
Histopathological image analysis for breast cancer
diagnosis by ensembles of convolutional neural

networks and genetic algorithms
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Abstract—One of the most invasive cancer types which affect
women is breast cancer. Unfortunately, it exhibits a high mortality
rate. Automated histopathological image analysis can help to
diagnose the disease. Therefore, computer aided diagnosis by
intelligent image analysis can help in the diagnosis tasks associ-
ated with this disease. Here we propose an automated system for
histopathological image analysis that is based on deep learning
neural networks with convolutional layers. Rather than a single
network, an ensemble of them is built so as to attain higher
recognition rates, which are obtained by computing a consensus
decision from the individual networks of the ensemble. A final
step involves the optimization of the set of networks that are
included in the ensemble by a genetic algorithm. Experimental
results are provided with a set of benchmark images, with
favorable outcomes.

Index Terms—convolutional neural networks, image classifica-
tion, breast cancer, medical image processing, genetic algorithms

I. INTRODUCTION

The impact of automated digital image processing is per-
vasive in most medical fields. Different kinds of images are
acquired by various procedures such as X-ray imaging, ultra-
sound imaging, and resonance imaging. The goal of automated
medical image processing often involves their enhancement
so as to facilitate the inspection of the images by medical
staff. Moreover, computer aided diagnosis techniques can
also be employed to help practitioners to diagnose a disease
[1]. Therefore, an automated intelligent system is able to
determine whether a patient is likely to suffer from the disease
by analyzing the acquired medical image data. The role of
medical image analysis is widely recognized in pathology
detection [2].

Breast cancer stands as the most invasive cancer type for
women. This leads to a high mortality rate. Nowadays, one of
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the approaches used to its diagnosis is based on histopatho-
logical analysis. Therefore, computer aided diagnosis by the
analysis of histopathological images can be integrated into
the health workflow in order to support the work of health
professionals in their efforts to diagnose breast cancer reliably
in a reduced amount of time [3]. The BreakHis dataset [4] is
recognized as a very significant breakthrough in these efforts,
since it comprises over 7,900 samples of histopathological
images. This large sized dataset overcomes the limitations
of previous ones, which hampered the performance of earlier
intelligent recognition systems for histopathology images [5].
Visual feature descriptors have been proposed to detect pat-
terns in the analyzed image [4]. State of the art deep learning
neural networks can be employed for object detection and
image classification. This means that this kind of network,
and in particular convolutional neural networks (CNNs), are
amenable to their application for histopathological image
analysis, for example, [6]. A particular kind of CNN, named
AlexNet [7], was used in that work in order to carry out such
analysis. This kind of neural architecture has recently been
proposed to solve different computer vision tasks such as the
classification of vehicle types in traffic video footage [8] and
the classification of blood cells [9].

Our proposal draws on the reference neural architecture
proposed in [6]. Our enhancements to their proposal include
the construction of an ensemble of neural networks in order to
outperform the diagnosis performance of individual networks.
Therefore, the outputs of many networks are combined by a
consensus procedure in order to obtain an ensemble output
that is more accurate [8]. The set of networks that comprise
the ensemble is selected by optimization of the diagnosis
performance. This task is carried out by a genetic algorithm.
The objective of the presented work is to enhance this system,
which is described in a previous work [10].

The structure of this paper is detailed next. First, the related
work is reported in Section II. Then, the proposed methodol-
ogy is presented in Section III, including the specification of
the considered ensemble kinds and the genetic algorithm to
select the most accurate option for the set of networks that
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form the ensemble. The experimental results are reported in
Section IV, where the optimization of the parameters and the
attained performance of the ensembles are shown. Conclusions
are extracted in Section V.

II. RELATED WORK

The motivations behind the current interest in the applica-
tion of deep learning techniques to breast cancer diagnosis
are multiple. First of all, classic Computer Aided Diagnosis
(CAD) systems exhibit significant limitations [11]. Secondly,
early detection of this kind of cancer brings a much better
prognosis. And thirdly, false detections must be reduced at all
costs due to the adverse impact of them on the patients.

Deep learning, and especially CNNs, are particularly suit-
able to process two and three dimensional medical images.
Therefore, CNNs are employed to analyze different types of
images that are relevant to breast cancer diagnosis, such as
mammographies [12], magnetic resonance images [13] and
histopathology images [14].

The goal to be attained varies depending on the kind of
image. For mammographies and magnetic resonance images,
the challenge is to detect potentially malignant lesions in the
breast, with the difference that magnetic resonance images
are usually three dimensional. Radiomics approaches aim to
extract significant features from radiographic images [15]. On
the other hand, for histopathological images, the system must
distinguish between pathological and healthy tissues. This
involves, for example, the evaluation of the human epidermal
growth factor receptor 2 (HER2) protein status [16] and the
detection of mitoses [17].

In the past few years, many efforts have been made to apply
CNNs on the histopathological imaging modality. Ciresan
et al were the first to apply them to the task of mitosis
counting for primary breast cancer grading [18]. Close in time,
Cruz-Roa et al trained a convolutional network to recognize
primary breast cancer [19]. Then, Spanhol et al included a
further and deeper research in [20] where an evaluation of
the combination of six different feature sets and four base
classifiers is conducted, and the final system is defined by the
combination that produces the best results in the validation
set. Meanwhile, Bayramoglu et al [21] proposed two different
CNN architectures to classify breast cancer histopathological
images independently of their magnifications: the single task
CNN used to predict malignancy, and the multi-task CNN
used to predict both malignancy and image magnification level
simultaneously. In addition, Nawaz et al [22] presented a
DenseNet based model for multiclass breast cancer classifi-
cation to predict the subclass of the tumors, while Motlagh
et al [23] used the pre-trained model of ResNet V 1 152 to
perform diagnosis of benign and malignant tumors as well as
diagnosis based on multiclass classification of various subtypes
of histopathological images of breast cancer in BreakHis.

The base of the presented approach is a previous work [10],
where the breast cancer diagnosis is attained by classifying
histopathological images. First of all, that work proposes
an optimization of the architecture of the neural network

presented in [6]. This is accomplished by a fine-tuning process
of the parameter configuration of the trained model openly
provided by the authors on [24], noted as Reference. This fine-
tuning process is divided into two phases. Each phase tests the
performance of a network by training a network considering
different parameters. On the one hand, the weight decay and
the base learning rate are tuned in the first phase. On the
other hand, the solver type and the number of fully-connected
layers are tuned in the second phase. The performance of the
reference model is improved after the first phase, while the
second phase performs the parameter tuning on the model
achieving the highest mean accuracy. Figure 1 reports a
schema of this operation. As it can be observed, the reference
CNN model [24] is provided to the fine-tuning process as
input, while the final candidate model [10] is the output of this
process. The final candidate model is the base CNN model of
this work, noted as Base. The parameter values of this neural
network model are tuned as follows: base learning rate is set
to 10−3, the weight decay is 4 ·10−3, the solver type is Adam
and the number of fully-connected layers is 3.

After that, the performance of the system is increased by
using a well-known technique that has been used in machine
learning: ensemble learning. This technique has been widely
employed to improve the performance over a single estimator.
In order to achieve this improvement, the predictions of several
classifiers are combined by using a consensus function or
algorithm [8]. A schema of this method is described in Figure
2. As can be observed, the input image is provided to each
one of the possible considered CNN (MODELi), which
builds its own prediction (predictioni). These predictions are
supplied to a consensus function where the prediction of the
system is calculated. This output is computed in a different
way depending on the selected kind of consensus function.
Additionally, a genetic algorithm enhances the performance
of the consensus function by choosing the best CNNs of the
consensus that performs the output.

As it can be deduced from Figure 2, the performance of
the ensemble is directly related to the kind of aggregation
function which is used to compute the consensus prediction.
However, the previously presented work also considers the
use of a genetic algorithm to enhance the ensemble. This
proposed genetic algorithm is applied in order to reduce
the number of networks that comprise the ensemble and to
improve its performance. The evolution of a population of a
certain number of individuals over a number of generations
is carried out in order to achieve that enhancement. Each one
of the considered individuals represents an array of boolean
elements. The number of these Boolean elements is the
number of neural networks that can belong to the ensemble,
where the neural network represented by the element is left
out of the ensemble when its boolean value is 0, while a value
of 1 means that the neural network is within the ensemble.
The fitness function is the mean accuracy, which measures the
performance of the ensemble that the individual represents.
The objective of the evolution in genetic algorithms is to
maximize the fitness value. In the case that an individual yields



Fig. 1: Schema of the fine-tuning process operation. A reference CNN model is enhanced by a fine-tuning process that is
divided into two phases. The first phase optimizes tunes the base learning rate and the weight decay, while the second phase
tunes the solver type and the number of fully-connected layers.

Fig. 2: Schema of the ensemble operation. An image is provided to the system as input. After that, several models receive this
input and offer their predictions. Then, all the predictions generated by each model which compose the ensemble are given to
a consensus function, which computes the output of the system.

the maximum possible fitness value (1 is its maximum value),
the evolution stops.

A fixed number of individuals (noted as Population size) are
generated randomly in order to compose the first generation.
After this initialization, certain actions are carried out in each
generation. First of all, each pair of individuals within the
population may be crossed over with a certain probability.
Furthermore, each individual may mutate by flipping some of
its elements with a certain probability. Then, each evolved
individual is evaluated by the fitness function. Finally, the
resulting individuals compose the next generation that starts if
the maximum possible fitness value is not achieved, and the
maximum number of generations has not been surpassed. This
system is noted as ConsensusGA.

III. METHODOLOGY

Next the proposed classification methodology for breast
cancer histopathological images is detailed. It is based on an
ensemble of Convolutional Neural Network (CNN) classifiers.
Let M be the number of classes and N be the number of
CNNs. That is, N CNNs must be combined. Also, the output
vector of the i-th CNN is noted yi, where i ∈ {1, ..., N}. In
other words, yij stands for the predicted score associated to the
j-th class by the i-th CNN, for j ∈ {1, ...,M}. The ensemble
of classifiers can be built by selecting a subset S ⊆ {1, ...N}
of the overall set of CNNs. In this work we consider several
kinds of neural ensembles:

• Maximum (Max) ensemble. The maxima of the scores
associated to a certain class is provided as the output
score for that class:

zMax = max {yi | i ∈ S} (1)

• Mean ensemble. The arithmetic mean of the scores as-
sociated to a class is employed as the final score of the
class:

zMean = mean {yi | i ∈ S} (2)

• Median ensemble. The median of the scores associated
to a class is employed as the final score of the class:

zMedian = median {yi | i ∈ S} (3)

• Voting ensemble. The count of times that a class ranks
highest among the scores obtained by a CNN is provided
as the final score for that class:

zV oting =

(∣∣∣∣{i ∈ S | j = arg max
k∈{1,...,M}

{yik}
}∣∣∣∣)

(4)
where |·| notes the number of elements of a set and j ∈
{1, ...,M}.

Once the final scores produced by the ensemble are calcu-
lated, the predicted class is that associated to the highest of
such final scores. There are many options to choose the optimal
subset of CNNs S which are used to build the ensemble. We
propose to solve this optimization problem by a a genetic
algorithm. Every individual of the genetic algorithm has a



chromosome consisting of N Boolean variables. Each variable
says whether a particular CNN is used in the ensemble. The
performance of the ensemble is employed as the fitness func-
tion of the generic algorithm. This performance is computed
over a validation set which is disjoint with the training set
employed to train the CNNs. Also, the architecture of the
employed CNNs is subject to optimization, as detailed in
Section IV. It must be noted that, in order to improve the
results of the recognition system, a preprocessing step has
been added to enhance the input image. The preprocessing
consists in apply a sharpening filter, which is equivalent to
subtracting a Gaussian low pass filtered version of the image
from the original image. Therefore, the spatial high frequency
components of the input image are given more importance,
i.e., the edges and the small details of the image. This way, it
is easier for the CNNs to detect the relevant features.

Regarding the computational complexity of the proposed
approach, it is linear with respect to the number of CNNs
which belong to the ensemble N , so that, O(N), except for the
consensus function which is based on the median, which have
complexity O(N log(N)). However, an insignificant amount
of the overall runtime is taken by the computation of the
median, so in practice the complexity is linear with respect
to N . Additionally, the convergence of this methodology is
achieved due to the genetic algorithm stops at most when the
specified maximum number of generations is achieved.

IV. EXPERIMENTS RESULTS

The experiments that we have carried out are described
in this section. It is structured as follows. First of all, the
hardware and software that have been used in this work
are depicted in Subsection IV-A. Secondly, Subsection IV-B
presents the image dataset employed in the experiments, while
the results are shown in IV-C.

A. Methods

The Reference model [24], the Base neural network model
and the ConsensusGA system [10], and the proposed method
were built by using the framework Caffe (Convolutional Ar-
chitecture for Fast Feature Embedding, [25]) which is an open
source deep learning framework. Caffe provides a repository
of well-knwon pre-trained models such as AlexNet [7].

The proposal has been written in Python, while the reported
experiments have been carried out on a 64-bit Personal Com-
puter with two Intel E5-2670 CPU with eight cores, 2.60 GHz
per core, 32 GB RAM, Nvidia GeForce GTX 1080 Ti as GPU
and standard hardware.

B. Dataset

A well-known dataset has been chosen to test the perfor-
mance of the proposed approach. The selected dataset is the
BreakHist image dataset [20]1.

This dataset is composed of 7909 breast histopathological
images, which are divided into benign and malignant tumors,

1https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-
database-breakhis/

acquired on 82 patients. Both benign and malignant breast
tumors can also be organized into distinct kinds depending
on the aspect of the tumoral cells under the microscope. The
original BreakHist dataset contained four different histological
types of benign breast tumors: adenosis (A), fibroadenoma (F),
phyllodes tumor (PT), and tubular adenoma (TA); and four
malignant tumors (breast cancer): ductal carcinoma (DC), lob-
ular carcinoma (LC), mucinous carcinoma (MC), and papillary
carcinoma (PC). The images of the dataset have been acquired
in 3-channel RGB (Red-Green-Blue) TrueColor (24-bit color
depth, 8 bits per color channel) color space using magnifying
factors of 40×, 100×, 200× and 400×.

In order to carry out the designed experiments of this work,
a subset composed of images acquired at 40X magnification
has been considered. In this subset, the samples are divided
into two possible classes: benign and malignant tumors. Addi-
tionally, 1,000 random 64x64 patches are generated for each
image by employing the strategy #4 defined in [6] in order
to establish a fair comparison with the Reference model.
Some examples of the original dataset and the considered
experimental images are shown in Figure 3. After that, the
resulting dataset is randomly organized into training and test
set by accounting for 65% and 35% of the images, respectively.

Additionally, different training subsets have been employed
by using a k-fold strategy in order to obtained different
trained Base method networks. This way, the ensemble of
the ConsensusGA and the proposed methods are formed by
distinct networks. Respecting the test set that the methods have
been carried out to establish a comparison between them, that
test set is formed by 745 images at 40X magnification, where
255 are benign tumor images, and 490 are malignant tumor
images. Therefore, the test set is composed of 74,500 patches
of images.

C. Results

From a quantitative point of view, we have selected some
different well-known measures in order to compare the perfor-
mance of the detection and the classification for breast cancer
diagnosis. In this work, the spatial accuracy (S), the Accuracy
(Acc), and the F-measure (Fm) have been considered. All these
measures provide values in the interval [0, 1], where higher
is better, and represent the percentage of hits of the system.
True positives or number of hits (TP), true negatives or correct
rejections (TN), false negatives or misses (FN), false positives
or false alarms (FP), the precision (PR), the recall (RC), the
specificity (SP), the false positive rate (FPR) and the false
negative rate (FNR) are also used in this work. Among all
these measures, the spatial accuracy, the accuracy and the F-
measure provide a good overall evaluation of the performance
of a given method, while FN must be considered against FP
(lower is better), PR against RC (higher is better) and FPR
against FNR (lower is better). Their definitions are as follows:

Fm = 2
PR ∗RC

PR+RC
S =

TP

TP + FN + FP
(5)

Acc =
TP + TN

TP + FP + FN + TN
SP =

TN

FP + TN
(6)



(a) Original - Benign (b) Original - Malignant

(c) Patches - Benign (d) Patches - Malignant

Fig. 3: First row exhibits several samples from the BreakHis dataset, while second row shows some 64x64 pixel sample
patch images (which have been generated from random BreakHis images) used in the experiments. First column shows benign
tumors, while second column shows malignant tumors. Patch images from (c) are generated from top left image of (a), while
patch images from (d) are generated from top left image of (b).

RC =
TP

TP + FN
PR =

TP

TP + FP
(7)

FNR =
FN

TP + FN
FPR =

FP

FP + TN
(8)

In this work, an analysis of the behavior of the system
respecting its possible parameter values has been studied. The
selected parameters in this study are the type of the neural
ensemble (T ), the number of networks considered to belong to
the ensemble (N ), the population size (P ), and the maximum
number of generations of the genetic algorithm (G). The use
of the preprocess step is also analyzed. The impact of all
these parameters is measured with the number of networks
that belong to the optimal subset of CNNs that are used to
build the ensemble (noted as Nwithin) and the performance
achieved by that optimal subset. The rest of the parameters are
fixed: the fitness function is the F-measure, the objective value
is 1.0, the probability of the crossover of two individuals is set
to 0.5, while the probability for mutating an individual is fixed
to 0.2. The selected configurations to be tuned in this analysis
are reported in Table I. Note that in our previous work [10],
the parameters of the proposed method ConsensusGA were
fixed (N = 30, P = 300, G = 1000, preprocess = False)
except the ensemble type. Additonally, in that work, the
measurement used as a criterion of the fitness function in the
genetic algorithm was the accuracy. However, that measure is
invalidated since it will possibly be biased towards the positive
class if there is no other bias control mechanism due to the
dataset is sensibly unbalanced. This way, the F-measure has
been selected as a measure criterion because it can give a better

classifier’s performance understanding. The experiments have
been repeated 10 times in order to obtain a realistic average
of the performance of the system.

Table II reports the performance of the best tuned configu-
ration. As it is shown, the use of an ensemble of components
improves the performance of only one component (Base).
This consideration is usually expected. The more interesting
is to observe how the use of the genetic algorithm (GA)
is suitable to enhance the performance of an ensemble. In
this study, the four considered ensemble types improve their
performance when the genetic algorithm is applied, even better
than the ConsensusGA method. Moreover, the use of the
preprocess step also enhances the performance of the system.
Going deeper, Table III exhibits the performance of the best
configuration of each ensemble type according to its yielded F-
measure. As can be observed, Mean ensemble obtains the best
results in the measures which provide an overall performance
of the system (Fm, Acc and S). It is interesting to see how
Median ensemble has a low rate of false negatives, which
improves its FNR and RC. It also has the lowest Nwithin.

The performances obtained by each ensemble type for each
tuned configuration can be studied into more detail. Figure
4 exhibits the F-measure yielded by each ensemble in terms
of the number of neural networks which can belong to the
ensemble, the number of generations and the population size.
As it can be observed, the selected kind of ensembles yield
a similar performance in terms of Fm. However, the use of
the preprocess step has a positive impact in the performance.
Mean ensemble seems to be the best of the considered types of



TABLE I: Considered parameters and their possible values to study the performance of the system.

Parameter Value

Type of ensemble, T = {Voting, Max, Mean, Median}
Population size, P = {10, 30}
Individual length (Number of neural networks), N = {1, 2, 3, 5, 8, 10, 13, 15, 20, 25, 30}
Maximum number of generations, G = {1, 2, 10, 50, 100, 200, 300, 500}
Preprocess, preprocess = {True, False}

TABLE II: Performances of best tuned configurations according to their F-measure yielded for each ensemble type. Best results
are highlighted in bold. Best results by ensemble type are highlighted in italic.

Method Fm Acc PR RC Nwithin

Base [10] 0.826± 0.005 0 .788 ± 0 .015 0.863± 0.016 0.793± 0.013 1.000± 0.000
Base + preprocess 0 .830 ± 0 .046 0.785± 0.052 0 .865 ± 0 .030 0 .800 ± 0 .067 1.000± 0.000

Max w/o GA 0.873± 0.026 0.840± 0.036 0.880± 0.026 0.867± 0.028 5.300± 1.300
Max w/o GA + preprocess 0 .880 ± 0 .021 0.835± 0.029 0.853± 0.029 0 .909 ± 0 .037 3 .000 ± 0 .000
Max with GA 0.878± 0.023 0 .845 ± 0 .031 0.878± 0.025 0.878± 0.021 5.300± 1.300
Max with GA + preprocess 0 .880 ± 0 .021 0.835± 0.029 0.853± 0.029 0 .909 ± 0 .037 3 .000 ± 0 .000
Max ConsensusGA [10] 0.878± 0.023 0 .845 ± 0 .031 0 .881 ± 0 .026 0.874± 0.020 8.300± 5.300

Mean w/o GA 0.875± 0.026 0.843± 0.033 0.881± 0.025 0.870± 0.035 7.800± 2.200
Mean w/o GA + preprocess 0.885± 0.017 0.840± 0.022 0.845± 0.018 0 .928 ± 0 .026 6.800± 5.600
Mean with GA 0.881± 0.028 0.850± 0.036 0.889± 0.031 0.874± 0.035 8.300± 2.200
Mean with GA + preprocess 0.890± 0.022 0.850± 0.027 0.862± 0.015 0.921± 0.040 3 .800 ± 1 .000
Mean ConsensusGA [10] 0.877± 0.025 0.845± 0.033 0.885± 0.025 0.870± 0.035 17.300± 3.900

Median w/o GA 0.869± 0.035 0.835± 0.042 0.876± 0.029 0.863± 0.050 6.000± 2.700
Median w/o GA + preprocess 0.883± 0.037 0.835± 0.053 0.835± 0.039 0.936± 0.038 5 .800 ± 1 .500
Median with GA 0.879± 0.031 0 .848 ± 0 .035 0.884± 0.030 0.874± 0.043 6.800± 2.800
Median with GA + preprocess 0 .889 ± 0 .026 0.845± 0.034 0.847± 0.022 0.936± 0.038 5 .800 ± 1 .500
Median ConsensusGA [10] 0.877± 0.030 0.845± 0.034 0 .884 ± 0 .021 0.870± 0.047 15.500± 3.100

Voting w/o GA 0.864± 0.021 0.830± 0.022 0.878± 0.033 0.851± 0.012 5 .500 ± 1 .000
Voting w/o GA + preprocess 0.883± 0.037 0.835± 0.053 0.835± 0.039 0.936± 0.038 6.000± 1.400
Voting with GA 0.868± 0.023 0.835± 0.024 0 .879 ± 0 .034 0.858± 0.014 5 .500 ± 1 .000
Voting with GA + preprocess 0 .889 ± 0 .027 0 .847 ± 0 .034 0.856± 0.014 0.924± 0.043 6.000± 1.400
Voting ConsensusGA [10] 0.867± 0.020 0.833± 0.021 0.875± 0.028 0.858± 0.014 16.500± 1.900

TABLE III: Performances of best tuned configurations according to their F-measure yielded for each ensemble type. Best
results are highlighted in bold.

Measure Max Mean Median Voting

Nwithin 3.000± 0.000 3.800± 1.000 5.800± 1.500 6.000± 1.400
S 0.785± 0.033 0.803± 0.035 0.800± 0.041 0.801± 0.043

FPR 0.312± 0.079 0.290± 0.043 0.334± 0.054 0.305± 0.038
FNR 0.091± 0.037 0.079± 0.040 0.064± 0.038 0.076± 0.043
SP 0.688± 0.079 0.710± 0.043 0.666± 0.054 0.695± 0.038
PR 0.853± 0.029 0.862± 0.015 0.847± 0.022 0.856± 0.014
RC 0.909± 0.037 0.921± 0.040 0.936± 0.038 0.924± 0.043
Acc 0.835± 0.029 0.850± 0.027 0.845± 0.034 0.847± 0.034
Fm 0.880± 0.021 0.890± 0.022 0.889± 0.026 0.889± 0.027

ensemble, whose performance is slightly better than the other
ones. It is interesting to see how a higher number of networks
which can belong to the ensemble does not mean a higher
performance of the system. An important analysis which must
be highlighted is the impact of the genetic algorithm on the
system. Practically all tuned configurations yield better when
the genetic algorithm is used. So that, given N networks,
an ensemble of them yield better if the genetic algorithm is
employed to select which networks belong to the ensemble or
not. Additionally, as it can be expected, a higher population
size P can improves the performance of the system. It happens
the same for the maximum number of generations G: a higher

value of this parameter can enhance the performance.

Moreover, the results of the number of neural networks
which are within the ensemble (Nwithin) against the number
of neural networks which can belong to the ensemble (so
that, N ) are reported in Figure 5. It must highlighted that
the number of networks within the ensemble is very different
from each kind of ensemble. In this sense, ensembles which
do not need a quite number of networks can be suitable to be
used when resources are limited. It seems that the higher value
of N the higher value of Nwithin. However, this behavior does
not happen in every case. Additionally, higher values of the
population size P and the maximum number of generations



(a) Voting (b) Max (c) Mean (d) Median

(e) Voting (f) Max (g) Mean (h) Median

Fig. 4: F-measure obtained by each ensemble (Fm) by considering a number of neural networks which can belong to
the ensemble (N ) and the number of generations (G). First row reports preprocess = False while second row reports
preprocess = True. Each subfigure represents a kind of ensemble. Note that the values of each method are connected
between them with lines to better compare the results, but this does not mean that the results are related.

G incite a higher value of networks which are within the
ensemble Nwithin. However, the most interesting behavior is
the use of a lower number of networks when the preprocess
step is applied.

V. CONCLUSIONS

This work has presented a proposal to detect breast cancer
by employing histopathological images. The convolutional
neural networks are the base of this approach. Given a model
as a reference, several kinds of neural network ensembles have
been applied to improve the performance of the convolutional
neural network model. Furthermore, a genetic algorithm has
also been developed in order to enhance the performance of
the ensemble. Moreover, the suitability of a preprocess step
of the input image based on a sharpening filter has also been
considered. A study of the behavior of the different parameter
values has been reported. This study reflects the preprocess
and the genetic algorithm improve the performance of the
ensemble. Moreover, the number of networks that belong to
the ensemble is reduced according to the network selection
provided by the genetic algorithm. This way, the required
computation time and resources are also benefited. Finally,
the proposed approach is appropriate to classify breast cancer
images with a high performance according to the obtained
results in the experiments.
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