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A New Approach To The Treatment Of
Separatrix Chaos And Its Applications

S.M. Soskin, R. Mannella, O.M. Yevtushenko, I.A. Khovanov, P.V.E. McClintock

Abstract We consider time-periodically perturbed 1D Hamiltonian systems pos-
sessing one or more separatrices. If the perturbation is weak, then the separatrix
chaos is most developed when the perturbation frequency lies in the logarithmically
small or moderate ranges: this corresponds to the involvement of resonance dynam-
ics into the separatrix chaos. We develop a method matching the discrete chaotic
dynamics of the separatrix map and the continuous regular dynamics of the reso-
nance Hamiltonian. The method has allowed us to solve the long-standing problem
of an accurate description of the maximum of the separatrix chaotic layer width as
a function of the perturbation frequency. It has also allowed us to predict and de-
scribe new phenomena including, in particular: (i) a drastic facilitation of the onset
of global chaos between neighbouring separatrices, and (ii) a huge increase in the
size of the low-dimensional stochastic web.
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1 Introduction

Separatrix chaos is the germ of Hamiltonian chaos [51]. Consider an integrable
Hamiltonian system possessing a saddle, i.e. a hyperbolic point in the one-dimensional
case, or a hyperbolic invariant torus, in higher-dimensional cases. The stable (in-
coming) and unstable (outgoing) manifolds of the saddle are called separatrices
[18]: they separate trajectories that have different phase space topologies. If a weak
time-periodic perturbation is added, then the separatrix is destroyed; it is replaced
by a separatrix chaotic layer (SCL) [51, 18, 23, 29]. Even if the unperturbed system

1 This version of the chapter represents just about 1/3 of the text in order to accord the copyright
of the publisher. The presented parts are in bold in the contents.
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does not possess a separatrix, the resonant part of the perturbation generates a sepa-
ratrix in the auxiliary resonance phase space while the non-resonant part of the per-
turbation destroys this separatrix, replacing it with a chaotic layer [51, 18, 23, 10].
Thus separatrix chaos is of a fundamental importance for Hamiltonian chaos.

One of the most important characteristics of SCL is its width in energy (or ex-
pressed in related quantities). It can be easily found numerically by integration of
the Hamiltonian equations with a set of initial conditions in the vicinity of the sep-
aratrix: the space occupied by the chaotic trajectory in the Poincaré section has a
higher dimension than that for a regular trajectory, e.g. in the 3/2D case the regular
trajectories lie on lines i.e. 1D objects while the chaotic trajectory lies within the
SCL i.e. the object outer boundaries of which limit a 2D area.

On the other hand, it is important to be able to describe theoretically both the
outer boundaries of the SCL and its width. There is a long and rich history of the
such studies. The results may be classified as follows.

1.1 Heuristic results

Consider a 1D Hamiltonian system perturbed by a weak time-periodic perturbation:

H = H0(p,q)+hV (p,q, t), (1)
V (p,q, t +2π/ω f ) = V (p,q, t), h¿ 1,

where H0(p,q) possesses a separatrix and, for the sake of notational compactness,
all relevant parameters of H0 and V , except possibly for ω f , are assumed to be ∼ 1.

Physicists proposed a number of different heuristic criteria [53, 10, 23, 55, 51, 52]
for the SCL width ∆E in terms of energy E ≡ H0(p,q) which gave qualitatively
similar results:

∆E ≡ ∆E(ω f )∼ ω f δ , (2)
δ ≡ h|ε|,
|ε| <∼ 1 for ω f

<∼ 1,

|ε| ∝ exp(−aω f )¿ 1 (a∼ 1) for ω f À 1.

The quantity δ ≡ h|ε| is called the separatrix split [51] (see also Eq. (4) below):
it determines the maximum distance between the perturbed incoming and outgoing
separatrices [53, 10, 23, 55, 51, 52, 1, 18, 29].

It follows from (2) that the maximum of ∆E should lie in the frequency range
ω f ∼ 1 while the maximum itself should be ∼ h:

∆Emax ≡max
ω f
{∆E(ω f )} ∼ h, ω(max)

f ∼ 1. (3)
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1.2 Mathematical and accurate physical results

Many papers studied the SCL by mathematical or accurate physical methods.
For the range ω f À 1, many works studied the separatrix splitting (see the review

[18] and references therein) and the SCL width in terms of normal coordinates (see
the review [29] and references therein). Though quantities studied in these works
differ from those typically studied by physicists [53, 10, 23, 55, 51, 52], they im-
plicitly confirm the main qualitative conclusion from the heuristic formula (2) in the
high frequency range: provided that ω f À 1 the SCL width is exponentially small.

There were also several works studying the SCL in the opposite (i.e. adiabatic)
limit ω f → 0: see e.g. [27, 14, 28, 42, 45] and references therein. In the context
of the SCL width, it is most important that ∆E(ω f → 0) ∼ h for most of the sys-
tems [27, 14, 28]. For a particular class of systems, namely for ac-driven spatially
periodic systems (e.g. the ac-driven pendulum), the width of the SCL part above
the separatrix diverges in the adiabatic limit [42, 45]: the divergence develops for
ω f ¿ 1/ ln(1/h).

Finally, there is a qualitative estimation of the SCL width for the range ω f ∼ 1
within the Kolmogorov-Arnold-Moser (KAM) theory [29]. The quantitative esti-
mate within the KAM theory is lacking, apparently being very difficult for this fre-
quency range [17]. It follows from the results in [29] that the width in this range is
of the order of the separatrix split, which itself is of the order of h.

Thus it could seem to follow that, for all systems except ac-driven spatially peri-
odic systems, the maximum in the SCL width is∼ h and occurs in the range ω f ∼ 1,
very much in agreement with the heuristic result (3). Even for ac-driven spatially
periodic systems, this conclusion could seem to apply to the width of the SCL part
below the separatrix over the whole frequency range, and to the width of the SCL
part above the separatrix for ω f

>∼ 1/ ln(1/h).

1.3 Numerical evidence for high peaks in ∆E(ω f ) and their rough
estimation

The above conclusion disagrees with several numerical studies carried out during
the last decade (see e.g. [42, 45, 34, 25, 40, 24, 47, 35]) which have revealed the
existence of sharp peaks in ∆E(ω f ) in the frequency range 1/ ln(1/h) <∼ω f

<∼ 1 the
heights of which greatly exceed h (see also Figs. 2, 3, 5, 6 below). Thus, the peaks
represent the general dominant feature of the function ∆E(ω f ). They were related
by the authors of [34, 25, 40, 24, 47, 35] to the absorption of nonlinear resonances
by the SCL. For some partial case, rough heuristic estimates for the position and
magnitude of the peaks were made in [34, 35].
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1.4 Accurate description of the peaks and of the related
phenomena

Until recently, accurate analytic estimates for the peaks were lacking. It is explic-
itly stated in [24] that the search for the mechanism through which resonances are
involved in separatrix chaos, and for an accurate analytic description of the peaks
in the SCL width as function of the perturbation frequency, are being among the
most important and challenging tasks in the study of separatrix chaos. The first
step towards accomplishing them was taken through the proposal [43, 44] of a new
approach to the theoretical treatment of the separatrix chaos in the relevant fre-
quency range. It was developed and applied to the onset of global chaos between
two close separatrices. The application of the approach [43, 44] to the commoner
single-separatrix case was also discussed. The approach has been further developed
[38, 39], including an explicit theory for the single-separatrix case [39].

The present paper reviews the new approach [43, 44, 38, 39] and its applications
to the single-separatrix [39] and double-separatrix [43, 44] cases. We also briefly
review application to the enlargement of the low-dimensional stochastic web [46]
and discuss other promising applications.

Though the form of our treatment differs from typical forms of mathematical the-
orems in this subject (cf. [18, 29]), it yields the exact expressions for the leading term
in the relevant asymptotic expansions (the parameter of smallness is α ≡ 1/ ln(1/h))
and, in some case, even for the next-order term. Our theory is in excellent agreement
with results obtained by numerical integration of the equations of motion.

Sec. 2 describes the basic ideas underlying the approach. Sec. 3 is devoted to the
leading-order asymptotic description of the single-separatrix chaotic layers. Sec. 4
presents an asymptotic description of the onset of global chaos in between two close
separatrices. Sec. 5 describes the increase in sizes of a stochastic web. Conclusions
are drawn in Sec. 6. Sec. 7 presents the Appendix, which explicitly matches the
separatrix map and the resonance Hamiltonian descriptions for the double-separatrix
case.

2 Basic ideas of the approach

The new approach [43, 44, 38, 39] may be formulated briefly as a matching between
the discrete chaotic dynamics of the separatrix map in the immediate vicinity of the
separatrix and the continuous regular dynamics of the resonance Hamiltonian be-
yond that region. The present section describes the general features of the approach
in more detail.

Motion near the separatrix may be approximated by the separatrix map (SM)
[53, 10, 23, 55, 51, 52, 1, 29, 34, 35, 43, 44, 31]. This was introduced in [53] and
its various modifications were subsequently used in many studies. It is sometimes
known as the whisker map. It was re-derived rigorously in [31] as the leading-order
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approximation of motion near the separatrix in the asymptotic limit h → 0, and
an estimate of the error was also carried out in [31] (see also the review [29] and
references therein).

The main ideas that allow one to introduce the SM [53, 10, 23, 55, 51, 52, 1, 29,
43, 44, 31] are as follows. For the sake of simplicity, let us consider a perturbation
V that does not depend on the momentum: V ≡V (q, t). A system with energy close
to the separatrix value spends most of its time in the vicinity of the saddle(s), where
the velocity q̇ is exponentially small. Differentiating E ≡ H0(p,q) with respect to
time and allowing for the equations of motion of the system (1), we can show that
dE/dt ≡ ∂V/∂qq̇ ∝ q̇. Thus, the perturbation can significantly change the energy
only when the velocity is not small i.e. during the relatively short intervals while the
system is away from the saddle(s): these intervals correspond to pulses of velocity
as a function of time (cf. Fig. 20 in the Appendix below). Consequently, it is pos-
sible to approximate the continuous Hamiltonian dynamics by a discrete dynamics
which maps the energy E, the perturbation angle ϕ ≡ ω f t, and the velocity sign
σ ≡ sgn(q̇), from pulse to pulse.

The actual form of the SM may vary, depending on the system under study, but
its features relevant in the present context are similar for all systems. For the sake of
clarity, consider the explicit case when the separatrix of H0(p,q) possesses a single
saddle and two symmetric loops while V = qcos(ω f t). Then the SM reads [43] (cf.
Appendix):

Ei+1 = Ei +σihε sin(ϕi), (4)

ϕi+1 = ϕi +
ω f π(3− sgn(Ei+1−Es))

2ω(Ei+1)
,

σi+1 = σi sgn(Es−Ei+1), |σi|= 1,

ε ≡ ε(ω f ) = sgn
(

∂H0

∂ p

∣∣∣∣
t→−∞

)∫ ∞

−∞
dt

∂H0

∂ p

∣∣∣∣
Es

sin(ω f t),

Ei ≡ H0(p,q)|ti−∆ , ϕi ≡ ω f ti, σi ≡ sgn

(
∂H0

∂ p

∣∣∣∣
ti

)
,

where Es is the separatrix energy, ω(E) is the frequency of oscillation with energy
E in the unperturbed case (i.e. for h = 0), ti is the instant corresponding to the i-th
turning point in the trajectory q(t) (cf. Fig. 20 in the Appendix below), and ∆ is
an arbitrary value from the range of time intervals which greatly exceed the char-
acteristic duration of the velocity pulse while being much smaller than the interval
between the subsequent pulses [53, 10, 23, 55, 51, 52, 1, 29, 31]. Consider the two
most general ideas of our approach.

1. If a trajectory of the SM includes a state with E = Es and an arbitrary ϕ and σ ,
then this trajectory is chaotic. Indeed, the angle ϕ of such a state is not correlated
with the angle of the state at the previous step of the SM, due to the divergence
of ω−1(E → Es). Therefore, the angle at the previous step may deviate from a
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multiple of 2π by an arbitrary value. Hence the energy of the state at the previous
step may deviate from Es by an arbitrary value within the interval [−h|ε|,h|ε|].
The velocity sign σ is not correlated with that at the previous step either2. Given
that a regular trajectory of the SM cannot include a step where all three variables
change random-like, we conclude that such a trajectory must be chaotic.
Though the above arguments may appear to be obvious, they cannot be consid-
ered a mathematically rigorous proof, so that the statement about the chaotic
nature of the SM trajectory which includes any state with E = Es should be con-
sidered as a conjecture supported by the above arguments and by numerical it-
eration of the SM. Possibly, a mathematically rigorous proof should involve an
analysis of the Lyapunov exponents for the SM (cf. [23]) but this appears to be
a technically difficult problem. We emphasize however that a rigorous proof of
the conjecture is not crucial for the validity of the main results of the present pa-
per, namely for the leading terms in the asymptotic expressions describing (i) the
peaks of the SCL width as a function of the perturbation frequency in the single-
separatrix case, and (ii) the related quantities for the double-separatrix case. It
will become obvious from the next item that, to derive the leading term, it is suffi-
cient to know that the chaotic trajectory does visit areas of the phase space where
the energy deviates from the separatrix by values of the order of the separatrix
split δ ≡ h|ε|, which is a widely accepted fact [53, 10, 23, 55, 51, 52, 1, 18, 29].

2. It is well known [53, 10, 23, 55, 51, 52, 1, 18, 29, 34, 35, 43, 44], that, at the
leading-order approximation, the frequency of eigenoscillation as function of the
energy near the separatrix is proportional to the reciprocal of the logarithmic
factor

ω(E) =
bπω0

ln
(

∆H
|E−Es|

) , b =
3− sgn(E−Es)

2
, (5)

|E−Es| ¿ ∆H ≡ Es−Est ,

where Est is the energy of the stable states.
Given that the argument of the logarithm is large in the relevant range of E,
the function ω(E) is nearly constant for a substantial variation of the argu-
ment. Therefore, as the SM maps the state (E0 = Es,ϕ0,σ0) onto the state with
E = E1 ≡ Es +σ0hε sin(ϕ0), the value of ω(E) for the given sgn(σ0ε sin(ϕ0)) is
nearly the same for most of the angles ϕ0 (except in the vicinity of multiples of
π),

ω(E)≈ ω(±)
r , (6)

2 Formally, sgn(E −Es) is not defined for E = Es but, if to shift E from Es for an infinitesemal
value, sgn(E−Es) acquires a value equal to either +1 or −1, depending on the sign of the shift.
Given that σi+1 is proportional to sgn(Es −Ei+1) while the latter is random-like (as it has been
shown above), σi+1 is not correlated with σi if Ei+1 = Es±0.
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ω(±)
r ≡ ω(Es±h), sgn(σ0ε sin(ϕ0)) =±1.

Moreover, if the deviation of the SM trajectory from the separatrix increases fur-
ther, ω(E) remains close to ω(±)

r provided the deviation is not too large, namely
if ln(|E −Es|/h)¿ ln(∆H/h). If ω f

<∼ ω(±)
r , then the evolution of the SM (4)

may be regular-like for a long time until the energy returns to the close vicinity
of the separatrix, where the trajectory becomes chaotic. Such behavior is espe-
cially pronounced if the perturbation frequency is close to ω(+)

r or ω(−)
r or to

one of their multiples of relatively low order: the resonance between the pertur-
bation and the eigenoscillation gives rise to an accumulation of energy changes
for many steps of the SM, which results in a deviation of E from Es that greatly
exceeds the separatrix split h|ε|. Consider a state at the boundary of the SCL.
The deviation of energy of such a state from Es depends on its position at the
boundary. In turn, the maximum deviation is a function of ω f . The latter func-
tion possesses the absolute maximum at ω f close to ω(+)

r or ω(−)
r typically3, for

the upper or lower boundary of the SCL respectively. This corresponds to the
absorption of the, respectively upper and lower, 1st-order nonlinear resonance by
the SCL.

The second of these intuitive ideas has been explicitly confirmed [43] (see Ap-
pendix): in the relevant range of energies, the separatrix map has been shown to
reduce to two differential equations which are identical to the equations of motion
of the auxiliary resonance Hamiltonian describing the resonance dynamics in terms
of the conventional canonically conjugate slow variables, action I and slow angle
ψ̃ ≡ nψ −ω f t where ψ is the angle variable [10, 23, 55, 51, 52, 1] (see Eq. (16)
below) and n is the relevant resonance number i.e. the integer closest to the ratio
ω f /ω(±)

r .
Thus the matching between the discrete chaotic dynamics of the SM and the con-

tinuous regular-like dynamics of the resonance Hamiltonian arises in the following
way [43]. After the chaotic trajectory of the SM visits any state on the separatrix,
the system transits in one step of the SM to a given upper or lower curve in the
I− ψ̃ plane which has been called [43] the upper or lower generalized separatrix
split (GSS) curve4 respectively:

E = E(±)
GSS(ψ̃)≡ Es±δ |sin(ψ̃)|, δ ≡ h|ε|, (7)

where δ is the conventional separatrix split [51], ε is the amplitude of the Melnikov-
like integral defined in Eq. (4) above (cf. [53, 10, 23, 55, 51, 52, 1, 18, 29, 34, 47,

3 For the SM relating to ac-driven spatially periodic systems, the time during which the SM un-
dergoes a regular-like evolution above the separatrix diverges in the adiabatic limit ω f → 0 [45],
and the width of the part of the SM layer above the separatrix diverges too. However, we do not
consider this case here since it is irrelevant to the main subject of the present paper i.e. to the
involvement of the resonance dynamics into the separatrix chaotic motion.
4 The GSS curve corresponds to the step of the SM which follows the state with E = Es, as de-
scribed above.
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Fig. 1 Schematic figure illustrating the formation of the peak of the function ∆E(−)
sm (ω f ): (a) ω f =

ωmax; (b) ω f < ωmax; (c) ω f > ωmax. The relevant (lower) GSS curve is shown by the dotted
line. The relevant trajectories of the resonance Hamiltonian are shown by solid lines. The lower
boundary of the layer is marked by a thick solid line: in (a) and (b) the lower boundary is formed
by the lower part of the resonance separatrix while, in (c) it is formed by the resonance trajectory
tangent to the GSS curve. The dashed line marks, for a given ω f , the maximal deviation of the
lower boundary from the separatrix energy Es.

35, 43, 44]), and the angle ψ̃ may take any value either from the range [0,π] or from
the range [π,2π]5.

After that, because of the closeness of ω f to the n-th harmonic of ω(E) in the
relevant range of E6, for a relatively long time the system follows the nonlinear
resonance (NR) dynamics (see Eq. (16) below), during the first half of which the
deviation of the energy from the separatrix value grows, greatly exceeding δ for
most of the trajectory. As time passes, ψ̃ is moving and, at some point, the growth
of the deviation changes for the decrease. This decrease lasts until the system hits the
GSS curve, after which it returns to the separatrix just for one step of the separatrix
map. At the separatrix, the slow angle ψ̃ changes random-like, so that a new stage
of evolution similar to the one just described occurs, i.e. the nonlinear resonance
dynamics starting from the GSS curve with a new (random) value of ψ̃ .

Of course, the SM cannot describe the variation of the energy during the velocity
pulses (i.e. in between instants relevant to the SM): in some cases this variation can
be comparable to the change within the SM dynamics. This additional variation will
be taken into account below, where relevant.

One might argue that, even for the instants relevant to the SM, the SM describes
the original Hamiltonian dynamics only approximately [31] and may therefore miss
some fine details of the motion: for example, the above picture does not include
small windows of stability on the separatrix itself. However these fine details are
irrelevant in the present context, in particular the relative portion of the windows of
stability on the separatrix apparently vanishes in the asymptotic limit h→ 0.

5 Of these two intervals, the relevant one is that in which the derivative dE/dt in the nonlinear
resonance equations (see Eq. (16) below) is positive or negative, for the case of the upper or lower
GSS curve respectively.
6 I.e. E determined by Eq. (7) for any ψ̃ except from the vicinity of multiples of π . As shown in
[43], Eq. (7) is irrelevant to the boundary of the chaotic layer in the range of ψ̃ close to multiples
of π while the boundary in this range of ψ̃ still lies in the resonance range of energies, where
ω(E)≈ ω(±).
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The boundary of the SM chaotic layer is formed by those parts of the SM chaotic
trajectory which deviate from the separatrix more than others. It follows from the
structure of the chaotic trajectory described above that the upper/lower boundary
of the SM chaotic layer is formed in one of the two following ways [43, 44]: (i) if
there exists a self-intersecting resonance trajectory (in other words, the resonance
separatrix) the lower/upper part of which (i.e. the part situated below/above the
self-intersection) touches or intersects the upper/lower GSS curve while the up-
per/lower part does not, then the upper/lower boundary of the layer is formed by
the upper/lower part of this self-intersecting trajectory (Figs. 1(a) and 1(b)); (ii) oth-
erwise the boundary is formed by the resonance trajectory tangent to the GSS curve
(Fig. 1(c)). It is shown below that, in both cases, the variation of the energy along
the resonance trajectory is larger than the separatrix split δ by a logarithmically
large factor ∝ ln(1/h). Therefore, over the boundary of the SM chaotic layer the
largest deviation of the energy from the separatrix value, ∆E(±)

sm , may be taken, in
the leading-order approximation, to be equal to the largest variation of the energy
along the resonance trajectory forming the boundary, while the latter trajectory can
be entirely described within the resonance Hamiltonian formalism.

Finally, we mention that, as is obvious from the above description of the bound-
ary, ∆E(±)

sm ≡ ∆E(±)
sm (ω f ) possesses a local maximum ∆E(±)

max,sm at ω f for which the
resonance separatrix just touches the corresponding GSS curve (see Fig. 1(a)).

3 Single-Separatrix Chaotic Layer

It is clear from Sec. 2 above that ∆E(±)
max,sm is equal in leading order to the width

∆ENR of the nonlinear resonance which touches the separatrix. In Sec. 3.1 below,
we roughly estimate ∆ENR in order to classify two different types of systems. Secs.
3.2 and 3.3 present the accurate leading-order asymptotic theory for the two types
of systems. The next-order correction is estimated in Sec. 3.4, while a discussion is
presented in Sec. 3.5.

3.1 Rough estimates. Classification of systems.

Let us roughly estimate ∆ENR: it will turn out that it is thus possible to classify all
systems into two different types. With this aim, we expand the perturbation V into
two Fourier series in t and in ψ respectively:

V ≡ 1
2 ∑

l
V (l)(E,ψ)e−ilω f t + c.c.≡ 1

2 ∑
l,k

V (l)
k (E)ei(kψ−lω f t) + c.c. (8)
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As in standard nonlinear resonance theory [10, 23, 55, 51, 52], we single out the
relevant (for a given peak) numbers K and L for the blind indices k and l respectively,
and denote the absolute value of V (L)

K as V0:

V0(E)≡ |V (L)
K (E)|. (9)

To estimate the width of the resonance roughly, we use the pendulum approxi-
mation of resonance dynamics [10, 23, 55, 51, 52, 1]:

∆ENR ∼
√

8hV0ω f /|dω/dE|. (10)

This approximation assumes constancy of dω/dE in the resonance range of ener-
gies, which is not the case here: in reality, ω(E) ∝ 1/ ln(1/|E−Es|) in the vicinity of
the separatrix [53, 10, 23, 55, 51, 52, 1, 29, 34, 47, 35, 43, 44], so that the relevant
derivative |dω/dE| ∼ (ω(±)

r )2/(ω0|E −Es|) varies strongly within the resonance
range. However, for our rough estimate we may use the maximal value of |E−Es|,
which is approximately equal to ∆ENR. If ω f is of the order of ω(±)

r ∼ ω0/ ln(1/h),
then Eq. (10) reduces to the following approximate asymptotic equation for ∆ENR:

∆ENR ∼V0(E = Es±∆ENR)h ln(1/h), h→ 0. (11)

The asymptotic solution of Eq. (11) depends on V0(Es±∆ENR) as a function of
∆ENR. In this context, all systems can be divided in two types.

I The separatrix of the unperturbed system has two or more saddles while the rele-
vant Fourier coefficient V (L) ≡V (L)(E,ψ) possesses different values on adjacent
saddles. Given that, for E → Es, the system stays most of time near one of the
saddles, the coefficient V (L)(E → Es,ψ) as a function of ψ is nearly a “square
wave”: it oscillates between the values at the different saddles. The relevant K
is typically odd and, therefore, V0(E → Es) approaches a well defined non-zero
value. Thus, the quantity V0(E = Es±∆ENR) in Eq. (11) may be approximated
by this non-zero limit, and we conclude therefore that

∆ENR ∝ h ln(1/h), h→ 0. (12)

II Either (i) the separatrix of the unperturbed system has a single saddle, or (ii) it
has more than one saddle but the perturbation coefficient V (L) is identical for all
saddles. Then V (L)(E → Es,ψ), as a periodic function of ψ , significantly differs
from its value at the saddle(s) only during a small part of the period in ψ: this
part is∼ω(E)/ω0∼ 1/ ln(1/|Es−E|). Hence, V0(Es±∆ENR) ∝ 1/ ln(1/∆ENR).
Substituting this value in Eq. (11), we conclude that

∆ENR ∝ h, h→ 0. (13)

Thus, for systems of type I, the maximum width of the SM chaotic layer is propor-
tional to h times a logarithmically large factor ∝ ln(1/h) while, for systems of type
II, it is proportional to h times a numerical factor.
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As shown below, the variation of energy in between the instants relevant to the
SM is ∼ h, i.e. much less than ∆ENR (12) for systems of the type I, and of the same
order as ∆ENR (13) for systems of type II. Therefore, one may expect that the max-
imum width of the layer for the original Hamiltonian system (1), ∆E(±), is at least
roughly approximated by that for the SM, ∆E(±)

sm , so that the above classification of
systems is relevant to ∆E(±) too. This is confirmed both by numerical integration
of the equations of motion of the original Hamiltonian system and by the accurate
theory presented in the next two sub-sections.

3.2 Asymptotic theory for systems of type I.

For the sake of clarity, we consider a particular example of a type I system; its
generalization is straightforward.

We choose an archetypal example: the ac-driven pendulum (sometimes referred
to as a pendulum subject to a dipole time-periodic perturbation) [55, 42, 45]:

H = H0 +hV, (14)

H0 =
p2

2
− cos(q), V =−qcos(ω f t), h¿ 1.

Fig. 2 presents the results of numerical simulations for a few values of h and
several values of ω f . It shows that: (i) the function ∆E(−)(ω f ) indeed possesses
sharp peaks whose heights greatly exceed the estimates by the heuristic [55], adia-
batic [14] and moderate-frequency [29] theories (see inset); (ii) as predicted by our
rough estimates of Sec. 3.1, the 1st peak of ∆E(−)(ω f ) shifts to smaller values of
ω f while its magnitude grows, as h decreases. Below, we develop a leading-order
asymptotic theory, in which the parameter of smallness is 1/ ln(1/h), and compare
it with results of the simulations.

Before moving on, we note that the SM (approximated in the relevant case by
nonlinear resonance dynamics) considers states of the system only at discrete in-
stants. Apart from the variation of energy within the SM dynamics, a variation of
energy in the Hamiltonian system also occurs in between the instants relevant to the
SM. Given that ω f ¿ 1, this latter variation may be considered in adiabatic approxi-
mation and it is of the order of h [14, 35]. It follows from the above rough estimates,
and from the more accurate consideration below, that the variation of energy within
the SM dynamics for systems of type I is logarithmically larger i.e. larger by the
factor ln(1/h). The variation of energy in between the instants relevant to the SM
may therefore be neglected to leading-order for systems of type I: ∆E(−) ' ∆E(−)

sm .
For the sake of notational compactness, we shall henceforth omit the subscript “sm”
in this subsection.

For the system (14), the separatrix energy is equal to 1, while the asymptotic (for
E → Es) dependence ω(E) is [55]:



A New Approach To The Treatment Of Separatrix Chaos And Its Applications 13

ω(E)' π
ln(32/|Es−E|) , (15)

Es = 1, |Es−E| ¿ 1.

Let us consider the range of energies below Es (the range above Es may be con-
sidered in an analogous way) and assume that ω f is close to an odd multiple of
ω(−)

r . The nonlinear resonance dynamics of the slow variables in the range of
approximately resonant energies may be described as follows [43, 41] (cf. also
[10, 23, 55, 51, 52, 1]):

dI
dt

=−∂ H̃(I, ψ̃)
∂ψ̃

,
dψ̃
dt

=
∂ H̃(I, ψ̃)

∂ I
, (16)

H̃(I, ψ̃) =
∫ I

I(Es)
dĨ (nω−ω f ) − nhqn cos(ψ̃)

≡ n(E−Es)−ω f (I− I(Es)) − nhqn cos(ψ̃) ,
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Fig. 2 Computer simulations for the ac driven pendulum (14) (an archetypal example of type I):
the deviation ∆E(−) of the lower boundary of the chaotic layer from the separatrix, normalized by
the perturbation amplitude h, is plotted as a function of the perturbation frequency ω f , for vari-
ous h. The inset presents the same data but with a logarithmic ordinate and with the estimates by
the heuristic [55], adiabatic [14] and moderate-frequency [29] theories. The heuristic estimate is
shown by the dotted line: as an example of the heuristic estimate, we use the formula from [55]:
∆E(−)/h = 2πω f /cosh(πω f /2). The adiabatic and moderate-frequency estimates are shown by
the dashed line: the adiabatic estimate for ∆E(−)(ω f ) is equal approximately to 2π; the estimate
following from the results of the work [29] for ω f ∼ 1 is of the same order, so that it is schemati-
cally represented in the inset in Fig. 2 by the same line as for the adiabatic estimate (dashed line).
The inset shows explicitly that the simulation results exceed the estimates of the former theories
by 1 or 2 orders of magnitude, over a wide range of frequencies.
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I ≡ I(E) =
∫ E

Emin

dẼ
ω(Ẽ)

, E ≡ H0(p,q),

ψ̃ = nψ−ω f t,

ψ = π + sign(p)ω(E)
∫ q

qmin(E)

dq̃√
2(E−U(q̃))

+2πl,

qn ≡ qn(E) =
1

2π

∫ 2π

0
dψ q(E,ψ)cos(nψ),

|nω−ω f | ¿ ω, n≡ 2 j−1, j = 1,2,3, . . . ,

where I and ψ are the canonical variables action and angle respectively [10, 23, 55,
51, 52, 1]; Emin is the minimal energy over all q, p, E ≡ H0(p,q); qmin(E) is the
minimum coordinate of the conservative motion with a given value of energy E; l is
the number of right turning points in the trajectory [q(τ)] of the conservative motion
with energy E and given initial state (q0, p0).

The resonance Hamiltonian H̃(I, ψ̃) is obtained in the following way. First, the
original Hamiltonian H is transformed to action-angle variables I−ψ . Then it is
multiplied by n and the term ω f I is extracted (the latter two operations correspond
to the transformation ψ → ψ̃ ≡ nψ−ω f t). Finally, the result is being averaged over
time i.e. only the resonance term in the double Fourier expansion of the perturbation
is kept (it may be done since the effect of the fast-oscillating terms on the dynamics
of slow variables is small: see the estimate of the corrections in Sec. 3.4 below).

Let us derive asymptotic expression for I(E), substituting the asymptotic expres-
sion (15) for ω(E) into the definition of I(E) (16) and carrying out the integration:

I(E)' I(Es)− Es−E
π

(
ln

(
32

Es−E

)
+1

)
. (17)

As for the asymptotic value qn(E → Es), it can be seen that q(E → Es,ψ), as a
function of ψ , asymptotically approaches a “square wave”, oscillating between −π
and π , so that, for sufficiently small j,

q2 j−1(E → Es)' (−1) j+1 2
2 j−1

, (18)

q2 j = 0,

j = 1,2, ...¿ π
2ω(E)

.

The next issue is the analysis of the phase space of the resonant Hamiltonian
(16). Substituting H̃ (16) into the equations of motion (16), it can be seen that their
stationary points have the following values of the slow angle

ψ̃+ = π, ψ̃− = 0, (19)

while the corresponding action is determined by the equation
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nω−ω f ∓nh
dqn

dI
= 0, n≡ 2 j−1, (20)

where the sign “∓”corresponds to ψ̃∓ (19).
The term ∝ h in (20) may be neglected to leading-order (cf. [10, 23, 55, 51, 52,

1, 43, 41]), and Eq. (20) reduces to the resonance condition

(2 j−1)ω(E( j)
r ) = ω f , (21)

the lowest-order solution of which is

Es−E( j)
r ' 32exp

(
− (2 j−1)π

ω f

)
. (22)

Eqs. (19) and (22) together with (17) explicitly determine the elliptic and hyper-
bolic points of the Hamiltonian (16). The hyperbolic point is often referred to as a
“saddle” and corresponds to ψ̃+ or ψ̃− in (19) for even or odd j respectively. The
saddle point generates the resonance separatrix. Using the asymptotic relations (17)
and (18), we find that the resonance Hamiltonian (16) takes the following asymp-
totic value in the saddle:

H̃saddle ' Es−E( j)
r

π
ω f −2h

' ω f

π
32exp

(
−π(2 j−1)

ω f

)
−2h. (23)

The second asymptotic equality in (23) takes into account the relation (22).
As explained in Sec. 2 above, ∆E(−)(ω f ) possesses a local maximum at ω f for

which the resonance separatrix is tangent to the lower GSS curve (Fig. 1(a)). For the
relevant frequency range ω f → 0, the separatrix split (which represents the maxi-
mum deviation of the energy along the GSS curve from Es) approaches the following
value [55] in the asymptotic limit h→ 0

δ ' 2πh, ω f ¿ 1. (24)

As shown below, the variation of energy along the relevant resonance trajectories
is much larger. Therefore, in the leading-order approximation, the GSS curve may
simply be replaced by the separatrix of the unperturbed system i.e. by the horizontal
line E = Es or, equivalently, I = I(Es). Then the tangency occurs at ψ̃ , shifted from
the saddle by π , so that the condition of tangency is written as

H̃saddle = H̃(I = I(Es), ψ̃ = ψ̃saddle +π)≡ 2h. (25)

Substituting here H̃saddle (23), we finally obtain the following transcendental
equation for ω( j)

max:
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xexp(x) =
8(2 j−1)

h
, x≡ (2 j−1)π

ω( j)
max

. (26)

Fig. 3(b) demonstrates the excellent agreement between Eq. (26) and simulations of
the Hamiltonian system over a wide range of h.

In the asymptotic limit h→ 0, the lowest-order explicit solution of Eq. (26) is

ω( j)
max ' (2 j−1)π

ln
(

8(2 j−1)
h

) , j = 1,2, ...¿ ln
(

1
h

)
. (27)

As follows from Eq. (26), the value of Es−E( j)
r (22) for ω f = ω( j)

max is

Es−E( j)
r (ω f = ω( j)

max) =
4πh

ω( j)
max

. (28)

Its leading-order expression is:
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Fig. 3 An archetypal example of a type I system: the ac-driven pendulum (14). Comparison of the-
ory (solid lines) and simulations (circles) for: (a) the deviation ∆E(−)(ω f ) of the lower boundary
of the chaotic layer from the separatrix, normalized by the perturbation amplitude h, as a function
of the perturbation frequency ω f , for h = 10−6; the theory is from Eqs. (26), (31), (32), (38), (39)
and (41) (note the discontinuous drop by the factor e from the maximum to the right wing). (b)
The frequency of the 1st maximum in ∆E(−)(ω f ) as a function of h; the theory is from Eq. (26).
(c) The 1st maximum in ∆E(−)(ω f )/h as a function of h; the theory is from Eqs. (34) and (26).
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Es−E( j)
r (ω f = ω( j)

max)' 4h
2 j−1

ln
(

8(2 j−1)
h

)
, h→ 0. (29)

If ω f ≤ ω( j)
max then, in the chaotic layer, the largest deviation of energy from the

separatrix value corresponds to the minimum energy E( j)
min on the nonlinear reso-

nance separatrix (Fig. 1(a,b)), which occurs at ψ̃ shifted by π from the saddle. The
condition of equality of H̃ at the saddle and at the minimum of the resonance sepa-
ratrix is written as

H̃saddle = H̃(I(E( j)
min), ψ̃saddle +π). (30)

Let us seek its asymptotic solution in the form

Es−E( j)
min ≡ ∆E( j)

l = (1+ y)(Es−E( j)
r )' (1+ y)32exp

(
−π(2 j−1)

ω f

)
,

y >∼ 1. (31)

Substituting (31) and (23) into Eq. (30), we obtain for y the following transcen-
dental equation:

(1+ y) ln(1+ y)− y =
h

8(2 j−1)
x f exp(x f ), (32)

x f ≡ π(2 j−1)
ω f

, ω f ≤ ω( j)
max, y > 0,

where ω( j)
max is given by Eq. (26).

Eqs. (31) and (32) describe the left wing of the j-th peak of ∆E(−)(ω f ). Fig. 3(a)
demonstrates the good agreement between our analytic theory and simulations for
the Hamiltonian system.

It follows from Eq. (26) that Eq. (32) for ω f = ω( j)
max reduces to the relation

ln(1+ y) = 1, i.e.
1+ y(ω( j)

max) = e. (33)

It follows from Eqs. (33), (31) and (28) that the maximum for a given peak is:

∆E( j)
max ≡ Es−E( j)

min(ω
( j)
max) =

4πeh

ω( j)
max

. (34)

Fig. 3(c) shows the excellent agreement of this expression with our simulations
of the Hamiltonian system over a wide range of h.

The leading-order expression for ∆E( j)
max is:

∆E( j)
max ' 4eh

2 j−1
ln(8(2 j−1)/h), h→ 0, (35)
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which confirms the rough estimate (12).
As ω f decreases, it follows from Eq. (32) that y increases exponentially sharply.

In order to understand how ∆E( j)
l decreases upon decreasing ω f , it is convenient to

rewrite Eq. (31) re-expressing the exponent by means of Eq. (32):

∆E( j)
l (ω f ) =

4πh
ω f (ln(1+ y)− y/(1+ y))

. (36)

It follows from Eqs. (32) and (36) that ∆E( j)
l decreases power-law-like when ω f is

decreased. In particular, ∆E( j)
l ∝ 1/(ω( j)

max−ω f ) at the far part of the wing.

As for the right wing of the peak, i.e. for ω f > ω( j)
max, over the chaotic layer, the

largest deviation of energy from the separatrix value corresponds to the minimum
of the resonance trajectory tangent to the GSS curve (Fig. 1(c)). The value of ψ̃ at
the minimum coincides with ψ̃saddle. In the leading-order approximation, the GSS
curve may be replaced by the horizontal line I = I(Es), so that the tangency occurs
at ψ̃ = ψ̃saddle + π . Then the energy at the minimum E( j)

min can be found from the
equation

H̃(I(Es), ψ̃saddle +π) = H̃(I(E( j)
min), ψ̃saddle) (37)

Let us seek its asymptotic solution in the form

Es−E( j)
min ≡ ∆E( j)

r = z(Es−E( j)
r )' z32exp

(
−π(2 j−1)

ω f

)

0 < z < 1, z∼ 1. (38)

Substituting (38) into (37), we obtain for z the following transcendental equation:

z(1+ ln(1/z)) =
h

8(2 j−1)
x f exp(x f ) (39)

x f ≡ π(2 j−1)
ω f

, ω f > ω( j)
max, 0 < z < 1,

where ω( j)
max is given by Eq. (26). Eqs. (38) and (39) describe the right wing of the

j-th peak of ∆E(−)(ω f ). Fig. 3(a) demonstrates the good agreement between our
analytic theory and simulations.

It follows from Eq. (26) that the solution of Eq. (39) for ω f → ω( j)
max is z → 1,

so the right wing starts from the value given by Eq. (28) (or, approximately, by Eq.
(29)). Expressing the exponent in (38) from (39), we obtain the following equation

∆E( j)
r (ω f ) =

4πh
ω f (1+ ln(1/z))

. (40)
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It follows from Eqs. (39) and (40) that ∆E( j)
r decreases power-law-like for increas-

ing ω f . In particular, ∆E( j)
r ∝ 1/(ω f −ω( j)

max) in the far part of the wing. Further
analysis of the asymptotic shape of the peak is presented in Sec. 3.5 below.

Beyond the peaks, the function ∆E(−)(ω f ) is logarithmically small in compari-
son with the maxima of the peaks. The functions ∆E( j)

l (ω f ) and ∆E( j)
r (ω f ) in the

ranges beyond the peaks are also logarithmically small. Hence, nearly any function
of ∆E( j)

r (ω f ) and ∆E( j+1)
l (ω f ) which is close to ∆E( j)

r (ω f ) in the vicinity of ω( j)
max

and to ∆E( j+1)
l (ω f ) in the vicinity of ω( j+1)

max while being sufficiently small beyond
the peaks may be considered as an approximation of the function ∆E(−)(ω f ) to log-
arithmic accuracy with respect to the maxima of the peaks, ∆E( j)

max and ∆E( j+1)
max , in

the whole range [ω( j)
max,ω

( j+1)
max ]. One of the easiest options is the following:

∆E(−)(ω f ) = ∆E(1)
l (ω f ) for ω f < ω(1)

max,

∆E(−)(ω f ) = max{∆E( j)
r (ω f ),∆E( j+1)

l (ω f )} for ω( j)
max < ω f < ω( j+1)

max ,

j = 1,2, ...¿ π

2ω(1)
max

. (41)

We used this function in Fig. 3(a), and the analogous one will also be used in the
other cases.

In fact, the theory may be generalized in such a way that Eq. (41) would approxi-
mate ∆E(−)(ω f ) well in the ranges far beyond the peaks with logarithmic accuracy,
even with respect to ∆E(−)(ω f ) itself rather than to ∆E( j)

max only (cf. the next sec-
tion). However, we do not do this in the present case, being interested primarily in
the leading-order description of the peaks.

Finally, we demonstrate in Fig. 4 that the lowest-order theory describes the
boundary of the layers quite well, even in the Poincaré section rather than only
in energy/action.

3.3 Asymptotic theory for systems of type II.

We consider two characteristic examples of type II systems, corresponding to the
classification given in Sec. 3.1. As an example of a system where the separatrix of
the unperturbed system possesses a single saddle, we consider an ac-driven Duffing
oscillator [1, 18, 29, 40]. As an example of the system where the separatrix possesses
more than one saddle, while the perturbation takes equal values at the saddles, we
consider a pendulum with an oscillating suspension point [1, 18, 29, 34, 35]. The
treatment of these cases is similar in many respects to that presented in Sec. 3.2
above. So, we present it in less detail, emphasizing the differences.
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Fig. 4 Some characteristic Poincaré sections in the 2π-interval of the energy-angle plane for the
system (14) with h = 10−6 and ω f equal to: (a) 0.236 (maximum), (b) 0.21 (left wing), (c) 0.25
(right wing). Results of the numerical integration of the equations of motion for the original Hamil-
tonian (14) are shown by (red) dots. The NR separatrix calculated in the leading-order approxima-
tion (i.e. by the integration of the resonant equations of motion (16) in which ω(E), I(E) and
q1(E) are approximated by the explicit formulæ (15), (17) and (18) respectively) is drawn by the
(black) solid line. The NR trajectory (calculated in the leading-order approximation) tangent to the
line E = Es is drawn by the (blue) dashed line. The outer boundary (marked by a thicker line) is
approximated by: the lower part of the NR separatrix in cases (a) and (b), and by the tangent NR
trajectory in case (c) The boundary of the island of stability in the cases (a) and (b) is approximated
by the tangent NR trajectory (which coincides in the case (a) with the NR separatrix).

3.3.1 AC-driven Duffing oscillator.

Consider the following archetypal Hamiltonian [1, 18, 29, 40]:

H = H0 +hV, (42)

H0 =
p2

2
− q2

2
+

q4

4
, V =−qcos(ω f t), h¿ 1.

The asymptotic dependence of ω(E) on E for E below the separatrix energy
Es = 0 is the following [1, 13]
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ω(E)' 2π
ln(16/(Es−E))

, (43)

Es = 0, 0 < Es−E ¿ 1.

Correspondingly, the resonance values of energies (determined by the condition
analogous to (21)) are

Es−E( j)
r = 16exp

(
−2π j

ω f

)
, j = 1,2,3, ... (44)

The asymptotic dependence of I(E) is

I(E)' I(Es)− Es−E
2π

(
ln

(
16

Es−E

)
+1

)
. (45)

The nonlinear resonance dynamics is described by the resonance Hamiltonian H̃
which is identical in form to Eq. (16). Obviously, the actual dependences ω(E) and
I(E) are given by Eq. (43) and (45) respectively. The most important difference is
in q j(E): instead of a non-zero value (see (18)), it approaches 0 as E → Es. Namely,
it is ∝ ω(E) [1, 13]:

q j(E)' 1√
2

ω(E), j = 1,2, ...¿ π
ω(E)

, (46)

i.e. q j is much smaller than in systems of type I (cf. (18)). Due to this, the resonance
is “weaker”. At the same time, the separatrix split δ is also smaller, namely ∼ hω f
(cf. [43]) rather than ∼ h as for the systems of type I. That is why the separatrix
chaotic layer is still dominated by resonance dynamics while the matching of the
separatrix map and nonlinear resonance dynamics is still valid in the asymptotic
limit h→ 0 [43].

Similarly to the previous section, we find the value of H̃ in the saddle in the
leading-order approximation7:

H̃saddle ' ω f

(
Es−E( j)

r

2π
− h√

2

)
, (47)

where Es−E( j)
r is given in (44).

As before, the maximum width of the layer corresponds to ω f , for which the
resonance separatrix is tangent to the GSS curve (Fig. 1(a)). It can be shown [43] that
the angle of tangency asymptotically approaches ψ̃saddle + π = π while the energy
still lies in the resonance range. Here ω(E)≈ ω(−)

r ≈ ω f / j. Using the expressions
for H̃(E, ψ̃) (cf. (16)), I(E) (45), q j(E) (46), and taking into account that in the
tangency E < δ ∼ hω f ¿ h, to leading-order the value of H̃ at the tangency reads

7 The only essential difference is that qn at the saddle is described by Eq. (46) rather than by Eq.
(18).
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H̃tangency ' ω f
h√
2
. (48)

Allowing for Eqs. (47) and (48), the condition for the maximum, H̃saddle =
H̃tangency, reduces to

Es−E( j)
r (ω( j)

max)' 2π
√

2h. (49)

Thus these values Es−E( j)
r are logarithmically smaller than the corresponding

values (28) for systems of type I.
The values of ω f corresponding to the maxima of the peaks in ∆E(−)(ω f ) are

readily obtained from (49) and (44):

ω( j)
max ' 2π j

ln(4
√

2/(πh))
, j = 1,2, ...¿ ln(1/h). (50)

The derivation to leading order of the shape of the peaks for the chaotic layer
of the separatrix map, i.e. within the nonlinear resonance (NR) approximation, is
similar to that for type I. So, we present only the results, marking them with the
subscript “NR”.

The left wing of the jth peak of ∆E(−)
NR (ω f ) is described by the function

∆E( j)
l,NR(ω f ) = 16(1+ y)exp

(
−2π j

ω f

)
≡ 2π

√
2h

ln(1+ y)− y/(1+ y)
, (51)

ω f ≤ ω( j)
max,

where y is the positive solution of the transcendental equation

(1+ y) ln(1+ y)− y =
πh

4
√

2
exp

(
2π j
ω f

)
, y > 0. (52)

In common with the type I case, 1+ y(ω( j)
max) = e, so that

∆E( j)
max,NR = e(Es−E( j)

r (ω( j)
max))' 2πe

√
2h. (53)

Eq. (53) confirms the rough estimate (13). The right wing of the peak is described
by the function

∆E( j)
r,NR(ω f ) = 16zexp

(
−2π j

ω f

)
≡ 2π

√
2h

1+ ln(1/z)
, (54)

ω f > ω( j)
max,

where z < 1 is the solution of the transcendental equation
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z(1+ ln(1/z)) =
πh

4
√

2
exp

(
2π j
ω f

)
, 0 < z < 1. (55)

As in the type I case, z(ω f → ω( j)
max)→ 1.

It follows from Eqs. (49) and (53) that the typical variation of energy within
the nonlinear resonance dynamics (that approximates the separatrix map dynamics)
is ∝ h. For the Hamiltonian system, the variation of energy in between the dis-
crete instants corresponding to the separatrix map [55, 51, 52, 1, 43, 31] is also
∝ h. Therefore, unlike the type I case, one needs to take it into account even at the
leading-order approximation. Let us consider the right well of the Duffing potential
(the results for the left well are identical), and denote by tk the instant at which the
energy E at a given k-th step of the separatrix map is taken: it corresponds to the
beginning of the k-th pulse of velocity [55, 43] i.e. the corresponding q is close to
a left turning point qlt p in the trajectory [q(τ)]. Let us also take into account that
the relevant frequencies are small so that the adiabatic approximation may be used.
Thus, the change of energy from tk up to a given instant t during the following pulse
of velocity (t− tk ∼ 1) may be calculated as

∆E =
∫ t

tk
dτ q̇hcos(ω f τ)' hcos(ω f tk)

∫ t

tk
dτ q̇

= hcos(ω f tk)(q(t)−qlt p) (56)

For the motion near the separatrix, the velocity pulse corresponds approximately
to ψ = 0 (see the definition of ψ (16)). Thus, the corresponding slow angle is ψ̃ ≡
jψ−ω f tk '−ω f tk.

For the left wing of the peak of ∆E(−)(ω f ) (including also the maximum of
the peak), the boundary of the chaotic layer of the separatrix map is formed by the
lower part of the NR separatrix. The minimum energy along this separatrix occurs at
ψ̃ = π . Taking this into account, and also noting that ψ̃ '−ω f tk, we conclude that
cos(ω f tk)'−1. So, ∆E ≤ 0, i.e. it does lower the minimum energy of the layer of
the Hamiltonian system. The maximum reduction occurs at the right turning point
qrt p:

max(|∆E|)' h(qrt p−qlt p) =
√

2h. (57)

We conclude that the left wing of the j-th peak is described as follows:

∆E( j)
l (ω f )' ∆E( j)

l,NR(ω f )+
√

2h, ω f ≤ ω( j)
max, (58)

where ∆E( j)
l,NR(ω f ) is given by Eqs. (51)-(52). In particular, the maximum of the

peak is:

∆E( j)
max ' (2πe+1)

√
2h≈ 25.6h. (59)

For the right wing of the peak, the minimum energy of the layer of the separatrix
map occurs when ψ̃ coincides with ψ̃saddle (Fig. 1(c)) i.e. is equal to 0. As a result,
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cos(ω f tk) ' 1 and, hence, ∆E ≥ 0. So, this variation cannot lower the minimum
energy of the layer for the main part of the wing, i.e. for ω f ≤ ω( j)

bend where ω( j)
bend is

defined by the condition ∆E( j)
r,NR = max(|∆E|)≡√2h. For ω f > ω( j)

bend , the minimal
energy in the layer occurs at ψ̃ = π , and it is determined exclusively by the variation
of energy during the velocity pulse (the NR contribution is close to zero at such ψ̃).
Thus, we conclude that there is a bending of the wing at ω f = ω( j)

bend :

∆E( j)
r (ω f ) = ∆E( j)

r,NR(ω f ), ω( j)
max < ω f ≤ ω( j)

bend ,

∆E( j)
r (ω f ) =

√
2h, ω f ≥ ω( j)

bend ,

ω( j)
bend =

2π j
ln(8

√
2/h)+1−2π

, (60)

where ∆E( j)
r,NR(ω f ) is given by Eqs. (54) and (55).

Analogously to the previous case, ∆E(−)(ω f ) may be approximated over the
whole frequency range by Eq. (41) with ∆E( j)

l and ∆E( j)
r given by Eqs. (58) and

(60) respectively. Moreover, unlike the previous case, the theory also describes ac-
curately the range far beyond the peaks: ∆E(−) is dominated in this range by the
velocity pulse contribution ∆E, which is accurately taken into account both by Eqs.
(58) and (60).

Fig. 5 shows very reasonable agreement between the theory and simulations,
especially for the 1st peak8.

3.3.2 Pendulum with an oscillating suspension point

Consider the archetypal Hamiltonian [1, 18, 29, 34, 35]

H = H0 +hV,

H0 =
p2

2
+ cos(q), V =−cos(q)cos(ω f t), h¿ 1. (61)

Though the treatment is similar to that used in the previous case, there are also
characteristic differences. One of them is the following: although the resonance
Hamiltonian is similar to the Hamiltonian (16), instead of the Fourier component

8 The disagreement between theory and simulations for the magnitude of the 2nd peak is about
three times larger than that for the 1st peak, so that the height of the 2nd peak is about 30% smaller
than that calculated from the asymptotic theory. This occurs because, for the energies relevant to
the 2nd peak, the deviation from the separatrix is much higher than that for the 1st peak. Due to
the latter, the Fourier coefficient q2(E) for the relevant E is significantly smaller than that obtained
from the asymptotic formula (42). In addition, the velocity pulse contribution ∆E also significantly
decreases while the separatrix split increases as ω f becomes ∼ 1.
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of the coordinate, qn, there should be the Fourier component of cos(q), Vn, which
can be shown to be:

V2 j ' (−1) j+1 4
π

ω(E), Es−E ¿ 1, (62)

V2 j−1 = 0,

j = 1,2, ...¿ 2π
ω(E)

, Vn ≡ 1
2π

∫ 2π

0
dψ cos(q)cos(nψ).

The description of the chaotic layer of the separatrix map at the lowest order, i.e.
within the NR approximation, is similar to that for the ac-driven Duffing oscillator.
So we present only the results, marking them with the subscript “NR”.

The frequency of the maximum of a given j-th peak is:
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Fig. 5 An archetypal example of a type II system: the ac driven Duffing oscillator (42). Com-
parison of theory (solid lines) and simulations (circles): (a) the deviation ∆E(−)(ω f ) of the lower
boundary of the chaotic layer from the separatrix, normalized by the perturbation amplitude h, as
a function of the perturbation frequency ω f , for h = 10−6; the theory is from Eqs. (41), (50), (51),
(52), (54), (55), (58) and (60) (note the discontinuous drop from the maximum to the right wing);
(b) the frequency of the 1st maximum in ∆E(−)(ω f ) as a function of h; the theory is from Eq. (50);
(c) the 1st maximum in ∆E(−)(ω f )/h as a function of h; the theory is from Eq. (59).
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ω( j)
max ' 2π j

ln(4/h)
, j = 1,2, ...¿ ln(4/h). (63)

This expression agrees well with simulations for the Hamiltonian system (Fig. 6(b)).
To logarithmic accuracy, Eq. (63) coincides with the formula following from Eq.
(8) of [34] (reproduced in [35] as Eq. (21)) taken in the asymptotic limit h → 0
(or, equivalently, ω( j)

max → 0). However, the numerical factor in the argument of the
logarithm in the asymptotic formula following from the result of [34, 35] is half our
value: this is because the nonlinear resonance is approximated in [34, 35] by the
conventional pendulum model which is not valid near the separatrix (cf. our Sec.
3.1 above).

The left wing of the jth peak of ∆E(−)
NR (ω f ) is described by the function

∆E( j)
l,NR(ω f ) = 32(1+ y)exp

(
−2π j

ω f

)
≡ 8h

ln(1+ y)− y/(1+ y)
, (64)

ω f ≤ ω( j)
max,

where y is the positive solution of the transcendental equation

(1+ y) ln(1+ y)− y =
h
4

exp
(

2π j
ω f

)
, y > 0. (65)

Similarly to the previous cases, 1+ y(ω( j)
max) = e. Hence,

∆E( j)
max,NR = e(Es−E( j)

r (ω( j)
max)) = 8eh. (66)

Eq. (66) confirms the rough estimate (13). The right wing of the peak is described
by the function

∆E( j)
r,NR(ω f ) = 32zexp

(
−2π j

ω f

)
≡ 8h

1+ ln(1/z)
, (67)

ω f > ω( j)
max,

where z < 1 is the solution of the transcendental equation

z(1+ ln(1/z)) =
h
4

exp
(

2π j
ω f

)
, 0 < z < 1. (68)

Similarly to the previous cases, z(ω f → ω( j)
max)→ 1.

Now consider the variation of energy during a velocity pulse. Though the final
result looks quite similar to the case with a single saddle, its derivation has some
characteristic differences, and we present it in detail. Unlike the case with a single
saddle, the pulse may start close to either the left or the right turning point, and the
sign of the velocity in such pulses is opposite [55, 43]. The angle ψ in the pulse is
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close to −π/2 or π/2 respectively. So, let us calculate the change of energy from
the beginning of the pulse, tk, until a given instant t within the pulse:

∆E =−
∫ t

tk
dτ q̇h∂V/∂q = h

∫ t

tk
dτ q̇(−sin(q)cos(ω f τ))

' hcos(ω f tk)
∫ t

tk
dτ q̇(−sin(q))' hcos(ω f tk)(cos(q(t))−1). (69)

Here, the third equality assumes adiabaticity while the last equality takes into ac-
count that the turning points are close to the maxima of the potential i.e. close to a
multiple of 2π (where the cosine is equal to 1).

The quantity ∆E (69) takes its maximal absolute value at q = π . So, we shall
further consider

∆Emax =−2hcos(ω f tk)≡−2hcos(2 jψk− ψ̃k) = (−1) j+12hcos(ψ̃k). (70)

The last equality takes into account that, as mentioned above, the relevant ψk is
either −π/2 or π/2. For the left wing, the value of ψ̃ at which the chaotic layer of
the separatrix map possesses a minimal energy corresponds to the minimum of the
resonance separatrix. It is equal to π or 0 if the Fourier coefficient V2 j is positive or
negative, i.e. for odd or even j, respectively: see Eq. (63). Thus ∆Emax = −2h for
any j and, therefore, it does lower the minimal energy of the boundary. We conclude
that

∆E( j)
l (ω f )' ∆E( j)

l,NR(ω f )+2h, ω f ≤ ω( j)
max, (71)

where ∆E( j)
l,NR(ω f ) is given by Eqs. (64)-(65). In particular, the maximum of the

peak is:

∆E( j)
max ' (4e+1)2h≈ 23.7h. (72)

The expression (72) confirms the rough estimate (13) and agrees well with sim-
ulations (Fig. 6(c)). At the same time, it differs from the formula which can be ob-
tained from Eq. (10) of [34] (using also Eqs. (1), (3), (8), (9) of [34]) in the asymp-
totic limit h → 0: the latter gives for ∆E( j)

max the asymptotic value 32h. Though this
result [34] (referred to also in [35]) provides for the correct functional dependence
on h, it is quantitatively incorrect because (i) it is based on the pendulum approxi-
mation of the nonlinear resonance while this approximation is invalid in the vicinity
of the separatrix (see the discussion of this issue in Sec. 3.1 above), and (ii) it does
not take into account the variation of energy during the velocity pulse.

The right wing, by analogy to the case of the Duffing oscillator, possesses a
bend at ω f = ω( j)

bend where ∆E( j)
r,NR = |∆Emax| ≡ 2h, corresponding to the shift of the

relevant ψ̃ for π . We conclude that:
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∆E( j)
r (ω f ) = ∆E( j)

r,NR(ω f ), ω( j)
max < ω f ≤ ω( j)

bend ,

∆E( j)
r (ω f ) = 2h, ω f ≥ ω( j)

bend ,

ω( j)
bend =

2π j
ln(16/h)−3

, (73)

where ∆E( j)
r,NR(ω f ) is given by Eqs. (66) and (67).

Similarly to the previous case, both the peaks and the frequency ranges far be-
yond the peaks are well approximated by Eq. (41), with ∆E( j)

l and ∆E( j)
r given by

Eqs. (71) and (73) respectively (Fig. 6(a)).
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Fig. 6 An archetypal example of a type II system: the pendulum with an oscillating suspen-
sion point (61). Comparison of theory (solid lines) and simulations (circles): (a) The deviation
∆E(−)(ω f ) of the lower boundary of the chaotic layer from the separatrix, normalized by the per-
turbation amplitude h, as a function of the perturbation frequency ω f , for h = 10−6; the theory
is by Eqs. (41), (63), (64), (65), (67), (68), (71) and (73) (note the discontinuous drop from the
maximum to the right wing). (b) The frequency of the 1st maximum in ∆E(−)(ω f ) as a function of
h; the theory is from Eq. (63). (c) The 1st maximum in ∆E(−)(ω f )/h as a function of h; the theory
is from Eq. (72).
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3.4 Estimate of the next-order corrections

We have calculated explicitly only the leading term ∆E in the asymptotic expansion
of the chaotic layer width. Explicit calculation of the next-order term ∆E(next) is
possible, but it is rather complicated and cumbersome: cf. the closely related case
with two separatrices [43] (see also Sec. 4 below). In the present section, where the
perturbation amplitude h in the numerical examples is 4 orders of magnitude smaller
than that in [43], there is no particular need to calculate the next-order correction
quantitatively. Let us estimate it, however, in order to demonstrate that its ratio to
the leading term does vanish in the asymptotic limit h→ 0.

We shall consider separately the contribution ∆E(next)
w stemming from the various

corrections within the resonance approximation (16) and the contribution ∆E(next)
t

stemming from the corrections to the resonance approximation.
The former contribution may be estimated in a similar way to the case considered

in [43]: it stems, in particular, from the deviation of the GSS curve from the separa-
trix (this deviation reaches δ at certain angles: see Eq. (7)) and from the difference
between the exact resonance condition (20) and the approximate one (21). It can be
shown that the absolute value of the ratio between ∆E(next)

w and the leading term is
logarithmically small (cf. [43]):

|∆E(next)
w |

∆E
∼ 1

ln(1/h)
. (74)

Let us turn to the analysis of the contribution ∆E(next)
t , i.e. the contribution stem-

ming from the corrections to the resonance Hamiltonian (16). It is convenient to
consider separately the cases of the left and right wings of the peak.

As described in Secs. 3.2 and 3.3 above, the left wing corresponds in the leading-
order approximation to formation of the boundary of the layer by the separatrix of
the resonance Hamiltonian (16). The resonance approximation (16) neglects time-
periodic terms while the frequencies of oscillation of these terms greatly exceed the
frequency of eigenoscillation of the resonance Hamiltonian (16) around its relevant
elliptic point i.e. the elliptic point inside the area limited by the resonance separa-
trix. As is well known [18, 23, 29, 51, 52, 55], fast-oscillating terms acting on a
system with a separatrix give rise to the onset of an exponentially narrow chaotic
layer in place of the separatrix. In the present context, this means that the correction
to the maximal action Ĩ stemming from fast-oscillating corrections to the resonance
Hamiltonian, i.e. ∆E(next)

t , is exponentially small, thus being negligible in compari-
son with the correction ∆E(next)

w (see (74)).
The right wing, described in Secs. 3.2 and 3.3 above, corresponds in leading-

order approximation to the formation of the boundary of the layer by the resonance
trajectory tangent to the GSS curve. For the part of the right wing exponentially
close in frequency to the frequency of the maximum, the tangent trajectory is close
to the resonance separatrix, so that the correction stemming from fast-oscillating
terms is exponentially small, similarly to the case of the left wing. As the frequency
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further deviates from the frequency of the maximum, the tangent trajectory further
deviates from the resonance separatrix and the correction ∆E(next)

t differs from the
exponentially small correction estimated above. It may be estimated in the following
way.

It follows from the second-order approximation of the averaging method [5] that
the fast-oscillating terms lead, in the second-order approximation, to the onset of ad-
ditional terms h2TĨ(Ĩ, ψ̃) and h2Tψ̃(Ĩ, ψ̃) in the dynamic equations for slow variables
Ĩ and ψ̃ respectively, where TĨ(Ĩ, ψ̃) and Tψ̃(Ĩ, ψ̃) are of the order of the power-law-
like function of 1/ ln(1/h) in the relevant range of Ĩ. The corresponding correction
to the width of the chaotic layer in energy may be expressed as

∆E(next)
t =

∫ tmax

tmin

dt h2TĨω(Ĩ), (75)

where tmin and tmax are instants corresponding to the minimum and maximum de-
viation of the tangent trajectory from the separatrix of the unperturbed system (cf.
Figs. 1(c) and 4(c)). The interval tmax− tmin may be estimated as follows:

tmax− tmin ∼ π
|< ˙̃ψ > | , (76)

where < ˙̃ψ > is the value of ˙̃ψ averaged over the tangent trajectory. It follows from
(16) that

|< ˙̃ψ > | ∼ ω f −ω(Es−δ )∼ ω(Es−δ )
ln(1/h)

∼ ω0

ln2(1/h)
. (77)

Taking together Eqs. (75)-(77) and allowing for the fact that TĨ is of the order of
a power-law-like function of 1/ ln(1/h), we conclude that

∆E(next)
t ∼ h2P(ln(1/h)), (78)

where P(x) is some power-law-like function.
The value ∆E(next)

t is still asymptotically smaller than the absolute value of the
correction within the resonance approximation, |∆E(next)

w |, which is of the order of
h or h/ ln(1/h) for systems of type I or type II respectively.

Thus, we conclude that, both for the left and right wings of the peak, (i) the cor-
rection ∆E(next)

t is determined by the correction within the resonance approximation
∆E(next)

w , and (ii) in the asymptotic limit h→ 0, the overall next-order correction is
negligible in comparison with the leading term:

|∆E(next)|
∆E

≡ |∆E(next)
w +∆E(next)

t |
∆E

≈ |∆E(next)
w |

∆E
∼ 1

ln(1/h)
h→0−→ 0. (79)

This estimate well agrees with results in Figs. 3-6.
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3.5 Discussion

In this section, we briefly discuss the following issues: (i) the scaled asymptotic
shape of the peaks; (ii) peaks in the range of moderate frequencies; (iii) jumps in the
amplitude dependence of the layer width; (iv) chaotic transport; (v) smaller peaks
at rational frequencies; (vi) other separatrix maps; and (vii) an application to the
onset of global chaos.

1. Let us analyse the scaled asymptotic shape of the peaks. We consider first sys-
tems of type I. The peaks are then described in the leading-order approximation
exclusively within separatrix map dynamics (approximated, in turn, by the NR
dynamics). It follows from Eqs. (32), (34), (36), (39) and (40) that most of the
peak for given j can be written in the universal scaled form:

∆E( j)(ω f ) = ∆E( j)
maxS

(
π(2 j−1)

(ω( j)
max)2

(ω f −ω( j)
max)

)
, (80)

where the universal function S(α) is strongly asymmetric:

S(α) =
{

Sl(α) for α≤0,
Sr(α) for α>0,

(81)

Sl(α) =
1

e(ln(1+ y)− y/(1+ y))
, (1+ y) ln(1+ y)− y = exp(−α),

Sr(α) =
1

e(1+ ln(1/z))
, z(1+ ln(1/z)) = exp(−α).

It is not difficult to show that

Sl(α = 0) = 1, Sr(α →+0) = e−1, (82)
dSl(α = 0)

dα
= 1− e−1,

dSr(α →+0)
dα

→−∞,

S(α →±∞) ∝
1
|α| .

Thus, the function S(α) is discontinuous at the maximum. To the left of the
maximum, it approaches the far part of the wing (which decreases in a power-
law-like way) relatively slowly while, to the right of the maximum, the function
first drops jump-wise by a factor e and then sharply approaches the far part of the
wing (which again decreases in a power-law-like way).
It follows from Eqs. (80), (81), (82) and (27) that the peaks are logarithmically
narrow, i.e. the ratio of the half-width of the peak, ∆ω( j), to ω( j)

max is logarithmi-
cally small:
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∆ω( j)

ω( j)
max

∼ 1
ln(8(2 j−1)/h)

. (83)

We emphasize that the shape (81) is not restricted to the example (14): it is valid
for any system of type I.
For systems of type II, contributions from the NR and from the variation of en-
ergy during the pulse of velocity, in relation to their h dependence, are formally
of the same order but, numerically, the latter contribution is usually much smaller
than the former. Thus, typically, the function (81) approximates well the properly
scaled shape of the major part of the peak for systems of type II too.

2. The quantitative theory presented in the paper relates only to the peaks of small
order n i.e. in the range of logarithmically small frequencies. At the same time,
the magnitude of the peaks is still significant up to frequencies of order of one.
This occurs because, for motion close to the separatrix, the order of magnitude of
the Fourier coefficients remains the same up to logarithmically large numbers n.
The shape of the peaks remains the same but their magnitude typically decreases
(though in some cases, e.g. in case of the wave-like perturbation [23, 51, 52, 55]
it may even increase in some range of frequencies). The quantitative description
of this decrease, together with analyses of more sophisticated cases, requires a
generalization of our theory.

3. Apart from the frequency dependence of the layer width, our theory is also rele-
vant to amplitude dependence: it describes the jumps [40] in the dependence of
the width on h and the transition between the jumps and the linear dependence.
The values of h at which the jumps occur, h( j)

jump, are determined by the same

condition that determines ω( j)
max in the frequency dependence of the width. The

formulæ relevant to the left wings of the peaks in the frequency dependence de-
scribe the ranges h > h( j)

jump while the formulæ relevant to the right wings describe

the ranges h < h( j)
jump.

4. Apart from the description of the boundaries, the approach allows us to describe
chaotic transport within the layer. In particular, it allows us to describe quantita-
tively the effect of the stickiness of the chaotic trajectory to boundaries between
the chaotic and regular areas of the phase space [51, 52]. Moreover, the presence
of additional (resonance) saddles should give rise to an additional slowing down
of the transport, despite a widening of the area of the phase space involved in the
chaotic transport.

5. Our approach can be generalized in order to describe smaller peaks at non-integer
rational frequencies i.e. ω f ≈ n/mω(±)

r where n and m are integer numbers.
6. Apart from Hamiltonian systems of the one and a half degrees of freedom and

corresponding Zaslavsky separatrix maps, our approach may be useful in the
treatment of other chaotic systems and separatrix maps (see [29] for the most
recent major review on various types of separatrix maps and related continuous
chaotic systems).

7. Finally we note that, apart from systems with a separatrix, our work may be
relevant to nonlinear resonances in any system. If the system is perturbed by a
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weak time-periodic perturbation, then nonlinear resonances arise and their dy-
namics is described by the model of the auxiliary time-periodically perturbed
pendulum [10, 23, 55, 51, 52, 1, 18]. If the original perturbation has a single
harmonic, then the effective perturbation of the auxiliary pendulum is necessar-
ily a high-frequency one, and chaotic layers associated with the resonances are
exponentially narrow [10, 23, 55, 51, 52, 1, 18] while our results are irrelevant.
But, if either the amplitude or the angle of the original perturbation is slowly
modulated, or if there is an additional harmonic of a slightly shifted frequency,
then the effective perturbation of the auxiliary pendulum is a low-frequency one
[43] and the layers become much wider9 while our theoretical approach becomes
relevant. It may allow to find optimal parameters of the perturbation for the facil-
itation of the onset of global chaos associated with the overlap in energy between
different-order nonlinear resonances [10]: the overlap may be expected to occur
at a much smaller amplitude of perturbation in comparison with that one required
for the overlap in case of a single-harmonic perturbation.
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