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ABSTRACT
Motivation: Identifying regulatory modules is an important task in the
exploratory analysis of gene expression time series data. Clustering
algorithms are often used for this purpose. However, gene regulatory
events may induce complex temporal features in a gene expression
profile, including time delays, inversions and transient correlations,
which are not well accounted for by current clustering methods. As
the cost of microarray experiments continues to fall, the temporal
resolution of time course studies is increasing. This has led to a need
to take account of detailed temporal features of this kind. Thus, while
standard clustering methods are both widely used and much studied,
their shared shortcomings with respect to such temporal features
motivates the work presented here.
Results: Here, we introduce a temporal clustering approach for
high-dimensional gene expression data which takes account of time
delays, inversions and transient correlations. We do so by exploiting
a recently introduced, message-passing-based algorithm called
Affinity Propagation (AP). We take account of temporal features of
interest following an approximate but efficient dynamic programming
approach due to Qian et al. (2001). The resulting approach is
demonstrably effective in its ability to discern non-obvious temporal
features, yet efficient and robust enough for routine use as an
exploratory tool. We show results on validated transcription factor-
target pairs in yeast and on gene expression data from a study of
Arabidopsis thaliana under pathogen infection. The latter reveals a
number of biologically striking findings.
Availability: Matlab code for our method is available at
http://www.wsbc.warwick.ac.uk/stevenkiddle/tcap.html.
Contact: {s.j.kiddle,s.n.mukherjee}@warwick.ac.uk

1 INTRODUCTION
Gene expression analysis by microarrays is now a well established
approach in high-throughput biology. Time course studies are
widely used to probe the dynamics of gene expression and uncover
underlying regulatory programs. As costs per array have continued
to fall, the temporal resolution of such studies (in the sense

∗to whom correspondence should be addressed

of the number of discrete time points sampled) has increased.
Indeed, it is now common to see studies with 20 or more time
points over timescales of hours to days. A central task in the
exploratory analysis of these high-dimensional time series is that
of identifying subsets of genes which are functionally related,
for example transcription factors (TFs) and their targets,genes
which share a regulatory program and so on. Following much
of the recent literature we call such subsets modules (Bar-Joseph
et al., 2003; Segalet al., 2003). Module identification plays a
key role both in the generation of experimental hypotheses and in
informing subsequent modelling. Microarray data which highlight
a set of genes as possibly functionally related can suggest specific
follow-up experiments, for example using interventions targeted at
module members. Equally, module identification informs further
computational work. The inference of gene regulatory networks
(e.g. using Bayesian networks or Gaussian graphical models), for
example, rapidly grows more challenging in higher dimensions. In
the same way, mechanistic models of gene expression (ODE, PDE
or statistical mechanical), become much more tractable forsmall
sets of genes. Thus, identifying transcriptional modules can greatly
aid downstream, detailed quantitative analysis.

Clustering algorithms are widely used for the purpose of
identifying gene modules (e.g. Ghosh & Chinnaiyan, 2001; Heard
et al., 2005; Thalamuthuet al., 2006). Such algorithms seek to
partition the set of genes into subsets whose within-subsetsimilarity
is high relative to between-subset similarity. The most widely
used notions of similarity are simple vector distances between
temporal profiles, and include the Euclidean distance, Pearson’s
correlation coefficient (PCC) and Mahalanobis distance (used in
Gaussian mixture models). Loosely speaking, these methodsseek
to find subsets of genes whichlook similar in the sense of having
highly correlated expression profiles. This in turn means that these
methods are well suited to detecting modules whose members are
co-regulated (Yonaet al., 2006), for example by a shared TF, and
where regulatory events are simultaneous, at least up to thetemporal
resolution of the dataset.

However, the general strategy of clustering by straightforward
profile similarity suffers from a number of drawbacks. First, while
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it is arguably well suited to certain cases of simultaneous co-
regulation, it is not as well suited to finding genes which regulate
each other. In these settings there can be a time lag between a
change in the profile of the regulator and the corresponding change
in its target. At very low temporal resolutions, this may notbe an
issue, because the changes, if detected, may appear asde facto
simultaneous. However, at higher temporal resolutions time lags
become an important issue; we show experimental examples below.

Second, even when a set of putatively co-regulated genes canbe
identified, the task of identifying a shared TF remains a challenging
one. A widespread approach is to use sequence analysis to discover
upstream motifs, shared among module members, which may
correspond to TF binding sites. However, even when upstream
motifs can be found, TFs that bind to these sequences are often
unknown, particularly in higher organisms. This motivatesa need
for module finding methods which can identify subsets including
both regulator and targets directly from expression data.

Third, many existing approaches do not account for transient
correlations, in which gene profiles are similar only withina certain
time window, and not well correlated outside it. This can arise for
example in longer time courses, where the underlying biological
process driving profile similarity is itself transient, such that at its
end, the genes revert almost to a background level of variation. Two-
way clustering or biclustering (Hartigan, 1972; Lazzeroni& Owen,
2002; Balasubramaniyanet al., 2004; Madeira & Oliveira, 2005;
Meng et al., 2009) has been used to address the issue of transient
correlations. Here, clusters are sought which form subsetsof both
genes and (contiguous) time points. However, robust biclustering
remains computationally challenging on account of the vastnumber
of possible biclusters that can be formed. Finally, inversions in the
sense of negative correlation/co-expression can be important when
regulatory relationships are repressive, but are not always accounted
for by clustering methods.

In order to account for these temporal features, a natural idea is to
carry out cluster analysis using richer similarity measures in place
of a simple vector distance; this idea appears several timesin the
literature (Qianet al., 2001; Schmittet al., 2004; Balasubramaniyan
et al., 2004; Smithet al., 2009). However, doing so brings with
it a non-trivial computational burden, especially under conditions
of high dimensionality and high temporal resolution (and resulting
longer time lags). Under Euclidean distance and its variants clusters
can be characterized by cluster-level statistics such as the mean; this
in turn permits (relatively) fast iterative computationvia algorithms
such as K-means and Expectation-Maximization (EM). In contrast,
temporally rich gene-gene similarity measures typically do not give
an analogue to cluster mean. The standard approach then is touse
an iterative algorithm known as K-centres (or K-medioids) (see
e.g. Hastieet al., 2001). However, K-centres is notoriously slow,
requiring quadratic time in cluster size to find a cluster centre; it
is also known to be highly sensitive to initialization. The resulting
difficulty in clustering under rich gene-gene similarity measures has
meant that existing work on such measures has not led to a widely
applicable alternative to standard clustering.

We note that time delays are well accounted for in graphical
model formulations (including dynamic Bayesian networks,state
space models and hidden Markov models) where Markov
assumptions are used to model these temporal effects. However,
these approaches are computationally demanding and statistically
challenging for high-dimensional data, and have for these reasons

not usually been exploited to provide practical alternatives to
clustering for exploratory analysis. Hierarchical clustering (see
e.g. Hastieet al., 2001) and spectral clustering (Shi & Malik,
2000; Ng et al., 2002) address the related but quite distinct
problem of partitioning a dataset by recursively comparingpairs
of observations. In particular, these methods do not ensurethat all
points within a cluster are similar to a cluster mean or centre and
indeed quite often make splits which lead to clusters which do not
have this property.

Here, we address these open issues by putting forward an
approach for finding gene modules which incorporates these key
temporal features — time lags, transient correlation and inversions
— but is computationally efficient enough to provide a practical
alternative to standard clustering. We do so by exploiting a
recently proposed message-passing-based algorithm called Affinity
Propagation (AP) (Frey & Dueck, 2007) which we show, using
biological data, to be robust and efficient in this setting. As a
similarity measure we choose a dynamic programming formulation
due to Qianet al. (2001); this is fast but approximate, and we
confirm empirically that it is sufficiently powerful to give good
results in this setting.

Our work adds to the existing literature in two main ways. First,
we put forward an approach for clustering microarray time series
data which captures rich temporal features yet is robust, requires
little or no user input and is fast enough for routine use in microarray
data analysis. For example, in an analysis of real microarray data,
this finds a substantially better value of the same objectivefunction
than any of 400 runs of K-centres, while requiring a fractionof
the total compute time, and no user input whatsoever. Second,
we show extensive results on experimental data, highlighting the
biological relevance of richer temporal features and the importance
of capturing such features during clustering. We are able tocluster
together members of a recently identified gene regulatory network
whose profiles would not have been clustered together by traditional
clustering techniques. We also find several modules which suggest
hypotheses to test experimentally.

The remainder of the paper is organized as follows. We begin by
reviewing basic ideas and notation for clustering and then describe
the methods used here. We show results on a validated set of TF-
target pairs in yeast, and on experimental data from a study of
Botrytis cinerea infection in Arabidopsis thaliana. We conclude
with a discussion of the shortcomings of our work, possible
extensions and its relationship to other methods.

2 BACKGROUND

2.1 Notation
LetXit be the mRNA expression value of genei at timet. A time
series microarray dataset,X, is a matrix containing the expression
values of genesi ∈ I = {1, 2, · · · , g}, for time pointst ∈
T = {1, 2, · · · , T}. The complete expression profile for genei
is denotedXi· = [Xi1,Xi2, · · · ,XiT ]T.

2.2 Clustering
Clustering is a form of unsupervised machine learning in which
observations are partitioned into groups, called clusters, such
that within-cluster similarity is large relative to between-cluster
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similarity. In the present setting, observations correspond to gene
expression profilesXi·.

2.2.1 K-means Given a user-set number of clustersK,
(Euclidean) K-means seeks to find cluster assignmentsc(i), c :
I 7→ K = {1 . . .K} and corresponding cluster means{µk}k∈K

which minimize the following cost function:

J({c(i)}, {µk}) =
X

k∈K

X

i:c(i)=k

‖Xi· − µk‖
2 (1)

where,‖ · ‖2 denotes (squared) Euclidean distance and{c(i)} and
{µk} are cluster assignments and cluster means respectively.

K-means minimizes this cost function by means of an iterative
procedure in which the computation of cluster means alternates with
cluster assignment. Mixture-model-based approaches can be viewed
as a probabilistic generalization of K-means, in which observations
are assigned to clusters in a “soft” manner, under a probability
model in which cluster membership is treated as a latent variable.
Model fitting is usually accomplished using the EM algorithm; as is
well-known, K-means itself arises as a certain limiting case of EM
applied to a Gaussian mixture model.

2.2.2 K-centres Cost function Eq. (1) directly uses cluster means
{µk}. In contrast, a matrix of simlaritiesψ(i, j), i, j ∈ I between
observations may not give an analogue to cluster mean. In this
setting, a standard approach is to characterize a cluster bymeans
of an observation within that cluster, referred to as thecentre of the
cluster. This formulation yields the following cost function:

J({e(i)}) = −
X

i∈Is.t.i6=e(i)

ψ(i, e(i)) (2)

where,e : I 7→ E ⊂ I, |E| = K

is a cluster assignment function which in this case maps
observations to the (index of) the corresponding cluster centre.

The K-centres algorithm is a K-means-like heuristic methodfor
optimizing Eq. (2), in which a cluster characterization step is
alternated with a cluster assignment step. Absent any notion of
mean, the cluster characterization step involves searching over all
members of each cluster to minimize within-cluster distance; this
requires quadratic time in cluster size. Moreover, K-centres must be
initialized, and the initialization can affect which localmaximum
the method will find.

Thus, while Eq. (2) provides a natural cost function for clustering
under a similarity matrixψ, it can be difficult to obtain good
clusters in practice, and moreover to do so robustly and rapidly in
applications with a large number of objects to be clustered.

3 METHODS
Here we describe the methods used in the remainder of the paper. We
first discuss clustering by Affinity Propagation (AP) and then the similarity
measure used here.

3.1 Affinity propagation
Affinity propagation (AP) is an algorithm by which to learn cluster
assignments and cluster centres under the K-centres cost function Eq. (2).
Like K-centres, AP uses observations themselves to characterize clusters;

however, unlike K-centres AP simultaneously considersall observations as
candidate centres. Naı̈vely, this would be computationally intractable; in
AP this is accomplished by an efficient message passing formulation (which
can be derived as an instance of the max-sum algorithm for factor graphs).
Two different kinds of messages are exchanged between observations:
responsibility r(i, j), which reflects pointj ’s suitability as a centre for point
i andavailability a(i, j), which reflects evidence in favour ofi choosingj
as its centre. Here we briefly describe the AP algorithm, as itused in the
present application; for further details we refer the interested reader to Frey
& Dueck (2007).

Update equations. AP is provided with a similarity matrixψ∗, such as the
one introduced in section 3.2.

Initially, availabilities a(i, j) are set to zero; “self-similarities”ψ∗(i, i)
are given a user-set values, this is discussed below. Then, responsibilities
and availabilities are updated sequentially using the following:

r(i, j)← ψ∗(i, j)− max
j′:j′ 6=j

{a(i, j′) + ψ∗(i, j′)} (3)

∀i 6= j, a(i, j)← min

8

<

:

0, r(j, j) +
X

i′:i′ /∈{i,j}

max{0, r(i′, j)}

9

=

;

(4)

a(j, j)←
X

i′:i′ 6=j

max{0, r(i′, j)} (5)

A damping factorλ ∈ [0, 1] is used to prevent numerical oscillations:
each message is set to a weighted combination of its value from the previous
iteration and its updated value, weighted byλ and1 − λ respectively. In
all our experiments we use a default value ofλ = 0.9. Update equations
are iterated until cluster centres remain unchanged for a user-set number of
iterations (see below). Then, cluster centrese(i) are given by maximizing
over the sum of responsibility and availability:

e(i) = argmax
j∈I

a(i, j) + r(i, j) (6)

If e(i) = i, i itself is a cluster centre.

Algorithm parameters. The self-similarity values influences the number
of clusters discovered, higher values giving a greater number of clusters.
However, in contrast to the parameterK in K-means and K-centres, this
is not a hard specification; rather, the number of clusters found emerges
from data, but is influenced by self-similaritys. In this sense, self-similarity
is closer in spirit to a shrinkage/regularization strengthor Bayesian hyper-
parameter than a pre-specified number of clusters. Importantly, this means
that a default value fors can give good results for a wide range of problems;
in all our experiments, we sets to the median of the (off-diagonal entries of)
similarity matrixψ∗. Finally, we call convergence if cluster centres remain
unchanged for 100 iterations and further set the overall maximum number of
iterations to 1000.

3.2 Similarity measure
As noted in the introduction, there are now a number of biologically
plausible similarity measures for gene expression time series in the literature.
We choose a similarity score due to Qianet al. (2001) which uses alignment
to find time lags in gene expression time series, as outlined below. Although
approximate, this approach is both efficient and rich enoughto capture not
only time lags but also inversions and transient correlations, and is therefore
well suited to our goals.

Given time series dataXit for genesi ∈ I at timest ∈ T , Algorithm 1
returns a matrixψ(i, j) of similarity scores for all gene pairs(i, j). DataXi·

for each gene profile are assumed to be normalized to mean zeroand standard
deviation one. For a given pair(i, j) dynamic programming is used to build
up a matrixΩ+, which compares and scores each alignment between profiles
Xi· andXj· . Inversion or negative co-expression is captured in a second
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matrixΩ−, whose entries are obtained in a similar manner. Finally, transient
correlations are captured by explicitly forcing each entryof Ω+ andΩ− to
be non-negative. Then, similarity scoreψ is simply the highest entry inΩ+

or Ω−. The alignment matricesΩ+ or Ω− further yield a “match type”,
which may be positive/negative and simultaneous/delayed and describes the
characteristics of the highest scoring alignment. Specifically, if ω+ = ψ the
profiles have a positive local correlation, whereas ifω− = ψ the profiles
have a negative local correlation. Likewise, ifψ is achieved atΩ+

t1t2
or

Ω−
t1t2

with t1 = t2 then the local correlation is simultaneous, otherwise it
is time delayed.

For AP a similarity matrix, where identical profiles have a score of zero,
is constructed using the following transformation:

ψ∗(i, j) = ψ(i, j)− T + 1 (7)

Algorithm 1 Computation of similarity measureψ, following Qian
et al. (2001).

(1) InitialiseΩ+
t0, Ω+

0t, Ω
−
t0 andΩ−

0t equal to zero∀t ∈ T ∪ 0.
(2) Initialiset1 = t2 = 1.
(3) CalculateΩ+

t1t2
andΩ−

t1t2
:

Ω+
t1t2 = max(Ω+

t1−1t2−1 +Xit1Xjt2 , 0) (8)

Ω−
t1t2 = max(Ω−

t1−1t2−1 −Xit1Xjt2 , 0) (9)

(4) If t1 < T andt2 ≤ T then sett1 = t1 + 1 and go to step 3.
(5) If t1 = T andt2 < T then sett1 = 1 andt2 = t2 + 1 and go to
step 3.
(6) Letω+ = maxt1t2{Ω

+
t1t2

} andω− = maxt1t2{Ω
−
t1t2

}. Set:
ψ(i, j) = max{ω+, ω−}.

4 RESULTS
We first show results in which we investigate whether richer
temporal features are indeed useful in uncovering biological
relationships. We then compare the ability of K-centres andAP
to cluster real microarray data under similarity matrixψ. Finally,
we present an analysis, using our temporal clustering approach,
of a microarray time course experiment we carried out to better
understand the response ofA. thaliana to infection by the pathogen
B. cinerea (Denby, manuscript in preparation).

4.1 Validation of similarity measureψ
We sought to investigate whether the similarity measureψ does
indeed capture biologically important relationships. To this end
we used two biological examples, from yeast and Arabidopsis
respectively, in which the underlying biology is relatively well
understood.

TF-target pairs in yeast. The yeast genome has been well studied
and provides a number of validated TF-target pairs. This makes
yeast TF-target pairs well suited to a validation study. Here, we
used published microarray data (Spellmanet al., 1998; Gaschet al.,
2000; Qianet al., 2003) of such regulatory pairs, consisting of
validated positive and negative examples. The positive examples
were chosen from TRANSFAC and SCPD; negative examples were
identified by finding genes without the known binding site of the
transcription factor or permuting the gene (but not the transcription
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Fig. 1. Validation results using microarray data. (a) ROC plots obtained
from microarray data for validated examples of TF-target pairs in yeast
(data from Spellmanet al. (1998); Gaschet al. (2000)). Similarity score
ψ outperforms both Pearson’s correlation coefficient (PCC) and its absolute
value. The dotted line corresponds to random guesswork. (b)ROC plots
obtained from microarray data, comparing the expression profiles of genes
from theA. thaliana circadian clock with that of random genes. Similarity
scoreψ outperforms the other measures of similarity, performing roughly
twice as well as measures neglecting time lags.

factors) expression profile. The expression profiles cover atotal
of 79 time points, which gives a relatively high time resolution
in line with the general motivation for our approach. We assessed
the ability of the similarity scoreψ to capture underlying biology
by means of a Receiver Operator Characteristic (ROC) analysis.
Similarity scoresψ(i, j), for each TF-target pair (positive and
negative), were thresholded to yield predictions of TF-target pairs.
The predictions were then compared with the list of known positive
and negative pairs to yield true positive and false positiverates as
a function of threshold level. Varying the threshold gives acurve
which is referred to as a ROC curve; this shows the sensitivity and
specificity of the analysis across all possible thresholds on a single
plot, giving a comprehensive view of the ability of the scoreto
distinguish positive and negative examples. Fig 1(a) showsROC
curves obtained from these yeast data for the similarity scoreψ, the
widely-used Pearson’s correlation coefficient (PCC) and absolute
PCC. The (expected) curve which would be obtained by random
chance is also shown for comparison. Similarity scoreψ performs
better than both PCC and the absolute value of PCC in this instance,
suggesting that the score is indeed able to detect instancesof direct
regulation.
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Arabidopsis clock module. The results presented above pertain to
direct regulatory relationships between TFs and validatedtargets.
However, the complete set of pairwise relationships in a gene
regulatory module naturally includes indirect as well as direct
influences; e.g. within a module, if TFA has as its target gene
B, which in turn has targetC, the pair(A,C) is an example of
an indirect relationship. We therefore sought to complement results
from yeast TF-target pairs with a study of a well-studied gene
regulatory network inA. thaliana. A small network of just six genes
has been shown to jointly control the circadian clock inA. thaliana
(Locke et al., 2006). Microarray data for these six genes were
supplemented with data for a further 560 genes, chosen at random
from theA. thaliana genome. None of the 560 genes were annotated
as belonging to the circadian clock (Swarbrecket al., 2008). In the
resulting set of pairs, those including only members of the known
circadian clock module were treated as positive examples, while
those with only one member of the circadian clock were considered
to be false positives1. As the similarity measure is symmetric, we
have

`

6
2

´

× 1
2

= 15 positive examples and6×560 = 3, 360 negative
examples. Data were obtained from leaf samples taken every 2hours
for 48 hours. ROC curves were constructed in a similar mannerto
the TF-target case above.

Fig. 1(b) shows ROC curves obtained in this way: similarity
scoreψ very clearly outperforms PCC and its absolute value in this
instance. For example 10 (out of 15) true positives are obtained at a
cost of 141 false positives; in comparison, PCC requires 1649 and
absolute PCC requires 1783 false positives. This suggests thatψ is
indeed able to detect both direct and indirect regulation, even under
highly sparse conditions, i.e. when true positives are scarce relative
to false positives. We note also that the vast gains relativeto random
selection we see using all three similarity scores confirm that the
data are indeed information rich.

4.2 Comparative results
The similarity measureψ captures a quite different notion of
closeness than a straightforward vector distance; we have shown
biological evidence in Fig 1 above that in the context of regulatory
relationships in time series data,ψ offers a superior ability to discern
validated biology. Because of this underlying difference in the
notion of closeness, clustering underψ represents a fundamentally
different formulation of the clustering problem than many widely-
used methods (Hastieet al., 2001; Ghosh & Chinnaiyan, 2001;
Heard et al., 2005; Thalamuthuet al., 2006). In this sense,
our approach and these widely used methods address different
questions, which makes them difficult to compare directly. However,
K-centres (Hastieet al., 2001) represents a natural choice for
clustering under the similarity measureψ; indeed, it has been used
for this purpose in previous work (Qianet al., 2001). We therefore
compared our AP-based approach with K-centres, to investigate its
ability to find clusters under similarity measureψ. We used two
microarray time series; 4,489 genes over 18 time points froma
published study in yeast (Spellmanet al., 1998) and 6,000 genes
over 24 time points from a study we have carried out onA. thaliana

1 Despite these precautions, it is possible that some of the 560 genes are
circadianly regulated, as their roles may not currently be fully known.
However, it is highly unlikely that any more than a small minority are so
regulated.

leaves during infection by the necrotrophic fungal pathogen B.
cinerea.

For each dataset we applied both methods to the full set of genes
and also used smaller, randomly selected subsets, to investigate
dependence on dimensionality. For each regime of dimensionality,
10 runs of K-centres and one run of AP (which is deterministic)
was applied to the data. Since we use the same similarity measure
in both cases, the underlying cost function Eq. (2) is identical. AP
was applied using default parameters; AP is able to automatically
learn a good number of clusters (Frey & Dueck, 2007). To ensure
a fair comparison, we set the numberK of clusters for K-centres
to equal the number of clusters discovered by AP in each case.
Fig 2(a) shows results obtained using the yeast dataset of Spellman
et al. (1998), which is a time course of expression profiles of genes
from cells synchronised by the addition of alpha pheromone.The
A. thaliana dataset contains the expression profiles of 6,000 genes
shown to be differentially expressed between infected and so-called
“mock infected” leaves (i.e. a control set of leaves not inoculated
with B. cinerea spores, but otherwise kept in identical experimental
conditions). Figure 2(b) shows results on theA. thaliana data. In
each case, boxplots show values of the objective function obtained
using K-centres; AP is deterministic and gives a single result in each
case.

Fig 2(c) shows an analysis in which we used 400 K-centres
runs on the fullA. thaliana dataset, with each run allowed the
same compute time as a single run of our method. Our method is
completely deterministic, and therefore not subject to variation due
to initial conditions or stochastic steps. It is clear that K-centres
is performing significantly worse than our method at producing
clusters to minimize cost function (2).

4.3 Temporal clustering ofA. thaliana time series data
Here, we apply our method to a microarray time series dataset
of gene expression inA. thaliana leaves during infection by the
necrotrophic fungal pathogenB. cinerea, as described in Section
4.2. We use the VirtualPlant software platform for GO term
over-representation analysis, with p-values calculated using the
hypergeometric distribution (Gútierrezet al., 2005).

We first visually highlight the ability of our method to uncover
non-obvious clusters by means of an illustrative example. Fig. 3(a)
is an example of a cluster whose underlying temporal patterns are
sufficiently complex as to make the cluster appear, at first glance,
devoid of any coherent pattern. Fig. 3(b) shows the same cluster,
adjusted for time lags and inversions: this is now highly coherent.

Application of our method produced 481 clusters; 143 of these
were singleton clusters and so were ignored. In Fig. 4 we highlight
several clusters which yielded modules with known interactions or
novel modules which are biologically interesting.

Circadian clock. Fig. 4(a) shows a cluster which appears to have a
24 hour rhythm. The cluster contains two genes encoding known
components of the circadian clock module. GeneGI is found
to score highly withLHY with a delayed and inverted match.
The delayed and inverted relationship between the two expression
profiles fits extremely well with the known role ofLHY as a
transcriptional repressor ofGI (Locke et al., 2006). In addition,
another member of the cluster, At1g56300, belongs to a classof
genes known as Rapid Wounding Response (RWR) genes, which are
known to be regulated by the circadian clock (Walleyet al., 2007).
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(a) AP vs. K-centres in yeast data
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(b) AP vs. K-centres in Arabidopsis data
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Fig. 2. Here the method proposed in Qianet al. (2001) is compared to our method. (a) They are both applied to data from Spellmanet al. (1998), a time series
consisting of 4,489 genes over 18 time points. Various subsets of this are clustered and the cost function, as given in Eq.(2) and then divided by the number of
genes in the subset, is reported. 10 runs of K-centres each allowed to take as long as a single run of AP were applied to the data. (b) Both methods are applied
to data fromA. thaliana leaves during infection by the necrotrophic fungal pathogen B. cinerea. Various subsets of this are clustered and the cost function, as
given in Eq. (2) and then divided by the number of genes in the subset, is reported. 10 runs of K-centres each allowed to takeas long as a single run of AP
were applied to the data. (c) Here theA. thaliana data is clustered again by both methods, but with 400 runs of K-centres (shown in the grey histogram) each
allowed to take as long as a single run of AP (black line, representing the result of a single run of AP).
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Fig. 3. (a) A cluster returned by our method. (b) The same cluster as in the
previous figure, adjusted for time delays and anti-correlation. Some profiles
in this plot have been shifted in time and/or vertically inverted according to
their original match type.

The de novo discovery of a small cluster containing these genes is
striking in light of the fact that the relationship between these genes
took many years and much research effort to uncover. To the best of

our knowledge, the remaining cluster members have no known link
to the circadian clock; however, given the highly validatednature
of other cluster members, these further genes provide intriguing
hypotheses for additional downstream targets.

Ethylene response. Fig. 4(b) shows a second cluster whose members
form a striking and biologically coherent group. It is noteworthy
that this cluster contains a regulator and known target genes of
this regulator. The TFORA59 (At1g06160) is in this cluster, along
with six genes (At1g59950, At2g43580, At3g23550, At3g56710,
At4g11280, At4g24350) that have been previously found to be
upregulated in an inducible overexpressor line ofORA59 (Préet al.,
2008). These genes are also upregulated in the present experiment.
Moreover,ORA59 and another TF,ERF1 (At3g23240), are believed
to jointly regulatePDF1.2 (Préet al., 2008) andERF1 is also found
in this cluster.PDF1.2 itself is not in the dataset as there is no probe
for it on the microarrays used. BothORA59 andERF1 are known
to respond to the plant hormone ethylene; the cluster also has an
over-representation, significant at 1%, of the GO term response to
ethylene stimulus. Little is known in Arabidopsis about therelative
timing of expression of TFs and their direct targets. However, in
this case the time resolution of the dataset (2 hr) is apparently not
sufficient to pick up a delay between the expression of the regulator
ORA59 and its targets.

Response to abscisic acid. The cluster of 13 genes shown in Fig.
4(c) highlights a novel putative transcriptional module. The only
TF in this cluster, At1g71030 (AtMYBL2) scores highly for a match
with the other genes with a time delay of 6 hours. This cluster
has an over-representation, significant at 1%, of the GO term
“response to abscisic acid (ABA)” and as such may represent a
transcriptional module involved in signalling in responseto this
hormone. Intriguingly, ABA has been shown to play a role in the
interaction betweenB. cinerea and plant hosts (Audenaertet al.,
2002; AbuQamaret al., 2006).
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(c) Cluster containingAtMYBL2

Fig. 4. Clusters found by applying our method to biological data, with default parameters. Data representsArabidopsis thaliana gene expression levels
following infection byBotrytis cinerea. (a) A circadian module.LHY (in blue) is known to be a transcriptional repressor ofGI (in green). At1g56300 (in red)
is a Rapid Wounding Response gene, which are known to be regulated by the circadian clock. Here black dotted lines represent the expression levels of four
additional cluster members. (b) A cluster containing 6 genes co-regulated byORA59 (in red),ORA59 (in orange) and geneERF1 (in green) that is believed to
jointly regulatePDF1.2 with ORA59 (Préet al., 2008). (c) A putative transcriptional module.AtMYBL2 (in red) is the only known transcription factor in this
cluster, and peaks 3 time points before the rest of the genes.

5 DISCUSSION
In this paper we have introduced a clustering methodology that
can reveal relatively complex temporal features in gene expression
time series datasets. Our method is complementary to standard
clustering approaches, but aimed specifically at high resolution
time series and regulatory modules whose expression profiles have
complex temporal relations. Here we discuss the shortcomings of
our method, discuss possible extensions and the relationship of our
method to others.

As transcriptional assays continue to mature higher resolution
datasets are becoming more common; our method is best suitedto
data with (relatively) high temporal resolution, e.g. morethan ten
time points. Time series data with fewer time points will naturally
give a higher chance of spurious correlations or missed timelags.

The method used here is able to detect transient co-expression,
but is not as sensitive as biclustering methods to events occurring
only within short windows of time. This is due to the conservative
approximation strategy of Qianet al. (2001), that divides the overall
score by the total number of time points rather than the number of
time points where co-expression occurs. We could improve this by
giving eachψ value a p-value using an empirical null distribution.
For example, a local correlation across 5 time points could be
compared to alignments of 5 time points in random expression
profiles. A matrix could then be constructed from the p-values and
clustered as described above. This would aid in identifyingclusters
that contain genes that are transiently co-expressed.

The deterministic approach we have used for alignment is
effectively a (constrained) time-warping. An interestingextension
would be to carry out alignment within a probabilistic framework
using a Hidden Markov Model (Rabiner, 1989; Eddy, 1998).
However, in such an approach the design of the state space would
be crucial in capturing realistic gene expression time series using
conventional i.i.d. Gaussian observation models. Moreover the
resulting computational burden for all pairwise comparisons of∼
104 genes would be considerably greater than the method used here,
which is fast enough for interactive use as an exploratory tool.

As AP is an appropriate method to cluster arbitrary matrices
of similarity, it provides a flexible framework in which to carry
out further work in incorporating complementary information in
the similarity measure, e.g. additional time series of the same
genes under different environmental conditions, the identity of
TFs, presence of known TF binding sites in a gene’s promoter,
protein-protein interactions, etc.

A recent paper by Smithet al. (2009) demonstrated a method
called SCOW for aligning the profile of a gene with its profile
in another time series. This is subtly different from clustering the
profiles of different genes in the same time series, for example,
shorting is not appropriate in this case. It also allows for unequal
sampling. The problem of unequal sampling was partially treated
in Qian et al. (2001), but could certainly be improved. One way
that suggests itself is to record the spacing between time points, and
on the basis of that allow skips in matricesΩ+ and Ω− that are
acceptable given the spacing.
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