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Abstract

We use a recurrence technique to obtain semilocal convergence results for Ulm’s iterative method to
approximate a solution of a nonlinear equation F(x) = 0{

xn+1 = xn − BnF(xn), n�0,

Bn+1 = 2Bn − BnF ′(xn+1)Bn, n�0.

This method does not contain inverse operators in its expression and we prove it converges with the Newton
rate. We also use this method to approximate a solution of integral equations of Fredholm-type.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider an operator F defined in an open, convex and nonempty subset � of
a Banach space X with values in another Banach space Y.

We consider the problem of approximating a solution x∗ of a nonlinear equation

F(x) = 0. (1)

Without any doubt Newton’s method is the most used iterative process to solve this problem. It
is given by the algorithm: xn+1 = xn − F ′(xn)

−1F(xn), n�0 for x0 given. This iterative process
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has quadratic R-order of convergence so its speed of convergence and its operational cost is quite
balanced.

Other methods, such as higher order methods also include in their expression the inverse of the
operator F ′. To avoid this problem, Newton-type methods: xn+1 = xn − HnF(xn), where Hn is
an approximation of F ′(xn)

−1 are considered. One of these methods was proposed by Moser in
[4] in this way. Given x0 ∈ � and A0 ∈ L(Y, X), the following sequences are defined

xn+1 = xn − AnF(xn), n�0, (2)

An+1 = An − An(F
′(xn)An − IX), n�0, (3)

where IX is the identity operator in X. The first equation is similar to Newton’s method, but
replacing the operator F ′(xn)

−1 by a linear operator An. The second equation is Newton’s method
applied to equation gn(A) = 0 where gn : L(Y, X) → L(X, Y ) is defined by gn(A) = A−1 −
F ′(xn). So {An} gives us an approximation of F ′(xn)

−1.
In addition, it can be shown that the rate of convergence for the above scheme is (1 + √

5)/2,
provided the root of (1) is simple [4]. However, this is unsatisfactory from a numerical point of
view because the scheme uses the same amount of information per step as Newton’s method, yet,
it converges no faster than the secant method.

Moser’s method was developed as a technical tool for investigating the stability of the N-body
problem in celestial mechanics. The main difficulty in this, and similar problems involving small
divisors, is the solution of a system of nonlinear partial differential equations. In essence, Moser’s
idea is to solve the problem by a sequence of changes of variables.

In [10] Ulm proposed the following iterative method to solve nonlinear equations. Given x0 ∈ �
where F is a Fréchet-differentiable operator and B0 ∈ L(Y, X), Ulm defines{

xn+1 = xn − BnF(xn), n�0,

Bn+1 = 2Bn − BnF
′(xn+1)Bn, n�0.

(4)

Notice that, here F ′(xn+1) appears instead of F ′(xn) in (3). This is crucial for obtaining fast
convergence. Under certain assumptions, Ulm showed, that the method generates successive
approximations that converge to a solution of (1), asymptotically as fast as Newton’s method.
Ulm applied the method to several particular classes of operator equations.

The method exhibits several attractive features. First, it converges with the Newton rate. Second,
it is inverse free: you do not need to solve a linear equation at each iteration. Third, in addition
to solve the nonlinear equation (1), the method produces successive approximations {Bn} to the
value of F ′(x∗)−1, being x∗ a solution of (1). This property is very helpful when one investigates
the sensitivity of the solution to small perturbations.

Although method (4) was firstly proposed by Ulm [10], it has been also considered by other
authors. For instance, Hald [1] showed the quadratic convergence of the method. Later, Zehn-
der [13] or Petzeltova [5] have studied the convergence of the method under Kantorovich-type
conditions.

An alternative to Kantorovich theory to study the convergence of iterative processes to solve
nonlinear equations is given by the known as Smale’s point estimate theory [8,9]. Roughly speak-
ing, if x0 is an initial value such that the sequence {xn} satisfies

‖xn − x∗‖�
(

1

2

)2n−1

‖x0 − x∗‖
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then x0 is said to be an approximate zero of F, (see [9]). The following conditions were introduced
by Smale [8,9] in order to prove that x0 is an approximated zero

(i) ‖F ′(x0)
−1F(x0)‖��,

(ii) sup
k �2

(
1

k! ‖F
′(x0)

−1F (k)(x0)‖
)1/(k−1)

��,

(iii) � = ���3 − 2
√

2. (5)

Wang and Zhao [11] pointed that condition (5) is too restrictive. Instead of (5) they assume

(i′) ‖F ′(x0)
−1F(x0)‖��,

(ii′) 1

k! ‖F
′(x0)

−1F (k)(x0)‖��k, k�2.

(iii′) The equation �(t) = 0 has at least a positive solution, where

�(t) = � − t +
∑
k �2

�kt
k. (6)

Then they study the convergence of Newton’s method by constructing a majorizing sequence
in terms of the function �(t).

In this paper, we are going to consider Wang–Zhao’s type-hypothesis in order to study the
convergence of Ulm’s method (4). However, we are going to construct a system of recurrence
relations in order to analyze the convergence of the method instead of considering the aforesaid
majorizing sequence. This technique has been used successfully to prove the convergence of
Newton’s method and other iterative methods under different conditions, for instance see [2].

The main theorem we show in this paper (Theorem 3) provides a new result on the semilocal
convergence for the iterative process given in (4) under conditions similar to the given in (6). So
we consider Eq. (1), where F is a nonlinear analytic operator in an open convex nonempty subset
� of a Banach space X in another Banach space Y. For a given x0 ∈ � and B0 ∈ L(Y, X) let us
assume:

(C1) ‖B0‖��.
(C2) ‖F(x0)‖��.
(C3) ‖I − F ′(x0)B0‖��.

(C4)
1

k! ‖F
(k)(x0)‖��k, k�2.

(C5) S > 0 is the radius of convergence of the power series
∑

k �2 �kt
k , that is,

S = lim inf
k→∞ |�k|−1/k.

(C6) The equation

t (1 − �(t)) − �� = 0 (7)

has at least a solution in (0, S], where �(t) = (1 + � + �2�h(t))

(
� + �2�h(t)

2

)
, being

h(t) = ∑
k �2 k(k − 1)�kt

k−2. We denote by R the smallest root of (7) in (0, S].
(C7) B(x0, R) ⊂ �.
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We prove that, under these conditions (C1)–(C7), the iterative process (4) is convergent to a
solution of (1) with at least quadratic R-order of convergence. In addition, we find the domains
where the solution is located and where it is unique, together with some estimates of the error.

In Section 2, we introduce the recurrence sequences associated to the method (4). They allow
us to obtain semilocal convergence results (Section 3) and to calculate the R-order of convergence
(Section 4). We prove that (4) converges to a solution of a nonlinear equation as fast as Newton’s
method.

In Section 5, we finish this study analyzing the application to nonlinear integral equations of
Fredholm-type in this way

x(s) = f (s) + �
∫ b

a

k(s, t)x(t)p dt, s ∈ [a, b].

To solve these integral equations it is equivalent to solve nonlinear integral equations in the form
(1), where F is a nonlinear p-times Fréchet-differentiable operator.

Through this paper we denote,

B(x0, R) = {x ∈ X; ‖x − x0‖ < R} and B(x0, R) = {x ∈ X; ‖x − x0‖�R} .

2. Recurrence relations

In this section, we define the auxiliary functions and we construct the sequences that we need
to establish the convergence of the method (4) under conditions (C1)–(C7). We also give some
technical lemmas that we need in the proof of the main theorem (Theorem 3).

To prove that sequence (4) is well defined, we need some definitions and lemmas. First, we
define the auxiliary functions

f (t, u) = 1 + t + uh(R), g(t, u) = t + u h(R)

2
, (8)

and, for all n�1, the following real sequences:

an = (an−1 + bn−1h(R)dn−1)
2,

bn = f (an−1, bn−1dn−1)bn−1,

dn = f (an−1, bn−1dn−1)g(an−1, bn−1dn−1)dn−1, (9)

where a0 = �, b0 = �, d0 = ��.
Observe that, the real function h(t) is analytic in (0, S] and the two real functions f and g given,

are nondecreasing in the both arguments, for t > 0 and u > 0.
Notice that ‖x1 − x0‖��� = d0. If we suppose that x1 ∈ B(x0, R), then x1 ∈ � and therefore

‖F ′(x1) − F ′(x0)‖‖B0‖ =
∥∥∥∥∥∥
∑
k �2

1

(k − 1)! F (k)(x0)(x1 − x0)
k−1

∥∥∥∥∥∥ ‖B0‖

�

⎛
⎝∑

k �2

k (k − 1)�k‖x1 − x0‖k−2

⎞
⎠ ‖x1 − x0‖‖B0‖

� h(‖x1 − x0‖)‖x1 − x0‖‖B0‖ < b0h(R)d0.

Now, taking into account (C3), we obtain

‖I − F ′(x1)B0‖�‖I − F ′(x0)B0‖ + ‖F ′(x1) − F ′(x0)‖‖B0‖�a0 + b0h(R)d0.
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Therefore,

‖B1 − B0‖�‖B0‖‖I − F ′(x1)B0‖�b0(a0 + b0h(R)d0).

On the other hand, x1 ∈ B(x0, R) and from (C7), we obtain that x0 +	(x1 −x0) ∈ B(x0, R) ⊂ �
for 	 ∈ (0, 1). Taking into account that h is a nondecreasing function, it follows:

‖B0‖‖F ′′(x0 + 	(x1 − x0))‖‖x1 − x0‖

= ‖B0‖
∥∥∥∥∥∥
∑
k �2

k (k − 1)

k! F (k)(x0) (x0 + 	(x1 − x0) − x0)
k−2

∥∥∥∥∥∥ ‖x1 − x0‖

�‖B0‖h(‖x1 − x0‖)‖x1 − x0‖ < b0h(R)d0.

Now, from Taylor’s formula and (4), we have for n�1:

F(xn) = F(xn−1) + F ′(xn−1) (−Bn−1F(xn−1)) +
∫ xn

xn−1

F ′′(x)(xn − x) dx

= (
I − F ′(xn−1)Bn−1

)
F(xn−1)

+
∫ 1

0
F ′′(xn−1 + 	(xn − xn−1)) (1 − 	) d	(xn − xn−1)

2. (10)

Taking norms for n = 1, it follows:

‖F(x1)‖ �
∥∥I−F ′(x0)B0

∥∥ ‖F(x0)‖ +
∫ 1

0

∥∥F ′′(x0 + 	(x1−x0))
∥∥ (1 − 	) d	 ‖x1−x0‖2

�
(

a0 +
∫ 1

0
‖B0‖

∥∥F ′′(x0 + 	(x1 − x0))
∥∥ ‖x1 − x0‖ (1 − 	) d	

)
‖F(x0)‖

�
(

a0 + b0h(R)d0

2

)
‖F(x0)‖ = g(a0, b0d0) ‖F(x0)‖ .

Moreover, ‖B1‖ � ‖B0‖
∥∥2I − F ′(x1)B0

∥∥ �b1, and consequently ‖x2 − x1‖ �d1. Then,

‖x2 − x0‖�‖x2 − x1‖ + ‖x1 − x0‖�d1 + d0.

Besides, if x2 ∈ B(x0, R) ⊂ �, we obtain

‖F ′(x2) − F ′(x1)‖‖B1‖

=
∥∥∥∥∥∥
∑
k �2

1

(k − 1)!F
(k)(x0)

[
(x2 − x0)

k−1 − (x1 − x0)
k−1

]∥∥∥∥∥∥ ‖B1‖

�

∥∥∥∥∥∥
∑
k �2

1

(k − 1)!F
(k)(x0)(x2 − x1)

⎛
⎝k−2∑

j=0

(x2 − x0)
k−2−j (x1 − x0)

j

⎞
⎠
∥∥∥∥∥∥ ‖B1‖

�
∑
k �2

k�k

⎛
⎝k−2∑

j=0

‖x2 − x0‖k−2−j‖x1 − x0‖j

⎞
⎠ ‖x2 − x1‖‖B1‖

�
∑
k �2

k(k − 1)�kR
k−2‖x2 − x1‖‖B1‖ < b1h(R)d1,

and ‖I − F ′(x1)B1‖ = ‖(I − F ′(x1)B0)
2‖�a1, so that

‖I − F ′(x2)B1‖�‖I − F ′(x1)B1‖ + ‖F ′(x2) − F ′(x1)‖‖B1‖�a1 + b1h(R)d1.
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Furthermore,

‖B2 − B1‖�‖B1‖‖I − F ′(x2)B1‖�b1(a1 + b1h(R)d1).

On the other hand, since 	 ∈ (0, 1), it follows that x1 + 	(x2 − x1) ∈ �, and moreover

‖B1‖‖F ′′(x1 + 	(x2 − x1))‖‖x2 − x1‖

= ‖B1‖
∥∥∥∥∥∥
∑
k �2

k (k − 1)

k! F (k)(x0) (x1 + 	(x2 − x1) − x0)
k−2

∥∥∥∥∥∥ ‖x2 − x1‖

�‖B1‖
⎛
⎝∑

k �2

k (k − 1)�k ((1 − 	)‖x1 − x0‖ + 	‖x2 − x0‖)k−2

⎞
⎠ ‖x2 − x1‖

< ‖B1‖
⎛
⎝∑

k �2

k (k − 1)�kR
k−2

⎞
⎠ ‖x2 − x1‖ < b1h(R)d1.

Now, as in the case n = 1, taking norms in (10) for n = 2, it follows:

‖F(x2)‖�g(a1, b1d1)‖F(x1)‖.
Moreover, ‖B2‖�‖B1‖‖2I − F ′(x2)B1‖�b2, and consequently ‖x3 − x2‖�d2. Then

‖x3 − x0‖�‖x3 − x2‖ + ‖x2 − x0‖�d2 + d1 + d0.

Now we present a system of recurrence relations in the next lemma. The proof of lemma follows
from a similar way that the previous reasoning and using induction. Besides, it allows to proof
the convergence of iterative process given in (4).

Lemma 1. Let us suppose (C1)–(C7) and xn ∈ B(x0, R), for n ∈ N, then the following recur-
rence relations hold:

[In] ‖I − F ′(xn)Bn‖�an,
[IIn] ‖F ′(xn+1) − F ′(xn)‖‖Bn‖ < bnh(R)dn,

[IIIn] ‖I − F ′(xn+1)Bn‖�an + bnh(R)dn,
[IVn] ‖Bn+1 − Bn‖�bn(an + bnh(R)dn),
[Vn] If 	 ∈ (0, 1): ‖Bn‖‖F ′′(xn + 	(xn+1 − xn))‖‖xn+1 − xn‖ < bnh(R)dn,

[VIn] ‖F(xn)‖�g(an−1, bn−1dn−1)‖F(xn−1)‖,
[VIIn] ‖Bn‖�f (an−1, bn−1dn−1)‖Bn−1‖�bn,

[VIIIn] ‖xn+1 − xn‖�f (an−1, bn−1dn−1)g(an−1, bn−1dn−1)‖Bn−1‖‖F(xn−1)‖�dn,
[IXn] ‖xn+1 − x0‖�

∑n
j=0 dj .

3. Semilocal convergence

From the previous recurrence relations, we prove that the sequence {xn} is well-defined. We
carry out the study of the convergence of sequence {xn} given in (4). We see that the sequence
{xn} converges to a solution x∗ of Eq. (1). For this, we consider the following properties of the
sequences {an} and {bndn}:
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Lemma 2. If a0, b0 and d0 satisfy

(a0 + b0h(R)d0)
2 �a0 and f (a0, b0d0)

2g(a0, b0d0)�1, (11)

then the sequences {an} and {bndn} are decreasing. In addition, f (a0, b0d0)g(a0, b0d0) < 1.

To establish the convergence of the sequence {xn} it is enough to prove that it is a Cauchy
sequence, because the sequence is defined in a Banach space. We provide the following semilocal
convergence theorem, which show the domain of existence of the solution.

Theorem 3. Let X and Y be two Banach spaces and F : � ⊆ X → Y a nonlinear analytic
operator on a nonempty open convex domain �. Let x0 ∈ � and B0 ∈ L(Y, X). Assume all
conditions (C1)–(C7) hold. If (11) is satisfied, then the sequence {xn} defined in (4) and starting
from x0, converges to a solution x∗ of Eq. (1). The solution x∗ and the iterations xn belong to
B(x0, R).

Proof. From Eq. (7), as �(R) = f (a0, b0d0)g(a0, b0d0) < 1, we obtain that ‖x1−x0‖�d0 < R.
Then it follows that x1 ∈ B(x0, R).

From (9) and previous Lemma 2, we have for m�1:

dm = f (am−1, bm−1dm−1)g(am−1, bm−1dm−1)dm−1

= f (am−2, bm−2dm−2)g(am−2, bm−2dm−2)f (am−1, bm−1dm−1)

g(am−1, bm−1dm−1)dm−2

=
[

m−1∏
k=0

f (ak, bkdk)g(ak, bkdk)

]
d0

� f (a0, b0d0)
mg(a0, b0d0)

md0.

Then, from [IXn] in Lemmas 1 and 2, taking into account (7) we obtain:

‖xm − x0‖ �
m−1∑
k=0

dk �
(

m−1∑
k=0

f (a0, b0d0)
kg(a0, b0d0)

k

)
d0

� 1 − �(R)m

1 − �(R)
d0 <

1

1 − �(R)
d0 = R.

Therefore, xm ∈ B(x0, R) for all m�1. Now, from [VIIIn] in Lemmas 1 and 2, we obtain easily
that

‖xn+2 − xn+1‖�
(

n∏
k=0

f (ak, bkdk)g(ak, bkdk)

)
‖B0‖‖F(x0)‖��(R)n+1d0.

Next, we establish the convergence of the sequence {xn} given by (4). For this, we consider
n, m ∈ N, and using the previous bound, we obtain:

‖xn+m − xn‖�
m−1∑
k=0

(
�(R)k+n

)
d0 = �(R)n

1 − �(R)m

1 − �(R)
d0. (12)

Then, since �(R) < 1, {xn} is a Cauchy sequence and converges to x∗ = limn→∞ xn. Besides,
for n = 0 in (12), we have x∗ ∈ B(x0, R) by letting m → ∞.
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Now, we prove that the sequence {xn} converges to a solution x∗ of (1). For this, we have

‖F(xn)‖�
(

n−1∏
k=0

g(ak, bkdk)

)
‖F(x0)‖�g(a0, b0d0)

n‖F(x0)‖,

and since g(a0, b0d0) < 1 from (11), by letting n → ∞ it follows limn→∞ ‖F(xn)‖ = 0 and
F(x∗) = 0. So x∗ is a solution of (1) in the closed ball B(x0, R). �

Next, we prove the uniqueness of the solution. Now we introduce a new parameter ã0 such that:

‖I − B0F
′(x0)‖� ã0.

Notice that in general the operators B0 and F ′(x0) could not to commute, so the parameter ã0
could be different form a0 = � defined by (C3). The case ã0 = a0 happens, for instance, if we
take B0 = F ′(x0)

−1. This situation is analyzed in the first remark of Section 6.

Theorem 4. Let ã0 be the parameter defined above and r the biggest positive root of the equation


(t) + 1 − ã0

b0
(R − t) = 
(R), (13)

where 
(t) = ∑
k �2 �kt

k , then the solution x∗ of (1) is unique in B(x0, r) ∩ �.

Proof. Let us assume that z∗ ∈ B(x0, r) ∩ � is a different solution of (1). Then, it follows that

0 = B0(F (z∗) − F(x∗)) =
∫ 1

0
B0F

′(x∗ + 	(z∗ − x∗)) d	 (z∗ − x∗).

If the operator A−1 exists, where

A =
∫ 1

0
B0F

′(x∗ + 	(z∗ − x∗)) d	,

we have z∗ − x∗ = 0, and then the unicity of solution is obtained in B(x0, r) ∩ �.
Then, from

F ′(x∗ + 	(z∗ − x∗)) − F ′(x0)

=
∑
k �2

1

(k − 1)!F
(k)(x0)

(
(1 − 	)(x∗ − x0) + 	(z∗ − x0)

)k−1
,

and by taking norms, we have

‖F ′(x∗ + 	(z∗ − x∗)) − F ′(x0)‖�
∑
k �2

k�k‖(1 − 	)(x∗ − x0) + 	(z∗ − x0)‖k−1.

Besides, as ‖z∗ − x0‖ < r and ‖x∗ − x0‖�R, we have

‖I − A‖ � ‖I − B0F
′(x0)‖ + ‖B0F

′(x0) − A‖ < ã0 + b0

r − R

⎛
⎝∑

k �2

�kr
k −

∑
k �2

�kR
k

⎞
⎠

= ã0 + b0

r − R
(
(r) − 
(R)) = 1.

Then, by Banach’s lemma, A−1 exists and z∗ = x∗. �
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Notice that R is a root of (13), therefore r �R.

4. The R-order of convergence

It is known [7,6] that in Banach spaces a sequence {xn} has R-order at least q if ‖xn−x∗‖�C�qn
,

for � ∈ (0, 1) and C ∈ R+. In this section we show that, under conditions (C1)–(C7), the Ulm
process provides a sequence which converges to a solution x∗ of (1) with at least R-order two.
Besides, we obtain a priori error bounds for the Ulm process in the approximation to the solution.

Lemma 5. Let f and g be given in (8). Let us define �1 = b1d1/b0d0, �2 = a1/a0 and � =
max{�1, �2}. If (11) is satisfied, then

(i) f (�t, �u) < f (t, u), g(�t, �u) = �g(t, u) for � ∈ (0, 1),

(ii) an ��2n−1
an−1 ��2n−1a0,

bndn ��2n−1
bn−1dn−1 ��2n−1b0d0.

Theorem 6. Under the assumptions of Theorem 3, the Ulm process has R-order of convergence
at least two. Moreover, the following error estimates are obtained:

‖x∗ − xn‖ <
(�(R)�−1)n�2n−1

1 − �(R)�2n−1
d0.

Proof. From the previous lemma and [VIIIk], we have

‖xk+1 − xk‖�(�(R)�−1)k(�1/2)2k−1‖B0‖‖F(x0)‖.
So, for m�1, it follows:

‖xn+m − xn‖

�
n+m−1∑

k=n

‖xk+1 − xk‖�
m−1∑
k=0

(
�(R)k+n�−(k+n)(�1/2)2k+n−1

)
‖B0‖‖F(x0)‖

=
(

�(R)

�

)n

�(2n−1)/2

(
1 + �(R)

�
�2n−1 + · · · +

(
�(R)

�

)m−1

�2n−1(2m−1−1)

)
d0.

(14)

By Bernoulli’s inequality, we obtain 2k − 1 > k and therefore from (14) it follows:

‖xn+m − xn‖�
(

�(R)

�

)n

(�1/2)2n−1
1 −

(
�(R)�2n−1−1

)m

1 − �(R)�2n−1−1
d0. (15)

By letting m → ∞ in (15) and taking into account that � < 1 and �(R)�−1 < 1, it follows:

‖x∗ − xn‖ <
(�(R)�−1)n(�1/2)2n−1

1 − �(R)�2n−1−1
d0 < (�1/2)2n R

�1/2
,
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Fig. 1. Iterations xn(s) of Ulm’s method.

and the Ulm process given by (4), has at least R-order of convergence two, since

‖x∗ − xn‖ < C�2n

,

where � = �1/2 < 1 and C = R
� is a positive real constant. �

5. Numerical experiment

In this section, we illustrate the theoretical results given for Ulm’s method.
So we consider the following Fredholm nonlinear integral equation that appear in [3, p. 552]:

x(s) = 1 + 1

4

∫ 1

0
sin(st)x(t)2 dt. (16)

To solve (16), it is equivalent to solve the nonlinear equation (1), where F : � ⊆ X → Y is a
nonlinear operator defined by

F(x)(s) = x(s) − 1 − 1

4

∫ 1

0
sin(st)x(t)2dt (17)

and X = Y = C[0, 1] is the space of continuous functions on the interval [0, 1], equipped with
the max-norm, ‖x‖ = maxs∈[a,b] |x(s)|, x ∈ X.

Firstly, we prove that all conditions (C1)–(C7) hold. If we choose as starting points x0(s) = 1
and B0(y(s)) = y(s), we have ‖B0‖ = 1 = �, moreover

‖F(x0)‖ = 1

4
max

s∈[0,1]

∣∣∣∣∣
∫ 1

0
sin(st) dt

∣∣∣∣∣ = 0.181153 = �,

‖I − F ′(x0)B0‖ = 1

2
max

s∈[0,1]

∣∣∣∣∣
∫ 1

0
sin(st) dt

∣∣∣∣∣ = 0.362306 = �,

1

2! ‖F
(2)(x0)‖ = 1

4
max

s∈[0,1]

∣∣∣∣∣
∫ 1

0
sin(st) dt

∣∣∣∣∣ = 0.181153 = �2,
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and 1
k! ‖F (k)(x0)‖ = 0 = �k for all k > 2. Hence, we check the convergence conditions of

Theorem 3 and we obtain, a0 = 0.362306, b0 = 1, d0 = 0.181153, R = 0.415688 and h(R) =
0.362306, so (a0 + b0h(R)d0)

2 �a0 and f (a0, b0d0)
2g(a0, b0d0)�1. Therefore, the conditions

of Theorem 3 hold and (17) has a solution x∗ in B(1, 0.415688). Moreover, in this case B0 = I and
‖I − B0F

′(x0)‖� ã0 = a0, therefore it follows that the solution x∗ is unique in B(1, 3.10451).
On the other hand, if we demand a tolerance ‖xn+1 − xn‖�C 10−5, where C is a positive real

constant, we obtain that ‖x4−x3‖�5.1×10−5, so we can consider the four iteration x4(s) as a good
approximation of the solution. To finish this example, we show the first four approximations xn(s)

that we calculate with starting point x0(s) = 1 and six significant digits, using the Mathematica
[12] program:

x1(s) = 1 − 0.0795775s−1(−1 + cos(3.14159s)),

x2(s) = 1 − 0.107004s−1(−1 + cos(3.14159s)),

x3(s) = 1 − 0.109642s−1(−1 + cos(3.14159s)),

x4(s) = 1 − 0.109668s−1(−1 + cos(3.14159s)).

The first four iterations of Ulm’s method given in (4), to approximate a solution of (17), are shown
in Fig. 1.

6. Concluding remarks

Remark 1. A special case of Ulm’s method is when we consider B0 = F ′(x0)
−1 and the first

step for Ulm’s method is the same as Newton’s method. In this situation, we can obtain a new
uniqueness result for Ulm’s method. Thus, from B0 = F ′(x0)

−1 it follows that B−1
0 = F ′(x0)

exists. Then, we consider z∗ ∈ B(x0, R) ∩ � a different solution of x∗ ∈ B(x0, R) of Eq. (1).
Then, it follows that

0 = F(z∗) − F(x∗) =
∫ 1

0
F ′(x∗ + 	(z∗ − x∗)) d	(z∗ − x∗).

If the operator T −1 exists, where

T =
∫ 1

0
F ′(x∗ + 	(z∗ − x∗)) d	,

then the unicity of solution is obtained in B(x0, r) ∩ �.

Thus,

‖I − B0T ‖ = ‖I − F ′(x0)
−1T ‖�‖F ′(x0)

−1‖‖F ′(x0) − T ‖
and

[
T − F ′(x0)

] =
∫ 1

0

[
F ′(x∗ + 	(z∗ − x∗)) − F ′(x0)

]
d	.

Now, in the same way that in Theorem 4, it follows:

‖F ′(x0) − T ‖ <
1

r − R
(
(r) − 
(R)).
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Thus, if

b0

r − R
(
(r) − 
(R)) = 1,

where ‖B0‖�b0, we obtain that T −1 exists.
Therefore, if r is the biggest positive root of the equation

b0(
(t) − 
(R)) = t − R,

then the solution x∗ of (1) is unique in B(x0, r) ∩ �.

Remark 2. Observe that the sequence {Bn} converges to the bounded right inverse of F ′(x∗).
Indeed, from [IVk] it follows:

‖Bk+1 − Bk‖�(ak + bkh(R)dk)bk ��2k−1(a0 + b0h(R)d0)f (a0, b0d0)
kb0,

since, the real function f is nondecreasing in the both arguments and {an} and {bndn} are decreasing
sequences. Consequently,

‖Bn+m − Bn‖ �
(

m−1∑
k=0

�2n+k−1f (a0, b0d0)
n+k

)
(a0 + b0h(R)d0)b0

� f (a0, b0d0)
n�2n−1

(
m−1∑
k=0

�2n(2k−1)f (a0, b0d0)
k

)
(a0 + b0h(R)d0)b0

and, applying the Bernoulli inequality, it follows that {Bn} is a Cauchy sequence, since

‖Bn+m − Bn‖�f (a0, b0d0)
n�2n−1 1 − (�2n

f (a0, b0d0))
m

1 − �2n
f (a0, b0d0)

(a0 + b0h(R)d0)b0.

Thus, the sequence {Bn} converges and we denote B∗ = limn→∞ Bn. On the other hand,

‖I − F ′(xn)Bn‖�an ��2n−1a0,

and therefore, by letting n → ∞ it follows that B∗ is the bounded right inverse of F ′(x∗).
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