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Representing the UK’s cattle herd as static
and dynamic networks

Matthew C. Vernon* and Matt J. Keeling

Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK

Network models are increasingly being used to understand the spread of diseases through sparsely
connected populations, with particular interest in the impact of animal movements upon the dynamics of
infectious diseases. Detailed data collected by the UK government on the movement of cattle may be
represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where
a movement of animals has occurred. These network representations may vary from a simple static
representation, to a more complex, fully dynamic one where daily movements are explicitly captured.
Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are
compared. We find that the simpler static network representations are often deficient when compared
with a fully dynamic representation, and should therefore be used only with caution in epidemiological
modelling. In particular, due to temporal structures within the dynamic network, static networks
consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when
parameterized to match early growth rates.
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1. INTRODUCTION
The movement of animals within the UK is vital to the
economics of the livestock industry, but carries with it
the risk of transmitting infectious diseases across sub-
stantial geographical distances. Data on the movement of
all cattle in the UK are collected by the Department for
Environment Food and Rural Affairs (DEFRA), as part
of the Rapid Analysis and Detection of Animal-related
Risks (RADAR) system, itself part of the Veterinary
Surveillance Strategy (Lysons et al. 2007).

This movement data may be abstracted into a directed
contact network in which agricultural premises are nodes,
and the movements of cattle between premises are edges.
The resulting network may be analysed using a range of
techniques, including those developed for handling social
networks (Wasserman & Faust 1994; Carrington et al.
2005). A common approach has been to consider all the
movements within a fixed period (typically 7 or 28 days, or
a year) as a static network, and then to analyse the
properties of the resulting network (Christley et al. 2005;
Bigras-Poulin et al. 2006), or to repeat this process for a
consecutive sequence of such periods and look for trends
in the properties of the resulting networks (Robinson et al.
2007). Indeed, most social network analysis concentrates
on static networks, and there is a paucity of strategies
for addressing the structure of dynamic networks
(Wasserman & Faust 1994). Research into dynamic
networks has concentrated on models based on how
individuals create or change their ties in a network, in
response to their perception of that network’s structure
(Snijders 2005), how popular other individuals in the
network are (Barabási & Albert 1999), their social
distance from and shared activities with other individuals
(Kossinets & Watts 2006) or how the other individuals

perform in a game-theoretic framework (Skyrms &
Pemantle 2000; Zimmermann et al. 2004). The dynamic
pattern of movement between farms is also likely to
be governed by some underlying set of rules linking
livestock population dynamics with economics; however,
given the comprehensive nature of the recorded move-
ments, our aim is to understand how they influence
disease transmission.

The UK cattle movement data, and the network of
connections that can be derived from it, are one of the
most detailed datasets available on dynamic network
structure. As such, these data have provided an ideal test
of many theories and concepts from network theory. What
is more, the presence of information about infection on
cattle farms (Wint et al. 2002; Gilbert et al. 2005) provides
a real-world comparison with the ideals of network theory.
Obviously predicting the spread of actual infections
through the cattle movement network requires models
that can accurately capture the epidemiology and natural
history of a particular pathogen, and produce results that
are specific to the particular infection studied. Here we
adopted an alternative, and more generic approach, using
simple disease models to understand the implications of
dynamic cattle movements, as opposed to static network
connections. These simple models treat the farm as a
single epidemiological unit.

In this paper, a range of static and dynamic network
representations of the UK’s cattle herd are considered.
Since the purpose of constructing network models of
cattle movement is to understand the impact of move-
ments upon the dynamics of infectious disease, simulated
disease processes were employed to assess the suitability of
the different network representations. More specifically,
a stochastic, discrete-time susceptible, infectious, recov-
ered (SIR) disease model was developed, and the
dynamics and final epidemic size of simulations run upon
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the different network representations measured. Our aim
was to ascertain whether any static network provides a
consistent approximation to the fully dynamic network, or
to identify regions of epidemiological parameter space
where static network approximations may be valid.

2. MATERIAL AND METHODS
(a) Movement data

Cattle movement data were provided by DEFRA from the

RADAR project on 24 May 2006. In this analysis, only

movements occurring during 2004 were considered.

The main information in this database is a ‘livestock

location’ table, with each row containing the following

information: the identity of the location and animal, the

arrival and departure dates, the type of arrival and departure

movements (including details of how they were inferred, if

relevant) and the country imported from or exported to,

if relevant. To derive movements (the edges in a contact

network) from this table, it was necessary to find two stays

on locations where the animal concerned is the same, and

the end date of one stay is the start date of the other;

additionally, the start and end locations of the movement

should be different, and the movement type by which the

animal arrives at the destination holding should not be birth

or death.

In particular, we translated the movement of individual

cattle between farms into a network of nodes and edges, and

then translated the edges into a graph-theoretic matrix

presentation, Gi, j (d ), which defines the strength of the

connection from premise i to premise j on day d (generally

Gi, j(d ) will be 1 if there was a movement of cattle from i to

j on day d and 0 otherwise, although we use the term strength

as Gi, j can take other values in alternative network

representations). We note that the matrix is not symmetric

as movements have a definite direction associated with them.

(b) Disease simulation

The spread of disease on the network representations

discussed in this paper was modelled using a simple stochastic

discrete-time SIR model. Our model treated farms as a single

unit, comparable with the basic assumptions within the

models developed for the 2001 foot-and-mouth epidemic in

the UK (Kao 2002; Keeling 2005). This is akin to a simple

Levins-type metapopulation model (Levins 1969) in which

each farm exists in one of three basic states. In addition, all

farms were considered identical, such that neither number of

cattle, breed nor farming practices have any effect on the

transmission dynamics; this is obviously a crude assumption,

but allows us to examine the impact of network structure in

isolation from other heterogeneities. Most nodes began the

simulation in the susceptible (S) state, although a small

number, a (set to 1 throughout this paper), were chosen at

random to begin in the infected (I) state. The model was then

synchronously updated using a daily time step. During each

time period, disease passed along each edge from an I node to

an S node with probability n. Nodes remained in state I for an

integer number of iterations, m, and then passed into the

recovered (R) state. Nodes in the R state remained in that

state forever. The parameters n and m remained constant

during any given simulation. In the case of dynamic networks,

the network was updated after every model time step.

Formally, the dynamics can be described as follows:

pðstateði; tC1ÞZ I jstateði; tÞZSÞZ1K
Q

stateð j;tÞZIð1KnGj;iÞ
pðstateði; tC1ÞZR jstateði; tKmÞsSÞZ1; ð2:1Þ

where stateði; tÞ2 fS; I;Rg is the state of node i at time t. As

such, it is clear that only the infection process (first line of

equation (2.1)) depends on the network structure, while

recovery is independent, operating at the farm level.

This model is implemented using the functions

sir_net and sir_dynamic_net (for static or dynamic net-

works, respectively) in the ‘CONTAGION’ software package

(Vernon 2007).

(c) Network representations

The cattle movement data from 2004 were abstracted to form

networks in six different ways. In general, these networks

either represented plausible approximations to the fully

dynamic network or allowed the exploration of various

aspects of the fully dynamic network. In each case,

agricultural premises (such as farms or slaughterhouses, but

not markets where stays are generally too short to result in

transmission) were represented as nodes, and movements of

cattle were represented as directed edges (edge direction

being the same as the direction of cattle movement). For each

resulting network, 10 000 disease simulations were run with

values of n ranging from 0.01 to 1 at intervals of 0.01 and

with values of m ranging from 1 to 50 (time steps, which are

equal to days) at intervals of 1 (a total of 50 million simu-

lations per network).

For each of the networks defined below, we determined a

graph matrix representation (G) that was related to the

recorded pattern of movements. We represented the recorded

movements as

Ĝijðd ÞZ
1; if movement from i to j on day d;

0; otherwise:

(

Hence Ĝðd Þ was an N!N matrix linking the N livestock

premises in Great Britain.We note that ĜðdÞ is solely based on

the presence or absence of movements on a given day and

does not capture the number of animals that are moved.

(i) Dynamic

The dynamic network (G full ) was used to represent the

consequences of all 366 days’ movements for 2004. In

practice, the dynamic network was effectively 366 static

networks, one for each day of the year; if cattle moved from

farm i to farm j on day d, then the network for day d would

contain an edge i/j. To accommodate long-duration

epidemics that lasted more than 1 year, the dynamic network

was made periodic. We therefore set

Gfull Z hĜð0Þ;.; Ĝð365Þi;

where h.i denotes an ordered set. We considered the

behaviour predicted by the dynamic network to be our ‘gold

standard’; while acknowledging that our epidemiological

assumptions are too simplistic to match any real infection,

the dynamic network most faithfully captures the true pattern

of contacts between farms.

(ii) Periodic dynamic

This network representation was constructed in the same

manner to the full dynamic networks, but only movements
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from a limited number of days (either 7 or 28) were

considered. The periodic-dynamic network representation

Gpd(x1, n), for a period of n days starting on day x1 was

defined as

Gpdðx1; nÞZ hĜðx1Þ;.; Ĝðx1 C ðnK1ÞÞi:

As such, comparing results from the periodic dynamic network

with those from the full dynamic network allowed the

assessment of the degree of variation in network structure

throughout the year. The periodic dynamic network captured

the full movement pattern from a short interval; the issue is

whether such an interval is representative of a year. Generally,

we take x1Z0 and either nZ7 or 28 days.

(iii) Static

This network was by far the simplest one considered.

A number of days’ movements (either 7 or 28) were

combined, such that any movement of animals between two

premises within that period would result in an edge between

the nodes corresponding to those premises in the network.

The static network representation Gstat(x1, n), for a period of

n days starting on day x1 was therefore defined as

Gstat
ij ðx1; nÞZ 1; if

Xx1CðnK1Þ

dZx1

Ĝi;jðdÞR1;

0; otherwise:

8
><

>:

This static network did not take into account the number

of times a dynamic connection was present and was there-

fore expected to substantially overestimate transmission

compared with its fully dynamic counterpart for the same

epidemiological parameter values.

(iv) Weighted static

The weighted static network represented a straightforward

refinement of the previous static network, but accounted for

the assumption that the frequency of movements between

farms is likely to be relevant to disease transmission. It was

constructed in the same manner as the static network

representation, but the resulting edges were given a weight

equal to their frequency in the time period considered. The

weighted static network representation Gws(x1, n), for a

period of n days starting on day x1 was again an N!N

matrix, the entries of which were defined as

Gws
ij ðx1; nÞZ

Px1CðnK1Þ

dZx1

Ĝi;jðdÞ

n
:

In addition to the standard nZ7 and 28-day periods,

a weighted static network was constructed considering all

movements in 2004 (nZ366). In many ways, the weighted

static network represented the natural static version of the

fully dynamic network (Bell et al. 1999; Corner et al. 2003).

The key issue is the effect of replacing the brief strong

connections of the dynamic network with permanent weaker

connections in the static model. Although both network

assumptions should lead to the same expected transmission

from a given infected farm, the timings and distributions of

secondary cases were anticipated to be very different.

The final two network representations examined ways

in which the dynamic network could be smoothed. As

such, they provided a simple test of the implications of

daily movement structure as opposed to more slowly varying

network structures.

(v) Sequential weighted static

This representation consisted of a series of weighted static

networks, each being used for the number of simulation

time steps equal to the number of days’ movements it had been

constructed from. For example, where 7-day weighted static

networks were used, the first seven simulation time steps would

be run on the weighted static network constructed from days

1–7 of the original movement data, the second seven

simulation time steps on the weighted static network

constructed from days 8–14 of the original movement data,

and so on. For this representation, due to computational

overheads, only 1000 simulations were performed for each n

and m value. The sequential weighted static representation

considering n days, Gsws(n), was defined thus

GswsðnÞZ hGW ð0Þ;.;GW ðXÞi;

where GW ðx1ÞZGws n
x1
n

j k
; n

! "
;

where bxc represents the integer value of x, rounding down.

(vi) Smoothed

The smoothed network consisted of a series of weighted static

networks, one per day, to effectively produce a moving

average of the fully dynamic network. For example, using a

7-day moving average, the first network in this representation

was a weighted static network constructed from days 1–7 of

the original movement data, the second was a weighted static

network constructed from days 2–8 of the original movement

data, and so on. Again, both 7- and 28-day moving averages

were considered. For this representation of the network, only

1000 simulations were performed for each n and m value. The

smoothed network representation using a moving average

over n days, G smooth(n) was defined as

GsmoothðnÞZ hGwsð0; nÞ;Gwsð1; nÞ;.;Gwsð365; nÞi:

3. RESULTS
Our first observation concerns the difference between 7-
and 28-day based networks. Throughout, for greater
clarity of the figures, we only show results from 28-day
networks. Smoothing using 7- and 28-day windows
generated similar behaviours. Epidemics run upon the
7-day periodic-dynamic, static and weighted static rep-
resentations behaved similarly to those run on the
equivalent 28-day representations, but with a smaller
final epidemic size (data not shown). This is to be
expected as the shorter 7-day sampling interval leads to
fewer movements being included and therefore a network
which is not as well connected.

(a) The effect of varying infectious period when

transmission probability is constant

Figure 1a,b shows mean final epidemic size against
infectious period for a transmission probability of 0.3
and 0.7, respectively; comparable results are obtained for
all transmission probability values investigated. When
transmission probability was relatively low (as in
figure 1a), disease simulations upon the (28-day) static
network representations resulted in significantly larger
final epidemic sizes than those upon other network
representations; this effect was especially marked with
short infectious periods. The static network representation
combined multiple days’ movements into one single

Representations of UK cattle movements M. C. Vernon & M. J. Keeling 3
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network, resulting in a comparatively dense network;

accordingly a relatively large number of nodes were
infected, even during a short-lived epidemic. For all but
the smallest infectious periods, the static network gave rise
to an approximately constant final epidemic size (of

approx. 3000 farms); this signified that the epidemic had
reached all available nodes within the network—in this
case it was the sample size of 28 days and not the
transmission process that limited the epidemic. This
means that epidemics generated on networks that used

all the movements in 2004 could potentially exceed 28-day
static network epidemics if the infectious period and
transmission probability were large enough.

Other networks based on 28-day samples (the periodic-

dynamic and 28-day weighted static network represen-
tations) produced results that approached asymptotically
to those of the static network as the infectious period
became sufficiently long. However, for shorter infectious

periods, both of these models produced smaller epidemic
sizes due to the weaker strength of connections (in the
case of the weighted static) or intermittency of connec-
tions (in the case of the periodic-dynamic network).

Interestingly, the periodic-dynamic network consistently
produced larger epidemics than the weighted static, due to
the way that the fixed infectious period interacted with
daily movements.

The two smoothed networks generated similar sized
epidemics to the full dynamic network; with all three
showing increasing final epidemic size with increasing
transmission probability and infectious period.

For low transmission rates, the year-long weighted
static network (the most natural static approximation)

produced final epidemic sizes similar to those of the full
dynamic model; hence it might be argued that, in terms of
this simplest measure, the weighted static network per-
forms well. However, as the transmission probability
increased, the weighted static network produced far larger
epidemic sizes. This discrepancy is due to which element
limits the epidemic spread—when transmission rates are
high, spread through the dynamic network was limited by
the intermittent presence of connections, whereas for the
year-long weighted static network, connections were
always present and it was the probabilistic nature of
transmission that limited the infection process. This
argument is made more precisely later.

(b) The effect of varying transmission probability

when infectious period is constant

Figure 2 again shows final epidemic size, but now the
infectious period is fixed (at mZ50 days) and the
transmission probability is varied. A similar pattern is
visible here as in figure 1a,b—however, it is more
noticeable that both of the smoothed networks under-
estimated the final epidemic size predicted by the fully
dynamic network. This underestimation was in part due to
the way that transmission probabilities were modified by
the smoothed networks. For the extreme case where the
transmission probability nZ1, a single connection in the
dynamic network was guaranteed to transmit infection
(assuming the farm is infectious); however, this was not
the case for the smoothed networks where the reduced
transmission rate (over a longer period) meant that
infection may fail to transmit.

(c) Differences in epidemic time courses between

different network representations

Turning to the epidemic dynamics in more detail,
figure 3a illustrates typical time courses for outbreaks
simulated on the various network representations. It
shows the mean number of recovered nodes (total
epidemic size so far) at each time step from simulations
run with a transmission probability of nZ0.36 and an
infectious period of mZ12 days; lines stop when the
epidemic dies out. Figure 3b shows the same information,
but with the static network representation result removed,
for clarity. These figures give the clearest indication so far
that the different networks give rise to different epidemic
profiles; as expected, for these parameters the static
network produced by far the largest and most rapid
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epidemic. In all cases, the epidemics followed the typical
sigmoidal time course of an SIR epidemic—initial slow
spread, followed by a period of rapid growth, which then
slowed again as the susceptible population was depleted
(Anderson & May 1991). It is interesting to note that the
weekly farming cycle is observable in the dynamic network
with far less transmission occurring on Sundays; a similar
feature is seen for the periodic-dynamic network.

(d) The differences between the network represen-

tations are not merely a matter of scaling

It is not clear from the above results whether epidemics on
different network representations are systematically
different, or merely represent different scalings of the
underlying parameters. To address this question, we
looked for a consistent pattern between early growth and
final epidemic size across all networks. Figure 4a enables
this question to be addressed, plotting final epidemic size
against the number of infectious nodes after one infectious
period (comparable with R0) across the full range of
transmission probability and infectious period values
(each point represents the outcome of a single model
run). The relationship between early epidemic growth and
final epidemic size was different for all the different
representations (excepting the smoothed and sequential
weighted static representations, which are similar to each
other in this regard). In figure 4b, the x -axis is a log scale,
which clarifies the differences between the year-long
weighted static representation and the dynamic represen-
tation for smaller epidemic sizes. These figures highlight
the fact that the differences between networks are not due
to a simple rescaling of transmission probabilities, but a
more subtle interplay between total probability of
transmission, time to infection and the scale of the
interconnected network.

(e) Theoretical considerations
We now use some simple analytical calculations to
interpret the differences observed so far, focusing in
particular on the somewhat unexpected differences
between dynamic and weighted static networks.

Traditionally, analytical techniques for considering
disease spread through networks are based upon concepts
from percolation theory—which itself assumes that the
network is static and assigns probabilities to each link.
However, to understand the differences between dynamic
and static networks, we need to work from first principles
in considering the spread of infection between nodes
(farms). Consider the contacts and interaction between
two farms; one of the simplest situations is whether animals
are moved between them just once in a year. In the fully
dynamic network,Gfull

ij ðdÞwill be 1 on the day ofmovement
and 0 on all 365 other days; by contrast, the year-long
weighted static network will have GWS

ij Z1=366 for all time
points. Comparing these two network representations
we see that the probability of transmission is given by

pfull Z n
m

366
pWS Z 1K 1K

n

366

! "m
;

such that there is a nonlinear scaling between the two
probabilities and pfullRpWS. (We note that the two proba-
bilities are equal whenever mZ1). The ratio of these
probabilities at the level of individual contacts can be
translated into relative population-level epidemic sizes,
with the clear prediction that higher transmission prob-
abilities should (on average) lead to larger epidemic
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sizes—this is observed when comparing the 28-day
periodic-dynamic with 28-day weighted static represen-
tations in figures 1–3.

The calculation of transmission probabilities can
also be extended to the situation where there are n move-
ments from one farm to the other; assuming that
movements occur at random throughout the year we
have that

pfulln Z
Xn

mZ1

m

n

 !
ð366KnÞ!m!ð366KmÞ!

366!ðmKmÞ!ð366CmKnKmÞ! ½1Kð1KnÞm$

pWS
n Z 1K 1K

nn

366

! "m
:

Although these forms are more complex, it can be shown
that, as before, the fully dynamic model has a higher
probability of transmission compared with the weighted
static network and therefore it is expected to generate
larger epidemics; this effect may be observed in the
results from artificially created dynamic networks and
their associated year-long weighted static equivalents.
In addition, it can be readily seen that a weighted
static network sampled over a shorter time scale has a
lower transmission probability compared with the year-
long version.

For the case when nZ1, we can also calculate the time
to infection (assuming infection has occurred)

T full Z
mC1

2
TWS Z

Xm

iZ1

i 1K
n

366

! "iK1 n

366pWS
;

and hence we find that the weighted static network is likely
to transmit infection more rapidly. When n and m are both
large (and noting that we are assuming nZ1), we observe
that transmission is likely in both models but occurs far
more rapidly in the weighted static model.

We now compare these theoretical results with our
simulation studies. Two of our theoretical predictions are
supported: (i) the year-long weighted static network gives
rise to larger epidemic sizes than weighted static networks
sampled over shorter time scales, (ii) the year-long
weighted static network gives rise to epidemics that grow
much more rapidly than the fully dynamic network (and
faster than shorter weighted static networks). However, in
contrast to our theoretical predictions, we find that the
year-long weighted static network gives rise to larger
epidemics than the fully dynamic network. Detailed
analysis of the causes for this theoretical failure highlights
the inaccuracy of our assumption (for the case where
nO1) that movements occur randomly throughout the
year; the true pattern of movements from a given farm
shows both positive and negative correlations at a range of
temporal lags. This temporal pattern reflects both live-
stock management (and dynamics) on the farm and legal
constraints on the movement of livestock. In particular,
the 6-day standstill period prevents multiple on- and off-
movements within a 6-day period, while the natural cycle
of births leads to increased number of movements in both
spring and autumn. We therefore observe that the
temporal correlation between movements to and from a
farm leads to a significant reduction in disease spread
compared with a random pattern of movements, which is
the primary aim of the legal restrictions on animal
movements (Madders 2006).

(f ) Distribution of epidemic sizes

One applied use of such between-farm movement net-
works is to examine the early spread of foot-and-mouth
disease (Green et al. 2006). Foot-and-mouth disease is
unlikely to go undetected for more than four weeks, and so
weighted static networks for a 28-day period have been
used to model the early spread of infection. Given the
arguments above concerning the differences between
static and dynamic networks, we would in general hope
that using a shorter interval for both networks would lead
to greater similarity—given that 1-day networks will be
identical. It is therefore reasonable to consider the
suitability of simpler network representations for model-
ling such truncated epidemics.

A rapid infectious disease was simulated, with par-
ameters (nZ0.9, mZ8) chosen such that the final epidemic
size between the 28-day weighted static representation and
the dynamic representation was comparable. The
simulated epidemics were halted after 28 days, and one
hundred million disease simulations were run. Figure 5a
shows the frequency distribution (on a log scale) of
epidemic size after 28 days from these simulations. The
mean final epidemic size for the dynamic network
representation was 121, and for the 28-day weighted
static representation was 155. A two-sample Kolmogorov–
Smirnov test (Conover 1999) shows that these two
distributions are significantly different ( p!2.2!10K16).
We can also conclude, simply from the differences between
the means, that for the same parameter values, epidemics
simulated through dynamic and weighted static networks
do not agree even at the shorter 28-day time scale.
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Figure 5. (a,b) Frequency distribution (from 100 000 000
runs) of final epidemic sizes from 28-day weighted static
and dynamic network representations; simulations halted
after 28 model time steps in each case. Transmission
probability, nZ0.9; infectious period, mZ8 (a); transmission
probability for 28-day weighted static representation adjusted
to nZ0.8327 to give same mean final epidemic size as the
dynamic network representation (b).
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To generate a more fair comparison, the transmission
probability within the 28-day weighted static network was
changed to achieve agreement between the mean epidemic
sizes predicted by the two network representations. One
hundred million disease simulations were again run with
this new transmission value (nZ0.8327) on the 28-day
weighted static network representation, and the results
plotted against the original dynamic network represen-
tation simulation outputs as figure 5b. Although the mean
final epidemic size was 121 in both cases, a two-sample
Kolmogorov–Smirnov test again showed that the two
distributions were significantly different ( p!2.2!10K16).

The differences between the weighted static and
dynamic network representations in figure 5a,b are
particularly noticeable at the higher final epidemic sizes,
which would lead to the worst-case scenario being
considerably underestimated if a weighted static network
representation were used to inform policy making. The
peaks observed in the dynamic network representation are
an interesting example of the importance of the dynamic
nature of cattle movement. If a single movement acts to
connect two large interconnected groups of farms, then in
a dynamic model transmission between the two groups
relies on infection reaching the interconnecting link at
the appropriate time. Those epidemics that reach the link
at the appropriate moment and therefore infect both
groups of farms are likely to give rise to far larger
epidemics than those that fail to reach the link—leading
to bimodal distributions of epidemic sizes. This sort of
dynamic effect is lost in static network representations,
yet may be important to understand the dynamics of
infectious diseases in the UK cattle herd. With hindsight,
this bimodal nature is observable in figure 4b for the
dynamic network.

4. DISCUSSION
The cattle movement network from the UK provides one
of the most detailed examples of a well-documented
network that has been continuously sampled over an
extended period. As such, it provides an ideal test of many
ideas about dynamic networks, and how they can be
understood and analysed. In particular, there are clear
resonances with human contact networks, where connec-
tions are often seen as static, but in practice contacts only
occur intermittently. The key question is whether this
complex dynamic pattern of interactions can be captured
by a suitable scaling of a static network or whether the
dynamic complexities have to be modelled explicitly for
their effects to be captured.

Figures 1 and 2 show that the different network
representations of the UK cattle herd exhibit differing
behaviours as the two simulation parameters (infection
probability and infectious period) are varied. Therefore,
for a given set of epidemiological parameters, which set the
local dynamics, no other representation was able to
capture the population-level behaviour. Moreover, by
plotting early epidemic growth against final epidemic size
(figure 4a), we have shown that these differences are
systematic and cannot be removed by a simple rescaling
of epidemiological parameters; even if network models are
all parameterized to match the same observed early
epidemic behaviour, they fail to agree with predictions of
final epidemic size. This shows that the differences

between the epidemics reflect fundamental differences in
the way that the infection dynamics interact with the
network properties.

Finally, we compared weighted static network models
with results from the dynamic network and consider a
scenario designed to minimize the differences. Both
network models are simulated for just 28 days (minimizing
the impact of longer term temporal correlations) and the
epidemiological parameters are determined such that
the mean epidemic size (at the end of 28 days) is in
agreement. However, despite these measures, we still
observe significant differences between the distributions
of epidemic sizes, with the dynamic network predicting
more extreme values.

While simpler network representations of the UK cattle
herd have their advantages, these results show that great
care must be taken if such representations are to be used
for epidemiological prediction. We have considered a
range of alternatives to the most realistic representation
(i.e. the fully dynamic network), and shown that they are
defective even when considering a relatively simple SIR
disease simulation. In particular, when comparing fully
dynamic network models to their weighted static
equivalent (probably the most natural approximation),
we find that the temporal correlations between
movements substantially reduce the epidemic size associ-
ated with the dynamic model. Therefore, if network
models are to be employed to investigate infectious
diseases in the UK cattle herd, and used to make detailed
quantitative predictions, then they should be based
upon dynamic directed network representations of the
available movement data.

Although these results all focus on the networks derived
from the UK cattle movements, we believe that the general
conclusions hold for a range of other network scenarios.
For example, many human pathogens can be considered
as spreading through a network of connections; while
many family (or social) connections occur so frequently
that they may be represented by a (weighted) static
network, other connections are far more dynamic and are
likely to have strong temporal correlations. As such,
human contact patterns are most likely to be captured
by a mixture of static and dynamic networks, with the
dynamic links most often responsible for transmitting
infection away from tightly clustered social cliques.
Therefore, the general qualitative rules we have
observed governing the differences between dynamic and
static networks are likely to hold for human as well as
livestock infections.

This work was funded by the Wellcome Trust. The authors
are grateful to Thomas House and three anonymous referees
for their input.
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