

XXIV Meeting of the Spanish Society of Plant Biology XVII Spanish Portuguese Congress on Plant Biology BP 2021 7th- 8th July 2021

EFFECT OF SEAWATER INORGANIC CARBON ENRICHMENT ON NO₃⁻ TRANSPORTER AND REDUCTION ENZYME GENE EXPRESSION IN *ZOSTERA MARINA* LEAVES

Jordi Díaz-García*, Lourdes Rubio and José A. Fernández

Dpt. Botany and Plant Physiology, University of Málaga, Málaga, SPAIN. Jordidg@uma.es, Lrubio@uma.es, JA_fernandez@uma.es

Abstract: CO₂ concentration has increased over the past 200 years and is expected to continue rising. In seawater, the increase of dissolved CO₂ has led to a decrease in pH, changing the inorganic carbon chemical speciation to increase HCO₃⁻. Seagrasses are the only vascular plants that colonized the marine environment, developing the capacity to use bicarbonate as a source of carbon for photosynthesis (Beer et al., 2002). In Posidonia oceanica the direct uptake of HCO_3^- through a H^+ symporter and its subsequent dehydration renders CO₂ for photosynthesis, but alters cytosolic anion homeostasis promoting the cytosolic nitrate leak (Rubio et al., 2017; Rubio et al., 2020). Therefore, under increasing dissolved HCO₃⁻ conditions the cytosolic NO₃⁻ diminution could induce the N biomass impoverishment shifting the expression pattern of nitrate transporters in seagrasses. Zostera marina genome, the first fully sequenced from a marine angiosperm, reveals lost of important vascular plants innovations but less than 20% as specific gene families (Olsen et al., 2016). Thus, key physiological adaptations to thrive in seawater, characterized by a low concentration of NO_3^{-} , seem to be due to molecular changes of the same family genes rather than the speciation of pre-existing genes. This could be the case for the high-affinity nitrate transporters, sodium driven high-affinity transport unique among vascular plants (Rubio and Fernández, 2019). In this work we have analysed the gene expression levels related to cytosolic nitrate homeostasis, including transporters and enzymes, in leaves of Z. marina plants incubated in high HCO₃⁻ or in the absence of N. Overall gene analysed, expression levels of ZosmaNTR2, the only gene quoted as a highaffinity nitrate transporter belonging to NRT2 family in Z. marina genome (Rubio et al., 2019), as well as its regulatory protein ZosmaNAR2, were induced in both conditions. Interestingly, expression levels of such genes were higher than the obtained for ZosmaCHL1 (ZosmaNPF6.3), which expression was lower in N-replete plants, but did not vary in response to HCO_3 . These results suggest that the induction of the expression of the NO₃⁻ high-affinity transporter ZosmaNRT2 and its regulatory protein ZosmaNAR2 are the main response for the cytosolic NO_3^- decrease in both N-deficiency or in C-enrichment.

Key words: Zostera marina, HCO₃⁻ enrichment, ZosmaNRT2 expression levels.

Acknowledgments: GLOCOMA (FEDER-UCA 18-107243) participated by LR and JAF. JD-G is beneficiary of the PhD contract FPU18/03300

References:

- Beer, S., Bjork, M., Hellblom, F., & Axelsson, L. (2002). Inorganic carbon utilization by marine angiosperms (seagrasses). Functional Plant Biology, 29, 349–354.
- Olsen, J. L., Rouzé, P., Verhelst, B., Lin, Y. C., Bayer, T., Collen, J., et al. (2016). The genome of the seagrass *Zostera marina* reveals angiosperm adaptation to the sea. Nature 530 (7590), 331–335
- Rubio,L.,García,D.,García-Sánchez,M.J.,Niell,F.X.,Felle,H.H.,and Fernández, J. A. (2017). Direct uptake of HCO₃⁻ in the marine angiosperm *Posidonia oceanica* (L.) Delile driven by a plasma membrane H⁺ economy. Plant Cell Environ. 40, 2820–2830.
- Rubio, L., and Fernández, J. A. (2019). "Seagrasses, the unique adaptation of angiosperms to the marine environment: effect of high carbon and ocean acidification on energetics and ion homeostasis," in Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses. Eds. M. Hasanuzzaman, S. Shabala and M. Fujita (Boston M.A.: CAB International), 89–103.
- Rubio, L.; Díaz-García, J.; Amorim-Silva, V.; Macho, A.P.; Botella, M.A.; Fernández, J.A. (2019). Molecular characterization of *Zosmanrt2*, the putative sodium dependent high-affinity nitrate transporter of *Zostera marina* L. Int. J. Mol. Sci., 20, 3650
- Rubio, L., García-Pérez, D., Davies, J.M., Fernández, J.A. (2020) Short-Term Response of cytosolic NO₃⁻ to inorganic carbon increase in *Posidonia oceanica* leaf cells. Front. Plant Sci. 11:955.