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Abstract 

We consider an inverse-free Jarratt-type approximation of order four in a Banach space (Argyros et al., 1996). 
We establish a convergence theorem by using recurrence relations. The purpose of this note is to relax convergence 
conditions and give an example where our convergence theorem can be applied but not the other ones. 
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I. Introduction 

Although multipoint iteration functions are not used much in practice, one interesting family of 
this type of functions, studied by Traub [8], is very efficient when the equation to be solved is 
such that the evaluation of the first derivative is rapid compared to the function. An example of this 
occurs when the function is defined by an integral. 

A modification of Newton's method for solving nonlinear equations of the type F ( x ) = 0  was 
recently introduced by Argyros et al. [3]. They studied a new inverse-free approximation scheme 
def ined ,  for  al l  n ~> 0, b y  

y ,  = x .  -- F ' ( x . ) - I F ( x . ) ,  

H(xn,  y . ) =  Ft(xn)  -1 [Ft(xn -q- ~(y .  - Xn) ) - -  F ' ( x . ) ] ,  

Xn+l = Y .  - -  3 H ( x . ,  Yn)[ I -- 3 H(xn,  Yn)l(Yn -- Xn), (1) 
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where F is a nonlinear operator defined on a convex domain f2 of a Banach space X with values 
in a Banach space Y. It has been assumed that F has a first-order continuous Frrchet derivative on 
f2, F'(xo)-I exists for x0 E 12. 

A Kantorovich-like convergence theorem is given in [3], where it was shown that the previous 
method converges locally with order four, under the regularity assumptions 

IlE"(x)N<..Zl, I[E"'(x)ll Z2, IlE'"(x)-E'"(Y)ll Z3llx-yll, x, y E Q .  (2) 

On the other hand, convergence studies, where the majorant principle [5] is applied for one-point 
iterations of  order three, are based on conditions of  the form (see [1, 2, 4, 10]) 

IlE"'(x)lI<...gl or IlE"(x)-E"(y)ll g2llx-yll, x, yE ?. (3) 

In [7], Smale presented a new concept of  point estimation. Instead of the region conditions in 
the Newton-Kantorovich theorem, he got the convergence of  the Newton method for analytic maps 
from the data at one point. In Smale-like theorems for iterative methods, it is supposed that the 
conditions 

  llFoFU)(xo)ll IIFoF(xo)l( -1 h j ~> 2, (4) 

are satisfied at x0. The h constant is different for each method (see [7, 11]). 
In this note, we give another convergence theorem for operator equations. In order to provide the 

convergence of  (1), it is only assumed 

liE'(x) - F'(y)I[ <<.K[[x - yll, x, y E f2, (5) 

instead of  (2), (3) or (4). Observe that we can apply a method of  order four (1) under the same 
condition (5) as for Newton's method (see [9]). Finally, an example where the conditions (2)- (4)  
but not (5) fail is presented. 

We denote B(x , r )=  { y E X ;  I l y -  xl[ ~<r} and B(x ,r ) - -  { y E X ;  I[Y-xi[ <r} .  

2. A eonvergence theorem 

Theorem 2.1. Let F be a nonlinear once Frdchet-differentiable operator & an open convex domain 
o f  a Banach space X with values in a Banach space Y. Let Xo E ~ and suppose that Fo = F'(xo) -1 

ex&ts. Let  us assume 

[[F0i[~<a, ][yo-xoII<<.b, I IF ' (x ) -  F'(y)H<<.KIIx- y[[, x, yE f2 .  

I f  ao = abK < s  = 0.300637... (s is the smallest positive root o f  polynomial q(x) = 2 x  6 ~-  3 x  5 -~- 8 x  4 - 

5x 3 - 8x 2 - 24x + 8) and B(xo, r) C f2, where 

r = 1 + (ao/2)(1 + ao)Ilyo - xoll, 
1 - M o  

Mo =(ao(8 + 8ao + 5a 2 + 2a 3 ÷ a4))/(8(1 - bo)) and bo =ao(1 + (ao/2)(1 + ao)), then sequence 
{x,} given by (1) is well-defined, x , , y ,  EB(xo, r), for  all n>>.O, and converges R-quadratically at 
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least to a solution x* E B(xo, r) o f  the equation F(x)-=-O. Moreover, the solution x* is unique in 
B(xo, (2/aK) - r) fq f2. 

Proof. Let us define the following two real sequences for all n/> 1: 

2 2a3n_l 4 a2n_l(8+8an_l +5an_ 1 + + a ,_l)  
ao=abK, bn=a,(1  +(a , /2 ) (1  + a n ) ) ,  an = 

8(1 -bn_l)2 

Under the hypotheses mentioned above, the existence of x~ is guaranteed and Hxl -Xoll <~(1 + 
(go/2)(1 + ao))llYo- Xo[[. Besides F1 exists and IIF~]I <~a/(1 - b o )  by the Banach lemma. So x2 is 
defined, and taking into account the Taylor's formula 

F(x~ ) = -3[F ' (xo + ~(Yo - Xo ) ) - F'(xo )][I - 3 H (xo, Yo)](Yo - Xo) 

+ [F'(x) - F'(x0)] dx, 

it follows from (1) that 

Ily~ - xlll~Mollyo - xoll, g l lS l l l l y~  - x~ll<<.al, 

]lxz-xlll<~ (l + 2( l  +al)) lly~ -xl'l. 

Furthermore, as ao<s, we have al <ao. Therefore, by applying mathematical induction on n, we 
can replace xl by x2, x2 by x3 and, in general, x,-I by x, to obtain that there exists F, =F' (x , )  -1, 
ILF.II ~ < ( l l r . - i  II)/(1 - bn-1) ,  

5a"-1 + + a'-l)llY,-lll I1,1111111yn-xnll<~Mn-lllyn-l-Xn-111=aÈ-1(8+8an-1+ 2 2a3 1 4 

8(1 - b,_l) 

KllF.l l  ll y .  - x.ll <<. an, 

(an ) 
IIx,+l - x.l[ ~ 1 + 7 ( 1  + a . )  Ily. - x.ll, 

a~ <72"-1a,_1, where 7 =al/ao, and b, <bn-l. In addition, M~-t ~<72"-:M~-2. 
Consequently, 

NXn+l--Xn][ <~ ( l +  2 ( l + a o ) ) M n - l l l Y n - l - x n - l l l  

( 2  )n--1 ~ < . . .  ~< l +  ( l + a o )  I I M j l l y o - x o l l ,  
j=0 

where , -  1 - bo)'72°- 1. I-Ij=o Mj < (1 Therefore, sequence (1) is a Cauchy sequence, since bo < 1 and 7 < 1 

as a consequence of the fact that ao <s ,  and then sequence (1) converges to x* E B(xo, r). We now 
deduce that F(x*) = 0 from the continuity o f F  and taking into account that [[yn--X,l[ ~< 1-I7=--~ MjllYo- 
xoll ~ 0 when n --~ cxz. 
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It now follows that sequence (1) converges at least with R-order two [6] to x* from the estimation 

-~o 7 .  

Finally, to show uniqueness, let us assume that y* E B(xo, (2/ak) - r) A f2 is another solution of 
F(x) = 0. Following the technique given by Argyros and Chen in [2], we observe 

0 = F ( y * )  - F(x*) = F'(x* ÷ t(y* - x*))dt(y* - x*). 

Then we have to prove that the operator f2 F'(x* + t(y* - x * ) ) d t  is invertible and consequently 
y* =x* .  Indeed, from 

i fo' Ilrollf  liE'(x* +t(y* -x*) ) - f ' ( xo) l ld t  <~ aK IIx* +t(y*  - x * ) - X o l l d t  

fO 1 <. aK ((1 - t)llx* - xoll + tllY* - xoll) at 

a X (  2 ) 
< T r + ~ - r  =1 ,  

it follows that [.].1F'(x* + t(y* - x * ) ) d t ]  -1 exists. [] 

3. Example 

We provide an example where assumptions (2)- (4)  fail but the conditions of Theorem 2.1 are 
fulfilled. 

Let us consider the system of equations G(x, y)  = 0 where G : ( -  1, 1 ) x ( -  1, 1 ) ~ ~2 such that 

G(x, y)  = (x 3 lnx 2 + 2y - 1/16, x(y - 2)). 

If we choose x0 = (0, 0), we observe that GO)(Xo) is not defined for j />  3 and then (4) is not satisfied. 
Moreover, G does not satisfy conditions (2) and (3). 

On the other hand, we can apply Theorem 2.1, since 

a=llI 'ol l~=l/2,  b=l lYo-Xo[ l~=l /32 ,  k = 1 0  

and, consequently, ao =abK = 0.15625 < s  = 0.300637 . . . .  As a result, we only study the convergence 
for this system of  equations under the hypotheses of  Theorem 2.1. 
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