (X, ρ). We
say that the tessellations is,

(1) regular if it is edge to edge, vertex transitive and monohedral.
(2) semi-regular or Archimedean if it is edge to edge and vertex transitive.

For the plane R2 (with the Euclidean distance), the regular tesselations are
shown in Figure 24, and the semi-regular tessellations in Figure 25. For complete-
ness, in Figure 40, we show non edge to edge and non vertex transitive tessellations
of the plane.

(a) An edge to edge non vertex transitive
tessellation.

(b) A non edge to edge tessellation.

Figure 40. Some tessellations that are not regular nor semi-
regular. Source: [24, Figures 4 and 11].
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