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Abstract: This paper investigates the classification of radiographic images with eleven convolutional1

neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3,2

ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). The CNNs were used to3

classify a series of wrist radiographs from the Stanford Musculoskeletal Radiographs (MURA)4

dataset into two classes - normal and abnormal. The architectures were compared for different5

hyper-parameters against accuracy and Cohen’s kappa coefficient. The best two results were then6

explored with data augmentation. Without the use of augmentation, the best results were provided7

by Inception-Resnet-v2 (Mean accuracy = 0.723, Mean kappa = 0.506). These were significantly8

improved with augmentation to Inception-Resnet-v2 (Mean accuracy = 0.857, Mean kappa = 0.703).9

Finally, Class Activation Mapping was applied to interpret activation of the network against the10

location of an anomaly in the radiographs.11

Keywords: Wrist Fractures; Radiographic Images; Classification; Convolutional Neural Networks;12

Class Activation Mapping13

1. Introduction14

Fractures of the wrist and forearm are common injuries, especially among older and frail persons15

who may slip and extend the arm to protect themselves [1]. In some cases, the person involved16

may think that they have not injured themselves seriously and the fractures are ignored and left17

untreated [2]. These fractures can provoke impairment in the wrist movement [3]. In more serious18

cases, fractures can lead to complications such as ruptured tendons or long-lasting stiffness of the19

fingers [4] and can impact the quality of life [5].20

Treatment of fractures through immobilisation and casting is an old, tried-and-tested technique.21

There are Egyptian records describing the re-positioning of bones, fixing with wood and covering22

with linen [6] and there are also records of fracture treatment in Iron Age and Roman Britain where23

"skilled practitioners" treated fractures and even "minimised the patient’s risk of impairment" [7].24

The process of immobilisation is now routinely performed in the Accidents and Emergency (A&E)25

departments of hospitals under local anaesthesia and is known as Manipulation under Anaesthesia26

(MUA) [8], or closed reduction and casting. MUA interventions in many cases represent a significant27

proportion of the Emergency Department workload. In many hospitals, patients are initially treated28

with a temporary plaster cast, then return afterwards for the manipulation as a planned procedure.29

MUA, although simple, is not entirely free of risks. Some of the problems include bruising, tears of the30
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skin, complications related to the local anaesthetic and there is discomfort for the patients. It should be31

noted that a large proportion of MUA procedures fail. It has been reported that 41% of Colles’ fractures32

treated with MUA required alternative treatment [9]. The alternative to MUA is open surgery, which33

is also known as Open Reduction and Internal Fixation (ORIF) [10], and can be performed with local34

or general anaesthesia [11,12] to manipulate the fractured bones and fixate them with metallic pins,35

plates or screws. The surgical procedure is more complicated and expensive than MUA. In some cases,36

it can also lead to serious complications especially with metallic elements that can interfere with the37

tendons and cut through subchondral bones [13,14]. ORIF it is more reliable as a long term treatment.38

Despite the considerable research in the area ([8,10,13,15–18]), there is no certainty into which39

procedure to follow for wrist fractures [19–21]. The main tool to examine wrist fractures is through40

diagnostic imaging, e.g., X-ray or Computed Tomography (CT). The images produced are observed41

by highly skilled radiologist and radiographers in search for anomalies, and based on experience,42

they then determine the most appropriate procedure for each case. The volume of diagnostic images43

has increased significantly [22], and work overload is further exacerbated by a shortage of qualified44

radiologists and radiographers as exposed by The Royal College of Radiologists [23]. Thus, the45

possibility of providing computational tools to assess radiographs of wrist fractures is attractive.46

Traditional analysis of wrist fractures has focused on geometric measurements that are extracted either47

manually [24–27] or through what is now considered traditional image processing [28]. The geometric48

measurements that have been of interest are, amongst others: radial shortening [29], radial length49

[25], volar and dorsal displacements [30], palmar tilt and radial inclination [31], ulnar variance [24],50

articular stepoff [26], and metaphyseal collapse ratio [27]. Non-geometric measurements such as bone51

density [32,33] as well as other osteoporosis-related measurements e.g., cortical thickness, internal52

diameter, cortical area [34] have also been considered to evaluate bone fragility.53

However, in recent years, computational advances have been revolutionised by the use of machine54

learning and artificial intelligence (AI), especially with deep learning architectures [35]. Deep learning55

is a part of the machine learning methods where input data is provided to a model to discover or56

learn the representations that are required to perform a classification [36]. These models have a large57

number ofR3 levels, far more than the input/hidden/output layers of the early configurations and58

thus considered deep. At each level, non linear modules transform the representation of the data from59

the input data into a more abstract representation [37].60

Deep learning has had significant impact in many areas of image processing and computer61

vision, for instance, it provides outstanding results in difficult tasks like the classification of the62

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [38] and it has been reported that deep63

learning architectures have in some cases outperformed expert dermatologists in classification of skin64

cancer [39]. Deep learning has been widely applied for segmentation and classification [40–48].65

Deep learning applied system versus radiologists’ interpretation on detection and localisation of66

distal radius fractures has been reported by [49]. Diagnostic improvements have been studied by [50]67

where deep learning supports the medical specialist to a better outcome to the patient care. Automated68

fracture detection and localisation for wrist radiographs are also feasible for further investigation [51].69

Notwithstanding their merits, deep learning architectures have several well-known limitations:70

significant computational power is required together with large amounts of training data. There is a71

large number of architectures, and each of them will require a large number of parameters to be fine72

tuned. Many publications will use one or two of these architectures and compare against a baseline,73

like human observers or a traditional image processing methodology. However, a novice user may74

struggle to select one particular architecture, which in turn may not necessarily be the most adequate75

for a certain purpose. In addition, one recurrent criticism is their black box nature [52–55], which implies76

that it is not always easy or simple to understand how the networks perform in the way they do. One77

method to address this opacity is through explainable techniques, such as activation maps [56,57] as a78

tool to visuallyR3 explain the localisation of class-specific image regions.79
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In this work, the classification of radiographs into 2 classes, normal and abnormal, with eleven80

convolutional neural network (CNN) architectures was investigated. The architectures compared were81

the following: (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16,82

ResNet-101, DenseNet-201 and Inception-ResNet-v2). This paper extends a preliminary version of this83

work [58]. Here, we extended the work by applying data augmentation to the two models that84

provided the best results, that is, ResNet-50 and Inception-ResNet-v2. Furthermore, class activation85

maps were generated andR3 analysed.86

The dataset used to compare the architectures was the Stanford MURA (musculoskeletal radiographs)87

radiographs [59]. This is a database that contains a large number of radiographs; 40,561 images from88

14,863 studies, where each study is manually labelled by radiologists as either normal/abnormal.89

The radiographs cover seven anatomical regions, namely Elbow, Finger, Forearm, Hand, Humerus,90

Shoulder and Wrist. This paper focused mainly on the wrist images. The main contributions of this91

work are the following: (1) an objective comparison of the classification results of 11 architectures,92

this can help the selection of a particular architecture in future studies, (2) the comparison of the93

classification with and without data augmentation, which resulted in significantly better results, (3)94

theR3 use of Class Activation Mapping to analyse the regions of interest of the radiographs.95

The rest of the manuscript is organised as follows. Section 2 describes the materials, that is, the96

data base of radiographs, and the methods that describe the Deep Learning models that were compared97

and the Class Activation Mapping (CAM) to visualise the activated regions. The performance metrics98

of accuracy and Cohen’s kappa coefficient are described at the end of this section. Section 3 present the99

results of all the experiments and the effect of the different hyper-parameters. Predicted abnormality100

in the radiographic images will also be visualised by using class activation mapping. The manuscript101

finishes with a discussion of the results in section 4.102

2. Materials and Methods103

2.1. Materials104

The data used to compare the 11 CNNs was obtained from the public dataset MUsculoskeletal105

RAdiographs (MURA) from a competition organised by researchers from Stanford University [59]. The106

dataset has been manually labelled by board-certified radiologists between 2001 and 2012. The studies107

(n = 14, 656) are divided into training (n = 13, 457), and validation (n = 1, 199). Furthermore, the108

studies have been allocated in groups called abnormal (i.e., those radiographs that contained fractured109

bones, foreign bodies such as implants, wires or screws, etc.) (n = 5, 715) or normal (n = 8, 941).110

Representative normal cases are illustrated in Fig. 1 and abnormal cases in Fig. 2. The distribution per111

anatomical region is shown in Table 1. In this paper, the subset of the wrists was selected. The cases of112

normal and abnormal wrist radiographs is presented in Table 2. Notice that these were subdivided113

into four studies.114

Table 1. Distribution of studies of the Stanford MURA (musculoskeletal radiographs) data set [59] for
studies of the upper body.

No. Study Train Validation TotalNormal Abnormal Normal Abnormal
1 Elbow 1094 660 92 66 1912
2 Finger 1280 655 92 83 2110
3 Hand 1497 521 101 66 2185
4 Humerus 321 271 68 67 727
5 Forearm 590 287 69 64 1010
6 Shoulder 1364 1457 99 95 3015
7 Wrist 2134 1326 140 97 3697

Total 8280 5177 661 538 14656
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Eight examples of radiographs without abnormalities (considered negative) of the
MUsculoskeletal RAdiographs (MURA) dataset [59]. (a) Elbow, (b) Forearm, (c) Shoulder, (d) Wrist
(lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand, (g) Humerus, (h) Wrist. It should be noted
the variability of the images in terms of dimensions, quality, contrast and the large number of labels
(i.e.,R for right and L for left), which appear in various locations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Eight examples of radiographs with abnormalities (considered positive) of the
MUsculoskeletal RAdiographs (MURA) dataset [59]. (a) Elbow, (b) Forearm, (c) Shoulder, (d) Wrist
(lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand, (g) Humerus, (h) Wrist. As for the cases
without abnormalities, it should be noted the variability of the images and in addition the abnormalities
themselves. There are cases of metallic implants some of which are smaller (a) than others (b), as well
as fractures.
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Table 2. Details of the number of wrist radiographs. Studies 1,2,3 and 4 refer to a patient visit identifier;
each patient may have visited the hospital several times. A positive label, corresponds to abnormal
condition, whereas negative corresponds to a normal condition as decided by the expert.

Wrist-Train dataset Abnormal Normal
Study 1 3920 5282
Study 2 64 425
Study 3 3 45
Study 4 0 13
Total 3987 5765
Total Wrist Train Images 9752
Wrist-Valid dataset Abnormal Normal
Study 1 287 293
Study 2 5 59
Study 3 3 9
Study 4 0 3
Total 295 364
Total Wrist Valid Images 659
Total Images of Wrist 10411

2.2. Convolutional Neural Network115

Convolutional Neural Networks (CNN) is a type of deep learning [35,36] models. A typical CNN116

classification model is composed of two key components: first, feature are extracted though a series of117

convolutional layers with pooling and activation functions. Some modern architectures (e.g. ResNet)118

will also include batch normalization and/or skip connections to mitigate the problem of vanishing119

gradient during model training. Next, these features input to one or more fully-connected layers to120

derive the final classification prediction (e.g. an estimated class probability). These class predictions121

are used to compute the problem-specific loss.122

The input in a CNN, i.e., an image to be classified, can be transformed through the feature123

extraction layers to form a set of relevant features required by the network. These features can124

be regarded as the global descriptors of the image. In the fully-connected layers for classification,125

the relations of the features are learned by an iterative process of weight adjustment. A prediction126

probability can be deduced at the final layer with the inclusion of an activation function (e.g., softmax127

function). At the training stage, a loss (e.g. cross entropy loss) is computed between the prediction128

and the ground truth for weight adjustment during backpropagation. At the evaluation stage, the129

predicted class can be inferred from most probable class using an argmax function and this can be130

evaluated against the ground truth for classification accuracy.131

A description summary of the applied models used in Table. 3 is as follows: AlexNet [60] is132

one of the earlier adoptions of deep learning in image classification and has won the ILSVRC 2012133

competition by significantly outperformed its next runner up. It consists of 5 layers of convolutions of134

various sizes and 3 fully connected layers. It also applies a ReLU activation for nonlinearity. GoogleNet135

(Inception V1) [61] introduced the inception module formed of small size convolutions to reduce136

trainable parameters for better computational utilisation. Despite a deeper and wider network than137

AlexNet, the number of parameters for training has reduced from 60 million (Alexnet) to 4 million.138

VGG [62] is the runner-up in the ILSVRC2014 which was won by GoogleNet in the same year. It139

utilises only 3x3 convolutions in multiple layers and is deeper than AlexNet. It has a total of 138140

million trainable parameters and thus can be computationally intensive during training. ResNet [63]141

is formed by a deep network of repetitive residual blocks. These blocks are made up of multiple142

convolution layers coupled with a skip connection to learn the residual based on the previous block.143

This allows the network to be very deep capable of 100s of network layers. Inception-v3 [64] improves144

the configuration of the inception module in GoogleNet from a 5x5 convolutional layer in one of145
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the branches to two 3x3 layers reducing the number of parameters. SqueezeNet [65] introduced146

the fire module which consists of a layer with 1x1 convolution (i.e. squeeze layer) and a second147

layer with 3x3 convolution (i.e. expand layer). The number of channels into the expand layer is also148

reduced. This has led to a significant reduction in trainable parameters while maintaining similar149

accuracy to AlexNet in the ILSVRC 2012 dataset. DenseNet [66] is composed of multiple dense blocks150

(small convolutional layers, batch normalisation and ReLU Activation). A transition layer with batch151

normalisation, 1x1 convolution and average pooling is added in between the dense blocks. The blocks152

are each closely connected with all previous blocks by skip connections. DenseNet has demonstrated a153

full utilisation of residual mechanism while maintaining model compactness to achieve competitive154

accuracy. Inception-ResNet-v2 [67] incorporates the advantages of the Inception modules into the155

residual blocks of a ResNet and achieve even more accurate classification in ILSVRC 2012 dataset than156

either ResNet 152 or Inception-v3.157

Table 3. Details of convolutional neural networks (CNNs) that were used in this work.

No. Network Depth Image Input Size Reference
1 GoogleNet 22 224-by-224 [61]
2 VGG-19 19 224-by-224 [62]
3 AlexNet 8 227-by-227 [60]
4 SqueezeNet 18 227-by-227 [65]
5 ResNet-18 18 224-by-224 [63]
6 Inception-v3 48 299-by-299 [64]
7 ResNet-50 50 224-by-224 [63]
8 VGG-16 16 224-by-224 [62]
9 ResNet-101 101 224-by-224 [63]
10 DenseNet-201 201 224-by-224 [66]
11 Inception-ResNet-v2 164 299-by-299 [67]

2.3. Experiments158

In this work we considered the following eleven CNN architectures to classify wrist radiographs159

into two categories (Normal / Abnormal): GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18,160

Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2. The details161

of these are presented in Table 3. The training process of the architecture was tested with different162

numbers of epochs (10, 20, 30), and different mini-batch sizes (16, 32, 64). The experiment pipeline is163

illustrated in Figure.R3 3. All the architectures were compared under the same conditions, without pre-164

or post-processing initially except resizing of the initial images to the input size for each architecture165

as the X-ray images presented different sizes. For instance, the images were resized to 224 x 224 for166

ResNet-50 and 299 x 299 for Inception-ResNet-v2 . In the cases where the input was a 3-channel167

image, i.e., an RGB colour image, and the input image was in grayscale, this channel was replicated.168

The dataset was split into 90% for training and 10% for testing. The same hyper-parameters were169

applied as described in Table 4 and continued in Table 5.170

Then, for the two architectures which provided the highest accuracy and Cohen’s kappa coefficient171

(ResNet-50 and InceptionResnet-v2) several modifications were applied regarding, specifically, the use172

of data augmentation and CNN’s training options. The classification with and without augmentation173

was done to assess the impact that augmentation can have in the results. In addition, visualisation of174

the network activations with Class Activation Mapping was explored.175

2.4. Further processing with data augmentation176

For the two best performing architectures, the effect of data augmentation was also be evaluated.177

The following augmentations have been performed to each of the training images: (1) rotations of (-5 to178

5◦), (2) vertical and horizontal reflections, (3) shear deformations of (-0.05 to 0.05◦) in horizontal179
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Table 4. Summary of convolutional neural networks (CNNs) hyper-parameters for this work.

1 GoogleNet

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.01 0.001 0.001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

2 VGG-19

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.001 0.001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

3 AlexNet

Optimiser SGDM ADAM RMSprop
Epoch 50 50 50

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.001 0.001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

4 SqueezeNet

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

5 ResNet-18

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

6 Inception-v3

Optimiser SGDM ADAM RMSprop
Epoch 10 10 10

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

7 ResNet-50

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 64 64 64
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001



Version July 20, 2021 submitted to Sensors 8 of 21

Table 5. Summary of convolutional neural networks (CNNs) hyper-parameters for this work
(continuation).

8 VGG-16

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 128 128 128
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

9 ResNet-101

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

10 DenseNet-201

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

11 Inception-
ResNet-v2

Optimiser SGDM ADAM RMSprop
Epoch 30 30 30

Mini batch size 32 32 32
Init. Learn. R. 0.001 0.0001 0.0001
Momentum 0.9000 - -

L2 Reg. 0.0001 0.0001 0.0001

Figure 3. Block diagram which illustrates the classification of the wrist radiographs with 11 different
Convolutional Neural Network (CNN) architectures. 9752 images from MUsculoskeletal RAdiographs
(MURA) Wrist dataset were used for training CNN architectures and 659 images were used for
validation. Two different metrics, Accuracy (Ac) and Cohen’s kappa (κ) were computed to assess the
performance of 11 pre-trained CNNs. Image data augmentation was used during training and different
number of epochs and mini batch sizes were tested.
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and vertical directions, and (4) Contrast-limited adaptive histogram equalisation (CLAHE) [68].180

Translations were not applied as the training images were captured with a good range of translational181

shift.182

2.5. Class Activation Mapping183

Class Activation Mapping (CAM) [56] provides a visualisation of the most significant activation184

mapping for a targeted class. It provides an indication of what exactly the network is focusing its185

attention on. Similar to the schematics in Figure 4, the class activation map is generated at the output186

of the last convolutional layer. In this work, this is represented with a rainbow/jet colour map where187

the intensity spectrum ranges from blue (lowest activation), green and red (highest activation).188

For the two best performing models, the CAM representations were generated at layer189

"activation_49_relu" for ResNet-50 and "conv_7_bac" for Inception-ResNet-v2 respectively. The CAM190

maps were up-scaled to the input resolution and overlaid on top of the original radiography for the191

location of the abnormalities.192

Figure 4. Schematic illustration of the X-ray classification process and class activation mapping
through layer-wise activation maps across different dense blocks. At each level, a series of feature
maps are generated, the resolution decreases progress through the blocks. Colours indicate the range
of activation: blue corresponds to low activation, red for highly activated features. The final output,
visualised here using Class Activation Mapping, which highlights the area(s) where abnormalities can
be located.

2.6. Performance Metrics193

Accuracy (Ac) was calculated as the proportion of correct predictions among the total number of
cases examined, that is:

Ac = (TP + TN)/(TP + TN + FP + FN), (1)
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where TP and TN correspond to positive and negative classes correctly predicted and FP and FN
correspond to false predictions. Cohen’s kappa (κ) was also calculated as it is the metric used to rank
the MURA challenge [59,69] and it is considered more robust as it takes into account the possibilities
of random agreements. Cohen’s kappa κ was calculated in the following way. With

Tot = (TP + TN + FP + FN), (2)

being the total number of events, the probability of a yes or TP is

PY = (TP + FP)(TP + FN)/Tot, (3)

the probability of a no, or TN is

PN = (FN + TN)(FP + TN)/Tot, (4)

and the probability of random agreement PR = PY + PN , then

κ = (Ac − PR)/(1 − PR). (5)

2.7. Implementation Details194

Experiments were conducted in Matlab R2018b IDE completed with Deep Learning Toolbox,195

Image Processing Toolbox and Parallel Computing Toolbox. These experiments were conducted using196

a workstation with a processor from Intel Xeon ® W-2123 CPU 3.60 GHz, 16GB of 2666MHz DDR4197

RAM, 500GB SATA 2.5-inch solid-state drive, and NVIDIA Quadro P620 3GB graphic card.198

3. Results199

The effect of the number of epochs, mini-batch sizing and data augmentation was evaluated200

on the classification of wrist radiographs in eleven CNN architectures. Table 6 and Table 7 present201

the aggregated best results for each architecture in prediction accuracy and Cohen’s kappa score202

respectively.203

Table 6. Results of accuracy for eleven Convolutional Neural Networks used to classify the wrist
images in the MURA dataset. The best results for each row are highlighted in italics and the overall the
best results are highlighted in bold.

No. CNNs SGDM ADAM
Rms
Prop Mean Epoch

Mini-
batch
Size

1 GoogleNet 0.650 0.671 0.640 0.654 30 64
2 VGG-19 0.680 0.681 0.590 0.650 30 64
3 AlexNet 0.674 0.690 0.657 0.674 50 128
4 SqueezeNet 0.683 0.657 0.690 0.677 30 64
5 ResNet-18 0.704 0.709 0.668 0.693 30 64
6 Inception-v3 0.710 0.689 0.707 0.702 10 64
7 ResNet-50 0.686 0.718 0.716 0.707 30 64
8 VGG-16 0.692 0.713 0.716 0.707 30 128
9 ResNet-101 0.715 0.706 0.701 0.707 30 32
10 DenseNet-201 0.733 0.695 0.722 0.717 30 32
11 Inception- ResNet-v2 0.712 0.747 0.710 0.723 30 32
12 ResNet-50 (augmentation) 0.835 0.854 0.847 0.845 30 64
13 Inception-ResNet-v2 (augmentation) 0.842 0.869 0.860 0.857 30 32
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Table 7. Cohen’s kappa results from eleven Convolutional Neural Networks used to classify the wrist
images in the MURA dataset. The best results for each row are highlighted in italics and the overall
best results are highlighted in bold.

No. CNNs SGDM Adam
Rms
Prop Mean Epoch

Mini-
batch
Size

1 GoogleNet 0.373 0.412 0.358 0.381 30 64
2 VGG-19 0.433 0.446 0.335 0.404 30 64
3 AlexNet 0.420 0.450 0.390 0.420 50 128
4 SqueezeNet 0.438 0.390 0.448 0.425 30 64
5 ResNet-18 0.474 0.484 0.408 0.455 30 64
6 Inception-v3 0.487 0.450 0.482 0.473 10 64
7 ResNet-50 0.441 0.496 0.494 0.477 30 64
8 VGG-16 0.453 0.491 0.492 0.479 30 128
9 ResNet-101 0.495 0.475 0.472 0.481 30 32
10 DenseNet-201 0.524 0.458 0.507 0.497 30 32
11 Inception-ResNet-v2 0.485 0.548 0.484 0.506 30 32
12 ResNet-50 (augmentation) 0.655 0.696 0.683 0.678 30 64
13 Inception-ResNet-v2 (augmentation) 0.670 0.728 0.711 0.703 30 32

Figure 5. Illustration of classification results for Lateral (LA) views of wrist radiographs. (a)
Corresponds to positive (abnormal) diagnosis image but predicted as negative (normal), (b) Abnormal
diagnosis and abnormal prediction. (c) Normal diagnosis image and normal prediction. (d) Normal
diagnosis and abnormal prediction. Notice that the errors in classification may have been biased by
artefact elements on the images.

For the 11 architectures with no data augmentation, Inception-Resnet-v2 performs the best with an204

accuracy (Ac = 0.723) and Cohen’s kappa (κ = 0.506). DenseNet-201 fares slightly lower (Ac = 0.717,205
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Figure 6. Illustration of classification results for Postero-Anterior (PA) views of wrist radiographs. (a)
corresponds to a positive (abnormal) diagnosis image that is predicted as negative (normal); (b) to
abnormal diagnosis and abnormal prediction; (c) to normal diagnosis image and normal prediction;
and (d) to normal diagnosis and abnormal prediction. Notice again that the errors in classification may
have been biased by artefactual elements on the images.

κ = 0.497). The lowest results were obtained with GoogleNet (Ac = 0.654, κ = 0.381). This potentially206

indicates better feature extraction with deeper network architectures. Fig. 5 and Fig. 6 illustrate some207

cases of the classification for Lateral and Postero-anterior views of wrist radiographs.208

The comparison between ADAM, SGDM, and RMSprop shows no indicative superiority implying209

that each of these optimisers were capable of achieving the optimal solution. Incremental change to210

the number of epochs beyond step 30 yields no improvement in accuracy indicating that the models211

have converged. The choice of the attempted mini-batches show no difference in results. With data212

augmentation, the results show significant improvement, e.g., accuracy increases by approximately213

19% (up by 0.134) and Cohen’s kappa by 39% (up by 0.197) for the Inception-ResNet-v2 architecture.214

Class activation maps were obtained and overlaid on top of the representative images in215

Figures 1 and 2. The CAMs obtained for ResNet50 are shown in Figures 7 and 9 while those for216

Inception-ResNet-v2 are shown in Figures 8 and 10. In all cases, the CAMs were capable of indicating217

the region of attention used in the two architectures applied. This is especially valuable for identifying218

where the abnormalities are in Figure 9 and 10. While both models indicate similar regions of attention,219

Inception-ResNet-v2 appears to have smaller attention regions (i.e.,more focused) than those in220

ResNet50. This may indicate a better extraction of features in the Inception-ResNet-v2 leading to better221

prediction results. Finally, the activation maps corresponding to figures FiguresR1 5,6 are presented in222

FigureR1 11.223
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Illustration of Activation Maps overlaid over the eight radiographs without abnormalities
of Figure 1 to indicate the regions of the image that activated a ResNet 50 architecture. (a) Elbow,
(b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand, (g)
Humerus, (h) Wrist. As these cases are positive (no abnormality), the regions of activation are not as
critical as those with abnormalities.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Illustration of Activation Maps overlaid over the eight radiographs without abnormalities of
Figure 1 to indicate the regions of the image that activated an Inception-Resnet-V2 architecture. (a)
Elbow, (b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand,
(g) Humerus, (h) Wrist. It should be noted that the activation regions are more localised than those of
the ResNet 50.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Illustration of Activation Maps overlaid over the eight radiographs with abnormalities
of Figure 2 to indicate the regions of the image that activated a ResNet 50 architecture. (a) Elbow,
(b) Forearm, (c) Shoulder, (d) Wrist (lateral view), (d) Lateral view of Wrist, (e) Finger, (f) Hand, (g)
Humerus, (h) Wrist. The activation maps illustrate the location of the abnormalities, e.g., (a,e), but
appears spread in other cases (b,g) where the abnormality is detected together with a neighbouring
region. In other cases (c) the abnormality is not detected.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Illustration of Activation Maps overlaid over the eight radiographs with abnormalities of
Figure 2 to indicate the regions of the image that activated an Inception-Resnet-v2 architecture. As for
the cases without abnormalities, the activation regions are more located e.g., (g) and in addition, the
abnormalities are better located, e.g., (b,c).
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(a) (b)

(c) (d)

Figure 11. Illustration of the class Activation Maps overlaid on the four classification results for
(a,b) Postero-anterior and (c,d) Lateral views shown in FiguresR1 5,6 for ResNet 50 (a,c) and
Inception-Resnet-v2 (b,d). In general Inception-Resnet-v2 presented more focused and smaller
activation maps. It should also be noted that whilst for correct classifications, the highlighted regions
are similar, for some incorrect classifications (c,d, top left and bottom right) the activations are quite
different, which suggest that the architectures may not be confusing salient regions that are not related
with the condition of normal or abnormal.R1

4. Discussion224

In this paper, eleven CNN architectures for the classification of wrist x-rays were compared.225

Various hyper-parameters were attempted during the experiments. It was observed that226

Inception-Resnet-v2 provided the best results (Ac = 0.747, κ = 0.548), which were compared with227

leaders of the MURA challenge which reports 70 entries. The top three places of the leaderboard were228

κ = 0.843, 0.834, 0.833, the lowest score was κ = 0.518 and the best performance for a radiologist was229

κ = 0.778. Thus, without data augmentation, the results of all the networks were close to the bottom230

of the table. Data augmentation significantly improved the results to achieve the 25th place of the231
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Figure 12. Illustration of the effect of the number of layers of architectures against the two metrics
used in this paper Accuracy and Cohen’s Kappa. Each architecture is represented by a circle, except
those with augmentation that are represented by an asterisk. For visualisation purposes, numbers
are added and these correspond to the order of Table 7 (1 GoogleNet, 2 VGG-19, 3 AlexNet, 4
SqueezeNet, 5 ResNet-18, 6 Inception-v3, 7 ResNet-50, 8 VGG-16, 9 ResNet-101, 10 DenseNet-201, 11
Inception-ResNet-v2, 12 ResNet-50 (augmentation), 13 Inception-ResNet-v2 (augmentation)). Notice
the slight improvement provided by deeper networks and the significant improvement that corresponds
to data augmentation.R1

leaderboard with (Ac = 0.869, κ = 0.728). Whilst this result was above the average of the table, the232

positive effect of data augmentation was confirmed to be close to human-level performance.233

The CAM provides a channel to interpret how a CNN architecture is trained for feature extraction234

and the visualisation of the CAMs in the representative images was interesting in several aspects. First,235

the activated regions in ResNet-50 appeared more broad-brushed than those of the Inception-Resnet-v2.236

This applied both to the cases without abnormalities (Figures 7 and 8 ) and those with abnormalities237

(Figures 9 and 10); Second, the localisation of regions of attention by Inception-Resnet-v2 also appeared238

more precise than the ResNet-50. This can be appreciated in several cases, for instance the forearm239

that contains a metallic implant (b) and the humerus with a fracture (g); Third, the activation on the240

cases without abnormalities provides a consistent focus in areas where abnormalities are expected to241

appear. This suggests that the network has appropriately learned regions essential to the correct class242

prediction.243

One important point to notice is that all the architectures provided lower results than those244

at the top of the MURA leaderboard table, even those tested with data augmentation. The top 3245

architectures in the MURA leaderboard are: (1) base-comb2-xuan-v3 (ensemble) by jzhang Availink,246

(2) base-comb2-xuan (ensemble), also by jzhang Availink and (3) muti_type (ensemble model) by247

SCU_ MILAB. These reported the following Cohen’s Kappa values of (1) 0.843, (2) 0.834 and (3) 0.833248

respectively. Ensemble models are reported for the top 11 architectures and the highest single model is249

located in position 12 with a value of 0.773.R3 Whilst in this paper only the wrist subset of the MURA250

dataset was analysed, it is not considered that these would be more difficult to classify than other251

anatomical parts. When data augmentation was applied to the input of the architectures, the results252

were significantly better, but still lower than the leaderboard winners. We speculate further steps could253

improve the performance of CNN-based classification. Specifically:254

1. Data Pre-Processing: In addition to a grid search of the hyper-parameters, image pre-processing255

to remove irrelevant features (e.g. text labels) may help the network to target its attention.256

Appropriate data augmentations (e.g. rotation, reflection, etc) will allow better pattern257

recognition to be trained and, in turn, provides higher prediction accuracy.258

2. Post Training Evaluation: Class Activation Map provides an interpretable visualisation for259

clinicians and radiologists to understand how a prediction was made. It allows the model to260

be re-trained with additional data to mitigate any model bias and discrepancy. Having a clear261
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association of the key features with the prediction classes [70] will aid in developing a more262

trustworthy CNN-based classification especially in a clinical setting.263

3. Model Ensemble [71,72] or combination of the results of different architectures have also shown264

better results than an individual configuration. This is also observed in the leaderboard for the265

original MURA competition.266

4. Domain Knowledge: The knowledge of anatomy (e.g. bone structure in elbow or hands [73])267

or the location/orientation of bones [28] can be supplemented in a CNN-based classification to268

provide further fine tuning in anomaly detection as well as guiding the attention of the network269

for better results [74].270

5. Conclusion271

In this paper, an objective comparison of eleven convolutional neural networks was performed.272

The architectures were used to classify a large number of wrist radiographs which were divided273

into two groups, some that contained abnormalities, like fractures or metallic plates, and normal,274

i.e. healthy. The comparison showed a gradual improvement of the two metrics, namely, accuracy275

and Cohen’s kappa, with more recent and deeper architectures. The best results were provided by276

ResNet-50 and Inception-Resnet-v2. Data augmentation was evaluated and was shown to increase277

the results significantly. Class activation maps were useful to observe the salient regions of each278

radiograph as they were passed through the architectures. Objective comparisons are important,279

especially for non-experts, who may consider one architecture without knowing if that is the optimal280

choice for their specific problem. R3
281
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