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ABSTRACT

Motivation: Identifying regulatory modules is an important task in the
exploratory analysis of gene expression time series data. Clustering
algorithms are often used for this purpose. However, gene regulatory
events may induce complex temporal features in a gene expression
profile, including time delays, inversions and transient correlations,
which are not well accounted for by current clustering methods. As
the cost of microarray experiments continues to fall, the temporal
resolution of time course studies is increasing. This has led to a need
to take account of detailed temporal features of this kind. Thus, while
standard clustering methods are both widely used and much studied,
their shared shortcomings with respect to such temporal features
motivates the work presented here.

Results: Here, we introduce a temporal clustering approach for
high-dimensional gene expression data which takes account of time
delays, inversions and transient correlations. We do so by exploiting
a recently introduced, message-passing-based algorithm called
Affinity Propagation (AP). We take account of temporal features of
interest following an approximate but efficient dynamic programming
approach due to Qian et al. (2001). The resulting approach is
demonstrably effective in its ability to discern non-obvious temporal
features, yet efficient and robust enough for routine use as an
exploratory tool. We show results on validated transcription factor-
target pairs in yeast and on gene expression data from a study of
Arabidopsis thaliana under pathogen infection. The latter reveals a
number of biologically striking findings.

Availability: Matlab code for our method is available at
http://www.wsbc.warwick.ac.uk/stevenkiddle/tcap.html.

Contact: {s.j.kiddle,s.n.mukherjee}@warwick.ac.uk

1 INTRODUCTION

Gene expression analysis by microarrays is now a well éstedal
approach in high-throughput biology. Time course studies a
widely used to probe the dynamics of gene expression andsanco
underlying regulatory programs. As costs per array havérooed
to fall, the temporal resolution of such studies (in the sens

*to whom correspondence should be addressed

of the number of discrete time points sampled) has increased
Indeed, it is now common to see studies with 20 or more time
points over timescales of hours to days. A central task in the
exploratory analysis of these high-dimensional time seisethat
of identifying subsets of genes which are functionally teda
for example transcription factors (TFs) and their targegsnes
which share a regulatory program and so on. Following much
of the recent literature we call such subsets modules (Bsegh
et al., 2003; Segakt al., 2003). Module identification plays a
key role both in the generation of experimental hypothesekia
informing subsequent modelling. Microarray data whichhhight
a set of genes as possibly functionally related can suggesifi
follow-up experiments, for example using interventiongéded at
module members. Equally, module identification informstHar
computational work. The inference of gene regulatory néets/o
(e.g. using Bayesian networks or Gaussian graphical mpdeis
example, rapidly grows more challenging in higher dimensidn
the same way, mechanistic models of gene expression (ODE, PD
or statistical mechanical), become much more tractablesriwell
sets of genes. Thus, identifying transcriptional modubes greatly
aid downstream, detailed quantitative analysis.

Clustering algorithms are widely used for the purpose of
identifying gene modules (e.g. Ghosh & Chinnaiyan, 200l1arde
et al., 2005; Thalamuthwet al., 2006). Such algorithms seek to
partition the set of genes into subsets whose within-sidsetarity
is high relative to between-subset similarity. The most elyjd
used notions of similarity are simple vector distances betw
temporal profiles, and include the Euclidean distance, Joe&
correlation coefficient (PCC) and Mahalanobis distanceduis
Gaussian mixture models). Loosely speaking, these metteels
to find subsets of genes whit¢bok similar in the sense of having
highly correlated expression profiles. This in turn meaias these
methods are well suited to detecting modules whose members a
co-regulated (Yonat al., 2006), for example by a shared TF, and
where regulatory events are simultaneous, at least up terttgoral
resolution of the dataset.

However, the general strategy of clustering by straightéod
profile similarity suffers from a number of drawbacks. Fimhile
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it is arguably well suited to certain cases of simultaneoas c
regulation, it is not as well suited to finding genes whichutete

not usually been exploited to provide practical alterrestivto
clustering for exploratory analysis. Hierarchical clustg (see

each other. In these settings there can be a time lag betweeneag. Hastieet al., 2001) and spectral clustering (Shi & Malik,

change in the profile of the regulator and the correspondizgge
in its target. At very low temporal resolutions, this may betan
issue, because the changes, if detected, may appede fasto
simultaneous. However, at higher temporal resolution® tiags
become an important issue; we show experimental examples.be
Second, even when a set of putatively co-regulated genebecan
identified, the task of identifying a shared TF remains alehging
one. A widespread approach is to use sequence analysictvelis

2000; Ng et al., 2002) address the related but quite distinct
problem of partitioning a dataset by recursively companiairs

of observations. In particular, these methods do not erthaiteall
points within a cluster are similar to a cluster mean or eeatrd
indeed quite often make splits which lead to clusters whiztaot
have this property.

Here, we address these open issues by putting forward an

approach for finding gene modules which incorporates thege k

upstream motifs, shared among module members, which matemporal features — time lags, transient correlation amdrgions
correspond to TF binding sites. However, even when upstreara— but is computationally efficient enough to provide a preati
motifs can be found, TFs that bind to these sequences ame oftealternative to standard clustering. We do so by exploiting a

unknown, particularly in higher organisms. This motivatéeseed
for module finding methods which can identify subsets inclgd
both regulator and targets directly from expression data.

recently proposed message-passing-based algorithna éfiaity
Propagation (AP) (Frey & Dueck, 2007) which we show, using
biological data, to be robust and efficient in this settings &

Third, many existing approaches do not account for tramsiensimilarity measure we choose a dynamic programming fortimura

correlations, in which gene profiles are similar only withioertain
time window, and not well correlated outside it. This carsadfor
example in longer time courses, where the underlying biodlg
process driving profile similarity is itself transient, suthat at its
end, the genes revert almost to a background level of vaniatiwo-
way clustering or biclustering (Hartigan, 1972; Lazzer@r®Owen,
2002; Balasubramaniyaet al., 2004; Madeira & Oliveira, 2005;

due to Qianet al. (2001); this is fast but approximate, and we
confirm empirically that it is sufficiently powerful to giveogd
results in this setting.

Our work adds to the existing literature in two main wayssgir
we put forward an approach for clustering microarray timeese
data which captures rich temporal features yet is robusflires
little or no user input and is fast enough for routine use ioroarray

Meng et al., 2009) has been used to address the issue of transiedata analysis. For example, in an analysis of real micrgateda,

correlations. Here, clusters are sought which form subsfet®th

genes and (contiguous) time points. However, robust hieting

remains computationally challenging on account of the nastber
of possible biclusters that can be formed. Finally, invarsiin the
sense of negative correlation/co-expression can be impowhen
regulatory relationships are repressive, but are not alwagounted
for by clustering methods.

In order to account for these temporal features, a natugaliglto
carry out cluster analysis using richer similarity measureplace
of a simple vector distance; this idea appears several timtdse
literature (Qiaret al., 2001; Schmitet al., 2004; Balasubramaniyan
et al., 2004; Smithet al., 2009). However, doing so brings with
it a non-trivial computational burden, especially undenditions
of high dimensionality and high temporal resolution (ansuiéng
longer time lags). Under Euclidean distance and its vasielusters
can be characterized by cluster-level statistics sucheasigan; this
in turn permits (relatively) fast iterative computatiaia algorithms
such as K-means and Expectation-Maximization (EM). In @stt
temporally rich gene-gene similarity measures typicatiyndt give
an analogue to cluster mean. The standard approach themseto
an iterative algorithm known as K-centres (or K-medioidsgg
e.g. Hastieet al., 2001). However, K-centres is notoriously slow,
requiring quadratic time in cluster size to find a clustertaznit
is also known to be highly sensitive to initialization. Thesulting
difficulty in clustering under rich gene-gene similarity aseres has

this finds a substantially better value of the same objedtimetion
than any of 400 runs of K-centres, while requiring a fractain
the total compute time, and no user input whatsoever. Second
we show extensive results on experimental data, hightighthe
biological relevance of richer temporal features and theartance
of capturing such features during clustering. We are ablduster
together members of a recently identified gene regulatomyork
whose profiles would not have been clustered together bijitraal
clustering techniques. We also find several modules whiglyest
hypotheses to test experimentally.

The remainder of the paper is organized as follows. We begin b
reviewing basic ideas and notation for clustering and thestdbe
the methods used here. We show results on a validated set-of TF
target pairs in yeast, and on experimental data from a stddy o
Botrytis cinerea infection in Arabidopsis thaliana. We conclude
with a discussion of the shortcomings of our work, possible
extensions and its relationship to other methods.

2 BACKGROUND
2.1 Notation

Let X;; be the mRNA expression value of gehat timet. A time
series microarray dataséX, is a matrix containing the expression
values of genes € 7 = {1,2,--- g}, for time pointst €

meant that existing work on such measures has not led to dywide 7 — 1 2.... T}. The complete expression profile for gene

applicable alternative to standard clustering.

is denoted)(i. = [Xih Xig, cee 7)(iT]T.

We note that time delays are well accounted for in graphical

model formulations (including dynamic Bayesian networksgte

space models and hidden Markov models) where Markov2-2 Clustering
assumptions are used to model these temporal effects. lowev Clustering is a form of unsupervised machine learning incivhi

these approaches are computationally demanding andtisttis
challenging for high-dimensional data, and have for thessaons

observations are partitioned into groups, called clustessch
that within-cluster similarity is large relative to betweeluster
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similarity. In the present setting, observations correspto gene
expression profiles(;..

221 K-means Given a user-set number of cluster’,
(Euclidean) K-means seeks to find cluster assignmefits c :
Z — K = {1...K} and corresponding cluster meafysi } xcic
which minimize the following cost function:

JHe@rAmy) = >0 > 1% — el

kEK irc(i)=Fk

1)

where, || - || denotes (squared) Euclidean distance &)} and
{u} are cluster assignments and cluster means respectively.

however, unlike K-centres AP simultaneously considgrobservations as
candidate centres. Naively, this would be computatignatractable; in
AP this is accomplished by an efficient message passing fatiom (which
can be derived as an instance of the max-sum algorithm feorfacaphs).
Two different kinds of messages are exchanged between aiisers:
responsibility (4, 7), which reflects poinj’s suitability as a centre for point
¢ andavailability a(i, 7), which reflects evidence in favour efchoosingj
as its centre. Here we briefly describe the AP algorithm, aseéd in the
present application; for further details we refer the ieséed reader to Frey
& Dueck (2007).

Update equations. AP is provided with a similarity matrixy*, such as the
one introduced in section 3.2.

Initially, availabilities a (s, j) are set to zero; “self-similarities)* (i, i)
are given a user-set value this is discussed below. Then, responsibilities

K-means minimizes this cost function by means of an iteeativ and availabilities are updated sequentially using thetdtg:

procedure in which the computation of cluster means altesnaith
cluster assignment. Mixture-model-based approachesewiewed
as a probabilistic generalization of K-means, in which obstons
are assigned to clusters in a “soft” manner, under a prababil
model in which cluster membership is treated as a latenabhai
Model fitting is usually accomplished using the EM algorittas is
well-known, K-means itself arises as a certain limitingeca§ EM
applied to a Gaussian mixture model.

2.2.2 K-centres Cost function Eqg. (1) directly uses cluster means

{ur}. In contrast, a matrix of simlarities (i, 7), i, 7 € Z between

r(i,5) — ¥ (i,5) — max {a(i,5") +v* (i, 5)} @3)
33’ #3

max{0, (', 7)}

4

>

Vi # 7, a(l,])gmln{07r(]7])+
i’/ ¢ {i,5}

a(jg,j) — Z max{0,7(i’, )}

il il #j

®)

A damping factorA € [0, 1] is used to prevent numerical oscillations:

observations may not give an analogue to cluster mean. # thieach message is set to a weighted combination of its valuetfie previous

setting, a standard approach is to characterize a clusterdans
of an observation within that cluster, referred to asdéxére of the
cluster. This formulation yields the following cost furami

>

i€Ts.t.iF#e(1)

J({e@®}) = - P(i,e(d)) )

wheree:Z— E CTI,|E| =K

is a cluster assignment function which in this case MaPSy|gorithm parameters. The self-

observations to the (index of) the corresponding clustetree

The K-centres algorithm is a K-means-like heuristic metfard
optimizing Eqg. (2), in which a cluster characterizationpsie
alternated with a cluster assignment step. Absent any maifo
mean, the cluster characterization step involves seayahier all
members of each cluster to minimize within-cluster diséartbis
requires quadratic time in cluster size. Moreover, K-cehtnust be
initialized, and the initialization can affect which localaximum
the method will find.

Thus, while Eq. (2) provides a natural cost function for ttisig
under a similarity matrixiy, it can be difficult to obtain good
clusters in practice, and moreover to do so robustly andihap
applications with a large number of objects to be clustered.

3 METHODS

Here we describe the methods used in the remainder of ther. pefee
first discuss clustering by Affinity Propagation (AP) andrttibe similarity
measure used here.

3.1 Affinity propagation

Affinity propagation (AP) is an algorithm by which to learnuster
assignments and cluster centres under the K-centres auxtdin Eq. (2).
Like K-centres, AP uses observations themselves to cleaizetclusters;

iteration and its updated value, weighted byand1 — X respectively. In
all our experiments we use a default valuedot= 0.9. Update equations
are iterated until cluster centres remain unchanged foeaset number of
iterations (see below). Then, cluster cente€s) are given by maximizing
over the sum of responsibility and availability:

eli) = ©)

argmaxa(i, 5) + (i, )
JET

If e(?) = 1, itself is a cluster centre.

similarity values influences the number
of clusters discovered, higher values giving a greater raunal clusters.
However, in contrast to the paramet&r in K-means and K-centres, this
is not a hard specification; rather, the number of clustesdoemerges
from data, but is influenced by self-similarity In this sense, self-similarity
is closer in spirit to a shrinkage/regularization strengtiBayesian hyper-
parameter than a pre-specified number of clusters. Imptytahis means
that a default value fos can give good results for a wide range of problems;
in all our experiments, we setto the median of the (off-diagonal entries of)
similarity matrix«)*. Finally, we call convergence if cluster centres remain
unchanged for 100 iterations and further set the overallimax number of
iterations to 1000.

3.2 Similarity measure

As noted in the introduction, there are now a number of bickity
plausible similarity measures for gene expression timeser the literature.
We choose a similarity score due to Qietral. (2001) which uses alignment
to find time lags in gene expression time series, as outliegaib Although
approximate, this approach is both efficient and rich endogtapture not
only time lags but also inversions and transient corrafatiand is therefore
well suited to our goals.

Given time series datd;; for genesi € 7 at timest € 7, Algorithm 1
returns a matrix)(, j) of similarity scores for all gene pai(s, j). DataX;.
for each gene profile are assumed to be normalized to meaazésiandard
deviation one. For a given pa(t, j) dynamic programming is used to build
up amatrix2+, which compares and scores each alignment between profiles
X;. and X;. . Inversion or negative co-expression is captured in a secon
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matrix 2~ , whose entries are obtained in a similar manner. Finalyndient
correlations are captured by explicitly forcing each emtiy2™ andQ2~ to
be non-negative. Then, similarity scareis simply the highest entry i+
or Q. The alignment matricet or Q~ further yield a “match type”,
which may be positive/negative and simultaneous/delayeddascribes the
characteristics of the highest scoring alignment. Spediifigf w* = 1 the
profiles have a positive local correlation, whereasif = ¢ the profiles
have a negative local correlation. Likewise,ifis achieved alQ;*l,52 or
€24, with ¢, = t5 then the local correlation is simultaneous, otherwise it
is time delayed.

For AP a similarity matrix, where identical profiles have arscof zero,
is constructed using the following transformation:

P (i, 5) =i, 5) =T+ 1 @)

Algorithm 1 Computation of similarity measurg, following Qian
et al. (2001).

(1) Initialise 3, Q;, Q;, andQ;, equal to zerort € T U 0.

(2) Initialiset; = to = 1.
(3) Calculate;’ ,, and€;

tity”

taQ = maX(Qtt—th—l + Xity Xjt,,0)

Q1 = max(Qy; 14, 1 — Xit; Xjjty, 0)

®)
©)

(4)If t1 < T'andte < T then set; = t, + 1 and go to step 3.
(5) If t1 = T andt2 < T then set; = 1 andt2 = t2 + 1 and go to
step 3.

(6) Letw™ = max, 1, {2,
¥(i,7) = max{wt,w™}.

}andw™ = maxs, 1, {4,

}. Set:

4 RESULTS

We first show results in which we investigate whether richer

temporal features are indeed useful in uncovering biokdgic
relationships. We then compare the ability of K-centres afd
to cluster real microarray data under similarity matrix Finally,
we present an analysis, using our temporal clustering appro
of a microarray time course experiment we carried out toebett
understand the response/Afthaliana to infection by the pathogen
B. cinerea (Denby, manuscript in preparation).

4.1 Validation of similarity measure 1

We sought to investigate whether the similarity measyirdoes
indeed capture biologically important relationships. Tistend

150
]
(]
=
‘2 100
o
13) [ ’ —— Qian similarity|
= 50, -~ abs(PCC)
---PCC
random score
0 ‘ ‘ :
0 1000 2000 3000
False postives
(a) Yeast TF-target pairs
[%]
5}
=
.‘%
o
o
$ o - __ i~ Qian similariy
= ! -~ abs(PCC)
T ---PCC
random score
0
0 1000 2000 3000

Approximate false postives
(b) Arabidopsis clock module

Fig. 1. Validation results using microarray data. (a) ROC plotsatetd
from microarray data for validated examples of TF-targetspam yeast
(data from Spellmaret al. (1998); Gaschet al. (2000)). Similarity score
1) outperforms both Pearson’s correlation coefficient (PGl its absolute
value. The dotted line corresponds to random guessworkRQ@ plots
obtained from microarray data, comparing the expressiofilgs of genes
from the A. thaliana circadian clock with that of random genes. Similarity
score outperforms the other measures of similarity, performiagghly
twice as well as measures neglecting time lags.

factors) expression profile. The expression profiles covéuta

of 79 time points, which gives a relatively high time resaot
in line with the general motivation for our approach. We assd
the ability of the similarity score) to capture underlying biology
by means of a Receiver Operator Characteristic (ROC) aisalys
Similarity scores(i,j), for each TF-target pair (positive and
negative), were thresholded to yield predictions of Tkaipairs.
The predictions were then compared with the list of knowritpes
and negative pairs to yield true positive and false positates as

we used two biological examples, from yeast and Arabidopsis; fynction of threshold level. Varying the threshold givesuave

respectively, in which the underlying biology is relatiyelell
understood.

which is referred to as a ROC curve; this shows the sengitant
specificity of the analysis across all possible threshotda single

TF-target pairs in yeast. The yeast genome has been well studiedplot, giving a comprehensive view of the ability of the sceoe

and provides a number of validated TF-target pairs. Thisapak
yeast TF-target pairs well suited to a validation study. eslexe
used published microarray data (Spellnehal., 1998; Gasclet al.,
2000; Qianet al., 2003) of such regulatory pairs, consisting of
validated positive and negative examples. The positivangkes

distinguish positive and negative examples. Fig 1(a) she®@<
curves obtained from these yeast data for the similarityes¢othe
widely-used Pearson’s correlation coefficient (PCC) ansbhite
PCC. The (expected) curve which would be obtained by random
chance is also shown for comparison. Similarity scorperforms

were chosen from TRANSFAC and SCPD; negative examples werbetter than both PCC and the absolute value of PCC in thigrinst

identified by finding genes without the known binding site loé t
transcription factor or permuting the gene (but not thegcaiption

suggesting that the score is indeed able to detect instafickect
regulation.
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Arabidopsis clock module. The results presented above pertain to leaves during infection by the necrotrophic fungal patmoge
direct regulatory relationships between TFs and validédegets.  cinerea.
However, the complete set of pairwise relationships in aegen For each dataset we applied both methods to the full set afgen
regulatory module naturally includes indirect as well asedi  and also used smaller, randomly selected subsets, to inmtest
influences; e.g. within a module, if TR has as its target gene dependence on dimensionality. For each regime of dimeakign
B, which in turn has targe€’, the pair(A,C) is an example of 10 runs of K-centres and one run of AP (which is determinjstic
an indirect relationship. We therefore sought to compleémesults  was applied to the data. Since we use the same similarityureas
from yeast TF-target pairs with a study of a well-studied egen in both cases, the underlying cost function Eq. (2) is idehtiAP
regulatory network irA. thaliana. A small network of just six genes was applied using default parameters; AP is able to autoaibti
has been shown to jointly control the circadian cloclirthaliana learn a good number of clusters (Frey & Dueck, 2007). To ensur
(Locke et al., 2006). Microarray data for these six genes werea fair comparison, we set the numb&r of clusters for K-centres
supplemented with data for a further 560 genes, chosen doman to equal the number of clusters discovered by AP in each case.
from theA. thaliana genome. None of the 560 genes were annotated-ig 2(a) shows results obtained using the yeast datasetedfi&m
as belonging to the circadian clock (Swarbretkl., 2008). Inthe et al. (1998), which is a time course of expression profiles of gene
resulting set of pairs, those including only members of thewkn from cells synchronised by the addition of alpha pheromdre
circadian clock module were treated as positive exampldslew A. thaliana dataset contains the expression profiles of 6,000 genes
those with only one member of the circadian clock were carsid  shown to be differentially expressed between infected anchdied
to be false positivés As the similarity measure is symmetric, we “mock infected” leaves (i.e. a control set of leaves not irated
have(S) x 4 = 15 positive examples arfiix 560 = 3, 360 negative  with B. cinerea spores, but otherwise kept in identical experimental
examples. Data were obtained from leaf samples taken evesyrd  conditions). Figure 2(b) shows results on thethaliana data. In
for 48 hours. ROC curves were constructed in a similar matmer each case, boxplots show values of the objective functidairdd
the TF-target case above. using K-centres; AP is deterministic and gives a singlelt@seach

Fig. 1(b) shows ROC curves obtained in this way: similarity case.
scorey very clearly outperforms PCC and its absolute value in this Fig 2(c) shows an analysis in which we used 400 K-centres
instance. For example 10 (out of 15) true positives are pbthat a  runs on the fullA. thaliana dataset, with each run allowed the
cost of 141 false positives; in comparison, PCC require®H#  same compute time as a single run of our method. Our method is
absolute PCC requires 1783 false positives. This sugdests tis completely deterministic, and therefore not subject téatEm due
indeed able to detect both direct and indirect regulativeneinder  to initial conditions or stochastic steps. It is clear thatéhtres
highly sparse conditions, i.e. when true positives arecgceglative  is performing significantly worse than our method at prodgci
to false positives. We note also that the vast gains relativendom  clusters to minimize cost function (2).
selection we see using all three similarity scores confirat the

data are indeed information rich. 4.3 Temporal clustering ofA. thaliana time series data
) Here, we apply our method to a microarray time series dataset
4.2 Comparative results of gene expression iA. thaliana leaves during infection by the

The similarity measure)) captures a quite different notion of necrotrophic fungal pathoge®. cinerea, as described in Section
closeness than a straightforward vector distance; we havers 4.2. We use the VirtualPlant software platform for GO term
biological evidence in Fig 1 above that in the context of tagary ~ Over-representation analysis, with p-values calculatsitgithe
relationships in time series datapffers a superior ability to discern hypergeometric distribution (Gutierrezal., 2005).

validated biology. Because of this underlying differencetie We first visually highlight the ability of our method to unaav
notion of closeness, clustering underepresents a fundamentally non-obvious clusters by means of an illustrative exampit. ¥a)
different formulation of the clustering problem than maniglely-  is an example of a cluster whose underlying temporal paitera

used methods (Hastiet al., 2001; Ghosh & Chinnaiyan, 2001; sufficiently complex as to make the cluster appear, at fiesbag,
Heard et al., 2005; Thalamuthuet al., 2006). In this sense, devoid of any coherent pattern. Fig. 3(b) shows the sameecjus
our approach and these widely used methods address differeadjusted for time lags and inversions: this is now highlyereit.
questions, which makes them difficult to compare directlywidver, Application of our method produced 481 clusters; 143 of ¢hes
K-centres (Hastieet al., 2001) represents a natural choice for were singleton clusters and so were ignored. In Fig. 4 weligigh
clustering under the similarity measufe indeed, it has been used several clusters which yielded modules with known intécast or
for this purpose in previous work (Qiaet al., 2001). We therefore  novel modules which are biologically interesting.

compared our AP-based approach with K-centres, to inwestids
ability to find clusters under similarity measue We used two
microarray time series; 4,489 genes over 18 time points feom
published study in yeast (Spellma&hal., 1998) and 6,000 genes
over 24 time points from a study we have carried oufothaliana

Circadian clock. Fig. 4(a) shows a cluster which appears to have a
24 hour rhythm. The cluster contains two genes encoding khow
components of the circadian clock module. GeBk is found

to score highly withLHY with a delayed and inverted match.
The delayed and inverted relationship between the two egjme
profiles fits extremely well with the known role dfHY as a

1 Despite these precautions, it is possible that some of theggbes are transcriptional repressor @Bl (Locke et al., 2006). In addition,
circadianly regulated, as their roles may not currently biyfknown.  another member of the cluster, At1g56300, belongs to a dhss
However, it is highly unlikely that any more than a small mihpare so  genes known as Rapid Wounding Response (RWR) genes, which ar
regulated. known to be regulated by the circadian clock (Waléwl., 2007).
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Fig. 2. Here the method proposed in Qietral. (2001) is compared to our method. (a) They are both appiedta from Spellmast al. (1998), a time series
consisting of 4,489 genes over 18 time points. Various dalidehis are clustered and the cost function, as given ifBand then divided by the number of
genes in the subset, is reported. 10 runs of K-centres elaetedl to take as long as a single run of AP were applied to ttee {#a) Both methods are applied
to data fromA. thaliana leaves during infection by the necrotrophic fungal patimBecinerea. Various subsets of this are clustered and the cost funci®n
given in Eg. (2) and then divided by the number of genes in thiset, is reported. 10 runs of K-centres each allowed todakeng as a single run of AP
were applied to the data. (c) Here tAethaliana data is clustered again by both methods, but with 400 runs-céigres (shown in the grey histogram) each
allowed to take as long as a single run of AP (black line, regméng the result of a single run of AP).

3 our knowledge, the remaining cluster members have no knimkn |
to the circadian clock; however, given the highly validatedure
\‘v\'é“\ of other cluster members, these further genes providegintrg
V“W\
AN,
e

"i\ hypotheses for additional downstream targets.

Ethylene response. Fig. 4(b) shows a second cluster whose members
form a striking and biologically coherent group. It is notethy
that this cluster contains a regulator and known target gerfe
this regulator. The TEORA5S9 (At1g06160) is in this cluster, along
with six genes (At1g59950, At2g43580, At3g23550, At3g5R71
At4g11280, At4g24350) that have been previously found to be
upregulated in an inducible overexpressor lin@©&AS9 (Préet al.,
2008). These genes are also upregulated in the preseniragper
Moreover,ORA59 and another THERF1 (At3g23240), are believed
to jointly regulatePDF1.2 (Préet al., 2008) ancERF1 is also found
in this clusterPDF1.2 itself is not in the dataset as there is no probe
for it on the microarrays used. BotbhRA59 and ERF1 are known
to respond to the plant hormone ethylene; the cluster alsaaha
over-representation, significant at 1%, of the GO term nespdo
ethylene stimulus. Little is known in Arabidopsis about tekative
timing of expression of TFs and their direct targets. Howgeue
3(‘) 10 20 30 40 50 60 this case the time resolution of the dataset (2 hr) is apfigrant

Hours post infection (shifted) sufficient to pick up a delay between the expression of thelator
(b) Complex temporal cluster, adjusted for ORA59 and its targets.

delay and inversions

Log expression
o

0 10 20 30 40
Hours post infection

(a) Complex temporal cluster

Log expression

Response to abscisic acid. The cluster of 13 genes shown in Fig.
Fig. 3. (a) A cluster returned by our method. (b) The same clusten &sei 4(c) highlights a novel putative transcriptional moduleheTonly
previous figure, adjusted for time delays and anti-coriiatSome profiles  TF in this cluster, At1g710308MYBL2) scores highly for a match
in this plot have been shifted in time and/or vertically irteel according to  \yith the other genes with a time delay of 6 hours. This cluster
their original match type. has an over-representation, significant at 1%, of the GO term
“response to abscisic acid (ABA)” and as such may represent a
transcriptional module involved in signalling in resportsethis
The de novo discovery of a small cluster containing these genes ishormone. Intriguingly, ABA has been shown to play a role ia th
striking in light of the fact that the relationship betwebede genes interaction betweeB. cinerea and plant hosts (Audenaegt al.,
took many years and much research effort to uncover. To thisbe  2002; AbuQamaet al., 2006).
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Fig. 4. Clusters found by applying our method to biological datathvdefault parameters. Data represeftabidopsis thaliana gene expression levels
following infection byBotrytis cinerea. (a) A circadian moduleLHY (in blue) is known to be a transcriptional represso6Gof(in green). At1g56300 (in red)

is a Rapid Wounding Response gene, which are known to beategduby the circadian clock. Here black dotted lines remitethe expression levels of four
additional cluster members. (b) A cluster containing 6 gesteregulated bPRAS9 (in red), ORAS9 (in orange) and geneRF1 (in green) that is believed to

jointly regulatePDF1.2 with ORAS9 (Préet al., 2008). (c) A putative transcriptional modultMYBL2 (in red) is the only known transcription factor in this
cluster, and peaks 3 time points before the rest of the genes.

5 DISCUSSION As AP is an appropriate method to cluster arbitrary matrices

In this paper we have introduced a clustering methodology th ©f similarity, it provides a flexible framework in which to g

can reveal relatively complex temporal features in gengesgion ~ Out further work in incorporating complementary infornoatiin

time series datasets. Our method is complementary to sthndathe similarity measure, e.g. additional time series of thme

clustering approaches, but aimed specifically at high wiesi ~ 9enes under different environmental conditions, the iterif

time series and regulatory modules whose expression mdfiiee ~ 1FS, presence of known TF binding sites in a gene’s promoter,

complex temporal relations. Here we discuss the shortegsnai ~ Protein-protein interactions, etc.

our method, discuss possible extensions and the relatfpogur A recent paper by Smitkt al. (2009) demonstrated a method

method to others. called SCOW for aligning the profile of a gene with its profile
As transcriptional assays continue to mature higher réisolu N @nother time series. This is subtly different from cluistg the

datasets are becoming more common; our method is best saited Profiles of different genes in the same time series, for examp

data with (relatively) high temporal resolution, e.g. menan ten ~ SNOrting is not appropriate in this case. It also allows feequal

time points. Time series data with fewer time points willuratly ~ S@mpling. The problem of unequal sampling was partiallptee

give a higher chance of spurious correlations or missed g in Qian et al. (2001), but could certainly be improved. One way
The method used here is able to detect transient co-expnessi that suggests itself is to record the spacing between tirmépand

but is not as sensitive as biclustering methods to eventsroeg ~ ©N the basis of that allow skips in matrices” and 2~ that are

only within short windows of time. This is due to the conséimea  acceptable given the spacing.

approximation strategy of Qiaat al. (2001), that divides the overall

score by the total number of time points rather than the nurabe

time points where co-expression occurs. We could improigelth

giving eachy value a p-value using an empirical null distribution. ACKNOWLEDGEMENT
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