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Abstract
Background: Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms.
Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities
for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of
genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the
efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed
sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence
polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot
Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general
application of those SNPs requires further validation since their use could be restricted to those specific genotypes.

Results: In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing
approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this
approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence.
This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in
non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar
to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene
sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range
linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the
selected grapevine genotypes. To validate the use of the detected polymorphisms in genetic mapping, cultivar
identification and genetic diversity studies we have used the SNPlex™ genotyping technology in a sample of grapevine
genotypes and segregating progenies.

Conclusion: These results provide accurate values for nucleotide diversity in coding sequences and a first estimate of
short-range LD in grapevine. Using SNPlex™ genotyping we have shown the application of a set of discovered SNPs as
molecular markers for cultivar identification, linkage mapping and genetic diversity studies. Thus, the combination a highly
efficient re-sequencing approach and the SNPlex™ high throughput genotyping technology provide a powerful tool for
grapevine genetic analysis.
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Background
Single nucleotide polymorphisms (SNP) and insertions/
deletions (INDELs) are the most abundant type of DNA
sequence polymorphisms and can be theoretically found
within every genomic sequence [1,2]. They can be used as
genetic markers for many genetic applications such as cul-
tivar identification, construction of genetic maps, the
assessment of genetic diversity, the detection of genotype/
phenotype associations, or marker-assisted breeding. [3-
5]. Furthermore, the development of high throughput
genotyping methods make single nucleotide polymor-
phisms (SNPs) highly attractive as genetic markers [6].

SNPs are a useful tool to quantify LD. The structure of LD
along each particular genome or genomic region affects
the resolution of association studies [7,8]. For genomes
with a slow LD decay with distance, the whole genome
may be scanned to identify regions that are associated
with a particular phenotype in an association mapping
strategy. However, when LD decays rapidly within short
distances only nucleotide variation at selected candidate
genes may be tested for association with a phenotypic trait
[3,9-11].

In plants, systematic analyses of nucleotide polymor-
phism have only been approached in a few, well-studied
model species such as Arabidopsis, barley, maize [12-15]
and a few woody perennials species [16-18]. These studies
have been either based on the information generated by
EST and whole genome sequence projects in a so called in
silico SNP discovery approach [16-19] or derived from
large-scale re-sequencing projects developed for Arabi-
dopsis, barley, maize, tomato, or soybean [1,12,13,15,20-
22]. Independently of the SNP discovery approach, these
studies provide significant information regarding the type
and frequency of the observed polymorphisms. The
reported nucleotide diversity values (π) and number of
segregating sites (θ) ranged from π = 0.0063 and θ =
0.0096 in maize [23] to 5–10-fold lower values in soy-
bean (π = 0.0012, θ = 0.00097, [13]), depending on the
analyzed parameter. Maize is a highly polymorphic spe-
cies presenting SNP frequencies corresponding to one
SNP every 60 [15] to 104 bp [23], while self-fertilized spe-
cies show considerable lower values as in the case of bar-
ley (one SNP every 200 bp, [12]), soybean (one SNP every
273 bp, [13]), Arabidopsis (one SNP every 336 bp, [14])
or wheat (one SNP every 540 bp, [19]). Values reported
for SNP expected heterozygosity are low, as expected for a
bi-allelic marker (ca. 0.30 for maize [15] and wheat [19]),
while haplotype expected heterozygosity raises to 0.52 in
soybean [13] and 0.56 in maize [15]. Regarding short-
range LD, several estimations were reported in crop plants
like maize, with contrasting values depending on the type
of sample (rapid LD decay when using a diverse germ-
plasm set [23] and slow or no-decay when using inbred

lines [15]). Alternatively, outcrossed woody species such
as spruce, generally display a rapid decay of LD values
[24].

The economic relevance of grapevine (Vitis vinifera L.) has
prompted a considerable effort in EST sequencing and
more than 336789 EST entries are currently found at the
National Center for Biotechnology Information (NCBI
[25]). Recently, the whole genome sequence of an inbred
genotype (PN40024) has being completed by a French-
Italian consortium [26] and the results of the sequence of
the heterozygous cultivar Pinot Noir are also available in
databases (IASMA Genomics [27] and NCBI). The final
goal of these sequencing efforts is to understand the
genetic and molecular basis of production and quality
traits in this species what requires establishing the rela-
tionship between nucleotide diversity and phenotypic
variation.

The original wild grapevine is a dioecious species and
hence an obligate outcrosser while domesticated cultivars
are hermaphrodite [28] The domestication process could
have involved several independent events and a low
number of sexual generations including spontaneous
cross hybridizations with wild populations [29]. In agree-
ment with these features the grapevine genome is highly
polymorphic and the expectation is that the extent of link-
age disequilibrium will be generally low in the short range
when a sample of genetically distant genotypes is ana-
lyzed. Alternatively, if samples of related cultivars within
a given region are considered, the extent of LD could be
much higher as a result of common domestication bottle-
necks and even close family relationships frequently
found among them [28]. Until now, only one report [30]
has provided a preliminary picture of the frequency and
type of sequence polymorphisms in 25 selected gene
sequences (ca. 11.6 kb) characterized in seven V. vinifera
cultivars and two related Vitis species. The conclusions of
that report were preliminary for V. vinifera and no infor-
mation was provided on the extent of short range LD.

Our primary goal was to characterize the levels of nucle-
otide polymorphism in V. vinifera and to analyze the
extent of short range LD. Furthermore we wanted to
develop consistent and useful SNP markers for genetic
applications in grapevine. Here we report the frequency of
SNP and SNP haplotype diversity in 230 randomly
selected DNA gene sequences. These fragments span
100.5 kb of DNA sequence associated to coding regions
and were re-sequenced in 11 V. vinifera genotypes selected
from the cultivated and wild genetic compartments of this
species. The results allow us to generate more accurate val-
ues for nucleotide diversity in grapevine and provide a
first estimate of short-range linkage disequilibrium. Using
SNPlex™ genotyping technology we have validated the use
Page 2 of 11
(page number not for citation purposes)



BMC Genomics 2007, 8:424 http://www.biomedcentral.com/1471-2164/8/424
of the discovered SNPs as molecular markers for linkage
mapping, cultivar identification and genetic diversity
studies. Thus, the combination a highly efficient re-
sequencing approach and the SNPlex™ high throughput
genotyping technology [6] provide a powerful tool for
grapevine genetic analysis.

Results and discussion
Strategy of SNP discovery in the grapevine genome
To identify SNPs in the grapevine genome we used an SNP
discovery approach based on re-sequencing in a selected
sample of grapevine genotypes. This sample was chosen
to include non related wine and table cultivars of ancient
origin as well as wild accessions. Based on the available
information, they correspond to different cultivar genetic
groups [31] and bear chlorotypes belonging to the four
major types described in grapevine [27]. The re-sequenc-
ing strategy is the most direct way to identify SNP poly-
morphisms [1] with demonstrated success in different
plant species [1,12,13,15,22,32,33]. PCR primers were
designed for 451 randomly selected EST sequences. Out of
them 184 primer pairs were discarded due to the lack of
amplification in more than three genotypes or, in some
cases, to the generation of PCR products longer than 1000
bp probably caused by the amplification of unknown
intron sequences within the selected ESTs. The remaining
267 PCR fragments were re-sequenced in the set of 11 gen-
otypes, obtaining high quality sequence data for a total of
230 DNA fragments (>86%) with an average amplicon
size of 437 bp (Additional file 1). The remaining 37 PCR
fragments, although showing good agarose-gel quality did
not yield readable DNA chromatograms for the sequence
analysis software. Although SeqScape software is able to

detect and analyze heterozygous insertions/deletions
(INDELS), this is almost impossible when several hetero-
zygous INDELS are located along the same sequence.
Unfortunately, this seems to be frequent within intron
regions of a highly heterozygous genome like the grape-
vine one.

Nature and frequency of SNPs and INDELs in grapevine
As a whole, 100.5 kb were sequenced for each genotype
(more than 1 Mb considering an average of 10 re-
sequenced genotypes). From them, 81.4 kb corresponded
to coding regions and 19.1 kb to non-coding regions,
mostly belonging to intron sequences present in the
genome sequences amplified with the EST-based designed
primers. The nucleotide variation observed through the
analysis of these sequences is summarized in Table 1. A
total of 1573 SNPs and 52 INDELs were identified among
the average of 10 genotypes sequenced with the number
of nucleotide polymorphisms per sequence fragment
ranging from 0 to 20.

The SNP variation corresponded to an average of one SNP
every 64 bp. Most of the SNPs were bi-allelic, with only
four (0.25%) showing three alleles. Among the detailed
nucleotide polymorphisms, 59.3% were due to transi-
tions and 40.7% to transversions. This observed transi-
tion/transversion ratio (1.46) is similar to the previously
reported for grape (1.56; [30]) and potato (1.5, [34]), and
higher than the ratio 0.92 reported for soybean [13]. As
would be expected, the frequency of sequence variants
was higher in non-coding regions (one every 47 bp) than
in coding regions (one every 69 bp). In coding regions, we
observed a 1:1 ratio of silent vs. non-silent nucleotide

Table 1: Nucleotide and haplotype diversity in grapevine

Parameter Overall (coding/non-coding)

Number of fragments 230
Average sample size1 10.0
Average fragment size, kb 0.437
Total size of amplicons, kb 100.5 81.4/19.1
Total bases sequenced, kb2 ~2010
Number of SNPs 1573 1170/403
Frequency of SNP 1 per 64 bp 1 per 69 bp/1 per 47 bp
Number of indels 52 9/43
Frequency of indels 1 per 1932 bp 1 per 9055 bp/1 per 444 bp
Mean nucleotide diversity (π/θ) 0.0051/0.0046
Maximum nucleotide diversity (π/θ) 0.0246/0.0173
Minimum nucleotide diversity (π/θ) 0.0004/0.004
Mean gene diversity 0.30 0.30/0.30
Mean haplotype diversity 0.64
Mean Tajima D 0.29
Mean observed haplotypes 6.6
Mean expected haplotypes 5.8

1Average number of cultivars analyzed through the 230 fragments. 2Estimation based on (Total size of amplicons, kb) × (Average sample size) × 
(two DNA strands).
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changes, with 16% of the non-silent changes giving rise to
non-conservative amino acid changes. The ratio of silent
vs. non-silent changes (1:1) is higher than the 0.8:1
reported in grape by Salmaso et al [30] but still lower than
what has been observed in other species like spruce (1.5:1;
[18]) or Arabidopsis (2:1; [14]). The grapevine increased
values of non-silent nucleotide changes could suggest the
existence of a reduced selection pressure resulting in a
higher protein diversity what could be in the base of its
phenotypic variation.

Regarding the 52 INDELs identified, one third (17) could
be classified as mono-, di-, tri- and tetranucleotide vari-
ants whereas the two other thirds (35) represented varia-
ble size INDELs ranging from one to 38 bp. The frequency
of detected INDELs (one every 1932 bp) is an underesti-
mation. If we consider the intron-bearing sequences that
did not yield readable data, we would expect the fre-
quency of INDELs to be at least five times higher in
introns. This underestimation was even higher in a previ-
ous report [30], where only two INDELs were detected
after the analysis of 11629 bp (1 every 5814 bp). This dif-
ference could be attributable to a "sampling effect" of the
genotypes used or the sequences analyzed since the men-
tioned work only represents about 10% of the sequencing
effort of the present work (ca 100500 bp, Table 1).

The overall SNP frequency observed (1 every 64 bp) was
lower than that described by Salmaso et al. (1 every 47
bp), being the difference attributable to the inclusion of
non-vinifera species in their study (i.e. Vitis riparia and a
complex genotype Freiburg 99360 derived from multiple
crosses involving wild species such as V. rupestris and V.
lincecumii) [30]. Surprisingly, the frequency of polymor-
phisms reported was lower in non-coding regions (1 every
57 bp) than in coding regions (1 every 43 bp). In any case,
our results agree with those of Salmaso et al. [30] in dis-
playing a high rate of polymorphisms. The values
observed in grapevine were within the range of values
reported for maize (one SNP every 60 to 104 bp), which
is also a highly polymorphic outcrossing species [15,23]
and higher than those observed in self-crossing species
such as barley [12], soybean [13], wheat [19,35] or Arabi-
dopsis [14,32]. Consistently, nucleotide diversity values
observed in grapevine (θ = 0.0046, π = 0.0051) were sim-
ilar to those observed in maize (θ = 0.0096 [23], π =
0.0063[15]) and ~5-fold higher than those reported for
soybean (θ = 0.00097, π = 0.0012, [13]) or human beings
(θ = 0.0008, [36]).

SNP and haplotype diversity
Diversity values (expected heterozygosity) for SNP are
generally low due to their bi-allelic nature. In grapevine,
SNP diversity values ranged from 0.00 to 0.66 with a
mean value of 0.30 (Table 1) which is slightly higher than

the mean value reported for maize (0.26; [15]). Grapevine
SNP show lower diversity values than SSR (0.65; [37]),
and therefore are less informative markers (average poly-
morphism information content – PIC – for SNPs is 0.25
as compared to 0.60 for microsatellite [37]). This poten-
tial drawback of SNP can be overcome either by using
larger sets of markers or by considering haplotypes struc-
ture for each locus in place of single SNPs. When haplo-
types are considered for each locus, the genetic diversity
value rises more than 2-fold (0.64), reaching similar val-
ues as those reported for grapevine microsatellites (0.65;
[37]) and slightly higher than those reported in maize
(0.56; [15]). In this context, SNPs can be as informative as
multiallelic molecular markers when used as "haplotype
tags", that is, several SNPs (usually two to four) that tag all
the detected haplotypes in a given locus [1,38].

Allele distribution and haplotype structure
The allele distribution in the set of cultivars selected for
this study was analyzed by calculating the Tajima D statis-
tic, designed to test the neutrality of mutations [39].
Sequence specific Tajima D values ranged from -1.73 to
2.63 with an average of 0.29. Thus, no indication for an
overall deviation of this parameter was observed among
the 230 analyzed sequences. Only one sequence, anno-
tated as encoding a putative ortholog of one Arabidopsis
calcium-transporting ATPase 9, showed a strong positive
Tajima D value (2.63; P < 0.01) which could suggest the
possible existence of balancing selection operating in this
locus [40]. In any case, these results should be taken with
caution given the reduced sample size analized.

The number of haplotypes per locus was estimated using
the EM algorithm [41]. The average number of haplotypes
per sequence was 6.6, with a maximum of 19 and a mini-
mum of 1 (considering haplotype frequency >0.01 and a
maximum of 20 SNP polymorphisms as PowerMarker
parameters). As displayed in Figure 1, the most common
situation was the presence of a major haplotype (average
frequency = 0.49), with the average cumulative frequency
of the first three haplotypes being 0.83, followed by a
series of minor haplotypes. Even though the grape haplo-
typic parameters presented here could be biased by the
chosen cultivars, mean haplotype number and frequency,
as well as haplotype frequency distribution, were in agree-
ment with the results reported by Salmaso et al. [30]. A
similar haplotype distribution has been observed in other
species such as maize [15] and barley [12]. The expected
mean number of haplotypes per locus was also estimated
based on values of nucleotide diversity and recombina-
tion using the coalescence theory implemented in DnaSP
software [42,43]. The mean number of expected haplo-
types (5.8) was similar to the mean number estimated
above (6.6). These similar numbers of average haplotypes
obtained by both methods together with the absence of
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bias for the average Tajima's D value could suggest a
reduced selection for specific haplotypes within the gene
sample analyzed.

Linkage disequilibrium
In outcrossing species linkage disequilibrium (LD) gener-
ally decays rapidly in the absence of selection, which
when existing produces locus-specific bottlenecks [8]. To
estimate the level of short-range LD in the grapevine gen-
otypes studied, we performed pair-wise analyses in more
than 200 loci containing two or more SNPs. For the pair-
wise LD analysis we calculated D' and r2 parameters for
SNP loci within each sequence. Decay of D' and r2 was
observed between 100–200 bp (Figure 2) within this sam-
ple. Consistent with these results, a multi-locus LD analy-
sis only detected significant LD (P < 0.01) for 4.4% of the
within gene pairs of SNP loci. Similar patterns of rapid LD
decay were observed in other outcrossing species such
maize and woody perennial species like the Norway
spruce (Picea abies, [24]) or the European aspen (Populus
tremula, [44]). However, the mating system alone does
not always predict the structure of LD since other factors
like the sample under analysis or the mating history can
affect the LD pattern. This was observed in maize, where
short-range LD analysis using an elite germplasm dis-
played slow or null LD decay [15]. On the other hand, the
self-pollinated soybean (Glycine max) displayed very low
levels of short-range LD [13], probably reflecting the out-
cross rate of its ancestor G. soja (ca. 13%, [8,45]). Only
one grapevine gene, VvMybA1, responsible for berry color
in grapevine [46,47], has previously been evaluated for
LD at nucleotide range scale in a selected collection of

grapevine cultivars maximized for genetic diversity [48].
In this example, r2 was observed to be close to 0.2 along
ca. 700 nucleotides and then rapidly decay [48]. This
result is within the range of what we observed in our sam-
ple of genotypes and sequences. In contrast, significant
LD was reported in grape, at the centiMorgan (cM) scale,
when using SSR markers [49], a discrepancy that has been
observed in other species such as maize [10] or humans
[50].

SNP genotyping applications
The final goal of the SNP discovery project was to develop
molecular markers that could be combined with a high
throughput genotyping technology such as SNPlex™ to
address different genetic applications [1,2]. The re-
sequencing experiments provided the information
required to fulfill three important criteria for the selection
of SNP to be included in SNPlex™ designs: 1) A clean

Linkage disequilibrium decay plot as a function of distanceFigure 2
Linkage disequilibrium decay plot as a function of dis-
tance. Two measures of LD are shown, D' (A) and r2 (B) as 
a function of distances (bp). Pair-wise LD values between 
SNP loci corresponding to all sequences fragments present-
ing at least 2 SNPs were plotted.
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Distribution of haplotype frequencies for the analyzed sequencesFigure 1
Distribution of haplotype frequencies for the ana-
lyzed sequences. Mean haplotype frequencies are sorted in 
decreasing order. Class "A" corresponds to the most fre-
quent haplotype, Class "B" to the second most frequent hap-
lotype in each sequence and so on consecutively.
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sequence context (i.e., absence of secondary SNPs sur-
rounding the chosen SNP); 2) A frequent presence of the
SNP in populations under study for what we applied the
criteria of considering SNPs when present in at least 2 of
the "original genotypes" and both strand chromatograms
confirmed the polymorphism; 3) Sequence uniqueness
(according to the limitations of the grape genome and EST
sequence databases). The percentage of the initial submit-
ted SNPlex™ design that produces useful SNPs (known as
the Conversion Rate) is dependent on the DNA quality,
the validation state of the SNPs, and the presence of
genomic repeats. Out of 96 SNPs submitted for validation
we succeeded to genotype 80 of them, including one
INDEL [(SNP605_120i), Additional file 2]. This conver-
sion rate (83.3%) is within the expected SNPlex™ per-
formance according to manufactures specification (≥
80%; Product Bulletin "SNPlex™ Genotyping System",
[51]). Those 80 SNPs were genotyped in ca. 360 grape
genotypes, including accessions and segregating progenies
(Additional file 3), with a success rate of 93.5% within the
sample. Genotyping errors were estimated by the inde-
pendent analyses of different plants of the same genotype
to be <3 × 10-4.

One important feature for the wide application of SNPs in
genetic analyses is their Minor Allele Frequency (MAF)
value which affects the information provided by the
marker in different genetic applications such as linkage
and association studies. In general, SNPs with MAF values
≥ 0.05 or 0.10 can be considered as common SNP that are
useful in most applications. An analysis of MAF values for
the 80 genotypes SNPs in a sample of ~300 V. vinifera
accessions including a large set of wine and table grape
cultivars and wild populations, showed that 80% of them
displayed MAF ≥ 0.10, with an average MAF of 0.24 (Table
2). The MAF values observed in this sample of ~300 acces-
sions was correlated (r2 = 0.61) with the MAF values
observed in the original sample of 11 genotypes used in
the re-sequencing strategy (Additional file 2 and 4). These
results support the choice of the genotypes for the re-
sequencing approach in the identification of useful com-
mon SNPs. Alternatively, SNPs that are specific for a given
population can have a high discriminant value to identify
the individuals of such population. A partition analysis of
SNP frequencies in wild and cultivated table and wine cul-
tivars of V. vinifera, showed that none of the selected SNPs
were specific of any of these groups (Additional file 5).

However, their frequency in each group of genotypes
(wild, table and wine) was significantly different to the
overall frequency (χ2, P < 0.01, 1 d.f.) for 41%, 24% and
28% of the SNPs respectively (Additional file 5). These
results support the utility of these SNPs for genetic diver-
sity applications.

Cultivar identification is an important issue in grapevine
where the estimation is that there are over 10000 vegeta-
tively propagated genotypes, frequently confused due to
the existence of multiple synonyms and homonyms [52].
Currently, six SSR loci are considered to be sufficient for
genetic identifications of most cultivars [53], with a
cumulative probability of identity (PI) of 4.3 × 10-9.
However, in spite of all the effort dedicated to SSR geno-
typing and standardization of allele sizes and genotypes
[53], there are still frequent problems of allele identifica-
tion among laboratories using different DNA fragment
separation technologies. Moreover, SSR genotyping is dif-
ficult to multiplex. Given the low PIC of SNPs compared
to SSRs a higher number of SNP markers are required to
reach similar (PI) in genetic identification. In fact, to reach
a similar PI as the six SSR markers currently in use, we esti-
mated that 20 SNP with MAF ≥ 0.30 will be required (Fig-
ure 3). This can be easily approached given the facility for
multiplexing provided by different SNP genotyping tech-
nologies. Furthermore, the bi-allelic nature of SNPs could
enormously facilitate the accuracy and repeatability of
SNP genotypes avoiding the differences in allelic assign-
ment among laboratories mentioned above [53]. In this
context, our expectation is that a panel of 48 validated
SNPs and selected for MAF ≥ 0.30 and homogeneous dis-
tribution along the grapevine genome could definitively
solve most genotyping problems in this species.

Linkage mapping has become a common approach to
determine the genetic basis of qualitative and quantitative
traits in grapevine. The heterozygous nature of grape cul-
tivars, makes linkage mapping to be performed in F1 pop-

ulations and maps are constructed for each of the parental
genotypes using a pseudo test cross strategy [54-59]. For
this reason, only markers that are heterozygous in any of
the parental genotypes can be placed in the genetic map.
The large number of SSR markers developed in grapevine
and their multi-allelic nature facilitates the task of build-
ing framework maps. However, the difficulties for multi-
plexing and automatization of SSR genotyping makes the
process tedious and time consuming. The usefulness of
SNP markers in linkage analyses is related to their MAF
values. We analyzed the segregation of the 80 genotyped
SNPs in four available mapping populations (Additional
file 3). The results showed that SNPs segregating in all
four populations (8%) displayed the highest MAF values

Table 2: Distribution of SNP MAF in grapevine genotypes1

MAF classes

Mean 0.50-0.40 0.39-0.30 0.29-0.20 0.19-0.10 <0.10
0.24 15% 24% 11% 30% 20%

1Values are calculated for 80 SNP loci genotyped in 295 accessions.
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(  = 0.36), while 16% of the tested SNPs with a mean
MAF of 0.08 did not segregate in any of them (Table 3).
Thus the selection of a large number of informative SNPs

(MAF ≥ 0.30 and homogenous distribution along the
genome) combined with high multiplex technologies can
provide a rapid strategy for linkage map construction. On
the other hand, the number of markers that can be
mapped in a given segregating population per parental
cultivar depends on their heterozygosity. On average,
grapevine accessions genotyped for the 80 SNPs were het-
erozygous at 30% of the loci (Additional file 2). In this

way, a multiplex set with 2000 validated SNPs would
allow the rapid position of ca. 600 markers per parental
map, what, for randomly selected SNPs and a map size of
1500 cM, approximately represents a probability higher
than 95% of having a marker every 10 cM.

Re-sequencing versus other SNP discovery approaches
The highly polymorphic nature of the grape genome rep-
resents a challenge for the efficient implementation of in-
silico SNP discovery approaches, even those based in
whole genome sequencing projects [60] or in EST libraries
data-mining [16-18,61]. Two genome sequencing projects
have been developed in grapevine. The Franco-Italian
sequencing project has recently published the sequence of
a near-homozygous genotype derived from cultivar Pinot
Noir (PN40024) [26]. In addition, the IASMA sequencing
project is releasing the sequence of this cultivar [27].
Sequencing one heterozygous cultivar as Pinot Noir, gen-
erates a large number of SNPs directly useful in linkage
analyses in progenies derived from this cultivar [62] but
does not provide information on their MAF and genome
sequence context (i.e. presence of secondary SNPs in other
cultivars). A similar situation is observed for in silico SNP
discovery approaches based in EST libraries, such as the
public PlantMarkers database [61], since grape EST data-
base is monopolized by cultivar Cabernet Sauvignon
(65% of the EST sequences) and in a far second place cul-
tivar Chardonnay (20%) (Vitis vinifera UniGene Build #4;
[25]). In a small-scale test performed in our lab, only 25%
of the higher score SNPs selected from the PlantMarkers
database could be validated by a dCAPs strategy [63] (data
not shown).

To demonstrate the efficiency of the re-sequencing
approach in grapevine SNP discovery we determined the
number of SNPs present in 50 random sequenced frag-
ments from Cabernet Sauvignon and Pinot Noir. Accord-
ing to the observed frequency of one SNP every 64 bp
(Table 1), we expected 297 SNPs in the ~19000 bp
spanned by the 50 fragments. A total of 323 SNPs were
observed within the 11 parental cultivars, when only 115
SNPs would have been identified in Cabernet Sauvignon
(35%) and 82 SNPs (25%) in Pinot Noir. Furthermore,
the information available for SNPs identified through a
re-sequence approach in a selected set of genotypes is par-
ticularly important when SNPs markers are selected for
high-throughput genotyping technologies, since a wrong
or incomplete information regarding the SNP relative fre-
quency or the presence of secondary SNPs could jeopard-
ize the detection assay [6]. Thus, a re-sequencing
approach appears determinant to identify useful SNPs for
wide genetic applications. Furthermore, the availability of
the whole genome sequence should allow a positional
selection of DNA fragments to be re-sequenced, enhanc-
ing the usefulness of the discovered SNPs.

X

Table 3: Percentage of SNPs segregating in different mapping 
populations1

Number of mapping populations SNPs Average MAF value

4 8% 0.36
3 24% 0.31
2 21% 0.28
1 31% 0.17
0 16% 0.08

1Based on the segregation of 80 SNPs-

Probability of identity (PI) values for SSR and SNP markersFigure 3
Probability of identity (PI) values for SSR and SNP 
markers. Determination of the number of markers needed 
to reach a discriminant PI value for cultivar identification 
(dotted line, ~4 × 10-9) with SSR (A) and SNP (B). Y axis is 
represented on logarithmic scale.
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Conclusion
We report here an analysis of nucleotide sequence varia-
tion in the grapevine genome based on the scanning of
>100 kb of DNA sequence in an average of 10 selected
genotypes. The results provide detailed information
regarding nucleotide diversity in coding associated
regions as well as SNP and haplotype diversity. As
expected for a dioecious species, we observe a very rapid
decay of short range LD within 100–200 bp. The sequence
information generated has been used to develop a SNP
discovery approach in grapevine providing SNPs of suita-
ble quality for high throughput genotyping technologies
such as SNPlex™. Using this genotyping technology in
grapevine we have validated the selected SNPs as molecu-
lar markers for genetic diversity, cultivar identification
and linkage mapping analyses supporting the choice of a
re-sequencing approach as an efficient way to generate
high quality molecular markers in grapevine. The SNP
markers tested in this work are sufficient to provide mul-
tiplex approaches for cultivar genetic identification in
grapevine. However, the development of SNP marker sets
for linkage analysis will require additional re-sequencing
efforts to generate sets of a few thousand, high MAF, SNPs
evenly distributed along the genome.

Methods
Plant material and genomic DNA isolation
Grapevine (Vitis vinifera ssp. sativa) genotypes used for
SNP discovery were selected to included wine cultivars
(Cabernet Sauvignon, Syrah, Pinot Noir, Grenache, Tem-
pranillo, Malvasía de Sitges, Muscat à petits grains blanc),
table grape cultivars (Sultanina and Ahmeur Bou
Ahmeur) and wild accessions (two genotypes of Vitis vin-
ifera ssp. sylvestris) from populations sampled in the Ibe-
rian Peninsula (they are referred as the "original
genotypes" in the text). Additionally, 368 accessions were
used for genotyping analysis (see below). These acces-
sions are mostly maintained at the germplasm collection
of "El Encín" (IMIDRA, Alcalá de Henares, Madrid,
Spain). These accessions included cultivated and wild
accessions as well as 53 F1 hybrids from four different
mapping populations (Cabernet Sauvignon × Monastrell,
Dominga × Autumn seedless, Ruby seedless × Moscatuel
and Muscat Hamburg × Sugraone). Their name, collection
code and main use (either wild accession, wine or table
grape cultivars) are listed in Additional file 3. Young leaf
samples were used for DNA extraction. Genomic DNA
isolation and quantification was performed according the
procedures described by Lijavetzky et al. [47]. DNAs were
sorted in 96-well plates and stored at -20°C.

Selection of target sequences and primer design
The UniGene database [64] stored at the National Center
for Biotechnology Information (NCBI) was the main
source of grape EST sequences used for SNP discovery.

Sequences corresponding to each EST cluster were down-
loaded to BioEdit v7.0.5.3 software [65] and re-analyzed
by means of the CAP3 program [66]. Target sequence
regions of ca. 400 bp were chosen to reduce the effect of
unknown introns in the length of the resultant sequence
and maximize the chances of obtaining SNP polymor-
phisms. Those target sequences were used as templates for
primer design using Primer3 [67] under the default
primer selection conditions. Universal M13 forward and
M13 reverse promoter homologous sequences were
added to each primer pair to facilitate direct sequencing of
the PCR products. Primer sequences are available as sup-
plementary material (Additional file 1).

PCR amplification, sequencing and SNP discovery
PCR amplifications were performed in 25 µl reactions
including 1–10 ng of grape genomic DNA, 1 u of Ampli-
Taq Gold DNA Polymerase (Applied Biosystems), 1× reac-
tion buffer, 1.5 mM MgCl2, 0.2 mM dNTP and 0.2 mM of
each primer. Amplifications were done on a GeneAmp
PCR System 9700 with 10 min at 95°C followed by 35
cycles of 1 min at 94°C, 1 min at 60°C and 1 min at 72°C,
with a final extension cycle of 7 min at 72°C. PCR prod-
ucts were verified by electrophoresis in 1.5% agarose
using 0.5× TBE buffer, stained with ethidium bromide
and visualized under UV light.

Amplified PCR products (5 µl) were treated with 0.2 µl of
ExoSAP-IT reagent (USB Corporation) in a 10 µl final vol-
ume. Treated PCR products were sequenced at the
Genomic Unit of the Parque Científico de Madrid using
Universal M13 forward and M13 reverse primers in an ABI
Prism 3730 (Applied Biosystems) DNA sequencer. Base
calling, quality trimming and alignment of ABI chromato-
grams was performed using SeqScape Software v2.5
(Applied Biosystems). Sequence polymorphisms were
verified manually with the help of BioEdit v7.0.5.3 soft-
ware [65]. Identification of coding and non-coding
regions was performed by means of the BLASTX program
using the NCBI [25] and GENOSCOPE BLAST Server [68].

Statistical analyses

Estimates of nucleotide polymorphism (Nucleotide diver-

sity π, the average number of nucleotide differences per
site between two sequences [69], and Number of segregat-

ing sites θ [70]) were obtained using DnaSP software
v.4.10 [43] Gene diversity, often referred to as expected

heterozygosity [71] was calculated as , where Pij

is the frequency of the jth allele for ith locus, was calcu-
lated by means of PowerMarker V3.25 software [72].
Tajima's D test [39], was used to test the hypothesis that
mutations at each locus are selectively neutral. The test is
based on the differences between the number of segregat-

1 2− ∑Pij
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ing sites and the average number of nucleotide differences
and was calculated using DnaSP software v.4.10 [43].

For each target locus the haplotype number and frequency
and the expected haplotype heterozygosity were calcu-
lated using the EM algorithm [41] implemented in Pow-
erMarker V3.25 software [72]. Estimation of expected
number of haplotypes, given the estimated values of π and
recombination, using coalescent process simulations, was
performed with DnaSP software v.4.10 [43].

Decay of LD with distance in base pairs (bp) between sites
within each locus was evaluated by nonlinear regression
[73]. Linkage disequilibrium (D' and r2) between two loci
in the genome and the exact test for multi-locus associa-
tion were calculated as described by Zaykin et al. [74]
using PowerMarker V3.25 software [72].

Probability of identity (PI) for SSR and SNP markers was
calculated by means of the Multilocus option of the
GenAlEx6 software [75].

Genotyping analysis
Selected SNPs and INDELs from the SNP discovery proc-
ess were considered for the genotyping analysis when
present in at least 2 of the "original genotypes" and both
strand chromatograms confirmed the polymorphism.
Genotyping of the 368 accessions described in Additional
file 3 for 80 selected SNPs (including one INDEL) was per-
formed using SNPlex™ (Applied Biosystems) at the Centro
Nacional de Genotipado (CeGen [76]). Prior to genotyp-
ing, genomic DNAs were re-quantified and normalized at
CeGen by means of the PicoGreen technology (Molecular
Probes).
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