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Abstract: Quasi-diffusion imaging (QDI) is a novel quantitative diffusion magnetic resonance im-

aging (dMRI) technique that enables high quality tissue microstructural imaging in a clinically fea-

sible acquisition time. QDI is derived from a special case of the continuous time random walk 

(CTRW) model of diffusion dynamics and assumes water diffusion is locally Gaussian within tissue 

microstructure. By assuming a Gaussian scaling relationship between temporal (𝛼) and spatial (𝛽) 

fractional exponents, the dMRI signal attenuation is expressed according to a diffusion coefficient, 

𝐷 (in mm2 s−1), and a fractional exponent, 𝛼. Here we investigate the mathematical properties of the 

QDI signal and its interpretation within the quasi-diffusion model. Firstly, the QDI equation is de-

rived and its power law behaviour described. Secondly, we derive a probability distribution of un-

derlying Fickian diffusion coefficients via the inverse Laplace transform. We then describe the func-

tional form of the quasi-diffusion propagator, and apply this to dMRI of the human brain to perform 

mean apparent propagator imaging. QDI is currently unique in tissue microstructural imaging as it 

provides a simple form for the inverse Laplace transform and diffusion propagator directly from its 

representation of the dMRI signal. This study shows the potential of QDI as a promising new model-

based dMRI technique with significant scope for further development. 

Keywords: fractional calculus; continuous time random walk; diffusion magnetic resonance imag-

ing; non-Gaussian diffusion; quasi-diffusion imaging; quasi-diffusion model 

 

1. Introduction 

Quasi-diffusion imaging [1] is a novel diffusion magnetic resonance imaging (dMRI) 

technique based on a special case of the continuous time random walk (CTRW) diffusion 

model [2–5]. The diffusion dynamics are represented by an effective normal diffusion 

where the mean squared-displacement of the diffusing particles is proportional to time, 
〈𝑥2〉~𝑡. This corresponds to the fractional exponents representing the probability density 

functions of the waiting times between steps, 𝛼 , and the step lengths, 𝛽 , having the 

Gaussian scaling relationship, 

Consequently, 𝛼 and 𝛽 exponents are not independent and both processes are de-

scribed by related inverse power dependencies for step length (𝑥2(𝛼−1)) and waiting time 

(𝑡𝛼−1). 

Diffusion MRI provides a probe of tissue microstructure by application of diffusion 

encoding gradients that sensitise signals to water diffusion within an image voxel [6–10]. 

In vivo dMRI voxel sizes are typically on a mm scale, whereas tissue microstructural prop-

erties are measured in microns (μm). Hence, the dMRI signal includes components from 
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all cells within a voxel, and contributions from the extra-cellular space. When there is re-

striction of water diffusion at surface boundaries, the pulsed gradient spin echo (PGSE) 

Nuclear Magnetic Resonance (NMR) diffusion measurement provides a probe of the 

length scales of anisotropic microstructures [11].  

The observed dMRI signal in tissue is non-Gaussian. This has led to the development 

of numerous techniques to infer attributes of the diffusion environment and to several 

theories regarding the origin of the non-Gaussian signal [8,9,12,13]. These theories relate 

to the effect on diffusion by cell membranes, their internal structures, and the complex 

extracellular spaces in tissues being imaged. Early measurements using a Gaussian model 

of water diffusion identified that the apparent diffusion coefficient (ADC) in tissue was 

lower than for free water diffusion, and was related to cell density, cell size and water 

concentration within the tissue. Modern clinical MRI systems have revealed non-Gaussian 

behaviour of the dMRI signal creating a need for the development and application of more 

complex diffusion models [8,9,12,13]. 

In the CTRW diffusion model, the underlying diffusion process can be space-frac-

tional super-diffusion for 𝛼 = 1, 0 < 𝛽 ≤ 2 [14–17], time fractional sub-diffusion for 0 <

𝛼 ≤ 1 [16–18], or governed by the general CTRW model, allowing the characteristics of 

the underlying diffusion process to be determined [19–23]. Outside the CTRW model, 

techniques have been developed that assume the underlying diffusion process to be 

Gaussian. These include representing the diffusion signal attenuation as a second moment 

expansion known as Diffusional Kurtosis Imaging (DKI) [24,25], or as a signal in the ex-

perimentally acquired “q-space” from which, via application of the inverse Fourier trans-

form leads to a Mean apparent diffusion propagator (MAP) of molecular displacement 

[26–28] allowing measurement of the length scale of the diffusion environment. This is of 

interest in clinical imaging as models of the diffusion process that enable quantitative as-

sessment of tissue compartment or cell size can be used to assess pathological change, 

with potential applications in aiding diagnosis [29,30], predicting disease outcome [31] 

and monitoring treatment effects [32].  

The Random Permeable Barriers Model (RPBM) is a prominent theory in dMRI based 

on the time-dependence of diffusion coefficients observed in a voxel [33–36]. This model 

assumes that diffusion is locally Gaussian and that water can exchange freely between 

pores within a disordered medium. The RPBM formulation leads to a power-law time 

dependence for the observed signal and a time-varying diffusion coefficient. A limitation 

of this technique is that it does not allow derivation of an explicit form in the time domain, 

or an overall form for the diffusion signal attenuation. 

Other techniques consider non-exchanging [37–40], or exchanging [41,42] diffusion 

compartments constructed of different mixtures of geometrical shapes assumed a priori 

to represent tissue microstructure. These formulations do not constitute a model of the 

underlying diffusion dynamics and rely instead on developing a highly idealised geomet-

rical model of the structure of the diffusion environment. 

Here we consider the mathematics of quasi-diffusion and quasi-diffusion imaging. 

The fundamental solution of the space-time diffusion-wave equation within the CTRW 

diffusion model has been extensively studied [43–47], as have the properties of the quasi-

diffusion model [47–50]. In particular, quasi-diffusion is referred to as 𝛼-fractional diffu-

sion by [48,49] who suggest this special case of the CTRW diffusion model represents a 

natural fractionalisation of the diffusion process [49].  

The quasi-diffusion equation is given by the stretched Mittag–Leffler function [51–

53]. We describe its asymptotic properties and Laplace transform, and consider the prop-

erties of the quasi-diffusion propagator. Finally, we show how the quasi-diffusion propa-

gator can be used in quasi-diffusion MAP imaging to calculate sub-micron measurements 

of cell radii. Examples of quasi-diffusion MAP imaging are given in which we show the 

technique can be performed using a clinical MR scanner and that dMRI data for analysis 

of quasi-diffusion can be acquired in a clinically feasible scan time.  
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2. Theory 

2.1. Quasi-Diffusion Imaging 

Application of the CTRW diffusion model to dMRI was first described by Ingo et al. 

[19,54]. In the conventional case of particles characterised by Brownian motion in a homo-

geneous and isotropic geometry, their unrestricted self-diffusion is described by the sec-

ond-order partial differential equation, 
𝜕𝑃(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑃(𝑥, 𝑡)

𝜕𝑥2
,         (2) 

where the solution in 𝑛-dimensional space is the Gaussian propagator, 𝑃𝑛(𝑥, 𝑡), which 

defines the probability density of finding a molecule at position, 𝑥, at time, 𝑡, as, 

𝑃𝑛(𝑥, 𝑡) =
1

√2𝑛𝜋𝐷𝑡
exp (−

𝑥2

2𝑛𝐷𝑡
) ,      𝑡 ≥ 0,         (3) 

and 𝐷 is the diffusion coefficient in mm2 s−1. The extension to the CTRW diffusion model 

is provided by the fractional partial diffusion equation, 

𝒟𝑡
𝛼

0
𝐶 (𝑃(𝑥, 𝑡)) = 𝐷𝛼,𝛽

𝜕𝛽𝑃(𝑥, 𝑡)

𝜕|𝑥|𝛽
,    (4) 

where 𝒟𝑡
𝛼

0
𝐶  is the Caputo fractional derivative (which is the αth fractional order time de-

rivative for 0 < 𝛼 < 1), and 𝜕𝛽 𝜕|𝑥|𝛽⁄  is the Reisz fractional derivative (which is the βth 

fractional order space derivative for 0 < 𝛽 < 2) and 𝐷𝛼,𝛽 is the effective diffusion coeffi-

cient in units of mmβ s−α. It is assumed that at time, 𝑡 = 0, all the material is located at the 

origin and is given by the Dirac Delta function 𝑃(𝑥, 0) = 𝛿(𝑥). In the special case of quasi-

diffusion, the Gaussian scaling relationship, 
2𝛼

𝛽
= 1, is substituted into (4) to give,  

𝒟𝑡
𝛼

0
𝐶 (𝑃(𝑥, 𝑡)) = 𝐷𝛼,2𝛼

𝜕2𝛼𝑃(𝑥, 𝑡)

𝜕|𝑥|2𝛼
,     𝑥 ∈ ℝ𝑛,     𝑡 > 0,    0 < 𝛼 ≤ 1,    (5) 

where 𝐷𝛼,2𝛼 is an effective normal diffusion coefficient in units of mm2α s−α. In the quasi-

diffusion case, a Gaussian diffusion coefficient in mm2 s−1 can be recovered from the effec-

tive normal diffusion coefficient, 

𝐷1,2 = (𝐷𝛼,2𝛼)
1/𝛼
. (6) 

The fractional partial differential equation in (5) can be solved using the Laplace–

Fourier transform [5]. Firstly, the transform 𝑃𝑛(𝑥, 𝑡) →  𝑝𝑛(𝑘, 𝑠) is given by,  

𝑝𝑛(𝑘, 𝑠) =
1

𝑠 + 𝐷𝛼,2𝛼𝑠
1−𝛼|𝑘|2𝛼

, (7) 

then by application of the inverse Laplace transform to (7) we perform the transform 

𝑝𝑛(𝑘, 𝑠) →  𝑝𝑛(𝑘, 𝑡) to obtain the unique characteristic equation, which is a fractional re-

laxation curve for each wavenumber, 𝑘, given by, 

𝑝𝑛(𝑘, 𝑡) = 𝐸𝛼(−𝐷𝛼,2𝛼|𝑘|
2𝛼𝑡𝛼), (8) 

where 𝐸𝛼(𝑧) is the one-parameter Mittag–Leffler function which we make use of via its 

series representation,  

𝐸𝛼(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

, (9) 

for 𝛼 > 0 and 𝑧 ∈ ℂ. For application to dMRI, we make the change of variable from 𝑘 to 

𝑞 in (8) to indicate data acquisition by experimentally controlled PGSE parameters in 𝑞-

space. Experimental parameters are set to provide diffusion encoding in different orien-

tations in 𝑞-space where 𝑞 =
1

2𝜋
𝛾𝑔𝛿 (assumed to be in mm−1), γ is the gyromagnetic ratio 

of hydrogen (for quantification of water diffusion), and 𝑔 is the diffusion encoding gra-

dient strength (in mTm−1). The effective diffusion time of the pulse sequence is denoted as 

∆̅ = ∆ −
𝛿

3
 (in s) for a given diffusion gradient pulse duration, δ, and separation, . In clin-

ical applications, dMRI are typically acquired by keeping ∆̅ constant while altering 𝑞 by 

changing the diffusion encoding gradient strength, 𝑔.  

Mathematical analysis of diffusion imaging in 𝑞-space makes the assumption that 

dMRI data are acquired using an infinitely short diffusion gradient pulse duration, 𝛿, 
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with 𝛿 ≪ ∆. This is known as the short pulse approximation. The Fourier relationship be-

tween q-space (in mm−1) and r-space (in mm) is only exact in this limit. In practice, this 

assumption is routinely violated on clinical MRI systems due to technical and safety lim-

itations of in vivo MRI, meaning that gradient pulses have finite duration usually in the 

range 20 ms < 𝛿 <   <  70 ms.  

Equation (8) can also be written with respect to an overall diffusion sensitisation, 𝑏 =

𝑞2∆̅. This overall sensitivity is due to the cumulative effect of the diffusion encoding gra-

dient and the effective diffusion time, ∆̅. In a radial direction through 𝑞-space starting at 

the origin, the characteristic equation for quasi-diffusion is given by, 

𝑝(𝑞, ∆̅) = 𝐸𝛼(−𝐷𝛼,2𝛼|𝑞|
2𝛼∆̅𝛼) = 𝐸𝛼(−𝐷𝛼,2𝛼𝑏

𝛼) = 𝐸𝛼(−(𝐷1,2𝑏)
𝛼
) =

𝑆(𝑏)

𝑆(0)
, (10) 

where 𝑆(𝑏) is the diffusion signal intensity at a given diffusion-weighting 𝑏 (in s mm−2), 

and 𝑆(0) is the signal intensity at 𝑏 = 0 s mm−2. Equation (10) is a stretched Mittag–

Leffler function that describes Gaussian diffusion when 𝛼 = 1 and an effective normal dif-

fusion for 0 < 𝛼 < 1. The diffusion coefficient, 𝐷1,2,  and fractional exponent, 𝛼, are in-

dependent parameters that together parameterise a family of decay curves according to 

the rate of diffusion signal decay (𝐷1,2) and the shape of the power law tail, 𝛼.  

A key application of QDI is in imaging of the human body where diffusion of free 

water at body temperature is 𝐷𝐹𝑊 = 3 × 10−3 mm2 s−1 and 0.5 < 𝛼 < 1 in typical healthy 

brain tissue [1]. Figure 1 illustrates the family of signal decay curves described by (10). 

Figure 1a shows the quasi-diffusion signal attenuation parameterised by 𝑏 for an arbi-

trary diffusion coefficient, 𝐷1,2 = 1.5 × 10
−3 mm2 s−1 for 0.1 ≤ 𝛼 ≤ 0.99 with Figure 1b 

showing the quasi-diffusion signal attenuation parameterised by 𝑞.  

 

Figure 1. The family of quasi-diffusion imaging signal attenuation curves for an arbitrary diffusion coefficient of 𝐷1,2 =

1.5 × 10−3 mm2 s−1 and a range of fractional exponents, 0.1 ≤ 𝛼 ≤ 0.99. Normalised signal is shown parameterised by (a) 

diffusion-sensitisation, 𝑏, and (b) 𝑞. Graph (c) shows the power law behaviour of the signal decay parameterised by 𝑏 

on a logarithmic scale. 

The quasi-diffusion model can be demonstrated to provide good quality fits to ex-

perimental data. Figure 2 shows QDI maps of 𝐷1,2 and 𝛼 in the brain of a young (age 28 

years) healthy subject for which a comprehensive data acquisition was acquired with 29 

b-values over the range 0 ≤ 𝑏 ≤ 5000 s mm−2 in 6 non-collinear gradient encoding direc-

tions evenly distributed across the sphere. Experimental diffusion times were 𝛿 = 23.5 

ms and Δ = 43.7 ms giving an effective diffusion time of ∆̅ = 35.9 ms. Data were ac-

quired on a clinical 3T MR scanner at St George’s, University of London (SGUL) with a 

voxel size of 1.5 mm × 1.5 mm × 5 mm in 35 min 12 s. Full image acquisition parame-

ters are given in Appendix A. Data analysis were performed using the technique de-

scribed in [1] to estimate 𝐷1,2  and 𝛼 values in each diffusion encoding direction and 

their mean values within each image voxel. The top row of Figure 2 shows the exceptional 
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quality of fit of the quasi-diffusion model to observed data in individual grey (Figure 2a) 

and white matter voxels (Figure 2b) across the full range of 𝑏-factors. The 𝐷1,2 and 𝛼 

maps exhibit similar mean apparent diffusion coefficients in brain tissue, with the bright 

signal pertaining to cerebrospinal fluid-filled (CSF) spaces where diffusion is Gaussian 

with 𝐷𝐹𝑊 = 3 × 10−3 mm2 s−1. The bottom row of Figure 2 shows the quality of data re-

construction from three points, 𝑏 = {0,1080,5000} s mm−2 within the dMRI data acquisi-

tion, which were chosen as their modelled quasi-diffusion signal attenuation closest to 

that of the full 29 𝑏-value dataset across the entire image [55]. Overall, Figure 2 highlights 

how well the quasi-diffusion model fits acquired data and demonstrates that high quality 

images can be acquired in a clinically feasible time of 120 s without the need for an exten-

sive set of different b-value images to accurately define the signal decay curve. 

 

Figure 2. Quasi-diffusion model fits to experimental diffusion magnetic resonance imaging data acquired in the brain of 

a young, healthy subject (age 28 years). The top row shows the results of fitting the quasi-diffusion model to an acquisi-

tion of 29 𝑏-values over the range 0 < 𝑏 ≤ 5000 s mm−2, with the bottom row showing the results of fitting the quasi-

diffusion model to 3 𝑏-values, 𝑏 = {0,1080,5000} s mm−2. All imaging data were acquired in 6 diffusion encoding direc-

tions at an effective diffusion time of Δ̅ = 35.9 ms. Normalised signal attenuation is shown for a grey matter voxel indi-

cated by the blue arrow (graphs (a,e)), and a white matter voxel indicated by the red arrow (graphs (b,f)). Axial slices are 

shown for maps of mean 𝐷1,2 (images (c,g)) and mean α (images (c,g)). 

We will now explore some properties of the quasi-diffusion model that are relevant 

to its application in diffusion magnetic resonance imaging. 

2.2. General Properties of the Mittag–Leffler Function 

This section reviews several general properties of the Mittag–Leffler function. For 

properties beyond those stated below see [51,56–58]. The Mittag−Leffler function (9) is an 

entire function that is convergent in the whole complex plane with a singularity as 𝛼 →

0+ such that, 

𝐸0(𝑧) = ∑𝑧𝑘
∞

𝑘=0

=
1

1 − 𝑧
,  (11) 
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for |𝑧| < 1. The Mittag–Leffler function is considered to be a generalisation of the expo-

nential function and simplifies to mono-exponential decay for the case 𝛼 = 1, as 𝐸1(𝑧) =

exp(𝑧). 

The Mittag–Leffler function has complete monotonicity in the negative real axis if 

and only if 0 < 𝛼 ≤ 1 [57]. Consequently, the characteristic equation for quasi-diffusion 

equation for 𝐸𝛼(−𝑥) where 𝑥 = 𝐷𝛼,2𝛼𝑏
𝛼 and 𝑥 > 0 with 𝑥 ∈ ℝ+ is completely mono-

tone [52,57]. 

2.3. Asymptotic Properties of the Quasi-Diffusion Characteristic Equation 

The asymptotic behaviour of the quasi-diffusion characteristic Equation (8) as 𝑏 →

0+ and 𝑏 → ∞ can be determined from its Mittag–Leffler function series representation 

(9). In the low 𝑏-value approximation, the behaviour of the quasi-diffusion equation as 

𝑏 → 0 is derived from the convergent power series representation of (9), 

𝐸𝛼(−𝐷𝛼,2𝛼𝑏
𝛼) = 1 −

−(𝐷1,2𝑏)
𝛼

Γ(𝛼 + 1)
+⋯~ exp [−

−(𝐷1,2𝑏)
𝛼

Γ(𝛼 + 1)
] , 𝑏 → 0,   𝑏𝛼 ≪ 𝐷𝛼,2𝛼  (12) 

and indicates that as 𝑏 → 0, the function is asymptotic to a stretched exponential function. 

In the high 𝑏-value approximation, the behavior of the quasi-diffusion equation as 𝑏 →

∞+ is derived from the asymptotic power series representation [58], 

𝐸𝛼(−𝑥) ~ −∑
(−𝑥)−𝑘

Γ(1 − 𝛼𝑘)

𝑚

𝑘=0

+ 𝑂(|𝑥|−1−𝑚),    𝑚 ∈ ℕ,     𝑥 → +∞,    0 < 𝛼 < 1,   (13) 

and is given by, 

𝐸𝛼(−𝐷𝛼,2𝛼𝑏
𝛼) ~∑(−1)𝑘−1

(𝐷1,2𝑏)
−𝛼𝑘

Γ(1 − 𝛼𝑘)

∞

𝑘=0

, 𝑏 → ∞,  (14) 

with first order approximation, 

𝐸𝛼(−𝐷𝛼,2𝛼𝑏
𝛼) ~ 

(𝐷1,2𝑏)
−𝛼

Γ(1 − 𝛼)
,      𝑏 → ∞.        (15) 

In practice, for in vivo tissue microstructural imaging, the diffusion coefficient of wa-

ter is finite and unlikely to be less than 𝐷1,2 = 1 × 10
−5 mm2 s−1 and has an upper limit of 

𝐷𝐹𝑊  for free water at human body temperature. In this case, the behaviour of (12) and 

(15) will be dominated by 𝑏-value as both 𝑏 → 0 and 𝑏 → ∞. 

These asymptotic properties show that the quasi-diffusion imaging equation inter-

polates between a stretched exponential at low 𝑏-values and a negative power law at high 

𝑏-values. This is consistent with the fast diffusion signal decay at low 𝑏-values and slow 

signal attenuation at high 𝑏-values which are observed in Figure 2. The asymptotic rep-

resentations of the quasi-diffusion equation in tissue microstructural imaging can be 

stated as, 

𝐸𝛼(−𝐷𝛼,2𝛼𝑏
𝛼) ~ 

{
 

 exp [−
𝑏𝛼

Γ(𝛼 + 1)
]  ,                  𝑏 → 0,   𝑏𝛼 ≪ 𝐷𝛼,2𝛼

 
𝑏−𝛼

Γ(1 − 𝛼)
=  
𝑠𝑖𝑛(𝛼𝜋)

π

Γ(𝛼)

𝑏𝛼
,    𝑏 → ∞,   𝑏𝛼 ≫ 𝐷𝛼,2𝛼

 (16) 

after substitution of Γ(1 −  𝛼)Γ(𝛼) =
π

𝑠𝑖𝑛(𝛼𝜋)
. The behaviour of the quasi-diffusion equa-

tion is in contrast to the Mittag–Leffler function (9) which tends to an exponential function 

as 𝑧 → 0+. The quasi-diffusion equation is a stretched Mittag–Leffler function that has the 

same form and behaviour as the fractional relaxation equation which has been extensively 

studied in application to several physical systems including fractional linear viscoelastic-

ity [53,59,60] and dielectric models [60]. The negative power law behaviour of the quasi-

diffusion characteristic equation is highlighted in Figure 1c over the range 101 ≤ 𝑏 ≤ 105 

for an arbitrary diffusion coefficient, 𝐷1,2 = 1.5 × 10
−3 mm2 s−1 and 0.1 ≤ 𝛼 ≤ 0.99. 
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2.4. The Laplace Transform of the Quasi-Diffusion Characteristic Equation  

The Laplace transform and inverse Laplace transform of the quasi-diffusion charac-

teristic equation are of interest in quasi-diffusion imaging. For instance, the inverse La-

place transform of (8) provides a decomposition of the quasi-diffusion signal into a prob-

ability density function of Fickian diffusion coefficients, as will be seen later. The mathe-

matics of the Laplace transform of the stretched Mittag–Leffler function have been de-

scribed in detail [53,58–60]. The Laplace transform of the Mittag–Leffler function (9) is 

given by e.g., [56], 
1

1 − 𝑧
= ∫ 𝐸𝛼(𝑢

𝛼𝑧) 𝑒−𝑢 𝑑𝑢,
∞

0

     𝛼 > 0,    |𝑧| < 1, (17) 

which is fundamental in the evaluation of the Laplace transform of the fractional relaxa-

tion curve. In our case, the form of the fractional relaxation curve is given by 

𝐸𝛼(−(𝐷1,2𝑏)
𝛼
)  with 𝐷1,2 ∈ ℝ

+ . Substituting 𝑢 = 𝑠𝑏  and 𝑢𝛼𝑧 = −(𝐷1,2𝑏)
𝛼

 into (17) 

gives, 

∫ 𝐸𝛼(−(𝐷1,2𝑏)
𝛼
)

∞

0

𝑒−𝑠𝑏 𝑑𝑏 =
𝑠𝛼−1

𝑠𝛼 + 𝐷1,2
𝛼 =

𝑠−1

1 + 𝐷1,2
𝛼𝑠−𝛼

. (18) 

As 𝐷1,2  is positive, then 𝐸𝛼(−(𝐷1,2𝑏)
𝛼
) is completely monotonic for 𝑏 > 0 when 

0 < 𝛼 ≤ 1. The inverse Laplace transform can be formulated as a Laplace inverse integral 

along a Hankel path, Ha, as shown by, e.g., [59,60], 

𝐸𝛼(−(𝐷1,2𝑏)
𝛼
) =

1

2𝜋𝑖
∫

𝑠𝛼−1

𝑠𝛼 + 𝐷1,2
𝛼

𝐻𝑎

𝑒𝑠𝑏𝑑𝑠, (19) 

where 𝛼 > 0 and 𝑧 ∈ ℂ. The Hankel path is the integration around a loop that starts and 

ends at −∞ and encircles the disc |𝑠| ≤ |𝐷1,2|
1/𝛼

 in the positive sense: −𝜋 ≤ 𝑎𝑟𝑔 𝑠 ≤ 𝜋, 

e.g., [53,59,60]. The result of this integration is the normalised spectrum of quasi-diffusion 

signal decay in 𝑏, which is a non-negative probability density function that is locally in-

tegrable in ℝ+ given by [53,59,60], 

𝐾𝛼(𝑦) =
sin(𝛼𝜋)

𝜋

𝑦𝛼−1

1 + 2𝑦𝛼cos(𝛼𝜋) + 𝑦2𝛼
≥ 0,       (20) 

and is analogous to the normalised spectrum of relaxation in time [53,59]. The spectrum 

of apparent diffusion coefficients is given when 𝑦 = 𝜎/𝐷1,2  such that 𝐾𝛼(𝜎/𝐷1,2) =

𝜂𝛼(𝜎)𝐷1,2 [53,59], 

𝐸𝛼(−(𝐷1,2𝑏)
𝛼
) = ∫ 𝜂𝛼(𝜎)𝑒

−𝜎𝑏 𝑑𝜎,
∞

0

     0 < 𝛼 < 1, (21) 

and represents the quasi-diffusion signal as a distribution of Gaussian diffusion signals, 

𝜎 (in mm2 s−1). This provides further support for quasi-diffusion being a natural general-

isation and fractionalisation of diffusion dynamics when the process occurs within com-

plex structures that hinder or restrict free diffusion.  

The quasi-diffusion spectral function is illustrated in Figure 3a for unit 𝐷1,2 = 1 mm2 

s−1 and 0.1 < 𝛼 < 0.99. At 𝛼 close to unity (e.g., 𝛼 = 0.99), the probability density func-

tion tends towards the Dirac delta function with a characteristic ADC equivalent to the 

resultant mean of an unrestricted Gaussian diffusion process. This indicates that diffusion 

dynamics within the structure being studied are Gaussian with no boundaries that hinder 

or restrict diffusing particles. As 𝛼 decreases (from 0.9 to 0.7), the probability density 

function broadens to include significant contributions at low ADCs representing charac-

teristics of diffusion in a restricting environment and increasing tissue heterogeneity. For 

𝛼 < 0.65, the probability density function smoothly deforms to a hyperbolic shape that 

becomes dominated by large contributions from restriction and greater tissue heterogene-

ity. It should be noted that in practice for dMRI in brain tissue, we are typically in the 

range 0.5 < 𝛼 ≤ 1 [1].  

Spectra of ADCs are shown for healthy brain tissue in CSF (Figure 3b), grey matter 

(Figure 3c) and white matter (Figure 3d). The spectra were calculated based on measure-

ments of mean, axial and radial 𝐷1,2 and 𝛼 from Barrick et al. [1]. Axial measurements 

are calculated along the direction parallel to tissue microstructure, with radial measures 
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being perpendicular to the tissue microstructural axis. Figure 3b shows that diffusing wa-

ter molecules in CSF-filled spaces exhibit isotropic diffusion with an ADC of 

3.0 × 10−3 mm2 s−1. The slight apparent anisotropy in measurements is likely related to 

partial volume effects with brain tissue that are not fully removed in the CSF segmenta-

tion, combined with the effects of noise which have broadened the distribution from being 

a Dirac-delta function. In grey matter (Figure 3c), which contains layers of neurons, the 

probability density functions represent an almost isotropic diffusion within a heterogene-

ous tissue microstructure. In white matter (Figure 3d), which consists of axons that pro-

vide the wiring of the brain, there is anisotropic diffusion such that diffusion parallel to 

tissue microstructure is through a more homogeneous diffusion environment (i.e., along 

axons surrounded by myelin sheaths) than diffusion perpendicular to axons which is 

more hindered and/or restricted by tissue microstructural boundaries. The white matter 

spectra indicate considerable anisotropy in the axial and radial ADCs, with large contri-

butions of restricted diffusion to the radial quasi-diffusion coefficient, 𝐷1,2, representing 

a low 𝛼. 

 

Figure 3. Decomposition of the signal into a spectrum of Fickian apparent diffusion coefficients via the inverse Laplace 

transform. Graph (a) shows the probability density functions for a unit diffusion coefficient, 𝐷1,2 = 1 mm2 s−1 for different 

fractional exponents, 0.1 ≤ 𝛼 ≤ 0.99. Spectra are shown for axial, radial and mean 𝐷1,2 and 𝛼 values in (b) cerebrospinal 

fluid, (c) grey matter and (d) white matter. 𝐷1,2  and 𝛼 values used to calculate the spectra are from Barrick et al. [1]. 
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2.5. The Quasi-Diffusion Propagator 

Here we describe mathematical results for deriving and understanding the behav-

iour of the 𝑛 -dimensional quasi-diffusion propagator. We use notation whereby the 

Green’s function in 𝑛-dimensional space for the solution of (5) is given by 𝑃𝑛(𝑥, 𝑡). Equa-

tions for the propagator in one-, two- and three-dimensions are presented in integral form, 

or closed form where possible. The following is given in greater detail by [48]. 

The inverse Fourier transform of the quasi-diffusion characteristic Equation (9) is 

given by,  

𝑃𝑛(𝑥, 𝑡) = ∫ 𝑒2𝜋𝑖𝑞𝑥𝐸𝛼(−𝐷𝛼,2𝛼|𝑞|
2𝛼Δ̅𝛼) 𝑑𝑞

ℝ𝑛
. (22) 

As this function belongs to the functional space 𝐿1(ℝ
𝑛) with respect to 𝑞, the inverse 

Fourier transform can be written as [61],  

𝑃𝑛(𝑥, 𝑡) =
1

(2𝜋)𝑛
∫ 𝑒𝑖𝑞𝑥𝐸𝛼(−𝐷𝛼,2𝛼|𝑞|

2𝛼Δ̅𝛼) 𝑑𝑞,
ℝ𝑛

    𝑥 ∈ ℝ,    𝑡 > 0,    0.5 < 𝛼 ≤ 1.  (23) 

The Mittag–Leffler function (9) is axially symmetric in 𝑞 and is a radial function, so by 

the formula [62], 

1

(2𝜋)𝑛
∫ 𝜑(𝑘) 𝑑𝑘
ℝ𝑛

=
|𝑥|1−

𝑛
2

(2𝜋)
𝑛
2

∫ 𝜑(𝜏) 𝜏
𝑛
2  𝐽𝑛

2
−1
(𝜏|𝑥|) 𝑑𝜏,

∞

0

 (24) 

where 𝐽𝑣 denotes the Bessel function of index 𝑣, Equation (24) can be written as the 𝑛-

dimensional quasi-diffusion propagator, 

𝑃𝑛(𝑥, 𝑡) =
|𝑥|1−

𝑛
2

(2𝜋)
𝑛
2

∫ 𝐸𝛼(−𝐷𝛼,2𝛼𝑞
2𝛼Δ̅𝛼) 𝑞

𝑛
2  𝐽𝑛

2
−1
(𝑞|𝑥|) 𝑑𝑞,

∞

0

    |𝑥| ≠ 0,  (25) 

whenever the integral converges absolutely or conditionally. For |𝑥| ≠ 0, by use of the 

asymptotic formulae for the Mittag–Leffler function (13) and for the Bessel function, Equa-

tion (25) is absolutely convergent for 𝑛 < 4𝛼 − 1 and conditionally convergent for 𝑛 <

4𝛼 + 1. In the one-dimensional case, it is absolutely convergent for 0.25 < 𝛼 ≤ 1 and con-

ditionally convergent for 0 < 𝛼 ≤ 1. In two-dimensions, (25) is absolutely convergent for 

0.75 < 𝛼 ≤ 1 and conditionally convergent for 0.25 < 𝛼 ≤ 1. Conditional convergence is 

guaranteed for the one-, two-, and three-dimensional cases for 0.5 < 𝛼 ≤ 1. 

We now consider the case of zero net displacement where |𝑥| = 0. From (22) we 

have, 

𝑃𝑛(0, 𝑡) =
1

(2𝜋)𝑛
∫ 𝐸𝛼(−𝐷𝛼,2𝛼|𝑞|

2𝛼Δ̅𝛼)  𝑑𝑞,
ℝ𝑛

 (26) 

which by the formula [62], 

∫ 𝑓(|𝑥|) 𝑑𝑥
ℝ𝑛

=
2𝜋

𝑛
2

Γ (
𝑛
2
)
∫ 𝜏𝑛−1𝑓(𝜏) 𝑑𝜏,
∞

0

 (27) 

can be expressed as, 

𝑃𝑛(0, 𝑡) =
1

(2𝜋)𝑛
2𝜋

𝑛
2

Γ (
𝑛
2
)
∫ 𝑞𝑛−1𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ𝛼) 𝑑𝑞
∞

0

. (28) 

Using the asymptotic formula for the Mittag–Leffler function (13) it can be seen that 

Equation (28) is absolutely convergent if 𝑛 < 2𝛼 and, consequently, only in the one-di-

mensional case when 0.5 < 𝛼 ≤ 1. For the one-dimensional case we have, 

𝑃1(0, 𝑡) =
1

𝜋
∫ 𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞,
 ∞

0

 (29) 

with a closed form for 𝑃1(0, 𝑡) given by [47,48], 

𝑃1(0, 𝑡) =
1

√4𝜋𝐷1,2𝑡 𝛼 sin (
𝜋
2𝛼
)
,    𝑡 > 0,   0.5 < 𝛼 ≤ 1,     (30) 

which simplifies to the Gaussian solution, 𝑃1(0, 𝑡) = 1 √4𝜋𝐷1,2𝑡⁄ , when 𝛼 = 1.  

For |𝑥| ≠ 0, the quasi-diffusion propagator, 𝑃𝑛(𝑥, 𝑡), given by (25) cannot be written 

in simple closed form for the one-dimensional and three-dimensional cases, however, a 
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closed form has been derived in the two-dimensional case. In one-dimension, the quasi-

diffusion propagator (25) is given by the integral, e.g., [47,48], 

𝑃1(𝑥, 𝑡) =
1

𝜋
∫ cos(𝑞𝑥)𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞
∞

0

, (31) 

as the Bessel function of order −1/2 is, 

𝐽
−
1
2

(𝑧) = √
2

𝜋𝑧
cos(𝑧). (32) 

Although (31) cannot be written in a simple closed form, it can be written in closed form 

using the Fox H-function [19,63]. In two-dimensions, the closed form of (25) is given by 

e.g., [46–48], 

𝑃2(𝑥, 𝑡) =
1

4𝜋𝐷1,2𝑡
(

|𝑥|

2√𝐷1,2𝑡
)

𝛼−1

𝐸𝛼,𝛼 (−(
|𝑥|

2√𝐷1,2𝑡
)

2𝛼

), (33) 

where 𝐸𝛼,𝛼(𝑧) is the two parameter Mittag–Leffler function (see [61] for properties of the 

two-parameter Mittag–Leffler function), 

𝐸𝛽,𝛾(𝑧) = ∑
𝑧𝑘

𝛤(𝛽𝑘 + 𝛾)

∞

𝑘=0

,     𝛽 > 0,     𝛾 ∈ ℂ,     𝑧 ∈ ℂ.   (34) 

In the Gaussian case, when 𝛼 = 1, Equation (34) takes the conventional form,  

𝑃2(𝑥, 𝑡) =
1

4𝜋𝐷1,2𝑡
exp (

−|𝑥|2

4𝐷1,2𝑡
). (35) 

Finally, in three dimensions, by substituting the Bessel function of order 1/2, 

𝐽1
2

(𝑧) = √
2

𝜋𝑧
sin(𝑧), (36) 

into Equation (25), we have the integral form of the three-dimensional quasi-diffusion 

propagator for |𝑥| ≠ 0 which is given by, e.g., [47,48], 

𝑃3(𝑥, 𝑡) =
1

2𝜋2|𝑥|
∫ 𝑞 sin(𝑞|𝑥|) 𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞
∞

0

. (37) 

The quasi-diffusion propagator has also been investigated using subordination prin-

ciples [45–47] (see [5] for a general description of subordination processes in the CTRW 

model). Subordination principles in stochastic processes involve the definition of a sto-

chastic process in time (the subordinating function) that is within another stochastic pro-

cess (the subordinated stochastic process). In the case of the diffusion propagator, this 

allows subordination formulae to be constructed that include, for example, Gaussian [47] 

or Poisson [45] distributions. Here we present the subordination equations for the Gauss-

ian distribution [47], 

𝑃𝑛(𝑥, 𝑡) = ∫ 𝑡−1 2⁄ 𝐾𝛼(𝑠𝑡
−1 2⁄ )

∞

0

𝐺𝑛(𝑥, 𝑠) 𝑑𝑠,      0 <  𝛼 ≤ 1, (38) 

where the fundamental solution to the conventional diffusion equation is, 

𝐺𝑛(𝑥, 𝑡) =
1

(√4𝜋𝐷1,2𝑡)
𝑛 exp (−

|𝑥|2

4𝐷1,2𝑡
), (39) 

and the function 𝐾𝛼(𝜏) is the inverse Laplace transform of the stretched Mittag–Leffler 

function,  

𝐸𝛼(−𝜇
𝛼) = ∫ 𝐾𝛼(𝜏)𝑒

−𝜇𝜏𝑑𝜏
∞

0

. (40) 

As 𝐸𝛼(−𝜇
𝛼) is a stretched Mittag–Leffler function, the inverse Laplace transform is 

a spectral probability density function, for this case, in time given by,  

𝐾𝛼(𝜏) =
sin(𝛼𝜋)

𝜋

𝜏𝛼−1

1 + 2𝜏𝛼cos(𝛼𝜋) + 𝜏2𝛼
. (41) 

Equations (38) to (41) show that the quasi-diffusion propagator is the integral of a 

multiplication of the conventional Gaussian probability density function and a spectral 

probability density function in time. The quasi-diffusion propagator is unimodal. Figure 

4 illustrates the one-dimensional quasi-diffusion propagator in space, 𝑥, in microns for 
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an effective diffusion time of 35.9 ms (Figure 4a) and time, 𝑡, in seconds for a distance 

of 5 μm (Figure 4b) for a diffusion coefficient of 𝐷1,2 = 1.5 × 10−3 mm2 s−1 and fractional 

exponents in the range 0.5 < 𝛼 ≤ 0.99, which cover the range of 𝛼 typically found in the 

human brain. The propagator was calculated based on Equation (38). The shape of the 

propagator in space (Figure 4a) is such that the probability density function becomes more 

kurtotic as 𝛼 decreases from the Gaussian case (𝛼 = 1) corresponding to a higher proba-

bility of both smaller and larger step lengths, in correspondence with greater heterogene-

ity of the diffusion environment. This is consistent with assumptions made in DKI [24,25]. 

The shape of the propagator in time (Figure 4b) is also consistent with quasi-diffusion 

representing an effective normal diffusion process as it is unimodal and Gaussian-like. 

 

Figure 4. The one-dimensional quasi-diffusion propagator for an arbitrary diffusion coefficient, 𝐷1,2 = 1.5 × 10
−3 mm2 s−1 

for 0.5 ≤ 𝛼 ≤ 0.99. The one-dimensional probability density function is shown (a) in space at an effective diffusion time 

of Δ = 35.9 ms, and (b) in time at 𝑥 = 5 μm. 

Several interesting mathematical results have been derived from the Green’s function 

in the special case of the CTRW model for 2𝛼/𝛽 = 1. It has been shown that the one- and 

two-dimensional quasi-diffusion propagators are probability density functions that 

evolve spatially in time [48–50]. Furthermore, the entropy production rate of the quasi-

diffusion propagator in the one-dimensional and two-dimensional cases is the same as for 

Gaussian diffusion process [48–50]. However, in the one-dimensional case, the second 

spatial moment of the probability density function, 𝑃1(𝑥, 𝑡), does not exist and the mean 

squared displacement of the diffusing particles is not finite, indicating the diffusion pro-

cess is anomalous [48–50]. Similarly, for the two-dimensional case, the second moment of 

𝑃2(𝑥, 𝑡), does not exist for 0.5 < 𝛼 ≤ 1 and the diffusion is anomalous with long-tailed 

waiting time and jump lengths. In the three-dimensional case, the interpretation of the 

process governed by (5) is different. Instead of a spatial probability density function for 

an anomalous diffusion process evolving in time, it has been suggested to represent an 

anomalous damped wave propagating with a time-dependent phase velocity [48,50]. 
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2.6. Application of Quasi-Diffusion MRI to Mean Apparent Propagator Imaging 

In this section, we consider how the quasi-diffusion propagator can be applied to 

estimate the mean apparent propagator and an effective pore size within a dMRI voxel. 

Several techniques have been previously described for computing effective pore size 

measurements from dMRI data, e.g., [11,28,37–39,64], but here we consider the Mean ap-

parent propagator (MAP) imaging technique [28] as this uses the inverse Fourier trans-

form for dMRI data acquired in q-space and provides molecular displacements in mm. 

Our formulation differs from [28] by applying the functional form of the quasi-diffusion 

propagator rather than using Hermite functions to represent the diffusion propagator in 

𝑞-space. 

MAP imaging provides measures of the three-dimensional return-to-the-origin prob-

ability (𝑅𝑇𝑂𝑃), the two-dimensional return-to-the-axis probability (𝑅𝑇𝐴𝑃) and the one-

dimensional return-to-the-plane probability (𝑅𝑇𝑃𝑃). These maps represent the zero net 

displacement probabilities for molecular displacement and can be used to provide esti-

mations of effective measurements of mean pore volume, 〈𝑉〉, mean pore cross-sectional 

area, 〈𝐴〉, and mean pore axial length scale, 〈𝐿〉.  

In tissue microstructural dMRI, the “pores” under measurement are cells. In MAP 

imaging, the tissue microstructure is assumed to consist of isolated pores with a distribu-

tion of arbitrary shapes, sizes and orientations. In the brain, for example, the cortex and 

deep grey matter consist of neurons, whereas the connections between cortical regions are 

provided by axons in white matter. Grey matter may be considered to contain spheres 

with a distribution of radii (i.e., neurons) [26]. White matter consists of bundles of axons 

that are surrounded by a myelin sheath and may be considered as cylinders with a distri-

bution of radii (i.e., axons) [26]. Diffusion parallel to axons is not free, but is greater than 

in axonal cross-section. Along axons, the presence of the nodes of Ranvier (where the my-

elin sheath periodically narrows), and astrocytes (which hold axonal bundles together) 

are considered to hinder diffusing water molecules. This may be considered as consecu-

tive slabs with a distribution of spacings [26].  

In dMRI, under the short pulse approximation, the zero net displacement probability 

can be computed to provide estimates of 𝑅𝑇𝑂𝑃 in units of mm−3, 𝑅𝑇𝐴𝑃 in mm−2 and 

𝑅𝑇𝑃𝑃 in mm−1 from which pore characteristics may be calculated. For the one-dimension 

quasi-diffusion case, 𝑅𝑇𝑃𝑃 is given by (29) as, 

𝑅𝑇𝑃𝑃 = 𝑃1(0, 𝑡) =
1

𝜋
∫ 𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞.
 ∞

0

 (42) 

Although the quasi-diffusion propagator for |𝑥| = 0 is only convergent in the one-

dimensional case, it is possible to provide estimations of the probability of zero net dis-

placement in two- and three-dimensions. Such a calculation is of interest as estimation of 

𝑅𝑇𝐴𝑃 and 𝑅𝑇𝑂𝑃 maps are sensitive to tissue microstructure and its alteration with dis-

ease [29–31]. To ensure consistency in estimation of the two- and three-dimensional esti-

mations we perform integration over a predefined range of 𝑞-space. Here we perform 

integration up to a pre-defined limit of 𝑞𝑚𝑎𝑥 = 5000 mm−1, far higher than the capability 

of any MR scanner or NMR system. 𝑅𝑇𝐴𝑃 and 𝑅𝑇𝑂𝑃 are then given by (28) as, 

𝑅𝑇𝐴𝑃 = 𝑃2(0, 𝑡) =
1

2𝜋
∫ 𝑞

 
𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞,
 𝑞𝑚𝑎𝑥

0

 (43) 

𝑅𝑇𝑂𝑃 = 𝑃3(0, 𝑡) =
1

2𝜋3
∫ 𝑞2

 
𝐸𝛼(−𝐷𝛼,2𝛼𝑞

2𝛼Δ̅𝛼) 𝑑𝑞.
 𝑞𝑚𝑎𝑥

0

 (44) 

The details of the relationship between zero net displacement probability and pore 

size in dMRI have been previously described in detail [11,26–28]. These amount to the 

following simple relationships for estimating effective mean pore volume, 〈𝑉〉, cross-sec-

tional area 〈𝐴〉, and axial length scale, 〈𝐿〉, 

〈𝑉〉 = 𝑅𝑇𝑂𝑃−1, (45) 

〈𝐴〉 = 𝑅𝑇𝐴𝑃−1, (46) 

〈𝐿〉 = 𝑅𝑇𝑃𝑃−1. (47) 
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To enable calculation of quasi-diffusion MAP images, there is a requirement to firstly 

estimate 𝐷1,2 and 𝛼 values parallel to the tissue microstructure (i.e., axial 𝐷1,2 and 𝛼), 

perpendicular to the tissue microstructure (i.e., radial 𝐷1,2 and 𝛼) and obtain their mean 

isotropic characteristics (i.e., mean 𝐷1,2 and 𝛼) within the voxel. In practice, the axial, 

radial and mean 𝐷1,2 and 𝛼 values are calculated using techniques described by Barrick 

et al. [1]. In addition to the effective pore size estimates given by (46) to (48), the effective 

mean spherical pore radius, 〈𝑅〉, and effective mean cylindrical pore radius, 〈𝑅⊥〉, may be 

obtained from (45) and (46) as, 

〈𝑅〉 = √
3

4𝜋𝑅𝑇𝑂𝑃

3

, (48) 

〈𝑅⊥〉 = √
1

𝜋𝑅𝑇𝐴𝑃
. (49) 

In MAP imaging, the effective diffusion time of the dMRI acquisition is required to 

be long enough to allow the pores to be fully explored by the diffusing water molecules 

[28]. In practice, the effective diffusion times are between 20 and 40 ms on clinical and 

research MR scanners and are sufficient for this purpose. However, according to Equation 

(30), quantification of the zero net displacement quasi-diffusion propagators at the effec-

tive diffusion time of the dMRI experiment will overestimate pore sizes. To avoid this 

problem, the quasi-diffusion propagators may be calculated at the time at which diffusing 

molecules first interact with the tissue microstructural environment. This is referred to as 

the short time limit, 𝑡𝑠. In quasi-diffusion imaging, we define this as the time at which the 

ensemble of diffusing molecules within a voxel ceases to be Gaussian, but is instead rep-

resented by an effective normal diffusion. This corresponds to the time at which the mean-

squared displacement, 〈𝑥2〉𝑛 = 2𝑛𝐷1,2∆̅, is equivalent to the mean-squared displacement 

for free water at body temperature, i.e., 𝐷𝐹𝑊 = 3 × 10−3 mm2 s−1. Consequently, the short 

time limit is,  

𝑡𝑠 =
𝐷1,2∆̅

𝐷𝐹𝑊
, (50) 

and can be substituted into the quasi-diffusion propagators to provide a more accurate 

estimate of apparent mean pore size characteristics. A further observation is that, as in the 

case of Gaussian diffusion, the ratio, 𝜒𝑠, of the length scales at the effective diffusion time 

over the short time limit is given by both the diffusion times and diffusion coefficients as, 

𝜒𝑠 = √
𝑡𝑠 

∆̅
= √

𝐷1,2 

𝐷𝐹𝑊
. (51) 

3. Examples 

3.1. Quasi-Diffusion Mean Apparent Propagator Imaging of the Corpus Callosum 

The corpus callosum is a large commissural white matter bundle that connects corti-

cal regions in the left and right cerebral hemispheres of the brain. The structure of the 

corpus callosum is such that it does not intersect with other white matter bundles through 

the interhemispheric fissure (which is in the mid-sagittal plane of the brain). This means 

that dMRI measurements obtained where the corpus callosum crosses the interhe-

mispheric fissure are only indicative of white matter tissue microstructure in the corpus 

callosum. In this example, we apply quasi-diffusion MAP imaging to estimate axon radii 

within a mid-sagittal section of the corpus callosum. 

Diffusion MRI data were acquired on a healthy 27-year-old subject using a 3T clinical 

MR scanner at SGUL. Images were acquired with isotropic voxel size of 2 mm in 10 min 

48 s. Data were acquired at 𝑏 = {0, 1100,4000} s mm−2 in 32 non-collinear diffusion en-

coding directions equally spaced on the sphere with 𝛿 = 28.7 ms and Δ = 43.9 ms, giv-

ing an effective diffusion time of ∆̅ = 34.33∙ ms. Full data acquisition details are provided 

in Appendix A. 
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Axial, radial and mean 𝐷1,2 and 𝛼 values were estimated using quasi-diffusion ten-

sor imaging (QDTI) [1]. QDTI uses a Levenberg–Marquardt algorithm and Padé approxi-

mation of the Mittag–Leffler function and its partial derivatives to estimate 𝐷1,2 and 𝛼 

values in radial lines through q-space [1,65]; 3 × 3 tensors are fitted to the estimated 𝐷1,2 

and 𝛼 values to provide matrix representations of 𝐷1,2  and 𝛼 as closed quadric sur-

faces in ℝ3 (i.e., ellipsoids or spheres) [1,66]. Eigenvalues (𝜆 ∈ ℝ, 𝜆1 > 𝜆2 > 𝜆3) and ei-

genvectors (𝑣 ∈ ℝ3) are then calculated for the 𝐷1,2 and 𝛼 tensors within each voxel. 

The eigenvector corresponding to 𝜆1 is considered to be parallel with the gross orienta-

tion of tissue microstructure within the voxel, with the remaining eigenvectors providing 

the orientation of the microstructural cross-section. Axial, radial and mean values for 𝐷1,2 

and 𝛼 can then be calculated. For example, for the diffusion coefficient we have: axial 

𝐷1,2 = 𝜆1 , radial 𝐷1,2 = (𝜆2 + 𝜆3)/2 and mean 𝐷1,2 = (𝜆1 + 𝜆2 + 𝜆3)/3 . 𝑅𝑇𝑂𝑃 , 𝑅𝑇𝐴𝑃 , 

𝑅𝑇𝑃𝑃 and effective mean pore radius were then computed.  

Figure 5 shows 𝑅𝑇𝑂𝑃 (Figure 5a), 𝑅𝑇𝐴𝑃 (Figure 5b) and 𝑅𝑇𝑃𝑃 (Figure 5c) maps 

in an axial slice through the corpus callosum. A sagittal cross-section through the mid-

plane of the corpus callosum is shown in Figure 5d. The pseudo colour map indicates 

estimated axon radii in microns. A histogram of axon radii through a 10 mm thick sagittal 

section of the corpus callosum is shown in Figure 5e. This indicates axon radii are between 

0.25 μm and 3.5 μm (mean 1.03 μm, standard deviation 0.5 μm, median 0.91 μm) with 

larger radii in the body than the genu and splenium. These measurements are in accord-

ance with histological studies [67]. 

 

Figure 5. Quasi-diffusion mean apparent propagator imaging results for a young, healthy subject 

(age 27 years). The top row shows axial slices through (a) √𝑅𝑇𝑂𝑃
3

, (b) √𝑅𝑇𝐴𝑃, and (c) 𝑅𝑇𝑃𝑃 maps. 

The bottom row shows (d) effective pore radius estimates in a cross-section through the mid-sagittal 

plane of the corpus callosum, and (e) a probability density function of micron radii for the analysed 

10 mm thick section of the corpus callosum (graph (e)). The location of the corpus callosum is iden-

tified by red arrows. The red and blue lines in graph (e) indicate the mean and median, respectively. 
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3.2. Quasi-Diffusion Imaging of Brain Tumour 

As quasi-diffusion imaging can be acquired in 120 s with high signal to noise ratios 

[1], it could be feasibly acquired in the clinic. Here we consider an application of quasi-

diffusion imaging to a high-grade glial tumour, the glioblastoma multiforme (GBM). Clin-

ical assessment of glial tumour grade and genetic subtype is relevant for predicting pa-

tient survival time and treatment strategy which includes surgical resection, chemo- and 

radiotherapy, and the need for accurate delineation of tumour tissue boundaries [68,69]. 

Diffusion MRI data were acquired using a 3T clinical MR scanner at SGUL. Images 

were acquired with a voxel size of 1.5 mm × 1.5 mm × 5 mm in 120 s. Data were ac-

quired at 𝑏 = {0, 1100, 5000}  s mm−2 in 6 non-collinear diffusion encoding directions 

equally spaced on the sphere with δ = 23.5 ms, and Δ = 43.7 ms, giving an effective dif-

fusion time of ∆̅ = 35.9 ms. Full patient and data acquisition details are provided in Ap-

pendix A. Image analysis was performed using the same techniques as Section 3.1 with 

the exception that effective mean spherical pore radius was calculated. 

In Figure 6, we compare the standard clinical Gadolinium contrast-enhanced T1-

weighted (T1wGd) image with parameters derived from quasi-diffusion imaging. In the 

T1wGd image (Figure 6a), the hyperintense region is typical for GBM and indicates the 

high-grade tumour core region (where there is angiogenesis and breakdown of the blood-

brain barrier) that would be the target for resection and/or highest radiotherapy dose; the 

central dark region is necrotic tissue. Surrounding this region is the area of tumour infil-

tration and oedema that is hypointense on the T1wGd image, and is more clearly seen as 

elevated D1,2 values (Figure 6b). This region plus a 2 cm margin would be the target for 

radiotherapy. The quasi-diffusion imaging maps provide different image contrasts with 

potential to distinguish these regions from a single image modality. Elevated α is evident 

across the whole lesion (Figure 6c) indicating that the oedema and tumour core are less 

structured than normal white matter. In addition, α and RTOP1/3 (Figure 6d) allow distinc-

tion between grey and white matter for which contrast is present in the T1wGd image but 

not the D1,2 map. Within the RTOP1/3 hypointense region that delineates tumour oe-

dema/infiltration, there is an area of elevated signal relating to T1wGd enhancement, 

which is a result of the presence of a greater density of tumour microstructure. Within the 

T1wGd enhancing region, the effective pore size is approximately 2.5 µm (Figure 6e). 

 

Figure 6. Quasi-diffusion imaging results for axial slices through a high-grade glial tumour (WHO Grade IV glioblastoma). 

Diffusion magnetic resonance imaging data were acquired at 𝑏 = {0, 1100,5000} s mm−2 in 6 diffusion encoding directions 

at an effective diffusion time of Δ = 35.9 ms. Imaging data were acquired in a clinically feasible time of 120 s. Image (a) 

shows a T1-weighted image acquired after injection of gadolinium contrast agent, with maps of (b) mean 𝐷1,2, (c) mean 

𝛼, (d) √𝑅𝑇𝑂𝑃
3

 and (e) effective mean pore size, 〈𝑅〉, (which in the absence of oedema or necrosis will relate to cell size). 

Arrows indicate the following regions: white—tumour core, red—necrosis, blue—oedema, yellow—grey matter, green—

white matter. 
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4. Discussion 

We have described the mathematical properties of quasi-diffusion, a special case of 

the CTRW diffusion model and presented the form of its Laplace and Fourier transforms. 

These functional forms provide insight into the behaviour and interpretation of quasi-

diffusion as a model of effective normal diffusion dynamics within a dMRI voxel. The 

quasi-diffusion equations provide a functional form describing diffusion in MRI. To-

gether, the diffusion coefficient and fractional exponent of the quasi-diffusion character-

istic equation define the form of the inverse Laplace transform which provides a spectrum 

of Fickian diffusivities, and an explicit form for the propagator.  

In dMRI, there have been several attempts to describe the functional form of the sig-

nal attenuation [8,9,12,13]. Unlike quasi-diffusion, these applied representations and 

models have not previously provided a simple functional form from which both the in-

verse Laplace transform and inverse Fourier transform of the signal can be derived. The 

quasi-diffusion model is compatible with previous frameworks and models that consider 

the underlying diffusion process in tissue microstructure to be locally Fickian [33–35] and 

lead to a signal that decays with a negative power law [13,19,33–35,67]. In the CTRW 

model, the assumption of a Gaussian scaling relationship between the fractional expo-

nents of time, 𝛼, and space, 𝛽, leads to a mean-squared displacement that is linearly pro-

portional to time. This leads to the quasi-diffusion model, that is valid in an image voxel 

beyond the short diffusion time limit, and prior to the long diffusion time limit where 

tortuosity effects will dominate signal behaviour. For accurate measurement of quasi-dif-

fusion, there is a requirement that diffusing molecules have had sufficient time to explore 

the microstructural environment. 

We consider quasi-diffusion to be the effect of a locally Gaussian diffusion that, 

within an image voxel, leads to observation of non-Gaussian characteristics due to the 

ensemble of diffusing molecules being within a heterogeneous environment containing 

pores with a distribution of structures and radii. The quasi-diffusion model makes no as-

sumptions regarding the shape and distribution of the pores or that diffusing molecules 

are restricted to locations in the microstructural environment during the diffusion time.  

The quasi-diffusion model predicts the existence of dMRI signal at extremely high b-

values due to the negative power law behaviour of the stretched Mittag–Leffler function 

as 𝑏 → ∞+. This prediction is consistent with experimental results that observe signal and 

power law decay at high diffusion sensitisations of 𝑏 = 10,000 s mm−2 in human white 

matter in vivo [70], and 𝑏 = 100,000 s mm−2 in rat and human ex vivo corpus callosum 

[67]. Furthermore, the quasi-diffusion model predicts a stretched exponential form of the 

signal as 𝑏 → 0+ consistent with low 𝑏-values (𝑏 < 300 s mm−2) containing a significant 

signal proportion attributable to blood perfusion and a potentially super-diffusive dy-

namic [71]. 

The quasi-diffusion signal can be decomposed into a spectrum of Fickian apparent 

diffusion coefficients via the inverse Laplace transform. Such a transform has been sug-

gested to relate to specific length scales within the diffusion environment [72,73]. Visual-

isation of the dMRI signal as a diffusion spectrum was first introduced by Yablonskiy et 

al. [72], where a Gaussian probability density function was assumed. More recently, the 

assumption of a gamma variate distribution [74] has indicated spectral regions related to 

pathological changes in disease [74–76]. However, each of these studies make assump-

tions as to the functional form of the probability distribution without supporting evidence. 

In contrast, the quasi-diffusion model provides a functional form for the spectrum with 

the 𝐷1,2  and 𝛼  parameters together providing an indication of heterogeneity and re-

striction within the diffusion environment.  

The long diffusion times afforded by clinical MR scanners and the complexity of the 

tissue environment ensure that diffraction patterns from groups of similar pores [11,77] 

cannot be observed from the dMRI signal [8,78]. Instead, the signal is a relaxation curve 

with few inherent features. The quasi-diffusion model provides a functional form for the 

signal which offers an opportunity for developing new quantitative model-based dMRI 
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analysis techniques. We have shown here that the assumption of quasi-diffusion leads to 

model-based power law and ‘kurtosis’ information, and that the propagator can be ap-

plied to obtain MAP images. Possible further applications include use of the diffusion 

spectrum to provide model-based Multi-dimensional Diffusion MRI [79,80], and use of 

the propagator to obtain model-based three-dimensional orientation distribution func-

tions of tissue microstructure (similar to those described by [28,81–83]) that could be em-

ployed within multi-tissue constrained spherical deconvolution techniques for identify-

ing white matter fibre crossing [84].  

Advanced diffusion MRI techniques, such as DKI, have been shown to be a sensitive 

probe of the tissue microstructural environment in healthy and diseased tissue [21,85–88]. 

We expect 𝐷1,2, 𝛼 and quasi-diffusion MAP images to show a similar sensitivity to dis-

ease to previous clinical studies of DKI and MAP imaging. Our examples highlight the 

potential for quasi-diffusion imaging in clinical research and demonstrate that effective 

mean pore size measurements may be obtained. Our initial pore size estimations appear 

to be more accurate in the white matter of the corpus callosum, where the high density of 

myelinated axons can be considered as isolated pores, than in grey matter and tumour 

tissue, where more complex distributions of cell structures and shapes are present with 

permeable membranes, potentially leading to a breakdown of the assumption of isolated 

pores. Further research is required to determine the efficacy of the quasi-diffusion MAP 

approach and its clinical potential.  

A significant advantage of quasi-diffusion imaging over current dMRI techniques is 

its ability to provide robust and accurate fits to minimal imaging data [1,55]. This allows 

acquisition of 𝐷1,2 and 𝛼 maps with high signal to noise ratios in a clinically feasible 

time. New dMRI analysis techniques developed using the quasi-diffusion model will ben-

efit from this advantage, which will potentially enable rapid translation of new techniques 

from large scale clinical feasibility studies into clinical practice.  

There are limitations to the quasi-diffusion imaging technique. For instance, assump-

tion of the short pulse approximation in 𝑞-space imaging is generally violated in practice, 

and the effect of this on measurements is currently unclear. However, the quasi-diffusion 

model is unique in anomalous dMRI techniques as it does not undermine the Gaussian 

phase approximation (GPA) [8,11]. Further studies are required to understand the condi-

tions under which quasi-diffusion dynamics emerge within a voxel. In particular, the re-

lationship of the signal to the underlying microstructure, and the effect of the PGSE 𝛿 

and  on the signal are not well-understood. It is also not yet clear whether the quasi-

diffusion model provides imaging measures that are invariant to diffusion time. Never-

theless, the quasi-diffusion model provides a well-defined mathematical basis for further 

research to elucidate characteristics of the diffusion environment.   

5. Conclusions 

We have described the mathematics and initial interpretation of the quasi-diffusion 

model in application to dMRI. This new model of the diffusion dynamics within MRI 

voxels provides a functional form for the signal from which a diffusion spectrum and 

propagator can be derived. The quasi-diffusion model is consistent with current under-

standing of diffusion in tissue microstructure and can be used to provide high quality 

images of parameters relating to non-Gaussian diffusion in clinically feasible time. The 

functional form of the quasi-diffusion model represents a novel focus for future mathe-

matical and imaging research. This study shows the potential of quasi-diffusion imaging 

as a promising new dMRI technique with significant scope for further development. 

6. Patents 

The quasi-diffusion imaging technique is covered by the patent, “A method and ap-

paratus for quasi-diffusion magnetic resonance imaging”, by inventors Dr. T.R. Barrick, 

Prof. F.A. Howe, Dr. M.G. Hall, Dr. C. Ingo and Prof. R.L. Magin, WO2021005363A1, filed 

8 July 2019, published 14 January 2021. 
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Appendix A. Diffusion Magnetic Resonance Imaging Data 

Several examples of dMRI data were used to highlight the potential utility of the 

quasi-diffusion imaging technique. These included data acquired from human partici-

pants and patients. The following sections provide information regarding the participants 

and the dMRI data acquisition parameters in each example. 

Appendix A.1. Human Participants 

Healthy subjects: Two healthy participants were recruited (1 male, age 27 and 1 fe-

male, age 28 years). Ethics approval was obtained (East London 3 REC 10/H0701/36) and 

written informed consent was obtained from each participant prior to MR scanning. 

Brain tumour patient: A brain tumour patient (age 58 years) with a World Health 

Organisation (WHO) Grade IV glioblastoma was recruited as part of the “Tissue-type 

magnetic resonance imaging of brain tumours” study at SGUL for which ethical approval 

was obtained (South Central Hampshire REC 17/SC/0460). Written informed consent was 

obtained prior to MR scanning. 

Appendix A.2. Acquisition of Diffusion Magnetic Resonance Imaging Data  

Diffusion MRIs were acquired on a 3T Philips Achieva Dual TX MR scanning system 

(Philips Healthcare, Best, Netherlands) using a 32-channel head coil at St George’s Hospi-

tal, London, UK. Patient MRI acquisition was performed as part of a multimodal MRI 

protocol. Whole brain axial dMRI were acquired using a diffusion-sensitised spin-echo 

planar imaging (EPI) sequence in enhanced gradient mode (80 mTm−1 at a slew rate of 100 

mTm−1 ms−1). Fat suppression was achieved using Spectral Presaturation by Inversion Re-

covery (SPIR) and Slice Selection Gradient Reversal (SSGR). A SENSE factor of 2 in the 

anterior-posterior direction and a half-scan factor of 0.891 were applied to minimise echo-

train length and overall acquisition time. 

Acquisition of imaging data illustrated in Figure 2: Quasi-diffusion tensor imaging 

data were acquired with: Echo Time (𝑇𝐸) = 90 ms, Repetition Time (𝑇𝑅) = 6000 ms, 

𝛿 = 23.5 ms,  = 43.9 ms, field of view 210 mm × 210 mm with 22 5 mm thick slices 

acquired at 2.3 mm × 2.3 mm × 5 mm resolution that were zero-filled (by use of the 

Fourier transform) to provide 1.5 mm × 1.5 mm × 5.0 mm voxels. dMRI were acquired 

twice in 29 𝑏-values with 𝑏 = {0, 180, 360, … step 180… , 4860, 5000} s mm−2. Images 
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without diffusion-sensitisation (𝑏 = 0 s mm−2) were acquired 16 times. Diffusion encod-

ing gradients were applied in 6 non-collinear directions. Data were acquired in 35 min 12 

s. 

Acquisition of imaging data illustrated in Section 3.1 and Figure 5: Quasi-diffusion 

tensor imaging data were acquired with: 𝑇𝐸 = 90 ms, 𝑇𝑅 = 9000 ms, 𝛿 =  28.7 ms,  =

43.9 ms, field of view 224 mm × 224 mm with 50 2 mm thick slices acquired at 3 mm 

× 3 mm × 2 mm resolution that were zero-filled (by use of the Fourier transform) to pro-

vide 2  mm isotropic voxels. dMRI were acquired once in 3 𝑏 -values with 𝑏 =
{0, 1100, 4000} s mm−2. Images without diffusion-sensitisation were acquired 8 times. Dif-

fusion encoding gradients were applied in 32 non-collinear directions. Data were acquired 

in 10 min 48 s. 

Acquisition of imaging data illustrated in Section 3.2 and Figure 6: Quasi-diffusion 

tensor imaging data were acquired with: 𝑇𝐸 = 90 ms, 𝑇𝑅 = 6000 ms, δ = 23.5 ms,  =

43.9 ms, field of view 210 mm × 210 mm with 22 5 mm thick slices acquired at 2.3 mm 

× 2.3 mm × 5 mm resolution that were zero-filled (by use of the Fourier transform) to 

provide 1.5 mm × 1.5 mm × 5 mm voxels. dMRI were acquired once in 3 𝑏-values 

with 𝑏 = {0, 1100, 5000} s mm−2. Images without diffusion-sensitisation were acquired 8 

times. Diffusion encoding gradients were applied in 6 non-collinear directions. Data were 

acquired in 120 s. 
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