THE UNIVERSITY OF WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): .J. Wassink, E.M. King, R. Grogono-Thomas, J.C. Brown, L.J. Moore and L.E. Green

Article Title: A within farm clinical trial to compare two treatments (parenteral antibacterials and hoof trimming) for sheep lame with footrot

Year of publication: 2010

Link to published article:

http://dx.doi.org/10.1016/j.prevetmed.2010.05.006

Publisher statement: Wassink, J. et al. (2010). A within farm clinical trial to compare two treatments (parenteral antibacterials and hoof trimming) for sheep lame with footrot. Preventive Veterinary Medicine, Vol. 96 (1-2), pp. 93-103

A within farm clinical trial to compare two treatments (parenteral
antibacterials and hoof trimming) for sheep lame with footrot
G.J. Wassink ^{ac} , E.M. King (nee Hawker) ^{ac} , R. Grogono-Thomas ^b , J.C. Brown ^a , L. J. Moore ^b ,
L.E. Green ^{a*}
^a Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL,
UK
^b School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, North
Somerset BS40 5DU, UK
^c Joint first authors
[*] Corresponding author. Tel.: +44 2476 524620; fax: +44 2476 524619
E-mail address: Laura.Green@warwick.ac.uk (L.E. Green)

16 Abstract

17 From observational studies, farmers who use parenteral antibacterials to promptly treat all sheep 18 with footrot (FR) or interdigital dermatitis (ID) have a prevalence of lameness of <2% compared 19 with a prevalence of 10% lameness reported by farmers who treat lame sheep bytrimming 20 affected feet. We tested the hypothesis that prompt treatment of sheep lame with naturally 21 developing FR or ID with parenteral and topical antibacterials reduces the prevalence and 22 incidence of lameness with these conditions compared with less frequent treatment by trimming 23 hoof horn and applying topical antibacterials. A further hypothesis was that reduction of ID and 24 FR would improve productivity. A lowland sheep flock with 700 ewes was used to test these 25 hypotheses in an 18-month within farm clinical trial with four groups of ewes: two intervention 26 and two control. The duration and severity of lameness was used to categorise sheep into three 27 weighted scores of lameness (WLS): never lame (WLS0), lame for a maximum of six days with 28 locomotion score 2 (WLS1) and lame for more than six days or a higher locomotion score 29 (WLS2). The intervention reduced the prevalence of lameness due to FR and ID in ewes and 30 lambs and the incidence of lameness in ewes. The WLS was significantly lower in sheep in the 31 intervention groups. Ewes with a higher WLS were subsequently significantly more likely to 32 have a body condition score (BCS) <2.5 and have lame lambs. Significantly more ewes lambed 33 and successfully reared more lambs that were ready for slaughter at a younger age in the 34 intervention versus control groups. There was an increase in the gross margin of $\pounds 630 / 100$ ewes 35 mated in the intervention group, including the cost of treatment of $\pounds 150 / 100$ ewes mated. We conclude that prompt parenteral and topical antibacterial treatment of sheep lame with ID and FR 36 37 reduced the prevalence and incidence of these infectious conditions and led to improved health, 38 welfare and productivity.

- 2 -

39

40 *Keywords:* sheep; footrot; clinical trial; parenteral antibiotics; foot trimming; welfare;
41 productivity

42

43 **1.** Introduction

44 Lameness is one of the greatest concerns for poor welfare in sheep (Goddard et al., 2006; 45 Fitzpatrick et al., 2006). It has been estimated to cost the UK industry £24 million / annum 46 (Nieuwhof and Bishop, 2005). More than 90% of farmers in the UK report lameness in their 47 sheep, with a farmer-estimated prevalence of 10% with more than 80% of lameness caused by 48 footrot (FR) and interdigital dermatitis (ID) (Grogono-Thomas and Johnston, 1997; Kaler and 49 Green, 2008a). In a study of 209 sheep farmers, those treating all sheep with FR with parenteral 50 antibacterials and foot sprays reported a significantly lower peak prevalence of FR of 2% 51 compared with the 9% reported by farmers who treated FR by paring the hoof horn and spraying 52 disinfectant on to the foot (Wassink et al., 2003). In addition, farmers who reported prompt 53 treatment of mildly lame sheep also reported a lower prevalence of lameness than those treating 54 groups of lame sheep (Kaler and Green, 2008). Further evidence for the benefits of parenteral 55 antibiotics comes from a prospective longitudinal study of 160 sheep on one farm where the 56 treatment of sheep with FR and ID with parenteral and topical antibacterials was associated with 57 a lower incidence of lameness in the subsequent 4 weeks (Green et al., 2007). 58 Dichelobacter nodosus is the necessary pathogen to cause FR (Beveridge, 1941) and is present in 59 the majority of cases of both ID (inflammation of the interdigital skin) and FR (separation of 60 hoof horn from the underlying tissue) (Moore et al., 2005). As a consequence, ID and FR are 61 often a continuum of the same disease. The terms that are equivalent to ID and FR in Australia

62 are benign and virulent FR (Depiazzi et al., 1991). D. nodosus is an anaerobic bacterium that has 63 no known resistance to antibacterials. Parenteral antibacterial treatment of FR leads to recovery 64 from lesions in over 90% of sheep (Sterk, 1960; Egerton et al., 1968; Grogono-Thomas et al., 65 1994) and in a recent factorial design study, over 90% of sheep with FR treated with long acting 66 oxytetracycline recovered from lesions and lameness within 10 days whilst <30% sheep treated 67 with foot trimming recovered in this time period (Kaler et al., 2010). This, together with the 68 evidence above and biological reasoning, led to the hypothesis that prompt treatment of lame 69 sheep with ID or FR with parenteral and topical antibacterials would reduce the prevalence 70 (because of a reduced duration of lameness) and incidence (because a reduced infectious period 71 would decrease the probability of transmission of *D. nodosus* between sheep) of lameness caused 72 by these diseases compared with the traditional treatment of trimming hoof horn and applying a 73 topical bactericide. Consequently, the health, welfare and productivity of the flock should 74 increase. To test these hypotheses, a within flock clinical trial comparing these two treatments 75 was set up on a convenience-selected farm in Oxfordshire with a commercial lowland spring-76 lambing flock of approximately 700, mainly North Country mule ewes. The objective was to 77 compare prompt treatment of FR and ID with parenteral and topical antibacterial with a typical 78 farmer's management of FR and ID (Wassink et al., 2003; 2004) which includes less frequent 79 treatment of lame sheep with ID and FR by trimming hoof horn and applying a topical 80 bactericide. The study lasted from March 2005 to December 2006.

81

82 2. Materials and Methods

83 2.1 Study design March to September 2005

A sample size calculation was used to estimate the number of ewes required per treatment to test a reduction in lameness of 50% assuming a prevalence of lameness of 10%, 80% power and 95% significance. A total of 147 ewes were required per treatment.

87 Ewes lambed from the second week of March 2005. Ewes and lambs were identified with both 88 ear tags and flank markings. The age (dentition), body condition score (BCS) (MAFF, 1994) and 89 conformation of feet of ewes were recorded. All foot lesions were also (www.footrotinsheep.org) 90 recorded. Ewes with triplets were excluded from the trial. After the ewes lambed they were 91 allocated by researchers to one of two fields with similar pasture type and stocking density using 92 stratified random sampling on age, BCS, foot conformation and presence of existing footrot 93 lesions. Once the first two matched fields were stocked, two further fields with similar pasture 94 type were filled. Each group consisted of approximately 175 ewes and their lambs (Table 1). The 95 matched groups were moved between fields simultaneously and to similar pasture types and 96 stocking densities throughout the trial period. In May 2005, when the youngest lamb in each 97 group was four weeks old, one group from each pasture type was selected to be an intervention 98 treatment group by tossing a coin; the other became the matched control group, thus giving two 99 intervention and two control groups. Six observers collected data on age, BCS, locomotion and 100 foot lesions over the 18-month study. All observers were trained by GJW who attended one day 101 of data collection each week to check that observers remained consistent in their scoring. 102 A locomotion scoring system (Kaler et al., 2008b) was used by these trained researchers to score 103 the locomotion of all sheep in all four groups each day for 5 weeks and then each weekday until 104 October 2005. The identity, locomotion score and the limb or limbs that were observed lame 105 were recorded for every sheep that had a locomotion score ≥ 1 in each group.

- 5 -

106 Treatments

107 Intervention groups: In the intervention groups, sheep with a locomotion score ≥ 2 were caught 108 for diagnosis and treatment within 1-3 days of becoming lame. Their feet were inspected and the 109 type and severity of lameness recorded. Sheep with FR or ID were treated with parenteral 110 antibacterials (Terramycin LA 200 mg/ml, Pfizer Ltd; 20mg per kg bodyweight for ewes; and 111 Engemycin LA 200 mg/ml, Intervet/Schering-Plough Animal Health; 15mg per kg bodyweight 112 for lambs) and an antibacterial spray (Terramycin Aerosol Spray, 150ml pack, 4g 113 Oxytetracycline Hydrochloride 3.92% w/w, Pfizer Ltd.). Other foot lesions were treated using 114 standard protocols (Winter, 2004). When a sheep in an intervention group had a locomotion 115 score >2 ten days after treatment it was re-caught, re-examined and re-treated. 116 Control groups: Lame sheep in the control groups were treated by the farm shepherd who had 117 managed the flock for over 10 years. He inspected each group of sheep as part of his usual 118 routine and was blind to the locomotion scores. When he elected to treat a sheep he was assisted 119 by the research team who recorded the foot affected and cause of lameness. If ID was present, 120 the shepherd trimmed the hoof horn wall and sprayed the feet with the topical spray above. If FR 121 was present the hoof horn over lesions was trimmed away and the exposed lesions were sprayed 122 with the topical spray. Other foot lesions were treated using standard protocols (Winter, 2004).

123

124 2.2 Changes to the study design after September 2005

Lambs were weaned on 20/08/2005. One month after weaning, one intervention group was selected by tossing a coin (solid grey line, Figure 1) and swapped with its matched control group in a cross over design. As a result, approximately 25% of the sheep were always in an intervention and 25% always in a control group, with the other 50% crossing over. Some ewes

- 6 -

129 (Table 1) were culled from all four groups and replacement ewes were added to the groups to 130 balance the number of sheep per group. Both replacement ewes and rams used for mating were 131 examined and if necessary treated. These sheep were not put with their group until sound. From 132 October 2005, the treatments above were carried out twice each week in the intervention group rather than every week-day. No lame sheep were treated during early pregnancy (between 24th of 133 October 2005 and the 9th of January 2006) except when sheep were gathered on 8th and 18th 134 November and 12th December. The intervention groups were combined to facilitate housing on 135 136 the 10th of February 2006. The control groups were also combined. Ewes were housed in several 137 large straw-bedded solid-floored pens until they lambed. Straw was added to the pens each day 138 and was 30 - 40 cm deep. Ewes were moved to individual pens after they had lambed.

139

140 2.3 Study design from May to September 2006

141 Two intervention groups and two control groups were re-formed from the merged intervention 142 group and merged control group, respectively (Table 2). No ewes were put out to pasture until 143 sound. Treatments for lameness started when the youngest lamb in a group was four weeks old. 144 The intervention and control groups were treated as for the first lamb production season (2005) 145 with the exception that lambs with ID were treated with topical antibacterials but not parenteral 146 antibacterials.

147

148 2.4 Monitoring health and production in the flock

Ewe age, BCS and foot conformation and foot lesions were scored again at weaning in 2005 andat lambing and weaning 2006. The number of lambs born alive and dead, and the sex, birth

- 7 -

151 weight and adoption details of all lambs were recorded in 2005 and 2006. Ewe and lamb deaths 152 and the date lambs left the farms as finished or store lambs were also recorded in 2005 and 2006. 153 154 2.5 Data storage and analysis 155 Data were entered into a database (Access 2003, Microsoft) and checked for errors before 156 statistical analysis in Stata SE 10, (Statacorp) and MLwiN 2.0 (Rasbash et al., 1999). Ewe body 157 condition was categorised into below recommended (<2.5) and at or above recommended (≥2.5), 158 birth weights were categorised by a good vs less good birth weight of <5.5kg and ≥ 5.5 kg and 159 ewe age at a median of \leq 4 years and \geq 4 years. Breed was categorised into mule and other cross-160 breeds. Parametric and non-parametric tests were used to investigate univariable associations as 161 appropriate for the data distributions. 162 Ewes at pasture with lambs from May – August 2005 and May – September 2006 were analysed 163 separately from weaned ewes were at pasture; September 2005 to housing in February 2006. 164 Data during housing were not used in the analysis because deep litter straw restricted observation 165 of the ewes' legs. 166 The groups compared were intervention and control groups in 2005 and 2006 and also the sub 167 group of ewes that were always in an intervention group or always in a control group (n = 176). 168 These ewes were dispersed within the two intervention and two control groups in 2006. 169 170 The mean prevalence and incidence of lameness were plotted to visualise the effects of the 171 intervention and the cross-over design. The prevalence and incidence of lameness in matched 172 groups were compared using t tests. The prevalence was calculated from the number of sheep 173 with locomotion score 2 or above at an observation divided by the number of sheep in the group

- 8 -

174 divided by the number of days that observations occurred in a period. The incidence was

175 calculated in the same way except that the denominator was the group size minus the number of176 non-susceptible sheep (those lame within the last 10 days).

177 Sheep had up to four episodes of lameness in a time period. To test the hypothesis that duration

178 and severity of lameness affected production an weighted lameness score (WLS) was calculated

179 where d = duration of an episode of lameness, m = maximum locomotion score during the

180 episode of lameness, Σ = summed for all episodes of lameness in a time period

181 WLS =
$$\Sigma$$
 (d*m)

an episode of lameness started on the day the locomotion score was first observed ≥ 2 and ended on the day midway between the last observation of locomotion score ≥ 2 and next observation of locomotion score <2, unless a sheep was observed lame again within 10 days in which case this was part of the current episode.

186 The WLS was then categorised into WLSO, sheep that never had a locomotion score ≥ 2 , WLS1,

187 sheep with a weighted lameness score ≤ 12 (e.g. a sheep lame over 2 episodes, one with 3 days of

188 locomotion score 2 and another with 2 days of locomotion score 3) and WLS2, sheep with a

189 weighted lameness score >12. This three level categorical variable was used in an ordinal

190 multilevel multinomial regression analysis (Goldstein, 2003) to investigate impact of treatment

191 on duration and severity of lameness. A multilevel binomial logistic regression analysis was used

to investigate factors associated with ewe body condition (<2.5 or \geq 2.5). Cox proportional

193 survival analysis with robust estimates of variance using the cluster-option in Stata (Williams,

194 2000) was used to investigate the age at finishing for lambs.

A cost-benefit analysis of the intervention treatment vs control treatment was done using
production figures from sheep that were in the intervention or control groups for the whole 18month trial period and other existing data.

198

199 **3.** Results

200 3.1 Prevalence and incidence of lameness in ewes and lambs

201 Descriptive statistics are presented in Tables 1 and 2. The four groups started with similar 202 numbers of ewes by BCS, foot conformation, FR and ID. Although there were fewer treatments 203 in the control groups (Tables 1 and 2) there were significantly more episodes of lameness with a 204 maximum locomotion score >2 compared with the intervention groups in both ewes and lambs 205 (Tables 3 and 4) over the trial period. Ewes and lambs in the intervention groups were lame for 206 significantly fewer days for each episode of lameness: 4.3 (CI: 4.0 - 4.6) and 4.0 (CI: 3.6 - 4.3) 207 compared with ewes and lambs in the control groups 7.9 (CI: 7.2 - 8.7) and 7.3 (CI: 6.4 - 8.2) 208 respectively.

The prevalence and incidence of lameness in ewes in the intervention groups fell in the first 4 - 8weeks each time the intervention was introduced in 2005 and in 2006 (Figure 1). The mean prevalence and incidence of lameness in ewes was significantly lower in intervention vs control groups the both production seasons (Tables 1 and 2). In 2005, the mean prevalence of lameness in lambs was significantly lower in the intervention groups compared with the control groups from week 8 onwards (Figure 2, Table 1) but there was no significant difference in the mean incidence of lameness.

- 10 -

216	Over	the intervention period, 35 isolates of <i>D. nodosus</i> cultured from ewes treated with
217	paren	teral antibacterials at least twice were tested for antibacterial resistance to oxytetracycline
218	using	a modified MIC test. All isolates were sensitive to oxytetracycline (DEFRA, 2008).
219		
220	3.2	Factors associated with lameness

221 The intervention treatment significantly reduced the number and / or severity of lameness events: 222 ewes and lambs in the control groups were more likely to have a WLS2 than ewes and lambs in 223 the intervention groups (Table 1). WLS2 was also more likely in ewes > 4 yrs old (Table 5) and 224 in lambs which were single born, male or their mother was lame, especially if the ewe had had a 225 WLS2 (Table 5). Ewes were less likely to become lame between September 2005 and housing in 226 February 2006 if they had been in the intervention group in 2005. A ewe was significantly more 227 likely to become lame in this period if she had been lame in the previous lamb production period 228 (Table 1).

229

230 3.3 Factors associated with ewe body condition

At the start of the intervention there were 73% sheep in the intervention and 77% sheep in control groups with BCS ≥ 2.5 (P>0.05). There were significantly more ewes with a BCS ≥ 2.5 in the intervention groups at weaning 2005 (62%), 2006 (76%) and lambing 2006 (83%) compared with ewes on the control groups with 26%, 62% and 61% with BCS ≥ 2.5 respectively at these times (*P*<0.01). BCS ≥ 2.5 at weaning 2005 was associated with a previous WLS of 0 or 1 than WLS2, a BCS ≥ 2.5 at lambing 2005, rearing one lamb, less than 4 years of age and mule breed (Table 7). Ewes with a BCS \geq 2.5 at lambing 2006 were more likely to have had a WLS 0 or 1

than WLS2 in 2005, a BCS \geq 2.5 at weaning 2005 and produced a single lamb in 2006.

239

240 3.4 Cost-benefit analysis of the intervention

The cost of reducing the prevalence of lameness in the first six weeks of the study in 2005 was £45 and £278 per 100 ewes in the two intervention groups; the prevalence of lameness fell more rapidly in one intervention group than the other (Figure 1).

244 There were 167 ewes that were either in intervention or control groups for the whole project.

From week 8 until the end of the project the mean prevalence and incidence of lameness in ewes

that were always in intervention groups (solid black line, Figure 1) were significantly lower than

in ewes that were always in control groups (dashed black line, Figure 1) (2.4 (95% CI: 1.7 - 3.1)

248 vs. 5.6 (CI: 4.6 - 6.6) and 1.4 (CI: 1.0 - 1.8) vs. 2.5 (CI: 1.9 - 3.1), respectively). These ewes

249 were used to estimate the impact of the intervention on productivity because they remained under

250 the same treatment for two seasons.

There were fewer barren ewes and ewes that died among ewes always in the intervention group than always in the control group, resulting in more productive ewes per 100 ewes put to the ram and lower replacement costs (Table 9). There were 17 more lambs reared per 100 ewes put to the ram. In 2006, one year after the intervention was started, a significantly higher percentage of lambs born to ewes always in the intervention group were finished before weaning compared with lambs born to ewes in the control group; 18% versus 6%, respectively (Table 8). The additional cost of the intervention was calculated as £150 per 100 ewes put to the ram (Table
4). The intervention improved the gross margin by £630 in 2006 (Table 9), more than 50%
higher than the gross margin in the control group.

260

261 **4. Discussion**

262 4.1 Impact on prevalence and incidence of footrot and interdigital dermatitis

263 We have demonstrated that prompt treatment of individual lame sheep with parenteral and 264 topical antibacterials given to those with FR or ID significantly reduced the prevalence and 265 incidence of lameness in ewes compared with delayed treatment of individual lame ewes with 266 FR/ID treated with foot trimming and topical antibacterials. This latter management is used by 267 the majority of sheep farmers in the UK and elsewhere in the world and so was an ideal control 268 to provide useful results to farmers and to compare with a new practice. It is clear from our 269 results that prompt treatment of FR/ID with parenteral and topical antibacterials was not only 270 beneficial to sheep health and welfare but also cost effective, in that the ewes in the intervention 271 groups were in better body condition, produced more lambs and reared them more rapidly, 272 presumably because of their better body condition.

The reduction in prevalence of lameness occurred in ewes and lambs on each occasion that the intervention was started (May 2005, September 2005, May 2006). The reduction in incidence of lameness suggests that the treatment reduced re-occurrence in the same sheep; this could suggest that transmission of *D. nodosus* was reduced or foot health was improved. This might explain why there was no reduction in incidence of FR or ID in lambs; very few lambs were treated more than once. Alternatively, it might have been lack of power in the study because few lambs were lame.

- 13 -

All ewes with ID (as well as those with FR) were treated with parenteral antibacterials because in Moore et al., (2005) ID lesions were infected with *D. nodosus, the* cause of footrot on 60% of occasions. Lambs with ID were treated with parenteral antibiotics in 2005 but not 2006 because the farm shepherd was concerned about meat withdrawal times.

284

285 4.2 Impact on productivity

286 The impact of footrot lesions on bodyweight, lamb growth rates and wool growth in untreated 287 sheep has been reported previously (Stewart et al., 1984; Marshall et al., 1991; Nieuwhof et al., 288 2008). This is the first paper to report the impact of duration and severity of lameness on 289 production in meat sheep. It is useful to know that treating sheep lame with FR or ID promptly 290 will make them more productive. The reduction in severity and duration of lameness in 291 intervention groups was statistically associated with a higher body condition score (BCS) and 292 greater lamb production. This is probably because low BCS affects fertility and fecundity (Rhind 293 and McNeilly, 1986; Forcada et al., 1992; Abecia et al., 2006). Low BC in ewes also leads to 294 high mortality in lambs (Binns et al., 2002), probably because of low birth weights (Christley et 295 al., 2003; Everett-Hincks and Dodds, 2008) and insufficient production of colostrum and milk 296 (Mellor and Murray, 1985; O'Doherty et al., 1997).

Significantly more lambs were finished before weaning in the intervention groups than in the control groups. This is a very important component of the cost effectiveness of the treatment because one of the main factors determining profitability of lowland flocks is the percentage of lambs finished (MLC, 2001). This is because supplementary feed to lambs after weaning is expensive and so impacts on profits. This, together with the production benefits from the current

intervention (Table 4), indicates that it was cost effective to put in the extra time (approximately
two treatments per 100 ewes per week) and drug resources needed to treat individual lame sheep.
Rapid treatment of lame sheep might also prevent hyperalgesia that is reported in chronically
lame sheep (Fitzpatrick et al., 2006) and so ensure that energy is put into body condition,
reproduction and milk production.

307

308 4.3 Concerns regarding the development of antibiotic resistance

309 In this trial there was no evidence that the parenteral treatments led to bacterial selection for 310 resistance to oxytetracycline. This might be because although there were many treatments they 311 were staggered over time with 1-8 treatments per group per week, so there was no selective 312 pressure for development of resistance. Whilst the use of parenteral antibiotic to treat infectious 313 lameness might not be considered the ideal, it is highly efficacious as a treatment and, as this 314 trial has clearly shown, of considerable benefit to animal welfare and production. It is the best 315 current treatments, the alternatives, trimming and spraying individuals and the whole flock 316 methods of footbathing and footrot vaccination are less effective treatments and in many sheep 317 flocks in the UK do not lead to acceptable levels of lameness control (Kaler and Green, 2009; 318 Kaler et al., 2010; Schwartzkoff et al., 1993).

319

320 4.4 Study design

321 This within farm clinical trial testing two treatments was carried out on one lowland spring322 lambing flock with a compliant farm management team. This approach enabled us to make
323 detailed observations and collect a comprehensive, reliable dataset. We are uncertain whether the
324 improvements that occurred through the intervention would be quantitatively similar on other

- 15 -

325 lowland sheep farms with similar management and prevalence of FR and ID in the UK and 326 worldwide, but we would expect the qualitative results to be generalisable. The distribution of 327 age, BCS, foot conformation (Hawker, 2007) and prevalence of lameness in ewes at the start of 328 the study were similar in all four groups, suggesting that the random stratification was successful. 329 The prevalence of lameness (8%) was also similar to that reported by farmers in previous studies 330 (Grogono-Thomas and Johnson, 1997; Wassink et al., 2003; Kaler and Green, 2009). The group 331 of ewes that moved from intervention to control came from the intervention group with the most 332 rapid reduction in lameness in 2005 (grey solid bar Figure 1). The cross over in 2006 was used to 333 demonstrate that lameness patterns followed the treatment regimes. The incidence and 334 prevalence of lameness rose when sheep were moved from intervention to control groups and 335 vice versa. This suggests that lameness was a correlate for control of FR and ID. The time to a 336 stable prevalence of lameness of 1 - 2%, and the number of treatments required varied between 337 intervention groups. This might have occurred because of differences in the environment in the 338 fields within treatments or that some sheep in intervention group 2 were more infectious. 339 Treatments were matched by field type to minimise the potential impact of climate and soil. 340 Sheep were not in sufficient numbers of fields to test a treatment field interaction. Climate is 341 important in clinical impact of D. nodosus (Green and George, 2008) and is one explanation for 342 the difference in incidence of lameness between 2005 (a very wet, cool year) and 2006 (a hot, 343 dry year). We used groups with the same treatments rather than individuals within groups 344 because we wanted to test whether the treatment of lame sheep reduced transmission between 345 sheep. 346 To minimise observer bias, all observers (n=6) were trained by GJW who also observed the

347 observers once each week to prevent drift in scoring of sheep. In addition, observers regularly

- 16 -

348 discussed scores to confirm continued agreement. A validated locomotion scoring system (Kaler 349 and Green, 2008b) was used to assess the quantity and severity of lameness with paired groups 350 inspected on the same day. The scales for scoring ID, FR lesions and foot integrity have not vet 351 been evaluated and consequently might introduce error. Every effort was made to ensure that all 352 sheep in each field were observed at each observation. Sheep were marked on their flank and had 353 large ear tags. Despite this, sheep that were being observed after a lameness event were 354 occasionally missed for one observation. There were no further feasible improvements that could 355 be made to the design to reduce these reporting errors. 356 The farmer was blind to locomotion scores to prevent the possibility of him altering his usual 357 management. He was an experienced stock person who had managed the flock for over 10 years 358 and his treatment of FR is typical of that used by many farmers in GB (Wassink et al., 2003, 359 2004; Kaler and Green, 2008, 2009). This makes the results from this study highly relevant to 360 many farmers and was the ideal baseline control for this clinical trial. It does mean that this study 361 does not compare a treatment alone but time to known good treatment. There is a wealth of 362 evidence that antibacterials lead to recovery from FR (Sterk, 1960; Egerton et al., 1968; 363 Grogono-Thomas et al., 1994; kaler et al., 2010) and the aim of this study was more than 364 repeating such research. Our results highlight that it is the duration and severity of lameness that 365 affects sheep health and productivity and that is why we see an improved performance in sheep 366 in the intervention groups. Rate of treatment is essential as well as appropriate treatment. 367

368 **5.** Conclusions

We conclude that prompt individual treatment of all lame sheep with ID and FR with parenteraland topical antibacterials reduced the prevalence of FR and ID in ewes and lambs and the

- 17 -

371	incidence of these conditions in ewes. The reduced duration and severity of lameness improved
372	the production of the flock through increased body condition in ewes which led to higher
373	lambing rates, fewer deaths in ewes and lambs and earlier finishing of lambs. The cost-benefit
374	was an increase in gross margin of £630 (€932) per 100 ewes put to the ram.
375	
376	Acknowledgements
377	We thank the farm and shepherd for their compliance during this study. We thank Amanda
378	Bosley, Carol Puttock, Trish Finlay, Anna Thomas, Phil Stokes and Tristen George for their
379	assistance with data collection and to Ruth Allingham for laboratory work. This study was
380	funded by the Department for Environment, Food and Rural Affairs (project number AW1021).
381	
382	References
383	Abecia, J.A., Sosa, C., Forcada, F., Meikle, A., 2006. The effect of undernutrition on the
384	establishment of pregnancy in the ewe. Reprod. Nutr. Dev. 46, 367–378.
385	Beveridge, W.I.B., 1941. Foot rot in sheep: a transmissible disease due to infection with
386	Fusiformis nodosus (n. sp.): studies on its cause, epidemiology and control., Australian Bulletin.
387	Commonwealth Scientific and Industrial Research Organisation (CSIRO). pp. 1-56.
388	Binns, S.H., Cox, I.J., Rizvi, S., Green, L.E., 2002. Risk factors for lamb mortality on UK sheep
389	farms. Prev. Vet. Med. 52, 287-303.
390	Christley, R.M., Morgan, K.L., Parkin, T.D.H., French NP, 2003. Factors related to the risk of
391	neonatal mortality, birth-weight and serum immunoglobulin concentration in lambs in the UK.
392	Prev. Vet. Med. 57, 209-226.
393	DEFRA, 2008. An intervention study to minimise footrot in sheep. Final report AW1021.

- 394 Depiazzi, L.J., Richards, R.B., Henderson, J., Rood, J.I., Palmer, M., Penhale, W.J., 1991.
- Characterisation of virulent and benign strains of *Bacteroides nodosus*. Vet. Microbiol. 26, 151160.
- 397 Egerton, J.R., Parsonson, I.M., Graham, N.P.H., 1968. Parenteral chemotherapy of ovine footrot.
- 398 Aust. Vet. J. 44, 275-282.
- 399 Everett-Hincks, J.M., Dodds, K.G., 2008. Management of maternal-offspring behavior to
- 400 improve lamb survival in easy care sheep systems. J. Anim. Sci. 86, E259-E270.
- 401 Fitzpatrick, J., Scott, M., Nolan, A., 2006. Assessment of pain and welfare in sheep. Small
- 402 Rumin. Res. 62, 55-61.
- 403 Forcada, F., Abecia, J.A., Sierra, I., 1992. Seasonal changes in oestrus activity and ovulation
- 404 rate in Rasa Aragonesa ewes maintained at two different body condition levels. Small Rumin.
 405 Dec 212 224
- 405 Res. 8, 313-324.
- 406 Goddard, P., Waterhouse, T., Dwyer, C., Stott, A., 2006. The perception of welfare sheep in
- 407 extensive systems. Small Rumin. Res. 62, 215-225.
- 408 Goldstein, H., 2003. Multilevel statistical models. Arnold London.
- 409 Green, L.E., George, T.R.N., 2007. Assessment of current knowledge of footrot in sheep with
- 410 particular reference to Dichelobacter nodosus and implications for elimination or control
- 411 strategies for sheep in Great Britain. Vet. J. 175 (2), 173-180.
- 412 Green, L.E., Wassink, G.J., Grogono-Thomas, R., Moore LJ, Medley, G.F., 2007. Looking after
- 413 the individual to reduce disease in the flock: A binomial mixed effects model investigating the
- 414 impact of individual sheep management of footrot and interdigital dermatitis in a prospective
- 415 longitudinal study on one farm. Prev. Vet. Med. 78, 172-178.

- 416 Grogono-Thomas, R., Johnston, K.M., 1997. A study of ovine lameness. MAFF open contract
- 417 OC59 45K. MAFF Final Report. London. MAFF.
- 418 Grogono-Thomas, R., Wilsmore, A.J., Simon A.J., Izzard K.A., 1994. The use of long-acting
- 419 oxytetracycline for the treatment of ovine footrot. Br. Vet. J. 150, 561-568.
- 420 Kaler, J., Green, L.E., 2008a. Naming and recognition of six foot lesions of sheep using written
- 421 and pictorial information: A study of 809 English sheep farmers. Prev. Vet. Med. 83, 52-64.
- 422 Kaler, J., Wassink G.J., Green, L.E., 2008b. The inter- and intra-observer reliability of a
- 423 locomotion scoring scale for sheep. Vet. J. 180, 189-194.
- 424 Kaler, J., Green, L.E., 2009. Farmers' practices and factors associated with the prevalence of
- 425 all lameness and lameness attributed to interdigital dermatitis and footrot in sheep flocks in
- 426 England in 2004. Prev. Vet. Med. (2009), doi:10.1016/j.prevetmed.2009.08.001
- 427 Kaler, J., Daniels, S.L.S., Wright, J.W., Green, L.E., (in press) A randomised factorial design
- 428 clinical trial to investigate the impact of parenteral long acting oxytetracycline, foot trimming
- 429 and flunixine meglumine on time to recovery from lameness with footrot in sheep. J. Vet. Intern.
- 430 Med., in press.
- 431 MAFF, 1994. Condition scoring of sheep. Action on Animal Welfare. Pamphlet PB187.
- 432 Marshall, D.J., Walker, R.I., Cullis, B.R., Luff, M.F., 1991. The effect of footrot on body weight
- 433 and wool growth of sheep. Aust. Vet. J. 68, 45-49.
- 434 Mellor, D.J., Murray, L., 1985. Effects of maternal nutrition on udder development during late
- 435 pregnancy and on colostrum production in Scottish Blackface ewes with twin lambs. Res.Vet.
- 436 Sci. 39, 230-234.
- 437 MLC, 2007. UK Yearbook 2007 meat and livestock. In: Economics (Ed.) Meat and Livestock
- 438 Commission, Milton Keynes.

- 439 Moore, L.J., Wassink, G.J., Green, L.E., Grogono-Thomas, R., 2005. The detection and
- 440 characterisation of Dichelobacter nodosus from cases of ovine footrot in England and Wales. Vet.
- 441 Microbiol. 108, 57-67.
- 442 Nieuwhof, G., Bishop, S.C., Hill, W.G., Raadsma, H.W., 2008. The effect of footrot on weight
- 443 gain in sheep. Anim. 2, 1427-1436.
- 444 Nieuwhof, G., Bishop, S.C., 2005. Costs of the major endemic diseases of sheep in Great Britain
- 445 and the potential benefits of reduction in disease impacts. Anim. Sci. 81, 57-67.
- 446 O'Doherty, J.V., Maher, P.F., Crosby, T.F., 1997. The performance of pregnant ewes and their
- 447 progeny when offered grass silage, maize silage or a maize silage/ensiled super pressed pulp
- 448 mixture during late pregnancy. Livest. Prod. Sci. 52, 11-19.
- Parsonson, I.M., Egerton, J.R., Roberts, D.S., 1967. Ovine interdigital dermatitis. J. Comp.
 Pathol. 77, 309-313.
- 451 Rasbash, J., Browne, W., Healy, M., Cameron, B., Charlton, C., 1999. MLwiN Beta version
 452 01.10.0001.
- 453 Rhind, S.M., McNeilly, A.S., 1986. Follicle populations, ovulation rates and plasma profiles of
- 454 LH, FSH and prolactin in Scottish Blackface ewes in high and low levels of body condition.
- 455 Anim. Reprod. Sci. 10, 105-115.
- 456 Schwartzkoff, C.L., Egerton, J.R., Stewart, D.J., Lehrbach, P.R., Elleman, T.C., Hoyne, P.A.,
- 457 1993. The effects of antigenic competition on the efficacy of multivalent FR vaccines. Australian
- 458 Veterinary Journal 70, 123-126
- 459 Sterk, V., 1960. A contribution to the parenteral application of the remedies for the treatment of
- 460 footrot in sheep. Vet. Sarajevo 9, 277-281.

- 461 Stewart, D.J., Clark, B.L., Jarrett, R.G., 1984. Differences between strains of Bacteroides
- 462 nodosus in their effects on the severity of foot-rot, bodyweight and wool growth in Merino sheep.
- 463 Aust. Vet. J. 61, 348-352
- 464 Wassink, G.J., Grogono-Thomas, R., Moore, L.J., Green, L.E., 2003 Risk factors associated with
- the prevalence of footrot in sheep from 1999 to 2000. Vet. Rec. 152, 351-358.
- 466 Wassink, G.J., Moore, L.J., Grogono-Thomas, R., Green, L.E., 2005. Footrot and interdigital
- 467 dermatitis in sheep: farmers practices, opinions and attitudes. Vet. Rec. 157, 761–765.
- 468 Williams, R.L., 2000. A note on robust variance estimation for cluster-correlated data.
- 469 Biometrics 56, 645-646.
- 470 Winter, A.C., 2004. Lameness in Sheep. Crowood Press, Marlborough, UK.

- 472 Figure 1. Two-week mean prevalence and incidence of lameness in ewes between May 2005473 and September 2006
- 474 Key: solid black line = always intervention, dashed black line = always control, solid grey line =
- intervention then intervention, dashed over from control, dashed grey line = control then control
 crossed over from intervention
- 477 **Figure 2.** Two-week mean prevalence and incidence of lameness in lambs over two lamb
- 478 production seasons, May August 2005 and May August 2006
- 479 Key: solid black line = dam always intervention, dashed black line = dam always control, solid
- 480 grey line = dam intervention (2005) then intervention crossed over from control (2006), dashed
- 481 grey line = dam control (2005) then control crossed over from intervention (2006)

483 484 Table 1. Descriptive statistics 2005

	Intervention	Intervention	Control	Control
	Group 1	Group 2	Group 1	Group 2
	Control yr 2		Intervention	
			yr 2	
No. ewes	175	177	181	177
No. lambs	364	323	357	312
Date first ewe lambed	7/03/2005	17/03/2005	11/03/2005	17/03/2005
% FR foot exam March 2005	26.1	20.5	19.4	20.9
% ID foot exam March 2005	44.9	43.8	38.9	50.3
No. treatments for FR & ID	78	232	20	18
No. treatments other lameness	5	4	2	0
Prevalence (95% CI)	1.9	1.1	4.6	5.3
lame ewes	(1.1 - 2.6)	(0.6 - 1.7)	(2.6 - 6.7)	(3.5 - 7.1)
Incidence (95% CI)	1.3	0.8	2.3	2.5
lame ewes	(0.7 - 1.8)	(0.4 - 1.2)	(1.4 - 3.1)	(2.0 - 3.0)
Prevalence (95% CI)	0.8	1.41	2.5	1.45 (1.2 –
lame lambs	(0.65 - 0.95)	(CI: 0.9 – 1.8)	(CI: 1.7 – 3.3)	1.7)
Incidence (95% CI)	0.4	1.1	1.1	0.6
lame lambs	(CI: 0.2 – 0.6)	(0.8 - 1.4)	(CI: 0.8 – 1.4)	(0.4 - 0.8)
No. (%) culled 2005	49 (28)	31 (18)	52 (29)	54 (36)
% FR foot exam Sept. 2005	5 (3)	10 (6.1)	22 (13)	18 (11)
% ID foot exam Sept. 2005	5 (3)	31 (19)	20 (12)	66 (39)

485 486 No. number, % percent

487 488 Table 2. Descriptive statistics 2006

	Intervention	Intervention	Control	Control
	Group 3	group 4	Group 3	Group 4
No. ewes	147	147	144	132
No. lambs	265	278	267	240
Date first ewe lambed	13/03/2005	22/03/2006	12/03/2006	20/03/2006
No. (%) FR at exam March 2006	5 (3.4)	6 (4.1)	3 (2.0)	7 (5.3)
% ID at first exam March 2006	31 (21)	15 (10.2)	31 (21.5)	13 (9.8)
No. treatments FR&ID	102	76	23	49
No. treatments other lameness	8	2	5	1
Prevalence (95% CI) lame ewes	1.87	0.81	1.69	7.65
	1.39 - 2.55	0.51 - 1.11	1.31 - 2.07	6.65 - 8.65
Incidence (95% CI) lame ewes	1.33	0.55	1.06	3.72
	0.83-1.83	0.27 - 0.83	0.68 - 1.44	2.88 - 4.56
Prevalence (95% CI) lame lambs	1.55	0.46	1.03	4.29
	1.09 - 2.01	0.22 - 0.70	0.75 - 1.35	3.59 - 4.99
Incidence (95% CI) lame lambs	1.01	0.21	0.72	1.84
	0.59 - 1.43	0.07 - 0.35	0.12 - 1.32	0.44 - 2.24
No. (%) culled 2006	32 (22.0)	36 (24.4)	33 (22.9)	28 (21.2)
No. (%) FR foot exam Oct. 2006	0 (0)	0 (0)	7 (5)	20 (16)
No. (%) ID foot exam Oct. 2006	66 (44)	29 (20)	51 (38)	28 (22)

489

Table 3. Number of episodes of lameness by maximum locomotion score in ewes and lambs ; 2005 and 2006 data combined.

492 493 494

Maximum locomotion	Intervention ewe	Control ewe	Intervention lamb	Control lamb
score ^a	episodes	episodes	episodes	episodes
	(n=628)	(n=622)	(n=1047)	(n=1029)
2	271	257	306	262
3	45	85	43	94
4	46	85	56	89
5or 6	7	26	5	26

^a Kaler et al., 2008b

Table 4. Number, percent, median and IQ range of weighted lameness score (WLS) for ewes and lambs in intervention and control groups; 2005 and 2006 data combined

499

	Interventi	Intervention groups combined			Control groups combined		
	WLS 0	WLS 1	WLS 2	WLS 0	WLS 1	WLS 2	
Ewes							
Number	398	143	86	390	95	136	
percent	63	23	14	63	15	22	
WLS Median	0	6	27	0	6	63	
WLS IQ range	_	4 - 8	18 - 48	_	4-9	29 – 137	
Lambs							
Number	754	217	76	755	142	132	
percent	72	21	7	73	14	13	
WLS Median	0	6	24	0	6	52	
WLS IQ range	_	4 - 8	18 - 40	_	4 - 8	28 - 98	

502 **Table 5.** Multilevel multinomial logistic regression models of factors associated with weighted

			WLS 1		WLS 2
	\mathbf{N}_{-} (0/)		(n=238)		n=221)
	No. (%) exposed	OR	95% CI	OR	95% CI
Lactating ewes (n = 1245	5)				
Intervention vs control	626 (50)	1.47	1.10 – 1.96	0.62	0.46 - 0.84
≥4 yrs vs <4 yrs age	652 (52)	1.17	0.88 - 1.55	1.37	1.02 - 1.84
Random effects		Var.	SE	Var.	SE
Variation between years		0.05	0.21	0.09	0.22
Covariance with score					
Ewe		-0.01	0.16		
Erves duy / prespect also				,	
Ewes dry / pregnant alw intervention or control (1	•	WLS 1 (n=60)		WLS 2 (n=41)	
Intervention vs control	98 (56)	0.63	0.31 – 1.26	0.19	0.08 - 0.43
Ewe WLS>0 May - Sept 2005	79 (45)	1.98	1.00 - 3.93	4.01	1.80 - 8.96

503 lameness score (WLS) 1 and 2 versus 0 in lactating and dry / pregnant ewes

504 No. number, % percent, OR: odds ratio, CI, confidence interval, Var.: variance, SE: standard 505 error

506

508 Table 6. Multilevel multinomial logistic regression model of factors associated with higher

	No. (%) exposed	WLS1 (n=355)		WLS2 (n=207)	
Intervention vs control	1033 (50)	1.54	1.21 – 1.96	0.62	0.45 - 0.84
group					
Ewe WLS>0	754 (37)	2.49	1.96 – 3.16	3.54	2.60 - 4.80
Single vs twin	420 (20)	1.45	1.10 - 1.92	1.44	1.02 - 2.05
Male vs female	1058 (51)	1.28	1.01 – 1.63	1.73	1.28 - 2.36
Random effects		Var.	SE	Var.	SE
Variance within litters		0.24	0.18	0.44	0.27
Variance between litters		0.00	0.00	0.00	0.00
Covariance with score					
Litter		0.40	0.16		
Ewe		0.00	0.00		

509 weighted lameness score (WLS) in lambs in both 2005 and 2006

510 No. number, % percent

512 Table 7. Multilevel multivariable binomial logistic regression model of factors associated with

513 ewe body condition ≥ 2.5

At weaning 2005 and 2006								
Variable	No. (%) exposed	OR	95% CI	<i>P</i> -value				
Ewe body condition at previous lambing ≥ 2.5 vs ≤ 2.5	880 (77)	2.83	2.09 - 3.83	<0.01				
Rearing single lamb vs twin	390 (34)	1.80	1.38 - 2.36	< 0.01				
WLS2 compared with WLS0 or WLS1 before weaning	218 (19)	0.54	0.39 – 0.75	< 0.01				
Ewe age <4 vs ≥4 yrs	543 (47)	1.59	1.23 - 2.05	< 0.01				
Mules vs other crossbreeds	814 (71)	1.52	1.14 - 2.02	< 0.01				
Random effects	Var.	SE						
Variation between years	0.13	0.16						
Lambing 2006 - Ewes always in the interver	ntion or alwa	ys in co	ontrol groups (n=167)				
Ewe body condition at weaning $2005 \ge 2.5$ vs <2.5	90 (54)	7.63	3.30 - 17.65	< 0.01				
WLS2 between Sept 2005 and Feb 2006	39(23)	0.31	0.13 - 0.73	< 0.01				

compared with WLS0 or WLS1 Single vs multiple litter 42 (25) 2.73 1.02 - 7.26< 0.05

WLS weighted lameness score, No. number, % percent, OR: odds ratio, CI confidence interval, 514

39 (23)

0.31

0.13 - 0.73

< 0.01

515 Var.: variance, SE: standard error

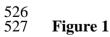
517 **Table 8.** Performance and cost-benefit analysis of the intervention from weaning 2005^a to

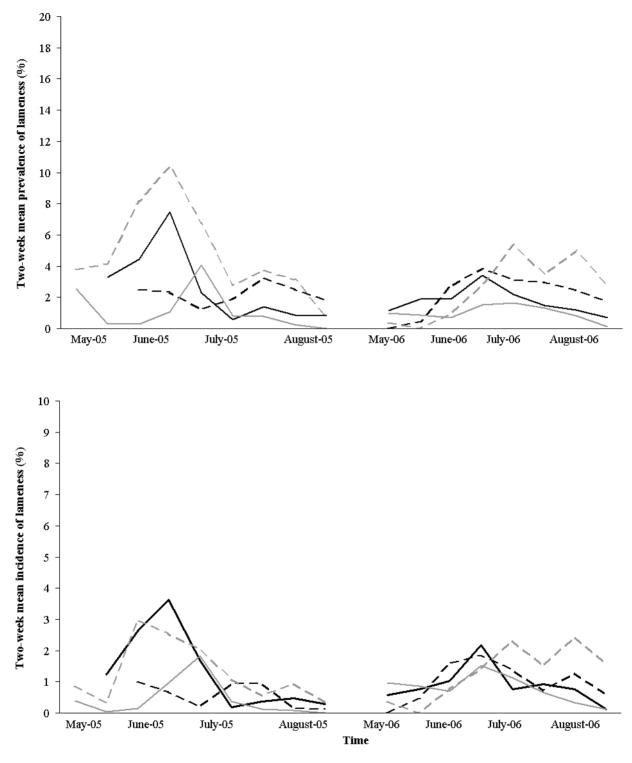
	Intervention	Control		Intervention	Control
Performance	(No./100	(No./100	Financial results	(£)	(£)
	ewes)	ewes)		(~)	(~)
Empty ewes	4	7	Slaughter lamb sales @ £35 / lamb	1098	331
Ewe deaths	3	5	Store lamb sales @£25 / lamb	3572	3701
Productive ewes	93	88	Wool	140	132
Total lambs born	186	176	Gross receipts	4809	4165
Lambs born dead	7	10	Replacement costs @£48.50 per ewe	811	1055
Lambs born alive	179	166	Total output	3998	3109
Lambs deaths after birth	5	9	Feed costs £13.50 / ewe	1201	1136
Lambs reared	174	157	Vet & medicine @£5 / ewe	465	440
Lambs finished	31	10	Intervention cost ^a	150	C
Lambs sold as stores	143	148	Other costs £3.80	356	337
			Total variable costs	2173	1914
			Gross Margin	1825	1195

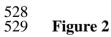
518 weaning 2006 per 100 ewes put to the ram.

^a Cost of treatment parenteral antibacterial £1, antibacterial spray £0.30, Time 5.6 min

520 (unpublished data, The University of Warwick); Minimum wage cost (per hour): £5.05


Table 9. Cox proportional survival model of time to finishing of lambs.
 522


Among 182 lambs finished before 140 days of age	No. (%) exposed	Hazard ratio	95% CI ^a	Wald χ^2	$\chi^2 P$ -value
In intervention vs control group	162 (89)	2.91	1.92 - 4.42	14.91	< 0.01
Birth weight ≥ 5.5 vs < 5.5 kg	121 (66)	1.75	1.24 – 2.47	27.78	< 0.01
Single vs twin lamb	98 (54)	1.44	1.07 – 1.94	30.71	< 0.01
Proportional-hazards assumption test based on Schoenfeld residuals		$\chi^2 = 2.21$	<i>P</i> >0.1		
Among 188 lambs finished between 140 and 163 days of age					
Dam body condition score at lambing ≥ 2.5 vs < 2.5	145 (77)	1.69	1.28 - 2.24	11.56	< 0.01
In intervention vs control group	128 (68)	1.48	1.06 - 2.06	16.79	< 0.01
Birth weight ≥ 5.5 vs < 5.5 kg	111 (59)	1.41	1.07 – 1.84	22.06	< 0.01
Proportional-hazards assumption test based on Schoenfeld residuals		$\chi^2 = 6.24$	<i>P</i> >0.1		
^a Robust 95% confidence intervals,	No. numb	er, (%) perc	ent		


523 Robust 95% confidence intervals, No. number, (%) percent

524

