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Abstract 

 

The first order diffusionless structural transition in Cu67.64Zn 16.71Al 15.65 is characterized 

by jerky propagation of phase fronts related to the appearance of avalanches. In this 

paper we describe a full analysis of this avalanche behavior using calorimetric heat flux 

measurements and acoustic emission measurements. Two different propagation modes, 

namely smooth front propagation and jerky avalanches, were observed in extremely 

slow measurements with heating and cooling rates as low as a few 10
-3

 K/h. Avalanches 

show criticality where each avalanche leads to a spike in the heat flux. Their statistical 

analysis leads to a power law ( )(EP ~ E  where P(E)dE is the probability to observe 

an avalanche with energy E in an interval between E and E+dE) with an energy 

exponent of 15.015.2   in excellent agreement with the results of  acoustic 

emission measurements.  

Avalanches appear to be more common for heating rates faster than 5 10
-3

 K/h whereas 

smooth front propagation occurs in all calorimetric measurements and (almost) 

exclusively for slower heating rates. Repeated cooling runs were taken after a waiting 

time of 1 month (and an intermediate heating run). Correlations between the avalanche 

sequences of the two cooling runs were found for the strongest avalanche peaks but not 

for the full sequence of avalanches. The memory effect is hence limited to strong 

avalanches.  
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1. Introduction  

The thermodynamic analysis of continuous phase transitions requires thermal 

fluctuations even when the transitions occur under circumstances in which the mean 

field description is not an approximation but strictly correct (such as in ferroelastic 

transitions). The most direct experimental observation of thermal fluctuations in 

continuous transitions, relates to the measurements of specific heat anomalies, which 

either display critical phenomena [1-5] or mean field behavior [2][6-9] independently of 

the nature and the characteristic bonding mechanism of the material.. This situation is 

different in stepwise, first order transitions where the transition near the interface 

between the high and low temperature phase is riddled with metastable states. If the co-

existence interval between the two phases is small it becomes difficult to explore such 

metastabilities. Previous work relates mainly to oxides and fluorites with perovskite 

structure where  transitions such as in Ca doped KMnF3  show essentially a smooth 

mean field behavior for both the continuous transitions (high Ca content) and the 

discontinuous transition (low Ca content)[10-12]. It appears that the resolution of 

experimental techniques is insufficient (so far) to observe metastable states in such 

systems. On the other hand, when the co-existence interval is large, as in many 

martensitic shape memory alloys, one observes that the transition behavior is dominated 

by local transitions between metastable configurations which are not thermally activated 

[13-17]. The energy landscape is rough and transitions between states can be initiated 

by changes of conjugated fields such as stress, magnetic fields, electric field and so 

forth. If the non-thermal excitations dominate the transition, the transition behavior is 

termed athermal [18-21]. Athermal phase transformations are much more common 

phenomenon than just encountered in martensitic phase transformations, they have also 
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been observed in minerals and ceramics [22-25]. While athermal transitions are 

expected to be a rather common phenomenon they are also limited to a specific range of 

external parameters under which they can be observed [18]. We will argue in this paper 

that the cut-off below which no athermal transitions occur is below a lower limit for the 

heating/cooling rate (< 5 10
-3 

K/h for Cu 67.64 Zn 16.71 Al 15.65 ) where the transition still 

progresses but where no avalanches were found.  At higher heating rates we see spikes 

in the calorimetric response.  

While the observation of specific heat anomalies is a very common technique in 

(nearly) second order phase transitions the equivalent observations in strongly first 

order transition are rather uncommon. The reason is that the observation at fast scanning 

rates shows large, integrated peaks of the latent heat which mask the underlying fine 

structure. This fine structure is only seen under relatively slow scanning rates and 

consists of spikes which relate to sudden transfers between metastable states [26-29]. 

Even their theoretical description is not much advanced besides the result that such 

spikes and avalanches are – over a large range in parameter space – critical and that the 

analysis will follow power law behavior over 1-3 orders of magnitude. Computer 

simulations have given some further insight into the character of the metastable states 

while a full description depends sensitively on the size of the simulated cell [30-35]. In 

particular, the role of dislocations [17] [36] has been invoked to describe the physical 

origin of avalanches. Recent experimental work on CuAlBe [26] showed that 

dislocations where indeed nucleated during the phase transformation which lead to 

intense pinning of twin boundaries in the martensitic phase. Avalanches in the elastic 

response were observed in the co-existence interval while a direct connection of the 

dislocation density and the transformation mechanism remained elusive. 
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The importance of heat flow measurements is that they integrate over all trajectories 

between metastable states and is, thus, an objective and unbiased observer of all 

mechanisms which may play a role in the phase transformation. The only limitation is 

that any measurement of caloric quantities requires that the time needed for the heat 

flow is short compared with the characteristic time of the phase transformation. This is a 

trivial requirement in displacive second order transitions where the characteristic time 

of the transformation is determined by the soft mode. This situation becomes more 

complicated in transitions of the order/disorder type where equilibrium states may be 

obtained only after excessive times [37]. In stepwise transitions we find that the 

characteristic times for athermal changes can be very long (in fact logarithmically long 

in spin glasses) but still finite in martensites where the experimentally observed time 

between larger avalanches is sufficiently long when the transition is thermally driven. 

This requires that the characteristic time for the experimental observation of avalanches 

has to be longer than the time required to induce such avalanches. Empirically we have 

found that avalanche signals do not overlap and still produce measurable signals when 

the heating/cooling time of the experiment is between  5 10
-3

 K/h and 0.1 K/h. On this 

time scale we can distinguish between events which are clearly related to avalanches 

and those which relate to a smooth background while acoustic emission experiments 

analyze the avalanche part only. The intrinsic difficulty, even with calorimetric 

measurements, remains that very small avalanches could form part of the background so 

that some of the smooth part of the transition behavior may still contain avalanches 

which were unresolved experimentally. However, changes of regimes between 

macroscopically smooth and jagged behavior are clearly observed.  It is the purpose of 

this paper to give, for the first time, the results of heat flux and acoustic emission 

measurement of the archetypal shape memory alloy Cu-Zn-Al.  
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2.  Sample Preparation  

The Cu-Zn-Al sample was prepared by alloying 99.99% purity copper, zinc and 

aluminum. Small pieces with appropriate masses (weighted with a precision of 0.1 mg) 

of each metal were cut and melted in a sealed quartz tube under a partial Ar atmosphere 

in a resistive furnace. The melt was vigorously shaken several times in order to obtain a 

homogeneous solution. After solidification, the alloy was homogenized at 1073 K for 

about four days, and air-cooled to room temperature. The nominal composition of the 

alloy was Cu (67.64 at%), Zn ( 16.71 at%) , Al (15.65 at%).  

The Cu-based shape-memory alloys (SMAs) transforms from a high-temperature L21 

(Fm3m) structure to several possible martensitic phases, depending on the composition. 

For this composition the transition proceeds to a 18R (I2/m) phase. 

From ingots, samples were cut with a low speed diamond saw. The slices were 

subjected to an isothermal aging at 1173 K for   7500 s and subsequently air - cooled 

to room temperature. This heat treatment ensures samples with a highly ordered state, 

free from internal stresses and with minimum vacancy concentration. Moreover, this 

heat treatment resulted in a large grain size with average diameter of 1.36 mm (Fig.1). 

The sample used in the calorimetric measurements had a flat surface of 0.94 cm
2
, a 

thickness of 0.389 cm and a mass of 2.6503 g. The sample for AE measurements was 

much smaller with dimensions of approx. 0.5 x 0.5 x 0.1 cm and a mass of 0.185 g.  
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Fig.1 Grain size distribution of the sample used for calorimetric and acoustic emission 

studies. The average grain size diameter is 1.36  0.03 mm.
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3. Experimental methods 

Measurements of heat flux and specific heat were performed using a high 

resolution conduction calorimeter, which has been described in detail elsewhere [38]. 

The sample is pressed between two identical heat fluxmeters, which are made from 50 

chromel-constantan thermocouples connected in series, with the wires placed in parallel 

lines[39]. Two electrical resistance heaters are placed near the sample surface and the 

fluxmeter. These heaters dissipate heat uniformly to the sample surface. The assembly is 

placed in a cylindrical hole located axially in a bronze cylinder (10 kg) which serves as 

heat sink and constitutes the calorimeter block. The block temperature is measured with 

a commercial platinum thermometer (Leads and Northrup model 8164B). The block and 

two surrounding radiation shields are placed into a hermetic outer case under vacuum 

(10
-7

torr). The assembly, surrounded by a coiled tube, is placed in a Dewar jar filled 

with alcohol. The temperature of the alcohol bath is controlled by circulation of liquid 

N2 through the coil. A Pt-100 thermometer and a Eurotherm 818 controller are used for 

the temperature control. 

The heat flux is evacuated through the fluxmeters and allows measurement of 

heat flux better than 0.1 W . Due to the high thermal inertial of the calorimetric block, 

the temperature changes are some 10
-3

 K/h with temperature fluctuations of the 

calorimeter block smaller than 10
-6

 K.   

A long-periodic series of square thermal pulses is superimposed on a heating or 

cooling ramp. Integration of the electromotive force (emf) given by the fluxmeters 

between steady states determines the thermal capacity of the sample [40].  

The equipment also works as a differential thermal analysis (DTA) device. A 

DTA trace is quasi-continuously measured (12.5 measurements per second) using the 
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same temperature scanning rate as applied during measurement of the specific heat.  

The emf given by the fluxmeters is proportional to the heat flux, D  the integral with 

respect to a suitable base line is proportional to the excess enthalpy of the sample. 

The value of the latent heat is obtained by integration of vD , where v is the 

temperature scanning rate, with respect to an appropriate baseline. The sensitivity of this 

method is estimated to be better than 5 mJ [41-46].  

 

Acoustic emission (AE) measurements were carried out on a small square sample 

(dimensions: 5x5x1 mm) cut from the same rod beside the sample used for calorimetric 

measurements. AE was detected using a piezoelectric transducer, acoustically coupled 

to the sample. The detected signal was preamplified (40 dB) and monitored by a PCI-2 

acquisition system from Euro Physical Acoustics S.A., at a sampling rate of 2 

MSamples/s. A 100 kHz-1 MHz bandwidth filter was used in order to reduce noise. 

From the recorded signal, individual AE hits were defined by using a threshold of 45 dB. 

When the signal crosses the threshold a hit starts. When the signal remains below the 

threshold more than 100 s  the hit ends. This is the so called Hit Detection Threshold, 

HDT. The system allows a maximum duration of the detected signals of 10 ms. Hits 

were recorded during cooling and heating ramps between 270 K and 215 K at rates in 

the range 1 K/min to 0.5 K/min. The typical number of detected events in a ramp was 

5000 during cooling and 17000 during heating.  The experimental setup allows the 

direct measurement of the energy associated with each individual hit by performing a 

fast integration of the square of the signal. This measurement provides information 

related to the recorded signals but its relation to the energy released by the source of AE 

is, a priori, not reliably established. 
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4. Experimental Results 

DTA traces were obtained from heating and cooling runs at constant rate of 0.25 K/h 

(Fig.2). The second cooling run in Fig.2 was taken one month after the first cooling run 

and demonstrates that the overall pattern of the transition is fully reproducible. The 

transition is characterized by a broad, unstructured anomaly of the heat flux between 

215K and 255K together with a large number of spikes over a smaller temperature 

interval towards the upper end of the smooth anomaly. The detailed analysis of the two 

cooling runs shows that the larger peaks (>10 W ) appear under exactly the same 

temperature conditions while smaller peak between the two runs do not correlate. The 

smooth background is almost identical for the two runs. The spikes of the experiments 

were extracted after removal of the smooth background and are shown in Fig.3. 
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Fig. 2 (Color online) DTA traces for cooling and heating experiments. The heating rate 

was 0.29 K/h, the cooling rates were 0.27 and 0.26 K/h. Data corresponding to cooling 

experiments have been changed of sign to allow a better comparison to heating data. 
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The black solid straight line is an extrapolation of the data obtained at high temperature 

and it is used to obtain the total enthalpy of the transformation. 

   

220 225 230 235 240 245 250 255 260

-60

-40

-20

0

20

40

60

 cooling 1

 cooling 2

 

 


  

(
W

)

T  (K)

 heating

 

Fig.3. (Color online) Spikes in the calorimetry measurement after removing the smooth 

baseline. 

Integration of the DTA traces leads to an estimate of the transition enthalpy as shown in 

Fig. 4. The total transition enthalpy is 370  10 J/mol.  
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Fig.4 (Color online) Integrated transition enthalpy for heating and cooling runs. The 

total enthalpy change is, within experimental errors, identical for heating and cooling 

experiments. 

 

The latent heat has two contributions. The first is related to the smooth background 

(between T1 = 215 K and T3 = 253 K) and the second arises from the spikes observed in 

the range between T2 = 230 K (on cooling) and T3 which are superimposed to the 

smooth background. It has been estimated that only 10% of the total excess heat in the 

cooling experiment corresponds to the spikes shown in Fig.3. In order to analyze 

carefully the kinetic behavior of the spikes a new experiment was carried out. During a 

heating run the temperature of the thermal bath was fixed at 244 K, within the 

temperature range where the spikes appear. In a period of 25 hours the temperature of 

the sample changed from 242.93 K to 243.35 K. The heat flux was determined by 12.5 

measurements per second and the temperature was measured every nine minutes. 

In Figure 5, the heat flux D and the temperature variation rate, v, of the calorimeter 

block (whose temperature practically coincides with that of the sample) are shown as a 

function of measurement time. Both curves are correlated; the highest density of spikes 

appears for higher temperature variation rates. No spikes were found for temperature 

rates lower than 5 10
-3

K/h. The effect is seen in more detail in Figs 6 (a) and (b), 

corresponding to enlargements of Fig. 5. In these graphs the rates are constant (0.024 

K/h in (a) and 0.011K/h in (b)). The DTA traces show spikes for the faster rate but 

virtually no spikes for the slower rate. 
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Fig.5 Traces of rates (upper curve) and heat flux as function of measurement time. The 

temperature was practically constant near 243K, the fluxes are extremely low. No spikes 

are observed at low fluxes. 
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Fig 6. DTA traces at constant temperature rates with spikes for the faster rate (a) and no 

spikes for the slower rate (b). 
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 We now report on the investigation of the phase transformation using the AE technique. 

Fig. 7 shows the AE activity as a function of temperature. The acoustic activity is 

represented by a histogram giving the number of hits in intervals of 0.04 K. 

 

Fig.7. (Color online) Acoustic emission activity as a function of temperature for the 

forward and reverse transitions 

 

AE was found in a slightly smaller temperature interval as the spikes in the calorimetric 

experiments (Fig.3), where spikes were observed at 230K. The cooling rate in the AE 

experiment is faster than in the calorimeter so that the difference of 6K for the onset of 

spikes may be due to kinetic effects or a feature of the very different masses of the two 

samples. Extremely low rates were not used in the AE experiments so that we can not 

tell whether the decay of the spikes at very low rates also occurs in AE. These data 

confirm previous observations [47]. 

 

 5. Avalanche statistics  

We now turn to the discussion of the statistical analysis of the spikes in the calorimetric 

and acoustic emission experiments. Inspection of Figs. 3 and 7 already leads to the 

conclusion that both features have the same physical origin. It is understood that the AE 
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signals record avalanche behavior in Cu 67.64 Zn 16.71 Al 15.65 so that we can assume that 

avalanches are also at the origin of the spikes in the calorimetric measurements. It needs 

to be born in mind, however, that avalanches seen in calorimetry are vastly more 

energetic than those seen in AE. If, as we will show, the statistical analysis is identical 

for both experimental techniques it becomes clear that the absolute scales of the 

avalanche amplitudes differ by several decades so that the full range of the power law 

extends over several decades while each technique individually covers only about 1-3 

decades  

The height of each spike was determined with respect to the smooth variation of the 

background, where the spikes are superimposed. Taking into account that the response 

of the calorimetric device to a heat flux pulse in the sample is represented by a single 

exponential decay whose time constant is larger than the characteristic time of the 

avalanches, the height of the peaks is proportional to the energy of each pulse: 

maxmax

t

tdt)t(E   


 

 

In order to obtain the estimation of the power law exponents we have performed 

Maximum Likelihood (ML) fits of a power-law probability density  










min

)(

E

dEE

dEE
dEEp





 

 

where besides the value of the lower cut-off, the exponent  is the unique free fit 

parameter.  The expected dependence of    with the cut-off Emin has been studied in 

detail in Ref. [48]. One expects that the exponent increases when the cut-off is increased 

while a plateau is seen at the best estimation of the exponent. The number of available 
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data is 17936 for heating AE runs, 4893 for cooling AE runs, 1862 for heating 

calorimetric run and 1896 for the cooling calorimetric runs. Fig. 8 shows the behavior 

of the fitted exponent for the calorimetric (left) and AE data (right) corresponding to the 

heating runs. The value of the cut-off for the calorimetric data,  
minmax , is shown in the 

scale above and the value of the cut-off for the AE data is shown below.  

The behavior is qualitatively similar to the one expected theoretically.  Typical error 

bars are also estimated by the ML analysis. The plateau in both cases is located around a 

value of the exponent 2.15 and extended in one decade. Lines with this slope have been 

plotted on the histograms in Figs 9 and 10. Our data agree well with results from a 

calorimetric study of avalanches during stress- induced martensitic transformation in a 

Cu67.5 Zn19.4Al13.1 single crystal, reported in [49]. The paper focused on the effect of 

cycling on avalanches. In first cycles (following high temperature annealing and water 

quench at room temperature) the authors find avalanche criticality. The exponents 

corresponding to the energies of the avalanches is 1.8  0.3. This value is in reasonable 

agreement with our present estimations.  

It has been show previously that the value of the exponents depends only to the 

symmetry of the martentitic phase but not on the individual compound or any chemical 

specificity. This argument reinforces the hypothesis of universality of the exponents in 

avalanche criticality [18]. It is important to notice that the relatively large scatter of the 

data in the literature is due to the rate dependence of the exponents. Actually, the true 

universal value corresponds to the adiabatic limiting value which is approached in our 

experiments. We conclude this discussion with the observation that avalanches can be 

measured quantitatively in calorimetric experiments provided that the change of 

temperature during the experiment is sufficiently slow. 
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FIG 8 (Color online) Power-law exponent as function of integration interval. The 

optimal exponent lies on the plateau and is   =2.15  0.05 for AE and calorimetric 

measurements   
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Fig. 9 (Color online) Statistical analysis of the AE observations.  Data corresponding to 

cooling experiments have been shifted one decade downwards in order to clarify the 

picture.  
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Fig.10 (Color online) Statistical analysis of the heating and cooling curves of the DTA 

traces in Fig.2. Only the distribution of spikes (Fig.3) is seen in these graphs. Data 

corresponding to cooling experiments have been shifted one decade downwards in order 

to clarify the picture. 
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6. The ‘continuous’ heat flux 

We now turn to the description of the smooth part of the DTA curves in Fig.2, i.e. those 

enthalpic changes where significant avalanche contribution, such as shown Fig.3, are 

small or do not exist. In this context it is irrelevant whether small avalanches are still 

hidden inside the enthalpic change, the crux of the matter is that the statistics of the 

transformation mechanism changes dramatically. It is also significant that previous 

experimental results [47] did show some smooth background in AE while our present 

results showed no AE activity between 216 K and 235 K where the calorimetric 

changes are significant. Let us remind ourselves that AE originates from the sudden 

progression of interfaces so that the change of statistics can be discussed in terms of 

interface propagation. In fact, the change of progression of interfaces is well known for 

the dynamics of twin boundaries in ferroelastic and ferroelectric materials when 

external force fields are applied. Newton’s law would require that the movement of 

interfaces under stress or electric fields has to be accelerated. Experimentally, this is 

never the case, in fact all experimental observations show that the movement of the 

interface is momentum driven, i.e. the interfaces propagate with constant speed which is 

equivalent to the solution of the dynamic equation of an over damped system with no 

effective mass [7]. The physical reason for this behavior is related to the dissipation of 

energy during the interfacial movement either via phonons or via defects where 

acceleration over small distances is brought to a standstill by defect pinning. The wall 

then unpins either thermally or via the external force, accelerates again and gets again 

pinned. This stop-and-go mechanism leads to macroscopically over damped, smooth 

propagation of the interface (while ‘smoothness’ does not necessarily exist on an atomic 

level when extrinsic defects are present). The same smooth behavior can be attributed to 

the smooth enthalpic change seen in our experiments. In terms of the avalanche 
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statistics, this would mean that the average propagation distance of the phase front 

becomes comparable with the distance of pinning centers [50-54]. 

The same multi-scaling argument can also be applied to the behavior of the macroscopic 

Gibbs free energy of the phase transformation. Let us consider the behavior of the virgin 

crystal as a first order transition with a Landau potential as in NiTiFe [21]. We then 

expect the latent heat to be released inside the coexistence interval. Slow heating and 

cooling experiments will change the microstructure and the pinning behavior, however. 

This effect may lead to a local variation of the transition temperature well over and 

above the coexistence interval (see local temperature approximation [55]). In stress 

driven transitions [56] the transition temperature becomes an explicit function of stress. 

Compactification then leads to a macroscopic behavior which is smooth with a steep 

decay of the order parameter in the martensitic phase before the coexistence interval is 

reached while heating [7].  

Finally, we speculate on the limiting case of isothermal transitions in the limiting case 

of vanishing heating or cooling rates. Our experiments with cooling rates below 5 10
-3

 

K/h seem to imply that all fronts propagate smoothly while avalanches are seen only for 

faster rates. The experiment was performed in a temperature regime where avalanches 

are particularly plentiful so that we may be able to extrapolate these data for the entire 

coexistence range. This observation is in basic agreement with the idea that phase fronts 

require defects to become jerky and form avalanches. When the relaxation time of the 

defects or their time to diffuse with the phase front becomes comparable with the 

characteristic time of the front propagation, one would not expect avalanches to occur. 

This may be exactly the case of our ‘slow’ experiment and is in full agreement with 

previous observations in ferroelastic materials that slow elastic responses of crystals 

show the diffusion rate of the defects while fast responses show pinning of the 
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interfaces by walls. If this interpretation is correct in case of Cu 67.64 Zn 16.71 Al 15.65  it 

provides the rough estimate for the relaxation time of pinning centers. We take as the 

temperature jump required to move a phase front as 10
-3

 K and the limiting rate of 10
-3

 

K/h we obtain a characteristic time of 4 10
8
 s. The average distance between pinning 

centers may be guessed to be 10
-8

m so that the diffusion coefficient has the order of 

magnitude of  10
-24

 m/s
2
 which is in the correct order for self diffusion of Ti  in TiAl 

[57]. This would indicate that very slow movement of interfaces may, in fact, eliminate 

the occurrence of avalanches in Cu 67.64 Zn 16.71 Al 15.65. 
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