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In humans, exposure to sunlight correlates positively with skin cancer incidence, but negatively with 

hypertension and cardiovascular mortality.  Recent results indicate that ultraviolet radiation 

mobilises storage forms of nitric oxide in the skin to reduce blood pressure and modulate cardiac 

function, which may account for some of the beneficial health effects of sunlight. Possible molecular 

mechanisms involved and implications for public health advice are discussed.  
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Introduction 

Humans evolved being exposed for about half of the day to the light of the sun. Nowadays, exposure 

to sunlight is actively discouraged for fear of skin cancer, and contemporary lifestyles are associated 

with long hours spent under artificial light indoors.  Besides an increasing appreciation for the 

adverse effects of these life-style related behavioural changes on our chronobiology the balance 

between the beneficial and harmful effects of sunlight on human health is the subject of 

considerable debate, in both the scientific and popular press, and the latter is of major public health 

significance.  While there is incontrovertible evidence that ultraviolet radiation (UVR) in the form of 

sunlight is a significant predisposing factor for non-melanoma and melanoma skin cancers in pale 

skinned people(1), a growing body of data suggest general health benefits brought about by 

sunlight(2). These are believed to be mediated either by melatonin or vitamin D. Melatonin is 

produced from serotonin by the pineal gland located in the centre of the brain during periods of 

darkness, and its release is suppressed as a function of the visible light intensity sensed through 

ocular photoreceptors. Vitamin D is formed by ultraviolet B (UVB)-mediated photolysis of 7-

dehydrocholesterol in the skin.  Both melatonin and vitamin D are pleiotropic hormones that exert a 

multitude of cellular effects by interacting with membrane and nuclear receptors, and receptor-

independent actions. People with more heavily pigmented skin require higher doses of UVB to 
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produce adequate amounts of vitamin D, and this may have been an evolutionary driver to the 

variation of human skin colour with latitude and intensity of solar irradiation.  Our degree of 

exposure to sunlight is easily modified by behavioural factors such as use of clothing, sunglasses and 

sun-blocking creams, and time spent outdoors.  Balancing the carcinogenic risks with the 

requirement for vitamin D has led to advice on moderating sun exposure, whilst supplementing food 

with vitamin D.  Guidance on such behaviour is part of the public health campaigns in most countries 

with Caucasian populations.  Following these suggestions we may, however, be missing out on other 

health benefits provided by natural sunlight that are less obvious and unrelated to the above 

classical mediators. 

 

Core  Hypothesis 

We here propose that many of the beneficial effects of sunlight, particularly those related to 

cardiovascular health, are mediated by mechanisms that are independent of melatonin, vitamin D 

and exposure to UVB alone.  Specifically, we suggest that the skin is a significant store of nitric oxide 

(NO)-related species that can be mobilised by sunlight and delivered to the systemic circulation to 

exert coronary vasodilator and cardioprotective as well as antihypertensive effects (Fig.1).  We 

further hypothesize that this dermal NO reservoir is a product of local production and dietary supply 

with nitrate-rich foods. 

 

Sunlight and Cardiovascular Disease 

The roots of photomedicine are ancient, dating back to the beginnings of civilization when 

heliotherapy was found to improve certain disease states. Sunlight was observed to have 

cardiovascular effects during the MRC hypertension trials of the 1970s with blood pressure being 

consistently lower in summer than winter(3). The prevalence of hypertension and mean population 

diastolic and systolic blood pressures correlate directly with latitude, being higher in populations 

living further from the equator(4). This may be due to a number of racial and environmental factors 

other than sunlight. Yet, within the UK all cause mortality (of which the major cause is ischaemic 

heart disease) correlates linearly with latitude (relative risk 1.0 at 50°N, 1.46 ± .03 at 55°N), even 

after accounting for all known risk factors, including fruit and vegetable consumption (5). Moreover, 

following migration the mortality risk changes to that of the new place of residence (6).  Seasonal 

variations in light intensity, caused by the inclination of the Earth’s rotary axis,1 are accompanied by 

seasonal variations in incidence and mortality of cardiovascular disease (CVD). Similar to stroke, 

rates of acute coronary syndromes (incl. unstable angina, acute myocardial infarction, atrial 

                                                           
1
 Contrary to common belief, the intensity of solar radiation is not governed by the distance between Earth 

and sun; paradoxically, our planet is closest to the sun in winter, not summer. 
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fibrillation, and sudden cardiac death) are highest in the winter months with shorter hours of 

daylight(7).  Temperature stress and sympathetic activation have been suggested as a cause for this, 

but the same effect is seen in countries such as Kuwait, where temperatures in winter are most 

comfortable and impose least physiological stress(8). Sunlight exposure in temperate climates is 

markedly reduced in winter not only because of the reduction in daylight hours, but also because of 

increased light-impenetrable clothing worn.  

 

Recent Findings and Possible Impact on Cardiovascular Disease Burden 

Recently, Suschek et al demonstrated that irradiation of healthy individuals with biologically relevant 

doses of UVA leads to a sustained  reduction in blood pressure(9). This is an important finding as 

small changes in population blood pressure can produce significant reductions in deaths from 

cerebral and coronary vascular disease.  The fall in mortality due to stroke, ischaemic heart disease 

and other vascular diseases is directly and linearly proportional to the degree of reduction in blood 

pressure, and a 20 mmHg lower systolic blood pressure leads to a 2-fold reduction in overall 

mortality in both men and women aged 40-69 years(10). These dramatic effects on major causes of 

morbidity and mortality highlight the benefits expected from even small UV-mediated reductions in 

blood pressure.  Besides their positive impact on the burden of disease from a human, family and 

societal perspective, moderate exposure to sunlight may also reduce the economic burden of CVD. 

The latter has been estimated to amount to €169 billion annually for the European Union (11) and 

$519 billion for hypertension, heart disease and stroke in the United States (12) (combined impact of 

healthcare costs and lost economic output in 2003). Thus, even minor reductions in blood pressure 

due to enhanced exposure to sunlight could translate into hundred thousands of person years of life 

and billions of $/€  saved every year. 

 

What Mechanisms may be Involved and what Other Effects can be Expected from Moderate 
Exposure to Sunlight?   

Nitric oxide, produced from L-arginine by nitric oxide synthase  (NOS) in the endothelium, has been 

recognized as a key vasodilator in the vascular system since the identification of EDRF as NO (13), 

and systemic inhibition of NO formation is accompanied by an immediate rise in blood pressure.  In 

vivo, NO is rapidly inactivated by reaction with oxygenated haemoglobin and reactive oxygen 

species, giving rise to the formation of nitrate (NO3
-), nitrite (NO2

-) and several reactive nitrogen 

oxide species. The short half-life of NO should prevent it from having major actions at a distance 

from its site of production, although conversion to longer-lived species with vasodilator properties is 

known to occur in the circulation(14).  Nitrite, for long considered biologically inert at low 

concentrations, is now known to not only dilate blood vessels in its own right but to also protect 
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organs against ischemia/reperfusion (I/R) damage (reviewed in (15, 16).  Haemoglobin, myoglobin, 

xanthine oxidoreductase, cytochrome P-450 and mitochondrial enzymes can all generate NO from 

nitrite, in particular under hypoxic conditions. Apart from continuous enzymatic NO production, 

blood vessels ‘photorelax’ on direct irradiation with UVA, and this effect is potentiated in the 

presence of sodium nitrite(17). Endogenous nitrite and S-nitrosothiols (RSNOs) in the vasculature 

have been shown to account for this phenomenon, and both compounds have absorption peaks 

within the UVA wavelength range (18). Similarly, UVA irradiation of skin in vitro leads to 

photodecomposition of “NO stores”  and release of NO(19). By weight, the skin is one of the largest 

organs in the body, with a surface area of around 2m2 in the average adult. All three NOS isoforms 

are expressed in the dermis and epidermis(20), and in addition to this, nitrite and NO are generated 

on the skin surface by reduction of sweat nitrate(21) and possibly by the oxidation of ammonia(22) 

(Fig.2).  The epidermis is particularly rich in cysteine-containing proteins and their sulfhydryl groups 

are readily nitrosated to form RSNOs. Nitrite, nitrate and RSNOs are found in the dermis and 

epidermis at concentrations one or two orders of magnitude higher than those in plasma (19, 23). In 

adults, skin and blood are of comparable weight and volume, and nitrite in the epidermis alone 

amounts to ~135 μmoles, while total nitrite in blood rarely exceeds 13-15 μmoles(23).  Thus, 

mobilization of only a fraction of the relatively large epidermal pool of e.g., nitrite by sunlight is likely 

sufficient to transiently increase plasma nitrite concentrations.  The exact mechanism of release and 

nature of the dermal “NO stores” is unknown (in addition to the species discussed above it may 

include metal nitrosyls such as dinitrosyl iron complexes and NO-heme species), but increases in 

systemic nitrite availability would rapidly translate into higher concentrations of nitroso products in 

blood and tissues(24), and this is likely to contribute to cytoprotection and vasodilatation. A recent 

human study has demonstrated that UVA irradiation can increase plasma nitrite levels by 40% (9). 

This is intriguing considering that in animal models a similar increase in nitrite is associated with 

cardioprotection following I/R injury(25).  Dietary nitrate intake (predominantly from green leafy 

vegetables) may provide an alternative source of nitrite. An entero-salivary circulation of nitrate 

ensures that part of this dietary nitrate is reduced to nitrite by facultative anaerobic bacteria in the 

mouth. Thus, a high nitrate meal leads to a sustained increase in circulating nitrite(26), and this 

nitrite increase is paralleled by reduction in systemic blood pressure suggesting further reduction to 

NO(27, 28). In addition to the commensal bacterial flora mammalian tissues are endowed with the 

capacity of sequential nitrate  nitrite  NO reduction(29). Skin bound NO stores are in equilibrium 

with circulating nitrite in unirradiated individuals(23), and dietary derived nitrite may therefore ‘top 

up’ the skin reservoir.  In addition, circulating nitrate may be photolysed by UVA reaching the 

superficial dermal vasculature and give rise to the formation of NO, nitrite and nitroso species (30).  
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Thus, multiple processes in the skin and in the circulation may contribute to light-induced blood 

pressure reduction and cardioprotection, with changes in nitrite and nitroso species concentrations 

playing key roles (Fig.3). Lower levels of sunlight reaching the skin during the winter season may 

translate into lower nitrite and nitroso species concentrations in the skin and circulation, and this 

may contribute to seasonal variations in CVD. Unfortunately, little is known about seasonal 

differences in NO-related species concentrations; no data is available on nitroso species variations 

and information about circulating nitrite/nitrate levels is conflicting(31, 32), possibly due to 

confounding nutritional influences. 

Even small bursts in systemic nitrite levels can have profound effects on cardiac redox status 

and trigger long-lasting changes in abundance and post-translational modification (including 

oxidation, nitrosation, nitrosylation, nitration, and phosphorylation) of a large number of 

proteins(33).  The magnitude and breadth of nitrite-induced changes to the cytosolic and 

mitochondrial cardiac proteome is rather surprising and includes enzymes involved in metabolism, 

energy production, redox regulation, contractile function, and serine/threonine kinase signaling(33) 

as well as effects on complex I of the respiratory chain(34). Some alterations are reminiscent of 

ischemic preconditioning and consistent with a cardioprotective phenotype, although the overall 

complexity of changes observed suggest involvement of additional mechanisms.  To this end, nitrite 

has recently been shown to affect T- cell function and cytokine release(35), raising the possibility 

that it may also affect inflammatory processes. Effects of nitrite and nitroso products on 

inflammation and immune cell function would be of obvious significance for CVD, and a systemic 

increase in circulating nitrite following whole body exposure to UVR may account for the well-known 

effects of sunlight on the immune system. The situation is likely to be even more complex as both, 

melatonin and vitamin D, are known to affect the formation and availability of NO at multiple levels, 

providing ample opportunity for cross-talk between these pathways. Although nitrite would seem to 

be a likely source and nitroso species possible mediators of the effects of sunlight on blood pressure, 

the processes conferring cardioprotection may well involve additional metabolic pathways and 

signalling processes. Which NO metabolite ultimately accounts for what biological effect is currently 

unclear and elucidation of the pathways involved in local and systemic responses to sunlight will 

require further investigation. Nevertheless, it would appear that enhancing the availability of NO-

related metabolites by sunlight has the potential to confer cardiovascular protective effects not 

afforded by other mediators typically associated with exposure to sunlight. Some of the effects 

described here may not be limited to the heart but provide benefit for other organ systems as well 

(Fig.3). 
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Hypothesis Testing and Outlook 

Hypertension and ischaemic heart disease are major causes of morbidity and mortality, particularly 

in northern Europe, but excessive sun exposure carries significant risks. It appears challenging to 

appropriately measure and quantify sunlight exposure, evaluate its weighted relevance compared to 

overt traditional risk factors and establish its actual relationship with vascular function and 

endothelial function. However, if proven correct, our hypothesis will have major implications for 

public health advice. If true, we would expect to find an inverse correlation between markers of sun 

exposure, such as actinic keratoses and skin cancers and prevalence of hypertension, ischaemic 

heart disease and stroke.  Such relationships can be investigated by interrogation of population 

diagnostic databases.  Differentiating the effects of sunlight on cardiovascular and hypertensive 

mortality will require careful stratification for expected confounding variables associated with 

differing sun exposure patterns, and data on these factors (e.g. smoking history, diet and social class) 

will need to be available.  At the experimental level, we need a better understanding of precisely 

how different wavelengths of the electromagnetic solar radiation interact with NO-related species 

and what the subsequent fate of the reaction products is. Of note, also near-infrared and infrared 

light, which penetrate skin to reach much deeper tissue layers compared to UV, can release NO from 

nitrosyl-heme species(36). Thus, light of various wavelengths – perhaps even visible light - may affect 

NO status, provided overall photic energy levels are sufficient for the mobilization of dermal NO 

stores. We also need to measure the dose-response relationship of sunlight’s effects on blood 

pressure and other cardiovascular parameters such as coronary and systemic vascular distensibility 

and total peripheral resistance. This and other information will be crucial to identify how much of an 

NO-related pool of mediators is required to enable sunlight to have its proposed cardiovascular 

effects, and whether this pool is skin-bound, or present in the superficial dermal vasculature. The 

stage of life at which UV exposure occurs may be significant.  Episodic sunburn in childhood is a 

particular risk factor for malignant melanoma, the most serious of the UV-related skin cancers.  The 

most marked effect of seasonal variation in blood pressure is seen in older age cohorts(3).  

Cardiovascular mortality of individuals who moved relates to the geographical destination, not the 

childhood origin of the migrant subjects(6). The adult cardiovascular system may thus be more 

susceptible to the beneficial effects of sunlight related NO release than that of children. Considering 

the demographic transition to an ageing world population with enhanced CVD risk this 

differentiation may be significant. If confirmed, it will enable public health messages to be tailored 

to cautious sunlight exposure in childhood, with increased exposure later in life, to limit the 

carcinogenic effects of sunlight on the skin early on, while allowing full benefit to be obtained from 

its cardiovascular effects later.   In conclusion, harnessing the power of the sun for our health may 
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not stop at the production of melatonin and vitamin D but include pathways under control of NO 

and nitrite/nitrate. Irrespective of the precise mechanism(s) of action, a modulation (e.g. by dietary 

measures) of the NO-related store in the skin and cautious bodily exposure to sunlight would seem 

to provide cardiovascular benefits. The future is bright – let a little sunshine into your heart. 
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Figure Legends: 
 
 
Fig. 1: Sunlight-induced export of NO bioactivity from storage forms in the skin.  
 
Fig. 2: Enzymatic and non-enzymatic sources and location of major NO-related biomolecules in the 
skin. 
 
Fig.3:  Possible molecular mechanisms involved in mediating the beneficial cardiovascular effects 
of sunlight. 
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