
Time Series Clustering with Deep Reservoir
Computing?

Miguel Atencia1[0000−0002−5158−5905], Claudio Gallicchio2[0000−0002−6692−2564],
Gonzalo Joya1[0000−0001−9256−0870], and Alessio Micheli2[0000−0001−5764−5238]

1 Universidad de Málaga
Campus de Teatinos, 29071 Málaga, Spain

{matencia, gjoya}@uma.es
2 Department of Computer Science, University of Pisa

Largo B. Pontecorvo, 3, 56127 Pisa, Italy.
{gallicch, micheli}@di.unipi.it

Abstract. This paper proposes a method for clustering of time series,
based upon the ability of deep Reservoir Computing networks to grasp
the dynamical structure of the series that is presented as input. A stan-
dard clustering algorithm, such as k-means, is applied to the network
states, rather than the input series themselves. Clustering is thus em-
bedded into the network dynamical evolution, since a clustering result is
obtained at every time step, which in turn serves as initialisation at the
next step. We empirically assess the performance of deep reservoir sys-
tems in time series clustering on benchmark datasets, considering the in-
fluence of crucial hyper-parameters. Experimentation with the proposed
model shows enhanced clustering quality, measured by the silhouette co-
efficient, when compared to both static clustering of data, and dynamic
clustering with a shallow network.

Keywords: Clustering · Time series · Echo State Networks · Reservoir
Computing.

1 Introduction

Cluster analysis can be described as the discovery of groups or categories into
data where class labels are not available or simply data is not known to be
organised in classes [1], thus clustering belongs to the set of unsupervised learning
algorithms. Numerous methods have been proposed to deal with the problem
of clustering, from which k-means is probably the best known. In particular,
clustering of time series introduces several critical issues. First of all, the series
to be clustered may have different lengths, or may even be regarded as infinite,
which is usual in the context of signal processing and data streams, e.g. audio
or video sequences. Also, time series usually contain temporal dependencies of

? This work has been partially supported by the Spanish Ministry of Science and
Innovation through the Project TIN2017-88728-C2-1-R, as well as the Universidad
de Málaga.



2 M. Atencia et al.

arbitrary length that cannot be captured by selecting fixed-length windows of
data. Finally, casting a sequence into a vector misses the temporal information
that emerges from the ordering: simply put, the values of the series at different
moments in the past have varying relevance for the prediction of the future
value. One way to summarise all these difficulties is the fact that computing
simply the Euclidean distance between the series samples is not a good measure
of whether the series are alike. For instance, a small phase shift of the same
series would produce completely different values, while preserving the significant
dynamical features. Therefore, it is not obvious how to compare two sequences,
and a critical issue is the choice of similarity measure of time series. Much work
has been recently dedicated to the topic of clustering of time series [2], but there
is still a significant margin for improvement, where this work aims to contribute.

The paradigm of Reservoir Computing (RC) has emerged in the last two
decades (see e.g. [11] and references therein), being characterised by a reduction
of weight adaptation, which is the usual meaning of learning in conventional
machine learning algorithms. In particular, Echo State Networks (ESNs) [10]
comprise a set of hidden units or neurons (the reservoir), linked by recurrent
connections that have feedback loops, but the weights of connections are fixed
at the beginning and remain constant. Only weights in the output or readout
layer are adjusted by a fitting algorithm, which is usually very simple, even lin-
ear. Since ESNs are dynamical systems that evolve through time, they are often
used to deal with prediction of time series. Applications of ESNs to classification
and clustering have also been proposed [13], but much remains to be done in this
direction. In a previous work [4], a method for time series clustering was pro-
posed by embedding a conventional clustering algorithm during the evolution of
an ESN. In this work we further explore this topic by using a deep RC architec-
ture [7], which has been shown to improve the memorisation abilities of standard
reservoir networks [5], enabling multiple time-scales and multi frequency repre-
sentations of the driving input signals [7–9]. Hierarchical reservoir architectures
go beyond the dynamical properties of shallow reservoirs by implementing a pool
of diversified (fading) memories of the driving input time series. Here we aim
at empirically exploring the impact of such diversified pool of dynamics in the
context of time series clustering.

The rest of this paper is structured as follows. Deep RC is introduced in
Section 2, which also presents the standard shallow reservoir neural networks
methodology as a sub-case. The proposed algorithm for time series clustering is
formally described in Section 3, and then demonstrated on benchmark datasets
in Section 4, thus providing an experimental validation of the method. Finally,
some conclusions and directions for further research are presented in Section 5.

2 Deep Reservoir Computing

Reservoir Computing (RC) denotes a class of Recurrent Neural Networks in
which the parameters of the recurrent hidden layer, the reservoir, are left un-
trained after initialisation. Deep RC extends this line of research considering



Time Series Clustering with Deep Reservoir Computing 3

hierarchical organisations of the reservoir architectures, with the Deep Echo
State Network (DeepESN) model [7] being a representative of the approach.

The dynamical component of a DeepESN is organised into a stacked compo-
sition of L reservoir layers. The external input signal drives the dynamics of the
first layer, while each successive layer is driven by the activation of the previous
layer in the stack. The state of the i-th reservoir layer at time step t, denoted
by h(i)(t) is computed by means of the following state update equation3:

h(i)(t) = (1− α(i))h(i)(t− 1) + α(i) tanh
(
U(i)x(i)(t) + W(i)h(i)(t− 1)

)
, (1)

where α(i), U(i) and W(i) respectively indicate the leaking rate constant, the
input weight matrix and the recurrent weight matrix for layer i in the deep
reservoir architecture. Besides, x(i)(t) indicates the driving input time series for
layer i, which, for the first layer corresponds to the external input, i.e. x(i)(t) ≡
u(t), which in this paper is considered as a one dimensional signal. For successive
layers, the driving signal is the state of the preceding layer, i.e. x(i)(t) ≡ h(i−1)(t)
for i > 1. The hierarchical architecture of the deep reservoir is shown in Fig. 1.
As initial condition, the state of each layer is set to a zero vector, i.e. h(i)(0) = 0
for all i. Noteworthy, when the reservoir architecture contains a single layer (i.e.,
L = 1) Equation 1 reduces to the state update equation of standard (shallow)
reservoirs [10, 11].

…𝑢(𝑡)

𝐡 ! (𝑡) 𝐡 " (𝑡) 𝐡 # (𝑡)

𝑼 !

𝑼 " 𝑼 #

𝑾 ! 𝑾 " 𝑾 #

𝐡 #$! (𝑡)

𝑼 %

reservoir layer 1 reservoir layer 2 reservoir layer L

Fig. 1. Deep reservoir architecture.
.

The values in the weight matrices U(i) and W(i) are left untrained after
initialisation under stability constraints expressed by the Echo State Property
in [6]. For practical usage, this implies a random initialisation of the weight
values, e.g. from a uniform distribution on [−1, 1], followed by a re-scaling. In
particular, the weights in W(i) are scaled to control its effective spectral radius
(the maximum among the eigenvalues in modulus), a hyper-parameter of the
model indicated as ρ(i). Moreover, the input weight matrix for the first layer,
i.e. U(1), is re-scaled to have a maximum absolute weight value ωin, which acts

3 Bias terms are dropped to ease the notation.



4 M. Atencia et al.

as input scaling hyper-parameter. The weight matrices U(i) for layers i > 1 are
scaled similarly by a value ωil, which is an inter-layer scaling hyper-parameter.

While in standard DeepESNs settings (in supervised learning contexts) the
reservoir is coupled with a readout layer, in this paper we limit to consider only
the network’s states for the purposes of time series clustering.

3 Clustering with Deep Echo State Networks

The proposed algorithm for clustering of time series can be described as the
sequential clustering of the states of a set of RC models. See a formal description
in Algorithm 1. One reservoir architecture is built and evolved receiving as input
each one of the time series within the data set, but all these reservoirs have the
same values for all weights. Note that this means that if a total number of N
neurons compose the reservoir, and there are n series in the dataset, clustering is
performed on a matrix sized N ×n at each time step t of the evolution of the
networks. Arguably, the reservoirs allow for storing long-term dependencies on
data that are lost if only the series samples themselves are used. For explanatory
purposes, we consider that each basic clustering process is performed by the well-
known k-means algorithm, but any iterative partition clustering method can be
embedded, as long as the initial centroids of the clustering can be freely fixed.
This is necessary because the key aspect of the proposed dynamical algorithm
is that the centroids are initialised at time t with the result of the clustering at
time t − 1. The final result of each dynamic procedure is the clustering at the
end of the time series. Contrarily to common usage, no readout layer performing
supervised learning is included.

Algorithm 1 Dynamic clustering through evolution of the RC model.

Require: Dataset of n time series uj with lengths lj , j = 1 . . . n.
Ensure: k centroids
1: Initialise weight matrices U(i), W(i), i = 1 . . . L, and replicate n identical instances
2: Initialise all instances states h(i)(0) = 0, i = 1 . . . L
3: for t = 1 to maxj lj do
4: for j = 1 to n do
5: if t ≤ lj then
6: Update the corresponding ESN instance by Equation (1)
7: end if
8: end for
9: if t = 1 then

10: Initialize centroids
11: else
12: Set initial centroids to centroids resulting from step t− 1
13: end if
14: Build the dataset Y(t) of n reservoir states, where Yi.(t) =

(
h(1), . . .h(L)

)
15: Compute centroids at step t from clustering of dataset Y(t)
16: end for



Time Series Clustering with Deep Reservoir Computing 5

Algorithm 1 describes the application of a deep RC model to clustering of a
time series. Note that the standard shallow model is recovered simply by setting
L = 1, i.e. a fully connected single layer. The notation of line 14 represents that
a single vector is formed with all units in the reservoir, simply by concatenating
neurons belonging to each layer. An alternative clustering can be designed by
using for clustering only the units of a layer. In this way, L independent clustering
results can be obtained from the same deep architecture. We analyse below the
performance of these three modalities: shallow ESN, deep ESN considering the
full reservoir, and each one of the layers of the deep architecture.

4 Experimental results

In this section we aim at exploring the behaviour of RC neural networks with
respect to the clustering of time series. To that end, we apply the Algorithm 1
described in the previous Section 3 to two datasets artificially built as described
in Section 4.1, following the experimental settings reported in Section 4.2. The
results for both shallow and deep reservoir architectures are presented in Sec-
tions 4.3 and 4.4, respectively on the two datasets used.

4.1 Data

Two different time series datasets are built for the evaluation of the proposed
clustering method. The first one is constituted by different versions of the Mul-
tiple Superimposed Oscillator (MSO), which has already used as a challenging
benchmark for learning with ESNs [14, 9]. The second dataset results from the
evaluation of mathematical formulae with stochastic components, leading to dif-
ferent synthetic modes (SMs), and has been proposed in the context of time
series similarity queries [3].

MSOs are sums of sinusoidal functions:

s(t) =

n∑
i=1

sin (ϕi t) (2)

where the frequencies ϕi are assigned the following values: ϕ1 = 0.2, ϕ2 = 0.331,
ϕ3 = 0.42, ϕ4 = 0.51, ϕ5 = 0.63, ϕ6 = 0.74, ϕ7 = 0.85, ϕ8 = 0.97, ϕ9 = 1.08,
ϕ10 = 1.19, ϕ11 = 1.27, ϕ12 = 1.32. In our experiments, each series is built by,
first, randomly setting a value for n ∈ {1, 4, 8, 12} and then building a series
by u(t) = s(t + T ) where T is a uniform random variable. Finally, we obtain a
dataset comprising 160 series of length 500. A realisation of these series for each
value of n is shown in Figure 2. The difficulty of this task is that it requires to
properly separate input time series with different frequency content, a known
challenge for standard RC system.

In contrast to the oscillatory nature of the MSOs, SM time series result from
the composition of simple linear functions. Time series are extracted by selecting



6 M. Atencia et al.

Fig. 2. Example realisations of Multiple Superimposed Oscillators for n ∈ {1, 4, 8, 12}.

one from the following 6 types:

s(t) = 30 + 2Rt

s(t) = 30 + 2Rt +A sin 2πt/T

s(t) = 30 + 2Rt +Gt t

s(t) = 30 + 2Rt −Gt t

s(t) = 30 + 2Rt + I{t>K} t

s(t) = 30 + 2Rt − I{t>K} t

(3)

where A, T,K, and each Rt, Gt are uniform distributions (over different inter-
vals), and IS is the indicator function of the set S. In the experiments, each one
of these synthetically generated data will constitute the external input to the
reservoir system (i.e., to the first layer in the deep setting), with u(t) = s(t). We
create a total of 180 independent series of length 100, chosen randomly from the
six modes defined in Equation (3). In Figure 3 a realisation of each type is shown
for illustration purposes. Here the challenge is to properly represent a variety of
input signals with heterogeneous behaviours.

In order to establish a baseline, a conventional clustering algorithm has also
been performed on data, considered as standard vectors. In other words, all the
series belonging to a dataset are stacked together yielding a large matrix X,
and then k-means is applied to the rows of X. This procedure is called “static”
clustering in this paper, to distinguish it from the proposed algorithm that is
executed during the dynamical evolution of the reservoir neural network.



Time Series Clustering with Deep Reservoir Computing 7

Fig. 3. Example realisations of Synthetic Modes for each class of Equation (3).

4.2 Experimental Settings

In order to apply the proposed algorithm to the datasets described in the pre-
vious section, shallow and deep reservoir architectures are built, with the total
number of recurrent units being 100 in both cases. For the DeepESN, these
100 units are structured forming 10 layers with 10 units each, i.e., L = 10.
For the shallow ESN case, the 100 recurrent units are organised in one sin-
gle layer, i.e., L = 1. Preliminary experimentation revealed that results were
strongly dependent on the choice of hyper-parameters. Therefore, an exhaustive
cross-validation was performed in order to determine optimal settings of the
four hyper-parameters that are considered most important: spectral radius ρ,
leaking rate α, input scaling ωin, and inter-layer scaling ωil (the last one, only
for deep reservoirs). Hyper-parameters are chosen from values shown in Table
1, leading to 192 possible settings. To simplify the construction, all layers share
the same spectral radius for the self-connection (recurrent) matrices, the same
leaking rate, and the same inter-layer scaling. The number of clusters is set to
k = 10 for all experiments.

Table 1. Values of hyper-parameters used in the experiments with both tasks. All
combinations are generated leading to 192 hyper-parameter sets.

Spectral radius ρ 0.6 0.9 1.2 1.5
Leaking rate α 0.5 0.7 0.9
Input scaling ωin 0.5 1 1.5 2
Inter-layer scaling ωil 0.5 1 1.5 2

For each experiment, the goodness of the clustering is measured by the sil-
houette coefficient [12]: a value between −1 and 1 that can be roughly considered
as the probability that a particular data instance belongs to the assigned cluster.



8 M. Atencia et al.

Then, this value is averaged for all data, so the closer the value to 1, the more
compact the clustering. For each model, and for each one of the hyper-parameter
combinations, 100 runs are performed on the same dataset with different, inde-
pendent weight initialisations of the reservoir architectures, as well as centroid
initializations of the k-means method (at t = 1), to account for stochastic fluc-
tuations due to initialisation of network weights and cluster centroids.

4.3 Clustering of Multiple Superimposed Oscillators

In order to ascertain the relation between the dynamical behaviour of the net-
work and the clustering results, under different combinations of hyper-parameters,
we apply the described algorithm to the MSOs data. Both the shallow and deep
architecture are implemented and, besides, as mentioned above, for the deep
architecture the clustering may be performed by using either the whole reser-
voir or each one of the layers independently. Finally, the silhouette coefficient
is computed and the hyper-parameters that led to the best result for each one
of the architectures are recorded. The results are summarised in Table 2, which
also reports the corresponding values of the hyper-parameters.

Table 2. Best results for each architecture and layer, measured by the silhouette coef-
ficient, with k = 10, for the MSO task. For each result, the values of the corresponding
hyper-parameters are shown.

Architecture Clustering silh ρ α ωin ωil

Static Data vector 0.12

Shallow 100 Full reservoir 0.44 0.60 0.90 2.00
Deep 10 x 10 Full reservoir 0.84 1.50 0.70 0.50 2.00

Deep 10 x 10 Layer 1 0.90 1.50 0.50 0.50 1.00
Deep 10 x 10 Layer 2 0.91 1.50 0.50 1.00 0.50
Deep 10 x 10 Layer 3 0.92 1.50 0.50 0.50 0.50
Deep 10 x 10 Layer 4 0.92 1.50 0.70 0.50 0.50
Deep 10 x 10 Layer 5 0.96 1.50 0.70 1.50 0.50
Deep 10 x 10 Layer 6 0.94 0.60 0.50 2.00 0.50
Deep 10 x 10 Layer 7 0.94 1.50 0.70 0.50 0.50
Deep 10 x 10 Layer 8 0.96 1.20 0.50 1.50 1.00
Deep 10 x 10 Layer 9 0.98 1.50 0.70 1.50 0.50
Deep 10 x 10 Layer 10 0.96 1.20 0.50 2.00 1.50

The analysis of results in Table 2 shows, first of all, that a conventional clus-
tering considering the series as a standard vector does not provide a satisfactory
performance, measured in terms of the silhouette coefficient. We interpret that
this is due to the fact that casting a sequence into a vector misses the tem-
poral information that is contained in the ordering. The clustering performed
on the states of the shallow architecture with 100 neurons, as described in Sec-
tion 3, considerably improves with respect to the vectorized data, but it is still
outperformed by the the deep architecture. Remarkably, the deep network (full



Time Series Clustering with Deep Reservoir Computing 9

reservoir setting) almost doubles the performance of the shallow counterpart, in-
dicating a substantially improved ability to represent input series with multiple
frequency content. Moreover, in the deep architectural organisation, a differen-
tial behaviour is observed when layering is taken into account in the cluster-
ing: deeper layers (farther from input) exhibit increasing silhouette coefficient,
evidencing a more complex dynamics that is grasping information about the
temporal input features. Beside the best result obtained by each architecture in
Table 2 it is indicated the hyper-parameter set that led to such result.

Fig. 4. Silhouette coefficient for increasing layer depth on the X-axis, for different
values of spectral radius (top, left), leaking rate (top, right), input scaling (bottom,
left), and interlayer scaling (bottom, right) on the task MSO. For each plot, the other
three hyper-parameters are as in the penultimate row of Table 2.

As a final investigation on the clustering performance of the ESN under the
influence of different choices of hyper-parameters, we plot in Figure 4 the silhou-
ette coefficients obtained by each layer, where clustering on the full reservoir is
represented as layer 0. Starting from the configuration that achieved the global
maximum, namely the shown in the penultimate row of Table 3, each hyper-
parameter is iterated along the possibilities in the considered range (shown in
Table 1). Observing for instance the influence of the spectral radius in the top
left plot, looking at the graph for the value 1.5, it is hardly surprising that the
maximum is achieved by level 9, since this particular hyper-parameter combi-
nation was precisely selected by this feature. It is though more interesting that
a general increasing trend is apparent, instead of a random distribution with
a peak at level 9 that could have resulted from overfitting. Also, a stronger



10 M. Atencia et al.

and more consistent influence of spectral radius and leaking rate compared to
the scaling hyper-parameters is observable, which is coherent with the general
knowledge on dynamics of reservoir computing.

4.4 Clustering of Synthetic Modes

A similar set of experiments has been performed on data coming from the
SM task as defined in Equation (3), covering the same combinations of hyper-
parameters as in Table 1. In this way, cross-validation results, shown in Table 3,
allow to select optimal hyper-parameter settings for each architecture. Cluster-
ing with reservoir networks is again obviously advantageous with respect to the
baseline static clustering, even for the shallow network. Also in this case we
observe the beneficial effect of layering, although albeit less pronounced than
in the previous MSO case. In this respect, results indicate that even in a case
in which a shallow reservoir network is able to achieve an excellent clustering
performance, a deep reservoir architecture is still (slightly) advantageous (and
adding more layers improves, though not greatly, the achieved results).

Table 3. Best results for the SM task with each architecture and layer, measured by
the silhouette coefficient, with k = 10. For each result, the values of the corresponding
hyper-parameters are shown.

Architecture Clustering silh ρ α ωin ωil

Static Data vector 0.57

Shallow 100 Full reservoir 0.90 0.60 0.90 2.00
Deep 10 x 10 Full reservoir 0.91 0.60 0.70 2.00 1.00

Deep 10 x 10 Layer 1 0.96 0.60 0.70 2.00 1.00
Deep 10 x 10 Layer 2 0.95 1.50 0.50 1.50 2.00
Deep 10 x 10 Layer 3 0.95 1.50 0.50 2.00 1.00
Deep 10 x 10 Layer 4 0.93 0.90 0.90 1.00 2.00
Deep 10 x 10 Layer 5 0.94 1.20 0.50 1.00 1.00
Deep 10 x 10 Layer 6 0.94 1.20 0.50 2.00 0.50
Deep 10 x 10 Layer 7 0.95 1.50 0.70 0.50 2.00
Deep 10 x 10 Layer 8 0.95 1.50 0.70 1.00 1.50
Deep 10 x 10 Layer 9 0.95 1.20 0.50 1.50 1.00
Deep 10 x 10 Layer 10 0.97 1.20 0.50 1.50 1.00

It is also remarkable that, for the SM dataset, several results had to be
discarded because they provided meaningless results. For instance, in some cases
all reservoir states converged to zero or saturated to one, regardless of the input.
Then, the corresponding series were all assigned to a single cluster leaving most
other clusters depopulated. When this occurred, the silhouette coefficient was
approximately one yet this could not be considered as a satisfactory clustering.
This phenomenon can be attributed to an insufficient excitation of the network
due to the information provided by the input becoming negligible, and deserves
further exploration in future works.



Time Series Clustering with Deep Reservoir Computing 11

Fig. 5. Silhouette coefficient for increasing layer depth on the X-axis, for different
values of spectral radius (top, left), leaking rate (top, right), input scaling (bottom,
left), and interlayer scaling (bottom, right) on the task SM. For each plot, the other
three hyper-parameters are as in last row of Table 3.

The interrelations of layer depth and each hyper-parameter setting are illus-
trated by Figure 3. As observed in the graphs of the bottom row, results are
better for deeper layers regardless the value of the scaling hyper-parameters. Al-
though this trend is also visible for the optimal combination of hyper-parameters
in the plots of spectral radius and leaking rate, for other settings a more erratic
behaviour remains to be explained.

5 Conclusions

In this work we have implemented a clustering algorithm on the states of reser-
voir computing architectures along their dynamical evolution. The results sug-
gest that this idea contributes to grasp the temporal features of a time series,
which are lost when the series is formulated as a static vector. When comparing
shallow to deep reservoir algorithms, it was observed that the latter presented an
enhanced capability to provide a good clustering, as measured by the silhouette
coefficient. The fact that this effect was more evident for series with multiple os-
cillations reinforces the notion that layered recurrent architectures are naturally
most suitable to deal with several time scales by developing diversified fading
memories in the different layers.

Looking ahead to future developments, an interesting direction is to explore
extensions in the context of supervised problems. Interestingly, in cases in which



12 M. Atencia et al.

data with class labels are available, such supervision information could be used to
drive the clustering, for instance by exploiting output feedback connections from
the output to the reservoir units. This could be useful in real-world problems of
time series classification, e.g. for medical diagnosis from ECG data. Remarkably,
our algorithm can deal with series of variable length, simply by stopping evolu-
tion when input is finished, whereas a conventional clustering method must be
applied on a rectangular matrix, which cannot be formed from variable-length
rows. In light of such considerations, extensive applications to real-world prob-
lems are also planned as future works.

References

1. Aggarwal, C.C., Reddy, C.K.: Data clustering : algorithms and applications. CRC
Press (2014)

2. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering -
A decade review. Information Systems 53, 16–38 (2015)

3. Alcock, R.J., Alcock, R.J., Manolopoulos, Y.: Time-series similarity queries em-
ploying a feature-based approach. 7th Hellenic Conference on Informatics pp. 27—
-29 (1999)

4. Atencia, M., Stoean, C., Stoean, R., Rodŕıguez-Labrada, R., Joya, G.: Dynamic
Clustering of Time Series with Echo State Networks. In: Lecture Notes in Computer
Science. vol. 11507 LNCS, pp. 73–83. Springer, Cham (2019)

5. Gallicchio, C.: Short-term memory of deep rnn. In: 26th European Symposium on
Artificial Neural Networks (ESANN). pp. 633–638. i6doc. com publ (2018)

6. Gallicchio, C., Micheli, A.: Echo state property of deep reservoir computing net-
works. Cognitive Computation 9(3), 337–350 (2017)

7. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: A critical ex-
perimental analysis. Neurocomputing (2017)

8. Gallicchio, C., Micheli, A., Pedrelli, L.: Design of deep echo state networks. Neural
Networks 108, 33–47 (2018)

9. Gallicchio, C., Micheli, A., Pedrelli, L.: Hierarchical temporal representation in lin-
ear reservoir computing. In: Smart Innovation, Systems and Technologies, vol. 102,
pp. 119–129. Springer Science and Business Media Deutschland GmbH (2019)

10. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. science 304(5667), 78–80 (2004)

11. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and appli-
cations of echo state networks with leaky- integrator neurons. Neural Networks
20(3), 335–352 (2007)

12. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20(C),
53–65 (1987)

13. Tanisaro, P., Heidemann, G.: Time series classification using time warping invariant
echo state networks. In: 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA). pp. 831–836 (2016)

14. Wierstra, D., Gomez, F.J., Schmidhuber, J.: Modeling systems with internal state
using evolino. In: GECCO 2005 - Genetic and Evolutionary Computation Confer-
ence. pp. 1795–1802. ACM Press, New York, New York, USA (2005)


