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Kainate receptors (KARs) are glutamate receptors that participate in the

postsynaptic transmission of information and in the control of neuronal

excitability, as well as presynaptically modulating the release of the neuro-

transmitters GABA and glutamate. These modulatory effects, general fol-

low a biphasic pattern, with low KA concentrations provoking an increase

in GABA and glutamate release, and higher concentrations mediating a

decrease in the release of these neurotransmitters. In addition, KARs are

involved in different forms of long- and short-term plasticity. Importantly,

altered activity of these receptors has been implicated in different central

nervous system diseases and disturbances. Here, we describe the pre- and

postsynaptic actions of KARs, and the possible role of these receptors in

disease, a field that has seen significant progress in recent years.

Introduction

The crucial actions of the neurotransmitter glutamate

are mediated by activating glutamate receptors. These

receptors participate in normal synaptic transmission,

plasticity, synaptogenesis, and neuronal maturation,

and the inappropriate activation of this system may

induce some types of epilepsy or be implicated in other

different CNS disorders [1,2]. Glutamate receptors are

divided into two families: ionotropic and metabotro-

pic. The ionotropic glutamate receptors (iGluRs)

participate in rapid neurotransmission and they are

divided into three types depending on the agonist that

activates them with highest affinity: N-methyl-D-

aspartic acid (NMDA) receptors (NMDARs); a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors (AMPARs); and kainate (KA)

receptors (KARs). All these receptors are permeable to

Na+ and K+, and while NMDARs are permeable to

Ca2+, the Ca2+ permeability of AMPARs and KARs
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depends on their subunit composition [1]. Metabotro-

pic glutamate receptors (mGluRs) participate in ‘slow’

neurotransmission and they are coupled to G proteins,

and these receptors are divided into eight types

(mGluR 1–8) and three groups: group I that includes

the mGluR1 and mGluR5 receptors that are positively

coupled to phospholipase C (PLC); group II that

includes the mGluR2 and mGluR3 receptors; and

group III that includes mGluR4, mGluR6, mGluR7,

and mGluR8 receptors, all negatively coupled to

adenylate cyclase(AC)-mediated cAMP formation [3].

KARs are tetramers made up of different combina-

tions of the GluK1-GluK5 subunits encoded by the Grik

1–5 genes. GluK1-GluK3 may form homomeric or het-

eromeric receptors, while GluK4 and GluK5 may only

participate in functional receptors when associated with

any of the GluK1-GluK3 subunits. KARs have been

described in different invertebrates such as nematodes

and flies [4] and in different vertebrates including

amphibians, fish, and birds [5–8]. In mammals, KARs

have been observed throughout virtually the entire ner-

vous system, and they are found in the main cells and

interneurons of the hippocampus, lateral amygdala,

dorsal root ganglia (DRG), bipolar cells of the retina,

cerebral cortex, and the cerebellum [9,10]. Physiologi-

cally, KARs mediate synaptic transmission postsynapti-

cally and they modulate neurotransmitter release

presynaptically at different synapses. In addition, KARs

mediate different forms of short- and long-term plastic-

ity, such as long-term potentiation (LTP) and long-term

depression (LTD) [11,12]. Here, we examine the synap-

tic actions of KARs and their possible involvement in

different diseases.

Synaptic activity of kainate receptors

Presynaptic activity of KARs

In their presynaptic modulatory role, KARs control

both GABA and glutamate release ([13,14] for detailed

reviews). In this respect, a biphasic effect has emerged

whereby KAR activation by relatively ‘high’ concen-

trations of the agonist depresses neurotransmitter

release, whereas the activation of these receptors by

relatively ‘low’ agonist concentrations facilitates

GABA and glutamate release.

Presynaptic modulation of GABA release

Originally, KARs were seen to depress GABA release at

hippocampal GABAergic synapses [15,16] (Fig. 1), an

activity proposed to be mediated by KARs containing

the GluK1 subunit [8]. Interestingly, subsequent studies

demonstrated that the depression of GABA release at

CA1-interneuron synapses requires a metabotropic

action of KARs in the hippocampus, involving Gi/o pro-

teins, PLC, and protein kinase C (PKC). Indeed, this

was the first demonstration of an effect of KARs in the

brain that is independent of their ion channel activity

[17]. This presynaptic metabotropic depression of

GABA release by KARs was confirmed in synapto-

somes, isolated nerve terminals where no functional

somatodendritic compartment is present, and in which

the reduction of GABA release required Gi/o protein and

PLC [18–21]. A modulation of GABA release was also

observed when KARs were activated by endogenous glu-

tamate, confirming its physiological importance [22]. In

fact, metabotropic KAR activity involving Gi/o protein

and PKC activity modulates GABA release during

development in the CA1 region of the hippocampus [23].

As KARs do not contain motifs that directly inter-

act with G proteins, an adaptor protein is thought to

participate in the interactions between this ionotropic

receptor and G-proteins [17], although the use of such

an adaptor protein has not been demonstrated yet.

Alternatively, KARs might interact directly with G

proteins [19,24–26] even though it remains unclear

how such binding might occur. Hence, more research

is clearly needed to unequivocally demonstrate how

KARs interact with G proteins.

In addition to the involvement of KARs in the

depression of GABA release, these receptors may also

mediate an increase in this neurotransmitter. KARs

enhancing GABA release are present in the somato-

dendritic compartment of interneurons in the hip-

pocampus and hypothalamus (Fig. 1). This activity is

ionotropic and not metabotropic, and thus, the activa-

tion of these KARs may depolarize interneurons and

thereby increases GABA release [27–30]. However, the

exact mechanism underlying the KAR-mediated presy-

naptic enhancement of GABAergic transmission

remains to be fully elucidated. Thus, while KARs pre-

sent in axon terminals of interneurons have a metabo-

tropic effect mediating the depression of GABA

release, those present in the somatodendritic compart-

ment are ionotropic and they enhance GABA release.

In addition, modulation of GABA release by KAR

activation has also been found in other structures such

as the neocortex, the globus pallidus, dorsal horn,

hypothalamus, and amygdala [31–35], perhaps point-

ing to a more general mechanism.

Presynaptic modulation of glutamate release

For glutamate, a similar scenario has emerged and at

present, it is well established that KARs may facilitate
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glutamate release when activated by a relative low

dose of their agonists and inhibit it when activated by

higher doses.

Depression of glutamate release at CA3-CA1 synapses

In the hippocampus, where the major projection path-

ways are glutamatergic, KARs were first reported to

depress glutamate release in the CA1 region [36]. Sub-

sequent studies demonstrated that this depression

involves reduced Ca2+ entry into the presynaptic com-

partment [37] and that these KARs contain GluK1

subunits [38]. This inhibition involves a direct metabo-

tropic action as the reduced EPSP amplitude mediated

by KAR activation was prevented in the presence of

G-protein inhibitors. A membrane delimited

mechanism was proposed to underlie this modulation,

as no protein kinase involvement was found [39]. Stud-

ies of CA3-CA1 pyramidal cell (PC) synapses during

development confirmed the metabotropic influence of

KARs in depressing glutamate release, yet involving a

protein kinase in addition to a Gi/o protein [40,41]. In

these experiments in neonates, KARs containing

GluK1 subunits are tonically active and they inhibit

glutamate release, an effect that was prevented by per-

tussis toxin (PTX) and PKC inhibitors. This activity

was thought to influence synaptic maturation and con-

trol the number of functional glutamatergic synapses

[42]. Therefore, KAR activation at CA3-CA1 synapses

consistently inhibits glutamate release, and for the

moment, no facilitation of glutamate release has been

described.
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Fig. 1. KAR-mediated synaptic actions at

hippocampal SC-CA1 and Interneuron-CA1

synapses. (A) Pre-synaptic KARs at the

hippocampal stratum oriens or

stratum radiatum interneuron-CA1 PC

synapse modulate GABA release. KARs

present at these GABAergic presynaptic

terminals produce an attenuation of GABA

release onto CA1 PC dendrites. This

modulation is metabotropic and involves the

presynaptic activation of a Gi/o protein,

which stimulates PLC to produce

diacylglycerol (DAG). DAG then activates

PKC, which phosphorylates as yet unknown

targets to decrease GABA release (A1).

KARs situated in the somatodendritic

compartment increase GABA release

through an ionotropic mechanism (A2). (B)

Presynaptic KARs at the SC-CA1 PC

synapse produce a decrease in glutamate

release onto CA1 neuron dendrites. This

modulation involves presynaptic G-protein

activation and a decrease in Ca2+ entry

through voltage-dependent calcium-

channels (B1). Postsynaptic KAR activation

produces a long-lasting decrease in a Ca2+-

activated K+ currents (IAHPs), which involves

G protein-mediated activation of PLC and

downstream PKC, increasing cell excitability

(B2).
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Biphasic control of glutamate release by KAR

activation at MF-CA3 synapses

In contrast to the inhibitory regulation at CA3-CA1

PC synapses, KARs display bidirectional control of

glutamate release at Mossy fiber (MF)-CA3 synapses.

KA facilitates glutamate release at these synapses at

low nanomolar concentrations (< 50 nM) [43–49], while
it inhibits glutamate release at high nanomolar concen-

trations (> 100 nM) [38,43,50–56].

Depression of glutamate release at MF-CA3 synapses

The weaker glutamate release in the presence of high KA

concentrations was first attributed to the ionotropic

mode of KAR activation. Thus, it was proposed that

strong depolarization induced by high agonist concentra-

tions inactivates Na+ and/or Ca2+ channels and/or pro-

motes electrical shunting, thereby reducing terminal

excitability and depressing the evoked glutamate release

[44,52]. While the modulation of glutamate release by

KARs maybe in part due to these mechanisms, its

depression at MF-CA3 synapses is mediated by a meta-

botropic mechanism [55] as it is sensitive to treatment

with the Gi/o inhibitor PTX. Moreover, the depression of

glutamate release was contingent on the activity of an

AC/cAMP/protein kinase A (PKA) signaling cascade,

since it can be abrogated by manipulating this pathway

[55]. Significantly, depression of glutamate release medi-

ated by the activation of presynaptic KARs has also been

observed in other regions such as the amygdala [57–60].

Facilitation of glutamate release at MF-CA3 synapses

Presynaptic KARs at MF-CA3 synapses were first

shown to facilitate glutamate release in 2001 [44], with

low KA concentrations (50 nM) increasing the amplitude

of NMDA currents. This facilitation was contingent on

synaptic glutamate release, and a presynaptic locus of

action for KARs was evident from the associated

decrease in paired-pulse facilitation (PPF). This synaptic

facilitation of MF-CA3 synapses by presynaptic KARs

is now widely recognized [45–49,54,61–63], and the

enhanced glutamate release at MF-CA3 synapses is con-

tingent on an increase in cytosolic [Ca2+], possibly enter-

ing through Ca2+ permeable KARs [46,49,62,63].

Mechanistically, the facilitatory activity of presynaptic

KARs in hippocampal synaptosomes and slices is

thought to be mediated by AC/cAMP/PKA signaling.

Indeed, this response to KAR activation was prevented

in the presence of H-89 and Rp-Br-cAMP, and it was

occluded in the presence of forskolin and when AC acti-

vation was impaired in the presence of calmidazolium,

yet not in the presence of Gi/o protein blockers. Synapsin

is a potential target for PKA in these events as the mobi-

lization of presynaptic vesicles by KA depends on PKA

activation in hippocampal cultures [64].

In summary, in the hippocampus (Figs 1 and 2)

KARs inhibit glutamate release at CA3-CA1 synapses

and they fulfill a biphasic role at MF-CA3 synapses.

Low KAR agonist concentrations facilitate glutamate

release mediated by a G-protein independent, Ca2+-

calmodulin/AC/cAMP/PKA pathway. At higher KAR

agonist concentrations, glutamate release is inhibited

through an AC/cAMP/PKA pathway with the obligate

upstream input of G-protein transduction, the details

of which remain to be elucidated. A facilitatory activ-

ity of KARs that involves a Ca2+-calmodulin/AC/

cAMP/PKA pathway has been also demonstrated in

the neocortex [58,59,65].

The subcellular location of KARs at different

synapses remains to be confirmed. Functional confir-

mation of compartmentalization may require the

development of reagents such as caged KAR blockers,

as have been developed to define the distribution of

NMDARs [66]. Alternatively, paired-recordings [67]

between pre- and postsynaptic neurons can be used for

this purpose, or specific agonists and antagonists could

be developed that act when used intracellularly in the

patch-pipette. Another question that remains is

whether the facilitatory and inhibitory modulation of

synaptic transmission by KARs involves distinct types

of KARs, with different subunit compositions and

possibly distinct cellular localizations, or whether a

single KAR type can mediate both these effects on

glutamate release. The precise roles of KARs in net-

work oscillations also remain to be elucidated, as well

as their behavior in different brain areas.

The postsynaptic actions of KARs

In contrast to AMPARs and NMDARs, postsynaptic

KARs mediate small currents with slow activation and

deactivation kinetics. Postsynaptic KARs have been

found in a few synapses, such as MF-CA3 synapses in

the hippocampus [68,69], CA3-CA1 interneuron

synapses [70,71], parallel fiber-Golgi cell synapses in

the cerebellum [72], thalamocortical synapses [73],

basolateral amygdala (BLA) synapses [74], and dorsal

horn synapses in the spinal cord [75]. These postsynap-

tic KARs participate in the synaptic transmission of

information, and they control the excitability of neu-

rons and networks. The mechanism of action support-

ing a postsynaptic role for KARs in excitability is

relatively well defined in the hippocampus, where

KARs inhibit the slow after hyperpolarization current
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(IsAHP) when activated by KA or glutamate, causing a

clear increase in the action potential firing frequency

at CA3-CA1 synapses. Interestingly, this activity

requires KAR coupling to Gi/o proteins and PKC,

evoking an additional metabotropic action for KARs

that is in this case postsynaptic [76,77] (Figs 1 and 2).

As in the CA1, postsynaptic excitability is also modu-

lated by KARs in mouse CA3 pyramidal neurons

through a metabotropic effect that decreases slow and

medium IAHPs [78]. Thus, the inhibition of slow and

medium IAHPs by postsynaptic metabotropic KARs

represents a common mechanism to enhance circuit

excitability [78].

Kainate receptors in disease

As described above, KARs exert presynaptic control

over GABA and glutamate release, provoking postsy-

naptic effects that are related to cell and network

excitability, and mediating in the transmission of

synaptic information. When the physiological activity

of these receptors is altered, they become involved in

some brain diseases and disturbances. Here, we will

examine the conditions and/or diseases in which KARs

have been implicated (Table 1).

KARs in epilepsy

Kainate is known to be a potent neurotoxin that

induces behavioral and electrophysiological seizures,

and its acute effects are considered a model of tempo-

ral lobe epilepsy (TLE), with seizures originating in

the hippocampus [79]. KA produces similar damage to

tissue and lesions as those observed in human patients

with TLE. While this acute effect of KA is well

known, its role in the chronic phases of TLE is less

well understood, which is considered more clinically

relevant.

The role of KARs in acute epilepsy

One of the mechanisms best described for the induc-

tion of acute epilepsy is the depression of GABA

release when KA activates KARs (see above), together

with postsynaptic KAR activation of glutamatergic

neurons [16,80]. Interneurons in the CA1 region of the

hippocampus have KARs that contain the GluK1 sub-

unit in their axonal compartment and GluK2 in the

somatodendritic compartment [27]. At interneuron-

interneuron synapses, KAR activation facilitates

GABA release and thus an inhibitory drive [70]. As

described above, at interneuron-main cell synapses

there was a biphasic effect following KAR activation

in which ‘high’ doses of agonists suppress GABA

release [15,16], while stimulation of KARs by ‘low’

KA concentrations or ATPA (an agonist of GluK1

subunit-containing KARs) facilitates GABA release

[30,81]. However, in contrast to the predictions based

on the latter observation, the systemic administration

of ATPA into the hippocampus and amygdala in vivo
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Fig. 2. KAR-mediated synaptic actions at

hippocampal MF-CA3 synapses. (A,B) KARs

produce a bimodal effect on glutamate

release from MFs depending on the agonist

concentration: [KA] > 100 nM decreases

glutamate release following the activation of

a G-protein, and the modulation of AC and

PKA activity (A); [KA] < 100 nM facilitates

glutamate release following activation of AC

and PKA (B). (C) Postsynaptic KARs on CA3

pyramidal cells produce a reversible

decrease of IAHPs that involves G proteins,

PLC, and PKC activation to increase

excitability.
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Table 1. Kar in disease

Disease

Receptor/

Subunit/

Gene/Protein Functions References

Epilepsy KAR Induce behavioral and electrophysiological seizures and is considered a model of

temporal lobe epilepsy

[79]

Astrocyte express KAR 1 week after induction of epileptic status in CA1 region of

the hippocampus

[98]

GluK1 KARs containing GluK1 induce seizures in the hippocampus and amygdala that

are blocked by GluK1 antagonist or in GluK1�/�
[82,83,95,96]

GluK2 Prolonged activation of basolateral GluK1 KARs induces epileptiform activity

GluK2 KARs of CA3 pyramidal neurons are linked to limbic epilepsies [85]

GluK4/5 Ablation of GluK2 subunits reduces the sensitivity of mice to develop seizures

after KA injection

[86]

In vivo, the frequency of interictal spikes and ictal discharges is reduced in

GluK2�/�
[92,93]

Tissue from patients with refractory TLE increase in GluK4 and GluK5 subunits of

KARs

[97]

Pain GluK1/5 GluK1/5 KARs depolarize afferents and participate in pain transmission. [100–102]

GluK1 Ablation of GluK1 subunits decreases behavior related to pain in mice [106–109]

Role in chronic pain

Ischemic brain

injury

KAR Neuroprotective role, mediating degeneration of white matter and loss of

oligodendrocytes

[112–114]

Recovery of structural plasticity lost in the hippocampus after damage of

ischemic origin

Role in dentate gyrus neurogenesis after ischemia

GluK1 Neuroprotective role, exhibiting inhibition in postsynaptic pyramidal neurons, and

promoting GABA release during ischemia

[115]

GluK2 Role in the cascade of events that causes ischemic damage [116–118]

Anxiety/Stress GluK1 GluK1 KARs regulate GABAergic transmission in BLA [96]

GluK1 KAR partially mediate synaptic responses and plasticity in BLA [119,120]

GluK1 genetic deletion or local injection of a GluK1 KAR antagonist into the

basolateral amygdala increases anxiety behavior

GluK1 KARs activation reduces anxiety behavior

ASD GRIK2/GluK2 Association of GluK2 and GluK4 with ASD [122–125]

GRIK4 Overexpression of GRIK4 in mice forebrain causes social deterioration, increased

anxiety and depressive states, accompanied by altered synaptic transmission

[123]

Duplication of GRIK4 recapitulates behavioral endophenotypes observed in

humans with ASD

[123]

Gain in GRIK4 in the amygdala causes a persistent imbalance in excitatory and

inhibitory activity and disrupt the circuits responsible for major amygdala outputs

[128]

Schizophrenia KAR Decrease in KAR subunits observed in patients with schizophrenia (but GluK3

subunits increase).

[129,130]

GluK1 Decrease of GluK1 subunits observed in the hippocampus, parahippocampus and

prefrontal cortex

[131]

GluK4 Decrease of GluK4 mRNA observed in frontal cortex in patients [132]

GluK5 Decrease expression of GluK5 mRNA in cortical and striatal areas in brains from

patients

[130]

Alcohol abuse

disorder

GRIK1 Variations in GRIK1 associate to AAD [133]

GRIK2 GRIK2 increases susceptibility to AAD [136]

GluK1 Alcohol consumption mediated by GluK1 KAR in rats. Administration of antagonist

of GluK1 KAR reduces preference for ethanol

[133]

Bipolar disorder

and depression

KAR KAR involved in abnormal GABAergic neurotransmission in the hippocampus in

bipolar disorder

[138]

GRIK3 Observed increase in GluK3 (GRIK3) allele in human subjects with depression

disorder

[141]

GRIK4 GRIK4 is involved in bipolar disorder [143]

GluK4 A deletion within GRIK4 gene associated to reduced risk of bipolar disorder [140]

Mental retardation GRIK2/GRIK4 Relevant in mental retardation. Patients with mental retardation show truncated

GluK2 subunits

[126,143–148]
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actually induced seizures. This effect was contingent

on the presence of GluK1 as it was abolished in

GluK1�/� KO mice [82]. Indeed, antagonism of KARs

containing the GluK1 subunit blocked the induction

of seizures by the muscarinic receptor agonist pilo-

carpine [83], such that regulating inhibition is critical

for the influence of KA on epilepsy. KA reversibly

abolishes recurrent inhibition, and it induces epileptic-

type electro-encephalogram activity. In vivo, the net

effect of the activation of KARs seems to be an over-

all depression of GABA release, leading to increased

excitation and epileptiform activity.

The role of KARs in chronic epilepsy

For several decades, it was known that the CA3 region

of the hippocampus is critically related to the origin of

seizures [84]. KARs containing the GluK2 subunit

have been linked to limbic epilepsy due to their specific

expression in CA3 pyramidal neurons [85]. In accor-

dance with a direct role of KARs in the induction of

epilepsy in this region, the ablation of GluK2 subunits

in knockout studies reduced the sensitivity of mice to

develop seizures following KA injection [86]. In animal

models of TLE and in human patients, neuronal tissue

undergoes a major reorganization whereby some neu-

rons die, and others sprout and make aberrant connec-

tions [87]. MFs, the axons of granule cells (GCs) from

the dentate gyrus (DG) where KARs are strongly

expressed, undergo sprouting after KA treatment and

they form a functional, recurrent MF network [88–90].
Here, new KARs are inserted into GCs and it is pro-

posed that they participate through the generation of a

hyperexcitable circuit in the pathogenesis of TLE

[91,92]. In vivo, the frequency of interictal spikes and

ictal discharges diminish in GluK2�/� KO mice or in

the presence of GluK2/GluK5 receptor antagonists.

Aberrant KARs containing GluK2 play an important

role in the chronic seizures that characterize TLE, con-

stituting an anti-epileptic target [92–94]. In addition to

the hippocampus, the amygdala is also a critical brain

region for the activity of limbic seizures through its

connections to the entorhinal cortex and hippocampus.

GluK1 mRNA is abundant in temporal lobe struc-

tures, including the amygdala, and prolonged activa-

tion of basolateral GluK1 subunit-containing KARs

by ATPA induces spontaneous epileptiform activity

sensitive to KAR antagonism [95,96].

The role of astrocytes in epilepsy

In recent years, evidence has accumulated of a role for

astrocytes in KA-induced seizures. In tissue from

patients with refractory TLE, an increase in the GluK4

and GluK5 subunits of KARs has been detected [97].

Indeed, there is evidence that astrocytes express the

GluK1, 2, 4, and 5 subunits of KARs 1 week after the

induction of epileptic status in the CA1 region of the

hippocampus of treated animals but not in the na€ıve

animals. In addition, the increase in GluK1 and

GluK5 subunits persists in the chronic phase of epi-

lepsy when spontaneous seizures occur [98]. The role

of the new KARs expressed in astrocytes is currently

unclear, and thus, future studies should determine the

exact role of astrocytes and astrocytic KARs in

epilepsy.

KARs in pain

KARs are found in DRG cells where they depolarize

afferents and participate in pain transmission [99].

These KARs are composed of GluK1 and GluK5 sub-

units [100–102], although as glutamate currents are

only lost in GluK1 KO mice [102,103], functional

KARs must contain this subunit. Different studies

demonstrated the analgesic activity of KARs when

applying distinct receptor antagonists in animal models

of pain [104,105] and the ablation of GluK1 subunits

dampens the pain-associated behavior in mice [106].

Receptor studies determined that GluK1-containing

KARs do not play a significant role in acute nocicep-

tion [10], although they may influence chronic pain.

Indeed, spinal administration of an antagonist of

GluK1-containing KARs dampens pain perception in

mouse models, supporting the clinical potential of

these specific antagonists of GluK1-containing KARs

for pain management [107–109].
Based on the number of studies supporting an anes-

thetic action for KARs containing the GluK1 subunit,

several clinical trials have used them as a therapeutic

target. Positive preliminary results have been reported

for the treatment of migraine headaches or postopera-

tive pain, and for example, an AMPAR/KAR antago-

nist named NGX424 was seen to reduce migraine pain

probably as a result of KAR blockade [110,111].

Although evidence of KAR participation in both the

transmission/perception of pain and analgesia is accu-

mulating, and it is promising, more work is still

needed to more precisely determine the specific roles of

these receptors and their potential as therapeutic tar-

gets for pain.

KARs in ischemic brain injury

Cerebral ischemia produces neuronal death, and it is

one of the main causes of death and disability
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worldwide. KARs have a neuroprotective role, protect-

ing the white matter from the degeneration and oligo-

dendrocyte loss observed after ischemic brain damage

[112]. There is also evidence that KARs participate in

the recovery of structural plasticity lost in the hip-

pocampus after ischemic damage [113]. Furthermore,

together with other glutamatergic receptors, KARs

appear to play an important role in DG neurogenesis

after ischemia [114]. Mechanistically, the activation of

KARs containing the GluK1 subunit appears to play

a neuroprotective role in the hippocampus by produc-

ing long-term inhibition of postsynaptic PCs during

ischemia. As such, KAR activation increases GABA

release, thereby limiting neuronal damage [115,116]. In

addition, GluK2 containing KARs play an important

role in neuronal death [109], participating in the cas-

cade of events underlying ischemic damage that leads

to neuronal death through the activation of the N ter-

minal c-Jun kinase (JNK) [117,118]. This makes KARs

containing GluK1 and GluK2 subunits possible thera-

peutic targets for the treatment of ischemic brain

damage.

KARs in stress and anxiety

The amygdala fulfills a central role in stress and anxi-

ety, and GluK1 subunit-containing KARs are present

in the BLA where they regulate GABAergic transmis-

sion [96]. Furthermore, KARs containing GluK1 have

been seen to partially mediate synaptic responses and

they participate in some forms of synaptic plasticity in

the BLA [119]. Interestingly, genetic deletion of GluK1

or local injection of an antagonist of KARs containing

GluK1 into the BLA increases anxiety behavior.

Moreover, inhibitory neurons depolarize when GluK1-

containing KARs are activated, increasing GABA

release and leading to a reduction in excitatory inputs

in the central amygdala, thereby reducing anxiety at a

behavioral level [120,121]. Furthermore, anxiety and

aggressive behavior are evident in GRIK2�/� KO mice.

In principle, these observations make the KARs pre-

sent in the amygdala potential targets to reduce stress

and anxiety behaviors.

KARs in Autism Spectrum Disorder (ASD)

Alterations in the GRIK2 and GRIK4 genes are thought

to be related to ASD (reviewed in [122,123]) and a scan

of the genome of ASD patients points to chromosome

6q21 as a candidate region for ASD. This region con-

tains the GRIK2 gene, and a significant association

between GluK2 and ASD has been described [124,125].

KARs containing the product of GRIK2 (GluK2) are

thought to participate in the activity-dependent refine-

ment of synaptic connections during development, and

their altered expression or incorrect functioning could

lead to inappropriate maturation of neural networks

and dysfunctional synaptic connections [126], phenom-

ena associated with ASD [127]. Overexpression of

GRIK4 in the forebrain of mice causes social deteriora-

tion, increased anxiety and depressive states, accompa-

nied by altered synaptic transmission. Indeed,

duplication of a single gene encoding the high-affinity

KAR (GRIK4) subunit recapitulates the behavioral

endophenotypes of humans diagnosed with ASD (anhe-

donia, depression, anxiety, and disturbed social interac-

tion), as in some humans carrying GRIK4 duplications

[123]. In the amygdala, a slight gain in GRIK4 at partic-

ular synapses causes a persistent imbalance in excitatory

and inhibitory activity, disrupting the circuits responsi-

ble for major amygdala outputs. However, these

changes in glutamatergic activity are reversed when

GRIK4 levels normalize [128].

KARs in schizophrenia

Post-mortem studies have identified changes in KAR

subunits in patients with schizophrenia [129]. In fact,

comparing the expression of ionotropic glutamate

receptors in different brain areas of schizophrenic

patients and healthy controls indicated a general

decrease in the expression of KARs in schizophrenic

individuals, although GluK3 subunits are more

strongly expressed in schizophrenic patients than in

healthy controls [130]. Thus, a decrease in GluK1 sub-

units was observed in the hippocampus, parahip-

pocampus, and prefrontal cortex [131], and a

significant decrease in GluK4 mRNA, as well as in

GluN1 and GluA1 mRNA, was demonstrated in the

frontal cortex of patients with schizophrenia [132]. In

addition, enhanced GluK3 mRNA expression and

weaker GluK5 mRNA expression were reported in the

cortical and striatal areas of the brain of individuals

with schizophrenia [130].

KARs in Alcohol abuse disorder (AAD)

Glutamate-related genes have been associated with

AAD in human studies, and it has been suggested that

variations in the gene encoding GluK1 (GRIK1) con-

tribute to a risk of alcohol dependence. In fact, admin-

istration of an antagonist of these receptors reduces

the preference for ethanol in rats, in accordance with

clinical findings that together point to KARs as possi-

ble targets for AAD treatment in humans [133,134].

The possible role of GRIK2 and GRIK3 in AAD has
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also been studied, although a direct relationship

between these receptors and this disorder has not yet

been firmly established [135]. Interestingly, GRIK2 is

associated with an increased susceptibility to AAD, yet

more research is needed fully address the relationship

between KARs and this disorder [136].

KARs in bipolar disorder and depression

Several genes encoding KAR subunits have been asso-

ciated with bipolar disorder, including GRIK1, GRIK2,

or GRIK4 [137]. In bipolar disorder, KARs are

thought to be involved in abnormal GABAergic neu-

rotransmission in the hippocampus, in association with

prior abnormal activity in the BLA. As such, KARs

containing GluK1 and GluK2/3 subunits in the BLA

may modulate the firing properties of CA2/3 neurons

in the hippocampus. These receptors are expressed on

GABAergic interneurons, and they play a key role in

the timing of gamma oscillations [138].

In other studies, GRIK4 has been attributed a role

in affective disorders and this gene is altered by a

translocation breakpoint, with case–control studies

showing a significant association of GRIK4 with bipo-

lar disorder [139]. A deletion variant within the GRIK4

gene has been associated with a reduced risk of bipolar

disorder and an increased abundance of GRIK4

mRNA. Thus, it has been suggested that the deletion

of this allele protects against bipolar disorder by

increasing the abundance of GluK4 protein in neu-

ronal cells. Patient studies show that deletion within

the GRIK4 allele protects against the risk of bipolar

disorder and that it improves cognitive deficits in peo-

ple with this mental disorder, converting KARs con-

taining GluK4 subunits into possible therapeutic

targets [140].

Whether the aberrant function of KARs has a role in

depression has not yet been fully addressed. However, a

genetic study with patients concluded that there is a pos-

itive correlation between the GRIK3 gene and this disor-

der, with a significant increase in the GluK3 allele in

subjects with multiplex depression disorder [141].

KAR in mental retardation

Single-gene causes have been identified for various

intellectual disability syndromes, involving both auto-

somal and X-linked genes, with Fragile X syndrome

being the most common of the inherited syndromes

caused by a single genetic defect that leads to such a

phenotype. This disorder is considered chronic and it

generally coincides with other mental conditions like

depression, attention deficit/hyperactivity disorder, and

ASD [142]. Different genetic studies have found a rela-

tionship between KARs (the GRIK2 and GRIK4 genes)

and mental retardation [143–147], and a truncated

GluK2 subunit of KARs and severe hypofunction in

glutamatergic signaling has been found in patients with

mental retardation [148].

Conclusion

From the data indicated above, it is clear that KAR

regulation is disturbed in different circumstances, some

of which are associated with neurological and psychi-

atric diseases. Thus, KARs may represent potential

therapeutic targets for some of these conditions. More

work is still necessary to unequivocally determine the

exact role of KARs in different diseases and to

develop better therapeutic agents. While genetic studies

are of great interest, most of the physiological conse-

quences of genetic deficits remain unknown, and as

such, they must be defined in terms of the presynaptic

and postsynaptic functions of KARs described here.

Finally, the development of new and more specific

agonists and antagonists for KARs that contain par-

ticular subunits will be of great help to define and

specifically treat defects in KAR activity.
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