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Abstract

Background: New tetradactyl theropod footprints from Upper Jurassic (Oxfordian-Kimmeridgian) have been found in the
Iouaridène syncline (Morocco). The tracksites are at several layers in the intermediate lacustrine unit of Iouaridène
Formation. The footprints were named informally in previous works ‘‘Eutynichnium atlasipodus’’. We consider as nomen
nudum.

Methodology/Principal Findings: Boutakioutichnium atlasicus ichnogen. et ichnosp. nov. is mainly characterized by the
hallux impression. It is long, strong, directed medially or forward, with two digital pads and with the proximal part of the
first pad in lateral position. More than 100 footprints in 15 trackways have been studied with these features. The footprints
are large, 38–48 cm in length, and 26–31 cm in width.

Conclusions/Significance: Boutakioutichnium mainly differs from other ichnotaxa with hallux impression in lacking
metatarsal marks and in not being a very deep footprint. The distinct morphology of the hallux of the Boutakioutichnium
trackmaker –i.e. size and hallux position- are unique in the dinosaur autopodial record to date.
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Introduction

More than 1,500 dinosaur footprints in 43 tracksites (Fig. 1)

have been mapped in the research of Iouaridène syncline [1,2].

According to recent works, the age of the outcrops is Upper

Jurassic, Oxfordian-Kimmeridgian [3]. Since the first dinosaur

footprints were found in 1937 [1], discoveries and scientific

documentation continues.

At the present time, the dating of the 43 cited tracksites [2], new

ichnotaxonomic, paleoethologic and paleoecologic contributions is

under investigation. The Iouaridene syncline is also noted for its

rich ichnodiversity [4–8]. Besides sauropod, thyreophoran, and

ornitopod footprints [1], there are several theropod ichnotypes

[1,8,9].

‘‘Eutynichnium atlasipodus’’ [6] was defined in the thesis of Jaouad

Nouri as a tetradactyl theropod footprint (I, II, III, IV), with a

large and independent hallux with two digital pad impresions [6].

The footprints were included in the icnogenus Eutynichnium [10]

originally defined in the upper Oxfordian of Cabo Mondego area

in Portugal [11]. We consider this ichnotaxon as nomen dubium

because is defined based on extramorphological features. ‘‘E.

atlasipodus’’ has not been described formally, thus we consider it

nomen nudum. The current findings of more footprints with the same

characteristics of ‘‘E. atlasipodus’’, and very different of the

ichnogenus Eutynichnium, suggest the necessity of a formal diagnosis

for this type of footprints. The feautures of the hallux of this new

ichnotaxon allow the discusión about the position and the shape of

digit I (hallux) in theropod dinosaurs.

Geological setting
The Iouaridéne syncline is located in the Azilal province

(Morocco) at East of the High Central Atlas (Fig. 1) in the M’Goun

Geopark. The continental ‘‘red beds’’, are also very common in

other basins of the Atlas, in the center of the Iouaridène sinclyne

[3,12]. The red beds are divided into three formations [3]. The

lowest, Guetioua Formation, of Bathonian age is composed of red

sandstones and claystones, and basic volcanic rocks. The interme-

diate, Iouaridène Formation, is composed of red detritical rocks

from Bathonian?-Callovian to Barremian age. Finally the upper-

most, Jbel Sidal Formation, is formed by alternations of medium to

coarse sandstones with red claystones of Barremian age.

The Iouaridène Formation is divided into three units [3]. The

lower unit is formed maninly by marls and calcretes [12]. The

intermediate unit, where the dinosaur footprints have been found,

is composed by a superposition of red carbonated shales and red

siliceous (silcretes, some with more than 80% SiO2) levels with

oscillation and current ripples and mud cracks [13]. The upper

unit is formed by red sandstones, multicolour shales and thin

dolomitic levels [3]. The dolomitic levels of Iouaridène Formation

have suggested to some researchers the possiblility of marine
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environment (carbonate plataform) for these footprints [14].

Recent research indicate a continental origin for all the red beds

from the High Atlas [13]. Body fossil remains from the lower and

the upper units include vertebrates (principally fishes), charophytes

and ostracods. The Iouaridène Formation indicates a lacustrine

environment [13].

The age of Iouaridène syncline red beds has been intertpreted to

suggest a wide range of: Upper Lias [15]; Bathonian [16];

Bathonian-Callovian [17]; Lower Cretaceous (Infracenomanian)

[18]. Currently, the outcrops with dinosaur footprints (the

intermediate unit of the Iouaridène Formation) are considered

Oxfordian-Kinmeridgian in age, as they lie a few meters below

dated Kimmeridgian [3,12].

Ichnodiversity and age of Iouaridène syncline footprints
Ichnotaxa from the Iouaridène Formation include: Megalosaurus

sp. [15], Eubrontes ( = Brontozoum) ichnosp. [19]; Breviparopus

taghbaloutensis [20]; Carmelopodus ichnosp. [16]; ‘‘Eutynichnium atlas-

ipodus’’ [6]; Kayentapus ichnosp. [8,21] y Megalosauripus ichnosp.

[8,21]; and Deltapodus ichnosp. [22–24], wich occur else where in

units that have been assigned various Jurassic and Cretaceous

ages. Thus, it appears the assemblages is not easily dated on the

basis of tracks identifications.

Theropod footprints are the most abundant in the syncline and

both small footprints (14 cm) [6] and the largest theropod

footprints in the world (90 cm) [9] have been reported. There

are booth digitigrade [1,8,9] and semiplantigrade tracks [2,6,25].

Most of the semiplantigrade footprints (with metatarsal marks) in

the Iouaridéne, have also hallux impression [2,23]. Nevertheless,

there are also footprints with an hallux impression without a

metatarsal mark. This type of footprints was named ‘‘E. atlasipodus’’

[6] and it is restudied herein.

Sauropod footprints are abundant [5,7,26]. Ornithopod [6,25]

and thyreophoran [23,24] footprints have also been reported.

Materials and Methods

The footprints are designated according to previous convention

[1,2] as follows: first, the tracksite identification; second, the

trackway; and third the footprint. For instance, 7IGR6.1 is the first

footprint of tracway number 6 of tracksite 7 from IGR (Iguaridene

or Iouaridène). To simplify and for consistence, the trackways

studied in the Jaouad Nouri thesis with other designations [6], like

1Am8, 8Ta1. etc. have been changed according to previous

classification [1,2]. The equivalences are: 1Am1-8IGR1; 1Am2-

8IGR2: 1Am3-8IGR3; 1Am4-8IGR4; 1Am8-8IGR5; 1Ta1-

11IGR1; 1Ta2-11IGR2; 2Ta2-11IGR4; 2Ta3-11IGR5; 8Ta1-

15IGR5.

The first place where tetradactyl footprints without a metatarsal

impresion were found was tracksite 8IGR from Aı̈t Mimoun

(8IGR1 and 8IGR3). In subsequent prospectings they were found

at the 7IGR, 8IGR, 11IGR, 15IGR and 34IGR tracksites.

Trackways 7IGR7, 8IGR1, 8IGR2, 8IGR5, 11IGR1, 11IGR5

and 15IGR5 reveal tetradactyl footprints throughout (75 footprints

in total) (see Appendix S1). In other trackways the hallux

impression is recognized only in some footprints (7IGR1,

7IGR6, 8IGR3, 8IGR4, 11IGR2, 11IGR4 and 34IGR10).

The measurements (Table 1, Appendix S2, Appendix S3) and

nomenclature used in this study are based on other works [27–30]

principally. Measurements taken were: footprint length (FL),

footprint total length -including hallux - (FLt), footprint width

(FW), pace length (PL), stride length (SL), trackway deviation (TD),

outer trackway width (eTW), pace angulation (ANG), footprint

rotation (FR), digit length (I-II-III-IV), digit divarication

Figure 1. Geologic and geographic location of Iouaridène syncline. Batho-Bathonian; Call.-Callovian; Oxf.-Oxfordian; Kimm.-Kimmeridgian;
Barre.-Barremian.
doi:10.1371/journal.pone.0026882.g001
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(I‘II‘III‘IV) and extension of the digit III beyond a line drawn

across the tips digit II and IV, measured down the axis of digit III

(te). The hip height (H) was estimated with Thulbon [29] formula,

and the speed was calculated using the Alexander [31] formula for

V1 and the Demathieu [32] formula for V2.

Thulborn [29]: H~8:06|FW 0:85

Alexander [31]: V1~2:81736|SL1:67|H{1:17

Demathieu [32]: V2~0:280263|SL
�

H0:5

All parameters are given and compared in cm, except ANG, FR and

I‘II‘III‘IV in degrees. The parameters have been measured directly in

the field or in the laboratory from drawings using AutoCAD software.

Subsequently, the measures were observed in the outcrops.

Results

Relationship between sedimentary structures and
footprints

In this work the study surface where the footprints were

registered was examined carefully [33]. The study surface may or

may be not the tracking surface (the surface where the dinosaur

stepped) [34]. All the surfaces with true footprints in Iouaridène

syncline have been found in the hard layers (red siliceous levels)

with mud cracks [9]. The undertracks and underprints are in

resistant layers with ripples. The number of hard layers varies from

the northwest area of the syncline, about 20 layers [22], to the

southeast area, where there are places with one hard layer.

Currently, in the soft levels (shales) footprints have not been found

in the soft levels (shales).

The footprints studied in this work were registered after the

formation of mud cracks. The cracks are deformed by the dinosaur

feet so that the sides of the tracks were moved upward and

outward (Fig. 2). Sometimes they were also bent, but usually the

deformation is closer to an elastic than plastic type. Under the foot,

the cracks are broken in small fragments. In the Iouaridène

syncline there are also some theropod footprints crossed by mud

cracks produced after the dinosaur steps [1]. In the footprint hole,

the small rims and the displacement of the mud cracks are due to

the dry layer below (elastic or almost) of the tracking surface, were

there was a soft zone (of plastic or fluid) mud.

In general, the footprint depth is less than 5 cm, therefore the

feet do not get any deeper into the mud. Only some footprints

(7IGR6.6, 8IGR1.24 footprint, for instance) show collapse

structures in the proximal part of the digit III (Fig. 3). This occurs

because the mud is accumulated in the interdigital area among the

digits.

Most of the footprint shafts have been interpreted as direct

structures [35]. Therefore the footprints are considered true

footprints and although not all are not an accurate representation

of the foot, there are also some elite tracks or stamps . he footprint

outline is not always easy to see because sometimes the physical

features of the mud cracks do not allow the foot to print it well.

The footprint outline does not fit exactly with the foot shape

because the mud cracks move as coarse fragments and their

behavior is not completely plastic. Nonetheless, in some footprints

Table 1. Means of the trackways with tetradactyl footprints.

FL FLt FW PL SL TD eTW ANG FR H I-II-III-IV I‘II‘III‘IV V1 V2 te N6

7IGR1 37 41 24 121 242 4 31 173 1 173 ----16-- --13-34 6.5 5.1 14

7IGR6 34 38 26 116 230 4 36 172 -1 161 100-26-39 6.5 5.0 14 22

7IGR7* 38 46 27 114 223 9 44 161 1 174 18----- 49-17-30 5.6 4.7 11 15

8IGR1* 32 38 32 108 213 7 47 164 -1 154 20-18-20-20 55-20-37 6.1 4.8 9.7 5

8IGR2* 39 45 27 131 256 9 45 163 0 181 --26-27-27 44-07-27 6.7 5.3 14 16

8IGR3 38 45 30 120 237 11 53 159 5 177 17-----26 63-16-27 6.1 5.0 13 6

8IGR4 31 36 27 122 241 6 41 168 2 150 13-19---20 66-12-32 7.6 5.1 12 6

8IGR5* 36 43 31 138 267 4 38 172 0.5 168 22-18-23-17 61-11-13 8.1 5.8 12.5 28

11IGR1* 37 43 29 125 250 4 38 175 1 173 20-19-20-22 42-34-32 6.9 5.3 13.2 5

11IGR2 32 37 26 105 208 8 42 167 1 153 19-17-20-19 56-20-24 5.9 4.7 8.8 14

11IGR4 32 41 27 118 230 13 54 154 4 153 16-18-25-20 33-19-22 7.2 5.4 12.2 6

11IGR5* 37 48 29 128 253 8 47 166 5 173 24-18-24-20 22-21-24 7.0 5.4 13.2 6

15IGR5* 31 41 31 111 218 7 37 166 0 151 21-19-23-22 54-16-20 6.5 5.0 12 5

34IGR10 28 40 24 125 261 4 33 173 -3 137 10-16---9 ----11-23 9.5 6.2 0.3 4

Abbreviations: see Material and method.
doi:10.1371/journal.pone.0026882.t001

Figure 2. Holotype of Boutakioutichnium atlasicus. A) outline.
B) photograph.
doi:10.1371/journal.pone.0026882.g002
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the diagnostic features as the digits margins, the digital pads and

the claws marks are clearly distinghished.

Nomenclatural acts
The electronic version of this document does not represent a

published work according to the International Code of Zoological

Nomenclature (ICZN), and hence the nomenclatural acts

contained in the electronic version are not available under that

Code from the electronic edition. Therefore, a separate edition of

this document was produced by a method that assures numerous

identical and durable copies, and those copies were simultaneously

obtainable (from the publication date noted on the first page of this

article) for the purpose of providing a public and permanent

scientific record, in accordance with Article 8.1 of the Code. The

separate print-only edition is available on request from PLoS by

sending a request to PLoS ONE, Public Library of Science, 1160

Battery Street, Suite 100, San Francisco, CA 94111, USA along

with a check for $10 (to cover printing and postage) payable to

‘‘Public Library of Science’’.

In addition, this published work and the nomenclatural acts it

contains have been registered in ZooBank , the proposed online

registration system for the ICZN. The ZooBank LSIDs (Life

Science Identifiers) can be resolved and the associated information

viewed through any standard web browser by appending the LSID

to the prefix ‘‘http://zoobank.org/’’. The LSID for this

publication is: urn:lsid:zoobank.org:pub: 9383E15A-BC12-404F-

B371-32145458FE1B

Systematic paleoichnology
Systematic hierarchy. Dinosauria [36].

Theropoda [37].

Boutakioutichnium ichnogen. nov
ZooBank LSID urn:lsid:zoobank.org:act:3CFC30E8-4E94-

4EC8-8448-A9DC9249F3F3.

Etymology. Boutakioutichnium, in honor of Dr. Mohamed

Boutakiout, professor at the University of Rabat in recognition

of his social scientific work and devoted to the protection of

M’Goum natural areas (Azilal Province, Morocco), especially its

dinosaur footprints outcrops.

Type ichnospecies. Boutakioutichnium atlasicus.

Boutakioutichnium atlasicus ichnosp. nov.
ZooBank LSID urn:lsid:zoobank.org:act:DA51C3BB-5AA2-

4BFB-A5D6-DC15DDA3BA46.

Figure 2, 3. Appendix S1.
Synonymy. 2007 Eutynichnium atlasipodus [6] (nomen nudum), p.

113, fig. 115.

2010 ‘‘megalosaurian’’ Morphotype 2D [8], p. 371, fig. 7.

Etymology. atlasicus, from Atlas, the name of the mountains

where the footprints have been found.

Holotype. Footprint 11IGR1.4 (Fig. 2). It has been deposited a

plaster cast in Musée de Géologie d’Azilal, MGP, 1, 2011.7.

Horizon and type locality. Red siliceous levels in the

Intermediate unit of Iouaridène.

Formation in the Iouaridène syncline. Upper Jurassic (Oxfor-

dian-Kimmeridgian). Tracksite 11IGR [2], Trackway 11IGR1 [38]

near Taghbalout, Azilal province, Morocco. Coordinates UTM

29R698501E3512603N.

Diagnosis: Digitigrade, mesaxonic, tetradactyl (I, II, III, IV) and

large theropod footprint of a bipedal dinosaur. All the digits have

acuminated ends. Digit I (hallux) has two pads. The hallux is

directed proximolaterally or almost perpendicularly to the axis of

the foot. The first digital pad of digit I has the proximal area at the

same level of the lateral end of digit IV. Digit I (hallux) is almost as

long as digit II. Digit III is the longest. Digit II is the widest. There

are no metatarsal impressions. Footprint rotation is high. The

trackway is very narrow. Dimensions of the holotype are: total

footprint length 45 cm (whitout hallux 36 cm); width 30 cm; digits

I-II-III-IV length 18-22-26-23 cm; interdigital angles I‘II‘III‘IV

44u-25u-29u.
Description: The height for the hind limb calculated according

to Thulborn [29] formula ranges between 150 and 180 cm. The

total footprint length, hallux included, ranges between 38 to 48 cm

(Table 1, Fig. 3). Whitout hallux, it ranges between 31 to 38 cm.

The width shows little variability (between 26 and 31 cm). Digit III

is the longest (20–25 cm). Digit IV measures 17 to 32 cm. Digit I

(16–24 cm) is usually longer than II (18–19 cm). Divarication

angle II‘IV is low (33u to 67u), while I‘II is high and variable (33–

100u). I‘III range between 52u and 126u, with lots of data near

80u. Divarication angle II‘III is 10u less than III‘IV. In the good

preserved footprints it is possible to distinguish digital pads, even in

the digit I (two pads). In other footprints the digital pads are poorly

preserved due to the physical characteristics of the mud. All the

Figure 3. Footprints of B. atlasicus from other trackways (see Appendix S1). A) 8IGR1.23. B) 8IGR3.2. C) 8IGR3.3.
doi:10.1371/journal.pone.0026882.g003
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digits have acuminated end. The pes is relatively narrow according

to the (FL-FW)/FW ratio (0.1–0.5). The toe extension (te) of the

digit III beyond a line drawn across the tips of digit II and IV is

relatively high (12–14 cm).

The trackways are very narrow (TD/WL less than 0.5) with

high pace angulation (159–175u) (see Appendix S1). Footprint

rotation is low. The relative stride length (Sl/H) indicates that the

dinosaur progresses in a walking gait. This data is contrary to the

relative high velocity obtained.

The depth has been measured at three points in the good

preserved footprints. In the middle of the hallux (0.5–1.8 cm), in

the proximal digital pad of digit IV (1.5–2 cm) and in the central

pad of digit III (2–3 cm). The distal area of the digits is slightly

deeper than the proximal in the footprint soles which not have

been eroded. The footprints of the 7IGR tracksite have averages

lower than 8IGR tracksite. No criteria have been found to explain

the alternation of tetradactyl and tridactyl footprints in some

trackways. It is possible that the variation in the depth of the foot

sole and the thickness variation of a clay layer are likely causes of

this variability.

Digit III proyection (Weems [39] parameter) placed Boutakiou-

tichnium close to Atreipus [40] and no showing dispersion data

(Appendix S4).

Discussion

Ichnotaxonomic discussion
The hallux trace is considered as a generic ichnotaxobase.

Therefore the footprints of Boutakioutichnium are compared with

other theropod ichnogenera and ichnospecies with hallux traces

described in scientific literature.

Digit I in Eutynichnium is slender, associated with the metatarsal

impression, and presents two medial digital pads [11,41].

Nevertheless, Boutakioutichnium has a wide digit I, without

metatarsal impression and the proximal area of the first pad is

lateral. Bueckeburgichnus [42] is also different from Boutakiouthichnium

because has a narrow digit I, sittuated medially and joined with the

metatarsal impression [43]. Picuichnus [44] is a very well preserved

cast. It has metatarsal impression where there is a narrow digit I

perpendicular to digit III. The presence of metatarsus, and the

hallux shape and disposition, distinguishes it from Boutakioutichnium.

Anomoepus isodactylus [45–46] is based on the trackway of a

quadruped. The hallux trace is large, with two digital pad

impressions directed forwards. It is different from Boutakioutichnium

because the digit projection is very low, and the first digital pad of

digit I is medial to the footprint axis. Tyrannosauripus [47] reveal a

long digit I without a metatarsal impression. Nevertheless, the digit

is narrow and the proximal area of digit I is medial. Chongqingpus

[48] lacks a metatarsal impression but has residual digit I.

Saurexallopus [49], like Boutakioutichnium, has a digit I with two

digital pads [50,51], but also has thinner digits, greater

divarication, and the proximal area of digit I is medial with

respect to the footprint axis. Neoanomoepus [52] reveal digit I size

and digit III projection similar to Boutakioutichnium, although it has

metatarsal impressions and the proximal area of digit I is medial.

Most of the footprints with hallux are associated with metatarsal

impressions [53], tail impressions [54] or they are footprints which

penetrate deeply in the mud [55,56]. In other words, they are

either footprints of anomalous gait, or the dinosaur stepped in a

soft mud. These latter types of footprints shows gravitational

collapse structures in the footprint walls or structures that indicate

the penetration of the feet in the mud where the hallux impression

appears as a narrow lateral line or grove [55,57].

According to this discussion, Boutakioutichnium is the first difined

ichnotaxon that has the proximal area of the first digital pad

situated laterally close to the digit IV proximal end, the pads of

digit I are as wide as other digits, and digit I is similar o longer

than digit II.

The hallux in theropod dinosaurs
The hallux consists of three bones in the theropod dinosaurs:

one metatarsus and two phalanges [58]. Its size and position

(relative elevation and divarication) is variable in Theropoda. The

metatarsi and the phalanges are reduced (asociated with the

cursorial character of the theropods) roughly half of other digits

[59]. In many theropod dinosaurs the metatarsi and the phalanges

are very small [58]. Nevertheless the therizinosaurids have a long

and robust digit I [60].

The hallux varies its position in both relative elevation and

divarication respect to the other metatarsi and phalanges [61].

The elevation depends on the metatarsus I length. It is situated in

the middle of digit II in some theropods [59]. The proximal area

of metatarsus I is separated from the distal one in some dinosaurs

[62]. They do not have fixed articulation point, not even a fixed

proximal area or a visible fixed point [58].

The divarication depends on the rotation of the metatarsus I.

The hallux position of some theropods does not allow a backward

orientation (inversion, retroversion) [59]. In the articulated feet,

metatarsus I is parallel to metarasus II [59]. Dinosaurs with not

reverse hallux have been cited, such as Coelophysis [63], Velociraptor

[64], Saurornithoides [64] and Compsognathus [65]. Nevertheless, other

researchers assert that most of the dinosaurs have the hallux in

backward orientation position [29,66]. Based on the study of

theropod footprints with hallux, the theropods should have the

digit I orientated backward [29,55]. But this assertion is valid only

for digitigrade footprints. In semiplantigrade footprints, the

metatarsus is flat and digit I should be pointed towards the medial

or forward. The divarication angle varies from less than 90u to

180u, in birds to 145u [61]. The retroversion is not only

characteristic of birds, but the Scleromochlus [67] (Triassic) has the

same orientation [68]. Hallux orientation is not necessarily a

reliable guide to hallux trace orientation. In fact, studies of

footprint formation [55] have shown that a posteriorly oriented

hallux may in some cases make an anteriorly oriented hallux trace.

The hallux in Boutakioutichnium
According to the characteristics inferred for Boutakioutichnium

hallux, digit I of the trackmaker should be long (17–24 cm) and

strong, similar to the other digits. The width of the hallux pads are

incompatible with a residual metatarsus I. It is almost as long as

digit II. Metatarsus I is rotated such that its distal end moves away

from the digit II and is placed close to distal area of digit IV. To

impress the hallux and not impress the metatarsus, the phalanges

would have to had been locate relatively low and parallel to the

ground.and the halluxwas directed medially or forward.

Most trackways are composed only by tetradactyl footprints.

Nevertheless, there are others with tridactyl footprints too. Three

possibilities have been considered taking into account the

possibility that the hallux has a higher position than the sole to

justify this fact. The first one is that the hallux sole is elevated with

respect to the rest of the foot, and the tetradactyl footprints are

deeper than those of the tridactyls. The second is the variation of

the metatarsus inclination such that the hallux is nearest to the

ground depending on the support angle. The last one is the

posibility that the hallux is a retractable digit. None of the three

hypotesis is justified by the observed data. There is no evidence

that the footprints with hallux impression are much deeper than
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tridactyls. Also not are drag grooves on the proximal area of the

footprint showing variation of foot position in the T phase. To

justify retractility the metatarsus should be vertical or inclined

forward, and this posture is opposite to the movement of limbs.

Based in the deep data of footprint soles (see above) is possible

that the variation in the depth of the foot sole and the thickness

variation of a clay layer could explain the alternation of tetradactyl

and tridactyl footprints in some trackways.

Trackmaker affinity
The Boutakioutichnium trackmaker must have been a biped

dinosaur, with a strong foot and digits with acuminated ends. It

was a theropod footprint [69]. The digital divarication, the hallux

elevation, the lateral position of the proximal area of the hallux are

compatible with a theropod trackmaker. There were neocerato-

saurs, spinosauroids, megalosaurids, allosaurids, coelurosaurids

and tyrannosauroids in the same age as Boutakioutichnium

(Oxfordian-Kimmeridgian) [58]. Besides, the family Therizino-

sauroidea appears in the Lower Jurassic [70].

Undoubtedly there are problems concerning the inferred

thickness and length that metatarsus I in the Boutakioutichnium

trackmaker. Almost all the metatarsi I in Theropoda are thin and

short [58] and not consistent with strong and long halluxes.

Nonetheless, there are long metatarsi I in other theropods [58,59]

without thin limbs like therizinosaurids, that range in age from the

Lower Jurassic to the Upper Cretaceous [70]. There are also

references to other theropods with funtional and well developed

digit I both in the Triassic, Tawa [71], and Upper Cretaceous,

Balaur [72]. However, there are no criteria that show that

metatarsi I is rotated. In this work it is assumed that both features

(size and position) are those of the Boutakioutichnium trackmaker,

thus no correlation has been found a between footprints and the

autopodial record. It is possible that these footprints are impressed

by a theropod whose pes has not been found or by a yet unknown

theropod taxon.

Conclusions
A new theropod ichnotaxon Boutakioutichnium atlasicus has been

described from the Iouaridène syncline (Morocco). It has been

found in several layers in the intermediate unit of Iouaridène

Formation of Upper Jurassic (Oxfordian-Kimmeridgian) age. It is

mainly characterized by the hallux impression that is unique in the

paleoichnological record. It is long, strong, laterally or medially

directed, with two digital pads, with the proximal area of the first

digital pad in lateral position, and does not have metatarsal

impression or sinks deep into the mud.

The position and size of the hallux is also unique compared with

the osteological pes record of theropods. Metatarsus I is turned in

such away from the distal area of metatarsus II and is placed close

to the distal area of metatarsus IV.
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Prospecciones paleoicnológicas en el sinclinal de Iouaridène (Alto Atlas,

Marruecos). Cuantificación de yacimientos y de icnitas. Geogaceta 45: 51–54.

2. Boutakiout M, Ladel L, Dı́az-Martı́nez I, Pérez-Lorente F (2009) Prospecciones
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