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Abstract. The aim of this study is to systematically examine the per-
formance of transformer-based models for the detection of tumor mor-
phology mentions in clinical documents in Spanish. For this purpose, we
analyzed 3 transformer models supporting the Spanish language, namely
multilingual BERT, BETO and XLM-RoBERTa. By means of a transfer-
learning-based approach, the models were first pretrained on a collection
of real-world oncology clinical cases with the goal of adapting trans-
formers to the distinctive features of the Spanish oncology domain. The
resulting models were further fine-tuned on the Cantemist-NER task,
addressing the detection of tumor morphology mentions as a multi-class
sequence-labeling problem. To evaluate the effectiveness of the proposed
approach, we compared the obtained results by the domain-specific ver-
sion of the examined transformers with the performance achieved by the
general-domain version of the models. The results obtained in this pa-
per empirically demonstrated that, for every analyzed transformer, the
clinical version outperformed the corresponding general-domain model
on the detection of tumor morphology mentions in clinical case reports
in Spanish. Additionally, the combination of the transfer-learning-based
approach with an ensemble strategy exploiting the predictive capabili-
ties of the distinct transformer architectures yielded the best obtained
results, achieving a precision value of 0.893, a recall of 0.887 and an
F1-score of 0.89, which remarkably surpassed the prior state-of-the-art
performance for the Cantemist-NER task.

Keywords: Transformers · Tumor morphology mentions · Natural lan-
guage processing · Deep learning · Oncology

1 Introduction

There is a significant demand for the automated analysis of the information
stored in electronic health records (EHRs) to improve patient care. EHRs con-
tain heterogeneous data whose volume is consistently growing, including free-
text documents that, using domain-specific vocabulary and terminology, store
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crucial patient information about clinical examinations, radiology reports, dis-
charge summaries, etc. [2] However, the unstructured nature of the texts makes
it particularly challenging to directly extract the relevant medical information
these documents contain. In this way, there is a pressing need to automatically
transform unstructured clinical text into structured information, which can sub-
sequently serve as support in clinical decision-making and in optimizing the
administrative management of the resources of healthcare services, improving
many aspects of clinical care [3].

According to the World Health Organization (WHO), cancer is a leading
cause of mortality worldwide, producing around 10 million deaths in 2020 [23].
Diagnosis of cancer heavily relies on the pathological examination of tumor sam-
ples obtained from biopsies. The resulting observations made by physicians are
mainly reported in pathology reports, which correspond to clinical free-text doc-
uments stored in EHRs [17]. With the widespread adoption of EHRs as an essen-
tial element in oncology information systems, automatically extracting the in-
formation contained in cancer-related EHR documents would not only facilitate
pathologists daily clinical practice, but also would permit large-scale analysis of
the relations between a concrete tumor case and its prognosis, its response to
specific treatments, and many other medical aspects [15].

Traditionally, natural language processing (NLP) techniques have been ap-
plied to clinical notes with the aim of extracting relevant medical information
from free-text documents [8, 16]. More specifically, these techniques have also
been adapted to process oncological textual data, contributing to obtain struc-
tured representations of the information stored in cancer-related documents [18,
29]. However, the majority of the previous works focus exclusively on medi-
cal texts written in English, owing to the limited availability of annotated cor-
pora and additional clinical linguistic resources written in non-English languages,
such as Spanish. With nearly 489 million native speakers, Spanish is the second
most spoken language in the world in terms of number of native speakers [25].
Given the enormous amount of clinical texts produced in hospitals from Spanish-
speaking countries around the globe, there is a considerable interest both in in-
dustry and academia to boost the application of NLP technologies to medical
documents in Spanish.

With the aim of overcoming this issue, last year the CANcer TExt MIning
Shared Task (CANTEMIST) was carried out [15], constituting the first shared
task specifically focused on the development of automatic systems for extract-
ing relevant clinical information from oncology texts in Spanish. In particular,
Cantemist explored the named entity recognition (NER) of tumor morphology
mentions in oncology documents in Spanish. The organizers publicly released
the Cantemist corpus, a collection of 1301 oncological clinical case reports man-
ually annotated with mentions of tumor morphology. Additionally, the tumor
morphology mentions were mapped to a standardized coding vocabulary, specif-
ically the CIE-O—which is the Spanish equivalent of the ICD-O (International
Classification of Diseases for Oncology). Within the Cantemist track, three dif-
ferent shared subtasks were proposed: Cantemist-NER, Cantemist-NORM and
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Cantemist-CODING. Thus, given a free-text oncology document, the Cantemist-
NER task consisted in automatically detecting the tumor morphology mentions
contained in the text, whereas the Cantemist-NORM task additionally required
assigning the corresponding CIE-O codes to the identified mentions. For its part,
the Cantemist-CODING task consisted in assigning a ranked list of CIE-O codes
to each text in the Cantemist corpus.

In this work, we have tackled the problem of automatically detecting tu-
mor morphology mentions in oncology cases written in Spanish. For this pur-
pose, we adapted several transformer-based models to the distinctive features
of the Spanish oncology domain. By means of a transfer-learning (TL) ap-
proach, the models were firstly pretrained on a private collection of real-world
oncology clinical cases written in Spanish. The resulting models were further
fine-tuned on the Cantemist-NER subtask, addressing the problem as a multi-
class sequence-labeling task. Although previous preliminary works have applied
BERT-based models to the problem of identifying tumor morphology men-
tions in clinical documents in Spanish [7, 27], to the best of our knowledge
this is the first study that systematically analyzes the performance of differ-
ent transformer-based architectures for the problem of tumor morphology men-
tions detection using medical texts in Spanish. Following the proposed TL-
based strategy, the transformers analyzed in this work achieved new state-of-
the-art (SOTA) performance on the Cantemist-NER subtask. For reproducibil-
ity purposes, all the code needed to replicate our work is publicly available at
https://github.com/guilopgar/TumorMorphNER.

2 Materials and Methods

2.1 Corpora

Galén oncology corpus. We further pretrained the transformer-based models
analyzed in this study using a private corpus of de-identified oncology documents
in Spanish retrieved from the Galén Oncology Information System [20]. The cor-
pus corresponds to a compilation of 30.9K real-world clinical cases written by
oncologists from the Hospital Regional Universitario and the Hospital Universi-
tario Virgen de la Victoria in Málaga, Spain, comprising a total of 64.4M words
and 437.6M characters.

Tumor morphology mentions corpus. We used the Cantemist-NER corpus
to fine-tune the models on a tumor morphology mentions detection task. The
corpus comprises 1301 oncological cases written in Spanish, which were manu-
ally annotated by clinical experts with mentions of tumor morphology [15]. The
collection of documents was split into three subsets: the training set, which con-
tains 501 documents and 6396 tumor morphology annotations, the development
set, comprising 500 clinical cases and 6001 annotations, and the test set, con-
taining 300 documents and 3633 annotations. The annotations were distributed
in BRAT standoff format [22]. Hence, for each annotated tumor morphology,
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its mention string, its start character offset and its end character offset were
provided (see Fig. 1).

La semiología descrita conjuntamente con la radiología planteaban el

diagnóstico diferencial entre

hepatocarcinoma multifocal sobre hígado sano,

tumor germinal extragonadal hepático y metástasis endovesiculares frente

a metástasis hepáticas y endovesiculares sugestivos de melanoma por la

hipervascularización.

» Ante dichos hallazgos se realiza una PET-TC para estadificación y

búsqueda de un tumor primario, destacando la lesión tumoral sólida

hipermetabólica endovesicular, que se extiende hasta el hilio hepático y el

surco pancreatoduodenal y múltiples lesiones hepáticas hipermetabólicas,

siendo difícil la valoración del tumor primario, aunque dada la ausencia de

dilatación de la vía biliar y pancreática se orienta hacia un probable origen

vesicular como primera opción (menos probablemente del tipo

colangiocarcinoma o duodenal) y probables metástasis hepáticas.

Fig. 1. Illustration of the tumor morphology annotations from the Cantemist-NER
corpus distributed in BRAT format [22], using the cc onco93 clinical document from
the Cantemist-NER development subset.

2.2 Transformer-based models

In the last years, contextual embeddings have emerged as a new family of models
capable of creating a numerical representation of a word by considering the
particular context where the word occurs within the text. Among these new
context-aware language models, the Transformer [24] has undoubtedly stood
out as the new deep learning SOTA architecture in the field of NLP. BERT [6],
RoBERTa [13] and XLM-R [5] are examples of transformer-based models that
have become the new SOTA for question answering, text summarization or NER
tasks, also in the field of clinical NLP [21, 1, 28]. One of the main characteristics
of the Transformer architecture is the self-attention mechanism it uses, which
allows the model to parallelize a large part of the network architecture, increasing
computing efficiency. Additionally, another distinctive feature of transformer-
based models is that they can be pretrained on a general domain corpus and
further fine-tuned on a domain-specific corpus to resolve a particular NLP task,
following a TL approach.

In this study, we have systematically analyzed the performance of transform-
ers on the tumor morphology mentions detection problem in oncology documents
in Spanish. For this purpose, we have examined 3 transformer-based models that
support the Spanish language, namely mBERT [6], BETO [4] and XLM-R [5]. To
the best of our knowledge, the previous 3 models are the only publicly available
transformers including Spanish among their supported languages.

– mBERT : this multilingual transformer uses the same architecture as the
BERT-Base model [6], employing a multilingual WordPiece [9] vocabulary
of ∼110K subwords. The total number of trainable parameters of the model
is ∼177M.
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– BETO : the Spanish-BERT model uses a similar architecture to the BERT-
Base model [4]. This transformer uses a Spanish vocabulary of ∼31K subto-
kens, and the total number of trainable parameters is ∼110M.

– XLM-R: the multilingual version of the RoBERTa-Base model [13] was
pretrained following a modified version of the XLM approach [12], using a
large multilingual SentencePiece [10] vocabulary of ∼250K subtokens, and
the total number of trainable parameters is ∼278M.

2.3 CRF

Conditional Random Fields (CRF) [11] have been extensively used for sequence-
labeling task, such as the tumor morphology mentions detection problem tackled
in this study. In this paper, we have used a feature-based CRF model as a
competitive baseline with the aim of comparing the performance of transformer-
based models with the results obtained by a standard machine learning (ML)
method on the Cantemist-NER task.

2.4 Transfer-learning approach for automatic tumor morphology
mentions detection

In this study, we have applied a TL approach to perform the automatic de-
tection of tumor morphology mentions in Spanish using transformers. Our TL-
based strategy consists of two consecutive phases: firstly, the domain-specific
pretraining of the transformer-based models, and then the subsequent super-
vised fine-tuning of the resulting models. In the next paragraphs, both phases
are described.

Unsupervised pretraining. The 3 transformer-based models examined in this
work were further pretrained on a collection of unlabeled real-world oncology
clinical cases. Specifically, the two BERT-based models, namely mBERT and
BETO, were pretrained on the basis of the Next Sentence Prediction (NSP)
task and the Masked Language Model (MLM) objective with the Whole-Word
Masking (WWM) modification [6]. On the other hand, the XLM-R model was
optimized using the MLM objective with the dynamic masking modification [5].

Supervised fine-tuning. In this study, we tackled the automatic detection of
tumor morphology mentions in Spanish using transformers. In this way, we ad-
dressed this supervised learning task as a multi-class sequence-labeling problem,
using the IOB2 [19] tagging scheme. Since the tumor morphology annotations
from the Cantemist-NER corpus were distributed in BRAT standoff format (see
Fig. 1), we firstly converted them into a different format compatible with the
IOB2 scheme. Thus, for each word in a document from the Cantemist-NER cor-
pus, we assigned the label “B” (“Beginning”) if it corresponded to the first word
of a tumor morphology mention, the label “I” (“Inside”) if the word was inside
an annotated mention, or the label “O” (“Outside”) if the word was not part of
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any mention. However, transformer-based models do not operate at word-level.
Instead, they further break down words into a sequence of subtokens, each model
using a specific tokenizer, e.g. XLM-R utilizes a SentecePiece tokenizer with a
vocabulary containing ∼250K subwords. In order to effectively leverage the pre-
dictive capabilities of transformers when applied to the Cantemist-NER task, we
have developed a five-phases approach that performs the supervised fine-tuning
of the transformer-based models using a sequence of subtokens annotated with
IOB2 labels as input to the models. Fig. 2 shows a visual description of the de-
veloped strategy, and each of its five stages is described in the next paragraphs.
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Fig. 2. Workflow of the five-phases strategy developed to both fine-tune and evaluate
the performance of the transformer-based models on the Cantemist-NER task. For
illustration purposes, we used a 3-words fragment of text extracted from the cc onco93
clinical case from the Cantemist-NER development corpus (see Fig. 1) as input to
the model. The WordPiece tokenizer of the mBERT model was used to generate the
subtoken sequence from the input sequence of words. Additionally, the tokenizer added
two special tokens ([CLS] and [SEP]) at the first and last positions, respectively, of
the subwords sequence, which are further ignored by the output layer of the model at
the time of prediction.

1. Subtoken-level annotations. As it was previously specified, transformers
further segment words into a sequence of subtokens. For this reason, we
converted the IOB2 word-level annotations to subtoken-level. Thus, for every
word in a document from the Cantemist-NER corpus, its associated IOB2
label was assigned to all subtokens obtained from the same word.

2. Multi-class fine-tuning. Using the resulting Cantemist-NER corpus anno-
tated with IOB2 tags at the subtoken-level, each transformer was fine-tuned
on the automatic detection of tumor morphology mentions task. To perform
the supervised fine-tuning of the whole model architecture on a multi-class
sequence-labeling problem, the output representation encoded by the model
for each subtoken was fed into a final fully-connected layer with 3 softmax
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units, representing the “I”, “O” and “B” tags, respectively, of the IOB2
scheme.

3. Subtoken-level predictions. Hence, at inference time, given an input se-
quence of subwords as input to the model, the 3-tuple predicted for each
subtoken could be interpreted as the probability of the subtoken being part
of a word “inside” a tumor morphology mention (the “I” label), the proba-
bility of the subword belonging to a word “outside” any tumor morphology
mention (the “O” label), and the probability of the subtoken being part of
the “beginning” word of a tumor morphology mention (the “B” tag), respec-
tively.

4. Word-level predictions. From the previous step, a set of IOB2 labels
probabilities predicted by the model at the subtoken-level were obtained.
However, in order to evaluate the predictive performance of the models on the
Cantemist-NER task, the models predictions had to be converted into BRAT
standoff format. Consequently, with the goal of transforming the IOB2 labels
probabilities into BRAT format, we firstly converted the predictions made on
the subtoken-level into word-level predictions. For this purpose, we applied
a maximum probability criterion to the predictions made on the sequence of
subtokens generated from each word. In this way, for the predictions made
for all subtokens obtained from a single word, the criterion consisted in
selecting, for each of the 3 IOB2 labels, the maximum predicted probability
across the corresponding subtokens.

5. Word-level tags. Subsequently, considering the word-level predictions ob-
tained from the previous step, each word was assigned the IOB2 tag pre-
dicted with the maximum probability. Then, using the IOB2 label associ-
ated to each word, the predictions made by the model were converted into
BRAT format in order to evaluate the performance of the transformer on
the Cantemist-NER task.

2.5 Experiments

We implemented our TL approach for tumor morphology mentions detection
in TensorFlow, using the transformers library developed by HuggingFace [26].
For all transformer-based models analyzed in this study, we set a maximum
input sequence length of 128 subwords. However, the majority of the clinical
cases from the Cantemist-NER corpus have a subtoken sequence length clearly
above 128 subwords. This represents a significant constraint when fine-tuning
transformers on the Cantemist-NER task, since, for most of the documents,
their whole sequence of subwords could not be used as input to the model.
To overcome this limitation, we have used the fragment-based segmentation
approach developed in [14]. In this way, each document from the Cantemist-NER
corpus was firstly split into sentences. Then, adjacent sentences were grouped
together in single fragments of text following a greedy strategy, in such a way that
the subtokens sequence length of each fragment did not surpass the maximum
input sequence length supported by the models. Finally, in order to fine-tune the
transformers on the Cantemist-NER subtask, each generated text fragment was
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annotated with IOB2 labels at the subtoken-level, as described in the previous
section. On the other hand, in the case of the feature-based CRF model, since no
input sequence length limitation is imposed by this method, for every document
in the Cantemist-NER corpus, its whole sequence of words annotated following
the IOB2 tagging scheme was used to train the model. We used the sklearn-
crfsuite3 library to implement the CRF model, using traditional text mining
features extracted from each word as input to the model, such as suffixes of 2
and 3 characters, boolean features indicating, for example, whether the word
corresponds to a digit, and several features extracting information from nearby
words. Finally, regarding the hardware resources employed, all experiments were
conducted using a single GeForce GTX 1080 Ti GPU.

3 Results

Table 1 shows the performance of the 3 transformers on the Cantemist-NER
task, as well as the performance of the baseline feature-based CRF model.
For each transformer-based model, we compared the original general-domain
version with the domain-specific version of the model adapted to the particu-
larities of the Spanish oncology domain (see Section 2.4). The official evalua-
tion metrics of the Cantemist-NER task [15]—precision, recall and F1-score—
were employed to evaluate the predictive performance of the models. For each
transformer, we fine-tuned 5 distinct randomly initialized instances. Compar-
ing the performance of the baseline model with the results obtained by the
transformer-based models, each transformer analyzed in this study significantly
outperformed the feature-based CRF model for each of the three classification
metrics described in Table 1. Among all models, mBERT-Galén, BETO-Galén
and XLM-R-Galén achieved the best performance according to each classification
metric, with the two domain-specific multilingual transformers—mBERT-Galén
and XLM-R-Galén—obtaining identical average values for each metric, namely a
mean precision of 0.867, an average recall of 0.869 and a mean F1-score of 0.868.
On its part, the BETO-Galén model also obtained the same average F1-score of
0.868, but a slightly lower average recall (0.865) and a slightly greater average
value for precision (0.872). Compared with the general-domain transformers, the
domain-specific version of the models improved the performance for the detec-
tion of tumor morphology mentions in clinical reports in Spanish. In this way, for
each transformer-based model, the clinical-domain version of the model outper-
formed the general-domain version in terms of the average values obtained for
each classification metric. Finally, when comparing the results obtained in this
study with the previously reported SOTA results, new SOTA performance was
achieved according to the maximum values of each metric. Thus, the XLM-R-
Galén model obtained a maximum precision value of 0.881, as well as a maximum
recall of 0.878, exceeding the prior SOTA performance reported by the organiz-
ers of the Cantemist-NER task for each of the former two metrics [15]. In the

3 https://sklearn-crfsuite.readthedocs.io/
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case of the F1-score, the mBERT-Galén model surpassed the previous SOTA
performance, obtaining a maximum value of 0.876.

Table 1. Models performances on the Cantemist-NER test set. The distribution of the
precision, recall and F1-score values obtained by the 5 distinct fine-tuned instances of each
model is described, by reporting the mean, standard deviation and maximum values. For
the maximum values column of every metric, the best obtained result is bolded, while the
second best is underlined.

Model
Precision Recall F1-score

Mean ± Std Max Mean ± Std Max Mean ± Std Max

Baseline-CRF - .815 - .774 - .794

mBERT .85 ± .009 .861 .854 ± .007 .862 .852 ± .004 .858

mBERT-Galén .867 ± .008 .876 .869 ± .007 .877 .868 ± .004 .876

BETO .85 ± .006 .859 .858 ± .008 .869 .854 ± .004 .856

BETO-Galén .872 ± .008 .88 .865 ± .004 .869 .868 ± .002 .87

XLM-R .846 ± .014 .861 .858 ± .006 .863 .852 ± .005 .858

XLM-R-Galén .867 ± .009 .881 .869 ± .006 .878 .868 ± .003 .874

Prior SOTA - .871 - .871 - .87

3.1 Ensemble

Additionally, we proposed an ensemble approach to combine the different IOB2
labels predictions made by the models at word-level. Hence, given a sequence of
W words, as a result of fine-tuning 5 different instances of each model, the fourth
stage of our proposed workflow for performing tumor morphology mentions de-
tection outputted 5 distinct IOB2 labels probability matrices of W×3 dimension
(see Fig. 2) for a single transformer model. To merge these matrices into a sin-
gle probability matrix, the proposed ensemble strategy consisted in performing
the element-wise product of the 5 different matrices. Furthermore, our ensemble
approach could also be employed to merge the IOB2 labels predictions made by
any number of different transformers, by plainly performing the element-wise
multiplication of all word-level IOB2 labels probability matrices obtained from
the distinct models.

Table 2 describes the performance of our developed ensemble approach ap-
plied to merge both the word-level probabilities predicted by single models as
well as the word-level predictions made by multiple distinct transformers. The
ensemble combining the word-level predictions of the 3 transformer-based mod-
els adapted to the Spanish oncology domain—mBERT-Galén + BETO-Galén +
XLM-R-Galén—achieved the best performance among all models examined in
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this work, obtaining a precision value of 0.893, a recall of 0.887 and a F1-score
of 0.89, which remarkably surpassed the prior SOTA performance according to
each classification metric.

Table 2. Ensemble models performances on the Cantemist-NER test subset, according
to the precision, recall and F1-score metrics. For each metric, the best obtained result
is bolded, while the second best is underlined.

Ensemble Precision Recall F1-score

mBERT .873 .872 .872

mBERT-Galén .885 .881 .883

BETO .876 .873 .875

BETO-Galén .883 .873 .878

XLM-R .868 .874 .871

XLM-R-Galén .887 .879 .883

mBERT + mBERT-Galén .881 .876 .879

BETO + BETO-Galén .887 .878 .882

XLM-R + XLM-R-Galén .883 .88 .882

mBERT + BETO + XLM-R .882 .876 .879

mBERT-Galén + BETO-Galén + .893 .887 .89

XLM-R-Galén

Prior SOTA .871 .871 .87

4 Conclusion

In this work, we systematically examined the performance of 3 transformer-
based models to perform the detection of tumor morphology mentions in clinical
documents in Spanish. Using a TL-based strategy, the transformers were first
adapted to the particularities of the Spanish oncology domain by pretraining
the models on a real-world corpus of oncology clinical cases written in Span-
ish. Subsequently, the resulting models were fine-tuned on the Cantemist-NER
corpus, following a multi-class sequence-labeling approach. For each analyzed
transformer, the domain-specific version outperformed the general-domain ver-
sion of the model on the Cantemist-NER task. Finally, the combination of the
TL-based approach with an ensemble strategy that exploited the predictive ca-
pacities of the 3 different transformers, yielded the best achieved results, which
noticeably improved the prior SOTA performance on the Cantemist-NER task.
In future works, given the promising results obtained in this paper, we will try to
extend the TL-based methodology to perform other downstream medical NLP
tasks in Spanish using transformers, such as the de-identification of a real-world
clinical corpus or the NER of cancer prognostic factors in medical records.
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