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Graphical abstract: 

The SLM-produced Ti-6Al-4V alloy exhibits a higher corrosion rate in 1 M HCl solution than that 

in 3.5 wt.% NaCl solution and XZ-plane of the SLM-produced Ti-6Al-4V alloy gives rise to the 

inferior corrosion resistance compared with its XY-plane. 
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Highlights: 

● Corrosion resistance of selective laser melted Ti-6Al-4V was investigated.

● XY-plane of Selective laser melted alloy shows a better corrosion resistance.

● More α’ and less β-Ti weaken the corrosion resistance of XZ-plane.

Abstract: Electrochemical measurements and microstructural analysis were performed to study 

the corrosion resistance of different planes of Ti-6Al-4V alloy manufactured by selective laser 

melting (SLM). The electrochemical results suggest that its XY-plane possesses a better corrosion 

resistance compared to XZ-plane in 1 M HCl solution, in spite of slight difference in 3.5 wt.% 

NaCl solution, suggesting that the different planes exhibit more pronounced distinction in 

corrosion resistance in harsher solution system. The inferior corrosion resistance of XZ-plane is 

attributed to the presence of more α′ martensite and less β-Ti phase in microstructure for XZ-plane 

than for XY-plane of the SLM-produced alloys. 

Keywords: A. Titanium; B. X-ray diffraction; B. EIS; B. SEM; C. Passivity 
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1. Introduction

Titanium (Ti) and its alloys have been increasingly used in many applications due to its

excellent properties such as high strength, appropriate mechanical properties, high 

biocompatibility, and very good corrosion resistance [1-9]. Among them, Ti-6Al-4V is the most 

frequently utilized for biomedical, pipeline, marine and military applications [10-13]. 

Traditionally processed Ti-6Al-4V displays a duplex microstructure which is a mixture of α phase 

(hcp) and β phase (bcc) [3, 10], and its properties can be tuned by tailoring its microstructure 

through different heat treatment conditions. There have been many studies focusing on the 

corrosion behaviour of Ti-6Al-4V in various solution systems [14-17]; all these studies shed light 

on the corrosion behaviour of Ti-6Al-4V alloy and provided constructive suggestions on 

improving its corrosion resistance against service environments. At the same time, some 

conventional technologies such as laser treatment [11, 18], powder metallurgy [19, 20], space 

holder technology [21], halide treatment [22], surface coatings [23-26], plasma sintering [27], and 

foaming [28] were employed to improve the properties of Ti-6Al-4V alloy for the different 

application conditions. Razavi et al. [11] improved the corrosion behaviour of Ti-6Al-4V by 

means of laser gas nitriding. Pohrelyuk et al. [29] enhanced the corrosion resistance Ti-6Al-4V 

alloy via constructing a nitride coating on its surface. It is believed that the formation of dense and 

protective films improves considerably the corrosion resistance of Ti-based alloys. However, the 

emerging problem is that the high reactivity of Ti with oxygen and high melting point give rise to 

many challenges to these conventional technologies. Therefore, the improved properties through 

these traditional treatments limit the applications in different environments where the Ti-6Al-4V 

alloy is used. 
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Selective laser melting (SLM) is well known as one of important emerging additive 

manufacturing techniques. Considering the layer-wise additive nature of the process, SLM is 

capable of producing parts with a high geometrical complexity and almost no geometric 

constrictions. Thanks to the advantages of SLM [1], it is providing an ideal platform for producing 

Ti components and it has been increasingly employed to produce Ti and its alloys [1, 30-43]. It has 

been reported [31-37] that SLM can produce titanium alloys with comparable or even better 

mechanical properties compared to their counterparts processed by conventional production 

techniques. As such, the advantages of SLM process have potential to explore the application of 

SLM-produced alloys in such as biomedical, electronic and aeronautical industries. Among all the 

studied SLM-manufactured titanium alloys, Ti-6Al-4V alloy is the most frequently investigated 

thanks to its matured applications and the feedstock availability of powder suitable for SLM [1]. 

Considerable endeavours have been made to investigate the microstructural evolution of 

Ti-6Al-4V in the process of SLM with the aim to achieve utmost high density of the 

SLM-produced parts [36, 37, 40-42]. Microstructural characterizations indicate that the 

SLM-produced Ti-6Al-4V is dominated by fine acicular α′ martensite together with some prior β 

grains [36, 40, 44], which is distinct from the well-known α+β biphasic microstructure in 

traditionally processed Grade 5 alloy. SLM-produced Ti-6Al-4V is reported to commonly show 

improved mechanical properties compared to the ones processed by conventional techniques, 

which is mainly ascribed to the fine microstructure resulting from rapid solidification in the 

process of SLM [1]. So far, the most majority studies on the SLM-produced titanium alloys are 

focusing on their densification, microstructure and mechanical properties. In view of the high 

potential applications of SLM-produced Ti alloys in some corrosive environments, such as 
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corrosive chemical solution systems, human body and marine environment, apart from its 

mechanical properties, the corrosion resistance of SLM-produced titanium alloys is another 

critical property in term of its application in such environments. Unfortunately, so far there are 

extremely rare studies on the corrosion behaviour of SLM-produced samples. However, according 

to our previous study [44], the SLM-produced Ti-6Al-4V alloy possesses a slightly inferior 

corrosion resistance in comparison with the Grade 5 alloy in a 3.5 wt.% NaCl solution. This is 

mainly ascribed to the dominant acicular α’ martensite in the SLM-produced Ti-6Al-4V alloy that 

is unfavourable to corrosion resistance. It is known that the mechanical properties of 

SLM-produced samples could be enhanced via tuning their microstructure by means of adjusting 

the scan strategies and build orientations in the process of SLM [40, 43]. It is interestingly to note 

that different scan strategies in SLM generally result in distinctions in the microstructure and 

mechanical properties of the SLM-produced Ti-6Al-4V. The SLM-produced Ti alloys on different 

sample planes show different microstructural characteristics thereby the mechanical properties due 

to some typical scan strategies. It is believed that the electrochemical corrosion resistance of the 

SLM-produced alloys may differ from the sample planes (i.e. the build plane and the build 

direction plane) due to their microstructural difference. Therefore, considering that the 

SLM-produced Ti alloys are in service in some environments, it is highly significant to further 

investigate the corrosion resistance of SLM-produced samples on different sample planes with 

different microstructure. This will give insight into the corrosion performance of SLM-produced 

samples and offering techniques to improve the anisotropy in corrosion resistance. 

As such, the main objective of this work is to investigate the corrosion resistance property on 

different sample planes (i.e. XY-plane, the build plane; XZ-plane, the build direction plane) of the 
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SLM-produced Ti-6Al-4V alloy in 3.5 wt.% NaCl and 1 M HCl solution, and to distinguish the 

difference in corrosion resistance for different planes of the SLM-produced Ti-6Al-4V alloy. 

Electrochemical measurements including potentiodynamic polarization and electrochemical 

impedance spectroscopy (EIS) tests were carried out to study the corrosion behaviour of 

SLM-produced Ti-6Al-4V alloy. The mechanism for the corrosion resistance of SLM-produced 

samples on different planes was correlated to their microstructural characteristics. All discussion 

was based on the data obtained from electrochemical measurements in order to shed light on the 

corrosion resistance for different planes of SLM-produced Ti-6Al-4V alloy. 

2. Experimental

2.1 . Sample and solution preparation 

The Ti-6Al-4V alloy cubic samples with size of 10 mm × 10 mm × 10 mm were 

manufactured by SLM in a MTT SLM 250 HL machine containing a 400 W Yb:YAG fiber laser 

with an 80 μm spot size. The SLM-produced samples were manufactured using a laser power (at 

the part bed) of 200 W (λ=1.06 μm) and laser scan speeds of 1250 mm/s. Both the hatch spacing 

(distance between scan lines) and the layer thickness were 100 μm. The layers were scanned using 

a continuous laser mode according to a zigzag pattern, which was alternated by 90° between each 

successive layer, as shown in Fig. 1(a). The density of the SLM-produced Ti-6Al-4V samples 

measured by using the Archimedes method confirmed that the SLM-produced Ti-6Al-4V samples 

had a relative density of greater than 99%. In addition, the chemical compositions for the 

SLM-produced Ti-6Al-4V alloy in wt.% were 0.01 C, 0.002 H, 0.14 O, 0.02 N, 0.22 Fe, 6.25 Ti, 

4.04 V and Ti balance. 
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In order to minimize the effect of the potential surface defects on the corrosion resistance 

property of the SLM-produced samples, the SLM-produced Ti-6Al-4V cubic samples were halved 

along the build plane (XY-plane) or build direction (XZ-plane) into two parts with size of 10 mm 

× 10 mm × 5 mm for investigation. Fig. 1(b) schematically presents the three-dimensional 

diagram of SLM-produced Ti-6Al-4V alloy (with cube size of 10 mm × 10 mm × 10 mm) and two 

different cutting planes used in this work. As such, the samples with XZ-plane and XY-plane were 

obtained for the experiments in this work. Afterward, all alloy samples were mounted in a plastic 

tube and sealed with epoxy resin. The XZ-plane and XY-plane surfaces were polished with SiC 

paper down to 2000 grit, cleaned with double-distilled water, ultrasonically cleaned in ethanol, 

and dried in air. The prepared samples were used for immersion test, microstructure studies and as 

working electrodes for electrochemical experiments.  

As for the immersion test, the samples were weighted before the test, and then immersed in 1 

M HCl solution at room temperature (25 °C), the same test condition with electrochemical 

experiments. In addition, considering that the epoxy resin could absorb the water in HCl solution, 

a same-size epoxy resin was also prepared and immersed in the HCl solution as blank sample. 

After a 15-days immersion, all the samples were taken out, rinsed with double-distilled water, 

removed corrosion products, ultrasonically cleaned in ethanol, and dried in air, finally weighted 

for calculating weight loss. 

With regard to the microstructural characterization of the alloys studied, a Kroll’s solution 

was prepared as etchant solution [44]. The above-mentioned solutions were prepared with 

analytical grade reagents and double-distilled water. 
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2.2 Electrochemical measurements 

Electrochemical measurements including open circuit potential (OCP), potentiodynamic 

polarization and electrochemical impedance spectroscopy (EIS) were conducted using a Solartron 

SI1280B electrochemical station in a conventional three-electrode cell. In the electrochemical 

measurements, a platinum sheet was used as counter electrode, a saturated calomel electrode (SCE) 

acted as the reference electrode, and the surface of the samples with an area of 1.0 cm2 served as 

the working electrode. Prior to polarization and EIS tests, the samples were kept in the solution for 

enough time to attain a stable OCP. The potentiodynamic polarization curves were performed from 

potential range of ‒0.5 to +2.5 V versus OCP at a sweep rate of 0.1667 mV/s. Electrochemical 

impedance spectroscopy was acquired at the OCP potentiostatically. The frequency range for EIS 

was from 100 kHz to 10 mHz with an amplitude of 10 mV. All reported potentials in this work 

were relative to SCE. All the electrochemical measurements were carried out in 3.5 wt.% NaCl or 

1 M HCl solution at room temperature (25 ± 1 ºC). NaCl solution was employed to simulate the 

system containing Cl‒, while the use of HCl was to simulate the hasher solution with low pH. The 

electrochemical tests were performed at least three times for data reproducibility. 

 

2.3. Residual stress tests and microstructural analysis 

The residual stress tests have been carried out through XRD using a D8 Discover (Bruker, 

Germany). The high-index crystal face, (103)α-Ti of Ti-6Al-4V alloy, was chosen to calculate the 

residual stress. It is known that the interplanar spacing of high-index crystal face is relatively 

small, which can lead us to the accurate residual stress. The four angles from 0 to 45° were chosen 
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to test for getting residual stress, as known as side-incline method. 

The phase constituents of SLM-produced Ti-6Al-4V samples on the XY-plane (i.e the build 

plane) and XZ-plane (i.e. the build direction plane) were identified by X-ray diffraction (XRD) 

using a Bruker D8Advance X-ray diffractometer with Cu Kα radiation at room temperature. All 

XRD patterns were recorded with 2θ range between 30º and 80º. The Jade 5.0 was employed to 

calculate the contents of the different phases in the SLM-produced Ti-6Al-4V alloy. The 

microstructural characteristics of the XY-plane and XZ-plane of the SLM-produced Ti-6Al-4V 

alloy samples were examined by an Olympus GX51 optical microscope (OM). The surface 

morphology of the SLM-produced alloys was characterized using scanning electron microscopy 

(SU1500, Japan). 

 

3. Results 

3.1. Microstructural studies 

Fig. 2 presents the XRD patterns for the XY- and XZ-planes of the SLM-produced Ti-6Al-4V. 

As seen from Fig. 2, the SLM-produced Ti-6Al-4V alloy is apparently dominated by α′-Ti phase 

along with only small amount of β-Ti phase (evident by very weak β-Ti peaks). Vrancken [36] and 

Amaya-Vazquez [9] pointed out that the β-Ti phase in Ti-6Al-4V alloy is difficult to detect, or is 

always minority or absent. The peak near 2θ = 39.5° is normally assigned to β-Ti phase [45, 46] 

while according to some studies [47, 48], the peak near 2θ = 72° could be β-Ti or α-Ti phase. 

Although both XY-plane and XZ-plane of the SLM-produced Ti-6Al-4V consist of the same main 

phases, the several peaks of the main phases in the XY-plane and XZ-plane exhibit different 

corresponding intensities. This suggests different contents of the main phases in the XY-plane and 



Page 11 of 34 
 

XZ-plane. According to the calculation of XRD patterns by means of Jade software, the volume 

fraction of each constituting phase estimated from the XRD patterns [49, 50] for the 

SLM-produced Ti-6Al-4V alloy on XY- and XZ-planes is summarized in Table 1. It is worth 

noting that the peaks of α′-Ti for SLM-produced alloy are located at the same 2θ with the peaks of 

α-Ti phase [51]. Besides, further optical microstructural observations confirm that the phases in 

the SLM-produced Ti-6Al-4V alloy are α′-Ti.  

Fig. 3 displays the optical micrographs for XY- and XZ- planes of SLM-produced Ti-6Al-4V 

alloy. For the SLM-produced Ti-6Al-4V on XZ plane, as seen in Fig. 3(a), the build layer 

boundaries are remarkable, which are common and results from the layer-wise features of SLM 

technology [32]. More detailed analysis on the microstructure of XZ-plane has been discussed in 

our previous work [44]. In overall, both XZ-plane and XY-plane for the SLM-produced Ti-6Al-4V 

alloy display a predominantly large amount of acicular α′ martensite, which are evident by the 

most majority of areas in the optical micrographs in Fig. 3. Some defects such as several pores are 

also presented in the microstructure on both XY plane and XZ plane. It is proposed that the pores 

are liable to elongated along the scan direction and located at certain layers. The accumulation in 

powder denudation and the surface roughness across the layers considered as the main cause to the 

formation of pores [40]. Unlike the prior columnar β grains in XZ-plane (Fig. 3(a)), the prior β 

grains in XY-plane (Fig. 3(b)) are in a square shape, which is closely related to the scan strategy 

adopted in the process of SLM as shown in Fig. 1(a). According to Ref. [40], the presence of prior 

β grains is mainly attributed to the absence of nucleation barrier in solidification in the process of 

SLM. The occurrence of acicular α′ martensite in SLM-produced Ti-6Al-4V rather than the 

equilibrium α phase in Grade 5 is ascribed to: (i) the remarkably higher cooling rate (103-108 ºC/s) 
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in the process of SLM in comparison with the critical cooling rate (about 410 K/s) for forming α′ 

via martensitic transformation from β in Ti-6Al-4V, and/or (ii) a high thermal gradient (104-105 

ºC/cm) along the build direction in tiny melt pool [1].  

 

3.2. Electrochemical studies 

Fig. 4 presents the variation of OCP with time for the XY- and XZ- planes of the 

SLM-produced Ti-6Al-4V alloy immersed in 1 M HCl. The open circuit potential of both planes 

keeps shifting positively during immersion in HCl. This is mainly related to the formation of the 

passive film on the alloy surface. The generation of the film makes the anodic process control the 

electrode process, leading to the positive shifting of the OCP. After immersion for 45 h, it has 

difficulty for XY- and XZ- planes to obtain a perfectly stable potential. However, the potential 

increases slightly at a potential change rate of ~1.5 mV/h. Such a little potential change at 1.5 

mV/h gives no significant influence on the subsequent EIS tests. The relatively stable OCPs for 

the XY-plane (i.e. ‒149.7 ± 8.3 mV) and XZ-plane (i.e. ‒175.0 ± 5.9 mV) of the SLM-produced 

Ti-6Al-4V are very close, but the final OCP of XY-plane is slightly higher than that of XZ-plane. 

In our previous study [44], the OCP value for SLM-produced Ti-6Al-4V maintained at 

approximately 90 mV after 60h immersion in a 3.5 wt. % NaCl solution, which is much nobler 

than that of the SLM-produced Ti-6Al-4V in HCl solution. 

Fig. 5 shows the potentiodynamic polarization curves of SLM-produced Ti-6Al-4V alloy on 

both XY-plane and XZ-plane in 3.5 wt.% NaCl solution and 1 wt.% HCl solution. Before 

polarization tests, it took enough time to achieve a relatively stable open circuit potential (OCP). 

The SLM-produced Ti-6Al-4V on XY-plane and XZ-plane display evident passivated behaviour in 
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the potential range between 200 mV and 1500 mV in 1 M HCl solution and from 200 mV to 1200 

mV in 3.5 wt.% NaCl solution. This means that a passive film has formed in the mentioned 

potential range in corrosive solutions, which works as a protective film to inhibit the corrosion of 

titanium alloys with regards to the service in corresponding solution media. Note that, the 

SLM-produced Ti-6Al-4V alloy displays a broader potential range (ΔE2) for the passive film in 1 

M HCl solution in comparison with that (ΔE1) in 3.5 wt.% NaCl solution. As can be seen in Fig. 4, 

ip stands for the passivation current for the film formed on the alloy surface, normally the lower ip 

means the easy passivation of the alloys and ip represents the total current density of the metal 

dissolution and quick deposition of the corrosion products. Thus the lower ip, easy passivation of 

Ti-6Al-4V alloy normally exhibits the better corrosion resistance in corresponding solution 

systems. For the corrosion behaviour of SLM-produced Ti-6Al-4V in 3.5 wt.% NaCl solution, the 

ip for both XY-plane and XZ-plane are very close (ip,XY = ip,XZ = 0.76 ± 0.013 μA·cm-2). More 

details on the value of the ip in NaCl solution could also be referred to our previous report [44]. 

In the case of corrosion behaviour of SLM-produced Ti-6Al-4V in HCl solution, iP,XY and 

iP,XZ refer to the passivation current of XY- and XZ-planes in 1 M HCl solution respectively. The 

value of the passivation current for the XZ-plane of SLM-produced Ti-6Al-4V alloy, iP,XZ, is 2.83 

± 0.04 μA·cm-2. The iP,XY is 2.50 ± 0.02 μA·cm-2, which is slightly lower than the iP,XZ. In general, 

a lower passivation current ip indicates an easy passivation of the film or a slow dissolution of 

alloy. As such, the comparison between the above mentioned values of passivation current (ip) for 

the SLM-produced Ti-6Al-4V on the XY-plane and XZ-plane suggests that the XY-plane of 

SLM-produced Ti-6Al-4V alloy has a slightly better corrosion resistance than the XZ-plane in 1 M 

HCl solution. In other words, there exists anisotropy in corrosion resistance of different planes 
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(such as the build plane and the build direction plane) of the SLM-produced Ti-6Al-4V in 1 M 

HCl solution in spite of very slight difference in NaCl solution. 

The EIS measurements were carried out to investigate the surface condition immersed in 

corresponding solutions. Fig. 6 shows the Nyquist and Bode plots of the XY- and XZ- planes of 

the SLM-produced Ti-6Al-4V alloy in 1 M HCl solution. The inset figures of Nyquist plots for 

XY- and XZ- planes of the SLM-produced Ti-6Al-4V alloy in 3.5 wt.% NaCl solution and 

equivalent circuit for fitting the EIS data are shown in Fig. 6(a). In the equivalent circuit, Rs is the 

solution resistance, the Rct and Cdl correspond to the charge transfer resistance and double layer 

capacitance, respectively. The Rf and CPE1 refer to the film resistance and film capacitance 

respectively. As seen in Fig. 6(a), the Nyquist plots exhibit only a big capacitive loop for each 

sample, but the Bode plots (Fig. 6 (b)) show a plateau in a range of a wide frequency (from high 

frequency to low frequency). As such, an equivalent circuit with two time-constants was used to 

fit the EIS data. Table 2 summarizes the fitted results of the EIS measurements. As for the 

SLM-produced Ti-6Al-4V alloy in 3.5 wt.% NaCl solution, the fitted results of Rf (Table 2) have 

very close values for XY-plane and XZ-plane; the same as for the Rct values. This suggests that the 

XY- and XZ-planes exhibit no obvious distinction in corrosion resistance in 3.5 wt.% NaCl 

solution, which is in well agreement with the results in polarization tests. In contrast, for the 

SLM-produced Ti-6Al-4V alloy in 1 M HCl solution, i.e. a harsher solution system, the Rf value of 

XY-plane is several times that of XZ-plane. This reveals the fact that the passive film formed on 

the XY-plane of SLM-produced Ti-6Al-4V possesses a better protective property than the 

XZ-plane. The result of Rct also supports the conclusion from the analysis of Rf. All these findings 

suggest that the distinction in corrosion resistance between XY- and XZ-plane is more evident in a 
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harsher solution, regarding the application of the SLM Ti-6Al-4V in some typical solution 

environments. 

According to the immersion tests, the weight loss for XY-plane was 0.7 (±0.05) mg/cm2, 

while 0.9 (±0.1) mg/cm2 for XZ-plane which is a bit higher than that of XY-plane. As such, the 

results of weight loss can support the electrochemical test. At present, there are also some studies 

performed immersion tests to study the corrosion behavior of Ti-based alloys in some solution 

systems with a high Cl- concentration at a higher temperature [52-54]. In addition, the SEM 

images of the XZ- and XY- planes of the SLM-produced Ti-6Al-4V sample after electrochemical 

corrosion (polarization) were shown in Fig. 7. According to the SEM images, some pores are 

observed in the microstructure of the SLM-produced Ti-6Al-4V alloy (include XY- and XZ- 

planes). These pores pre-existing in the microstructure re-appear after electrochemical corrosion in 

the microstructure. Furthermore, some more pits are generated in the microstructure of the 

XZ-plane of the SLM-produced alloy than that in the XY-plane, suggesting that the passive film 

formed on the XZ-plane exhibits an inferior stability and protective ability than that on the 

XY-plane. 

 

4. Discussion 

According to the residual stress tests, the value of residual stress for XY-plane was 114.9 

MPa, while it was 128.7 MPa for XZ-plane which is a bit higher than that for XY-plane. Yet, it 

seems that the values for two different planes were extremely close. As for Ti-6Al-4V alloy, the 

residual stress value in this range gives no rise to the corrosion resistance. In other words, the 

corrosion resistance for different planes of SLM-processed alloy has no evident relation with the 
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residual stress. 

The results of the electrochemical experiments were used to study the corrosion resistance of 

the SLM-produced Ti-6Al-4V alloy on XY-plane and XZ-plane. According to the potentiodynamic 

curves (Fig. 5), a passive film is formed on the alloy during the anodic potential range, which 

suggests that the formation of the film inhibits the corrosion of alloy. The passivation currents for 

the alloys on XZ-plane in 1 M HCl solution is slightly greater than that on XY-plane, i.e. iP,XZ 

(2.834 ± 0.041 μA·cm-2) > iP,XY (2.498 ± 0.023 μA·cm-2). In this work, it is believed that the 

XY-plane of the SLM-produced Ti-6Al-4V shows a better corrosion resistance in comparison with 

the XZ-plane in terms of the values of both the film resistance (Rf) and the passivation current (iP). 

Herein, comparing with the SLM Ti-6Al-4V alloy in 3.5 wt.% NaCl solution, the potential range 

of the passive film formed on SLM alloy in 1 M HCl solution was broader (ΔE2 > ΔE1). While the 

passivation current (iP,XY and iP,XZ) of film formed on SLM-produced Ti-6Al-4V in 1 M HCl 

solution are higher than the corresponding ones (iP,XY = iP,XZ) in 3.5 wt.% NaCl solution. This 

suggests that the SLM-produced Ti-6Al-4V exhibits a higher corrosion rate in 1 M HCl solution. 

Simultaneously, the difference in corrosion resistance between XY- and XZ-planes in 1 M HCl 

solution is more evident than in 3.5wt.% NaCl solution. As seen in Fig. 7, after electrochemical 

measurements (beyond passive potential) for the XY- and XZ- planes of the SLM-produced alloy, 

apart from the former pores, more pits have developed in the XZ-plane than in XY-plane. On the 

other hand, it reveals that the passive film formed on the XZ-plane is not resistant and stable 

enough against the electrochemical corrosion, which is in good agreement with the Rf results for 

the XZ- and XY-planes in EIS tests. 

It is noted that the microstructure of a material has a vital impact on its corrosion resistance. 
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Unlike the typical microstructure of commercial Grade 5 alloy [44], the acicular α′ martensitic 

phase dominates the microstructure of the SLM-produced Ti-6Al-4V alloy. Although the 

microstructure of the SLM-produced Ti-6Al-4V alloy (and other materials as well) was 

extensively investigated [36, 37, 40-42], the quantitative percentage of the corresponding phases 

in the microstructure of SLM-produced alloy has rarely been reported. Estimated from the XRD 

patterns (Fig. 1), the amount of α′-Ti and β phase in the SLM-produced Ti-6Al-4V alloy are 88.1% 

and 11.9% respectively in the XY-plane and 95.0% and 5.0% respectively in the XZ-plane. As 

discussed in previous work [44], the acicular α′ martensitic phase is in “high energy state” and 

metastable with regard to corrosion. As for different planes in SLM-produced alloy, the XZ-plane 

with more amount of α′-Ti phase in the microstructure results in an inferior corrosion resistance 

than the XY-plane. Simultaneously, the more content of β-Ti phase in XY-plane also enhances the 

corrosion resistance. More discussion on the corresponding content can be referred to our former 

study [44]. Therefore, the difference in the volume fraction of α′ and β phases results in the 

distinction in electrochemical activity or corrosion resistance of SLM-produced Ti-6Al-4V on 

different sample planes. In addition, analysing the Rf for the different planes of the SLM-produced 

Ti-6Al-4V (Table 2) also suggests that the XY-plane possesses a better corrosion resistance than 

the XZ-plane of the SLM-produced alloy, which is well consistent with the results obtain from 

polarization curves. Furthermore, the charge transfer resistance (Rct) can also support the 

corresponding conclusion. All these results are well consistent with the polarization tests (Fig. 5) 

and the discussion based on the microstructure (Figs. 2 and 3). Thus, the different planes of 

SLM-produced Ti-6Al-4V usually display different microstructural characteristics (such as phase 

constituents and/or phase fractions) owing to the scan strategies used, resulting in the distinct 
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corrosion resistance of the different planes of the SLM-produced alloys. As for these reasons, it is 

of importance to select with caution the working surface of the SLM-produced Ti-6Al-4V alloy 

for better corrosion resistance with regards to its application in some harsh environments, as well 

as solution system containing strong corrosive ions. 

5. Conclusion 

In 1 M HCl solution, the XY-plane shows a better corrosion resistance in comparison with the 

XZ-plane of the SLM-produced Ti-6Al-4V alloy, even if the very slight difference between XY- 

and XZ-planes in 3.5 wt.% NaCl solution. The microstructure of the SLM-produced Ti-6Al-4V 

alloy is overwhelmingly dominated by acicular α′ martensitic phase along with trace β-Ti phase. 

The XZ-plane of the SLM-produced Ti-6Al-4V alloy is composed of more α′-Ti and less β-Ti 

phase than XY-plane, which lead to the inferior corrosion resistance of XZ-plane. Thus the 

difference in the corrosion resistance property is attributed to the distinction in amount of the α′ 

phase and β-Ti phase in microstructure. 
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Figure captions: 

Fig. 1. Schematic representation of (a) laser scan direction and angle between the successive 

layers in the process of SLM and (b) three-dimensional diagram of SLM-produced Ti-6Al-4V 

alloy cubic samples with size of 10 mm × 10 mm × 10 mm and two different studied planes. 

Fig. 2. XRD patterns for the XY- and XZ-planes of the SLM-produced Ti-6Al-4V alloy. 

Fig. 3. Optical microstructure of the (a) XZ-plane and (b) XY-plane of SLM-produced Ti-6Al-4V 

sample (build direction is normal to the paper). The insets show the magnified images 

corresponding to the each plane of the SLM-produced alloy. 

Fig. 4. Variation of open circuit potential (OCP) with time for the XY- and XZ- planes of 

SLM-produced Ti-6Al-4V alloy immersed in 1 M HCl solution. 

Fig. 5. Potentiodynamic curves for the XY- and XZ-planes of SLM-produced Ti-6Al-4V alloy in 

3.5 wt.% NaCl solution and 1 M HCl solution (test three times for each sample). 

Fig. 6. The EIS measurements for the XY- and XZ- planes of SLM-produced Ti-6Al-4V alloy in 

1M HCl: (a) Nyquist plots, (b) Bode plots. The inset figures in (a) were Nyquist plots for XY- and 

XZ- planes of SLM-produced Ti-6Al-4V alloy in 3.5 wt.% NaCl solution and equivalent circuit 

used to impedance spectra analysis. 

Fig. 7. SEM images of the (a) XZ-plane and (b) XY- planes of SLM-produced Ti-6Al-4V alloy 

after electrochemical corrosion. 
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Tables: 
 

Table 1 Phase constituents and their volume fraction (Vf) of XY- and XZ-planes of the 

SLM-produced Ti-6Al-4V alloy estimated from the XRD patterns. 

Sample Phase constituents Vf,α or Vf,α′ Vf, 

SLM-produced, XY-plane α′ +  88.1% 11.9% 

SLM-produced,XZ-plane α′ +  95.0% 5.0% 
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Table 2 The fitting parameters of EIS measurements forthe XY- and XZ- planes of SLM-produced 

Ti-6Al-4V alloy in 1 M HCl and 3.5 wt.%NaCl solution. Rs: the solution resistance, Rf: the film 

resistance, Rct: the charge transfer resistance, Cdl: the double layer capacitance, and CPE1: the film 

capacitance respectively.	

 

Solution Sample Rf 

(kΩ·cm2) 

CPE1, Y0 

(S·Secn·cm-2) 

n1 Rct 

(kΩ·cm2) 

Cdl 

(μF·cm-2) 

1 M HCl SLM-produced, XY-plane  5.63 60.10 0.9697 293.30 39.40 

 Error 0.62 0.32 0.0019 0.33 0.50 

 SLM-produced, XZ-plane 1.67 94.22 0.9496 129.70 25.88 

 Error 0.42 0.24 0.0087 0.23 0.49 

3.5 wt.% NaCl SLM-produced, XY-plane  26.84 26.58 0.9107 814.90 408.50 

 Error 3.27 1.69 0.0029 17.47 36.51 

 SLM-produced, XZ-plane 22.69 20.53 0.8974 798.30 404.20 

 Error 3.00 1.07 0.0066 12.61 17.75 
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