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Abstract In this paper, we present methods for a numerical equilibrium and stability
analysis for models of a size structured population competing for an unstructured re-
source. We concentrate on cases where two model parameters are free, and thus existence
boundaries for equilibria and stability boundaries can be defined in the (two-parameter)
plane. We numerically trace these implicitly defined curves using alternatingly tangent
prediction and Newton correction. Evaluation of the maps defining the curves involves in-
tegration over individual size and individual survival probability (and their derivatives) as
functions of individual age. Such ingredients are often defined as solutions of ODE, i.e.,
in general only implicitly. In our case, the right-hand sides of these ODE feature discon-
tinuities that are caused by an abrupt change of behavior at the size where juveniles are
assumed to turn adult. So, we combine the numerical solution of these ODE with curve
tracing methods. We have implemented the algorithms for “Daphnia consuming algae”
models in C-code. The results obtained by way of this implementation are shown in the
form of graphs.

Keywords Numerical equilibrium analysis · Structured populations · Stability
boundaries · Hopf bifurcation · Consumer resource models · Delay equations · Renewal
equations · Delay differential equations · Daphnia models

1. Introduction

In this paper, we present methods for a numerical equilibrium and stability analysis of
a class of models of the interaction between a structured consumer population and an
unstructured resource population.
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In unstructured consumer resource models and in predator prey models, one typically
finds a Hopf-bifurcation marking the destabilization of an interior equilibrium and the
emergence of a stable limit cycle (Rosenzweig, 1971). In de Roos et al. (1990), one finds
a model of a size structured population of Daphnia magna consuming algae, which is pa-
rameterized on the basis of experimental data. Based on extensive numerical calculations,
it is concluded in de Roos et al. (1990) that incorporating size structure of the consumer
induces additional features, namely the possibility of the coexistence of a stable and an
unstable limit cycle and even the coexistence of two stable limit cycles.

In Diekmann et al. (2007), a theoretical framework is described that establishes exis-
tence and uniqueness, the principle of linearized stability and the Hopf-bifurcation the-
orem for a class of abstract integral equations. For given resource, the dynamics of a
structured population can be described by a renewal equation; see Metz and Diekmann
(1986). This equation can also be classified as a Volterra integral equation or a functional
equation of delay type (with continuously distributed delay); see Diekmann et al. (1995).
Incorporating competition then amounts to adding an equation for the resource dynam-
ics (Diekmann et al., 2007). This equation has on the right-hand side a similar structure
as the renewal equation, but the left-hand side consists of the time derivative of the un-
known resource concentration, whereas in the case of the renewal equation, it consists of
the unknown function itself. It hence should be called an integro-differential equation or
a delay differential equation (again with continuously distributed delay). Hence, in sum-
mary, we shall speak of a system of delay equations, a renewal equation coupled to a
delay differential equation. Such systems are equivalent to special cases of the mentioned
abstract integral equations; see again (Diekmann et al., 2007). In de Roos et al. (2009), the
mathematical setting of Diekmann et al. (2007) is used to establish an analytical stability
and bifurcation theory for structured consumer resource models with special attention for
the Daphnia model in de Roos et al. (1990). Our aim here is to complement the analyti-
cal theory in de Roos et al. (2009) with tools for the numerical equilibrium and stability
analysis of such models. Even though we use Daphnia models to test our algorithms, our
approach works for more general structured consumer resource models. Moreover, we use
formulations that should be easy to generalize to other structured population models.

As key results of the analysis of qualitative behavior, in de Roos et al. (1990) curves
in two-parameter space marking stability boundaries where Hopf-bifurcations occur were
presented. Integrals, which arise naturally when modeling structured populations, could
in the case of the Daphnia model be evaluated analytically, and thus the curves could be
approximated by coding established predictor- corrector methods (Allgower and Georg,
1990) without it being necessary to refer to numerical integration. We present a method
here to compute stability boundaries for models specified in terms of general vital rates.
Integrals involving these general vital rates can be evaluated by integration of a system of
coupled ODE, which is generally not possible by hand. The idea, which can be found al-
ready in Kirkilionis et al. (2001), is to combine the curve tracing methods with numerical
integration of the ODE. We use this idea here to establish methods to compute existence
and stability boundaries for structured consumer resource models formulated as systems
of delay equations.

The Daphnia models in de Roos et al. (1990) and (2009) exhibit a discontinuity of
the consumers vital rates at the size at which juveniles turn adult, caused by an abrupt
change of behavior, notably an abrupt onset of reproduction, upon reaching this size. We
therefore allow also here for such discontinuities.



Numerical Equilibrium Analysis for Structured Consumer Resource 261

Much of the length of this paper is caused by the complexity of the characteristic
equation. This complexity is due to the fact that the following issues are involved in its
computation:

– differentiation of solutions of ODE with respect to infinite dimensional parameters,
– discontinuities at the size where adulthood is reached,
– the rewriting of ingredients of the characteristic equation as solutions of (real) ODE.

In de Roos et al. (2009), an expression for the ingredients of the characteristic equation
for our class of structured consumer resource models is given. Our present derivation of
the characteristic equation is much inspired by this paper, but we found that for the numer-
ical computation of the elements a different representation of the characteristic equation
is more convenient.

In Section 2, we introduce the analytic setting for a class of models describing the
interaction of a structured consumer population with an unstructured resource popula-
tion. We formulate the population equations and discuss the existence of a unique in-
terior equilibrium. Then we concentrate on the case where two model parameters are
free and define existence boundaries for the equilibrium in the (two-parameter) plane. In
this plane, we then define a curve marking Hopf-bifurcation points. The main ingredi-
ent here is the characteristic equation obtained via linearization of the population equa-
tions.

In Section 3, we present methods to numerically approximate the curves defined in
Section 2. We start with an algorithm for the numerical integration involved in the approx-
imation of equilibria. In a further algorithm, we show how to achieve this approximation
by a combination of the numerical integration method and a Newton-method. In the case
of two free parameters, we show how the curves can be continued by combining first
tangent prediction and then correction with a Newton method with numerical integration.
Here, the map defining stability boundaries is much more involved than the one defin-
ing existence boundaries, due to the already mentioned complexity of the characteristic
equation.

In Section 4, we present the results obtained via the implementation of the various al-
gorithms using as examples models of a structured Daphnia population interacting with
an unstructured algal population. We use specifications of vital rates in terms of para-
meters and parameter values as in de Roos et al. (1990) and de Roos (1997). We have
implemented the algorithms to compute existence and stability boundaries by numerical
integration combined with curve tracing for the Daphnia model in a C-code. The parts of
this code that deal with numerical integration and curve tracing are problem independent,
whereas in other parts of the code the ingredients specific for the Daphnia model are used.
We present results of the computations for the Daphnia model in the form of numerical
examples and graphs of traced curves in two-parameter planes. We tested our algorithms
by comparing our results with stability curves computed following the approaches in de
Roos et al. (1990) and de Roos (1997), in which curves were traced after deriving analytic
expressions for the integrals over the vital rates for the Daphnia model. The curves we
compute in this paper match with the curves computed in de Roos et al. (1990) and de
Roos (1997).
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2. Consumer resource dynamics

We present the analytic formulation of the class of models here that we will investigate.
We first give the population equations and equilibrium conditions. Then we define ex-
istence and stability boundaries in two parameter planes. Much of Sections 2.1 and 2.2
overlap with de Roos et al. (2009) and is presented here for the sake of completeness.

2.1. The model

We first derive the population equations—stepping from the individual level to the pop-
ulation level—formally, i.e., we postpone smoothness discussions. We then give smooth-
ness assumptions, discuss discontinuities induced by an abrupt onset of reproduction, and
finally become more specific about the derivation of size and survival as functions of age.

2.1.1. The population equations formally
Let us denote by S(t) the available resource or food concentration at time t . Our way
of bookkeeping at the population level leads us to introduce histories, first as functions
defined on (−∞,0]. For the resource S, we introduce the notation

St (σ ) := S(t + σ), σ ∈ (−∞,0], (1)

which is common in the theory of functional differential equations (Hale, 1977). Then St

is a history for every t , the history of the resource at time t .
Let us assume that there is only one possible size xb at which individuals are born.

Next, we introduce X(a,Ψ ) as the size that an individual has at age a, given that it has
experienced history Ψ in the time interval [−a,0]. Then X(a,St ) is the size that an in-
dividual has at age a and time t , given that it has experienced resource concentration S

in the time interval [t − a, t]; see Fig. 1. Likewise, we introduce F (a,Ψ ) as the survival
probability to age a of an individual, given that if it survives, it has experienced history Ψ

in the time interval [−a,0]. Then F (a, St ) is the probability for an individual to reach age
a at time t given that it experiences resource concentration S in the time interval [t −a, t].
Next, we denote by β(x, y) the rate of reproduction of an individual of size x under re-
source condition y and by γ (x, y) the rate of food consumption of an individual of size x

under resource condition y. So, for example, β(X(a,St ), S(t)) is the rate of reproduction
of an individual of age a at time t . Finally, f (y) denotes the intrinsic rate of change of
the resource, meaning the rate of change in absence of the consumer. Let us denote by
b(t) the population birth rate, i.e., the number of individuals born (in total or per unit of
area or volume, depending on the context) with size xb per unit of time at time t . Let us
denote by h > 0 the maximum lifetime of an individual under ideal food conditions. Then
we can describe the population dynamics by the system of equations

b(t) =
∫ h

0
β
(
X(a,St ), S(t)

)
F (a, St )b(t − a)da, (2)

S ′(t) = f
(
S(t)

) −
∫ h

0
γ
(
X(a,St ), S(t)

)
F (a, St )b(t − a)da; (3)

see again Fig. 1. The Eqs. (2)–(3) form a system of a renewal equation (2) coupled to a
delay differential equation (3). The qualitative behavior of such systems can be studied
using the theory developed in Diekmann et al. (1995, 2007), and de Roos et al. (2009).
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Fig. 1 Equation (2): reproduction at time t as induced by the history of resource and population birth rate.

2.1.2. Smoothness conditions and discontinuities caused by abrupt onset of reproduction
Motivated by the “Daphnia consuming algae” model in de Roos et al. (1990), we suppose
that at size xA > xb juveniles mature. Keeping in mind that we would like to linearize
later, we should formalize the assumption that rates are smooth, except for a possible jump
in xA. We thus assume that β and γ can be defined on [xb,∞) via functions that are C1 on
[xb, xA] × R+ and on [xA,∞) × R+. This leads to unique definitions on [xb,∞)\{xA} ×
R+ and to a double definition in (xA, y) for all y ∈ R+. This double definition, however, is
irrelevant, as we are ultimately interested in the integrated functions. Finally, we assume
that β(x, y) = 0 for all x ∈ [xb, xA) and all y. So, neither for β , nor for γ there can be
expected continuity, let alone differentiability, in xA. Next, suppose that f : R+ −→ R is
C1. We assume that S is continuous and restrict the domain of definition of histories, in
particular of St , from (−∞,0] to [−h,0]. To guarantee integrability in (2)–(3) and for
later differentiability in the S-component, we require that X and F are such that

C
([−h,0],R

) −→ L∞([0, h],R
)
,

ψ �−→ X(·,ψ), (4)

ψ �−→ F (·,ψ)

are continuously differentiable maps. Next, if an individual matures exactly at the present
time for a given food history ψ , we denote its age at maturation by aA, i.e., we define aA

via the equation

X(aA,ψ) = xA, (5)



264 de Roos et al.

the solvability of which will be discussed in Section 2.1.3 below. Finally, we assume that
b is nonnegative and integrable. The population equations, reflecting the jump in xA are
now given by

b(t) =
∫ h

aA(St )

β
(
X(a,St ), S(t)

)
F (a, St )b(t − a)da, (6)

S ′(t) = f
(
S(t)

) −
∫ aA(St )

0
γ
(
X(a,St ), S(t)

)
F (a, St )b(t − a)da

−
∫ h

aA(St )

γ
(
X(a,St ), S(t)

)
F (a, St )b(t − a)da, (7)

where the integrals from aA(St ) to h should be interpreted as zero when aA(St ) ≥ h. In (7),
we have split the integration interval into two parts in order to highlight the discontinuity
in the integrand. In the following, however, we shall simply write one integral from zero
to h, as the jump discontinuity is harmless with respect to integration.

2.1.3. Computation of size and survival functions as solutions of ODE
We show how X and F can be computed for the case that one has given rates g(x, y)

and μ(x, y) of individual growth and mortality. Just like for γ , we also assume that
g,μ : R

2+ −→ R+ are C1 on [xb, xA] × R+ and on [xA,∞) × R+. We additionally as-
sume the existence of positive lower bounds for g and μ that are uniform for all sizes
and uniform for all resource conditions outside a neighborhood of zero which should be
chosen sufficiently small not to contain positive equilibria (which will be defined below).

The definition of X and F in terms of the history of a time dependent resource via
the rates g and μ leads to a certain notational complexity. We here use the same notation
as in de Roos et al. (2009). We denote by x(α) = x(α;a,ψ) the size of an individual at
age α, given that at age a, if still alive, it has experienced resource history ψ . Likewise,
we denote by F̃ (α) = F̃ (α;a,ψ) the probability that an individual survives up to age α,
given that at age a, if still alive, it has experienced resource history ψ . Then we can define

X(a,St ) := x(a;a,St ) and F (a, St ) := F̃ (a;a,St ).

We compute x(α) and F̃ (α) by solving the system of (one-sidedly) coupled nonau-
tonomous ODE

x ′(α) = g
(
x(α),ψ(−a + α)

)
, 0 < α ≤ a,

(8)
x(0) = xb,

F̃ ′(α) = −μ
(
x(α),ψ(−a + α)

)
F̃ (α), 0 < α ≤ a,

(9)
F̃ (0) = 1.

Equations (8)–(9) are linearized with respect to ψ in Appendix A to compute expressions
for the derivatives of X and F with respect to ψ .
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2.2. Steady states

For the system (6)–(7), an equilibrium is a pair of constants (b, S), such that (b, S) :=
(b, S) fulfills (6)–(7). If b = 0, S should be such that f (S) = 0. In this case, we have
a trivial equilibrium (0, S), which we disregard here. A nontrivial equilibrium is given by
a pair of constants (b, S) fulfilling

R0

(
S

) − 1 = 0, (10)

f
(
S

) − Θ
(
S

)
b = 0, (11)

R0

(
S

) :=
∫ h

τ

β
(
X

(
a,S

)
, S

)
F

(
a,S

)
da,

(12)

Θ
(
S

) :=
∫ h

0
γ
(
X

(
a,S

)
, S

)
F

(
a,S

)
da,

where we denote by

τ := aA

(
S
)

the age at which individuals mature under steady state conditions. Note that R0(S) and
Θ(S) are, respectively, the expected lifetime offspring production and the expected life-
time resource consumption of a consumer individual, which gives obvious interpretations
of the steady state conditions. As, for Θ(S) > 0, (11) can be solved explicitly with respect
to b, we write

b
(
S

) := f (S)

Θ(S)
, (13)

and reduce the steady state problem to finding an S satisfying (10). A typical case is that
(10) has a unique solution; see, e.g., de Roos et al. (1990), and also here we assume that
this holds. We give a method to approximate the solution S of (10) in Section 3.2.

2.2.1. Existence boundaries
We suppose in the following that two model parameters, which we denote by α1 and α2,
are free. We will or will not incorporate (free) parameter dependence of functions into the
notation according to convenience and relevance in the context. We then rewrite (10)–(11)
as

R0

(
α1, α2, S

) − 1 = 0, (14)

b := f (α1, α2, S)

Θ(α1, α2, S)
, (15)

(where it will prove convenient in Section 3 to denote first parameters and then the
equilibrium). The b component of the equilibrium becomes positive if the curve in the
α1–α2-plane defined by the two equations

f
(
α1, α2, S

) = 0 (16)
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and (14) is crossed in the appropriate sense. We hence call this curve the existence bound-
ary for the nontrivial equilibrium.

2.2.2. Existence boundaries for Daphnia models and equilibrium curves
In the models of Daphnia consuming algae, we assume (in absence of Daphnia) chemo-
stat or logistic algal dynamics and choose α1 as the mortality for Daphnia and α2 as the
carrying capacity for algae. Hence, typically, for given S, f is independent of α1 and R0

independent of α2. Moreover, (16) is equivalent to S = α2 for chemostat or to “S = 0 or
S = α2” for logistic dynamics; see Section 4 below. Finally, typically (14) has no solution
for S = 0, as in the absence of food there is no reproduction. In summary, for Daphnia,
the existence boundary defined by (14) and (16) can equivalently be defined by

S = α2, R0

(
α1, S

) − 1 = 0, (17)

where we dropped the nonmanifesting α2-dependence in the notation of R0. It is hence
clear that in this special setting the existence boundary in the α1–α2-plane and the curve
describing how the equilibrium changes if one parameter varies are equal. We will give
methods to compute existence boundaries for both the general setting and the setting for
Daphnia in Section 3.

2.2.3. Steady state defining functions as ODE and stopping criteria for integration
As in Kirkilionis et al. (2001), in view of the interdependence of functions and the dis-
continuity at xA we propose to compute several model ingredients as solutions of ODE.
We introduce two alternative criteria for ending the integration of the ODE. The choice of
which one to use should depend on the biological problem one considers. The first is the
reaching of a maximum age Amax, in which case we should choose h := Amax. The second
criterion is the one proposed in Kirkilionis et al. (2001): For every ε ∈ (0,1), we define
aε = aε(S) via the equation F (aε, S) = ε, i.e., as the age at which the probability that an
individual survives up to it has decreased to ε, and assume that the function S �→ aε(S)

is bounded, which is granted, if F is defined via μ as in Section 2.1.3. We call ε the sur-
vival tolerance. When using this stopping criterium, we redefine h as the supremum of
the function S �→ aε(S). To facilitate the exposition, we will here and in the algorithms
below concentrate on the second criterion, also since we believe that it is obvious what
should be changed when using the first. We have implemented both criteria and will show
the results for both. We associate with the steady state conditions the system of coupled
autonomous ODE

d

da
X

(
a,S

) = g
(
X

(
a,S

)
, S

)
, a > a0,

X
(
a0, S

) = x0,

(18)

d

da
F

(
a,S

) = −μ
(
X

(
a,S

)
, S

)
F

(
a,S

)
, a > a0,

F
(
a0, S

) = f0,

(19)

d

da
r
(
a,S

) = β
(
X

(
a,S

)
, S

)
F

(
a,S

)
, a > a0,

r
(
a0, S

) = r0,

(20)



Numerical Equilibrium Analysis for Structured Consumer Resource 267

d

da
θ
(
a,S

) = γ
(
X

(
a,S

)
, S

)
F

(
a,S

)
, a > a0,

θ
(
a0, S

) = θ0.

(21)

Note that r denotes cumulative offspring, so corresponds to R0 and θ cumulative con-
sumption, so corresponds to Θ . We have written the ODE for arbitrary initial data, as we
would like to be able to solve the ODE for various initial data to cope with discontinuities.
The natural start is with a0 = 0, x0 = xb , f0 = 1, r0 = 0, and θ0 = 0.

Remark 2.1. Of course X and F as defined by (8)–(9) equal X and F as defined by (18)–
(19) only for these natural initial conditions. Since we use the two sets of ODE in different
contexts, this should not lead to misunderstanding.

Then if a0 = 0, x0 = xb , f0 = 1, r0 = 0, and θ0 = 0, we can integrate from zero
to aA and next, with initial conditions guaranteeing continuity, from aA to h to get
R0(S) = r(h,S) and Θ(S) = θ(h,S). We therefore introduce Rε(S) := r(aε, S) (consis-
tent for ε = 0), Θε(S) := θ(aε, S) and bε(S) := f (S)

Θε(S)
as approximations for R0(S), Θ(S)

and b(S).

2.2.4. Definition of approximated existence boundaries
For general consumer resource models, the approximated existence boundary for equilib-
ria is the curve defined by

Gε

(
α1, α2, S

) = 0, (22)

where

Gε

(
α1, α2, S

) :=
(

Rε(α1, α2, S) − 1

f (α1, α2, S)

)
(23)

and where Rε can be computed via integration of (18)–(20). For Daphnia models, the
existence boundary can be computed by tracing the curve defined by

Gε

(
α1, S

) = 0, (24)

where

Gε

(
α1, S

) := Rε

(
α1, S

) − 1, (25)

and where again Rε can be computed via integration of (18)–(20).

2.3. Stability boundaries in a two parameter plane

By the principle of linearized stability, see Diekmann et al. (2007) where this result is
proven for (6)–(7); an equilibrium is locally stable, if all roots of the characteristic equa-
tion have negative real part and unstable if at least one root has positive real part. Hence, a
necessary condition for a stability switch upon parameter variation is that at least one root
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crosses the imaginary axis (recall that non-real roots cross in complex conjugate pairs).
As a first step, we thus derive the characteristic equation for (6)–(7). In the case of two
free parameters, one can then define stability boundaries for equilibria in R

2, interpreted
as α1–α2-space, as explained below.

2.3.1. The characteristic equation
We will show in Appendix A that if one linearizes (6)–(7) and plugs in exponential trial
solutions, one gets a characteristic equation of the form

det

(
M

(
b,S,λ

) −
(

1 0
0 λ

))
= 0, (26)

where, if one uses that (6)–(7) are linear in b for given S, one can show that M is of the
form

M
(
b,S,λ

) =
(

Ψ 1(S,λ) bΨ 2(S,λ)

Ψ 3(S,λ) f ′(S) + bΨ 4(S,λ)

)
, (27)

for functions Ψ i , i = 1, . . . ,4 to be specified (where i is a super-index, not a power). The
λ-dependence in M is induced by the delay and to understand the form of the subtracted
matrix recall that (2)–(3) is a renewal equation and a delay differential equation, such that
the λ arises through differentiation. We refer to (de Roos et al., 2009) for a representation
involving Laplace transforms, which for numerical computations is less convenient. If we
plug (13) into (27), we see that (26) is equivalent to

0 = f
(
S

)[(
Ψ 1

(
S,λ

) − 1
)
Ψ 4

(
S,λ

) − Ψ 2
(
S,λ

)
Ψ 3

(
S,λ

)]

+ Θ
(
S

)(
Ψ 1

(
S,λ

) − 1
)(

f ′(S
) − λ

)
. (28)

2.3.2. Stability boundaries
To define stability boundaries, we should first plug λ = iω, ω ≥ 0, into (28) and rewrite the
complex equation as two real equations. To this aim, we define real functions Ψ

j
r (S,ω),

Ψ
j

i (S,ω), j = 1, . . . ,4, such that

Ψ j
(
S, iω

) = Ψ j
r

(
S,ω

) + iΨ
j

i

(
S,ω

)
(29)

(and where the subindices r and i refer to “real” and “imaginary”). If we plug this into
(28), a straightforward computation shows that the complex equation (28) is equivalent to
the system of two real equations defined by

H
(
S,ω

) = 0, (30)

where

H
(
S,ω

) := f
(
S

)[(
Ψ 1

r

(
S,ω

) − 1
)(

Ψ 4
r (S,ω)

Ψ 4
i (S,ω)

)
+ Ψ 1

i

(
S,ω

)(
−Ψ 4

i (S,ω)

Ψ 4
r (S,ω)

)

− Ψ 3
r

(
S,ω

)(
Ψ 2

r (S,ω)

Ψ 2
i (S,ω)

)
+ Ψ 3

i

(
S,ω

)(
Ψ 2

i (S,ω)

−Ψ 2
r (S,ω)

)]
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+ Θ
(
S

)[
f ′(S

)(
Ψ 1

r (S,ω) − 1

Ψ 1
i (S,ω)

)
+ ω

(
Ψ 1

i (S,ω)

1 − Ψ 1
r (S,ω)

)]
. (31)

If we now incorporate two parameters α1 and α2 into the notation, we can define a system
of three real equations

G
(
α1, α2, S

) = 0,
(32)

H
(
α1, α2, S,ω

) = 0,

where

G
(
α1, α2, S

) := R0
(
α1, α2, S

) − 1,

in the four variables S, ω, α1, and α2. Hence, generically (32) defines a curve that can be
projected to the α1–α2-plane.

Remark 2.2. Note that for p ≥ 2 in p-dimensional parameter space the stability boundary
is of dimension p − 1. We choose p = 2 for the following reasons. For p = 2, Eqs. (32)
define a curve, for the numerical computation of which we can adapt established predictor-
corrector algorithms. For p = 3, the equations analogous to (32) would define a surface
in three- dimensional parameter space, an object much more difficult to compute numer-
ically than a curve. For p ≥ 4, in addition to numerical difficulties that this choice would
involve, the shape of the stability boundary would be hard to understand due to constraints
of the human visual system.

We call the region in parameter space, where the positive equilibrium is stable, the
stability region. The stability boundary is the boundary of this region. The stability region
may have several components. Even if the stability region consists of one component,
the boundary may consist of several connected components. We determine these compo-
nents as solutions of (32) with either ω = 0 or ω > 0. (Note that for ω = 0 system (32)
reduces to two equations in the three variables S, α1, and α2, since the component of H

corresponding to the imaginary part is identically zero for ω = 0.)
In order that a solution of (32) corresponds to a component of the stability boundary,

the number of roots of the characteristic equation in the right-half plane should be zero
on one side of the curve. In the present case, there is only one curve corresponding to
ω = 0 and this is the already computed existence boundary. At the existence boundary,
the trivial and the nontrivial equilibrium exchange stability (we call this a “supercritical”
transcritical bifurcation, in order to express that the nontrivial equilibrium is positive, and
hence biologically meaningful, for parameter values for which the trivial steady state is
unstable). So, from now on, we focus on ω > 0. Since roots occur in complex conjugate
pairs, solution curves of (32) now correspond to Hopf bifurcation (if we cross the curve
transversally in a regular point; note that, for instance, we may have two pairs crossing
the imaginary axis in a self-intersection of the curve; see, e.g., Fig. 5 below).

Remark 2.3. Note that there may be other curves at which roots are on the imaginary axis
and such that Hopf bifurcations occur, but which are not a stability boundary, since there
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are roots in the right-half plane at both sides of the curve; see Chapter XI in Diekmann
et al. (1995) (whether one speaks of one or several curves may depend on whether or not
one includes the point at infinity in the parameter plane).

In Sections 3.5–3.6, we give methods to trace stability boundaries numerically.

2.3.3. The entries of the characteristic matrix
We here give representations for the functions Ψ i in (27). In steady state, the resource
abundance is time independent and, therefore, so is the size-age relation. Since in addition
the representation of the Ψ j is quite involved, we introduce the shorter notation

β(a) := β
(
X

(
a,S

)
, S

)
, β1(a) := ∂

∂x
β(x,S)

∣∣
(x,S)=(X(a,S),S)

,

(33)

β2(a) := ∂

∂S
β(x,S)

∣∣∣∣
(x,S)=(X(a,S),S)

, F (a) := F
(
a,S

)

and analogously for gi , γi, and μi , where i = 1,2. It is important to keep in mind, how-
ever, the dependence of functions, rates, and derivatives on the steady state condition S, on
the function X(a,S), which is given only implicitly, and on parameters. In Appendix A,
we derive (26) and from it that

Ψ 1
(
S,λ

) =
∫ h

τ

e−λaβ(a)F (a) da,

(34)

Ψ 3
(
S,λ

) = −
∫ h

0
e−λaγ (a)F (a) da,

Ψ 2
(
S,λ

) =
∫ h

τ

β2(a)F (a) da

+
∫ h

τ

e−λa
[
β(a)L(a,λ) + β1(a)F (a)K(a,λ)

]
da

+
(

g+

g− − 1

)
e−λτK

(
τ ,λ

)∫ h

τ

β1(σ )F (σ ) dσ

+ μ− − μ+

g− K
(
τ ,λ

)∫ h

τ

β(a)F (a)e−λa da

+ F (τ )β+

g− e−λτK
(
τ ,λ

)
, (35)

Ψ 4
(
S,λ

) = −
∫ h

0
γ2(a)F (a) da

−
∫ h

0
e−λa

[
γ (a)L(a,λ) + γ1(a)F (a)K(a,λ)

]
da

−
(

g+

g− − 1

)
e−λτK

(
τ ,λ

)∫ h

τ

γ1(σ )F (σ ) dσ
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− μ− − μ+

g− K
(
τ ,λ

)∫ h

τ

γ (a)F (a)e−λa da

− F (τ )

g−
[
γ + − γ −]

e−λτK
(
τ ,λ

)
, (36)

defining g+ := g(xA+, S), g− := g(xA−, S) as the one-sided limits, analogously for the
other rates, and K and L as the solutions of

∂

∂a
K(a,λ) = g1(a)K(a,λ) + g2(a)eλa, a > a0,

(37)
K(a0, λ) = k0,

∂

∂a
L(a,λ) = −μ(a)L(a,λ) − μ1(a)K(a,λ)F (a) − μ2(a)eλa F (a),

a > a0, (38)

L(a0, λ) = l0

for a0 := 0, k0 := 0 and l0 := 0.

Remark 2.4. Note that if all vital rates are additionally continuous in xA the last three
terms in Ψ 2 and Ψ 4 equal zero (note that such a continuity assumption would imply that
β+ = 0), such that the situation simplifies considerably.

2.3.4. Computing entries in the characteristic matrix by solving real ODE
The definition of our curve involves the system of real equations (30) for the real func-
tions Ψ

j

i , Ψ
j
r , j = 1, . . . ,4. These functions are defined via the complex functions Ψ j ,

j = 1, . . . ,4 in (29), which are defined in (34)–(38). Moreover, the ODE-solver in our
implementation requires the specification of real ODE. We therefore in the following re-
define Ψ

j

i (S,ω) and Ψ
j
r (S,ω) as solutions of real ODE.

First, we plug λ = iω into (37)–(38) and rewrite these equations as a system of ODE
for real functions Kr , Ki , Lr , Li , which fulfill (when we suppress the dependence on ω

and S in the notation)

K(a, iω) = Kr(a) + iKi(a), L(a, iω) = Lr(a) + iLi(a). (39)

We then get

K ′
r (a) = g1(a)Kr(a) + g2(a) cosωa,

K ′
i (a) = g1(a)Ki(a) + g2(a) sinωa,

a > a0, (40)

Kr(a0) = k0
r , Ki(a0) = k0

i ,

L′
r (a) = −μ(a)Lr(a) − μ1(a)F (a)Kr(a) − μ2(a)F (a) cosωa,

L′
i (a) = −μ(a)Li(a) − μ1(a)F (a)Ki(a) − μ2(a)F (a) sinωa,

a > a0, (41)

Lr(a0) = l0
r , Li(a0) = l0

i .
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To write down the real ODE to redefine (34)–(36) for λ = iω it is convenient to introduce
real functions

Ke
r (a1, a2) := Re

(
e−iωa1K(a2, iω)

) = Kr(a2)cosωa1 + Ki(a2)sinωa1,

Ke
i (a1, a2) := Im

(
e−iωa1K(a2, iω)

) = Ki(a2)cosωa1 − Kr(a2)sinωa1

(42)

and analogously Le
r(a1, a2) and Le

i (a1, a2). Next, we should define real functions ψ
j
r =

ψ
j
r (a, S,ω) and ψ

j

i = ψ
j

i (a, S,ω), j = 1, . . . ,4, such that Ψ
j
r (S,ω) = ψ

j
r (h,S,ω) and

Ψ
j

i (S,ω) = ψ
j

i (h,S,ω) with Ψ
j
r and Ψ

j

i as in Section 2.3.2. This holds if we define ψ
j
r

and ψ
j

i via the real ODE

d

da
ψ1

r (a) = β(a)F (a)cosωa,

d

da
ψ1

i (a) = −β(a)F (a)sinωa,

ψ1
r (a0) = ψ0

1,r , ψ1
i (a0) = ψ0

1,i ,

a > a0, (43)

d

da
ψ2

r (a) = β2(a)F (a) + β(a)Le
r(a, a) + β1(a)F (a)Ke

r (a, a)

+
(

g+

g− − 1

)
β1(a)F (a)Ke

r

(
τ , τ

)

+ μ− − μ+

g− β(a)F (a)Ke
r

(
a, τ

)
,

d

da
ψ2

i (a) = β(a)Le
i (a, a) + β1(a)F (a)Ke

i (a, a)

+
(

g+

g− − 1

)
β1(a)F (a)Ke

i

(
τ , τ

)

+ μ− − μ+

g− β(a)F (a)Ke
i

(
a, τ

)
, a > a0,

ψ2
r (a0) = ψ0

2,r , ψ2
i (a0) = ψ0

2,i ,

(44)

d

da
ψ3

r (a) = −γ (a)F (a) cosωa,

d

da
ψ3

i (a) = γ (a)F (a) sinωa,

a > a0, (45)

ψ3
r (a0) = ψ0

3,r , ψ3
i (a0) = ψ0

3,i ,

d

da
ψ4

J,r (a) = −γ2(a)F (a) − γ (a)Le
r(a, a) − γ1(a)F (a)Ke

r (a, a),

d

da
ψ4

J,i (a) = −γ (a)Le
i (a, a) − γ1(a)F (a)Ke

i (a, a),

ψ4
J,r (a0) = ψ0

J,4,r , ψ4
J,i (a0) = ψ0

J,4,i ,

a > a0, (46)
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d

da
ψ4

r (a) = −γ2(a)F (a) − γ (a)Le
r(a, a) − γ1(a)F (a)Ke

r (a, a)

−
(

g+

g− − 1

)
γ1(a)F (a)Ke

r

(
τ , τ

)

− μ− − μ+

g− γ (a)F (a)Ke
r

(
a, τ

)
,

d

da
ψ4

i (a) = −γ (a)Le
i (a, a) − γ1(a)F (a)Ke

i (a, a)

−
(

g+

g− − 1

)
γ1(a)F (a)Ke

i

(
τ , τ

)

− μ− − μ+

g− γ (a)F (a)Ke
i

(
a, τ

)
,

a > a0,

ψ4
r (a0) = ψ0

4,r , ψ4
i (a0) = ψ0

4,i ,

(47)

for appropriate initial conditions, which will be specified in Sections 3.5–3.6 below. The
functions ψ4

J,r and ψ4
J,i will be used to define initial conditions for ψ4

r and ψ4
i at aε .

2.3.5. Definition of the approximated stability boundaries
We define the approximation of H as

Hε

(
S,ω

) = f
(
S

)[(
ψ1

r

(
aε, S,ω

) − 1
)(

ψ4
r (aε, S,ω)

ψ4
i (aε, S,ω)

)

+ ψ1
i

(
aε, S,ω

)(
−ψ4

i (aε, S,ω)

ψ4
r (aε, S,ω)

)

− ψ3
r

(
aε, S,ω

)(
ψ2

r

(
aε, S,ω

)
ψ2

i (aε, S,ω)

)
+ ψ3

i

(
aε, S,ω

)(
ψ2

i (aε, S,ω)

−ψ2
r (aε, S,ω)

)]

+ Θ
(
S

)[
f ′(S

)(
ψ1

r (aε, S,ω) − 1
ψ1

i (aε, S,ω)

)
+ ω

(
ψ1

i (aε, S,ω)

1 − ψ1
r (aε, S,ω)

)]
.(48)

Next, we incorporate dependence on α1 and α2 into the notation and define a map

Fε

(
α1, α2, S,ω

) := (
Gε

(
α1, α2, S

)
,Hε

(
α1, α2, S,ω

))
, (49)

where

Gε

(
α1, α2, S

) := Rε

(
α1, α2, S

) − 1. (50)

We can then define the approximated stability boundary by

Fε

(
α1, α2, S,ω

) = 0,

where Fε is defined in (49) in terms of Gε and Hε . The map Gε is defined in terms of Rε

in (50), where Rε can be evaluated as described in Section 2.2.3. The map Hε is defined
in (48) in terms of the functions ψ

j
r and ψ

j

i , j = 1, . . . ,4 and Θε . The population birth
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rate bε is defined as

bε

(
α1, α2, S

) = f (α1, α2, S)

Θε(α1, α2, S)
. (51)

The functions ψ
j
r and ψ

j

i can be computed via (41)–(47) in terms of X and F and fi-
nally X, F and Θε are defined via (18), (19), and (21).

3. Numerical approximation techniques

We here give iterative methods to approximate solutions for the problems discussed in
the last section. As in Kirkilionis et al. (2001), we present the methods in the form of
algorithms in pseudo-code established in Allgower and Georg (1990). This pseudo-code
is designed to be understandable independent of whether the reader is familiar with par-
ticular coding languages.

3.1. Integration to compute equilibria

The following two algorithms can be used to perform the numerical integration to com-
pute Gε and bε for given S and a given set of parameters. These computations are used
to locate equilibria, to continue them as a function of one parameter, to compute stabil-
ity boundaries, and to compute the population birth rate for any of the located equilibria.
The first algorithm, i.e., the algorithm to evaluate Gε(S) for given S can also be used to
test how close an initial guess is to an equilibrium point. As numerical computation of
both r(aε, S) and θ(aε, S) involves integrating (18)–(19), it may seem most efficient to
integrate the four ODE (18)–(21) simultaneously. We here, however, split the integration
procedures for the two ingredients for the following reason. When, e.g., searching for
solutions of R0(S)− 1 = 0 through an iterative process, the numerical integration to com-
pute r(aε, S) has to be repeated for different S, but integration of (21) is only needed for
the computation of b via (13). Numerical integration of (21) hence only has to be carried
out once with the final approximation for S. We assume that we are able to choose the
survival tolerance ε so small that under the relevant food condition S individuals reach
size xA before the survival probability decreases to ε.

Remark 3.1. For the implementation of the algorithms, we point out that stopping at aA

and at aε requires the use of a special integration method such as DOPRI5 or DOPRI8
(we have used DOPRI5) that can handle event detections; see Hairer et al. (1987).

Algorithm 3.2 (Integration to evaluate Gε).
input

begin

ε > 0; (survival tolerance)

S; (given value)

end
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a0 := 0, x0 := xb , f0 := 1;

integrate in parallel (18)–(19) until X(a,S) = xA;

set τ := a;

store τ and F (τ , S);

a0 := τ , x0 := xA, f0 := F (τ , S), r0 := 0;

integrate in parallel (18)–(19) and (20) until F (a, S) = ε;

aε := a;

Gε(S) := r(aε, S) − 1.

Algorithm 3.3 (Computation of bε).
input

begin

ε > 0; (survival tolerance)

S; (given value)

end

a0 := 0, x0 := xb , f0 := 1, θ0 := 0;

integrate in parallel (18)–(19) and (21) until X(a,S) = xA;

set τ := a;

store τ , F (τ , S) and θ(τ , S);

a0 := τ , x0 := xA, f0 := F (τ , S), θ0 := θ(τ , S);

integrate in parallel (18)–(19) and (21) until F (a, S) = ε;

aε := a;

store θ(aε, S);

compute f (S);

bε := f (S)

θ(aε,S)
.

3.2. Approximation of equilibria

If the set of parameters defining the vital rates is fixed, equilibria can be approximated by
combining a Newton method with numerical integration. The Newton method involves
the repeated calculation of the Jacobian, which in general is costly. To reduce these costs,
we use Broyden updates of the Jacobian; see Allgower and Georg (1990) or Kuznetsov
(1994). The use of Broyden updates requires one approximation of the Jacobian, which
then can be updated with two successive curve points.
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3.2.1. Numerical differentiation
For our approximation of all partial derivatives, we use throughout two numerical con-
stants δ1 and δ2, δ1 > δ2 > 0. We then approximate the partial derivative of a function F

in x in the ith component as

∂F

∂xi

(
x
) = 1

δ

(
F

(
x1, . . . , xi + δ, xi+1, . . . , xN

) − F
(
x
))

, (52)

where δ := max{xiδ1, δ2}. Here, the second argument in the maximum function is used
when the point to be evaluated is close to zero.

3.2.2. Broyden updates
We denote by A∗ the transpose of a matrix A and by ‖ · ‖ the Euclidean norm. Then
we define the Broyden update of the Jacobian given two successive approximate solution
points y(k), y(k+1) via

η(k) := y(k+1) − y(k), ζ (k) := Gε

(
y(k+1)

) − Gε

(
y(k)

)
,

and

A(k+1) := A(k) + (ζ (k) − A(k)η(k))η(k)∗

‖η(k)‖2
. (53)

Algorithm 3.4 (Numerically solve Gε(S) = 0).
input

begin

ε > 0; (survival tolerance)

δ1, δ2; (accuracy constants for numerical differentiation)

εG, εy > 0; (numerical accuracy constants)

S
(0)

; (initial guess)

end

y(0) := S
(0)

;

compute Gε(y
(0)) with Algorithm 3.2;

compute A(0) ≈ G′
ε(y

(0)) via numerical differentiation using Algorithm 3.2;

solve A(0)η(0) = −Gε(y
(0)) with respect to η(0);

y(1) := y(0) + η(0); (new approximation to equilibrium)

compute Gε(y
(1)) with Algorithm 3.2;

if ‖η(0)‖ < εy and ‖Gε(y
(1))‖ < εG then S := y(1); (algorithm stops)

else k := 0; (start iteration with Broyden updates)
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repeat (iteration loop)

k := k + 1;

compute Broyden update A(k) with y(k), y(k−1) and (53);

solve A(k)η(k) = −Gε(y
(k)) with respect to η(k);

y(k+1) := y(k) + η(k); (new approximation to equilibrium)

compute Gε(y
(k+1)) with Algorithm 3.2;

until

∥∥η(k)
∥∥ < εy,

∥∥Gε

(
y(k+1)

)∥∥ < εG;

S := y(k+1); (new approximation accepted).

To compute an approximation of an equilibrium, it remains to combine the previous
algorithm with the computation of the population birth rate via Algorithm 3.3 for the final
value of S.

Algorithm 3.5 (Approximation of equilibrium).
input

begin

ε > 0; (survival tolerance)

δ1, δ2; (accuracy constants for numerical differentiation)

εG, εy > 0; (numerical accuracy constants)

S
(0)

; (starting point, initial guess)

end

find S numerically solving Gε(S) = 0 via Algorithm 3.4;

compute bε(S) via Algorithm 3.3;

(b, S) := (bε(S), S); (approximation of the equilibrium).

3.3. Numerical tracing of curves

We first outline the idea how to numerically trace a curve. We here use pseudo-arc length
continuation as described in Kuznetsov (1994). We would like to numerically trace the
curve defined by

F(y) = 0, (54)

where F : Ω −→ R
N , Ω ⊂ R

N+1. To apply the classical Newton method the number of
equations should equal the number of unknowns, which is not the case in (54). To find
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Fig. 2 Pseudo-arc length continuation.

a first point y on the curve from an initial guess y(0), we can however simply fix one
component, say y

(0)

1 , and then test whether Algorithm 3.4 applied to the map

(y2, . . . , yN+1) �−→ F
(
y

(0)

1 , y2, . . . , yN+1

)

converges with initial guess (y
(0)

2 , . . . , y
(0)

N+1). We will use the following equivalent al-
ternative, however. Note that the solution to the above problem can equivalently be de-
fined as the intersection of the curve with the hyperplane through y(0) and orthogonal to
(1,0, . . . ,0); see Fig. 2 for the case N = 1. This means numerically solving the problem

F(y) = 0, (55)

where

F(y) := (
F(y),

〈
y − y(0), t

〉)
(56)

with t := (1,0, . . . ,0) and starting point y0. The advantage of using (55)–(56) is that we
can reuse the algorithms to solve it for the computation of further curve points, as will
become clear below.

Now, to continue the curve, once an initial solution point u0 has been located, the next
step is to predict a point v0 by following the tangent t (A), A = DF(u0), to the curve in u0

for a certain step-length σ , i.e., to set

v0 = u0 + t (A)σ.

We will explain below more precisely, how to define the normed and oriented tangent.
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To correct the predicted point, we define another Newton problem, now with starting
point v0. This time, however, we search for the intersection of the curve with the hyper-
plane through v0 and orthogonal to the tangent t (A) in u0; see again Fig. 2. Hence, we
try to numerically solve the problem defined by (55)–(56) with t := t (A) and y(0) := v0.
The solution w0 to this problem is then the approximation of the second point on the
curve.

It remains to define the normed and oriented tangent vector, which we do similarly as
in Allgower and Georg (1990) and Kuznetsov (1994).

Definition 3.6. Let A be an n × (n + 1)-matrix with rank(A) = n. The unique vector
t = t (A) ∈ R

n+1 satisfying

(i) At = 0,
(ii) ‖t‖ = 1,

(iii) det
(

A

t∗
)
> 0 is called the tangent vector induced by A.

If A is the Jacobian in a curve point, then (i) results from the requirement of coinci-
dence of the directions of curve and tangent vector in this point. Property (ii) says that
the tangent should have norm one and (iii) that the orientation of the tangent should be
preserved along the curve.

To compute a first point on the curve as well as to compute a correction for a predicted
point, we use the following algorithm.

Algorithm 3.7 (Find intersection of curve and hyperplane).

input
begin

F : Ω −→ R
N , Ω ⊂ R

N+1; (map defining curve)

y(0) ∈ R
N+1; (initial guess)

evaluation algorithm for F ;

t ∈ R
N+1; (defining orthonormal vector for hyperplane)

A ∈ R
N×N ; (approximation of F ′(y(0)))

εy , εF > 0; (numerical accuracy constants)

end

define F(y) := (F (y), 〈y − y(0), t〉);
set A

(0) := (A, t);

evaluate F in y(0) and compute F(y(0));

solve A
(0)

η(0) = −F(y(0)) with respect to η(0);

y(1) := y(0) + η(0); (new approximation to curve point)

evaluate F in y(1) and compute F(y(1));
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if ‖η(0)‖ < εy and ‖F(y(1))‖ < εF then u := y(1); (curve point found)

else k := 0 (start iteration with Broyden update)

repeat

k := k + 1;

compute Broyden update A
(k)

with y(k), y(k−1), A(k−1) and (53);

solve A
(k)

η(k) = −F(y(k)) with respect to η(k);

y(k+1) := y(k) + η(k); (new approximation)

evaluate F(y(k+1)) and compute F(y(k+1));

until ‖η(k)‖ < εy and ‖F(y(k+1))‖ < εF ;

u := y(k+1); (curve point found).

Remark 3.8. Note that the repeated computation of tangent vector and inverse involves
some numerical linear algebra. These computations can be made more efficient by using
LU -decompositions: Consider a decomposition of the form

PA∗ = L

(
U

0∗

)
,

where L is a lower triangular (n + 1) × (N + 1) matrix, U is an upper triangular matrix
and P a (N + 1) × (N + 1) permutation matrix. For such decompositions in Section 4.5
in Allgower and Georg (1990) are deduced formulae to effectively compute the tangent
vector and the Moore–Penrose inverse.

Now we are almost ready to give an algorithm to numerically trace a curve. We will
use this algorithm to approximate existence boundaries for equilibria as well as stability
boundaries.

To restrict the costly recalculation of the Jacobian, we compute the Jacobian via nu-
merical differentiation merely in the initial guess and then once per approximated curve
point, namely in the final approximation; see Fig. 2. In particular, we use the same Ja-
cobian for the predicted point u + σ t as for the previous curve point u. Note that in
general Broyden updates do not converge to the Jacobian, such that for the computation
of the tangent in a curve point, we should approximate the Jacobian via numerical differ-
entiation. We include pseudo-code to compute updates of the population birth rate along
the curves. This code should be used to compute the value of the birth rate along the
stability boundaries or along equilibrium curves in equilibrium parameter space; see Sec-
tion 2.2.2. When computing existence boundaries the according lines should of course
be deleted, as along the existence boundary the population birth rate is zero by defini-
tion.
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Algorithm 3.9 (Tracing of curve including updates of population birth rate).

input

begin

F : Ω −→ R
N , Ω ⊂ R

N+1; (map defining curve)

y(0) ∈ R
N+1; (initial guess)

evaluation algorithm for F ;

εy, εF > 0; (numerical accuracy constants)

δ1, δ2; (accuracy constants for numerical differentiation)

σ > 0; (initial stepsize)

end

t := (1,0, . . . ,0); (orthonormal vector defining hyperplane)

compute A ≈ F ′(y(0)) using numerical differentiation and the evaluation algorithm;

v(0) := y(0), k := 0; (start of the Newton iteration);

repeat

with Algorithm 3.7 approximate and store curve point u(k) with initial guess v(k);

compute b
k := bε(u

(k)) with Algorithm 3.3 and store it; (population birth
rate)

approximate A ≈ F ′(u(k)) using numerical differentiation with accuracy
δ and the evaluation algorithm;

compute t (A) as in Definition 3.6; (tangent vector)

set t := t (A);

choose a stepsize σ ;

k := k + 1;

set v(k) := u(k−1) + σ t ; (prediction)

until traversing is stopped

U := {u(k) : k = 0,1, . . .}; (set of points tracing curve)

B := {b(k) : k = 0,1, . . .}; (updates of population birth rate).

3.4. Tracing of existence boundaries

To trace existence boundaries, we should in Algorithm 3.9 set N := 2 and F := Gε , where
Gε is defined as in (23), choose an initial guess y(0) := (α1, α2, S) and use Algorithm 3.2
to evaluate Gε . Moreover, as remarked before, we should delete the lines where the popu-

lation birth rate is computed. We then obtain a set U := {(α(k)

1 , α
(k)

2 , S
(k)

) : k = 0,1, . . .},
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such that {(α(k)

1 , α
(k)

2 ) : k = 0,1, . . .} is a tracing of the existence boundary and S
(k)

a trac-
ing of the value of the equilibrium along the existence boundary.

For the implementation for the Daphnia model, we continue the curve defined by (17).
In Algorithm 3.9, we should then set N := 1, F := Gε , where now Gε is as defined in (25),
choose an initial guess y(0) := (α1, S) and use Algorithm 3.2 to evaluate Gε . We then

obtain a set U := {(α(k)

1 , S
(k)

) : k := 0,1, . . .}, which gives a tracing of the equilibrium
as one parameter changes and a set B of updates of the population birth rate for these
values. We then can use U to define the existence boundary for equilibria as {(α(k)

1 , α
(k)

2 ) :
α

(k)

2 := S
(k)

, k = 0,1, . . .}; see Section 2.2.2.

3.5. Integration for the computation of stability boundaries

We here show the integration to evaluate the map which defines the stability boundaries
and which was defined in Section 2.3.5. The algorithm on its own can be used to test how
close to the curve an initial guess is.

Algorithm 3.10 (Integration to evaluate Fε).

input
begin

ε > 0; (survival tolerance)

S, α1, α2, ω; (given values)

end

a0 := 0, x0 := xb , f0 := 1, k0
r := 0, k0

i := 0, l0
r := 0, l0

i := 0, ψ0
3,r := 0, ψ0

3,i := 0,
ψ0

J,4,r := 0, ψ0
J,4,i := 0;

integrate in parallel (18)–(19), (41)–(42), and (45)–(46) until
X(a,S) = xA;

set τ := a;

store τ , F (τ ), Kr(τ), Ki(τ), Lr(τ ), Li(τ ), ψ3
r (τ ), ψ3

i (τ ), ψ4
J,r (τ ) and ψ4

J,i (τ );

a0 := τ , x0 := xA, f0 := F (τ ), r0 := 0, k0
r := Kr(τ), k0

i := Ki(τ), l0
r := Lr(τ ),

l0
i := Li(τ ), ψ0

1,r := 0, ψ0
1,i := 0,

ψ0
2,r := F (τ )β+

g− Ke
r

(
τ , τ

)
, ψ0

2,i := F (τ )β+

g− Ke
i

(
τ , τ

)
,

ψ0
3,r := ψ3

r

(
τ
)
, ψ0

3,i := ψ3
i

(
τ
)
,

ψ0
4,r := ψ4

J,r

(
τ
) − F (τ )

g−
(
γ + − γ −)

Ke
r

(
τ , τ

)
,

ψ0
4,i := ψ4

J,i

(
τ
) − F (τ )

g−
(
γ + − γ −)

Ke
i

(
τ , τ

);
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integrate in parallel (18)–(20), (41)–(42), (43)–(45), and (47) until F (a) = ε;

aε := a;

store r(aε, S), ψ
j
r (aε) and ψ

j

i (aε), j = {1, . . . ,4};
compute and store Gε(α1, α2, S) := r(aε, S) − 1;

compute f (S) and f ′(S) and Hε(α1, α2, S,ω) via (48);

compute Fε(α1, α2, S,ω) as in (49).

3.6. Tracing of the stability boundary

To trace stability boundaries in two parameter space, we set in Algorithm 3.9 N := 3,
F := Fε with Fε as in (49), fix an initial guess y(0) := (α1, α2, S,ω) and pass on Algorithm

3.10 to evaluate Fε . We then obtain sets U := {(α(k)

1 , α
(k)

2 , S
(k)

,ω(k)) : k = 0,1, . . .} and B

that give a tracing of the stability boundary in the two parameter plane as well as updates
of the equilibrium including population birth rate along he curve.

Remark 3.11. Note that in (49) the first component is independent of ω, which is a general
result for stability boundaries. Moreover, in the case of Daphnia models, the first compo-
nent in (49) is, as mentioned, additionally independent of one of the two parameters. This
raises the question, whether this structure can be exploited to make computations more ef-
ficient. As one example, in every evaluation of the function Hε in (49) a Newton iteration
could be implemented to satisfy Gε(α1, α2, S) = 0, and thus compute S for given α1, α2,
which effectively wraps up a Newton iteration to satisfy the equilibrium condition into a
Newton iteration for locating the solution to the stability condition. Since algorithms for
a single Newton iteration are easier to implement and since the resulting code is easier to
read and for our present low-dimensional problems sufficient, we leave this question for
future research.

4. Implementations for Daphnia models

In this section, we specify the ingredients for different parametrizations for models of a
length structured Daphnia population consuming an unstructured algae population from
de Roos et al. (1990) and de Roos (1997) and show the results of the computations of
existence and stability boundaries in the form of graphs. For more precise biological in-
terpretation of the graphs, we refer to de Roos et al. (1990) and de Roos (1997).

4.1. Model ingredients

We denote the length of a Daphnia individual by x and by S the concentration of algae.
For meanings and values of parameters, we refer to Table 1. In the absence of consump-
tion, the dynamics of an algae population S are described by a rate f (S) = a1(Smax − S)

for chemostat models or f (S) = a2S(1 − S
Smax

) for logistic models. We here disregard the
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Table 1 Parameter specification as in de Roos et al. (1990)

Description Symbol Value Unit

Length at birth xb 0.8 mm

Length at maturation xA 2.5 mm

Maximum attainable length
under infinite food availability xm 6.0 mm

Time constant of growth γg 0.15 d−1, d = day

Shape parameter of the
functional response ξ 7.0 × 10−6 ml·cell−1

Maximum feeding rate
per unit surface area νS 1.8 × 106 cell·mm−2·d−1

Fraction of ingested energy
channeled to growth and maintenance κ 0.3 –

Maximum reproduction rate
per unit surface area rm 0.1 mm−2·d−1

Random death rate of Daphnia μ variable d−1

Maximum concentration of algae
in the absence of Daphnia Smax variable cell·ml−1

Flow-through rate in case of
chemostat algal dynamics a1 0.5 d−1

Flow-through rate in case of
logistic algal dynamics a2 0.5 d−1

equilibria (b, S) = (0, Smax) and (b, S) = (0,0) and concentrate on interior equilibria. The
equilibrium growth rate is given as

g
(
x,S

) = γg

(
xmfr

(
S

) − x
)
, (57)

where here and in the following we denote the (Holling type II) functional response as

fr

(
S

) := ξS

1 + ξS
.

The equilibrium birth rate and consumption rate become

β
(
x,S

) =
{

0, xb ≤ x ≤ xA,

rmfr(S)x2, xA ≤ x,
(58)

γ
(
x,S

) = νSfr

(
S

)
x2. (59)

Finally, we assume that the mortality rate is a constant, which we also denote by μ, i.e.,
that μ(x,S) ≡ μ. In de Roos et al. (1990), it is motivated that from a biological point of
view a good choice for the two free parameters is the background mortality for Daphnia
μ and the carrying capacity for Algae Smax. For the computation of existence bound-
aries, we use the special parameter dependence for Daphnia in the way that we use the
second of the two methods described in Section 3.4, i.e., we define F := Gε and Gε as
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Table 2 Numerical integration with Algorithms 3.2 and 3.3

S μ bε(S,μ) Gε(S,μ)

5.000000E+05 0.300000 5.156976E−03 −0.133576

in (25). Next, we recall that we locate the first curve point by fixing α1 and then apply-
ing a Newton algorithm to find the other components of the curve point. In this regard
for the Daphnia models, a good choice is to set α1 := μ for the computations of existence
boundaries and α1 := Smax and α2 := μ for stability boundaries. As accuracy constants for
numerical differentiation, we use δ1 := 1.0E–4, δ2 := 1.0E–7. Finally, in the computations
where integration is stopped by decreased survival, we define ε := 10−9 as the survival
probability at which integration stops. If we stop integration when a reaches Amax, we set
Amax = 70 years.

4.2. Existence boundaries

In the following, we show the results of the implementation of Algorithms 3.2, 3.3, 3.7,
and 3.9.

4.2.1. Numerical integration for existence boundaries
We show a numerical example for the computation of Gε(S,μ) and bε(S,μ) for given
S,μ with Algorithms 3.2 and 3.3 in Table 2. The isolated Algorithm 3.2 can be used to
find out how close to the curve a guess is, and thus also to find an initial guess which leads
to convergence. The numerical example shown is such a guess. We stop integration when
a reaches Amax.

4.2.2. Tracing of existence boundaries
We have traced existence boundaries for Daphnia models with Algorithms 3.2, 3.7,
and 3.9. For Daphnia magna as parametrized in Table 1, this is the dotted line in Figs. 3–4
and 6–9.

In Figs. 11–13, we have plotted the data for the model of Daphnia pulex feeding on
Chlamydomonas rheinhardii in (de Roos, 1997). The model has the same specification of
vital rates in terms of parameters as the Daphnia magna model, but the parameters have
different values. The values used are now xb = 0.6, xA = 1.4, xm = 3.5, Fh = 1

ξ
= 0.164,

γg = 0.11, rm = 1.0, νS := 0.007, and a2 := 0.5. We use the same values for stopping the
integration as for the Daphnia magna model.

4.3. Stability boundaries

To specify the ODE for the computation of stability boundaries, it remains to compute
the partial derivatives of the vital rates in a point (X(a,S), S), as well as their one-sided
limits in xA for given S. These partial derivatives are in the notation of Section 2.3.3

g1(a) = −γg, g2(a) = γgxmf ′
r

(
S

)
, f ′

r

(
S

) = ξ

(1 + ξS)2
,

μ1(a) = 0, μ2(a) = 0,
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Table 3 Numerical integration with Algorithm 3.10. Hε,1 and Hε,2 denote the two components of Hε

input
S μ Smax ω

1.032074E−01 4.925993E−02 2.000000E+00 3.455190E−01

output
Gε Hε,1 Hε,2

1.714976E−01 4.042150E−02 −7.720165E−01

β1(a) =
{

0, xb ≤ X(a,S) < xA,

2rmfr(S)X(a,S), xA ≤ X(a,S),

β2(a) =
{

0, xb ≤ X(a,S) < xA,

rmf ′
r (S)X2(a, S), xA ≤ X(a,S),

γ1(a) = 2νSfr

(
S

)
X

(
a,S

)
, γ2(a) = νSf

′
r

(
S

)
X2

(
a,S

)
.

The one-sided limits are

g− = g+ = γg

(
xmfr

(
S

) − xA

)
, μ− = μ+ = μ,

β− = 0, β+ = rmfr

(
S

)
xA

2, γ− = γ+ = νSfr

(
S

)
xA

2.

4.3.1. Numerical integration for stability boundaries
In Table 3, we show an example of the computed values of Fε(S,μ,Smax,ω) for given S,
μ, Smax, and ω with Algorithm 3.10. Like in the one-parameter problem, we can use the
isolated algorithm for numerical integration to find an initial guess that leads to conver-
gence. We show such a guess in Table 3, where we stopped integration at a = Amax.

4.3.2. Stability boundaries
We then trace stability boundaries for Daphnia magna with Algorithm 3.9, which calls
Algorithm 3.10 for numerical integration, Algorithm 3.7 to locate the first point on the
curve and for correction and Algorithm 3.3 for updates of the population birth rate. The
resulting curves are shown in Figs. 3–10. In Figs. 4, 7, and 9, we have used the reaching
of Amax as stopping mechanism to have the same conditions as in de Roos et al. (1990).
The figures correspond with Fig. 2 in de Roos et al. (1990). In Figs. 11 and 13, we have
computed the stability boundaries for the Daphnia pulex model in de Roos (1997). Fig-
ure 13 coincides with Fig. 7 in this reference. In Fig. 5, resp. 10 and 12, we depict the
same graph as in Fig. 4, resp. 9 and 11, on larger scales to show details, such as windings
of the curves.

In the existence region near to the existence boundary, the number of roots in the right-
half plane is zero. We call the computed curve suggestively a stability boundary, since we
believe, on the basis of numerical solutions of initial value problems (de Roos et al., 1990),
that this number stays zero up to the curve. Upon crossing the computed curve in a regular
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Fig. 3 Chemostat algal dynamics (a1 = 0.5), integration stopped when survival drops below the thresh-
old 10−9.

Fig. 4 Chemostat algal dynamics (a1 = 0.5), integration stopped at a = Amax = 70 years.

point the number of roots in the right-half plane changes from zero to two. If the curve
intersects itself, like in Fig. 5, the number of roots in the right-half plane equals four in the
domain bounded by the closed loop. We made no effort to compute other solution curves
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Fig. 5 Chemostat algal dynamics (a1 = 0.5), integration stopped at a = Amax = 70 years.

Fig. 6 Logistic algal dynamics (a2 = 0.5), integration stopped when survival drops below the thresh-
old 10−9.

of (32) at which additional pairs of roots move into the right-half plane. Moreover, we
believe, again on the basis of numerical solutions of initial value problems (de Roos et al.,
1990) that stability of the steady state cannot be regained in the region to the left of the
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Fig. 7 Logistic algal dynamics (a2 = 0.5), integration stopped at a = Amax = 70 years.

Fig. 8 Logistic algal dynamics (a2 = 2.0), integration stopped when survival drops below the thresh-
old 10−9.

computed stability boundary. In summary, on the basis of numerical evidence we believe
that the computed curves are the stability boundary of the steady state in the parameter
plane that we consider.
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Fig. 9 Logistic algal dynamics (a2 = 2.0), integration stopped at a = Amax = 70 years.

Fig. 10 Logistic algal dynamics (a2 = 2.0), integration stopped at a = Amax = 70 years.

5. Concluding remarks

Building on earlier work, we have developed methods to trace equilibrium curves and
stability boundaries for a class of structured consumer resource models. We have im-
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Fig. 11 Daphnia pulex, integration stopped when survival drops below the threshold 10−9.

Fig. 12 Daphnia pulex, integration stopped when survival drops below the threshold 10−9.

plemented the resulting algorithms in a C-code for existing models of Daphnia magna
and Daphnia pulex consuming algae. In the class of models we analyzed, we assumed a
fixed state at which individuals are born. Moreover, we incorporated the competition of a
structured consumer population for an unstructured resource.
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Fig. 13 Daphnia pulex, integration stopped at a = Amax = 70 years.

Our next objective is to perform a similar analysis for different biological phenomena.
Depending on the nature of these, we can either use the theory established here or try to
generalize this theory. Possible relevant generalizations may include

– allowing for multiple states at birth
– incorporating further interactions, e.g. the competition for several unstructured re-

sources (which leads to multiple component delay differential equations) and/or inges-
tion and predation among structured populations (which leads to multiple component
renewal equations)

– allowing for infinitely many birth states or interactions (or both).

We would therefore like to encourage our readers to approach us with biological models
or phenomena that could be analyzed with the approach developed in this paper or with
the approach extended by including one or more of the above points.

With several biological examples at hand, it will make sense to transform our code
with, e.g., Matlab, to a more user-friendly tool that has computations such as the deduction
of partial derivatives or the realification of ODE automatized.
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Appendix A: Derivation of the characteristic equation

We show that formal linearization of (6)–(7) leads to the characteristic equation (26)–(27)
with the functions Ψ i as defined in (34)–(36). For differentiability proofs, we refer to de
Roos et al. (2009). We denote by y and z small perturbations of b and S respectively.
Linearization of (6)–(7) at (b, S) in the notation of Section 2.3.3 yields

y(t) =
∫ h

τ

β(a)F (a)y(t − a)da − bβ+F
(
τ
)
DaA

(
S

)
zt

+ z(t)b

∫ h

τ

β2(a)F (a) da + b

∫ h

τ

F (a)β1(a)D2X
(
a,S

)
zt da

+ b

∫ h

τ

β(a)D2 F
(
a,S

)
zt da, (A.1)

z′(t) = f ′(S
)
z(t) −

∫ h

0
γ (a)F (a)y(t − a)da − b

(
γ − − γ +)

F
(
τ
)
DaA

(
S

)
zt

− z(t)b

∫ h

0
γ2(a)F (a) da − b

∫ h

0
F (a)γ1(a)D2X

(
a,S

)
zt da

− b

∫ h

0
γ (a)D2 F

(
a,S

)
zt da, (A.2)

where the derivatives with respect to an infinite dimensional variable DaA(S), D2X(a,S),

and D2 F (a, S) have to be computed yet. We first compute D2X(a,S). Linearization of
(8) leads to the definition of a function η(τ) = η(τ ;a,ψ) as the solution of

η′(τ ) = g1(τ )η(τ ) + g2(τ )ψ(−a + τ),

η(0) = 0.
(A.3)

For later use, we plug in ψ = zt and subsequently z(α) = eλαS. Then we can equivalently
define

η(τ) := Seλ(t−a)K(τ,λ), (A.4)

and K as the solution of (37) for a0 = 0 and k0 = 0. The advantage of this transformation,
is that the system (37) is due to the independence of t and a in our context easier to
integrate than (A.3). Then we can define

D3x
(
τ ;a,S

)
ψ := η(τ ;a,ψ) (A.5)
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for τ ≤ τ and τ defined via x(τ ;a,S) = xA, which is independent of a. Next, we will
show that for τ > τ the right-hand side of (A.5) gets a correction term due to the discon-
tinuity in xA. Let τ > τ . By the implicit function theorem, there exists a unique τ̃ (a,ψ)

for a > τ and ψ in a neighborhood of S such that

x
(
τ̃ (a,ψ);a,ψ

) = xA. (A.6)

As τ = τ̃ (a, S), we have that τ > τ̃ (a, S). Then for any ψ there exists a small ε, such that
also τ > τ̃ (a, S + εψ). Then

x
(
τ ;a,S + εψ

) − x
(
τ ;a,S

)

= xA +
∫ τ

τ̃ (a,S+εψ)

g
(
x
(
σ ;a,S + εψ

)
, S + εψ(−a + σ)

)
dσ

− xA −
∫ τ

τ

g
(
x
(
σ ;a,S

)
, S

)
dσ

=
∫ τ

τ̃ (a,S+εψ)

g
(
x
(
σ ;a,S

)
, S

)
dσ

+
∫ τ

τ̃ (a,S+εψ)

[
g
(
x
(
σ ;a,S + εψ

)
, S + εψ(−a + σ)

) − g
(
x
(
σ ;a,S

)
, S

)]
dσ

= −g+D2τ̃
(
a,S

)
ψε − [

g+ − g+]
D2τ̃

(
a,S

)
ψε

+ ε
(
η(τ ;a,ψ) − η

(
τ ;a,ψ

)) + o(ε), (A.7)

where we used that

d

dε

∫ τ

τ

g
(
x
(
σ ;a,S + εψ

)
, S + εψ(−a + σ)

)
dσ

∣∣
ε=0

= η(τ ;a,ψ) − η
(
τ ;a,ψ

)
,

which is derived as follows. For σ > τ , one shows that the map

σ �−→ d

dε
x
(
σ ;a,S + εψ

)∣∣
ε=0

solves (A.3), such that by uniqueness

d

dε
x
(
σ ;a,S + εψ

)∣∣
ε=0

= η(σ ).

The rest follows if one uses that η solves (A.3). Then from (A.7), we deduce that

lim
ε↓0

1

ε

(
x
(
τ ;a,S + εψ

) − x
(
τ ;a,S

))

= −g+D2τ̃
(
a,S

)
ψ + η(τ ;a,ψ) − η

(
τ ;a,ψ

)
.
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Since the left-hand side equals D3x(τ ;a,S)ψ , we get that

D3x
(
τ ;a,S

)
ψ = −g+D2τ̃

(
a,S

)
ψ + η(τ) − η

(
τ
)
. (A.8)

It remains to compute D2τ̃ (a, S)ψ . If we differentiate (A.6) with respect to ψ evaluated
at S we get

∂

∂τ
x
(
τ ;a,S

)∣∣
τ=τ

D2τ̃
(
a,S

)
ψ + D3x

(
τ ;a,S

)
ψ = 0,

from which follows that

D2τ̃
(
a,S

)
ψ = −η(τ ;a,ψ)

g− . (A.9)

If we combine this identity with (A.8) and use the corresponding result for τ ≤ τ , we get
that

D3x
(
τ ;a,S

)
ψ = η(τ) + η

(
τ
)(g+

g− − 1

)
H

(
τ − τ

)
,

where by H we denote the Heaviside-function. Since in particular

D2X
(
a,S

)
ψ = D3x

(
a;a,S

)
ψ (A.10)

for the case ψ = zt and z(α) = Seλα we can use (A.4) and obtain that

D2X
(
a,S

)
zt = Seλ(t−a)K(a,λ) + Seλ(t−τ)K

(
τ ,λ

)(g+

g− − 1

)
H

(
a − τ

)
. (A.11)

Next, we compute D2 F (a, S)ψ from the representation

F (a,ψ) = e
− ∫ τ̃ (a,ψ)

0 μ(x(σ ;a,ψ),ψ(−a+σ))dσ−∫ a
τ̃ (a,ψ) μ(x(σ ;a,ψ),ψ(−a+σ))dσ

.

If we formally linearize (9) and use (A.9), we deduce that

D2 F
(
a,S

)
ψ = (

μ+ − μ−)
F (a)D2τ̃

(
a,S

)
ψ + ζ(a;a,ψ)

= −μ+ − μ−

g− F (a)η
(
τ ;a,ψ

) + ζ(a;a,ψ), (A.12)

where ζ(τ ) = ζ(τ ;a,ψ) satisfies

ζ ′(τ ) = −μ(τ)ζ(τ ) − μ1(τ )η(τ )F (τ ) − μ2(τ )ψ(−a + τ)F (τ )

and η satisfies (A.3). Again, for later use, we plug in ψ := zt , z(α) = Seλα , η(τ) =
Seλ(t−a)K(τ,λ) and redefine for this case ζ(τ ) := Seλ(t−a)L(τ,λ), where L is defined
via (38) for a0 := 0 and l0 := 0. One then has that

D2 F
(
a,S

)
zt = −μ+ − μ−

g− F (a)Seλ(t−a)K
(
τ ,λ

) + Seλ(t−a)L(a,λ). (A.13)
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It remains to compute DaA(S)ψ . If we differentiate (5), we get

g−DaA

(
S

)
ψ + D2X

(
τ , S

)
ψ = 0.

Hence for the exponential trial solutions we get

DaA

(
S

)
zt = −η(τ ; τ , zt )

g− = − 1

g− Seλ(t−τ)K
(
τ ,λ

)
. (A.14)

Now we are ready to plug y(t) = beλt , z(t) = Seλt into (A.1)–(A.2), use (A.11), (A.13),
and (A.14) and divide the resulting equations by eλt to get

b = b

∫ h

τ

β(a)F (a)e−λa da + bSβ+

g− e−λτK(τ ,λ)F (τ )

+ bS

∫ h

τ

β2(a)F (a) da + bS

∫ h

τ

F (a)β1(a)e−λaK(a,λ)da

+ bSe−λτK
(
τ ,λ

)(g+

g− − 1

)∫ h

τ

β1(a)F (a) da

+ bS
μ− − μ+

g− K
(
τ ,λ

)∫ h

τ

e−λaβ(a)F (a) da

+ bS

∫ h

τ

β(a)e−λaL(a,λ) da, (A.15)

λS = f ′(S
)
S − b

∫ h

0
γ (a)F (a)e−λa da − bS(γ + − γ −)

g− e−λτK
(
τ ,λ

)
F

(
τ
)

− bS

∫ h

0
γ2(a)F (a) da − bS

∫ h

0
F (a)γ1(a)e−λaK(a,λ)da

− bSe−λτK
(
τ ,λ

)(g+

g− − 1

)∫ h

τ

γ1(a)F (a) da

− bS
μ− − μ+

g− K
(
τ ,λ

)∫ h

τ

e−λaγ (a)F (a) da

− bS

∫ h

0
γ (a)e−λaL(a,λ) da. (A.16)

If one uses the definition of the Ψ i as given in (34)–(36), one sees that Eqs. (A.15)–(A.16)
are equivalent to the condition

0 =
(

M
(
b,S,λ

) −
(

1 0
0 λ

))(
b

S

)

with M(b,S,λ) as defined in (27). This concludes the derivation of the characteristic
equation.
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