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ABSTRACT 

This biogeographical thesis tests for the presence of taxa-area and distance-decay 

relationships, which are common among macrobionts, in prokaryotic (bacterial) and 

micro-eukaryotic (ciliate) communities. Microbial biogeographical patterns may be 

distinct because of the high abundances, diversity and dispersal capabilities of microbes, 

in comparison to macrobionts. The Northern Ponds of Lake MacLeod, north-western 

Australia, provide an ideal location to address this topic, because the ponds are 

effectively hydrogeomorphologically identical, other than in surface area, and biotic 

histories can be assumed to differ only according to distance of separation. This means 

that hypotheses concerning species-sorting and neutral processes on microbial 

assemblages can be tested in a natural setting. 

Characteristics of the physical environment were determined using bathymetric and 

hydrodynamic surveys in eight ponds. For each pond, e vaporative outflow was 

determined using pan evaporation rates, and the hydrodynamic characteristics of each 

pond were described by measuring water flowing out of the ponds. Four pond 

morphotypes were distinguished on the basis of physical characteristics (surface area, 

volume and mean depth) and hydrodynamic properties (water residence time and 

percentage of evaporative loss).  

For ionic and nutrient variation within and between the ponds, concentrations were 

expected to vary based on residence time of the brine within the ponds, evapo-

concentration and subsequent precipitation of mineral phases. The water chemistry was 

found to be similar to seawater, with major ionic ratios remaining rather constant 

throughout each pond. C ygnet Pond differed from the other ponds in that it was 

enriched in Mg and Ca and depleted in K. Sediment characteristics were also 

investigated by microscopy. Six sediment types were described based on the particles 

found in each sample. There were no clear relationships between sedimentology types 

and water chemistry, and between each of these and the pond morphotypes. 

The bacterial and ciliate biofilm communities were analysed using DNA community 

fingerprinting methods, and constrained to the above environmental parameters using 

redundancy analyses. Distance-decay relationships were found for the bacterial 
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communities within the ponds, and occurred at relatively short distances (<100m). 

There were no s uch relationships for the ciliate communities. Taxa-area relationships 

were not found in either community. Spatial redundancy analyses suggest that β-

diversity across the pond complex manifests itself mainly because of the differentiation 

of taxa occurrences among the ponds, and could not be explained by the environmental 

variables. Species co-occurrence models suggest significant segregation in community 

composition (i.e. not randomly assembled) while none of the communities appear to 

conform to predictions based on neutral theory. 

The results therefore provide evidence that microbial bacteria and ciliate biofilm 

communities can conform to observed biogeographic patterns for macrobionts, although 

neither community displayed taxa-area relationships. The communities differed in that a 

distance-decay relationship was only found in the bacterial community, where ciliate 

taxa are distributed ‘patchily’, and not as a function of distance. An alternative model is 

proposed for the bacteria and ciliate communities of Lake MacLeod; each pond, 

because of their isolation from one another, is influenced by stochastic events which 

differentiate the ponds via ecological drift. This thesis demonstrates that these microbial 

communities are capable of having complex biogeographies, and that processes such as 

ecological drift may be important determinants of their structure. 
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CHAPTER 1. INTRODUCTION AND STUDY DESIGN 

1.1 Introduction 

The study of species distributions and changes in ecological communities along 

geographic gradients and habitat patches is known as biogeography, and was first 

described in MacArthur and Wilson’s seminal thesis, ‘The theory of island 

biogeography’ (1967). Today, one of the key goals of ecology is to understand how 

taxonomic groups contribute to the formation of communities and how communities are 

structured spatially. Understanding patterns across the spatial scale gives important 

clues regarding the underlying mechanisms that regulate community structure and 

biodiversity, ultimately playing a pivotal role in the development of theories that 

explain the nature of biological diversity (MacArthur and Wilson 1967, Hubbell 2001). 

While investigated in hundreds of studies using plants and animals, studies of scaling 

patterns in the microbial world are only just emerging, and often with conflicting 

conclusions. Because microbes play pivotal roles in the Earth’s biogeochemical cycles 

(Falkowski et al. 2008) and functioning of ecosystems (Bell et al. 2005b, Langenheder 

et al. 2005, Reed and Martiny 2007) in addition to their overwhelming abundance and 

diversity (Whitman et al. 1998, Torsvik et al. 2002), there is sufficient grounds to 

increase knowledge on how these communities are spatially structured, and the 

mechanisms that create these patterns. 

The discipline of microbial ecology involves the study of both prokaryotic and 

eukaryotic organisms that are not usually visible to the naked eye. The division between 

prokaryotes and eukaryotes is one of the greatest evolutionary discontinuities of life 

(Boon et al. 2014). Familiar life on e arth, such as plants, animals and fungi are all 

eukaryotes, however, the less obvious, and microscopic prokaryotes consists mostly of 

bacteria and archaea. The main difference between prokaryotes and eukaryotes is that 

nucleic material is not membrane bound i n prokaryotes, while in eukaryotes nucleic 

material is found within a membrane bound nuc leus. Prokaryotes are some of the 

smallest life forms on earth and range in size from 1 – 10 µm, while microbial 

eukaryotes, although larger than bacteria, are also tiny (10 – 100 µm). Margulis and 
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Schwartz (1988) and Boon et al. (2014) provide great introductions on prokaryotic and 

eukaryotic life. 

Prokaryotic life has dominated the Earth’s biodiversity since life first evolved 3.5 – 4.0 

billion years ago (DeLong and Pace 2001). It represents the most diverse group of 

organisms on t he planet (Figure 1), and they inhabit almost every niche on E arth 

(Dykhuizen 1998). The Bacteria domain dominates the majority of known prokaryotes, 

but a second domain, Archaea are also prokaryotic. These two domains differ from one 

another by a number of biochemical characteristics, such as ester-links in their lipid 

membranes (Boon et al. 2014). Bacteria, such as cyanobacteria, can photosynthesise, 

while others are chemotrophic and heterotrophic. See Madigan et al. (2011) for a review 

of bacterial diversity.  

There are three main groups of eukaryotes which are important to microbial ecologists; 

algae, protists and fungi. Algae are ubiquitous across Earth, and estimated to be 

responsible for >40% of global photosynthesis (Boon et al. 2014). Microalgae are 

important primary producers in almost all aquatic ecosystems, where they contribute up 

 

Figure 1: The phylogenetic tree of life displaying the three domains of life; Bacteria (Blue), Archaea (Green) and 
Eukaryotes (Red). Each branch represents phyla for the bacteria and a k ingdom for the eukaryotes. The closer a 
branch, the more related they are. Adapted from Lee (2014). 
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to 30% of total production (Vymazal 1995). Fungi are found in aquatic systems as 

filamentous fungi, which dominate the littoral zone, and unicellular fungi, which 

dominate the pelagic zones (Boon et al. 2014). Fungi consume coarse particulate matter, 

such as leaves and wood, as well as other complex materials, however, their 

biogeochemical functions are not well understood but thought to have a smaller impact 

on biogeochemistry than bacteria (Wurzbacher et al. 2010).  

Molecular approaches have recently revealed a large ‘hidden world’ of microbial 

eukaryotic diversity, mostly consisting of protists (Weisse 2008, C aron et al. 2009), 

bringing this important group of microbes into the forefront of modern ecological 

studies. Protists provide many ecological roles, including primary production and 

parasitism (Caron 2009) and it is  thought that protists in aquatic systems are often the 

major source of much of the organic matter used by prokaryotes and other, multi-

cellular eukaryotes. Many protists are believed to be ubiquitously distributed, an idea 

which is presently a topic of rich debate (Fenchel and Finlay 2004, Foissner 2006, 

Weisse 2008), arguments which are analogous to those regarding the distribution of 

bacteria (Horner-Devine et al. 2004, Martiny et al. 2005). 

There are two main reasons why there is little understanding of scaling in microbial 

communities. First, conceptually it has long been assumed that microbial taxa have 

cosmopolitan distributions, as outlined by the Baas-Becking hypothesis, “Everything is 

everywhere; but the environment selects” (Baas-Becking 1934). Due to the small size 

and high abundance of microbes it has long been thought that dispersal capacities 

(distance and rate) are so great that they are effectively not subjected to any dispersal 

limitation at all (De Wit and Bouvier 2006). With such continuous, large-scale 

dispersal, microbes would have cosmopolitan distributions, and this is fundamentally 

different to the biogeographic patterns found in plants and animals (Fenchel and Finlay 

2004). Second, it has been, and still is, technically very difficult to quantify microbial 

diversity. Prokaryotes, and many eukaryotic organisms, cannot be identified 

morphologically, but instead must be characterised and quantified using culture-based 

biochemical tests, or via molecular methods. Before the development of DNA-based 

methods, culture-based techniques were primarily used, which lead to severe 

underestimations of both microbial abundance and diversity in early studies 

(Hugenholtz et al. 1998). This is because it has been found that up t o 99.99% of 
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bacterial taxa cannot be cultured under laboratory conditions (Torsvik et al. 1990). 

When DNA techniques were eventually applied to soil samples to look at bacterial 

richness, Tiedje et al. (1999) immediately found that microbial richness was orders of 

magnitude greater than what had been previously estimated using culture based 

techniques. 

The ‘everything is everywhere’ hypothesis is based on the premise that microbes have 

unique biologies because of their large population sizes, high dispersal capacity and low 

extinction rates (De Wit and Bouvier 2006). These characteristics have widely been 

assumed to be features of all microbes. Having a high capacity for dispersal is perhaps 

the most important factor in allowing microbes to have cosmopolitan distributions, and 

it has indeed been demonstrated that some bacterial taxa (Lighthart 1997, Leff et al. 

1998, Gage et al. 1999), as well as protists (Finlay et al. 1999, Fenchel and Finlay 2004, 

Finlay and Fenchel 2004), have the potential for very high rates of passive dispersal. 

However, recent molecular techniques are beginning to reveal patterns in the microbial 

world that contradict the traditional cosmopolitan view of microbial diversity (Green et 

al. 2004, Horner-Devine et al. 2004, Bell et al. 2005a, Bell 2010, K ing et al. 2010, 

Caruso et al. 2011, Lear et al. 2014). 

This introductory chapter outlines some fundamental ecological theories, such as taxa-

area and distance-decay relationships, which have enhanced our understanding of 

biodiversity and distributions of higher organisms, and how they have recently been 

applied to microbial biogeography using molecular techniques. Furthermore, as it is 

becoming evident that similar spatial patterns exist in the microbial world as for 

macrobionts1, theories based on ne utrality using the meta-community framework will 

be discussed in order to understand the structuring mechanisms driving these patterns. 

The second half of this chapter will identify the aims and hypotheses of this thesis, and 

provide a rationale for the methodology used throughout the study. This rationale will 

include a discussion on which groups of prokaryotes and eukaryotes should be 

investigated to test these hypotheses, as well as the type of study system that would be 

needed to test the generated hypotheses. Subsequently, Lake MacLeod will be 

                                                 
1 In this thesis the term macrobiont will be used to denote multicellular macro-organisms.  
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introduced as a suitable system in which to conduct the study and an overview of its 

ecology will be given. Finally, the experimental design and statistical methodology will 

be introduced.  

1.1.1 Taxa-area relationships 

Perhaps the relationship between ecosystem size and species richness is one of the few 

universal relationships in ecology (Lawton 1999, Ricklefs and Lovette 1999, Lomolino 

2001). MacArthur and Wilson’s (1967) ‘theory of island biogeography’ provides the 

foundation of such a relationship, allowing ecologists to make predictions about species 

diversity within heterogeneous habitats, or ‘islands’. Their theory specifically allows 

ecologists to make predictions on species richness with respect to an island’s area by 

assuming “smaller islands have extinction rates higher than large islands, for the same 

number of species present” (Schoener 2010), implying that large islands will have more 

species than small islands.  

When the number of species is plotted against island size, a species-area curve is 

constructed. This relationship is usually log-linear, where the log of island area is 

proportional to richness (MacArthur and Wilson 1967), and has more empirical 

evidentiary support than perhaps any other diversity relationship in ecology 

(Rosenzweig 1995). The slope of the species-area relationship (the z-value) for islands 

is typically between 0.2 and 0.35, however it is also taxon specific (Rosenzweig 1995). 

In general, a z-value less than 0.20 is indicative of organisms with high dispersal and 

low extinction rates and/or terrestrial islands such as lakes, high mountains or 

fragmented habitats (Connor and McCoy 1979). 

There are at least three mechanisms which explain the species-area effect. First, large 

islands contain more individuals and thus have lower extinction rates (MacArthur and 

Wilson 1967, Reche et al. 2005). Secondly, larger islands have greater habitat 

heterogeneity, thus allowing them to support a greater variety of species (Ricklefs and 

Lovette 1999). And thirdly, the ‘sampling effect’ could produce the species-area effect 

without the occurrence of a p hysical mechanistic process (Wardle 1999, C am et al. 

2002). This artefact can arise when larger islands, with greater species richness, is more 

likely to be dominated by a single, highly productive species, than a l ess species rich 

small island. Therefore, sampling more individuals from larger islands will result in the 
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larger islands appearing less rich (Connor and McCoy 1979, Rosenzweig 1995, Wardle 

1999, Cam et al. 2002, Schoener 2010). 

The theory of island biogeography is not exclusive to islands in a sea. In fact, it can be 

used to describe richness within any insular area. Rosenzweig (1995) defined an island 

as “a self-contained region whose species originate entirely by immigration from 

outside the region”. Therefore the theory of island biogeography provides an ideal 

framework for investigating diversity related questions within lakes and ponds. Water 

bodies have been viewed as the islands in a terrestrial ‘sea’ by other ecologists (Dodson 

1992), where the higher diversity found in larger lake systems (see Dodson 1992), has 

been explained using island biogeography mechanisms (Rosenzweig 1995, Brose et al. 

2004, Schoener 2010).  

Studies on North American lakes show that lake area alone accounts for more than 50% 

of among-lake variability in crustacean zooplankton diversity, with the effect of lake 

area being so strong that larger lakes contain more zooplankton species regardless of 

any other factors, including productivity or resource availability (Dodson et al. 2000). 

Cladocerans, fish, macrophytes and rotifers (Dodson et al. 2000), as well as benthic 

ciliates (Finlay et al. 1998), benthic microalgae (Hillebrand et al. 2001) and aquatic 

insects (Gaston 1992) have also been found to increase in species diversity with lake 

area. Dodson et al. (2000) found that copepods and phytoplankton showed no s uch 

increase in diversity with lake size, although microcosm studies by Smith et al. (2005) 

suggest that phytoplankton do display species-area curves.  

Few studies have investigated species-area curves for microbes and other unicellular 

organisms. As stated above, the lack of studies in this area is probably attributable to the 

difficulty in measuring the richness of a microbial community. Finlay et al. (1998) 

provide perhaps the earliest account of the species-area relationship for a microbial 

taxon. They found unicellular protists to have extremely low z-values (0.043) and 

attributed this to their high dispersal ability. However, their study was limited to only 

detecting protist richness morphologically, and therefore probably underestimated 

community richness (Dopheide et al. 2009). Recent advances in molecular techniques 

now allow ecologists to measure genetic richness as a function of species richness, and 
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thus detect a large amount of previously undiscovered microbial richness (Fisher and 

Triplett 1999, Dopheide et al. 2009). 

Horner-Devine et al. (2004) investigated the species-area curves for benthic bacteria in 

salt marshes using molecular techniques. The reported z-values are among the lowest 

recorded for any organism (Woodcock et al. 2006). The authors suggest that as bacteria 

are unlikely to be dispersal limited, the low z-values may be attributed to difficulties in 

resolving equivalent taxonomic units for bacteria as metazoans, the low habitat 

specificity of bacteria, and horizontal transfer of genes between phylotypes and 

ecotypes. However, the studies by Finlay et al. (1998) and Horner-Devine et al. (2004) 

suggest that bacteria and protists may obey similar ecological scaling relationships to 

macrobionts. 

Bell et al. (2005a) investigated bacterioplankton diversity in tree holes ranging in 

volume from 0.04 to 24 litres, and similarly to the previously mentioned studies, found 

bacterial richness to increase according to the species-area law. They, however, found 

the z-value to be much higher than that found by previous studies, and suggest that 

microbes can show species turnover rates similar to those of plants and animals. 

Similarly high z-values were found by van der Gast et al. (2005) for bacteria inhabiting 

oil sump tanks. Continuing this trend, Reche et al. (2005) found a strong positive 

relationship between lake area and bacterioplankton richness. They suggested that 

because of the huge population sizes and high dispersal abilities of bacteria, 

immigration and extinction processes are probably insufficient to explain their findings. 

Instead, they suggested that the greater number of niches available within larger lakes is 

a better determinant of bacterioplankton richness. Other studies, however, have failed to 

detect a positive species-area relationship for bacteria (Humbert et al. 2009), even with 

the use of high throughput molecular methods (Logue et al. 2012). Further, the studies 

by Bell et al. (2005a) and Reche et al. (2005) have been contested by several 

researchers (Fenchel et al. 2005, Lindström et al. 2007) who argue that the respective 

sampling designs did not adequately address island biogeography hypotheses. 

1.1.2 Distance-decay relationships 

The similarity between two observations often decreases as the distance between them 

increases, a p attern which has been described by ecologists as the distance-decay 



8 

 

relationship. This negative relationship between distance and similarity allows analyses 

of spatial autocorrelation and is implicit in our understanding of species turnover along 

environmental gradients (Whittaker 1975, C ody 1985). There are two general 

mechanisms that can generate distance-decay patterns. Firstly, increased distances 

among samples will likely increase the degree of environmental difference (for example 

changes in geology and climate), and species-sorting processes will thus decrease the 

similarity of the communities (Nekola and White 1999). The second mechanism 

suggests that dispersal limitation of organisms produces the distance-decay pattern as 

the further the distance, the more effort required by an organism to move, or the more 

likely that a barrier will impede it. Therefore, if taxa are limited in their dispersal 

capabilities, samples that are closer will tend to have higher community similarity, and 

can generate a distance-decay pattern in the absence of environmental heterogeneity and 

species sorting processes.  

The size and isolation (spatial configuration), the nature of surrounding habitats (spatial 

context) and time will all influence how genes move around landscapes (Nekola and 

White 1999). However, different species may perceive the spatial configuration and 

context differently, and this will lead to variation in the distance-decay rates among 

organisms. Further, if there is high resistance to movement across a landscape, i.e. 

dispersal or time are limiting, the nature of the spatial configuration of habitats will 

affect how long the effects of historic processes persist in structuring a community 

(Nekola and White 1999). Theories based on n eutrality can be used to explain the 

generation of these patterns by taking into account the rates of immigration between 

samples (Hubbell 2001, Chave and Leigh Jr. 2002). 

Distance-decay relationships have been reported in a number of microbial studies 

(Langenheder and Ragnarsson 2007, S oininen et al. 2007, Fuhrman et al. 2008, Bell 

2010, Martiny et al. 2011, Astorga et al. 2012, Jones et al. 2012, Lear et al. 2013, 

Lepère et al. 2013, Barreto et al. 2014b, Lear et al. 2014). Nonetheless, the occurrence 

of the distance-decay relationship in microbes is still debatable and has not been 

detected in some studies, even with the use of molecular methods (Yannarell and 

Triplett 2004). Whether distance-decay patterns are driven by environmental 

heterogeneity or dispersal limitation remains unknown. For example, Lear et al. (2014) 

provide a case where distance-decay was found to occur at the extremely fine scales of 
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less than 20m within well mixed water bodies where dispersal limitation is unlikely to 

be the determinant, while, at a larger global scale, Sul et al. (2013) found dispersal 

limitation to be the primary determinant of the marine bacterial communities found in 

polar regions.  

The distance-decay and taxa-area relationships have both been pivotal to the 

development of macro-ecology since MacArthur and Wilson (1967) described them. 

Recently, these concepts have been applied to microbial communities, allowing 

microbial ecologists to begin to investigate if the determinants of these patterns in 

microbes are similar to those of plants and animals. The prospect that microbes display 

taxa-area and distance-decay patterns similar to other organisms is exciting as it c an 

allow for the discovery of mechanisms that may explain the ecology for all organisms. 

Furthermore, elucidating the mechanisms that create these biogeographic patterns may 

provide evidence for the hypothesis that all life on E arth is governed by universal 

ecological processes and allow a f uller understanding of the processes that regulate 

Earth’s biodiversity. However, these two relationships are mostly explained by species 

sorting processes (environmentally determined) or neutral processes (determined by 

dispersal and/or extinction), and the ‘everything is everywhere, but, the environment 

selects’ argument remains central in contemporary microbial ecology papers (De Wit 

and Bouvier 2006). Given that inferring structuring processes from biogeographic 

processes is inadequate to increase our knowledge of microbial ecology, studies need to 

begin testing species-sorting and neutral processes in microbial communities (Hanson et 

al. 2012). 

1.1.3 Species sorting 

Consider a community of ecologically similar organisms (neglect predator-prey, 

parasite-host and mutualistic relationships), that are required to interact with one 

another, so that they have a negative effect on each other’s success. Such relationships 

are competitive, and competition is expected to select for the single best-adapted 

organisms and exclude the others. Under such interactions, the spatial patterns of the 

community will begin to emerge where each species will tend to be found where it 

survives best (Bell 2001). Species-sorting, and other niche based process, predict 

community structure by assuming that competition for resources dictates the 
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assemblage of organisms able to coexist in an equilibrium state (Tilman 1982, Leibold 

1995).  

Species sorting processes have been central to the ‘everything is everywhere, but, the 

environment selects’ hypothesis because they suggest that dispersal is not limiting for 

microbes and that the environment is the primary determinant of whether a particular 

microbe is present or active in a particular habitat (Figure 2). There is strong evidence 

that species-sorting processes are important for structuring bacterial (Van der Gucht et 

al. 2007, Jones and McMahon 2009, Logue and Lindström 2010) as well as micro-

eukaryote (Hambright et al. 2015) populations.  

Recent studies, using the fine taxonomic resolutions that modern genetic methods allow, 

have shown that some microbes seem to exhibit biogeographic patterns that are 

unrelated to environmental conditions (Hanson et al. 2012). Gibbons et al. (2013) used 

a powerful  deep sequencing method to investigate a  marine  bacterial  community  and 

 

Figure 2: A simple conceptual diagram showing the role that species-sorting processes can play by providing a 
species-sorting filter (biotic and abiotic) which determines which taxa can inhabit the local communities. Different 
taxa are represented by different coloured shapes. This model shows that despite the green-squares and blue-circle 
taxa being uncommon in the metacommunity source, they are the only members of the metacommunity to be selected 
by the species-sorting filter and inhabit the local communities. In natural communities, it would be expected that each 
local community is subjected to unique species-sorting filters and thus have local communities which are different to 
one another. Adapted from Lee (2014). 
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found support for the Baas-Becking hypothesis. They found that global endemism does 

not exist, and that all community members were present at each location, but the relative 

abundances varied in orders of magnitude as the environmental conditions changed 

(Gibbons et al. 2013). Importantly though, Gibbons et al. (2013) suggest that studies 

that claim ‘everything is everywhere’ may only reflect technical limitations in detecting 

community members (Hambright et al. 2015), but the ‘environment selects’ part of the 

hypothesis determines which members are active components of the community. 

1.1.4 Neutral processes 

The unified neutral theory of biogeography and biodiversity (Hubbell 2001) is a recent 

theoretical addition to ecology that predicts community structure based solely on 

demographic stochasticity, immigration and speciation. Essentially, the concept of 

neutral models is that a larger community acts as a source of immigrants to a local 

community and that local community structure is the result of a balance between 

immigrants and local extinctions (Figure 3). The neutral models of Hubbell (2001) and 

Bell (2000) suggest that the abundance and distribution of organisms is predictable 

using the three parameters: immigration rate, local community size and a fundamental 

biodiversity index, where immigration rate can be estimated as the proportion of 

individuals that come from elsewhere in the community (Latimer et al. 2005, Etienne et 

al. 2006). Despite being built on s uch few assumptions, the neutral theory has 

successfully reproduced observed communities of macrobionts (Bell 2000, Hubbell 

2001). 

The neutral theory presented by Hubbell (2001) suggests that local communities within 

meta-communities are linked to one another through immigration and emigration. The 

rate of immigration for a species is determined by its ability to disperse. Local and 

regional richness and diversity are strongly affected by the level of dispersal (Mouguet 

and Loreau 2003), with diversity maximised at intermediate dispersal rates (Cadotte 

2006). At low dispersal rates, stochastic extinctions and negative species interactions 

may maintain high beta and regional diversity (Figure 4), but low alpha diversity. 

Conversely, high dispersal rates allow dominant taxa to be introduced into all local 

communities, reducing alpha, beta and region diversity because of competition. 
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Figure 3: A simple conceptual diagram showing how neutral processes can determine the taxa that inhabit a local 
community. Following neutral processes, note that the relative abundances of the taxa in the metacommunity remains 
nearly the same in the local communties. Deviations in the relative abundances are due to extinction and speciation 
processes instead of environmental differences. Adapted from Lee (2014). 

 

Figure 4: Hypothesised interaction between alpha (Local), beta and gamma (Regional) diversity on communities at 
different dispersal and spatial scales (adapted from Mouguet and Loreau 2003). 
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Neutral models have also been able to accurately predict the complex community 

structures of bacterial communities (Sloan et al. 2006, Sloan et al. 2007, Woodcock et 

al. 2007, Lee 2014), despite being dependent on only three parameters. Neutral theory 

predicts the relative and rank abundances of taxa within a local community to be the 

same as the source community (Langenheder and Székely 2011), and indeed, Sloan et 

al. (2006) have shown this to be the case for numerous bacterial communities. Sloan et 

al. (2006, 2007) provide some simple neutral models that predict the frequency by 

which members of highly abundant communities, such as microbial communities, are 

observed. However, studies testing the role of neutral processes in microbial 

communities have been limited as the models these studies used apply to single, 

dispersal limited local communities which are embedded in a meta-community (Alonso 

et al. 2006). Newer models, such as those developed by Etienne (2009), allow for 

testing of neutral predictions using discontinuous habitats, over larger spatial scales 

where dispersal limitation is likely to play a larger role. To date, these models have only 

been applied in a single study on global bacterial diversity (Caruso et al. 2011), where 

they found that different functional components of bacterial communities (photo- and 

hetero-trophic) were subject to different assembly processes depending upon t he 

continent. Their results suggest that multi-trophic microbial systems may not be fully 

described by a single set of neutral assembly rules and that stochasticity is likely a 

major determinant of such communities. 

1.1.5 Difference between microbial groups 

This brief review on t he patterns of microbial community composition and assembly 

has been written in the context of microbes, which is a term that includes both 

prokaryotic and eukaryotic unicellular organisms. Prokaryotic communities include 

bacteria and archaea, which are unicellular organisms that do not have a m embrane 

bound nucleus (Walsh and Doolittle 2005). Microbial eukaryotes are also unicellular, 

but have a membrane bound nucleus. Microbial eukaryotes are mostly composed of 

organisms that belong to the protist kingdom (Walsh and Doolittle 2005). There are 

however, important differences in the biology of prokaryotes and eukaryotes. Bacteria, 

for example, are capable of reproducing asexually, whilst many protists, including 

ciliates, are capable of sexual reproduction. Horizontal gene transfer between bacteria is 
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thought to have a similar effect on genetic diversity as that of sexual reproduction in 

micro-eukaryotes (Ochman et al. 2005). 

Clearly, recent studies suggest that bacterial communities have complex 

biogeographies, akin to those found in plants and animals (Horner-Devine et al. 2004, 

Bell et al. 2005, Martiny et al. 2005, Lear et al. 2014). However, in the review by 

Finlay (2002), it is suggested that, despite microbial eukaryotes being larger, and less 

abundant than prokaryotes, they are even less likely to display biogeographic patterns 

found in other domains of life because of their high dispersal rates. Recently though, 

small scale dispersal limitation was found in lake protist communities, suggesting that 

protists may not be ubiquitous (Rengefors et al. 2012). Studies are required to 

investigate whether microbial eukaryotes display similar patterns in species richness 

and distribution, as well as assembly processes, as other groups of microbes. 

The unique biology of prokaryotes and eukaryotes could be expected to produce 

different biogeographic patterns. Conversely, similarities between microbial taxa, such 

as their small size and ability to disperse across large distances, should produce similar 

biogeographic patterns. Although there are studies investigating biogeographic 

processes on pr okaryotes (Caruso et al. 2011, Lear et al. 2013, Barreto et al. 2014a, 

Livermore and Jones 2015) and eukaryotes, such as protists (Rengefors et al. 2012, 

Lepère et al. 2013) and fungi (Green et al. 2004), there are none directly comparing 

patterns between prokaryotic and eukaryotic microbes. By considering (vastly) different 

taxa within the same analysis, differences in landscape and environmental conditions 

can be used to directly compare the role of different factors in structuring the 

communities (Beisner et al. 2006). 

1.1.6 Theoretical synthesis 

It is clear that microbial communities display taxa-area and decay-distance relationships 

at a r ange of scales2. However, these patterns need to be studied using hypotheses 

generated from well-established ecological theories in order to understand the 

mechanisms driving these patterns. Species-sorting and neutral models provide a 

                                                 
2 In this thesis, small-scales refer to distances in the centimetre to metre range. Large-scales refer to 
distances in the kilometre and beyond range. 
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framework where hypotheses can be generated and tested (Leibold 1995). Even though 

many studies have investigated the environmental determinants of microbial community 

structure, few studies have also incorporated neutral processes into their analyses 

(Caruso et al. 2011, Langenheder and Székely 2011, Lee et al. 2013), even though there 

they are likely to play an important role (Woodcock et al. 2007, Langenheder and 

Székely 2011, Lee et al. 2013). Future studies need to disentangle the roles of species-

sorting and neutral processes if our knowledge of microbial ecology is to be on par with 

that of the macro world. 

Furthermore, microbial ecology has tended to focus on pr okaryotic organisms to test 

these ideas. Micro-eukaryotes, such as protists and fungi, are also part of the microbial 

component of ecosystems. Micro-eukaryotes are fundamentally different to bacteria 

because they have different metabolic requirements and usually represent a d ifferent 

trophic level. Nonetheless, they are still extremely small, unicellular organisms that are 

found in high abundances and diversity, albeit less than bacteria. 

1.2 Aims of this study and hypotheses 

This thesis has two main aims, under which some specific hypotheses have been 

developed and will be tested in the following chapters. The main aims of this thesis are 

to test if: 

1. the biogeography of microbes is similar to that of macrobionts; and 

2. Biogeographic patterns, such as TAR and DDR, and relationships with 

environmental and spatial drivers will be similar in prokaryotes and eukaryotes. 

If microbes have biogeographies similar to macrobionts, it is expected that a distance-

decay relationship will be observed. Distance-decay relationships provide evidence for 

changes occurring in the composition of a community that are caused by environmental 

gradients (species-sorting) or dispersal limitation (neutral theory), which are known to 

be determinants of community structure in macrobionts. Similarly, if prokaryotes and 

eukaryotes have different biogeographical patterns, or have different mechanisms 

structuring them (species sorting vs. neutral), there will be detectable differences in the 

distance-decay and taxa-area relationships. By addressing these two broad aims, 

knowledge on whether there is variation in the patterns and mechanisms influencing the 
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biogeographic processes for two abundant, diverse, unicellular microbial groups, which 

represent two domains of life, with very different cell biology and reproductive 

characteristics will be directly compared. Furthermore, this study will present an 

example of the biogeography of microbes, and the role of species-sorting and neutral 

processes on them by testing the following null hypotheses: 

• prokaryotic and eukaryotic communities do not display distance-decay and taxa-

area relationships; 

• Isolated habitat patches do not  contain microbial communities which are 

composed of different taxa or dominated by similar taxa with similar relative 

abundances; 

• environmental characteristics and geographic location are not important 

determinants of microbial community composition; 

• microbial communities are not randomly assembled; and 

• immigration is not an important determinant of community composition using. 

In order to test these hypotheses certain premises need to be met. Firstly, a suitable 

study system needs to be identified. The system needs to have suitable habitat patches 

incorporated in its landscape, which are replicated, and found at a range of sizes. This 

enables one to investigate the role of habitat/patch size on the biogeographic patterns of 

the organisms. Similarly, these habitats need to be arranged throughout the landscape in 

which there are no barriers for dispersal, thus ensuring that geographic distance become 

the primary determinant of dispersal limitation between patches. As historical events are 

likely to have affected the composition of contemporary microbial communities, it is 

also important to choose a system where the habitats are formed from the same 

geological event and are defined by the same geomorphological features, including 

hydrology. In essence, the system needs to be consanguineous (have the same origin, 

mineral and chemical composition) and consist of spatially isolated analogous habitat 

patches. 

The second criterion that needs to be met is that suitable prokaryotic and eukaryotic 

microbial communities need to be selected. These organisms need to be abundant in the 

chosen habitats, and easily detectable. Measuring community composition of microbial 

communities mostly relies on t he use of DNA analyses, and the chosen communities 
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will need to be able to be measured using comparable techniques to ensure that 

reasonable comparisons can be drawn. Further, by using DNA techniques, the two 

communities can be measured using a single sample, of which suitable environmental 

parameters can also be measured. 

Selection of a suitable system and suitable microbial communities will assume that the 

experimental design can be rigorous enough to address the main aims of this thesis. In 

doing so, the study will test the role that species-sorting and neutral processes play in 

shaping the microbial world. These processes are central to understanding the 

biogeography and assembly of ecological communities. 

1.3 Overall design to test hypotheses 

Field studies in aquatic environments have played a large role in the development of 

microbial ecology in aquatic systems. This is partly because microbes are vital in 

aquatic communities as they drive the transformation and cycling of most biologically 

important elements in these systems (Newton et al. 2011), but also because aquatic 

habitats, such as lakes and ponds, provide ideal study systems for ecologists studying 

biogeographic patterns (Dodson 1992). As described earlier, lakes and ponds can be 

thought to represent a group of environmentally similar, insular, regional ecosystems 

that are embedded within a l arger, landscape scale, meta-ecosystem. Ponds and lakes 

usually represent habitats of various sizes, and thus taxa-area and distance-decay 

patterns can be tested. Furthermore, ecologists can test hypotheses based on species-

sorting and neutrality that might be driving microbial taxa-area and distance-decay 

patterns based on t he spatial arrangement of the water bodies within the landscape 

(Declerck et al. 2011, Lepère et al. 2013, Lear et al. 2014). 

Saline systems are unique habitats in that they usually occur in arid areas and are either 

a permanent or ephemeral aquatic system in an otherwise dry landscape. Often saline 

lakes are poor in plant and animal richness, but harbour abundant, diverse and unique 

microbial communities (Oren 2002). Saline systems are usually caused by subsurface 

hydrogeological processes that result in the creation of lakes scattered throughout the 

landscape. The lakes within a g iven saline systems usually have similar 

hydrochemistries, hydrologies and geomorphologies, and thus represent 
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environmentally similar habitats (Radke et al. 2002, Timms 2009, C astañeda et al. 

2013). They also represent habitats which have shared geological and evolutionary 

histories, are exposed to the same disturbances (e.g. rainfall/drought and flood events) 

and are therefore ideal systems for testing the hypotheses of this thesis. The microbial 

meta-community is likely to be delivered into the ponds via the underground seepage. 

Preliminary results (Huggett et al. Unpublished) suggest the communities are primarily 

composed of marine taxa found in coastal, estuarine and deep sea environments. 

A salt lake system, such as Lake MacLeod in north-western Australia, provides a 

suitable system in which to study the biogeography of microbes. The salt ponds in Lake 

MacLeod represent habitats formed at the same time by a single geological event during 

the early Holocene and have similar mineralogy and chemistry. They also occur at a 

range of sizes and are largely isolated from one another. Such a system allows for the 

testing of the hypotheses in this thesis.  

Prokaryotic organisms have been well documented in salt lakes, and are an important 

component of aquatic ecosystems (Oren 2002, C asamayor et al. 2013). However, the 

diversity of other microbial taxa which inhabit these systems, particularly unicellular 

eukaryotes, is less well understood, thus detailed investigations into these environments 

are justified (Barberán and Casamayor 2011). Although extreme environments, such as 

salt lakes should have lower taxonomic richness based on general ecological principles 

(Frontier 1985), it has been found that the high salinities found in salt lakes may not 

reduce microbial richness (Casamayor et al. 2013). Furthermore, bacteria are not the 

only group of organisms thought to have high richness in saline systems. Some 

microbial eukaryotes, particularly ciliates, have recently been identified to have high 

levels of richness in salt lakes (Casamayor et al. 2013). Ciliates are also predators of 

bacteria, and thus represent a h igher trophic level than bacteria (Finlay and Esteban 

1998). Studying bacteria and ciliates in conjunction will allow for the study to test the 

hypotheses on t wo groups of microbes, which represent two taxonomically rich, 

trophically separated domains of life. 

Because of the spatial arrangement and the consanguineous nature of the ponds, Lake 

MacLeod will be used to empirically investigate biogeographic theories in a natural 

system, and test the hypotheses generated above. Bacteria and ciliates are also abundant, 
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taxonomically rich and are important components of saline systems such as Lake 

MacLeod, and will therefore be used to analyse the differences between prokaryotic and 

eukaryotic microbial ecology. The benthic microbial communities form the same 

ecological functions across all the ponds and therefore allows for direct comparisons of 

communities between the ponds. Another important aspect of ecological studies 

concerned with spatial processes is that a rigorous and well developed sampling design 

needs to be employed. Although specific experimental designs and statistical analyses 

relevant to individual components of the thesis will be presented in the relevant 

chapters, the choice of ponds and the spatially explicit sampling design, which are 

important to the thesis as a whole, will be introduced in detail here. 

1.3.1 Setting - Lake MacLeod 

Lake MacLeod is a large inland saline lake located 20 km  inland of the Carnarvon-

Ningaloo coastline in Western Australia (Figure 5). The MacLeod lakebed is 

predominantly dry and covers an area of 2000 km2, 60 km 2 of which is covered by 

numerous permanent bodies of brine3. The brine bodies persist due to a marine-water 

seepage-face that sustains brine inflow along the lake’s north-western edge despite the 

huge evaporative outflow. Due to the continual seepage of marine water into the lake, 

Lake MacLeod contains areas of permanent saline wetlands and unique mangrove 

swamps (Ellison and Simmonds 2003, Dunham 2014), and it provides a major feeding 

habitat for migratory birds (Phillips et al. 2005, Bertzeletos et al. 2012). 

Brine seepage occurs along seepage faces, of which there are five at Lake MacLeod, 

with four being active (Logan 1987). The Cygnet seepage face is the only one to 

discharge brine (originating from the Indian Ocean) freely to the surface to form the 

extensive ponds and brine sheets that are characteristic of the area (Logan 1987). The 

active part of the Cygnet seepage face covers 113 km2, runs approximately 30 km along 

the north-western barrier base and extends up t o 5 km  eastward towards the basin 

interior (Shepherd 1990). The lake can be divided into two distinct systems, the 

northern Cygnet seepage face, or the Chirrida System, and the southern Cygnet seepage  

                                                 
3 In this thesis, the term ‘brine’ is used to describe the water flowing through the ponds. At the vents, 
where brine enters the pond systems, the brine has a similar ionic composition to seawater. 
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Figure 5: Map showing location of Lake MacLeod in Western Australia. Blue areas represent regions with permanent 
surface water. The brown area represents the dry lake basin. The two large blue areas in Lake MacLeod are Cygnet 
Pond and Ibis Pond, which is located south of Cygnet Pond. 

 

 

Figure 6: Map showing the locations of some ponds and landmarks of Lake MacLeod. 
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face, or the Cygnet System (Figure 6). The two systems are separated by an extension of 

the impermeable coastal barrier that extends eastward into the basin, known as Sandy 

Bluff Sill. Seepage is maintained by a hydrostatic head caused by the seepage points 

being up to 3.5m below sea level, and very high evaporation rates. 

In the Cygnet System, seawater is discharged at numerous points along the western 

edge, flowing directly into Cygnet Pond and continuing southwards into Ibis Pond 

(Figure 6). Some of the larger vents, like Second Vent and Jana’s Vent, consist of 1 to 

2m deep ponds that flow through channels into Cygnet Pond. Other vents, like those at 

Goat Bay, open directly into the pond. C ygnet Pond is approximately 12 km2 in area 

and has an average depth of 0.4m (Logan 1987). Brine flows south-east and over the 

south-eastern pond margin into Ibis Pond. Ibis Pond is the largest body of water in the 

basin, with possible depths of 1.5m and a surface area between 32 a nd 260km2, 

depending on evapotranspiration. 

The Chirrida System contains eight main discrete ponds, with each pond having a large 

vent and numerous smaller millimetre sized vents (Shepherd 1990). The largest of these 

ponds, Harjie’s Pond, is over 300m long, whilst the smaller ponds are less than 10m in 

diameter (Figure 6). The ponds are mostly confined by mangrove roots and 

pneumatophores and accumulated sediment, preventing water from spilling over the 

banks. The ponds are shallow, rarely deeper than 1 m , and usually spill out over the 

eastern edges to form spill sheets. These spill sheets are extremely shallow and cover 

extensive cyanobacterial mats, which tend to flow south-east, although they can be 

moved throughout the basin by the wind. 

Since the severe floods of 2000, t he exotic fish, Tilapia mossambicus, has been 

recorded extensively throughout the ponds (Phillips et al. 2005). Invasive species are 

known to change important community characteristics of communities, such as, 

population sizes, community structure, disturbance regimes and biogeochemical 

processes (Vitousek 1990). Tilapia mossambicus has been found to clear large areas of 

aquatic macrophyte growth and form large breeding leks (Doupe and Burrows 2008, 

Cameron-Caluori 2014). Within the leks, males establish their territories by building 

large depressions in the sediment. These depressions have been found to be as large as 
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50cm in diameter. Cameron-Caluori (2014) provides a study of the effect of the T. 

mossambicus on the fish communities of Lake MacLeod. Although T. mossambicus 

were found to occupy the same habitats and resources as the endemic fish, Amniataba 

caudavittata, it is likely that the two species are able to co-exist because of their 

different feeding strategies. 

A study commissioned by Dampier Salt Limited on the food web structure of Cygnet 

Pond (Streamtec 2003) found that mangroves did not contribute significantly to the 

aquatic food web, even though they are the largest source of organic matter at the lake. 

Instead, particulate organic matter in the ponds was found to be of aquatic origin, which 

was consumed by the amphipods which were consumed by the fish A. caudavittata. 

Similarly, Cameron-Caluori (2014) found the benthic biofilm to be a major component 

of the T. mossambicus and C. pauciradiarus diets. These studies highlight the important 

role that algae, diatoms and bacteria may be playing in the system.  

The ponds are the most extensive aquatic habitat at Lake MacLeod, and benthic habitats 

are one of the most extensive habitats on the planet (Raffaelli et al. 2003). Benthic 

communities are important as they control biogeochemical processes, such as 

mineralisation and sedimentation, and have a profound effect on pelagic processes. The 

role of benthic processes at Lake MacLeod is evident by the apparent dependence of 

particulate organic matter on t he Cygnet Pond food web (Streamtec 2003) and its 

contribution to the fish diets (Cameron-Caluori 2014). Benthic habitats are 

heterogeneous (Raffaelli et al. 2003), and this pattern is indicated in the Streamtec 

(2003) report by the great variability found in food web structure within Cygnet Pond. 

Microbes play a pivotal role in benthic processes, especially in tropical systems where 

they are more productive and efficient in biogeochemical processes than any other part 

of the world (Alongi 1994). Currently, no i nformation is available on the diversity, 

functioning and spatial patterns of benthic biofilm microbial communities in Lake 

MacLeod. The importance of benthic microbes, and how they contribute to Lake 

MacLeod food webs is also unknown. Maintaining the health and the biogeochemical 

processes of benthic microbes is an important component of conservation and therefore, 

in Lake MacLeod, requires investigation to enhance management strategies. 
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1.3.2 Study design 

Many previous studies investigating biogeographic patterns in microbial taxa have 

relied on collecting either a s ingle, or very few samples to represent an entire aquatic 

habitat, such as a pond or lake (Reche et al. 2005, Yannarell and Triplett 2005, Pagaling 

et al. 2009, Romina Schiaffino et al. 2011). The few samples used in these studies are 

inadequate as no information is gained about the within habitat variation in community 

composition. In order to account for the effect of environmental heterogeneity, an 

adequate number of samples need to be collected which captures the variation within 

the habitat/pond. Similarly, if spatial processes are to be investigated, samples need to 

be collected in a way which accounts for the spatial extent of the habitats being 

investigated. This section describes the sampling design used in the following chapters, 

from the choice of ponds and sampling design, to the general statistical methods used to 

answer the questions, although specific protocols and statistical methodology will be 

presented in their respective chapters. 

Measuring habitat, environmental and community variation 

The ponds have different physical attributes, hydrodynamics and, although they are all 

seawater derived saline wetlands, are also likely to vary on a theme by having slightly 

different hydrochemistries and nutrient levels. These differences in habitat structure are 

likely to influence the microbial communities found in them (Radke et al. 2002, Radke 

et al. 2003, Boggs et al. 2006, Boggs et al. 2007, Long et al. 2009). It is therefore 

necessary to determine the morphometric characteristics of the salt lake systems, 

primarily the sizes, depth and the hydrodynamics of each pond. The morphometric and 

hydrodynamic characteristics could also be expected to cause variation in the water 

chemistry, primarily because of differences in residency time and evaporation. Water 

chemistry parameters that are likely to differ between ponds include ionic 

concentrations and nutrient concentration, both of which have been shown to alter the 

microbial communities of salt lakes (Radke et al. 2003, Casamayor et al. 2013). This 

thesis will provide an analysis of the morphometric and hydrodynamic characteristics of 

each pond, before an investigation of the ionic and nutrient concentrations is presented. 

These two sets of data will be fundamental to characterising the environmental variation 
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that occurs across the study ponds and is likely to be important in structuring the 

microbial communities. 

Community variation will be measured using fragment analyses targeting gene regions 

which are commonly used in studies to fingerprint communities. Automated ribosomal 

intergenic spacer analysis (ARISA) is a popular method used for fingerprinting bacterial 

communities, and has a relatively high taxonomic resolution compared to other DNA 

methods (Ranjard et al. 2001). Unfortunately, ARISA cannot be used to profile ciliate 

communities, therefore terminal restriction fragment length polymorphism (T-RFLP) 

will be used (Dopheide et al. 2009). These two methods are methodologically very 

similar, except different gene regions will be targeted for the two groups which have 

been shown to provide the maximum taxonomic resolution. 

Pond selection 

In order to account for the range of variation in pond characteristics, it is important that 

this study is done in ponds from a range of spatial scales. The different sized ponds 

represent different ecosystem sizes, and will allow for the taxa-area relationship to be 

calculated. For this reason, eight ponds were chosen that represent the change in spatial 

scales of the ponds found at Lake MacLeod. Ponds were also chosen for their 

accessibility. The ponds chosen for this study were (from smallest to largest): Pete’s 

Vent (95m2), Donut Pond (6,000m2), Annie’s Pond (6,700m2), Pete’s Pond (14,900m2), 

Whistler’s Pond (46,500m2), Harjie’s Pond (65,100m2), Jana’s Vent (187,500m2) and 

Cygnet Pond (7,147,700m2; Figure 7), representing ecosystems ranging in size from 

tens of square metres to square kilometres. 

Field sampling design 

In order to account for within pond va riability of the environmental conditions and 

microbial communities, multiple samples need to be collected within each pond. These 

samples need to be collected in a manner which is spatially explicit. This requires that 

the samples are collected in an arrangement where the separation distances between 

samples  ranges from  fine  (centimetres) to   broad scales  (dependent on pond size). To  
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Figure 7: Map of the MacLeod basin showing the location of the ponds. Box A shows the location of the 
northernmost five ponds which include Pete’s Vent (1), Pete’s Pond (2) and Annie’s Pond (3; box c) as well as 
Whistler’s Pond (4) and Harjie’s Pond (5). Box B shows the locations of Donut Pond (6), Jana’s Vent (7) and Cygnet 
Pond (8). 

achieve this, the samples must be collected in a design which allows for these separation 

distances, but also enables the location of each sample, with respect to the other 

samples, to be determined. Such a sampling design will account for small scale 

variation in the environment and the communities. 

Using transects to define where samples are taken allows for the easy collection of 

geolocated samples, particularly at spatial scales where GPS does not provide adequate 

resolution. An adaptation of the sampling design used by Horner-Devine et al. (2004) 

was ultimately used in this study. Samples were collected from each pond along 

transects. In each pond four transects were established, with each transect originating 

from randomly selected point and orientated in a random direction. The length of the 

transects ranged from 3m in Pete’s Vent to 2000m in Cygnet Pond (Table 1). Samples 

were collected at predefined distance along each transect, ranging from separation 

distances of 0.1m to the length of each transect. Care will be taken to only sample the 

microphytobenthic communities, also known as biofilm communities, by sampling the 
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top 5mm of sediment only. Hence, this spatially explicit sampling design can account 

for biotic and abiotic structures at scales ranging from 0.1m to thousands of metres. 

Further, this method allows for the creation of a data set where the location of each 

sample point in space is known, and the distances between samples can be determined. 

This information is fundamental when investigating the effect of spatial structures on 

ecological communities as it allows for differences in the distance where communities 

cease to be spatially autocorrelated to be measured. These distances will provide 

evidence of the spatial scale at which structuring processes are operating within a given 

pond. Comparing autocorrelation distances between the ponds allows for the effect of 

pond size on community structure to be determined. 

1.3.3 Statistical approach 

This section describes the statistical methods used in the following chapters to test for 

differences in the environmental and community structure of each pond. Details on the 

spatial  analysis are also  given to  provide an  understanding of  how  the data  collected 

using the field sampling design were analysed. These analyses, unless otherwise stated, 

were all conducted using Euclidean distances. In order to use linear methods, such as 

principal components analysis (PCA) and redundancy analysis (RDA), community data 

were Hellinger transformed (Rao 1995). For each sample, Hellinger transformation is 

computed as the square root of the quotient of the abundance value for each species and 

the total abundance (Borcard et al. 2011). This transformation is recommended for 

clustering and ordination of community datasets (Legendre and Gallagher 2001). 

Specific details of how each analysis is used will be given in the relevant chapters. 

Table 1: Summary of design used to collect samples in the ponds. Each pond had four transects established in random 
directions, and a variable number of samples collected at set intervals along each transect. The length and number of 
samples collected per transect increased as the size of the ponds increased. 

Pond Samples per transect Length of transect 
(m) Pond size (m2) 

Pete’s Vent 12 3 95 
Donut Pond 12 15 6000 
Annie’s Pond 12 15 6700 
Pete’s Pond 12 15 14,900 
Whistler’s Pond 16 30 46,500 
Harjie’s Pond 16 30 65,100 
Jana’s Vent 16 30 187,500 
Cygnet Pond 22 2000 7,147,700 
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Non-metric Multidimensional Scaling  

Non-metric multidimensional scaling (nMDS) is a method that can produce an 

ordination using any distance matrix. Because it can handle data with missing values, or 

zeros, it is ideal for producing ordinations of community data. Exact distances, 

however, are not preserved in nMDS ordinations, but rather represent the relationship in 

rank similarity between samples in two dimensions (Borcard et al. 2011). The stress 

value indicated the degree of uncertainty within the ordination, with values greater than 

0.20 indicating an ordination which does not accurately portray the 

similarities/dissimilarities between points. 

Principal Components Analysis 

Unconstrained ordination analyses use a single data matrix and reveal its major structure 

as a reduced set of orthogonal axes which can be used in ordination. These methods 

decompose the total variation in the data into a set of linear components which can be 

used as axes for ordination. Principal component analysis (PCA) is an unconstrained 

ordination method of a data matrix consisting of normally distributed, quantitative 

variables. It is therefore not suitable for analysis of raw community data, unless used 

with an appropriate pre-transformation, such as the Hellinger transformation. PCA 

derives a maximum of p axes from a d ata set containing p number of orthogonal 

variables, which are commonly ordered representing decreasing contribution to the total 

variance (Borcard et al. 2011). The principal components give the positions of the 

objects (samples when using community data) in the new set of coordinates. 

Redundancy Analysis 

Redundancy analysis (RDA) is a method that allows the variation in a set of response 

variables (community data) that can be explained by a set of explanatory variables to be 

extracted and summarised. RDA can be considered as a constrained version of PCA, 

where constrained (or canonical) analyses associate two or more data matrices into the 

ordination processes. This allows for structures from a data set to be associated with 

structures in other data sets, and formally test hypotheses about the significance of these 

relationships. RDA is essentially a multivariate multiple linear regression analysis of the 

response data (e.g. community matrix) with the explanatory data (e.g. environmental or 
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spatial data), followed by a PCA of the fitted values. RDA therefore produces, in 

successive order, a series of linear combinations of the explanatory variables that best 

explain the community data. The axes define the space of the explanatory variables, and 

are orthogonal to one another. This allows for testing the hypothesis that the 

relationship between the explanatory variables and the community matrix is linear. The 

canonical axes which are produced by RDA, are linear combinations (multiple 

regression model) of all the standardised explanatory variables. Variation which cannot 

be constrained (i.e. the residuals of the regressions) is expressed as unconstrained PCA 

eigenvalues. Permutation tests are implemented to test the null hypothesis that no linear 

relationship exists between the community data and the explanatory variables (Borcard 

et al. 2011, Legendre et al. 2011). 

Permutational Multivariate Analysis of Variance 

Permutational multivariate analysis of variance (PERMANOVA) is used for testing the 

simultaneous response of one or more variables to a f actor in an analysis of variance 

using permutational methods. PERMANOVA is directly analogous to a multivariate 

analysis of variance (MANOVA), in that it partitions the sums of squares of a 

multivariate data set (Anderson 2001). PERMANOVA can, however, use distance 

matrices as the response data, which is important when ecologists wish to test for 

significance between groups of community data, thus also making it  analogous to 

distance-based RDA (Legendre and Anderson 1999). PERMANOVA assumes that the 

groups have the same multivariate spread among the factors being tested. This requires 

the data to be tested for homogeneity of variance. In this thesis, PERMANOVA is used 

to test for the effects of factors, such as pond identity, on m icrobial community 

structure. 

Analysis of Similarities 

Because the assumptions of PERMANOVA can often be difficult to meet, analysis of 

similarities (ANOSIM) was also used to test for the effect of factors on the microbial 

communities. This method is non-parametric, in that dissimilarities are ranked in order, 

similar to nMDS. The method produces an R-statistic which can be tested for 

significance using permutational tests (Clarke 1993). The R-statistic ranges from -1 to 

+1, with a value of 0 indicating the factors are random. Typically, ecologically 
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meaningful values lie between 0 and +1. Values close to +1 indicate that within group 

similarity is greater than between group similarity.  

Variation Partitioning – Spatial Analysis 

The structure and spatial patterns of the microbial communities detected in this study 

will be the result of environmental, spatial and unaccounted sources of variation. 

Disentangling the relative contributions of environmental and spatial mechanisms has 

been a focus of recent studies (Borcard et al. 1992, Beisner et al. 2006, Langenheder 

and Ragnarsson 2007, Caruso et al. 2011, Lear et al. 2014) and is important when trying 

to understand the role of deterministic and stochastic processes. If environmental 

variables explain much of the variation among communities, species-sorting processes 

can be assumed to be the dominant determinant of community structure. Similarly, if 

spatial factors explain significant proportions of variation in community structure, then 

neutral processes related to dispersal limitation and/or immigration can be assumed to 

be important determinants of community structure. This thesis will investigate the role 

of the environment and space by using variation partitioning methods to explain the 

amount of variation each source explains independently of one another. Specifically, 

this analysis can test the following: 

• if there are gradients of change in microbial communities (indicative of 

processes operating at a larger scale than the sampling design); 

• if there are spatial structures of both biotic and abiotic variables (identifiable 

patterns occurring at scales finer than the sampling area); or 

• if there is a random component of the variation that indicates effects operating 

independently at each sample. 

The first two data chapters of this these are primarily concerned with explaining and 

understanding the variation in the physical, hydrological and chemical components of 

the ponds. The outcome of these chapters is to produce a set of geolocated 

environmental determinants that can be used to explain the microbial community 

patterns. This set of determinants, combined with the spatial data (location of each 

sample in space) allows for an analysis into the relative contributions that each source of 

variation contributes to the community data. 
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Early methods for integrating space as a predictor variable into ecological models were 

based on Mantel regression (Mantel 1967) and partial Mantel tests (Smouse et al. 1986). 

However, Mantel tests only detect significant relationships between two or more 

similarity or distance matrices and do not  provide information on the fraction of total 

variation explained by environmental and spatial matrices independently or the amount 

of variation related to both sets of explanatory variables (Borcard et al. 1992). However, 

ordination techniques, in particular RDA, do allow for the testing of two or more sets of 

explanatory variables (e.g. environmental and spatial data) on a response set of data 

(usually a community matrix when dealing with ecological data) in combination and 

independently of one another (Figure 8). 

Using constrained and partial ordination techniques to partition variation in community 

data instead of partial Mantel tests allows one to account for the spatial component of 

the community and environmental data. This is particularly important for those 

concerned with spatial patterns in ecological data because it allows for the spatial 

component of communities to be accounted for, and the independent roles of 

environmental and spatial processes to be determined. Ordination methods also provide 

a measure of how much variation is not explainable by the datasets, which is either real 

stochasticity and/or unexplained variation from unknown determinants. 

The use of variation partitioning has become a common method to investigate the roles 

of deterministic and spatial processes on microbial communities (Beisner et al. 2006, 

Langenheder and Ragnarsson 2007, Caruso et al. 2011, Lear et al. 2014). However, the 

amounts of unexplained variation in these studies are usually high (more than 50%) and 

these  analyses  cannot  discern  potentially  explainable  variation  from   unexplainable 

 

Figure 8: Variation partitioning of an ecological community matrix showing the fraction due to only environmental 
sources (a), both environmental and spatial (b), spatial sources (c) and residual variation (d). Sourced from Borcard et 
al. (1992).  
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variation due to stochastic processes. This can be expected as it is  not possible to 

measure all the environmental factors that are possible determinants of community 

structure. However, by considering more than two spatial variables (e.g. northings and 

easting), one can ensure that as much of the spatial variation of the community data as 

possible is explained (Borcard et al. 1992).  

Because this thesis is concerned with processes which are occurring at a range of scales, 

it is important to account for these different spatial scales. This means that the spatial 

variables need to model structures at the broadest scales (the entire sampling area), 

down to the finest scales, which is the 0.1m sampling interval. To achieve this, spatial 

variables that represent the structures of all relevant scales must be constructed. This is 

what Moran’s eigenvector maps (MEM), and principal coordinates of neighbour 

matrices (PCNM) do (Borcard and Legendre 2002, Borcard et al. 2004, Dray et al. 

2006).  

MEM analysis allows for the modelling of spatial patterns by using a matrix of 

Euclidean distances among samples to build a truncated matrix which retains only the 

distances of close neighbours (defined by the smallest distance where all points remain 

connected by links smaller than or equal to the truncation distance). Sample pairs 

connected at distances greater than the threshold receive an arbitrary ’large’ distance 

that corresponds with a distance four times the threshold. Principal coordinates analysis 

(PCoA) is used to compute the eigenvectors from the truncated distance matrix, with 

only eigenvectors corresponding to positive eigenvalues retained. These eigenvectors, 

or MEM variables, are retained and are interpreted as representing positive spatial 

correlation (Dray et al. 2006). 

1.4 Thesis organisation 

Although not an exhaustive summary of the analytical and statistical methodology that 

will be used in this study, this introduction provides the rationale and the foundation for 

the sampling approach used in the following chapters. There are four main data chapters 

presented in this thesis that address questions on t he environmental variation found 

within the ponds of Lake MacLeod to a detailed biogeographic analysis of the bacterial 

and ciliate communities. Chapter Two is an investigation of the morphometrics and 
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hydrological regimes of each pond, Chapter Three provides information on the habitat 

heterogeneity found within the ponds, focusing primarily on variation in water 

chemistry and sedimentology characteristics for the benthic biofilm habitat. Chapter 

Four and Chapter Five link the variation in habitat characteristics found in Chapter 

Two and Three with the benthic bacterial and ciliate communities respectively. These 

two chapters will investigate, specifically, the biogeography of the two microbial 

communities using the theoretical frameworks and statistical methodology discussed in 

this chapter. The final chapter, Chapter Six, will provide a synthesis of the results, 

particularly concentrating on the differences and similarities of the bacterial and ciliate 

communities. 
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CHAPTER 2. POND MORPHOMETRY AND 

HYDRODYNAMICS 

2.1 Introduction 

Saline lakes are important features of the landscape in arid countries such as Spain 

(Mees et al. 2011, Casamayor et al. 2013, Castañeda et al. 2013) and Australia (Timms 

2005). Salt lakes have unique ecologies because of their extreme conditions, such as 

variable and often very high salinity, high solar radiation, high temperatures and 

alternating drought and flooding periods. These extreme conditions result in the 

formation of unique habitats, which in turn enable distinctive assemblages of plants, 

animals and microbes to inhabit them (Timms 2009). Like other wetland systems, 

geomorphology, climate and hydrology are fundamental drivers of these systems, and 

understanding the way they operate and are expressed in a particular system is 

important when determining ecological processes (Mitsch and Gosselink 2000). 

De Deckker (1983) describes a categorisation of salt lakes based on geomorphological 

grounds: i) large closed basins with (often) extensive internal drainage areas; ii) small 

closed basins with small internal drainage areas; and iii) crater lakes. A fourth category, 

coastal dune barrier lakes, is excluded because they do not conform to the notion of 

athalassohaline lakes. The term salt lake, or evaporite lake (also known as a salina), 

refers to these landlocked water bodies which have concentrations of salts and other 

dissolved minerals that are considerably higher than most lakes, and often higher than 

seawater (De Deckker 1983). A rarer class of salt water bodies contravene most of these 

general categorisations of salt lakes, under the following circumstances seen in the 

Northern Ponds at Lake MacLeod. In arid (hot and dry) subtropical coastal regions, 

where marine water travels through karst (Tertiary and Pleistocene age barriers; 

Wyrwoll et al. 2000), and upwells into a basin that is slightly below sea level, inland 

ponds can exist in a s tate with permanent seawater, and with relatively constant 

salinities. 

Nutrient dynamics, planktonic biomass and biological community structure of lakes and 

ponds, are known to be affected by the hydrological characteristics of the system, such 
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as water depth, evaporation rates, temperature and water residence time (Olding et al. 

2000, Baranyi et al. 2002, Rennella and Quiros 2006). These hydrologic characteristics 

are, in turn, influenced by the morphology and morphometric properties of the water 

bodies, of which little is known for the ponds of Lake MacLeod. Only crude estimates 

of surface area and volume are given by Shepherd (1990), and there is no understanding 

about the rate of water loss, or residence time of these systems. It is important to 

document these morphometric properties in order to understand how the physical 

differences in pond s tructure, such as size and residence time, determine the 

environmental characteristics, such as salinity and nutrients, which in turn might 

determine the biotic assemblages.  

Lake morphology can have consequences for water temperature and dissolved oxygen, 

as well as other abiotic factors. For example, larger ponds may have increased fetch 

which contributes to increased wave action and mixing (Jackson et al. 2001, Wetzel 

2001). Furthermore, as the surface area-to-volume ratio (SA:V) increases, so does the 

effect of evaporation on the concentration of ions. The mean depth of lakes has been 

shown to be a good determinant of fish and invertebrate community composition, as 

well as a good correlate for numerous limnological characters relevant for biological 

communities (Mehner et al. 2007, Jyväsjärvi et al. 2009). 

Some studies have found a relationship between lake ‘morphotypes’, aquatic 

communities (Jackson and Harvey 1993, M ehner et al. 2007) and environmental 

parameters (Jackson et al. 2001, Jyväsjärvi et al. 2009). However, the morphometric 

characteristics of the Northern Ponds of Lake MacLeod, as well as the habitat structure 

and hydrochemistry found in these environments is not well understood, and it is 

unknown if they can be grouped into ‘morphotypes’ based on the physical attributes. 

The ponds represent the areas of greatest seawater inflow into the MacLeod basin, with 

the vents marking the entry point for brine and the ponds providing a topographically 

enclosed area where evaporation acts, altering the water chemistry as water moves away 

from the vent. This hydrodynamic feature forms an integral part in the formation of 

aquatic habitats within the Northern Ponds. However, each pond has different physical 

features, such as shape, size and depth. Some ponds appear to have large vents where 

inflow seems to be high, whilst others seem to have no distinct vents. Similarly, some 
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ponds have relatively large outlet channels where water flows at a high rate out of the 

systems to form spill sheets, whilst in other ponds there is no clear out flow channels. 

The most comprehensive work attempting to classify the environmental units found in 

the varied landscape of the Northern Ponds of Lake MacLeod has been done by 

Shepherd (1990) in his thesis about the hydrological environments in Lake MacLeod. 

The work done in this thesis broadly follows the environmental unit classification 

scheme that Shepherd constructed. 

The main distinction between the environmental units drawn by Shepherd (1990) was 

whether they belong to the brine sheet environment, where brine inflow is greater than 

evaporative outflow, or the majana environment, where evaporative outflow is great 

enough to supress brine to below the surface. The brine sheet environment was divided 

into four sub-environments, the marginal sheet, pond, de ep sheet and spill sheet sub-

environments. In Lake MacLeod, the brine sheet environments can be permanent or 

temporary, often encompassing discrete areas isolated from each other. The water 

bodies range in size from the square centimetres to the square kilometres and reach 

depths from centimetres to hundreds of centimetres. Within the discharge domain, brine 

is supplied directly from seepage, often through vents. It is in this domain that 

permanent bodies of water (ponds) are often found in deep depressions. These pond 

areas have a long-term positive water balance because seepage inflow is directly from a 

vent and the water body is in equilibrium with spill over and evaporation. Shepherd 

(1990) recognised that each of these environmental units consisted of unique biotic 

communities. 

This chapter will investigate the morphology and morphometric properties of the eight 

ponds used in this study and investigate the similarities and differences between the 

ponds. Various properties of the ponds will be described, such as area, volume, 

perimeter length and water depth, as well as hydrodynamic properties, such as residence 

time and water temperature. The ponds will also be classified into ‘morphotypes’ in 

order to understand the variability in pond structure found at Lake MacLeod, and also 

the context for the hypotheses tested in Chapter 3. 
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2.2 Methods 

2.2.1 Climate Data 

Climatic data for the study period, January 2012 to December 2014, are presented. This 

three year period covers all months in which work was conducted in Lake MacLeod. 

These dates do not reflect individual sampling times. Time of sampling for each specific 

set of data is detailed in the relevant methodological sections. The variables include 

mean minimum and maximum temperatures, mean daily precipitation, mean daily 

evaporation and mean daily wind run for the Carnarvon Airport weather station. The 

weather station is located approximately 100kms south of the Northern Ponds. All data 

were retrieved from the Australian Government Bureau of Meteorology (2015) website. 

Mean daily wind speed (km/hr.) was calculated by dividing the mean daily wind run for 

each month by 24 hours. 

2.2.2 Bathymetric and temperature profiles 

Field 

The use of a sonar measurement device has become a well-established method for many 

marine applications where an accurate water depth measurement is required. Many 

modern sonar devices also have the advantage of being able to continuously measure 

water depth at high resolution while traveling at speed. These advantages have led sonar 

technology to become the most popular method for reliably measuring water depth for 

marine applications like pond floor mapping (Morgan 2010, Coggins et al. 2014).  

Fish-finding instruments are typically utilised in the fishing industry to measure water 

depth, as well as location. These units are relatively cheap and combine GPS technology 

with sonar to provide real-time depth-location data. The Lowrance HDS-5 Fish Finding 

Sonar and GPS unit was chosen for this study due to its cost, the sensitivity of the sonar 

device and the data-logging function. For each location the GPS co-ordinates, a depth 

and temperature measurement are recorded. 

The fish-finding unit was calibrated for shallow water operation, as recommended by 

the manufacturer. This setup included setting the ping (pulse) speed to maximum and 

selecting the 200kHz transducer. These settings give the unit a resolution of ±0.01m 
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with a minimum depth reading of 0.30m. Data was logged using the unit’s maximum 

settings of 3200 Bytes per ping and recorded in LS2 format. 

Bathymetric measurements were made for each of the eight ponds in July 2013. A 

floating device to be towed as close as possible to the water surface was built using a 

surfing body board. The sonar transducer was attached beneath the body board and was 

towed approximately 1m behind the fish finding unit. The unit’s computer, where the 

GPS is located, was kept at the rear of a boat, in order to ensure the GPS co-ordinates 

represented the depth measurements. The boat was a small inflatable which was 

manoeuvred with a small electric motor (with the exception of Cygnet Pond, where an 

aluminium dinghy was used with a small petrol motor). Travel speed was kept to a 

minimum in order to reduce the amount of displaced water at the rear of the boat.  

Statistical interpretation 

Depth and temperature data were downloaded from the Lowrance HDS-5 unit and run 

on the Lowrance software SonarViewer (Version 2.1.2, dow nloadable from 

http://www.lowrance.com/en-AU/Support/Sonar-Log-Viewer). Basic variography was 

conducted using ISATIS (Geovariances and Paris 2012), a geostatistical program that 

allows for calculation, inspection and manipulation of semi-variograms. 

Omnidirectional variograms were calculated and the lag distance and number of lags 

altered in order to achieve a smooth semi-variogram that could be modelled. Modelling 

was done automatically, with the program being able to select a nugget and multiple 

Spherical and Exponential structures. Variogram maps based on 36 directions were then 

inspected using the parameters defined in the omnidirectional variogram. The variogram 

maps are a means to check for anisotropy in the data, i.e., if the calculated semi-

variograms are dependent on di rection. Based on the variogram maps, two directions, 

one along the direction of greatest continuity, and one perpendicular to it, were chosen, 

and the directional semivariograms calculated and models fitted. 

Using the parameters calculated in ISATIS (lag distance, lag number, direction of 

anisotropy and model structures), variogram modelling, kriging and simulation of the 

data were run in R using the RGeostats package (Renard et al. 2014). A conditional 

simulation approach was done using turning bands because it allows for assessment of 

uncertainty. Kriging was confined to a grid that fitted into the pond outline, and 
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consisted of 150 to 250 nodes in each direction. A moving neighbourhood was used 

where the search distances corresponded to the range in each variogram model, and a 

minimum and maximum of 10 a nd 50 s amples were chosen, respectively. The 

simulation was run 100 times with 100 turning bands as additional simulation runs and 

turning bands were found to not alter the results. A normal-score data transformation 

was done on t he depth and temperature data before computing and modelling the 

variograms. Data were back-transformed after simulations to obtain the simulated 

values for depth and temperature at each node. Pond water volume was calculated by 

summing the mean depth values after 100 s imulations, and surface area calculated by 

summing the area of each grid node. 

2.2.3 Water flow 

Field 

Water outflow rates from the ponds was measured using a portable flowmeter (Mash-

McBirney, Inc. FLO-MATETM Model 2000). Flow measurements were taken during 

November 2013. The sensor was zero adjusted daily by placing it in a bucket of still 

water from the ponds. Areas expected to be outflow regions of each pond were found 

using satellite imagery, then inspected on foot before the measurements were taken.  

A transect was established across the outflow area, and a flowmeter was used to 

measure the water flow at the bottom, middle and top of the water column at different 

distances along the transect. The sensor was mounted onto a wooden pole and was 

directed towards the expected direction of flow, and the user stood sidewards of the 

sensors so as to limit flow disturbance. 

Calculation  

The discharge rates were calculated following the Mash-McBirney FLO-MATE 

manufacturer’s instructions. Using the distances along each transect, trapezoid areas 

were calculated, along with the mean bottom, mean middle and mean top flow (Figure 

9). Water flow was calculated by: 
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𝑆𝑆𝑆𝑡𝑡𝑡1 =  
𝑡𝑡𝑡1 + 𝑡𝑡𝑡2 + 𝑡𝑡𝑡3

3
 

𝑆𝑆𝑆𝑚𝑚𝑚1 =  
𝑚𝑚𝑚1 + 𝑚𝑚𝑚2 + 𝑚𝑚𝑚3

3
 

𝑆𝑆𝑆𝑏𝑡𝑡1 =  
𝑏𝑡𝑡1 + 𝑏𝑡𝑡2 + 𝑏𝑡𝑡3

3
 

𝐴1 =  
𝐷𝑆𝑡𝑡ℎ1 + 𝐷𝑆𝑡𝑡ℎ2

2
× (𝑚3 − 𝑚1) 

𝑇𝑓𝑓𝑡𝑓 = ��
𝑆𝑆𝑆𝑡𝑡𝑡1 + 2𝑆𝑆𝑆𝑚𝑚𝑚1 + 𝑆𝑆𝑆𝑏𝑡𝑡1

4
� × 𝐴1 

 

where variables are shown in Figure 9 and 𝑇𝑓𝑓𝑡𝑓 denotes the total water flow. 

 

 

Figure 9: Diagram showing the variables required to calculate water flow accros a channel of variable depth. 

Evaporative processes are inherently difficult to model due to the complex interaction 

between many climatic and hydrodynamic variables. The easiest and the most popular 

methods make use of weather data available at nearby weather stations to predict 

evaporative loss in a water body. Evaporative loss in each pond w as calculated 

following Abdelrady (2013): 

𝐸 = 0.7 × 𝑆𝑆 × �𝐸𝑡 − 𝑅� × 𝐴 

𝑆𝑆 = 1 − (𝑆 × 0.00086) 
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where 𝐸𝑡,𝑅,𝐴 and 𝑆 denote the pan evaporation (m), rainfall (m) , lake area (m2) 

salinity (‰), respectively. Salinity was assumed to be 35‰. Pan evaporation was 

averaged during the period that the outflow measurements were taken using data from 

the Bureau of Meteorology, where daily records from class A evaporation pan in a 

Carnarvon Airport were used.  

Total outflows were calculated by summing water flow through the outlet channel with 

the evaporation rate at each pond. Residence time was measured as the time required for 

total outflow to equal pond volume. Water outflow was also expected to occur via 

groundwater loss, but was assumed to be negligible when compared to loss via channel 

flow and evaporation. 

2.2.4 Classifying morphotypes 

Pond volume, perimeter, mean water depth, maximum water depth, daily outflow 

volume, daily evaporation outflow volume and mean water temperature was used to 

classify the ponds into morphotypes. This was done using k-means clustering in the 

stats package for R, but because the ponds chosen in this study range in size, it is 

unlikely that these morphotypes are representative of all the Northern Ponds unless size 

is the primary determinant of morphotypic structure. The k-means clustering method 

uses the local structure of the data to delineate clusters based on high-density regions of 

within-group sums-of-squares (Borcard et al. 2011). A sum-of-squared-error scree plot 

was used to find a suitable number of clusters for the k-means cluster analysis. This 

method typically produces a bend in the plot when the sum-of-squared-error is plotted 

against the number of clusters. The number of clusters was thought to be appropriate at 

the bend of the scree plot because additional clusters beyond do not have a substantial 

impact on the total sum of squared error. 

2.3 Results 

2.3.1 Climate 

There were negligible differences in mean monthly minimum and maximum daily air 

temperatures throughout the three year study period (Table 2, Table 3 and Table 4). The 
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wettest year was 2012, and the wettest month was March 2012. Similarly, evaporation 

was greatest during the hotter summer months, with February 2013 having the highest 

average daily evaporation of 11.3 m m/day. The summer months had the strongest 

average wind speeds, generally surpassing 25 km/hr in summer and being less than 17 

km/hr in winter. The winds were generally dominated by southerlies in the morning and 

south-westerlies in the afternoons from November to April. Between May and October, 

the winds tend easterly to south-easterly in the mornings and swing to the south-west in 

the afternoons (Appendix 1). There were no cyclones in the area during the three years, 

however, there was 56.2mm of precipitation between the 24th and 25th March 2012. 

2.3.1 Morphometric characteristics 

The bottom geometry of each pond was determined from the results of the simulation 

output (see Appendix 2 for the variogram parameters). The ponds have been described 

by the total water volume within each pond, the surface area of the pond, mean depth 

and maximum depth (Table 5). Volume was directly proportional to surface area 

(Figure 10). Where water outflow through the channels could be measured using the 

flow meter, the rate was as low as 13 L/s in the smallest pond and as great as 578 L/s in 

the largest pond. The average pan evaporation rate in Carnarvon weather station was 

10.0 mm/day during the period when water flow was being measured. Evaporative 

outflow increased with surface area. Similarly, the proportion of outflow estimated to be 

due to evaporation increased with surface area. Flow rate out of the ponds increases 

with pond size, as well as the magnitude of evaporative outflow. In the smallest pond, 

Pete’s Vent, evaporative outflow is negligible (less than 1 L/s), whilst in the largest 

pond, Cygnet Pond, the proportion of the total outflow explained by evaporation is 

almost 50%. 
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Table 2: Summary of climatic conditions during 2012. All data are presented as monthly means. Data were retrieved 
from Bureau of Meteorology station at Carnarvon Airport, which is located approximately 100 km south of the study 
site. 

 Minimum 
Temp 

Maximum 
Temp 

Mean Daily 
Precip. (mm). 

Mean Daily 
Evap. (mm). 

Mean Daily 
Wind Speed 

January 24.2 34.3 21.0 9.9 22.5 
February 23.7 32.8 15.2 9.8 26.8 
March 22.1 34.3 56.2 9.8 21.4 
April 18.8 30.8 6.6 7.1 19.0 
May 14.2 29.0 0.6 5.7 17.2 
June 12.3 24.7 32.2 3.8 15.5 
July 8.8 24.7 10.4 4.6 16.3 
August 11.3 24.5 6.8 5.1 18.6 
September 14.8 25.9 4.6 7.1 20.8 
October 17.0 28.1 0.0 8.8 24.3 
November 18.9 27.7 5.0 9.8 27.5 
December 21.8 30.6 14.6 9.5 25.0 
 
Table 3: Summary of climatic conditions during 2013. All data are presented as monthly means. Data were retrieved 
from Bureau of Meteorology station at Carnarvon Airport, which is located approximately 100 km south of the study 
site. 

 Minimum 
Temp 

Maximum 
Temp 

Mean Daily 
Precip. (mm). 

Mean Daily 
Evap. (mm). 

Mean Daily 
Wind Speed 

January 24.3 35.0 25.8 10.9 27.1 
February 24.8 35.8 0.2 11.3 24.0 
March 22.4 32.2 2.2 9.4 24.0 
April 20.6 31.4 0.0 7.6 19.5 
May 14.1 26.3 11.0 5.1 16.5 
June 11.2 24.0 29.0 4.5 18.2 
July 9.9 23.2 0.6 4.5 16.2 
August 12.2 25.4 0.2 5.7 18.4 
September 14.9 24.1 7.0 6.7 21.8 
October 17.1 27.9 2.8 8.3 26.0 
November 20.5 29.2 0.0 9.2 26.3 
December 22.2 31.9 0.4 10.5 27.3 
 
Table 4: Summary of climatic conditions during 2014. All data are presented as monthly means. Data were retrieved 
from Bureau of Meteorology station at Carnarvon Airport, which is located approximately 100 km south of the study 
site. 

 Minimum 
Temp 

Maximum 
Temp 

Mean Daily 
Precip. (mm). 

Mean Daily 
Evap. (mm). 

Mean Daily 
Wind Speed 

January 23.3 32.9 9.0 10.9 28.4 
February 24.5 35.1 0.0 10.3 23.3 
March 23.3 33.1 0.4 9.7 24.3 
April 19.1 30.1 7.8 7.4 20.2 
May 15.4 26.0 23.6 5.0 17.7 
June 10.9 25.3 14.0 4.7 17.0 
July 10.2 23.8 2.4 4.4 16.0 
August 12.5 28.2 0.2 6.0 16.1 
September 15.8 27.1 31.4 6.7 21.3 
October 17.6 26.6 1.0 8.3 25.4 
November 18.8 27.9 0.0 9.7 26.7 
December 20.7 30.4 0.0 10.7 26.0 
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Figure 10: Linear relationship between pond surface area (m2) and pond water volume (m3). R2 = 0.99, slope = 1.02 
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Table 5: Summary of morphometric and hydrodynamic characteristics of each pond. All temperature measurements were taken from approximately 10 cm below the water surface. 

Pond Volume 
(m3) 

Surface 
Area (m2) 

Perimeter 
(m) 

Mean 
depth 
(m) 

Maximum 
depth (m) 

Outflow 
Rate 

(m3/day) 

Evaporation 
(m3/day) 

Total 
Water 
loss 

(m3/day) 

Residence 
Time 
(days) 

Mean 
Temp. 
(°C) 

Min 
Temp. 
(°C) 

Max 
Temp. 
(°C) 

Pete’s 
Vent 98 95 40 1.03 1.63 17 1 18 5 27.3 27.2 27.4 

Donut 
Pond 3,848 5,978 500 0.64 1.67 0* 41 41 95 23.6 23.4 24.0 

Annie’s 
Pond 4,826 6,712 400 0.72 2.40 1,094 46 1,140 4 22.2 22.0 23.3 

Pete’s 
Pond 7,390 14,880 810 0.50 0.82 0* 101 101 73 22.3 21.1 25.4 

Whistler’s 
Pond 47,470 46,544 1,250 1.02 2.11 11,214 316 11,530 4 22.1 21.5 25.2 

Harjie’s 
Pond 53,655 65,069 2,570 0.82 2.82 0* 442 442 1,198 22.5 21.5 25.7 

Jana’s 
Vent 136,528 187,509 2,950 0.73 2.57 27,173 1,273 28,446 5 19.5 17.5 24.3 

Cygnet 
Pond 4,436,004 7,147,702 22,650 0.62 2.18 49,926 48,528 98,454 45 15.7 12.3 24.0 

*These systems had no defined channel for outflow and it is likely that wind direction has a huge influence on water outflow OR water 

inflow = evaporative loss. 
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2.3.2 Pond details 

Pete’s Vent 

Pete’s Vent is the smallest pond in this study, being only 95m2 in area and 98m3 in 

volume (Figure 11). Despite its small area, it has an average depth of just over 1m, with 

a maximum depth of 1.6m where the vent occurs. There is a l arge channel where the 

water is discharged at a rate of 17m3/day. Evaporative loss from this pond is negligible. 

Due to its small volume and the large discharge rate, the residence time in this pond is 

only 3 hours. Discharged water leaves the pond and travels down the channel where it is 

connected with the main water body in this system, Pete’s Pond. Water temperature was 

relatively constant at 27.3°C.  

 

 

 

Figure 11: Bathymetric map of Pete's Vent with depth contours in meters (left) and water temperature (°C; right). All 
measurements were taken in July 2013. 
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Donut Pond 

Donut Pond is found in the northern area of the Cygnet System. It is one of the larger of 

the ponds located between Sandy Bluff Sill and Cygnet Pond, covering an area of 

3,800m2 and containing 6,000m3 of water (Figure 12). The vent is found in a small 

channel in the north-west of the pond, and reaches a depth of 1.7m. The average depth 

of the pond is slightly more than 0.6m. No definitive outlet channel could be found for 

this pond suggesting outflow is relatively slow. Water temperature was highest in the 

northern channel where the vent is located, where it was 24°C, and decreased to 23.4°C 

in the southern section. 

 

 

 

Figure 12: Bathymetric map of Donut Pond with contours in meters (left) and water temperature (°C; right). All 
measurements were taken in July 2013.  
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Annie’s Pond 

Annie’s Pond is a medium sized water body found in the northern part of the Chirida 

System. It has a maximum width of just over 140m, a surface area of 6700m2 and a 

water volume of 4,800m3 (Figure 13). Annie’s Pond reaches a m aximum depth of 

2.40m in the north-western corner, which is where the inlet vent is found. The pond 

becomes shallower in all directions away from the vent, with an average depth of 

0.72m. The major outflow region was found at a very small outlet channel along the 

southern bank, where a flow rate of 1,094m3/day was measured. Residence time 4 days 

once evaporation has been accounted for. Water temperature ranged from 23.3°C to 

22.2°C. 

 

 

 

Figure 13: Bathymetric map of Annie's Pond. Contour lines are in meters (left) and water temperature (°C); right. All 
measurements were taken in July 2013. 
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Pete’s Pond 

Pete’s Pond is the northern most water body in the Chirida system, and represents the 

northern limit of the ponds examined in this study. It has a surface area of 7,400m2, 

larger than the neighbouring pond, Annie’s Pond. It also has a water volume which is 

more than double that of Annie’s Pond, (14,900m3; Figure 14). This pond has no visible 

large vent area, and therefore has a relatively shallow maximum depth slightly deeper 

than 0.8m and an average depth of 0.5m. There were no signs of an outflow channel so 

water flow was measured across the narrowest point of the pond where it was believed a 

flow rate could be measured. However, no flow was measured, probably due to the rate 

being less than the sensitivity of the sensor (1cm/s). Residence time in this pond is 

longer than that of other ponds. The maximum water temperature was 25.4°C and 

minimum 21.1°C. The higher temperatures are found in the north-west section of the 

pond. 

 

 

 

Figure 14: Bathymetric map of Pete's Pond with contours in meters (left) and water temperature (°C; right). All 
measurements were taken in July 2013. 
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Whistler’s Pond 

Whistler’s Pond is a medium sized pond located in the Chirida System, north of Harjie’s 

Pond. The pond c overs an area of 46,500m2 and contains 47,500m3 of water (Figure 

15). There are three distinct vent areas found in the northern sector of the pond, with the 

deepest having a maximum depth of 2.1m. The pond is quite deep compared to the other 

ponds, with an average depth of just over 1m. There is a well-defined outlet for this 

pond along its eastern margin, where water flows out at 11,214m3/day into a l arge 

shallow spill sheet. Evaporation loss is estimated at 316m3/day, which is relatively low 

in comparison to water discharged through the channel (3% of total outflow). The 

residence time in this pond is 4.1 days. Water temperature in the pond varied between 

25.2°C near the vents to 21.5°C. 

 

 

 

Figure 15: Bathymetric map of Whistler's Pond. Contours are in meters (left) and water temperature (°C; right) All 
measurements were taken in July 2013. 
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Harjie’s Pond 

Harjie’s Pond, located immediately south of Whistler’s Pond, is larger than its 

neighbour. It is a narrow pond that extends in a south-east direction with a surface area 

of 53,700m2 and a water volume of 65,000m3 (Figure 16). It is shallower than 

Whistler’s Pond, with a mean depth only slightly greater than 0.8m, however, it has a 

deep vent area in its western reaches with a depth over 2.8m. Although water flowing 

out of the vent was difficult to observe visually, the warmer water temperatures in this 

area suggest that this is a significant entry point for water into the system, as increased 

water temperatures were found to correspond to vent areas in the other ponds. Another 

shallower vent is found in the northern limits of the pond, and there is probably a third 

vent that was not measured in the extreme western reach of this large pond. No outlet 

point could be found for this pond a nd therefore water flow was measured across a 

narrow point where water was thought to be flowing eastwards. No flow was detected, 

and this is probably attributable to the flow being less than 1 cm/s and therefore not 

detectable by our sensors. However, the residence time is longer than that of the other 

ponds where channel outflow was detected. Water temperature varied from 25.7°C near 

the vents to 21.5°C in the western regions. 

 

 

Figure 16: Bathymetric map of Harjie's Pond with contours in meters (left) and water temperature in Harjie's Pond 
(°C; right). All measurements were taken in July 2013. 
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Jana’s Vent 

Jana’s Vent is found in the Cygnet system, south of Sandy Bluff Sill and west of Cygnet 

Pond. It is the second largest pond in the study, being 187,500m2 in surface area and 

136,500m3 in volume (Figure 17). The deepest regions of the pond a re in the north 

where the vent reaches depths of 2.6m. Water flows south from the vent and is 

discharged via an outlet channel found in the extreme south of the pond. Water is 

discharged at a rate of 27,173m3/day and flows through a long series of channels before 

being released into Cygnet Pond. Discharge also occurs along the south-western margin 

of the pond, however, this was perceived to be negligible compared to that occurring 

from the channel region when visited during the study. Evaporation was 1,273m3/day 

and the residence time of water in the pond is 4.8 days. Water temperature at the vent 

region was 24.3°C and decreased in to 17.5°C in the southern most parts of the lake 

where it is more strongly influenced by wind and ambient temperatures. 

 

 

 

Figure 17: Jana's Vent bathymetric map with contours in meters (left) and water temperature in Jana's Vent (°C; 
right). All measurements were taken in July 2013. 
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Figure 18: Bathymetric map of Cygnet Pond. Goat Island can be seen on near the western shore. Contours are in 
meters. All measurements were taken in July 2013. 

Cygnet Pond 

Cygnet Pond is the largest in this study and the second largest pond in Lake MacLeod, 

second to Ibis Pond, into which Cygnet Pond drains. Only the southern sector of this 

pond was examined in this study (this is the ‘pond’ part of the Cygnet system, not the 

‘channel like’ part of it). The northern sector contains numerous vents and channels that 

are relatively deep and connected to the southern sector via a wide, shallow channel. 

Cygnet Pond is the largest pond us ed in this study, covering an area of 7.1km2 and 

containing 4,436,000m3 of water (Figure 18). In addition to the outlet channel for Jana’s 

Vent that functions as an inflow, there are three vents found in Goat Bay, and at least 
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two more in the south-west of the pond. The maximum water depth is about 2.2m, but 

the pond is mostly shallow with a mean depth slightly greater than 0.6m. The primary 

outlet for this pond i s in the north-east, however, there is probably substantial flow 

occurring across most of the south-western margin, as water flows over a shallow sill 

into Ibis Pond. A flow of 49,926m3/day was measured flowing out of this pond across a 

200m wide channel. Evaporative loss was approximately equal to that of channel 

outflow (48,528m3/day), meaning that 49% of total outflow was caused by evaporative 

loss. This gives the pond a residence time of 45 days. Temperature maps could not be 

made for Cygnet Pond, because of the length of time required to cover the area in a 

boat, and the drastic change in water temperature caused by changes in wind. It is likely 

that because of the large, shallow nature of this pond, water temperatures are subjected 

to great change caused by interaction with ambient temperatures and wind. 

2.3.3 Morphotypes 

The eight ponds could be grouped into four clusters using k-means clustering and the 

morphotype variables for pond volume, perimeter length, mean water depth, maximum 

water depth, channel outflow, evaporative outflow and mean water temperature (Figure 

19). The scree plot flattens after four clusters, therefore additional clusters do not  

greatly reduce the sum-of-square-error. The first group consists of Annie’s Pond, 

Harjie’s Pond and Jana’s Vent. These ponds had the greatest mean and maximum 

depths (Table 6). The second group, which only consisted of Cygnet Pond, was 

different to the other groups because of its large volume, substantial channel and 

evaporative outflow, as well as having the coldest water temperature. The third group 

consisted of Pete’s Vent and Whistler’s Pond and had the highest mean water 

temperatures. The final group consisted of Pete’s Pond and Donut Pond, which were 

characterised by the lowest mean water depth. Daily evaporative outflow was less than 

1% of total water volume for all the groups. Group 3 had the lowest SA:V ratio (1m-1), 

while group 1 had a SA:V ranging from 1.2 to 1.4m-1. Group 2 and 4 had SA:V ratios 

ranging from 1.6 to 2.0 m-1. 
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Figure 19: Scree plot of the change in sum of squares as k-means clusters are added using the morphometric variables 
volume, perimeter, mean depth, max depth, outflow, evaporative outflow and mean water temperature for each pond. 
Four clusters were chosen as the change in the within group sum of squares was minimal as additional clusters were 
added. The scree plot flattens after 4 clusters, therefore, the additional clusters do not reduce the sum-of-square-error 
greatly. 

Table 6: Minimum and maximum values of morphometric properties used to define the four pond 'morphotypes'. 
Outflows are recorded as the proportion of pond volume loss per day. A: Annie’s Pond; C: Cygnet Pond; D: Donut 
Pond; H: Harjie’s Pond; J: Jana’s Vent; PP: Pete’s Pond; PV: Pete’s Vent; W: Whistler’s Pond. 

Group Ponds Volume 
(m3) 

Perimeter 
(m) 

Mean 
depth 
(m) 

Max 
Depth 

(m) 

Channel 
Outflow 

(%) 
Temp SA:V 

1 A, H, J 4826-
136,528 400-2650 0.7-0.8 2.4-

2.8 0-22 19.5-
22.5 1.2-1.4 

2 C 4,436,004 22650 0.6 2.2 1.0 15.7 1.6 

3 PV, W 98-47470 40-1250 1.0 1.6-
2.1 17-24 22.1-

27.3 1 

4 PP, D 3848-7390 500-810 0.5-0.6 0.8-
1.7 0 22.3-

23.6 1.6-2.0 
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2.4 Discussion 

Pond morphometry can be a useful proxy for the environmental parameters (Jackson et 

al. 2001, Jyväsjärvi et al. 2009) and ecologies (Jackson and Harvey 1993, Mehner et al. 

2007) of aquatic systems. In this study, the ponds could be grouped into four 

‘morphotypes’ using the morphometric and hydrodynamic characteristics determined 

for each pond. The four morphotype groups were mainly distinguished by mean water 

depth and proportional volume of channel outflow. This chapter shows that some ponds 

have similar morphometric characteristics. These morphotypes may be useful 

determinants of the environmental conditions and microbial communities found within 

each pond. 

2.4.1 Update on the Lake MacLeod Ponds 

Bathymetry 

The integration of water temperature and bathymetric data yielded maps for eight of the 

main ponds in Lake MacLeod. The geological maps of Logan (1987) and 

sedimentology maps of Shepherd (1990) provide a geomorphological context for the 

ponds, while the maps produced in this study provide detailed information on w ater 

flow from the vents to the surrounding habitats. The morphologies of the ponds 

exhibited similar patterns, in that water temperature was highest nearest to the vents, 

and that all the ponds have simple topographies, where they tend to get shallower 

towards their eastern margins.  

Surface area of the ponds studied varied from 95m2 to 7km2, and water volume from 

98,000L to over 4.4GL. As was expected, water volume in the ponds was proportional 

to pond surface area. Either of these measurements would be a useful proxy for defining 

the size of the pond. However, as all the ponds are relatively shallow with similar mean 

depths, it is more useful to define pond size as a function of surface area. Aerosols are 

an important transport vector for microbes (Hörtnagl et al. 2010), and the surface of the 

lakes are an important entry point for these immigrants into the ponds. It is therefore 

likely that ponds with larger surface areas are subjected to higher levels of immigration 

(Comte et al. 2014). For these reasons, surface area will be used in the remainder of this 

thesis as a proxy for ecosystem size. 
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The ponds in Lake MacLeod have many similar morphometric characteristics. For 

example, all of the ponds, with the exception of Pete’s Pond and Harjie’s Pond, have a 

deep region that corresponds to a vent. The vents are almost exclusively found in the 

north-western region of each of the ponds, and the water bodies generally extend in a 

south or south-east direction and become shallower. Most of the ponds have a defined 

boundary around the perimeter, although the shore is generally steeper along the 

western and northern edges of the ponds (Shepherd 1990 and pers. obs.). These vent 

areas are easily identified when in the ponds by looking for depressions in the pond 

floor. 

The vent regions were all found to be more than 1.5m deep, with the deepest one at 

Jana’s Vent (2.6m); elsewhere in the Lake MacLeod system, the vents are up t o 6m 

deep (Hidden Vent; pers. obs.). The shallower reaches of the ponds, where depth 

measurements were difficult to make as the sonar device can only measure greater than 

0.30m, were generally found in the south to south-eastern margins of the ponds. For 

example, Annie’s Pond, Pete’s Pond and Donut Pond do not  have definite shorelines 

along their south-eastern margins. In these ponds, the water bodies typically reach a 

depth of less than 0.30m and mangrove pneumatophores become dense and impede 

water flow along their eastern margins. 

Hydrodynamics 

The ponds either had a large outflow channel, where water flowed out of the pond into 

adjacent spill sheets, or were confined water bodies with little or no surface outflow. In 

the former scenario where there were outflow channels, water inflow through the vents 

must be sufficiently great enough, and evaporative loss low enough, to cause a net 

positive water balance. Alternatively, in the other ponds with no outlet channels, water 

inflow must be in equilibrium with evaporative loss, hence the constant volume of water 

despite the constant inflow from the vents. These ponds have a neutral water balance. It 

could be expected that these two different hydrological characteristics could influence 

the environmental conditions and/or the microbial communities found within them 

(Fisher et al. 2009). Additional outflow is likely to occur via subterranean seepage, as 

brine moves towards the basin centre through the sediment column. In this study, this 

effect was assumed to be negligible compared to other sources of outflow, but in the 
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ponds with a neutral water balance, it is assumed that subterranean seepage is not the 

most important method of brine loss. 

Attention should, however, be paid to the flow rate measured for Cygnet Pond, which is 

probably strongly affected by wind strength and direction. The rate calculated was 

measured during a period of sustained northerly wind, and therefore is probably at the 

high end of the range that could be expected to flow out of the pond. When the 

measurements were being made, the wind direction changed to a southerly and a 

reduction in water flow was observed. Water levels in Cygnet Pond have been seen to 

increase by up t o 5cm when there is a sustained southerly wind (per. obs.). It is 

therefore likely that wind plays an important role in determining water volume and flow 

out of Cygnet Pond. A southerly wind is likely to ‘push’ water upslope from Ibis Pond 

and thus limit the flow out of Cygnet Pond, resulting in raised water depths throughout 

the pond (probably limited to 5cm). Conversely, under northerly wind conditions, water 

is push downslope, and the water movement through the channels from Cygnet Pond 

and into Ibis Pond is facilitated, and the water level drops. 

Some of the ponds received inflow via channels from adjacent ponds. This includes 

Pete’s Pond, Harjie’s Pond and Cygnet Pond. Pete’s Pond receives water directly from 

the outflow channel of Pete’s Vent, with the channel being approximately 30m long. No 

channel outlet or significant areas of spill over were found around Pete’s Pond, so the 

system is likely to be in equilibrium, with total inflow/seepage equal to total 

evaporation loss. It can therefore be estimated that inflow from Pete’s Vent is 

approximately 17% of total inflow into the system and that other sources of seepage are 

contributing water to the system. A similar scenario occurs with the outflow from Jana’s 

Vent, which flows into Cygnet Pond. Cygnet Pond, however, has numerous other vents 

within the pond, and total inflow of brine originating from Jana’s Vent should be 

expected to represent an small proportion of the total water body. Nonetheless, the data 

in this chapter suggests that inflow from Jana’s Vent into Cygnet Pond is large, and 

represents 28% of the total daily water loss of Cygnet. 

Morphotype groups 

Mean water depth, channel outflow and water temperature were found to be good 

descriptors of the four pond morphotypes found for the eight ponds used in this study. 
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The shallowest groups, group 2 and 4, were characterised by very low, or no channel 

outflow, although Harjie’s Pond (group 1) also had no channel outflow. Cygnet Pond 

has morphometric and hydrodynamic characteristics which are different to the other 

ponds, hence it was the only member of the group 2 m orphotype. The most obvious 

feature that separates Cygnet Pond from the other ponds is its large water volume, 

which is an order of magnitude greater than that of the second largest pond, Jana’s Vent. 

Cygnet Pond also has a very low mean water temperature, which because of the high 

surface area-to-volume ratio, is probably affected by prevailing winds, which may act to 

cool the water body through evapo-transpiration (Venäläinen et al. 1998, Van Cleave 

2012). On the other hand, group 3, which includes Pete’s Vent and Whistler’s Pond, 

were characterised by the large proportion of water loss daily through an outlet channel, 

although Jana’s Vent (group 1) has a comparable flow through an outlet channel. 

2.4.2 Comparison with other saline wetlands 

The closest analogues to the Northern Ponds in northwestern Australia are the 

“birradas” of Shark Bay, and Mandora Marsh which is inland of Eighty Mile Beach in 

the Pilbara. Birridas are close to the coast, evaporite pans occurring in interdunal 

depressions, especially around Shark Bay. Halse et al. (2000) state “Most of the birridas 

contain gypsum and, although they may dry intermittently, anecdotal information 

suggests their water levels show subdued response to oceanic tides.” Indeed they liken 

Lake MacLeod, as a whole to be an example of a very large birrida. The Northern Ponds 

themselves, some 200 km north of Shark Bay, are clearly part of this analogous regional 

system as permanent water bodies fed by sea water in which the tidal signal appears to 

be completely, or almost so, obliterated by the long passage through the karst. Mandora 

Marsh is also a permanent arid zone wetland in north-western Australia, contains waters 

that range from fresh to saline, however they are not of marine origin. Although each 

wetland is not particularly diverse, because of the high levels of environmental 

heterogeneity, when considering the entire suite of wetlands, the marsh supports a 

relatively rich fauna assemblage (Storey et al. 2011). 

The geological, hydrological, edaphic and biological characteristics of the saline 

wetlands located throughout Monegros, north-east Spain, has been well documented 

(Mees et al. 2011, Casamayor et al. 2013, Castañeda et al. 2013), and is perhaps the 
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best example of where the morphometric properties of saline wetlands has been 

investigated (Castañeda et al. 2013), although some morphological characteristics have 

been documented for the salt lakes in South Australia (Timms 2009) and Western 

Australia (Boggs et al. 2006). Similar to the ponds investigated here, the Monegros 

wetlands are typically shallow, with about 80% of the lakes ranging in depth from 0.3m 

to 5.0m. Similarly, the salt lakes of the Eyre Peninsula of South Australia are mostly 

less than 50cm deep, with few lakes being deeper than 1m (Timms 2009). 

An interaction with subsurface geomorphology has been described for the geographic 

location of the Monegros salinas because these systems are usually the result of 

subsurface hydrogeological features. Similarly, the morphology of some playas of the 

Yarra Yarra salt lake system of Western Australia were found to be determined by the 

underlying geology (Boggs et al. 2006). The ponds in Lake MacLeod are also located 

along the seepage face, a s ubsurface hydrological feature where seawater enters the 

basin.  

The ponds of Lake MacLeod displayed elongation along a south-east orientation, which 

not only corresponds to the direction of the basin slope, but also with the direction of 

the prevailing winds. Similarly, the Monegros salinas are also predominately elongated 

along the direction of the prevailing winds (Castañeda et al. 2013). Not only do the 

prevailing winds appear to be elongating or orientating the ponds in Lake MacLeod, 

evidence of wind driven fluctuations in water level, and steepening and deepening of the 

northern shorelines was observed. Similar interactions with local climate are also 

thought to be determining the orientation and elongation of the morphology of the Yarra 

Yarra playas (Boggs et al. 2006). Together these studies show that prevailing winds can 

be important in defining the morphology of saline wetlands/lakes  

Most inland saline lakes are not permanently inundated like the ponds of Lake 

MacLeod. Despite the similar morphological characteristics the ponds have with other 

salt lake systems, it is  likely that the environmental conditions and the ecology of 

permanently wet systems are different to the typical ephemeral systems as there is no 

alteration between wet and dry phases. An analogue might exist for the four saline lakes 

located on t he Eyre Peninsula of South Australia, where seawater is delivered via 

marine springs, and are also permanently inundated (Timms 2009, 2010). These 
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systems were found to be distinct from the surrounding ephemeral salt lakes in that they 

have significantly different environmental conditions, zooplankton communities and 

littoral invertebrate communities (Timms 2009). The permanently inundated ponds of 

Lake MacLeod are therefore likely to have distinct environmental conditions and 

ecologies to those of other salt lakes, despite their similar morphometric characteristics. 

2.4.3 Role of geomorphology and climate 

The geomorphology, hydrology and climatic features of wetlands are known 

determinants of the ecological functions and processes that occur in wetlands (Mitsch 

and Gosselink 2000). This chapter describes those determinants by investigating the 

morphometry and hydro-dynamical characteristics each of the eight ponds studied. The 

seepage face, which runs along the western margin of the lake basin, is the dominant 

geomorphological feature which determines where the ponds are located within the 

basin. It is along this seepage face where water seepage can occur through the vents 

(Logan 1987). The geomorphology therefore plays an important role in determining the 

size of the vents and the volume of water which is discharged, which in turn affects the 

residency time of the discharged water within the pond.  

Climatic drivers, and in particular wind driven processes affect the morphology of each 

pond. Although the ponds are mostly elongated along the basinal slope, their shape has 

been influenced by wind induced currents which cause the ponds to have steeper banks 

and deeper depths along the northern and north-western parts of the ponds. Wind also 

plays an important role in the hydrologies of the ponds as it is causes fluctuations in 

water depth and rate of discharge through channels (particularly in Cygnet Pond). Other 

climatic variables, such as ambient temperatures and precipitation affect the rate of 

water loss via evapo-transpiration, although wind also plays a role in this process too. 

The differences in these factors, which are attributed to the geomorphological and 

climatic drivers operating at each pond, are likely to be reflected in their hydrochemistry 

and ecologies. 

2.4.4 Limitations 

The Northern Ponds are a dynamic environment with the wetlands expanding and 

contracting with seasonal changes in evaporation rates, although the volume and 
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distribution of pond habitats remain relatively consistent (Logan 1987, Shepherd 1990). 

As discussed above, as well as by Shepherd (1990), variation in water depth and extent 

has been noted in Cygnet Pond due to wind forcing water ‘upslope’ and the subsequent 

reduction of outflow. Other sources of outflow, particularly subterranean seepage, are 

also assumed to be negligible compared to outflow via evaporation and channel outflow 

in this study. Seepage loss is probably a significant source of water loss in the ponds 

where water balances were found to be neutral (Donut Pond, Pete’s Pond and Harjie’s 

Pond), although the relative amount of seepage loss compared to evaporative loss 

remains unknown. Nonetheless, the contribution of seepage loss and wind induce 

variation need to be acknowledged as unaccounted sources of brine loss, which may 

have significant effects on the water volumes and residence times of the ponds. 

All the measurements in this section were made at a single time point, and therefore 

ignore the effects of daily, seasonal and annual variation on t he morphometry and 

hydrology of the ponds. The climatic data presented in this chapter highlights the strong 

seasonal variation in evaporation (ranging from 10 mm/day in summer to 4.5 mm/day in 

winter), and to a lesser extent, small inter-annual variation in evaporation, rainfall and 

temperature. Because the ponds are topographically confined, and don’t appear to 

change size with season (personal observation), it may be assumed that outflow through 

the discharge channels increases during the winter months. However, under the 

assumption that total water loss from the ponds is always in equilibrium with 

evaporative loss and channel outflow, the residence time of water within the ponds must 

also remain relatively constant. 

Residence time may have also been underestimated because of the detection limit of the 

flow meter (1 cm/sec). If flow was below detection limit in Donut Pond, Pete’s Pond 

and Harjie’s Pond, discharge volumes could have been underestimated by up to 850 

m3/day for every square meter of discharge area. This large source of error needs to be 

considered when in view of the high water residence times calculated for some of the 

ponds. This undetected flow can exceed the estimated evaporation rates for these ponds 

and may have important consequences on t he water chemistry and biology of these 

systems. Furthermore, some areas of the ponds were not measured for water depth 

because of the 0.3m detection limit of the fish finding software. These areas, however, 

were relatively small and usually consisted of regions of dense pneumatophore beds. 
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Despite this limitation, water depth was measured throughout all the other regions of the 

pond, and surface areas estimated using satellite imagery. It is therefore unlikely that by 

not including these shallow areas in the depth surveys that pond volumes were 

underestimated, especially in the larger ponds. 

2.4.5 Conclusion 

The ponds are similar in their morphology, despite their differences in size. They are all 

shallow, and have seepage vents located along the western and north-western shores. 

All the ponds tend to become shallower in an easterly direction, where an outlet channel 

is sometimes located. The volume of seepage inflow through the vents determines 

whether the pond has a net positive water balance or a neutral water balance. When a 

pond has a p ositive water balance, surface water can leave the pond and flow into 

adjacent spill sheet areas. When the pond has a n eutral water balance, seepage is in 

equilibrium with evaporative loss and there is no surface outflow into adjacent spill 

sheet areas. Ponds with a positive water balance include Pete’s Vent, Whistler’s Pond, 

Jana’s Vent and Cygnet Pond, while ponds with a neutral water balance include Donut 

Pond, Annie’s Pond, Pete’s Pond and Harjie’s Pond. 

Pete’s Vent is the smallest pond studied in this thesis and was characterised by having a 

relatively deep mean depth and low water residence time. Donut Pond and Annie’s 

Pond are similar sizes, but Annie’s Pond has a positive water balance, and thus a lower 

residency time than Donut Pond, which has a neutral water balance. Pete’s Pond 

receives water from Pete’s Vent, although only about this inflow represents less than a 

fifth of its water budget. The remaining water enters the shallow Pete’s Pond via other 

small vents. Whistler’s Pond is a medium sized pond which is characterised by the large 

outflow channel. The large volume of water that leaves this pond i s supplied via the 

numerous large vents in its north-western edge. On the other hand, although of a similar 

size to Whistler’s Pond, Harjie’s Pond has a n eutral water balance, and is probably 

supplied water through vents which discharge small volumes of water. Jana’s Vent has 

a large vent in its northern sector, and large volumes of water are discharged from the 

pond via a channel in its south-eastern edge into Cygnet Pond. Cygnet Pond receives the 

majority of its water from other vents located along its long western shoreline though. 

Cygnet Pond has a large channel region where water is discharged into Ibis Pond, 
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although water probably leaves the pond at many points along its south-eastern shore. 

Cygnet Pond also loses a large proportion of its volume through evaporation because of 

its large surface area. 

Although the ponds at Lake MacLeod share many morphological characteristics with 

other salt lake systems, it is likely that the environmental and ecological characteristics 

of the ponds are unique because they are permanently inundated, and represent a rather 

rare system. Nonetheless, this chapter shows that the geomorphological and climatic 

characteristics at Lake MacLeod are important drivers of the hydrology of each pond. 

The influence of the geomorphological, climatic and hydrologic drivers is likely to be 

reflected in the pond w ater chemistry and sedimentology, which in turn affects the 

composition of the microbial communities found there. 
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CHAPTER 3. SEDIMENTOLOGY AND 

HYDROCHEMISTRY 

3.1 Introduction 

Many studies have shown that chemical characteristics of the environment, such as 

salinity and nutrient levels, are good determinants of microbial community structure in 

inland waters (Domènech et al. 2006, Andrushchyshyn et al. 2009, Buosi et al. 2011, 

Lei et al. 2014). Physical characteristics, such as water temperature and sediment 

composition, have also been shown to be important determinants of microbial 

community structure (Patterson et al. 1989, Finlay and Esteban 1998, Gücker and 

Fischer 2003, Andrushchyshyn et al. 2009). It is therefore important to understand the 

chemical and physical properties of the ponds at Lake MacLeod in order to understand 

the structure and variability of the habitats. If the species-sorting process is an important 

mechanism that structures the microbial communities of Lake MacLeod, changes in 

chemical and physical conditions of the habitat would be expected to be an important 

component of the species-sorting ‘filter’ that structures the microbial assemblages. 

Chapter 2 showed that there are four pond morphotypes found at Lake MacLeod, which 

are characterised by different water temperatures, mean depths, water outflow, and 

surface area-to-volume ratios (Chapter 2). Similar lake morphological properties, such 

as mean depth and surface area, have been used as surrogates for environmental 

variables in some studies because they have been found to be good predictors of 

nutrients and oxygen concentrations (Jackson et al. 2001, Jyväsjärvi et al. 2009), as well 

as determinants of the community structuring for fish (Jackson et al. 2001, Mehner et 

al. 2007) and microbes (Olding et al. 2000). For the Northern Ponds of Lake MacLeod, 

seawater enters the ponds chemically similar, at least with a similar ionic composition, 

to the seawater found at the intake zone/ocean feedstock (Shepherd 1990). The seawater 

is subsequently modified by evaporation, infiltration and runoff as it moves throughout 

the ponds, and it is therefore likely that the pond morphotypes have different physical 

and chemical conditions and thus represent different habitats.  
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Both Shepherd (1990) and Logan (1987) observed that the evapo-concentration of 

brines within the ponds can often exceed the precipitation thresholds of many mineral 

phases, including aragonite, gypsite, huntite, dolomite and halite. Since these 

precipitates accumulate in the sediment column, it is  likely that the sediment 

composition of the ponds will reflect, at least to a degree, the overlying water chemistry. 

These processes become complicated by geographic (such as bathymetric) and climatic 

variation (Shepherd 1990). For example, water in faster flowing areas, such as channels, 

can be delivered further from the source before precipitation occurs, and seasonal 

variation in evaporation rates may result in precipitation occurring in summer months, 

and dissolution occurring during winter months (Shepherd 1990). 

Few studies have considered relationships with physical and chemical aspects of bottom 

sediments in shallow saline lakes and ponds (Crosbie and Chow-Fraser 1999, Rowan et 

al. 2012, Kissoon et al. 2015), where water-sediment interactions play greater roles on 

the water chemistry than in deeper lakes (Scheffer 2004, Kissoon et al. 2015). In well 

mixed, shallow ponds which are free of macrophytes, it can be expected that sediments 

are prone to re-suspension and subsequent nutrient release (Faafeng and Mjelde 1998, 

Horppila and Nurminen 2003). However, in ponds where macrophytes are present, the 

physical stabilisation of sediments and the additional link between water and sediments 

through plant mediated elemental cycling may affect water chemistry (Barko and James 

1998, Nurminen and Horppila 2009). Element cycling is also influenced by changes in 

oxidation and reduction reactions as well as photosynthesis and metabolism of surface 

microbial biofilms (Jackson and Harvey 1993, Wetzel 2001). For example, Wong and 

Yang (1997) showed that PO4 and NH4 concentrations increased in water ate the 

sediment-water interface as the redox potential and pH of underlying sediments 

decreased. These studies show the clear link between the physical and chemical 

structure of habitats at the sediment-water interface. 

In Lake MacLeod, the ions and minerals are thought to become increasingly 

concentrated as water moves further from the entry point through evaporation driven 

concentration (Logan 1987, S hepherd 1990). However, the detailed effects of the 

passage of the seawater through the karst on the water chemistry are not known, and 

there is little information regarding the effects of evaporation of the brines as they travel 

throughout the ponds. Evapo-concentration of the ions would be expected to induce 
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changes in the microbial communities, even if the precipitation thresholds for the above 

mentioned minerals are not reached. Changes in microbial community structure have 

previously been shown to be related to changes in the ionic composition of the waters 

(Langenheder and Ragnarsson 2007, Dupont 2014). Understanding the changes in 

salinity in a system such as Lake MacLeod, where ionic concentrations can be expected 

to vary over small scales, is important when trying to elucidate the roles that 

environmental conditions, and species-sorting processes, have on microbial community 

structure. 

Sediment structure has also been found to play an important role in structuring benthic 

microbial communities (Andrushchyshyn et al. 2009), making the characteristics and 

distributions of sediments another important habitat component. Shepherd (1990) 

provides the only analysis of the sedimentology within the pond environments at Lake 

MacLeod. Within the ponds, the sediments are mostly composed of pelletal-skeletal 

sands, although organic and aragonite mud also forms important components. Pelletal-

skeletal sands consist primarily of biogenic material, which is incorporated into the 

sediment column from deceased organisms. 

The most abundant biogenic sedimentary products are pellets, which are usually white 

to light grey, and well rounded. Some of these pellets reach 0.5mm in length and are 

produced by faecal matter and cyanobacterial boring of carbonate grains such as 

Acetabularia sp. rods and foraminifera tests (Shepherd 1990). Acetabularia sp. rods are 

also white, but have a cylindrical shaped and reach 1.5 mm in length and 0.3 mm in 

diameter. These rods are derived from the breakdown of the aragonite stem fragments 

that the green alga grows. Foraminifera tests, which belong to the genus Spirolina 

(Shepherd 1990), can reach 3 mm in diameter and are usually circular with a co iling 

pattern. Like Acetabularia, Spirolina organisms are likely to occur most abundantly 

throughout the littoral margins of the ponds amongst the epiphytic growth on t he 

mangrove pneumatophores and roots, however, they probably also inhabit the biofilm 

matrix on the sediment surface. Other biogenic contributors to the sediment column 

include cyanobacterial fibres, seagrass remains, mangrove peat, and skeletal remains 

from invertebrates, including gastropods (Marginella sp. and Hydrococcus sp.), 

ostracods, bivalves and polychaetes, all of which have been found in the ponds of Lake 

MacLeod (McLure 2011). 
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The chemical and physical compositions of salt lake systems define the habitat and 

determine the nature of the biological communities (De Deckker 1983, Boggs et al. 

2006, Timms 2009). In turn, the biological communities determine the physical 

structure of the sediments (Schnurrenberger et al. 2003) and possibly even the water 

chemistry at the sediment-water interface (Woodruff et al. 1999, Gainswin 2004). The 

aims of this chapter are therefore to investigate and describe the physical 

(sedimentology) and chemical (salinity and nutrients) habitat conditions at the 

sediment-water interface in the ponds that are likely to be important determinants of 

microbial community structure. These results will provide insight into how pond 

morphology and hydrology can influence the physical and chemical habitats found 

within salt lakes, as well as the relationship between sediment and ionic compositions in 

an evaporative systems. In this chapter it is  hypothesised that there is a relationship 

between the physical and chemical habitat characteristics of a p ond with its 

morphometric and hydrological features. The results of this chapter will be used in the 

following chapters to investigate the biological effects of these environmental changes. 

3.2 Methods 

3.2.1 Sampling design 

Samples were collected along the transects described in Chapter 1 ( section 1.3.2). 

Samples were collected using 70 mL sterile jars. The jars were first opened underwater, 

in proximity to where the sediment scoop was to be taken. The scoops were taken to 

include only the top layer of the sediment (approximately the top 5mm), which included 

as much as possible, the biofilm and the water immediately above it. Samples were not 

meant to remain as intact sediment profiles. In some of the deeper ponds, SCUBA was 

required for sampling, however, most samples were collected by snorkelling when the 

sediment was shallower than arms reach. Care was taken to not disturb the sediment and 

to avoid cross-contamination of nearby samples. This was done by the sampler floating 

above the sediment surface in a manner which minimised disturbance and suspension of 

the delicate biofilms. Care was taken to gently scoop the top layer of sediment so that 

resuspended material was minimised. All benthic disturbance in the pond w as 

minimised by having only a single person sampling in the water body at a time, except 

when SCUBA was employed in the deeper regions and a swimmer was required to 
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transport samples and establish transects. Extreme care was taken to ensure samplers 

did not disturb the sediments, and if there was a disturbance, the transects were 

orientated in a location where there were no disturbances. The samples were transported 

on ice to a field laboratory on the day of collection, then kept cold in a fridge for 24 

hours to allow particles in the water to settle. After 24 hou rs, water overlying the 

samples was decanted and remaining sediment was frozen in the collection jar. The 

decanted liquid was stored at -20°C and used for water chemistry measurements (this 

chapter) and the sediment sample used for sediment characterisation (this chapter) and 

subsequent DNA analysis of bacterial (Chapter Four) and ciliate (Chapter Five) 

diversity. 

3.2.2 Microscopy 

A small sub sample of sediment, approximately 5g, was placed on a petri dish and 

spread into a thin layer. A random dot sheet was placed beneath the petri dish and an 

optical microscope used to count 135 particles that were above the dots. The particles 

were visually inspected to determine if they were pellets, skeletal remains, organic 

detritus, aragonite mud or diatoms. These particles were defined as per Shepherd 

(1990). Pellets are white to light grey, rounded aggregates of aragonite, and were the 

most common material found in the samples. Acetabularia remains were included in 

this category. Skeletal remains included the remains of organisms such as foraminifera, 

arthropods, gastropods and bivalves, while organic detritus included remains of 

seagrasses, algae and mangroves. Aragonite mud consisted of aggregations of small 

crystals bound in a matrix of cyanobacteria mucilage. Using accumulation curves, it was 

found that counting more than 100 points and replicating within samples yielded no 

additional particle species.  

3.2.3 Water chemistry analysis 

Decanted water samples were removed from -20°C and defrosted at 5°C overnight. 

Using an unused 20mL syringe, approximately 20mL of sample water was removed and 

filtered through a 0.45µm syringe filter. 15mL of the filtrate was used for soluble 

reactive phosphorus (SRP) and nitrate/nitrite (NOx) analysis. 100µL was diluted with 

10mL of milliQ water for SO4
2- and Cl- analysis. A further 250µL of sample was added 

to 10mL of 2% nitric acid solution prepared by adding 200µL of concentrated HNO3 
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with 10mL of millQ water for cation analysis (Na+, Mg+ Ca+, K+). All samples were 

stored at 5°C until analysis was done using an Inductively Cooled Plasma Mass 

Spectrometer (ICP-MS). 

3.2.4 Statistical analyses 

Because the sedimentary data did not conform to normality, non-parametric methods 

were used. Using the vegan package for R (Oksanen et al. 2013), Analysis of 

Similarities (ANOSIM) and Permutation Multivariate Analysis of Variances 

(PERMANOVA) were applied to test for differences between the sedimentology of the 

ponds (Clarke 1993). In order to classify different groups of sediments, k-means 

clustering was also done using the vegan package. The Simple Structure Index (SSI) 

was used to determine the quality of the clusters. SSI combines the three elements, the 

maximum difference of each variable between clusters, the size of the most contrasting 

clusters and the deviation of the variable in the cluster centres, in order to assess cluster 

interpretability (Borcard et al. 2011). The names of each sediment group were assigned 

using the two most abundant components of the sediment group. 

Salinity measurements are expressed as milliequivalents (meq). As the sum of the ionic 

concentrations equals a constant, the data were treated as a composition (van den 

Boogaart and Tolosana-Delgado 2013), and log-ratio transformations used to conduct 

Linear Discriminant Analysis (LDA). Using log-ratios allows for tests between groups 

while accounting for the effect of correlated variables. Compositional data analysis, 

including transformations, were conducted using the compositions package (van den 

Boogaart et al. 2014) and LDA using MASS package (Ripley et al. 2014) in R. Inverse 

Distance Weighted Interpolation (IDW) and graphical techniques were performed using 

Euclidean distances and an inverse distance weighting power of 2 in the gstat (Pebesma 

and Graeler 2014) and sp packages in R (Pebesma et al. 2015). Descriptive statistics 

was used to relate the environmental variables measured in this chapter with the pond 

morphotypes described in the previous chapter. 
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3.3 Results 

3.3.1 Sedimentology 

In total, 456 s amples were collected from Pete’s Vent (n=47), Donut Pond (n=46), 

Annie’s Pond (n=48), Pete’s Pond (n=47), Whistler’s Pond (n=63), Harjie’s Pond 

(n=62), Jana’s Vent (n=59) and Cygnet Pond (n=84). These samples were used for 

sediment and water chemistry analysis. These samples represent the physical and 

chemical characteristics found at the sediment-water interface, which are thought to be 

important in determining microbial biofilm communities. The mean number of pelletal 

particles observed per sample was 97, and was much higher than the mineral, skeletal, 

diatomaceous and detrital components (mean numbers per sample of 15, 11, 10 a nd 3, 

respectively). The frequency distribution of pelletal particles per sample is negatively 

skewed (Figure 20), whilst all other components have positively skewed frequency 

distributions (Figure 21).The only component, with the exception of pellets, to be 

unimodal in frequency greater than 0 was the component skeletal fragments.  

 

Figure 20: Barplot showing the frequency of observations for the pelletal component of the 457 sediment samples 
taken from the eight study ponds. The mean number is 97 ± 23 (mean ± SD; n=457). 
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Figure 21: Barplots showing frequency of observations of detrital, diatomaceous, mineral and skeletal fractions of the 
sediments from the 457 sediment samples taken from the eight study ponds. The mean number of detrital particles 
was 3 ± 6. The mean number of diatoms was 10 ± 12. The mean number of mineral particles was 15 ± 22. The mean 
num,ber of skeletal fragments was 11 ± 9. All values are mean ± SD, n=457. 

Pond differences 

The pelletal composition of each pond was relatively constant. In all the ponds, it was 

the major component of the sediment, representing approximately 80% of the counted 

particles. The skeletal composition in the sediments was greatest for the samples 

belonging to Harjie’s Pond, then Donut Pond. The other six ponds had relatively low 

counts of skeletal fragments. Detrital matter was highest in Donut Pond, followed by 

Cygnet Pond and moderately high in Pete’s Vent and Jana’s Vent. Annie’s Pond, 

Harjie’s Pond, Pete’s Pond and Whistler’s Pond all had very low amounts of detrital 

matter. Diatom frustules were very uncommon in Cygnet Pond and Jana’s Vent 

sediments, but relatively common in the other ponds. Mineral components were 

particularly low in Annie’s Pond and Whistler’s Ponds, and very high in Cygnet Pond. 

The similarity of the sediments in ponds was greater within rather than between ponds 

(ANOSIM; R=0.36, P=0.001), suggesting that the ponds have different sediment 

compositions (Figure 22). This result was reinforced by the PERMANOVA results, 

which indicated that sediment compositions differed significantly by pond (P=0.001), 

however, the assumption of homogeneity of variances was violated as there was a 
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significant difference in multivariate spread between ponds (F7,448=20.2, P<0.001). Care 

needs to be taken when considering the PERMANOVA results as the differences in 

variance between the ponds may contribute to the significant differences found. In 

particular, the spread within samples belonging to Cygnet and Donut Ponds was high 

(the mean distances to centroids were 0.17 a nd 0.20, r espectively), compared to the 

other ponds (between 0.04 and 0.09). 

Sediment groups 

Using k-means clustering, and the Simple Structure Index (SSI), it was found that there 

were six groups of sediments that showed good cluster quality (Figure 23). Although 

eight groups gave a greater SSI value, it was decided that some of these groups 

contained too few samples (<10 samples) and were of little use. Three groups gave the 

best SSI, however, this was inadequate as it only gave a single large group and two 

small groups. Using six groups meant that the group sizes were large enough to be 

meaningful, whilst maintaining good cluster quality, as determined by the high SSI 

value. 

The groups are described based on the composition of the sediments within each group, 

with the main components used to define the sediment type. The most common 

sediment components, in order of abundances, were pellets, aragonite mud, skeletal 

fragments, diatomaceous material and organic detritus. These components are mostly 

autochthonous, being derived from biological and/or chemical processes operating 

within the lake itself. Few allochthonous particles were found in the biofilm and 

sediments immediately beneath; these particles consisted of mostly sand grains, 

probably transported into the seepage face from the surrounding Quobba sands 

formation.  

The different sediment groups, identified by k-means clustering, were different in their 

relative composition of pellets, aragonite mud, skeletal fragments, diatomaceous 

material and organic detritus (Figure 24). The most common sediment types were 

Pelletal Sand (48%), Pelletal Sand and Aragonite Mud (20%) and Pelletal-Skeletal Sand 

(13%; Figure 25). The remaining sediment types consisted of Pelletal-Diatomaceous 

Sand (9%), Pelletal-Aragonite Mud (7%) and Aragonite Mud (3%). There were no clear 

patterns or trends of sediment distributions within the ponds. 



73 

 

 

 

Figure 22: Non-metric Multi-Dimensional Scaling (NMDS) plot showing the similarity between sediment samples 
between Ponds determined by Euclidean distances. Red: Annie’s Pond; Green: Cygnet Pond; Blue: Donut Pond; 
Light Blue: Harjie’s Pond; Purple: Jana’s Vent; Yellow: Pete’s Pond; Grey: Pete’s Vent; Black: Whistler’s Pond. 
Stress=0.12. 

 

Figure 23: k-means cascade plot showing the group attributed to each object (sample) for each cluster partition. The 
graph on the right shows the values of the Simple Structure Index (SSI) for determining the best number of partitions. 
The highest SSI value is marked in red. Points in orange indicate partions that showed an increase in SSI as the 
number of groups increased. The best number of clusters was 3, followed by 8 and 6. Because 8 clusters has some 
small groups, and 3 clusters is dominated by a single large cluster, 6 clusters was chosen to represent the variability in 
the sediment data. 
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Figure 24: Non-metric Multi-Dimensional Scaling (NMDS) showing the relationship of each sediment group, 
determined using k-means partitioning, with the sediment components. Arrows represent the direction of high 
composition of the different sediment components, pelletal (pel), diatoms (dia), skeletal (ske), detrital (det) and 
mineral (min). Yellow: Pelletal Sand; Red: Pelletal Sand & Aragonite Mud; Green: Pelletal Skeletal Sand; Purple: 
Pelletal Diatomaceous Sand; Blue: Pelletal-Aragonite Mud; Light Blue: Aragonite Mud. Stress = 0.12. 

 

Figure 25: Pie chart showing the relative proportions of each sediment type across all the ponds studied. 
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Figure 26: Distribution of the six sediment groups determined by k-means clustering. Red: Pelletal Sand & Aragonite 
Mud, Green: Pelletal Skeletal Sand, Blue: Pelletal-Aragonite Mud, Light Blue: Aragonite Mud, Purple: Pelletal 
Diatomaceous Sand, Yellow: Pelletal Sand. 

Sediment composition and distribution 

The proportion of each sediment type within each pond was different. Some ponds, such 

as Pete’s Pond were relatively homogeneous, being dominated by pelletal sand, while 

other ponds, such as Donut Pond, contained up to six sediment types. Following is a 

short description of the composition and distribution of each sediment type defined in 

this study. 

Pelletal-Aragonite Mud 

Pelletal-Aragonite Mud was found only in the southern Cygnet seepage area, and almost 

exclusively within Cygnet Pond. It consists of 40-55% pellets, 30-50% Aragonite with 

0-10% Skeletal fragments and plant detrital matter.  
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Aragonite Mud 

This sediment type consists of 50-90 % Aragonite Mud, 1-20% pellets and 5-20% plant 

detrital matter. Similar to Pelletal-Aragonite Mud, this sediment type is exclusive to the 

southern Cygnet seepage face, and most common in Cygnet Pond, although it was 

found in Donut Pond. 

Pelletal-Diatomaceous Sand 

Sediments belonging to this group consist of 50-70% pellets, 20-40% diatomaceous 

matter and 3-15% skeletal fragments. Pelletal-Diatomaceous Sand is found most 

abundantly in Whistler’s Pond and Annie’s Pond, although it was also present in Donut 

Pond and Harjie’s Pond.  

Pelletal Skeletal Sand 

Pelletal-Skeletal Sand was mostly found in Harjie’s Pond, although it was also a major 

component of Donut Pond. It was a minor component of Whistler’s Pond, Annie’s 

Pond, Cygnet Pond and Jana’s Vent. Pellets were the major component (55-80%) 

followed by skeletal fragments (15-25%) and diatomaceous matter (1-10%). 

Pelletal Sand 

Pelletal Sand is mostly composed of pellets (75-90%), diatomaceous matter (2-15%) 

and skeletal fragments (2-10%). Pelletal Sand was the only sediment type to be found in 

all ponds, however it was present in different abundances. It was mostly found in Pete’s 

Pond, and also in Annie’s Pond, Whistler’s Pond and Jana’s Vent in high abundance.  

Pelletal Sand and Aragonite Mud 

Pelletal Sand and Aragonite Mud differ from Pelletal-Aragonite Mud by the much 

larger proportion of pellets (60-80%) and lower proportion of Aragonite Mud (15-25%). 

Skeletal fragments are also present (2-8%). This sediment type was mostly found in 

Cygnet Pond, but also in Pete’s Vent and Jana’s Vent. It is absent from Annie’s Pond 

and Whistler’s Ponds. 
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3.3.2 Water chemistry 

Chloride showed the largest variation in concentration, ranging from 9,033 mg L-1 to 

34,295 mg L-1, while sodium showed the least variation, ranging from 6,147 to 15,492 

mg L-1. The nutrients, ammonium, nitrate/nitrite and phosphate all showed larger levels 

of variation in concentration than the remaining ions. All three nutrient variables had 

positively skewed distributions (Table 7), and thus log-transformations of the data set 

were required to increase normality. The major ions, sodium, magnesium, calcium, 

potassium, chloride and sulphate displayed bimodal distributions. Because of their 

bimodal distributions, and the fact that the summation of ionic concentration should 

equal a constant, the water chemistry dataset were treated as compositions. 

The mean concentration of sodium was 456 ± 83 meq, magnesium was 100 ± 28 meq, 

calcium was 21 ± 7 meq and potassium was 8 ±  2 m eq. The mean concentrations of 

chloride and sulphate were 516 ± 136 meq and 53 ± 21 meq, respectively. All these ion 

species had large variances in respect to the means, suggesting that ionic concentrations 

vary between ponds (Table 8). The sum of equivalents was close to zero, ranging 

between -0.52 and 0.36 meq, with a mean of 0.017 ± 0.13 meq. 

 

Table 7: Summary statistics for water chemistry data including: minimum and maximum values, 1st and 3rd quartiles, 
and mean and median values. All units are mg L-1. 

 Na+ Mg+ Ca+ K+ Cl- SO4
2- NH4

- NOx
- PO4

3- 

Minimum 6,147 629 215 76 9,033 743 0.004 0.003 0.006 
1st Quartile 9,052 989 342 271 14,936 1,940 0.086 0.018 0.013 
Median 10,292 1,132 391 323 17,625 2,337 0.221 0.034 0.017 
Mean 10,474 1,216 429 308 18,304 2,529 0.259 0.037 0.023 
3rd Quartile 11,804 1,341 456 372 20,343 2,732 0.360 0.051 0.024 
Maximum 15,492 2,224 899 471 34,295 11,033 1.083 0.107 0.126 
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Table 8: Summary statistics of major ions across the eight ponds including: minimum and maximum values, 1st and 
3rd quartiles, and mean and median values. All units are millequvalents. PV: Pete’s Vent; D: Donut Pond; A: Annie’s 
Pond; PP: Pete’s Pond; W: Whistler’s Pond; H: Harjie’s Pond; J: Jana’s Vent; C: Cygnet Pond. n represents the 
number of samples collected from each pond. 
 PV D A PP W H J C 
 Sodium 
Min 32 27 35 31 26 27 37 45 
1st Qua. 392 417 430 386 352 351 466 547 
Median 417 480 451 410 392 393 501 585 
Mean 422 471 453 415 400 403 495 585 
3rd Qua. 446 528 488 434 446 455 526 624 
Max 534 578 559 512 546 556 588 674 
 Magnesium 
Min 69 56 72 64 52 55 82 125 
1st Qua. 81 86 86 79 70 71 103 155 
Median 84 101 89 83 84 81 108 160 
Mean 85 98 92 84 84 83 109 160 
3rd Qua. 89 112 101 88 95 97 118 169 
Max 111 121 111 110 116 114 133 183 
 Calcium 
Min 15 12 14 13 11 11 16 18 
1st Qua. 17 17 17 16 17 16 20 34 
Median 18 20 19 16 19 18 21 38 
Mean 18 20 20 17 19 18 21 37 
3rd Qua. 19 23 22 18 22 20 23 41 
Max 24 25 26 22 25 26 26 45 
 Potassium 
Min 7 5 6 6 5 5 8 2 
1st Qua. 8 8 8 7 7 7 10 3 
Median 8 10 9 7 8 9 10 4 
Mean 8 9 9 7 8 8 10 4 
3rd Qua. 9 10 10 7 9 9 11 4 
Max 11 11 12 9 11 12 12 6 
 Chloride 
Min 295 367 313 255 267 304 313 423 
1st Qua. 432 437 479 357 379 388 469 647 
Median 484 508 545 382 432 477 513 676 
Mean 554 495 611 402 426 464 513 684 
3rd Qua. 715 544 772 437 483 517 551 729 
Max 883 608 967 689 547 716 673 879 
 Sulphate 
Min 26 30 34 27 24 27 22 15 
1st Qua. 40 45 50 44 35 36 46 52 
Median 51 48 74 49 37 45 50 64 
Mean 55 50 71 49 39 44 60 60 
3rd Qua. 77 53 91 54 44 49 55 69 
Max 93 128 101 73 54 89 230 85 

n 47 46 48 47 63 62 59 84 
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Between pond variability 

Chloride was the dominant ion in all the ponds, except for Pete’s Pond, where sodium 

levels were slightly greater. Levels of potassium were much lower in Cygnet Pond than 

the other ponds, whilst magnesium and calcium levels were higher (Table 9). The first 

linear discriminant explained 96.5% of the variation and separated the samples into two, 

those belonging to Cygnet Pond, and those belonging to the rest of the ponds, a trend 

also found using principal components (Figure 27). This discriminant was largely 

influenced by the magnesium ratio with potassium and sodium (Table 10). 

 

Table 9: Percentage composition coefficients of the major ions for each pond determined using LDA. 
 Na Mg Ca K Cl SO4 
Pete’s Vent 37.7 7.6 1.6 0.7 47.7 4.7 
Donut Pond 41.2 8.6 1.7 0.8 43.4 4.3 
Annie’s Pond 36.7 7.5 1.6 0.7 48.0 5.5 
Pete’s Pond 42.9 8.7 1.7 0.7 41.0 5.0 
Whistler’s Pond 41.0 8.6 1.9 0.8 43.7 4.0 
Harjie’s Pond 39.6 8.2 1.8 0.8 45.4 4.3 
Jana’s Vent 41.3 9.1 1.8 0.8 42.6 4.5 
Cygnet Pond 38.4 10.5 2.4 0.2 44.7 3.8 
 

 

Table 10: Coefficients of the major ions with the linear discriminants with the proportion of explained variance for 
each of the five discriminates. The proportion of trace represents the proportion of between-ion variation that is 
explained by each LD axis. 
 LD1 LD2 LD3 LD4 LD5 
Sodium -5.4 -4.5 11.8 -12.3 -7.0 
Magnesium 12.3 -9.0 -11.3 10.9 -1.3 
Calcium 1.8 9.8 -0.4 -3.5 1.8 
Potassium -9.5 1.3 -2.9 1.5 1.4 
Chloride 0.7 4.9 1.4 2.4 -4.8 
Sulphate 0.04 -2.6 1.3 1.1 3.9 
Proportion of 
trace 96.5 2.0 1.0 0.4 0.2 
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Figure 27: PCA biplot showing the differences between ponds (coloured points) with changes in water ionic 
composition. The first two axes explain 92% of the variation (62 and 30% for PC1 and PC2, respectively). Red: 
Annie’s Pond; Green: Cygnet Pond; Blue: Donut Pond; Light Blue: Harjie’s Pond; Purple: Jana’s Vent; Yellow: 
Pete’s Pond; Grey: Pete’s Vent area; Black: Whistler’s Pond. 

Within pond variation 

There was variation in cation concentrations within each pond ( see individual pond 

descriptions below). Generally, the metals, sodium, magnesium, calcium and potassium 

decreased in concentration as water moved in an easterly direction. These changes in 

cation concentration relative to the inert chloride concentration suggest that the 

gradients are occurring because of chemical changes and/or biological processes. The 

changes found in ionic concentrations are described below for each pond. 

Pete’s Vent 

The pond i s dominated by a vent, and all water collected here is probably similar in 

composition to the water being transported through the karst barrier. However, there 

were areas of high concentration of the four cations in the southern part of the plot, near 

the vent (Figure 28). Magnesium concentration differed markedly between the north and 

the south of the plot, with the higher concentrations being found near the vent. The ratio 
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of major ions was 30:3:1:1 (Na:Mg:Ca:K). Fluctuations in ionic concentrations are 

likely to be from numerous small seepage points. 

Donut Pond 

The ratio of major ions was 30:3:1:1 (Na:Mg:Ca:K), with calcium and potassium 

deviating the greatest in relative concentration Generally, all ionic concentrations were 

lowest at the southern, shallow regions of the plot (Figure 29). 

Annie’s Pond 

The ratio of major ions was 30:3:1:1 (Na:Mg:Ca:K), and they all showed similar rates 

of depletion in an easterly direction across the plot. All the cations were at highest 

concentration in the western section of the pond and decreased in an easterly direction, 

although they were at greatest concentration in the south-west section of the pond 

(Figure 30). The areas of highest sodium and magnesium concentration occurred where 

chloride and sulphate concentration was lowest. The concentration of the anions was 

mostly uniform throughout the pond, a t 555-660 meq for chloride and 65-80 meq for 

sulphate, except in the south-western section of the plot, where concentrations were as 

low as 345 meq and 35 meq for chloride and sulphate, respectively. 

Pete’s Pond 

Sodium and magnesium were slightly enriched compared the other ponds, with the ratio 

being 33:4:1:1 (Na:Mg:Ca:K). Sodium and calcium concentrations decreased in an 

easterly direction, whilst sulphate concentration was highest along the western margin 

(Figure 31). Similar to other ponds, there was slight variation in the other ions 

throughout the pond, but they did not show any trends. 

Whistler’s Pond 

The ratio of major ions was similar to the other Northern Ponds, 29:3:1:1 

(Na:Mg:Ca:K). Sodium, calcium and potassium displayed similar trends in 

concentration change, with an area of low concentration in the northern part of the plot, 

and higher concentration in the south (Figure 32). Magnesium concentration was the 
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greatest in the south-east part of the plot, whilst chloride concentration increased in a 

south-easterly direction. 

Harjie’s Pond 

The ratio of major ions was 29:3:1:1 (Na:Mg:Ca:K). Sodium and magnesium 

concentrations did not differ markedly throughout the plot, but calcium and potassium 

did show some variation. There was a band of low calcium concentration through the 

centre of the plot (Figure 33). A similar pattern was seen for chloride concentration. 

Potassium concentration was also lowest in the centre of the plot. Sulphate levels were 

high in the south-western part of the plot, but were generally constant throughout the 

rest of the pond. 

Jana’s Vent 

The ratio of major ions was 29:3:1:1 (Na:Mg:Ca:K). Sodium concentration was greatest 

in the south-eastern section of the plot, whilst potassium concentration was lowest in the 

north-eastern section (Figure 34). Sulphate concentration was greatest in the eastern side 

of the pond. Magnesium and calcium concentrations did not show any spatial trends, 

whilst chloride was highest in the north-western section of the plot. 

Cygnet Pond 

The ratio of major cations was 82:12:5:1 (Na:Mg:Ca:K), which differs markedly from 

the other ponds. Sodium showed a gradient of increasing concentration in a south-

easterly direction, with low concentrations in the northern areas, and a point on t he 

western margin, where an inflow vent is located (Figure 35). A further area of low 

concentration in the southern area may indicate another seepage area. Similar trends 

were seen for the other ions, with the increase in concentration of all the elements, a 

possible result of evapotranspiration. Potassium, however, was an exception, with 

changes in concentration showing the opposite pattern to the other cations. Chloride and 

sulphate showed very similar patterns in change in concentration, which was also 

similar to the cation changes. The low concentration in the southern part of the pond 

may indicate a seepage point, or precipitation of some ions. 
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Figure 28: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Pete's Vent. n = 47. 
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Figure 29: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Donut Pond. n = 46 
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Figure 30: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Annie’s Pond. n = 48 
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Figure 31:Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Pete’s Pond. n = 47 
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Figure 32: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Whistler’s Pond. n = 63. 
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Figure 33: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Harjie’s Pond. n = 62 
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Figure 34: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Jana’s Vent. n = 59. 
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Figure 35: Bathymetric map showing samples locations (right) and inverse distance weighted map of ionic concentrations based on the concentration of each ion at each sample location 
(left) in Cygnet Pond. n = 84. 
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3.3.3 Nutrients 

All the nutrient concentrations showed high variability. The mean ammonium 

concentration was 257 ± 211 µg/l, nitrate/nitrate concentration was 37 ± 23 µ g/l and 

phosphate concentration was 23 ± 20 µg/l (Figure 36). There were significant 

differences in log transformed nutrient concentrations for ammonium (F7,402=30.08, 

P<0.001), nitrite/nitrate (F7,402=91.58, P<0.001) and phosphate (F7,402=35.25, P<0.001) 

between ponds (Figure 37). Cygnet and Harjie’s Ponds consistently had the highest and 

lowest concentrations of ammonium, nitrite/nitrate and phosphate, respectively.  

 

 

 

Figure 36: Boxplots showing concentrations of ammonium (NH4), nitrite/nitrate (NOx) and phosphate (PO4) at the 
sediment-water interface. Dots represent outliers. 
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Figure 37: Boxplots showing significant differences between ponds and ammonium (left), nitrite/nitrate (middle) and 
phosphate (right) concentrations. Columns sharing letters at top are not significantly different to each other based on 
a Tukey’s HSD test (P<0.05). 

There were slight differences between ponds nutrient profiles (ANOSIM R=0.19, 

P=0.001). PCA of the nutrient data explained 86% of the variation along two axes 

(Figure 38 a). The first axis represents a gradient from low to high ammonium 

concentration, and the second axis represents a gradient from low to high nitrite/nitrate 

concentration. The pond g roups were separated along both these axes (Figure 38 b). 

Donut Pond, Pete’s Pond and Harjie’s Pond were found to the left of the axis, whilst 

Pete’s Vent, Annie’s Pond, Whistler’s Pond and Jana’s Vent were found in the centre. 

Cygnet Pond, found on the right side of the axis, which means that it was different to 

the other ponds because of its high ammonium concentration. Harjie’s and Annie’s 

Ponds were found at the bottom of the second axis, which corresponds to low 

nitrate/nitrite concentration. Pete’s Vent and Jana’s Vent were found towards the centre 

of the axis whilst Donut Pond, Pete’s Pond, Whistlers Pond and Cygnet Pond were 

found to have the highest levels of nitrite/nitrates. 
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Figure 38: a) PCA biplot showing differences between the 410 samples and the log transformed nutrient variables; 
ammonium (NH4), nitrite/nitrate (NOx) and phosphate (PO4) concentrations. The first and second PCA axes explain 
61 and 25% of the variation, respectively. b) PCA plot showing the pond grouping, represented by 0.99 confidence 
level ellipses. Letters within squares represent the pond in which the samples originated; PV: Pete’s Vent, D: Donut 
Pond, A: Annie’s Pond, P: Pete’s Pond, W: Whistler’s Pond, H: Harjie’s Pond, J: Jana’s Vent; C: Cygnet Pond.  

a 

b 
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3.3.4 Sediment-water relationship 

Linear discriminant analysis (LDA) of the salinity and nutrient data was able to 

discriminate between two groups of sediment types based on t he overlying water 

chemistry. The first linear discriminant explained 88.5% of the variation (Figure 39 a). 

The first group contained Pelletal-Aragonite Mud and Aragonite Mud, in addition to a 

few samples consisting of Pelletal Sand & Aragonite Mud and Pelletal Sand. The 

second, and much larger group, consisted of Pelletal Skeletal Sand and Pelletal 

Diatomaceous Sand, as well as most of the Pelletal Sand & Aragonite Mud and Pelletal 

Sand samples. All samples belonging to the small group were found in Cygnet Pond, 

while the other ponds were clustered within the larger group (Figure 39 b). Magnesium 

and potassium levels were the strongest determinants separating the sediment groups 

(Table 11 and Table 12). 

 

Figure 39: a) Linear discriminant analysis separating the different sediment types based on the overlying water 
chemistry (Yellow: Pelletal Sand; Red: Pelletal Sand & Aragonite Mud; Green: Pelletal Skeletal Sand; Purple: 
Pelletal Diatomaceous Sand; Blue: Pelletal-Aragonite Mud; Light Blue: Aragonite Mud); b) the same LDA showing 
the ponds which the samples belong to (Red: Annie’s Pond; Green: Cygnet Pond; Blue: Donut Pond; Light Blue: 
Harjie’s Pond; Purple: Jana’s Vent; Yellow: Pete’s Pond; Grey: Pete’s Vent area; Black: Whistler’s Pond). 
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Table 11: Coefficients of linear discriminants and the proportion of explained variation between groups for each of 
the 5 linear discriminants. 
 LD1 LD2 LD3 LD4 LD5 
Na 0.07 -0.81 7.40 -9.02 1.10 
Mg 2.88 1.93 5.50 11.37 -0.95 
Ca -0.71 -0.74 -9.63 -6.38 0.9 
K -2.87 <-0.01 -1.70 1.60 0.16 
Cl 0.63 -4.18 -1.44 2.47 -3.49 
SO4 -0.36 2.80 0.19 -1.04 1.78 
NH4 0.19 -0.01 -0.14 0.48 0.78 
NOx -0.12 1.16 -0.48 0.47 -0.72 
PO4 0.29 -0.15 0.31 0.06 0.40 
Proportion of 
trace 88.5 6.6 2.8 2.1 <0.1 

 
Table 12: Percentage composition coefficients of the major ions for each sediment type determined using LDA. 
 Na Mg Ca K Cl SO4 NH4 NOx PO4 
Pelletal Sand & 
Aragonite Mud 31.2 3.8 1.3 0.7 56.0 7.0 <0.1 <0.1 <0.1 

Pelletal Skeletal 
Sand 31.5 3.4 1.2 1.1 55.6 7.2 <0.1 <0.1 <0.1 

Pelletal-
Aragonite Mud 31.2 4.5 1.7 0.3 55.9 6.4 <0.1 <0.1 <0.1 

Aragonite Mud 31.8 4.0 1.5 0.6 55.0 7.1 <0.1 <0.1 <0.1 
Pelletal 
Diatomaceous 
Sand 

31.4 3.4 1.2 1.1 55.4 7.5 <0.1 <0.1 <0.1 

Pelletal Sand 32.5 3.6 1.2 1.1 54.0 7.7 <0.1 <0.1 <0.1 

3.3.5 Relationship with pond morphotypes 

No relationships between pond sedimentology and pond morphotypes (from Chapter 2) 

could be found. Pond morphotypes 1, 2 a nd 3 had similar ionic characteristics (Table 

13). Morphotype group 2, w hich consists only of Cygnet Pond, had higher 

concentrations of sodium, magnesium and calcium, but lower concentrations of 

potassium. Nutrient characteristics were, however, different for the morphotypes. 

Morphotype groups 1 and 2 had similar concentrations of NH4 (259 ± 17 and 301 ± 21 

µg/l, respectively), while group 2 ha d the highest concentration (395 ± 26 µg/l) and 

group 4 h ad the lowest (119 ± 13 µg/l; Table 14). Group 1 also had the lowest 

concentration of NOx (20 ± 1 µg/l), while the other groups had mean concentrations that 

varied between 39 and 62 µg/l). Morphotype 2 had the greatest levels of PO4 (52 ± 4 

µg/l). 
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Table 13: Range of major ionic concentrations in the four pond morphotypes. All units are millequivalents. Pond 
abbreviations are A: Annie’s Pond, C: Cygnet Pond, D: Donut Pond, H: Harjie’s Pond, J: Jana’s Vent, PP: Pete’s 
Pond, PV: Pete’s Vent, W: Whistler’s Pond. 
Morphotype Ponds Na Mg Ca K Cl SO4

 

1 A, H, J 274-588 55-133 11-26 5-12 304-967 22-230 
2 C 457-674 125-183 18-45 2-6 423-879 15-85 
3 PV, W 267-546 52-116 11-25 5-11 267-883 24-93 
4 PP, D 273-578 56-121 12-25 5-11 255-689 27-128 
 
Table 14: Summary of nutrient data for each pond morphotype. Data are presented as means ± SE. All units are in 
µg/l. Pond abbreviations are A: Annie’s Pond, C: Cygnet Pond, D: Donut Pond, H: Harjie’s Pond, J: Jana’s Vent, PP: 
Pete’s Pond, PV: Pete’s Vent, W: Whistler’s Pond. 

Morphotype Ponds NH4 NOx PO4 
1 A, H, J 259 ± 17 20 ± 1 20 ± 1 
2 C 395 ± 26 63 ± 2 52 ± 4 
3 PV, W 301 ± 21 49 ± 2 21 ± 1 
4 PP, D 119 ± 13 39 ± 2 15 ± 1 

3.4 Discussion 

There were six different sediments identified in this study, which were mostly of 

biogenic origin, and were mainly different types of skeletal and pelletal sands, with 

organic material and aragonite being minor constituents. Cygnet Pond had different 

sediments than the other ponds, and was characterised by sediments high in aragonite 

mud and low in pelletal sands. Water chemistry was also found to be different in the 

ponds, with ionic concentrations showing Cygnet Pond being very distinct from the 

other ponds. The ponds also had different nutrient profiles, which showed good 

agreement with the pond morphotype groups described in the previous chapter. 

3.4.1 Relationship with morphometry 

The morphometric properties of a water body can have profound effects on its biology. 

This suggests that there can be distinct limnological differences between water bodies 

that are difficult to explain using other variables, such as water chemistry. Indeed, 

morphometric variables, such as mean water depth and residence time, have been shown 

to be better predictors of biological community structure, including cyanobacterial and 

phytoplankton communities , as well as trophic status (Olding et al. 2000), than water 

chemistry variables themselves. 

The highest nutrient levels were found in pond morphotype 2, which consists only of 

Cygnet Pond. This pond is shallow, with a high residence time and a high surface area-

to-volume ratio. The ponds with high surface area-to-volume ratios are likely to be more 
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susceptible wind induced water column mixing and sediment resuspension, which is 

clearly the case for Cygnet Pond because of its large potential fetch. In non-stratified 

lakes, and particularly those which are shallow, nutrient release from sediments is likely 

to be greater than inputs from terrestrial sources because of sediment resuspension 

(Jensen and Anderson 1992, Jensen et al. 1994). Furthermore, the high residence time 

for this pond allows for the nutrients to be locally used, hence making for a more 

productive system (Tang and Xie 2000, Fisher et al. 2009). Morphotype 3, which 

included the lakes with the greatest discharge rate, highest mean depths and lowest 

surface area-to-volume ratios, on the other hand had intermediate levels of nutrients. 

Unexpectedly, there was no c lear link between morphotypes and ionic concentration. 

Odour and Schagerl (2007) found that lakes with low surface area-to-volume ratios 

tended to have stable ionic concentrations over time, whilst lakes with high surface 

area-to-volume ratios showed fluctuations in ionic concentration due to changes in 

evaporation. It is likely, however, that there are pond specific processes occurring, such 

as localised precipitation/dissolution, making it d ifficult to account for using 

morphometric variables. Similarly, no l ink between pond m orphometry and 

sedimentology could be made suggesting that ionic concentrations and sedimentology 

are independent of pond morphometry. 

3.4.2 Sedimentology 

The sediments of Lake MacLeod were mostly dominated by pelletal fragments and, as a 

result, the most abundant sediment types were those composed of Pelletal Sands. There 

is a clear distinction between sediments dominated by aragonite mud and pelletal 

fragments: however, at the pond level, there were only two real groupings of sediments, 

those being high in aragonite mud and found in Cygnet Pond, and those high in pelletal 

sand. The latter sediment group dominated all the other ponds. Pelletal dominated 

sediments were also the most abundant sediment types found by Shepherd (1990) in the 

pond sub-environment. Pelletal sands are formed by the post-mortem accumulation of 

skeletal and faecal fragments (Shepherd 1990), and it is this biogenic feature of the 

sediments that make the sedimentology of the northern ponds of Lake MacLeod unique. 

Shepherd (1990) also found pelletal-skeletal sands to be the dominant sediments in all 

the ponds, with the exception of the southern reaches of Cygnet Pond. In Cygnet Pond, 
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where the samples were taken, Shepherd (1990) describes ‘continuous sheets of mud 

that are up to 30 cm thick”. These are the sediments collected in this study which make 

the Cygnet Pond samples distinct from the other ponds and may be produced by the 

precipitation of carbonates (Shepherd 1990). Further, the large expanses of Ruppia sp. 

in Cygnet Pond may also make the Cygnet Pond sediments unique as seagrasses have 

been shown to affect sedimentation rates within meadows (Garcia et al. 2003). It is 

likely that such differences may be important when trying to understand the distribution 

of the microbial communities (Dupraz et al. 2004). 

3.4.3 Ionic composition  

The ponds at Lake MacLeod are dominated by sodium and chloride ions, similar to 

most other saline systems in Australia (Radke et al. 2002, Timms 2009). However, 

despite the strong sodium and chloride signatures typically found in Australian saline 

lakes, there still remains strong hydrochemical diversity among the lakes in terms of 

relative ionic concentrations (Radke et al. 2002), a pattern that was also found between 

and within the ponds studied here. The ionic maps generated in this study shown 

gradients in ionic concentration occurring within the ponds, and at small scales (<10m). 

The relative concentrations of major ions in salt lakes are believed to induce 

physiological responses in the aquatic organisms inhabiting them, thus causing 

organisms to have hydrochemical preferences (Radke et al. 2003). 

Akin to the sedimentology differences observed between the ponds, Cygnet Pond was 

again different to all the other ponds in ionic concentrations. This difference was driven 

by the higher sodium, magnesium, calcium and chloride concentrations and the low 

potassium concentration of Cygnet Pond. Within the ponds, gradients in ionic 

concentrations were detected over small scales. Small scale environmental gradients in 

salinity have shown to be important determinants of microbial community structure 

(Dupraz et al. 2004, Langenheder and Ragnarsson 2007). The strength of these 

gradients would undoubtedly be much larger if the sampling areas included the entire 

pond areas, including the vent and outflow regions. However, because the plot areas 

could not cover the entire pond areas, particularly in Harjie’s Pond and Jana’s Vent, 

these results do not portray the entire ionic gradients which occur within the ponds.  
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In Annie’s, Donut and Pete’s Ponds, ionic concentrations typically decreased with 

distance from the source. A similar pattern was seen for magnesium in Pete’s Vent over 

a small distance. This could be an indication of precipitates forming and dropping out of 

solution. Similar observations have been made by Shepherd (1990) at Lake MacLeod. 

There were areas of high magnesium and calcium concentrations found in Cygnet Pond 

which also coincided with high sodium, chloride and sulphate concentration. This 

indicates that dissolution of some precipitates, such as gypsum, huntite and dolomite 

may be occurring. Also of interest is the area of low ionic concentration in the southern 

area of Cygnet Pond. This could be due to a previously unknown seepage point 

introducing water from the ocean feedstock. 

It is difficult to predict what processes are driving these patterns based on this data set. 

The reason for the decrease in potassium concentration when the other ions increased in 

concentration in Cygnet Pond is unknown, but could either be due to potassium 

precipitation, or biological uptake, in particular, by the extensive Ruppia sp. meadows 

found there. Potassium depletion has been recorded in some Australian saline lakes, 

where it is thought potassium can be taken up by reactive surfaces, such as an 

interaction with clay minerals in the sediment column (Herczeg and Berry Lyons 1991, 

Radke et al. 2002). The aragonite mud dominated sediments found in Cygnet Pond, 

which were not well established in any of the other ponds, may therefore be important 

in supressing potassium levels in the Cygnet Pond water column.  

Generally, the changes in ionic concentrations found in Annie’s, Cygnet, Donut and 

Pete’s Pond are what could be expected to occur under an evapo-transpiration driven 

system, where concentration of brine has either resulted in an increase in ionic species 

concentration, or passed a threshold and precipitation of various salts has occurred 

(Logan 1987). Strong effects of evaporation would be expected in these ponds as they 

all have high surface area-to-volume ratios (1.4-2.0 m-1). Pete’s Vent and Whistler’s 

Pond have low surface area-to-volume ratio of 1.0 m-1, and therefore are influenced to a 

lesser degree by evaporative forces. However, the general trend seen in all the ponds of 

increasing chloride concentration in a south-easterly direction for these ponds is 

probably a result of evaporative concentration of the brine.  
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3.4.4 Sediment-water relationship 

The water chemistry overlying the sediments were related to the type of sediment found 

there and could be caused by the precipitation of various mineral phases out of solution 

and being deposited within the sediment column, or vice versa. It is likely both 

precipitation and dissolution are occurring throughout the ponds, but in different areas, 

and is largely controlled by localised evapotranspiration, or seasonal shifts in salinity 

(Shepherd 1990). However, the relationship between water chemistry and 

sedimentology was not specific enough to distinguish between all sediment types and 

water chemistry. Water chemistry could only discriminate two broad groupings of 

sediments, those dominated by pelletal sands, and those dominated by aragonite mud, 

with the aragonite muds being found in waters with low potassium concentrations. 

Furthermore, these two broad groups contained samples that were either found in 

Cygnet Pond, or found in the other ponds, and thus provides further evidence of the 

unique environmental conditions and habitats found in Cygnet Pond, as well as the 

possible removal of potassium ions from the water body by the aragonite mud rich 

sediments in Cygnet Pond (see Herczeg and Berry Lyons 1991). 

The relationships between sediment structure and water chemistry have also been 

detailed by Kissoon et al. (2015). Sediment redox potential is likely to have been 

important in determining the chemical characteristics of the water, at least at the pond 

scale. It has been shown that decreased redox potentials in sediments leads to the release 

of PO4 and NH4 into overlying waters (Wong and Yang 1997). The variation in 

nutrients found in this study could be related to changes in the redox chemistry in the 

underlying sediments, which may have been enhanced in Cygnet Pond because of the 

stabilisation of sediments from the large expanses of macrophytes. Understanding 

sediment depth changes in redox potential and element concentrations will enhance our 

knowledge on p rocesses affecting the water composition within the ponds. 

Unfortunately this was not accomplished in this study because of the focus on detailing 

the habitat structure directly important for microbial biofilm communities at the 

sediment-water interface of these ponds. 
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3.4.5 Conclusion 

The ponds of Lake MacLeod represent unique habitats, particularly Cygnet Pond when 

compared to the other ponds. Within the ponds, there is considerable variation in ionic 

concentrations, and to a lesser degree, nutrient concentrations, and a patchy distribution 

of sediment types. Not only does this chapter highlight the distinctness in habitat 

structure of Cygnet Pond when compared to the other ponds, this chapter also presents a 

case where changes in hydrochemistry could be associated with changes in 

sedimentology, and how the morphometric properties of a water body can be related to 

the nutrient levels of the waters. It is expected that the habitats presented and described 

in this chapter will contain unique microbial communities, if species-sorting processes 

are the main structuring process operating for these communities at Lake MacLeod. 
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CHAPTER 4. BACTERIAL ECOLOGY OF THE PONDS 

4.1 Introduction 

The importance of bacteria in aquatic ecosystems was first recognised by Lindeman 

(1942) when he put ‘bacterial ooze’ at the centre of the trophic dynamics of a temperate 

lake. Since then, limnologists have regarded aquatic bacterial communities as 

fundamental components of aquatic ecosystems because of the critical role they serve 

by regenerating and mobilising nutrients (Newton et al. 2011). In fact, bacteria are 

responsible for driving the transformations and the cycling of most biologically active 

elements in these ecosystems (Cotner and Biddanda 2002, Newton et al. 2011). 

Furthermore, in aquatic systems, bacteria often represent the main group of primary 

producers, and, because of the subsequent grazing upon them by higher trophic levels 

(such as heterotrophic bacteria and ciliates), they form the base of the complex aquatic 

food webs (Pernthaler and Amann 2005). 

Understanding the mechanisms that regulate bacterial distributions and diversity still 

remains an important topic of study in ecology. Early microbiologists assumed that 

bacterial biogeography is fundamentally different to macrobionts because they are not 

dispersal limited (O’Malley 2008). Recently though, studies have begun to discover 

biogeographic patterns similar to what has been seen in macrobionts (Horner-Devine et 

al. 2004, Martiny et al. 2011, Lear et al. 2013, Lear et al. 2014). Distance-decay 

relationships have been found in bacterial communities (Astorga et al. 2012), at both 

large geographical scales of hundreds of kilometres (Cho and Tiedje 2000, Whitaker et 

al. 2003, Fuhrman et al. 2006, Schauer et al. 2010, Lear et al. 2013) and also at much 

finer, within habitat scales (Franklin and Mills 2003, Horner-Devine et al. 2004, Bell 

2010, Östman et al. 2012, Logares et al. 2013, Lear et al. 2014). 

While it is now well established that bacteria are capable of producing distance-decay 

relationships, there is little understanding of the ecological processes involved in 

generating them (Martiny et al. 2005, Astorga et al. 2012). Even the idea that bacteria 

are dispersal limited remains controversial (Finlay et al. 1998, De Bie et al. 2012). If, 

however, dispersal limitation is the main driver of bacterial biogeographic patterns, and 

the neutral theory applies, then geographic distance should be the best predictor of the 
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distance-decay relationship. On the other hand, if taxa are assembled according to 

environmental parameters (species sorting and niche theory) then measures of 

environmental heterogeneity will be the best predictors for the distance-decay 

relationship. 

It is possible that both types of mechanisms are mutually responsible for bacterial 

assemblages. There is now evidence that in combination with neutral processes, 

deterministic mechanisms, like those predicted by species-sorting and niche theories, 

are important drivers of bacterial community structure (Caruso et al. 2011, Lee et al. 

2013). Furthermore, the recent study of Lear et al. (2014) shows that populations of 

bacteria separated by less than 20m in a highly continuous lentic environment show 

similar biogeographic patterns to those separated at larger, less connected, landscape 

scales. Understanding the ecological processes that drive the distance-decay relationship 

and community structure of bacteria will provide evidence for which processes play 

important roles in regulating the vast bacterial diversity. 

Aquatic systems have been used by microbial ecologists to understand bacterial 

biogeography with water bodies representing relatively homogenous habitats, which 

have been treated as ‘aquatic islands’, within a ‘terrestrial sea’. A major shortcoming in 

many studies is the assumed even distribution of bacterial taxa throughout the water 

body because of the environmental homogeneity and high levels of mixing thought to 

occur within these habitats. As a result, many studies have relied on taking only one or 

two water samples as a representation of an entire lake or pond bacterial community 

(Yannarell and Triplett 2004, Reche et al. 2005, Yannarell and Triplett 2005, Pagaling 

et al. 2009, Romina Schiaffino et al. 2011). Recently though, small-scale variation in 

bacterial distributions have been detected within lakes (Jones et al. 2012, Garcia et al. 

2013) and fine scale variation occurring at distances less than 20m was recently found 

in the bacterioplankton communities in the alpine tarns of New Zealand (Lear et al. 

2014, Lee 2014). It is therefore clear that within lake variation in bacterial community 

composition needs to be accounted for when attempting to elucidate the role of 

biogeographic processes on bacterial richness. 

There are many technical challenges in studying the vast richness of the bacterial world. 

While up to one million bacterial cells per millilitre of water are thought to be present in 
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salt lakes (Whitman et al. 1998), it has been technically difficult to measure the number 

of taxonomic groups present. Molecular approaches are a well-established tool used by 

microbiologists to define taxonomic groups. These techniques have concentrated on 

defining bacterial taxa based on variation of either the lengths of (fragment analysis) or 

the sequences of the ribosomal RNA (rRNA) gene.  A common definition of bacterial 

species is ‘a group of strains that have some degree of phenotypic consistency, exhibit 

at least 70% DNA-DNA hybridisation, and greater than 97% 16S rRNA sequence 

similarity’ (page 734; Gevers et al. 2005). Although sequencing methods, such as 454 

pyrosequencing, are very powerful and can generate datasets at fine taxonomic 

resolutions (usually 97 or 99% similarity), fragment analysis techniques are much 

cheaper, and have comparable results to sequencing when comparing the composition of 

bacterial communities between samples (Jones et al. 2012, Shade et al. 2012, Lee 

2014). 

This study utilises the DNA fragment analysis, automated ribosomal intergenic spacer 

analysis (ARISA) to investigate the spatial patterns, and the role of species-sorting and 

neutral processes as structuring mechanisms on the benthic bacterial communities found 

in the ponds of Lake MacLeod. The eight study ponds make an ideal study to examine 

the biogeographic patterns of benthic bacteria. Given the small-scale variation in 

planktonic bacterial communities, it can be expected that benthic communities display 

similar biogeographic patterns. The benthic habitat of the Northern Ponds, although 

appearing rather homogenous, has been shown in the previous chapter to display some 

degree of heterogeneity in physical and chemical heterogeneity which can be expected 

to alter the bacterial communities. Using the data from the previous chapters on the 

changes in water chemistry and sediment characteristics within the ponds, and the 

morphometric differences between the ponds, the contribution of the environment and 

geographic location will be examined in order to observe the role of deterministic 

processes on community assembly. Furthermore, because it is  likely that community 

structure is in fact a result of both deterministic and stochastic processes, the effect of 

species co-occurrence patterns and neutrality and will be investigated using null and 

neutral models, respectively. By testing for the roles of stochasticity (co-occurrence 

models) and dispersal limitation (neutral models) on community composition, the role 
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of non-deterministic processes on c ommunity assembly can be disentangled from 

deterministic processes. 

This chapter will test the following hypotheses central to understanding the 

environmental and demographic processes that structure the benthic bacterial 

communities in the ponds of Lake MacLeod: 

1. larger ponds will have higher richness of taxonomic groups; 

2. the bacterial assemblages among ponds differ significantly; 

3. environmental heterogeneity and spatial variables explain significant 

amounts of variation in bacterial community composition; 

4. OTU co-occurrence patterns are not random; and 

5. immigration of taxa between sample locations affects the composition 

and diversity of bacterial communities. 

This chapter will provide information on t he fine scale structure of bacterial 

communities, as well as whether species-sorting or neutral processes are the important 

determinants of bacterial community composition in Lake MacLeod. 

4.2 Methods 

4.2.1 Sampling 

Sediment samples were collected in conjunction with the water and sediment samples 

described in Chapter 3 (section 3.2.1) using the spatial design described in Chapter 1 

(section 1.3.2). As previously described, samples were collected in unused 70 mL 

sterilised jars and the jars were opened underwater in proximity to where the sediment 

scoop was to be taken. The scoops were taken to include only the top layer of the 

sediment. In some of the deeper ponds, SCUBA was required for sampling, however, 

most samples were collected by snorkelling when the sediment was shallower than arms 

reach. Care was taken to not disturb the sediment prior to collection. Samples were kept 

at 4°C for 24 hours to allow suspended particles in the water to settle. After 24 hours, 

the liquid was decanted and the sediment samples were frozen at -20°C. The decanted 

liquid was used for water chemistry measurements and the sediment sample used for 

sediment characterisation and subsequent DNA analyses. 
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4.2.2 Community fingerprinting 

Automated ribosomal intergenic spacer analysis (ARISA) was used to describe the 

structure of the bacterial communities. This method has been widely used (Fisher and 

Triplett 1999, Ranjard et al. 2001, Ramette 2009, Lear et al. 2011, Lear et al. 2014), 

and has been found to be better for estimating community diversity of complex bacterial 

communities than other fingerprinting methods such as terminal restriction length 

polymorphism (T-RFLP) or denaturing gradient gel electrophoresis (DGGE) with 

greater power for detecting less abundant taxonomic groups (Danovaro et al. 2006). The 

16S-23S intergenic spacer (IGS) region of bacterial rRNA was used to build a 

community profile, based on the length of the amplified fragment. This fragment has 

been shown to display strong heterogeneity between bacterial species (Fisher and 

Triplett 1999, Ranjard et al. 2001). 

DNA was extracted from the frozen sediment samples using the PowerLyzer™ 

PowerSoil® DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad) following the 

manufacturer’s instructions. PCR was used to amplify the IGS region of the extracted 

DNA using the bacterial primers LDBact (5’-CCG GGT TTC CCC ATT CGG-3’) and 

SDBact (5’-TGC GGC TGG ATC CCC T CC TT-3’) as detailed by Ranjard et al. 

(2001). The SDBact was labelled at the 5’ end with 6-carboxyfluorescein (FAM) 

flourophore. Following Lear et al. (2008), the PCR conditions were: (i) 95 °C for 5 min; 

(ii) 35 cycles of 95 °C for 30s, 61.5 °C for 30 s, 72 °C for 90 s and then (iii) 72 °C for 

10 min. Bovine serum albumin was added (0.1mg/mL) to overcome inhibitors that were 

preventing amplification from working. 1 µL of PCR product was combined with 10 µL 

of Hi Di formamide and 0.6 µL GeneScan™ 1200 LIZ® dye Size Standard (Applied 

Biosystems Ltd, Melbourne, Australia), before being heat treated at 95 °C for 5 minutes 

and cooled on i ce. The samples were run on a 3730XL DNA Analyser (applied 

Biosystems Ltd) using a 50 cm capillary. All DNA extractions, PCR amplifications and 

capillary separations were done at the Australian Genome Research Facility. 

The resulting data were binned according to the method described by Ramette (2009). 

This method reduces the effect of background noise generated during the automated 

analysis and aims to identify ‘true’ peaks. To compensate for uncertainty in size-calling 

between different samples, fragments were assigned to bins with the width of the bin 
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differing according to the length of the fragment (Brown et al. 2005). To include the 

maximum number of peaks, yet exclude background fluorescence, only peaks with a 

fluorescence value 150 U or greater, and between 130 a nd 1000 bp w ere analysed. 

Using the R-scripts provided by Ramette (2009), fragments up to 600 bp were assigned 

to bins of 3 bp (± 1 bp), bins of 5 bp for fragments between 600 and 700 bp (± 2 bp) and 

7 bp for any fragments greater than 700 bp (± 3 bp). The total area under the curve for 

each sample was standardised to 100 to reduce the effect of differences in profiles due 

to different initial DNA template, and all peaks with a relative intensity less than 1% of 

the sample total were removed. 

4.2.3 Richness and diversity 

The relative fluorescence intensity (RFI) was used as a proxy for relative abundance for 

each OTU. Richness of a s ample was defined as the number of different OTUs 

(different fragment lengths), and diversity for a s ample was characterised using 

Shannon and Simpson indices calculated using the R-package vegan (Oksanen et al. 

2013). Species accumulation models were calculated using Kindt’s exact method 

(Ugland et al. 2003). Because species accumulation models usually indicate that not all 

OTUs will have been sampled, the total OTU richness for each pond was calculated 

using the specpool function in vegan (Oksanen et al. 2013). A measure of the taxa-area 

relationship occurring within the ponds was calculated using an adapted Arrhenius 

species-area model: 

𝑧 =
(log(2) − log(2𝑎 + 𝑏 + 𝑐) + log(𝑎 + 𝑏 + 𝑐))

log(2)
 

where 𝑎 is the number of shared OTUs in two sites, and 𝑏 and 𝑐 are the numbers of 

OTUs unique to each site (Harte and Kinzig 1997, Koleff et al. 2003).  

Hellinger transformations of the community matrix were used as it allows dissimilarity 

distances to be calculated in Euclidean space, thus allowing the use of linear methods of 

analysis, such as PCA and redundancy analysis (RDA; Legendre and Gallagher 2001, 

Borcard et al. 2011). Differences between ponds were tested for significance using 

permutational multivariate analysis of variance (PERMANOVA). Tukey’s post hoc 

tests were done to test which ponds were different from one another. The significance of 
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the differences in structure of bacterial communities between ponds and pond 

morphotypes were also compared using an analysis of similarities (ANOSIM; Clarke 

1993) and graphically represented via non-metric multidimensional scaling (nMDS) 

plots using Hellinger transformed bacterial community data and Euclidean distances.  

Mantel correlograms were used to do pa irwise comparisons of bacterial community 

structure of each sample at different distances in the R package vegan (Oksanen et al. 

2013). Using Euclidean distances derived from the Hellinger transformed community 

data, bacterial community resemblance can be compared between samples belonging to 

the same distance class. The Mantel statistic is then tested through a permutational 

Mantel test. When interpreting a Mantel correlogram, the sign of the correlation 

coefficient is important, and one must observe the pattern drawn by the significant 

correlation values (Borcard and Legendre 2012). A positive (and significant) mantel 

coefficient indicates that for a given distance class, the multivariate similarity among 

the samples is higher than expected with chance, and the reverse is true for significant 

negative coefficients. The expected value when there is no correlation is 0 (Borcard and 

Legendre 2012). 

4.2.4 Effect of environmental and spatial determinants 

RDA was used to constrain the community data to the environmental data at each 

sampling site. The environmental data included water chemistry (mean values for each 

pond are given in (Table 15), sedimentology (Table 16) and pond m orphotypes. A 

forward selection process was used to select the best environmental determinants of 

bacterial community composition using the packfor package in R (Dray et al. 2007). 

Variation partitioning, using the environmental data, pond identity and spatial variables, 

was done using partial RDAs. Moran’s eigenvector maps (MEM) were created to 

represent the spatial variation across a range of spatial scales amongst the study sites. 
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Table 15: Summary of water chemistry variables (mean ± SE) used in environmental modelling for this chapter. All 
units are mg/l. 
 Na Mg Ca K NH4 NOx PO4 Cl SO4 
Pete’s 
Vent 

9770 
(170) 

1047 
(19) 

372 
(7) 

326 
(6) 

0.34 
(0.04) 

0.042 
(0.003) 

0.025 
(0.003) 

19954 
(941) 

2706 
(151) 

Donut 
Pond 

10940 
(210) 

1206 
(26) 

396 
(10) 

360 
(8) 

0.18 
(0.02) 

0.045 
(0.003) 

0.016 
(0.001) 

17604 
(340) 

2394 
(103) 

Annie’s 
Pond 

10414 
(170) 

1123 
(20) 

395 
(10) 

351 
(8) 

0.38 
(0.04) 

0.018 
(0.002) 

0.021 
(0.001) 

21675 
(952) 

3420 
(166) 

Pete’s 
Pond 

9548 
(160) 

1021 
(19) 

339 
(7) 

285 
(5) 

0.06 
(0.01) 

0.033 
(0.001) 

0.015 
(0.001) 

14256 
(447) 

2346 
(64) 

Whistler’s 
Pond 

9197 
(204) 

1018 
(24) 

374 
(8) 

318 
(7) 

0.27 
(0.02) 

0.056 
(0.003) 

0.019 
(0.001) 

15091 
(307) 

1862 
(45) 

Harjie’s 
Pond 

9207 
(207) 

1008 
(25) 

359 
(9) 

322 
(8) 

0.15 
(0.02) 

0.012 
(0.001) 

0.016 
(0.001) 

16321 
(399) 

2116 
(73) 

Jana’s 
Vent 

11379 
(154) 

1321 
(19) 

430 
(7) 

394 
(5) 

0.29 
(0.02) 

0.028 
(0.002) 

0.023 
(0.002) 

18184 
(329) 

2835 
(260) 

Cygnet 
Pond 

13428 
(158) 

1942 
(21) 

736 
(17) 

142 
(3) 

0.41 
(0.03) 

0.063 
(0.002) 

0.053 
(0.005) 

24231 
(402) 

2855 
(101) 

 

 

Table 16: Percentage contribution of each sediment type defined in Chapter 3 for each pond used in environmental 
modelling. 

 

Pelletal 
Sand & 

Aragonite 
Mud 

Pelletal 
Skeletal 

Sand 

Pelletal – 
Aragonite 

Mud 

Aragonite 
Mud 

Pelletal 
Diatomaceous 

Sand 

Pelletal 
Sand 

Pete’s 
Vent 55 0 0 0 5 40 

Donut 
Pond 5 31 0 10 17 38 

Annie’s 
Pond 0 5 0 0 23 73 

Pete’s 
Pond 5 0 0 0 0 93 

Whistler’s 
Pond 0 5 0 0 25 70 

Harjie’s 
Pond 2 64 0 0 7 27 

Jana’s 
Vent 35 2 0 0 0 63 

Cygnet 
Pond 50 0 37 10 0 4 
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4.2.5 Co-occurrence patterns and neutral processes 

Null model analysis of OTU co-occurrence was performed using EcoSim700 software 

(Gotelli and Entsminger 2004). EcoSim measures patterns in community matrices using 

co-occurrence indices, and creates a sample of random matrices and statistically 

compares the co-occurrence index in the observed and simulated data sets. The C-score 

index (Stone and Roberts 1990) was used to measure co-occurrence in this study. This 

method quantifies the average amount of co-occurrence among all unique pairs of OTUs 

in the assemblage. In a competively structured community, the observed C-scores 

should be larger than what is expected by chance (Gotelli and Entsminger 2004). For 

each pond community, 10,000 randomisations of presence/absence transformed 

community matrices were used to create null expectations for the C-score. The random 

matrices retained the same number of OTUs and samples as the original matrix. If the 

observed C-score was higher than that of 95% of the simulated datasets, the observed 

community was considered to display significant segregation of OTUs (C-scoreobserved > 

C-scoresimulated). It was deemed to show significant aggregation if C-scoreobserved < C-

scoresimulated for 95% of the simulated datasets. If there were no differences in C-scores 

(C-scoreobserved = C-scoresimulated), then the OTUs are considered to be randomly 

assembled (no evidence of segregation or aggregation of OTUs). 

The neutral diversity (θ) and immigration (I) parameters were estimated using a 

maximum likelihood approach and the sampling formula for multiple samples 

developed by Etienne (2009), which is an improved version of Etienne (2007). 

Simulated communities that correspond to the estimates of θ and I can then be 

predicted. In order to calculate θ and I, and simulate the neutral communities, the 

PARI/GP codes given by Etienne (2007, 2009) were used. Based on those parameters, 

4999 simulated communities were predicted by the neutral model from the 

metacommunity that corresponds to the estimates of θ and I. The immigration 

parameter, m, as defined by Hubbell (2001), was not used as a simulation parameter. 

Instead the number of immigrants, I, was used to express the number of individuals that 

are immigrants to the local community. The relationship between m and I is: 

𝑚 =
𝐼

𝐼 + 𝐽 − 1
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where J is the number of individuals in the community (Etienne 2007, M aaß et al. 

2014). 

The bacterial community matrix for each sample was used to compare observed β-

diversity to what would be expected following a general neutral model (Hubbell 2001). 

Beta diversity of the real communities, and the 4999 simulated neutral data sets was 

calculated following Legendre and De Cáceres (2013) using the R script developed by 

Maaß et al. (2014). If the observed beta diversity was higher or lower than 95% of the 

simulated datasets, the observed community was then considered to have a different 

beta diversity than would be expected under neutral assembly processes (Maaß et al. 

2014). 

4.3 Results 

4.3.1 Richness and diversity 

Bacterial community fingerprinting was successfully completed for 463 samples across 

the eight ponds. In total, 171 O TUs were detected, although most OTUs were only 

represented in 0-10% of the samples (Figure 40). Very few OTUs were found in more 

than 80% of the samples. The least number of OTUs were found in Whistler’s Pond (56 

OTUs) and the greatest in Cygnet Pond (127 OTUs). Richness was estimated using the 

species accumulation plots (Figure 41) and a boot-strapping method, and show good 

agreement with the number of OTUs detected using ARISA (Table 17). Larger ponds 

did not have more OTUs (F1,6=0.813, P=0.402; Figure 42), although the largest pond 

was the richest; Whistler’s Pond and Harjie’s Pond had low richness values given the 

size of the ponds. Similarly, there was no trend of decreasing species-area exponent (z) 

with pond size. Diversity was greatest in Cygnet Pond, based on Shannon and Simpson 

Diversity Indices (Table 17). Similarly, Cygnet Pond, as well as Pete’s Vent and Donut 

Ponds, had high levels of evenness, based again on S hannon and Simpson Evenness 

indices. Whistler’s Pond showed the lowest levels of diversity and evenness.  
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Figure 40: Frequency histogram of the frequency of occurrence of the 171 OTUs from the eight sampled ponds. 

 

Figure 41: Species accumulation plots for each pond with yellow shaded area representing standard deviation. 
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Figure 42: Scatter plot of OTU richness against log Pond Size (m2). There was no significant relationship between 
OTU richness and pond size (F1,6=0.813, P=0.402). 

 

 

Table 17: Diversity indices for each pond. Total OTU richness and estimated richness represent the total for the entire 
pond, whilst the diversity and evenness values are mean for all samples within in pond. 

 Total OTU 
Richness 

Shannon 
Diversity 

Shannon 
Evenness 

Number of 
Samples 

Estimated 
Richness z 

Pete’s Vent 85 37.5 0.44 46 89 ± 2 0.31 
Donut Pond 95 31.1 0.33 47 100 ± 3 0.39 
Annie’s 
Pond 81 19.0 0.23 48 89 ± 3 0.34 

Pete’s Pond 94 16.6 0.18 48 102 ± 3 0.33 
Whistler’s 
Pond 56 6.9 0.12 64 62 ± 3 0.34 

Harjie’s 
Pond 65 20.1 0.31 61 69 ± 2 0.26 

Jana’s Vent 105 43.9 0.42 63 110 ± 2 0.31 
Cygnet 
Pond 127 48.3 0.38 86 132 ± 2 0.33 

Entire Data 
Set 171 44.1 0.26 463 175 ± 2  
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The composition of the bacterial communities varied among the ponds (Global 

PERMANOVA Pseudo F7,462=74.65, P=0.001; Figure 43). Pairwise comparisons 

indicate that Cygnet Pond and Jana’s Vent have similar bacterial communities, and so 

do Annie’s Pond, Pete’s Pond, Whistler’s Pond and Harjie’s Pond (pairwise 

PERMANOVAs, all Padj<0.05; Table 18). Interestingly, Pete’s Vent was different to 

Pete’s Pond, into which it flow. Overall there are difference in community composition 

for the different pond m orphotypes that could be attributed to morphotype 1 ( which 

consists of Annie’s Pond, Harjie’s Pond and Jana’s Vent) being different from 

morphotypes 2, 3 and 4 (Global PERMANOVA PseudoF3,383=36.46, P=0.001; Figure 

44). ANOSIM results show that within group similarity was better explained using the 

pond identities (R=0.839), rather than morphotypes (R=0.356). 

 

Figure 43: MDS ordination showing where each sample is located in relation to other samples in species space. 
Samples closer to each other are more similar than those separated by larger distances on the plot. A Hellinger 
transformed community matrix was used, and MDS was conducted using Euclidean distances. Grey: Pete’s Vent; 
Dark Blue: Donut Pond; Red: Annie’s Pond; Yellow: Pete’s Pond; Black: Whistler’s Pond; Light Blue: Harjie’s 
Pond; Purple: Jana’s Vent; Green: Cygnet Pond. Stress=0.15. 
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Table 18: Distance matrix showing the distances between the centroids of each pond group in principal coordinate 
space (PCoA) using Hellinger transformed bacterial community data. Bold values indicate significant differences in 
the bacterial community composition of the ponds (P<0.05). 

 Pete's 
Vent 

Donut 
Pond 

Annie’s 
Pond 

Pete’s 
Pond 

Whistler’s 
Pond 

Harjie’s 
Pond 

Jana’s 
Vent 

Donut Pond 0.044       
Annie's Pond 0.035 0.079      
Pete's Pond 0.103 0.147 0.068     
Whistler’s Pond 0.125 0.169 0.090 0.022    
Harjie's Pond 0.069 0.114 0.035 0.033 0.056   
Jana's Vent 0.008 0.052 0.027 0.095 0.118 0.062  
Cygnet Pond 0.037 0.007 0.072 0.140 0.162 0.107 0.045 

 

 

 

Figure 44: MDS ordination showing where each sample is located in relation to other samples in species space. 
Samples closer to each other are more similar than those separated by larger distances on the plot. A Hellinger 
transformed community matrix was used and MDS was conducted using Euclidean distances. Red: Morphotype 1; 
Green: Morphotype 2; Dark Blue: Morphotype 3; Light Blue: Morphotype 4. Stress=0.14. 
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Multivariate Mantel correlograms showed that for all eight ponds, similarity in bacterial 

communities tends to decrease with geographic distance (Figure 45). The distance 

where the similarity of bacterial community composition becomes non-significant, or 

the correlation coefficient becomes negative, represents a m easure of distance where 

samples separated by greater distances are likely to differ significantly in composition. 

This relationship was dependent upon pond s ize, with larger ponds showing similarity 

occurring between samples separated by larger distances than at the smaller ponds. In 

Pete’s Vent, samples were negatively correlated after 2.6m, but significant positive 

correlation was also detected at 4.7m. Similarity in bacterial communities was also 

detected between samples separated by 5m in Donut Pond. Whistler’s Pond, Harjie’s 

Pond and Jana’s Vent all showed significant similarity in bacterial communities up to 

about 20m separation.  A lthough samples were initially positively correlated at fine 

scales in Cygnet Pond, there was little evidence of any correlation occurring at scales up 

to 1000m. 

4.3.2 Environmental control 

The environmental variables (water chemistry and sediments) were used to constrain the 

bacterial community data using RDA. The RDA was able to significantly constrain 

27.5% (R2
adj) of the variation in bacterial communities to the environmental data, while 

72.5% remained as residual variation (F13,370=12.612, P=0.005), although the first eight 

RDA axes explained a significant proportion of the total constrained analysis (Table 

19). The first RDA axis was the most important in explaining the environmental 

relationship of the communities as it explained 63.9% of the constrained variation. 
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Figure 45: Multivariate correlograms showing the significance of spatial correlation in bacterial composition from 
transects in the eight study ponds. Black points represent scales with statistically significant similarity (positive 
Mantel correlation values) or dissimilarity (negative Mantel correlation values). White points represent non-
significant values. a) Pete’s Vent; b) Donut Pond; c) Annie’s Pond; d) Pete’s Pond; e) Whistler’s Pond; f) Harjie’s 
Pond; g) Jana’s Vent; h) Cygnet Pond. 

 

Table 19: Permutation ANOVA results (permutations=999) for each RDA axis using Hellinger transformed bacterial 
community and environmental variables. RDA model was significant (F13,370=12.612, P=0.005). 

 Df Eigenvalue Cum. 
Var. (%) F P>F Sig 

RDA1 1 0.09926 63.9 104.6229 0.001 *** 
RDA2 1 0.01906 76.1 20.0880 0.001 *** 
RDA3 1 0.01219 84.0 12.8467 0.001 *** 
RDA4 1 0.00790 89.1 8.3311 0.001 *** 
RDA5 1 0.00471 92.1 4.9670 0.001 *** 
RDA6 1 0.00434 94.9 4.5700 0.001 *** 
RDA7 1 0.00309 96.9 3.2540 0.001 *** 
RDA8 1 0.00177 98.0 1.8695 0.019 * 
RDA9 1 0.00124 98.8 1.3117 0.153  
RDA10 1 0.00077 99.3 0.8125 0.647  
RDA11 1 0.00055 99.7 0.5843 0.934  
RDA12 1 0.00041 99.9 0.4344 0.996  
RDA13 1 0.00025 100.0 0.2658 1.000  
Residual 370 0.35105     
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Table 20: Loadings of environmental variables for the first six RDA axes, which represent 94.9% of the constrained 
variation, done using the Hellinger transformed bacterial community matrix. 

 RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 
Na 0.01 0.20 -0.05 0.01 -0.09 0.30 
Mg -0.56 0.16 -0.27 -0.05 -0.18 0.21 
Ca -0.49 0.05 -0.43 -0.05 -0.16 -0.07 
K 0.65 -0.10 0.18 0.13 -0.13 0.57 
Cl 0.02 -0.28 -0.04 -0.15 0.04 -0.31 
SO4 0.08 0.13 0.29 0.31 0.19 -0.08 
NH4 -0.08 -0.14 -0.29 0.00 0.06 0.03 
NOx 0.04 0.27 -0.71 -0.14 0.04 0.32 
Pelletal Skeletal Sand 0.27 -0.32 0.35 -0.37 -0.56 -0.11 
Pelletal – Aragonite Mud -0.46 0.04 -0.20 -0.14 -0.01 -0.33 
Aragonite Mud -0.20 0.15 -0.14 -0.48 -0.16 -0.10 
Pelletal Diatom Sand 0.27 0.12 -0.27 0.13 -0.21 -0.03 
Pelletal Sand 0.32 0.35 -0.06 0.53 0.23 0.08 
Morphotype 2 -0.80 0.08 -0.34 -0.16 -0.05 -0.40 
Morphotype 3 0.46 -0.35 -0.64 -0.13 0.46 0.14 
Morphotype 4 0.21 0.81 0.36 -0.33 0.07 0.15 

The different environmental variables contributed to the different RDA axes differently 

(Table 20). Potassium concentrations in the water were strongly associated with RDA1, 

and weakly associated with RDA2, making potassium concentration an excellent 

determinant of RDA1. Magnesium, calcium and Pelletal – Aragonite Mud were also 

associated with RDA1. The first RDA axis also separated ponds belonging to 

morphotype 2 (Cygnet), from the other morphotype groups. NOx concentration and 

Pelletal Skeletal Sand were strongly associated with RDA2. The communities could 

therefore be described along axis RDA1, which represents samples with high 

magnesium and calcium concentration and low potassium concentration, to samples 

with low magnesium and calcium concentrations and high potassium concentration. 

Similarly, RDA2 represents a gradient from low to high NOx concentration. 

Three bacterial communities could be distinguished, although the samples were still 

grouped into pond groups (Figure 46). The first group, defined by low potassium levels, 

represents those communities found at Jana’s Vent and Cygnet Pond. The second 

community, which had low concentrations of NOx, consisted of samples collected from 

Pete’s Vent and Harjie’s Pond, whilst the third group, defined by low magnesium and 

calcium concentration and high NOx consists of samples collected at Annie’s Pond, 

Pete’s Pond, Whistler’s Pond and Harjie’s Pond. 
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Figure 46: Ordination plot showing sample locations in environment space using RDA. The first axis explains 63.9% 
and the second axis 12.2% of the constrained variation. Red: Annie’s Pond; Green: Cygnet Pond; Blue: Donut Pond; 
Light Blue: Harjie’s Pond; Purple: Jana’s Vent; Yellow: Pete’s Pond; Grey: Pete’s Vent; Black: Whistler’s Pond. 

4.3.3 Environmental vs. spatial determinants 

Geographic location was accounted for using MEM variables, calculated using the 

coordinates of each sample and the Hellinger transformed community data. In total, 45 

MEM variables were computed, but they did not explain a significant amount of 

variation in the bacterial communities (1.3%; Table 21). Forward selection of the 

environmental variables reduced the environmental matrix from 11 t o 9 va riables, 

whilst still explaining the same amount of variation. The selected variables included 

pond morphotype, sediment type, NOx, Mg, Ca, SO4
-2, Na, K and NH4. The entire set of 

variables (Env + MEM + Pond) explained 61% of the variation found in the bacterial 

community. The environmental model (Env) explained 32.9 %  of variation among 

bacterial community structure (F14,369=14.39, P=0.005; Table 21). A third matrix 

consisting of the pond identity for each sample (Pond) was also constructed and 
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explained a significant proportion of the variation in the bacterial assemblages (52.1%; 

F7,376=60.4, P=0.005; Table 21).  

Variation partitioning of the bacterial community matrix with the environmental (Env), 

geographic location (MEM) and pond identity (Pond) variables revealed which factors 

were the best determinants driving the changes in bacterial community composition. 

The conditional effects (variation explained when the effect of the other two variables is 

removed) of all three variables was significant, although they explained different 

proportions of community variation (Table 21). Pond identity was the best determinant 

of bacterial community composition when the variation contributed by the other 

variables was accounted for (Pond|(MEM+Env)), explaining 22.1% of the total 

variation. The conditional effects of geographic location (MEM|(Env+Pond)) explained 

7.7% of the variation while the environmental variables explained only 0.6% of the 

variation. 

 

 

 

Table 21: Variation partitioning summary table done using partial RDAs. Env represents the 9 forward selected 
variables. Pond represents pond identity, and MEM represents the spatial location of the samples. 
 R2

adj (%) DFmodel DFresidual F P-Value 
Marginal Effects      
Env 32.9 14 369 14.39 0.005 
MEM 1.3 45 338 1.11 0.074 
Pond 52.1 7 376 60.40 0.005 
Conditional Effects      
Env|Pond 1.2 11 365 1.91 0.005 
Env|MEM 37.7 14 324 15.92 0.005 
MEM|Pond 8.4 45 331 2.77 0.005 
MEM|Env 6.1 45 324 1.82 0.005 
Pond|Env 20.4 4 365 41.37 0.005 
Pond|MEM 59.2 7 331 73.17 0.005 
      
Env|(MEM+Pond) 0.6 11 320 1.47 0.005 
MEM|(Env+Pond) 7.7 45 320 2.61 0.005 
Pond|(MEM+Env) 22.1 4 320 46.86 0.005 
Residual 39.0     
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4.3.4 Demographic processes 

Patterns of OTU co-occurrence were not consistent with a random pattern that would be 

expected using null models. There was highly significant segregation in bacterial OTUs 

in all eight ponds, with the observed C-scores always higher than the expected C-score 

(Table 22). These results suggest that bacterial OTUs co-occurred less frequently than 

would be predicted under a random process. The greatest amount of segregation in 

OTUs (largest effect size) was observed in Pete’s Vent, the smallest study pond, whilst 

the least amount of segregation was found at Whistler’s Pond. At the between pond 

scale (‘All ponds’ in Table 22), there was also highly significant segregation of OTUs in 

communities. 

The neutral diversity parameter (θ) was greatest in Cygnet Pond and lowest in 

Whistler’s Pond (Table 23). The estimated values of immigration (m) were low, 

however, with the highest value found in Pete’s Pond of 0.96 ± 0.02, and the lowest in 

Donut Pond with 0.62 ± 0.06. The observed levels of β-diversity were all lower than the 

expected values (Table 24) estimated using simulated datasets generated by the neutral 

model of Etienne (2007, 2009). The effect sizes were all negative and significant, 

meaning more than 5% of simulated β-diversities were larger than the observed β-

diversity. 

 

 

Table 22: Results of testing if OTU co-occurrence in bacteria communities can be approximated by random 
distributions generated by null model analysis with 10,000 permutations.  
Pond C-score Obs C-score Exp C-score Var Effect Size P-value 
Pete’s Vent 52.49 45.33 0.01 99.03 <0.0001 
Donut Pond 41.67 36.87 0.01 39.47 <0.0001 
Annie’s Pond 32.38 30.92 0.01 14.29 <0.0001 
Pete’s Pond 25.46 24.30 0.01 11.63 <0.0001 
Whistler’s Pond 26.42 25.19 0.04 6.11 <0.0001 
Harjie’s Pond 52.28 46.60 0.03 31.04 <0.0001 
Jana’s Vent 77.18 72.83 0.02 29.80 <0.0001 
Cygnet Pond 119.44 113.61 0.02 44.46 <0.0001 
All ponds 2.37 2.09 0.0002 19.10 <0.0001 
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Table 23: Estimates of neutral diversity (θ) and immigration (m ± standard error) for each pond using the multiple 
sampling formula given by Etienne (2009). 

Pond θ m (±SE) n 
Pete’s Vent 23.18 0.77 ± 0.03 46 
Donut Pond 17.68 0.62 ± 0.06 47 
Annie’s Pond 10.69 0.89 ± 0.03 48 
Pete’s Pond 10.33 0.96 ± 0.02 48 
Whistler’s Pond 4.43 0.74 ± 0.05 64 
Harjie’s Pond 12.98 0.77 ± 0.03 61 
Jana’s Vent 26.35 0.93 ± 0.02 63 
Cygnet Pond 29.51 0.83 ± 0.02 86 
All Ponds 32.54 0.72 ± 0.13 8 
 

 

Table 24: The observed β-diversity compared to expected β-diversity values obtained by simulating neutral 
communities. Communities were simulated using estimated parameters of neutral diversity (θ), immigration (m) and 
OTU abundance (J) from Etienne (2009) and 4999 simulations. Observed and expected β-diversity were calculated 
using Hellinger transformed OTU by site abundance matrices following Maaß et al. (2014). 

Pond Observed β-
diversity 

Simulated β-
diversity Effect Size P-value 

Pete’s Vent 0.28 0.90 -21.32 <0.0001 
Donut 0.32 0.89 -17.31 <0.0001 
Annie’s 0.25 0.80 -9.51 <0.0001 
Pete’s 0.19 0.78 -9.79 <0.0001 
Whistler’s 0.17 0.68 -5.01 0.0006 
Harjie’s 0.21 0.84 -13.04 <0.0001 
Jana’s 0.27 0.90 -24.37 <0.0001 
Cygnet 0.31 0.91 -28.44 <0.0001 
All Ponds 0.50 0.64 -3.98 <0.001 

4.4 Discussion 

The bacterial communities in the ponds of Lake MacLeod exhibit clear biogeographic 

patterns in spatial distribution. This work complements a growing body of literature that 

has found significant taxa-area and distance-decay relationships in bacterial 

communities (Langenheder and Ragnarsson 2007, Soininen et al. 2007, Fuhrman et al. 

2008, Bell 2010, Martiny et al. 2011, Astorga et al. 2012, Lear et al. 2013, Lear et al. 

2014). This study is however, unique in that it is one of the few investigations (but see 

Yannarell and Triplett 2004, Jones et al. 2012, Lear et al. 2014) of a) a salt lake system, 

b) conducted at fine spatial scales (<1km), and c) which is not limited by the collection 

of a small number of samples for each water body. Concentrating on t he benthic 

communities allowed for the sampling of communities using a spatially explicit 

sampling design that minimised the effect of sampling disturbances and enabled 
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comparisons across small distances, something difficult to achieve when investigating 

planktonic communities. 

This study found that significant variation in bacterial communities occurs at spatial 

scales similar to those observed by Lear et al. (2014), but largely underestimated by 

previous studies (for example, Horner-Devine et al. 2004, Martiny et al. 2011, Lear et 

al. 2013). However, this study also found that the amount of variation in bacterial 

communities was different for each pond, a nd that the distance where the bacterial 

communities were not autocorrelated generally increased with an increase in pond size. 

This distance varied from meters in the smaller ponds to hundreds of meters in the 

largest pond. Reasons for these changes may be due to the characteristics of smaller 

ecosystems, where ‘edge-effects’ induce greater spatial variability in environmental 

conditions and higher levels of immigration (Lear et al. 2014). Indeed, there was a large 

amount of within pond variability in bacterial community composition, which 

contradicts previous studies where bacterial communities were thought to be largely 

homogeneous within aquatic systems (Reche et al. 2005, Dorigo et al. 2006, Humbert et 

al. 2009). 

Samples within ponds were largely dissimilar to samples from other ponds, despite 

some of the ponds being similar environmentally. This could be expected because of the 

high connectivity between samples located in the same pond. W hen samples (or 

communities) are highly connected, it is difficult for segregation to occur (Shade et al. 

2010). Highly connected aquatic habitats are also likely to show less environmental 

heterogeneity (Shade et al. 2008). Nonetheless, three main bacterial community groups 

were distinguishable: those belonging to (i) Donut, Annie’s, Pete’s and Whistler’s Pond, 

(ii) those belonging to Pete’s Vent and Harjie’s Pond, and (iii) those belonging to 

Cygnet Pond and Jana’s Vent. 

The similarity between the Jana’s Vent and Cygnet Pond communities could be 

expected due to both these water bodies being located in the southern reach of the 

Northern Ponds, and by the fact that water is discharged from Jana’s Vent, via a 

channel, into the southern area of Cygnet Pond. On the other hand, Pete’s Vent 

discharges water into Pete’s Pond, but these two ponds had very distinct communities. It 

is possible that these communities are different because Pete’s Vent is exposed to 



125 

 

greater ‘edge-effects’ from the surrounding terrestrial environment when compared to 

the community from the larger Pete’s Pond system. Similar conclusions have been made 

before regarding bacterioplankton in small alpine tarns (Lear et al. 2014). 

Some environmental variables were found to be more important than others as 

determinants of bacterial community composition. For example, the water chemistry, 

sedimentology and pond m orphotype groups explained approximately 30% of the 

variation in bacterial community composition. However, most of this explained 

variation (64%) was driven by the unique bacterial community composition of Cygnet 

Pond its unique environmental and morphometry characteristics as described in the 

previous two chapters. Whether the environmental variables accounted for in this study 

are the actual drivers of change in bacterial community composition, or if they represent 

intrinsic pond-level environmental variation is, however, difficult to elucidate. 

The high levels of unexplained variation found when constraining bacterial 

communities to a set of environmental parameters is common (Beisner et al. 2006, Van 

der Gucht et al. 2007, Lindström et al. 2010, Caruso et al. 2011, Martiny et al. 2011). 

For example, 22% of the variation in hypolithic bacterial communities was explained 

using spatial and environmental parameters (Caruso et al. 2011). Similarly, Martiny et 

al. (2011) could only account for 27% of the variation in salt marsh bacterial 

communities using environmental parameters. Lear et al. (2014) suggest that when 

accounting for variation across sites that belong to different isolated systems, such as 

ponds, the composition of dissimilar communities is more likely to be due to stochastic 

events, such as immigration and disturbances than environmental variation. 

Generally though, ecological studies, including non-bacterial studies, explain a greater 

amount of community variation when environmental parameters are accounted for in 

combination with spatial factors (as reviewed by Cottenie 2005, Hanson et al. 2012). 

Although initial RDA analyses revealed a large amount of variation could be explained 

using the environmental variables alone, when the effect of geographic location and 

pond identity were accounted for, using partial RDAs, the explained variation 

contributed by the environmental variables was found to decrease from 38% to less than 

1%. This suggests that there is no e ffect of the within pond e nvironmental variation, 

such as salinity gradients, on ba cterial community composition despite the analysis 
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suggesting that the environmental differences detected between ponds (previous 

chapter) may be important in describing the changes at the pond scale. 

Similar levels of variation were accounted for using partial RDAs by Caruso et al. 

(2011). They found that similarly low levels of variation in bacterial community 

composition could be attributed to the marginal effects of geographic location and 

environment. However, they could explain a significant amount of variation when they 

used a factor to group their samples into ecologically meaningful categories, analogous 

to the pond morphotype and pond identity categories used in this study. Pond identity 

was the best determinant of bacterial community composition in this study, with the 

conditional effect explaining 22% of the variation. There are two possible explanations 

for this. Either an important environmental parameter, which is driving the variation in 

bacterial community composition among ponds, was not measured, or immigration rates 

are not sufficiently great to prevent the bacterial communities from differentiating via 

ecological drift. 

The reasons as to why the environmental parameters failed to explain a large proportion 

of the variability in community structure could be due (i) the lack of data of potentially 

important environmental variables, such as trace metal concentrations (Mason 2013), 

(ii) ignoring the effect of biotic variables, including the top-down effects of higher order 

organisms (Caruso et al. 2011, Hanson et al. 2012) and (iii) the limitations of bacterial 

DNA fingerprinting in describing the bacterial communities (Blackwood et al. 2007). 

But it could also indicate a possible mechanistic role, whereby environmental 

determinants and species sorting play a minor role in structuring the communities, and 

other demographic processes, perhaps interacting with stochastic events, play a pivotal 

role. 

This study was done at a single point in time, and even though every attempt was made 

to capture the spatial variation in environmental conditions, it is possible that important, 

unaccounted, temporal environmental variation is driving the observed variation in 

bacterial community composition (Jones et al. 2012). Temporal variation of the 

environmental conditions could be expected to affect each pond differently, particularly 

because of the different morphometric properties of each pond. F or example, 



127 

 

fluctuations in temperature, dissolved oxygen and pH can be expected to vary 

differently in water bodies with different surface areas and volumes (Fee et al. 1996).  

Patterns of community composition showed evidence of niche partitioning and non-

neutrality when null and neutral models were applied to the data. Using null model 

analysis (Gotelli and Entsminger 2004), it was found that in all eight ponds, OTU co-

occurrence was non-random, and the bacterial communities within the ponds displayed 

high levels of divergence (OTUs co-occurred less frequently than randomly predicted). 

The β-diversity was also lower in every pond than what was expected using the models 

assuming using neutrality (Etienne 2009). Non-neutrality of bacterial communities has 

been found before (Caruso et al. 2011, Livermore and Jones 2015), and further supports 

the idea of species-sorting (and niche partitioning) processes being enhanced in harsh 

environments, such as deserts and salt lakes (Chase 2007, Ofiteru et al. 2010, Caruso et 

al. 2011). It is also possible that the neutral models proposed by Etienne (2009) 

underestimate immigration rates. 

Given that the pond i dentity explained the greatest amount of variation in bacterial 

community composition, and this was independent of the environmental and spatial 

variables, it is possible that a large amount of the variation in these communities can be 

explained due to demographic stochasticity, such as species interactions and/or 

immigration and dispersal effects (Tilman 1982, Hubbell 2001). If it can be assumed 

that beta diversity depends on t he dispersal and stochastic demographic fluctuations 

upon which neutral theories are based (Maaß et al. 2014), it is  unlikely that dispersal 

limitations between the samples within ponds are drivers of the bacterial community 

structure and diversity. Indeed, immigration rates need to be relatively high to induce 

changes in bacterial community structure. It has been shown that dispersal rates need to 

be greater than 10% of the standing stock per day to have any significant effect on the 

composition of bacterial communities (Lindström and Östman 2011). 

Non-random species co-occurrence and non-neutrality were features of some of the 

hypolithic desert bacterial communities that were sampled from deserts around the 

world (Caruso et al. 2011). In such a type of ecosystem, the influence of null models 

(species co-occurrence) and neutrality on the structure of bacterial communities was 

different for two trophic guilds, phototrophs and heterotrophs (Caruso et al. 2011). 
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Similarly, different responses to environmental determinants and the role of species 

sorting processes have been observed between generalists and specialists functional 

groups of bacteria in a community (Székely and Langenheder 2013). These studies are 

important as they highlight that assembly processes may differ between different guilds 

within a bacterial community. 

This highlights another limitation of the current study is the broad taxonomic resolution 

that ARISA, as well as other fingerprinting methods (Blackwood et al. 2007). Rare 

species within bacterial communities have been found to occur at very low relative 

abundances (probably less than 0.1%) within microbial communities. These rare taxa 

probably make up the majority of the taxonomic richness found in microbial 

communities (Reid and Buckley 2011). It is therefore likely that richness was 

underestimated by the broad OTU categories used with community fingerprinting 

techniques like ARISA. Nonetheless, the majority of OTUs detected in this study were 

uncommon, with nearly 50% of the OTUs being present in less than 10% of the 

samples. Furthermore, the taxonomic resolution of ARISA has been found to be 

sufficient when testing distribution based hypotheses of bacterial communities (Lee 

2014). Besides, the money saved from using a fingerprinting technique, such as ARISA, 

allows for a greater number of samples to be processed than could be achieved using 

sequencing methods. 

The findings of this study add to a growing body of literature showing that bacterial 

communities have complex biogeographic patterns similar to those observed in other 

groups of organisms. The structure of these communities was found to not only be 

driven by environmental determinants (the traditional view of microbial ecology) but 

also by demographic processes. Species-sorting processes, as well as other deterministic 

mechanisms, permit some groups of bacteria to inhabit a community, whilst the species 

co-occurrence models suggest that OTUs are largely segregated and either do not co-

occur, or exist at abundances below the detection limit of ARISA. 
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CHAPTER 5. CILIATE ECOLOGY OF THE PONDS 

5.1 Introduction 

Ciliates are an important component of all aquatic microbial communities, and are 

represented by free-living, mostly heterotrophic, species as well as host-bound species 

(Adl et al. 2005). Current estimates suggest that there are up to 40,000 free living ciliate 

species globally (Foissner et al. 2008). They are a diverse group of unicellular 

eukaryotic organisms that range in size from 0.2 - 200µm and exist in complex 

communities, which are diverse in terms of physiology, life cycles, and reproduction 

and dispersal abilities. Aspects of this diversity, in particular, the ability to sexually 

reproduce, make them fundamentally different to bacteria, which have largely been at 

the focus of microbial ecology (Caruso et al. 2011, Lear et al. 2014). The biogeography 

of ciliates, however, remains a controversial topic (Caron 2009). 

Early studies suggest that ciliates have cosmopolitan distributions, leading some 

researchers to hypothesise that the entire global freshwater ciliate community could be 

found in a single pond (Finlay et al. 1998). Ciliates were thought to have cosmopolitan 

distributions, due to characteristics of their tiny size and ability to disperse easily, high 

numbers in populations and low likelihood of extinction (Finlay and Clarke 1999, 

Finlay 2002, Fenchel and Finlay 2003, Fenchel and Finlay 2004). Yet, such high global 

diversity of ciliates could not be expected if the species are cosmopolites, and, as 

traditional hypotheses predict, are ‘found everywhere, where the environment permits’ 

(Baas-Becking 1934). 

Evidence that ciliates are not ‘everywhere’ has recently been found by looking for 

endemic taxa. For example, Foissner et al. (2008) found that past geological events, 

including the split of Pangaea, have deeply influenced ciliate distributions, and that 

there is evidence of continental, regional and local endemism of ciliates that is not 

dissimilar to patterns found in other eukaryotes (such as plants and animals), although 

the proportion of cosmopolites is much higher. Foissner et al. (2008) provide evidence 

for restricted continental distributions in some ciliate species. For example, 

Apofrontonia dohrni and A. lemetschwandtneri both inhabit muddy coastal puddles, but 

have only ever been found on di fferent continents (Europe and South America, 
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respectively; Foissner 2007). By studying conspicuous taxa, which are easily detectable 

if they are in a sample, these studies have been able to show that ciliates have distinct 

distributions, and are thus not ‘everywhere the environment permits’. 

Speciation by isolation has been demonstrated by Miao et al. (2004) across 

geographically separated ciliate (Carachesium polypinum) populations in the Yangtze 

and Pear Rivers of China. Interestingly though, the genetic polymorphism and 

phylogeographic relationships between C. polypinum populations was remarkably 

similar to that of the freshwater fish populations inhabiting the same habitats, providing 

more evidence that ciliate populations are structured similarly to other eukaryotes. 

Although this study provides evidence of speciation occurring between two, 

geographically distinct populations, Miao et al. (2004) did not test for the presence of 

distance-decay and taxa-area relationships, which are central to understanding the 

biogeography of ciliates. 

Recent evidence for small-scale biogeographic patterns in ciliate distributions has been 

found in lake protist communities. Significant distance-decay and taxa-area patterns 

were found in lake protist communities, even when the effect of the environmental 

variation was accounted for (Lepère et al. 2013). Similar patterns have been found in 

the genetic structure of protist communities in Antarctic saline lakes, where geographic 

variation in the populations was detected at scales less than 9km (Rengefors et al. 

2012). These two studies show that inland aquatic systems, including saline lakes, act as 

ecological islands, and despite the close proximity of some lakes, can contain distinct 

protist communities. Although these two above studies considered the biogeographic 

patterns of protists, they both targeted dinoflagelates. It is not known if distance-decay 

and taxa-area relationships, as well as the determinant of these patterns, can also be 

found in aquatic ciliate communities in general. 

Most studies of ciliate diversity and ecology use microscopy-based methods for 

identification of species (Andrushchyshyn et al. 2007, Reiss and Schmid-Araya 2008, 

Dopheide et al. 2009). Although microscopy techniques are inexpensive, using 

morphological markers to characterise taxa is difficult because of their small sizes. It is 

also impossible to distinguish between many ciliate species morphologically (Dopheide 

et al. 2009), which has led to the development of DNA-based methods to detect species. 
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Few studies have used molecular techniques to investigate micro-eukaryotic 

biogeography (Dopheide et al. 2009, Monchy et al. 2011, Rengefors et al. 2012, Lepère 

et al. 2013). Molecular techniques provide a method which can detect taxonomic 

richness of a large number of samples, relatively quickly. These methods are also not 

restricted to detecting ‘morphotypes’, and can thus have the potential to capture a 

greater number of taxa (Dopheide et al. 2008). Capturing as much of the taxonomic 

richness as possible is important when trying to understand small-scale variation in 

community composition. 

Even though the literature on protist diversity in ponds is fairly rich (Finlay and Esteban 

1998, Foissner 2006, Foissner et al. 2008), few studies have investigated patterns of 

alpha and beta-diversity among lakes at fine scales (Rengefors et al. 2012, Lepère et al. 

2013), and only Dopheide et al. (2009) and Reiss and Schmid-Araya (2008) have 

specifically targeted ciliates. Previous studies suggest that spatial processes and 

environmental variation are strong determinants of ciliate community composition in 

lakes (Rengefors et al. 2012, Lepère et al. 2013). 

This study used molecular techniques to investigate small-scale biogeographic patterns 

in the ciliate communities of Lake MacLeod. Because each pond ha s a unique set of 

morphotypic and environmental variables (Chapter 2 and Chapter 3), it is expected that 

the composition of each pond c ommunity will be different. Because each pond 

represents an ‘island’ it is expected that demographic processes based on immigration 

and dispersal limitation between samples will be able to explain large scale (between 

pond) diversity patterns based on the assumptions of neutrality (Etienne 2007, 2009). It 

is predicted that distance-decay and taxa-area relationships will be found for the ciliate 

communities in Lake MacLeod. Using partial redundancy analysis, the effect of 

environmental and spatial variation on the composition of the ciliate communities will 

be investigated. Similarly, species co-occurrence and neutral models will be used to 

predict if communities are randomly assembled or if the community composition can be 

predicted using neutral models. Specifically, this chapter will test the following 

hypotheses central to understanding the environmental and demographic processes that 

structure the benthic ciliates communities in aquatic systems: 
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1. larger ponds have higher richness of taxonomic groups; 

2. the ciliate assemblages among ponds differ significantly; 

3. environmental heterogeneity and spatial variables explain significant 

amounts of variation in bacterial community composition; 

4. OTU co-occurrence patterns are not random; and 

5. immigration of taxa between sample locations affects the composition and 

diversity of bacterial communities. 

5.2 Methods 

Sediment samples were collected in conjunction with those collected for water 

chemistry (Chapter 3) and used for bacterial community analyses (Chapter 4) and ciliate 

community analyses (this Chapter). Similarly, the genomic DNA that was extracted for 

the bacterial analysis described in Chapter 4 were also used to profile the ciliate 

community. As the methodology of this chapter largely overlaps that of Chapter 4, only 

steps specific to this chapter will be described here. The reader should refer to section 

4.2 of this thesis for methodological details. Because ciliate DNA failed to amplify in 

some samples, a slightly different set of variables to those used in Chapter 4 were used 

to represent the environmental conditions. A summary of the water chemistry and 

sediment variables for each pond used in this chapter is provided in Table 25 and Table 

26. 

Table 25: Summary of water chemistry variables (mean ± SE) used in environmental modelling for this chapter. All 
units at mg l-1. 
 Na Mg Ca K NH4 NOx PO4 Cl SO4 
Pete’s 
Vent 

9685 
(195) 

1033 
(21) 

370 
(8) 

323 
(7) 

0.36 
(0.05) 

0.042 
(0.003) 

0.022 
(0.001) 

19033 
(1069) 

2525 
(172) 

Donut 
Pond 

10481 
(290) 

1147 
(36) 

376 
(12) 

344 
(11) 

0.21 
(0.03) 

0.048 
(0.003) 

0.016 
(0.002) 

17001 
(446) 

2368 
(147) 

Annie’s 
Pond 

10194 
(264) 

1100 
(30) 

383 
(13 

341 
(10) 

0.37 
(0.07) 

0.017 
(0.002) 

0.021 
(0.001) 

21590 
(1714) 

3470 
(272) 

Pete’s 
Pond 

9583 
(185) 

1032 
(22) 

342 
(8) 

288 
(5) 

0.06 
(0.01) 

0.033 
(0.001) 

0.015 
(0.001) 

14130 
(505) 

2288 
(65) 

Whistler’s 
Pond 

9329 
(239) 

1031 
(28) 

379 
(9) 

323 
(8) 

0.26 
(0.02) 

0.056 
(0.003) 

0.019 
(0.002) 

14969 
(348) 

1852 
(48) 

Harjie’s 
Pond 

9377 
(227 ) 

1027 
(27) 

364 
(10) 

326 
(8) 

0.15 
(0.02) 

0.013 
(0.001) 

0.016 
(0.001) 

16207 
(456) 

2095 
(80) 

Jana’s 
Vent 

11412 
(171)) 

1327 
(22) 

432 
(8) 

395 
(6) 

0.29 
(0.03) 

0.028 
(0.002) 

0.023 
(0.002) 

17881 
(358) 

2884 
(308) 

Cygnet 
Pond 

13461 
(202 

1962 
(23) 

742 
(22) 

139 
(3) 

0.43 
(0.03) 

0.065 
(0.003) 

0.059 
(0.006) 

24637 
(461) 

2917 
(131) 
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Table 26: Proportional contribution (as a percentage) of each sediment type defined in Chapter 4 for each pond used 
in environmental modelling. 

 

Pelletal 
Sand & 

Aragonite 
Mud 

Pelletal 
Skeletal 

Sand 

Pelletal – 
Aragonite 

Mud 

Aragonite 
Mud 

Pelletal 
Diatomaceous 

Sand 

Pelletal 
Sand 

Pete’s Vent 61 0 0 0 4 36 
Donut Pond 3 41 0 6 17 31 
Annie’s Pond 0 6 0 0 19 75 
Pete’s Pond 3 0 0 0 0 97 
Whistler’s 
Pond 0 4 0 0 24 71 
Harjie’s Pond 2 63 0 0 2 30 
Jana’s Vent 35 2 0 0 0 63 
Cygnet Pond 52 0 36 6 0 6 

5.2.1 Community fingerprinting 

Terminal restriction fragment length polymorphism (T-RFLP) is an efficient and 

inexpensive means to compare ciliate diversity between samples (Dopheide et al. 2009, 

Lear et al. 2011). DNA was extracted from the frozen sediment samples using the 

PowerLyzer™ PowerSoil® DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad) 

following the manufacturer’s instructions. PCR was used to amplify a ~700 BP 

fragment of the ciliate 18S rRNA gene using the primers 384F (5’-YTB GAT GGT 

AGT GTA TTG GA-3’) and 1147R (5’-GAC GGT ATC TRA TCG TCT TT-3’) 

designed by Dopheide et al. (2008). The 5’ termini of 384F and 1147R were labelled 

with 6-carboxyhexachlorofluorescein (HEX) and 6-carboxyfluorescooein (FAM) 

fluorophores, respectively. PCR was done following Dopheide et al. (2009): (i) 

incubation at 94°C for 5 mins; (ii) 35 cycles of 94°C for 45s, 55°C for 60s and 72°C for 

90s before a final step of 72°C for 7 mins. PCR products were digested for 4 hours at 

37°C with the restriction endonucleases HaeIII and RsaI in 10 µl reaction mixtures. 

PCR products were purified using Sera-mag Speedbeads and AMPure™ PCR cleanup 

kits. Each digestion mixture contained 0.5 µl of each enzyme, 1.5 µl of reaction buffer 

and about 100ng of purified amplicon. Purified PCR digested fragments were combined 

with 10µl of HiDi formamide and 0.6 µl GeneScan™ 1200 LIZ® dye size standard 

(Applied Biosystems Ltd., Melbourne, Australia), before being heat treated at 95°C for 

5 mins and cooled on ice. The samples were run on a 3730XL DNA Analyser (applied 
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Biosystems Ltd) using a 50cm capillary. All DNA extractions, PCR amplifications, 

digestions and separation were done at the Australian Genome Research Facility. 

5.2.2 Statistical analyses 

As in the previous chapter, the peak profiles generated by the genetic analyser were 

binned using the R-scripts of Ramette (2009). To include the maximum number of 

peaks, and exclude background fluorescence, only peaks with a height greater than 150 

relative fluorescence units, and with between 10 and 650 BP were used (Dopheide et al. 

2009). Bins of 3 BP (±1 BP) were used. This yielded two T-RFLP profiles, one blue 

(HEX- labelled) and one green (FAM- labelled). Because each fragment is expected to 

produce a HEX-labelled and a F AM-labelled peak, richness and diversity estimates 

were made using only HEX-labelled peaks. However, for multivariate analyses, both 

HEX-labelled and FAM-labelled peaks were used as a s ingle data set for each sample 

(Dopheide et al. 2009). Multivariate analyses, as well as null and neutral models, were 

performed as described in section 4.2 of this thesis. 

5.3 Results 

5.3.1 Richness and diversity 

Community fingerprinting was successfully completed for 330 samples across the eight 

ponds. Similar amounts of OTU richness were measured for the blue (5’ label) and 

green fragments (3’ label; Table 27), however, since the blue fragments consistently 

accounted for slightly higher richness, only these fragments were considered in further 

measurements. In total, 30 OTUs were detected, although most OTUs were only 

represented in 1-10% of samples (Figure 47). Four dominant OTUs were found in more 

than 20% of the samples, with one OTU in particular, with a blue fragment length of 

293 BP, being found among 80% of samples and accounting for 46.6% of the total 

abundance. The second and third most frequently occurring peaks occurred at 641 and 

608 BP, respectively. Furthermore, 75.9% of the OTU’s accounted for less than 1% of 

the total abundance. Five OTUs, occurring at 56, 77, 248, 431 a nd 446 BP, were found 

to occur only in a single pond, whilst 11 OTUs were found in 6 or more of the ponds; 

only one of these OTUs, that occurred at 293 BP, was found in all eight ponds. 
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Richness was estimated using the species accumulation plots (Figure 48) and the boot-

strapping method of Smith and van Belle (1984), and show good agreement with the 

number of OTUs detected using T-RFLP (Table 27). There was no significant linear 

relationship between ciliate OTU richness and pond size (F1,6=0.504, P=0.505), 

although the largest pond was the richest. There was no trend of decreasing species-area 

exponent (z) with pond size, with the two smallest ponds Pete’s Vent and Donut Pond 

having the same z-value as Cygnet Pond, the largest pond. The least number of OTUs 

were found in Annie’s Pond (6 OTUs) and the greatest richness found in Cygnet Pond 

(22 OTUs). Diversity was greatest in Pete’s Vent, which had 18 OTUs and lowest at 

Annie’s Pond, based on both Shannon and Simpson Diversity Indices of the blue T-

RFLP fragments. Similarly, Pete’s Vent had the highest levels of community evenness, 

whilst Pete’s Pond had the lowest. 

Table 27: Diversity indices for each pond and both blue and green T-RFLP fragment. All indices are calculated using 
the total community found within each pond. Values for the blue fragments are recorded above those for the green 
fragments. 

 
Total 
OTU 

Richness 

Shannon 
Diversity 

Shannon 
Evenness 

Number 
of 

Samples 

Estimated 
Richness z 

Pete’s 
Vent 

18 8.37 0.47 32 19 0.47 
16 8.01 0.50 

Donut 
Pond 

15 5.36 0.36 32 17 0.47 
14 4.89 0.35 

Annie’s 
Pond 

6 1.67 0.28 19 7 0.34 
7 3.17 0.45 

Pete’s 
Pond 

14 2.70 0.19 39 15 0.37 
12 2.87 0.24 

Whistler’s 
Pond 

11 3.62 0.33 52 12 0.32 
11 3.08 0.28 

Harjie’s 
Pond 

14 4.64 0.31 52 14 0.26 
14 4.64 0.33 

Jana’s 
Vent 

17 3.32 0.20 54 17 0.28 
14 3.45 0.25 

Cygnet 
Pond 

22 4.94 0.22 50 24 0.47 
21 4.50 0.21 

Entire 
Data Set 

30 6.33 0.21 330 32  
29 6.31 0.22 
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Figure 47: Frequency histogram of species occurrences of all 30 blue-labelled T-RFLP fragments (OTUs). 

 

Figure 48: Species accumulation plots for each pond with yellow shaded area representing standard deviation. 
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Figure 49: Plot of OTU richness against log Pond Size (m2). There was no s ignificant linear relationship between 
OTU richness and pond size (F1,6=0.504, P=0.505). 
 

The composition of the ciliate communities was different for each pond ( Global 

PERMANOVA Pseudo F7,322=29.52, P=0.001; Figure 50). Pairwise comparisons 

indicate that Cygnet Pond and Jana’s Vent have different ciliate communities, as well as 

Donut Pond with Harjie’s Pond and Jana’s Vent (pairwise PERMANOVAs, all 

Padj<0.05; Table 28). Unlike to what was found for the bacterial communities in section 

4.3.1, Pete’s Vent had a similar composition to Pete’s Pond, which into flows. There 

were three main OTUs that explained the variation in community structure in these two 

axes. These OTUs had blue fragment lengths of 293, 608 and 641 BP. The OTU at 293 

BP was associated with Annie’s Ponds, Donut Pond, Harjie’s Pond, Pete’s Pond and 

Whistler’s Pond. The OTU with a fragment length of 608 BP was strongly associated 

with Pete’s Vent. Fragment length 641 B P was associated with Jana’s Vent, while 

Cygnet Pond showed associations with both 608 a nd 641 BP fragments. ANOSIM 

results using Bray-Curtis dissimilarity matrix show that between pond dissimilarity was 

greater than within pond di ssimilarity (R=0.460, P=0.001; Figure 50). Likewise, 

ANOSIM showed that between morphotype dissimilarity was greater than within 

morphotype dissimilarity (R=0.219, P=0.001). Similarly, the pond m orphometry 

(morphotypes) had different ciliate communities (Global PERMANOVA 

PseudoF3,279=16.46, P=0.001).  
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Figure 50: MDS ordination showing where each sample is located in relation to other samples in species space. 
Samples closer to each other are more similar than those separated by larger distances on the plot. A Hellinger 
transformed community matrix was used, and MDS was conducted using Euclidean distances. Grey: Pete’s Vent; 
Dark Blue: Donut Pond; Red: Annie’s Pond; Yellow: Pete’s Pond; Black: Whistler’s Pond; Light Blue: Harjie’s 
Pond; Purple: Jana’s Vent; Green: Cygnet Pond. Stress=0.15. 
 
Table 28: Distance matrix showing the distances between the centroids of each pond group in principal coordinate 
space (PCoA) using Hellinger transformed ciliate community data. Bold values indicate significant differences in the 
ciliate community composition of the ponds (P<0.05). 

 Pete's 
Vent 

Donut 
Pond 

Annie’s 
Pond 

Pete’s 
Pond 

Whistler’s 
Pond 

Harjie’s 
Pond 

Jana’s 
Vent 

Donut Pond 16.98       
Annie's Pond 20.00 36.99      
Pete's Pond 12.09 29.07 7.92     
Whistler’s Pond 9.23 26.21 10.78 2.86    
Harjie's Pond 23.72 40.70 3.72 11.63 14.49   
Jana's Vent 21.41 38.39 1.41 9.33 12.19 2.31  
Cygnet Pond 11.91 5.07 31.92 24.00 21.14 35.63 33.32 

Multivariate Mantel correlograms of the Hellinger transformed community data using 

Euclidean distances show that some of the samples within the ponds were similar, 

although somewhat weakly, at distances of less than 15m (Figure 51). However, the 

small ponds, including Pete’s Vent, Donut Pond, Annie’s Pond and Pete’s Pond were 

not significantly similar at any distance. Whistler’s Pond and Harjie’s Pond both 

showed significant similarity at small scales (between 10 and 15 m) and Jana’s Vent 

had significant similarities between samples at small scales. There was no significant 

auto-correlation at any scale in Cygnet Pond. 
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Figure 51: Multivariate correlograms showing the significance of spatial correlation in ciliate community 
composition from the transects in the eight study ponds. Black points represent scales with significant spatial 
autocorrelation (positive Mantel correlation values) or spatial clustering (negative Mantel correlation values), while 
white points represent non-significant values. a) Pete’s Vent; b) Donut Pond; c) Annie’s Pond; d) Pete’s Pond; e) 
Whistler’s Pond; f) Harjie’s Pond; g) Jana’s Vent; h) Cygnet Pond. 

5.3.2 Environmental control 

The environmental variables (water chemistry and sediments) were used to constrain the 

ciliate community data using RDA, of which, the first four axes were significant (Table 

29). The RDA was able to significantly constrain 21.1% (R2
adj) of the variation in ciliate 

communities with the environmental data, whilst 79.9% remained as residual variation 

(F16,263=5.67, P=0.005; Figure 52). The first RDA axis was the most important in 

explaining the environmental relationship of the communities and it explained only 

68.7% of the constrained variation. 

 

 

 

 b 

 d 
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Figure 52: RDA plot showing sample locations relative to one another after the Hellinger transformed ciliate 
community data was constrained to the environmental data. The first axis explains 69% and the second axis 15% of 
the constrained variation. Different colours represent different ponds. Red: Annie’s Ponds; Green: Cygnet Pond; Dark 
Blue: Donut Pond; Light Blue: Harjie’s Pond; Yellow: Pete’s Pond; Grey: Pete’s Vent; Black: Whistlers Pond. 

 

Table 29: Permutation ANOVA results (permutations=999) for each RDA axes using Hellinger transformed ciliate 
community and environmental variables. RDA model was significant (F13,266=5.725, P=0.005). 
 Df Eigenvalue Cum. Var F P>F Sig 
RDA1 1 0.108 0.69 62.35 0.001 *** 
RDA2 1 0.023 0.83 13.16 0.001 *** 
RDA3 1 0.011 0.90 6.51 0.001 *** 
RDA4 1 0.007 0.95 4.08 0.001 *** 
RDA5 1 0.003 0.97 1.63 0.111  
RDA6 1 0.002 0.98 1.10 0.308  
RDA7 1 0.001 0.99 0.57 0.798  
RDA8 1 0.001 0.99 0.43 0.898  
RDA9 1 0 0.99 0.29 0.981  
RDA10 1 0 0.99 0.17 1.000  
RDA11 1 0 1.00 0.11 1.000  
RDA12 1 0 1.00 0.10 1.000  
RDA13 1 0 1.00 0.09 1.000  
RDA14 1 0 1.00 0.07 1.000  
RDA15 1 0 1.00 0.05 1.000  
RDA16 1 0 1.00 0.04 1.000  
Residual 263 0.457     
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Table 30: Loadings of environmental variables for the first four RDA axes, which represent 95% of the constrained 
variation, done using the Hellinger transformed bacterial community matrix. 

 RDA1 RDA2 RDA3 RDA4 
Na -0.09 0.07 -0.22 -0.13 
Mg 0.48 -0.02 -0.33 0.17 
Ca 0.41 -0.12 -0.32 0.35 
K -0.54 0.15 0.07 -0.42 
Cl 0.06 -0.17 0.37 0.24 
SO4 -0.04 0.21 -0.20 -0.25 
NH4 0.14 -0.18 0.01 -0.23 
NOx -0.09 -0.48 -0.42 0.38 
Pelletal Skeletal Sand -0.21 0.35 0.63 0.33 
Pelletal – Aragonite Mud 0.42 -0.01 -0.24 0.26 
Aragonite Mud 0.07 0.01 0.04 -0.10 
Pelletal Diatomaceous Sand -0.22 -0.18 -0.21 0.11 
Pelletal Sand -0.43 0.12 -0.46 -0.26 
Morphotype 2 0.69 -0.17 -0.12 0.51 
Morphotype 3 -0.29 -0.81 0.03 -0.09 
Morphotype 4 -0.41 0.10 -0.27 -0.02 

The first four RDA axes explained significant proportions of variation, with the first 

two axes representing 83% of the variation (Table 30). Potassium and magnesium 

concentration, as well as the presence of pelletal-aragonite mud were both strongly 

associated with RDA1, and weakly associated with RDA2, making them excellent 

determinants of RDA1. The first RDA axis was also strongly separated pond belonging 

to morphotype 2 (Cygnet), with the other ponds. NOx concentration was strongly 

associated with RDA2. Like the bacterial communities in the previous chapter, the 

ciliate communities could be described along RDA1, which represents samples with 

high magnesium and calcium concentration and low potassium concentration, to 

samples with low magnesium and calcium concentrations and high potassium 

concentration. RDA2 represents a gradient from low to high NOx concentration. 

5.3.3 Environmental vs. spatial determinants 

MEM variables were calculated using the coordinates of each sample and Hellinger 

transformed community data. 41 MEM variables were calculated which did not explain 

any of variation in the ciliate communities (Table 31). The environmental variables 

were used in a forward selection procedure, reducing the environmental component 

from 11 to 5 variables, while still explaining the same amount of variation. The selected 

variables included pond morphotype, sediment type, Mg, Ca, SO4
-2. This reduced model 



142 

 

explained 21.3% of the variation in ciliate community structure (F9,270=9.37, P=0.005). 

The effect of pond identity was the best determinant, explaining 37.1% of the variation 

in community composition (F7,272=24.55, P=0.005). 

Variation partitioning of the ciliate community matrix with the reduced environmental 

data, MEM variables and pond identity revealed which factors were the best 

determinants driving the changes in community composition (Table 31). The entire set 

of environmental and spatial variables (MEM + pond identity) explained 42% of the 

variation found in the ciliate communities. The environmental differences between 

ponds explained an insignificant amount of variation (0.3%), however, when the effect 

of spatial patterns (MEM variables) were accounted for, the effect of the environmental 

variables increased to 25.6%. The greatest amount of variation was, however, explained 

by pond identity, when the MEM variables were accounted for (43.7%). Pond identity 

was also the best discriminant for ciliate community composition when the variation 

contributed by the other variables was accounted for, with 18.2% of variation in ciliate 

composition being explained by pond identity alone. 

 

Table 31: Variation partitioning summary table done using partial RDAs. Env represents the 5 forward selected 
variables (pond morphotype, sediment type, as well as Mg, Ca and SO4

-2 concentrations). Pond represents pond 
identity, and MEM represents the spatial location of the samples. 
 R2

adj (%) DFmodel DFresidual F P-Value 
Marginal Effects      
Env 21.3 9 270 9.37 0.005 
MEM -2.0 41 238 0.86 0.89 
Pond 37.1 7 272 24.55 0.005 
Conditional Effects      
Env|Pond 0.3 6 266 1.22 0.16 
Env|MEM 25.6 9 229 9.86 0.005 
MEM|Pond 4.5 41 231 1.51 0.005 
MEM|Env 2.3 41 229 1.20 0.025 
Pond|Env 16.2 4 266 18.47 0.005 
Pond|MEM 43.7 7 231 26.44 0.005 
      
Env|(MEM+Pond) 0.2 6 225 1.11 0.32 
MEM|(Env+Pond) 4.3 41 225 1.48 0.005 
Pond|(MEM+Env) 18.2 4 225 18.93 0.005 
Residual 58.2     
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5.3.4 Co-occurrence patterns and neutral processes 

The three ponds, Whistler’s Pond, Jana’s Vent and Cygnet Pond, showed patterns in 

species co-occurrence that suggest the composition of the communities are non-random 

as they all had observed C-scores greater than the expected C-scores, and therefore have 

greater segregation than a random model (Table 32). In other words, there was a trend 

for OTUs not to coexist with each other in these ponds. The other ponds however, were 

not significantly different to what could be expected to occur randomly and therefore, 

there is no evidence of co-occurrence and/or segregation in the ciliate communities of 

those ponds. 

The neutral diversity parameter (θ) was greatest in Pete’s Vent, whilst Donut Pond and 

Cygnet Pond were also high (Table 33). The lowest levels of neutral diversity were 

observed in Annie’s Pond, Pete’s Pond and Harjie’s Pond. The immigration parameters 

(m) within the ponds were very low, with Jana’s Vent having the highest value. Cygnet 

Pond and Pete’s Pond also had relatively high values for the immigration parameter, 

whilst Harjie’s and Donut Pond had the lowest values. The observed levels of diversity 

were all lower than the expected values (Table 34) estimated using simulated datasets 

generated by the neutral model of Maaß et al. (2014).  

 

Table 32: Results of species co-occurrence models using 10,000 permutations. The C-score is an index which 
summarises the co-occurrence pattern in a community matrix. Effect size is a measure of the difference between the 
observed and expected C-scores as a function of standard deviation.  
 C-score Obs C-score Exp C-score Var Effect Size P-value 
Pete’s Vent 15.54 15.19 0.08 1.24 0.12 
Donut Pond 7.78 7.83 0.18 -0.01 0.55 
Annie’s Pond 1.53 1.66 0.03 -0.73 0.29 
Pete’s Pond 4.91 5.30 0.11 -1.17 0.09 
Whistler’s 
Pond 14.64 13.12 0.66 1.87 0.05 

Harjie’s Pond 6.80 7.38 0.39 -0.93 0.18 
Jana’s Vent 8.43 7.30 0.22 2.39 0.03 
Cygnet Pond 13.52 10.93 0.19 5.91 <0.0001 
All ponds 1.44 1.427 0.002 0.35 0.31 
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Table 33:Estimates of neutral diversity (θ) and immigration (m ± standard error) for each pond using the multiple 
sampling formula given by Etienne (2007, 2009). The number of samples used to calculate each parameter is given 
(n). 
 θ m (±SE) n 
Pete’s Vent 9.91 0.023 ± 0.003 32 
Donut Pond 6.15 0.011 ± 0.003 32 
Annie’s Pond 2.19 0.024 ± 0.014 19 
Pete’s Pond 2.46 0.075 ± 0.029 39 
Whistler’s Pond 2.93 0.019 ± 0.003 52 
Harjie’s Pond 2.49 0.007 ± 0.002 52 
Jana’s Vent 3.23 0.096 ± 0.028 54 
Cygnet Pond 4.82 0.077 ± 0.030 49 
All ponds 2.84 0.045 ± 0.051 8 
 

Table 34: The observed β-diversity compared to expected β-diversity values obtained by simulating neutral 
communities. Communities were simulated using estimated parameters of neutral diversity (θ), immigration (m) and 
ciliate OTU abundance (J) from 4999 simulations. Observed and expected β–diversity was calculated using Hellinger 
transformed OTU by site abundance matrices following Maaß et al. (2014). The effect size indicates the direction and 
strength of the difference between observed and simulated β-diversities. 

 Observed β-
diversity 

Simulated β-
diversity Effect Size P-value 

Pete’s Vent 0.58 0.91 -6.78 0.001 
Donut 0.59 0.87 -3.87 0.008 
Annie’s 0.27 0.72 -2.48 0.028 
Pete’s 0.29 0.72 -2.84 0.020 
Whistler’s 0.34 0.91 -14.16 <0.0001 
Harjie’s 0.30 0.74 -2.99 0.017 
Jana’s 0.26 0.77 -4.09 0.005 
Cygnet 0.53 0.83 -3.54 0.010 
All ponds 0.36 0.75 -2.13 0.045 

5.4 Discussion 

This is the first study to simultaneously investigate the changes in ciliate alpha and beta 

diversity at two levels of scale using both deterministic and demographic processes. The 

traditional cosmopolitan view of protist biogeography is that one might expect to find 

similar communities in similar habitats (Finlay et al. 1998, Green and Bohannan 2006, 

Lepère et al. 2013). In this study, RDA analyses demonstrated strong differences in 

ciliate community structure in biofilm among ponds, even when the effects of spatial 

patterns and environmental variation were accounted for and thus challenges the 

traditional cosmopolitan view. Although there was an association between the OTU 

community and some environmental variables (particularly cation concentration and 

sediment type), this relationship was not important when the other spatial factors were 

accounted for. It was also found that null and neutral models were not good 

determinants of community structure. Unlike these results, other studies using bacteria 

(Caruso et al. 2011) and oribatid mites (Maaß et al. 2014) have shown that community 
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structure can be determined by dispersal and/or immigration limitation and large-scale 

environmental gradients. 

5.4.1 Environmental determinants 

The ciliate communities were mostly related to changes in cation concentrations, 

although there were also significant effects of nitrite/nitrate concentration and sediment 

type. However, once the effect of pond identity was accounted for, they were no longer 

significant determinants of community structure. Furthermore, the Mantel correlograms 

showed little evidence of distance-decay relationships in the ciliate communities 

occurring with-in the ponds, a pattern one would expect if communities were 

responding to environmental gradients within the ponds. RDA analyses suggested that 

the large amount of unconstrained variation was still attributable to pond groups, which 

could indicate an effect of unaccounted environmental factors operating at the between 

pond scale. 

The cation concentrations matched the patterns in ciliate community structure more 

closely than any of the other variables. Salinity has also been found to be the best 

determinant of ciliate community structure in the previous study by Lei et al. (2014), 

who found distinct assemblages in freshwater, brackish and marine/brackish waters. 

Similar changes in diversity and structure of ciliate communities was found along a 237 

km longitudinal gradient in the Gulf of Gabes (Elloumi et al. 2015). This study was 

different in that it w as confined to salinities matching waters ranging from seawater 

concentrations to one and a h alf times the concentration of seawater. There were 

differences in cation concentrations between the ponds, with Cygnet Pond having the 

highest concentrations of sodium and Whistler’s Pond and Harjie’s Pond having the 

lowest concentration of sodium ions. 

Nitrate/nitrite concentration was also a significant environmental determinant of ciliate 

community structure. However, nitrite/nitrate was not correlated with ammonium 

concentration and only weakly correlated with phosphate concentration, therefore 

samples with high nitrite/nitrate concentration do not necessarily mean high nutrient 

concentration. Nonetheless, the ponds were different in their nitrite/nitrate concentration 

(Chapter 3). Buosi et al. (2011) and Domènech et al. (2006) also observed an increase 

in ciliate richness and changes in ciliate composition of communities fertilised with 
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nitrate and phosphate, although Hingsamer et al. (2013) found species specific 

responses to nutrient enrichment and no overall changes in species richness. 

Andrushchyshyn et al. (2009) have shown ciliate communities to be associated with 

other physiochemical factors, such as water temperature, dissolved oxygen levels, as 

well as concentrations of ammonia and nitrates. It is likely though, that the effect of 

nutrients is more complex than experimental studies suggest because of the additional 

response of the grazers in the macrozoobenthic community, and subsequent alteration of 

the ‘top-down’ effects (Wickham et al. 2004). 

Ciliate communities were also found to be related to the presence of the sandy 

sediments, pelletal sand, pelletal-skeletal sand and pelletal-diatomaceous sand. The 

other sediment types, which consisted of aragonite mud, were found not to be important 

in describing changes in the ciliate communities. Studies on ciliates and their 

association with different sediment types show that many factors, including temperature 

and salinity, but also silt and clay concentration and particle grain size can affect the 

distribution of ciliates (Finlay et al. 1997, Burgess 2001, G ücker and Fischer 2003, 

Reiss and Schmid-Araya 2008, Lei et al. 2014, Plebani et al. 2015). Sediment structure 

effects pore volume and particle surface area, which are the main features of the 

interstitial habitat for microbes (Gücker and Fischer 2003). Generally, the highest 

abundances of ciliates have been found in sandy sediments that contained small 

amounts of fine sediment, which could represent a trade-off between mean pore volume 

and particle surface area (Gücker and Fischer 2003). For example, in an intertidal area, 

ciliates were generally more abundant in medium and fine sand areas than in silty and 

muddy areas (Patterson et al. 1989). 

One source of unaccounted variation is the hydrological regimes of the ponds. Data 

presented in Chapter 2 shows the differences in the hydrodynamic characteristics of the 

ponds. In particular, it was found that the different morphometric properties of the 

systems produced varying water residency times. Residency times were estimated to 

range from 4 da ys to over a year, assuming a balance between water inflow from the 

vents and outflow via channels and/or evapotranspiration. Some of the ponds were 

dominated by direct channel outflow, whilst outflow in others was dominated by 

evapotranspiration. For example, evaporative loss from Pete’s Vent, Annie’s Pond, 

Whistler’s Pond and Jana’s Vent was less than 5% of total water loss, whilst it 
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represented 50% of water loss in Cygnet and 100% water loss in Donut, Harjie’s and 

Pete’s Ponds. It is likely that the physical characteristics of each pond is an important 

structuring force on both abiotic variables, such as water mixing, turbidity, light 

penetration, salinity and nutrients, and biotic variables, such as immigration and top-

down effects. 

The few abundant OTUs detected in the ciliate meta-community are probably generalist 

species which are able to function given the available habitat characteristics found 

within the ponds. The single dominant OTU (found at 293 B P) accounted for nearly 

50% of the total fragments detected and would have reduced the statistical ability to 

detect differences in pond communities. Although 75% of taxa represent less than 1% 

of the detected fragments, it was these rare taxa which were important in characterising 

the pond communities. Ciliate communities in saline lagoons and ponds have also been 

found to be dominated by generalist species (Elloumi et al. 2006, Lei et al. 2014), but 

are more abundant and diverse than other extreme environments, such as deep 

hypersaline anoxic basins (Orsi et al. 2012, Stock et al. 2013). A rare taxonomic 

component is frequently detected in ciliate communities (Weisse 2014) and may play an 

important role as a ‘seed bank’ in communities if physical, chemical and/or biological 

variables in their habitats change. Temporal and spatial changes in the rare component 

of microbial communities remains a challenge for contemporary studies in microbial 

ecology, but disentangling the role of neutral and deterministic processes on t he rare 

component of these communities, especially using a meta-community perspective, will 

enhance our understanding on microbial community dynamics and functioning. 

5.4.2 Demographic determinants 

Similar to the previous chapter on the bacterial communities, neutral and null models 

were tested at two levels of spatial scale, the pond scale and the with-in pond scale. At 

the between-pond level, ciliate communities seemed to co-occur randomly, with neither 

evidence for significant segregation nor aggregation. However, at the within pond scale, 

some ciliate communities showed significant segregation (OTUs co-occurred less 

frequently than randomly predicted) in Whistler’s Pond, Jana’s Vent and Cygnet Pond. 

Furthermore, this study shows that the ciliate communities in all the ponds have 

diverged relative to a reference point provided by the general neutral model of Etienne 
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(2009), with the observed beta diversities lower than what is expected under neutral 

dynamics. These results, however, assume that expected beta diversity depends solely 

on the basic processes postulated by neutral theory (dispersal and stochastic 

fluctuations). Furthermore, there is also evidence suggesting that functional groups 

within microbial communities are structured differently by deterministic drivers and 

stochastic processes (Caruso et al. 2011). In real communities, it is  therefore likely a 

complex interaction between deterministic processes and stochastic drivers, such as 

historical events, act on populations at different spatial, temporal and trophic scales.  

Studies investigating ciliate biogeography at fine, local scales are rare. Lepère et al. 

(2013) have demonstrated a distance-decay relationship in French lake protist 

populations over scales ranging from 133 to 400 km. Similarly, Rengefors et al. (2012) 

found limited gene flow between Antarctic lakes separated by distances ranging from 1 

and 9 km, and was probably the first to show that dispersal limitation, at scales less than 

10 km can be important in structuring ciliate communities. For a ciliate, the ponds at 

Lake MacLeod are essentially ‘islands’ isolated by a ‘ sea’ of uninhabitable habitat of 

dry lake bed inundated only by extremes of flooding or temporary wind-driven surface 

flows. It is therefore likely that dispersal between ponds is somewhat limited and 

probably an important factor in shaping the ciliate communities. This conclusion is in 

agreement with that of Wey et al. (2009), who have shown that mature ciliate 

communities are controlled independently of immigration processes, and influenced 

more by local resources and historical events.  

The floods of 2010 may represent a historical event that caused homogenisation of the 

pond communities through enhanced turbulence in ponds and spatial connectivity for a 

short period. Microbial communities could be expected to rapidly adapt to the post-

disturbance effects of changes in abiotic (nutrients and salinity) and biotic (new 

predators) stressors. However, re-establishment of the community is thought to be 

enhanced by a resting propagule bank found within each pond f or aquatic organisms 

(De Meester et al. 2002). Such a process would maintain each pond on s eparate 

structuring ‘trajectories’ due to the propagule bank providing a powerful buffer against 

new immigrants (De Meester et al. 2002). Indeed, many protists, including ciliates, will 

pass through a benthic resting stage during their life cycles (Kremp 2001, Müller et al. 

2002), allowing them to overcome periods of unfavourable conditions (Lei et al. 2014). 
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This hypothesis, called the Monopolization Hypothesis (De Meester et al. 2002), has 

been postulated by Lepère et al. (2013) and Rengefors et al. (2012) to be a significant 

force that shapes the structure of lake protist communities, but has never been tested 

previously. 

5.4.3 Conclusions 

This study presents a case where environmental and demographic processes seem to be 

weak structuring determinants of the ciliate communities. There are relatively few 

studies looking at diversity changes and community structure of protists, and fewer 

targeting ciliates specifically (Reiss and Schmid-Araya 2008, D opheide et al. 2009). 

This is the first study to partition the spatial and environmental effects separately, and 

use demographic models to explain the structure of these important communities. 

Ciliates provide an important trophic link in aquatic ecosystems, and understanding 

community diversity is thus important in understanding ecosystem processes. Even 

though salinity, nitrate and sediment type all influenced the communities, it w as the 

conditional effect of pond identity itself that explained the most amount of variation. 

These results suggest that nearby habitats can have different communities, and these 

differences in community structure occur largely independently of environmental and 

demographic processes. 
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CHAPTER 6. GENERAL DISCUSSION 

The aim of this thesis was to compare the role of species-sorting and neutral processes 

that influence the distributions of microbial prokaryotes and eukaryotes. Two main 

questions addressed by this study were to test: if similar biogeographic processes 

important in determining the distribution of plants and animals are important to 

microbial communities, and if there are differences between bacterial (prokaryotes) and 

ciliate (eukaryotes) distributional and biogeographic patterns. This research contributes 

towards our understanding of species-sorting and neutral processes in microbial 

ecology, as well as taxon-area and distance-decay relationships. The data herein 

demonstrates that distance-decay and taxa-area relationships can exist for microbial 

communities, however the relationships may be different for prokaryotes (bacteria) and 

micro-eukaryotes (ciliates; Table 35). It was also demonstrated that environmental 

heterogeneity was a poor determinant of community composition, and that each pond 

habitat had unique communities that were not determined by the environment and 

spatial processes. The work in this thesis contributes significantly to the field of 

microbial ecology, by understanding the roles of environmental and demographic 

processes involved in structuring these ecologically important communities. 

 

Table 35: Summary of hypothesis testing in Chapters 4 (bacteria) and Chapter 5 (ciliates). 
Hypothesis Bacteria Ciliates 

Larger ponds have greater richness False False 
Communities differ between ponds True True 

Community variation is explained by 
environmental and spatial variation 

<10% can be explained by spatial 
variation.  
<1% explained by environment 

<5% can be 
explained by 
spatial variation. 
Environment not 
significant 

Co-occurrence patterns are random True Pond dependent 
Immigration is a good determinant of 
beta diversity False False 
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The ponds of Lake MacLeod were chosen to empirically investigate these questions 

because of the ideal spatial arrangement of the ponds and their consanguinity. 

Moreover, using a natural system allows for the testing of processes which occur at 

scales much larger than can be achieved using laboratory experiments. However, when 

using natural systems, one must understand the variation within and between the 

habitats when attempting to understand the role of possible environmental determinants. 

Chapter 2 doe s this, by providing information about the physical differences of the 

ponds in terms of morphometry and hydrology, whilst Chapter 3 is an investigation into 

the fine-scale variation in water chemistry parameters likely to either be determinants, 

or proxies for other sources of variation, that alter the composition of microbial 

communities. Chapter 4 a nd 5 pr ovide data that contribute to our knowledge of 

microbial ecology, by showing the biogeographic processes that are important in 

structuring these microbial communities using the data collected in Chapters 2 and 3 as 

explanatory variables. In this final chapter, a synthesis of the main findings of this thesis 

is presented, concentrating in particular on t he roles of species-sorting and neutral 

processes, as well as the differences and similarities found in the distributions of the 

bacteria and ciliate communities. 

6.1 Biogeographic patterns 

There were 171 ba cterial and 30 c iliate OTUs detected in this study. In both the 

bacterial and ciliate communities, Cygnet Pond (the largest pond in this study) was the 

most OTU rich pond. Similarly, Pete’s Vent showed the highest levels of diversity 

among the ponds for both the bacterial and ciliate communities. Patterns of similarities 

between pond communities seemed to be different for bacteria and ciliates, although 

there was a v ery weak positive relationship between bacterial richness and ciliate 

richness (R2
adj=0.10; F1,324=36.76, P<0.0001; Figure 53). The bacterial communities in 

Cygnet Pond were different to most of the other ponds, although they were not 

significantly different to those found in Pete’s Vent, Donut Pond and Jana’s Vent. For 

the ciliate communities, Jana’s Vent and Harjie’s Pond were different in composition to 

the other ponds. Nonetheless, pond i dentity was the most important determinant of 

community composition for both communities, while environmental and spatial 

variation seemed to be unimportant. 
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Figure 53: Scatterplot of bacterial and ciliate OTU richness. There was a significant linear relationship (F1,324=36.76, 
P<0.0001). R2

adj=0.10. 

Distance-decay and taxa-area relationships are both predicted to occur if species-sorting 

and neutral processes are operating, but for different reasons. Although no t axa-area 

relationships were detected, this is the first study to describe distance-decay 

relationships for bacteria and ciliates in a single study using a contiguous environment. 

There was no evidence for the taxa-area relationship for either bacteria nor ciliates as 

there was no increase in OTU richness with increased pond size. This result is 

particularly interesting because taxa-area relationships are thought to be one of the few 

general patterns in ecology (Lawton 1999), and a link between the ecology of macro- 

and micro-organisms (Horner-Devine et al. 2004, Bell et al. 2005a, Reche et al. 2005, 

Woodcock et al. 2006). This thesis provides a case where ecosystem size does not have 

an effect on bacterial and ciliate richness, and therefore disagrees with the results of 

previous studies where evidence of taxa-area relationships has been found (Bell et al. 

2005a, Reche et al. 2005, van der Gast et al. 2005). 

Lee (2014) and Logue et al. (2012) also did not observe taxa-area relationships in their 

aquatic bacterial communities using high-throughput sequencing. Both studies found 

that environmental variables were more important than habitat size in determining 
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richness. The absence of a taxa-area relationship may be caused by the vast population 

sizes and high dispersal rates that are typical of microbes, as well as their low extinction 

rates (Fenchel 1993, Fenchel and Finlay 2003), or simply because niche diversity was 

low within the ponds (Angermeier and Schlosser 1989). In this study, niche diversity 

may have been reduced because the ponds are all shallow, non-stratified and exposed to 

high amounts of sun light, despite being different sizes. Because T-RFLP has a rather 

coarse taxonomic resolution, the ability to detect taxa-area and distance-decay 

relationships may have been compromised. Furthermore, the uneven communities, 

being dominated by relatively few taxa, would also reduce the ability to detect either 

relationship. Even though the pond communities are dominated by few abundant taxa, 

using sequencing methods to measure community structure would enhance the ability to 

resolve many of the rare taxa, and may provide fruitful in establishing whether taxa-area 

and distance-decay relationships are found for ciliate communities. Additionally, 

because microbes can be expected to function at rather small scales, the failure to detect 

a taxa-area relationship could be due to the habitats being large enough that the scales 

are not relevant to the microbial processes and functioning. (Logue et al. 2012). Even 

though the smallest pond w as 6 or ders of magnitude smaller than the largest, these 

scales may still be too large to detect taxa-area relationships in microbes. This study, as 

well as the results of Lee (2014) and Logue et al. (2012), cast doubt on the presence of 

microbial taxa-area relationships. 

Bacteria and ciliates differed in their distance-decay relationships. This suggests that 

fundamentally different distributional patterns between bacteria and ciliates occur, 

where the bacterial communities show gradual changes in community composition, 

perhaps in response to environmental gradients, and the ciliate taxa have ‘patchy’ 

distributions, where the patterns in composition do not  change predictably with 

distance. The differences in the distance-decay patterns described for bacteria and 

ciliates should, using the theories of biogeography, be explained by either differences 

dispersal and/or environmental specificity (Barreto et al. 2014a). The patterns observed 

in this study could therefore either be due to ciliates having greater dispersal rates than 

bacteria and/or bacterial communities being governed by species-sorting processes more 

than the ciliate communities. Because the distances involved in this study are unlikely 

to be great enough to significantly limit the dispersal of bacteria, it is more likely that 
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deterministic processes play a stronger role in structuring the communities than in 

ciliate communities. High redundancy is a feature of bacterial communities (Dopheide 

et al. 2015) which may permit the establishment, and subsequent exclusion, of different 

taxa within a niche. The high levels of OTU segregation found in the communities using 

the co-occurrence models are evidence of high redundancy in the bacterial communities. 

The establishment of different taxa in a given niche within the ponds may be caused 

either by stochastic events, or because of their slightly different environmental 

conditions. Nonetheless, the ciliate communities are represented by more abundant, 

generalist taxa, which, because of the lower amount of redundancy in community 

composition, and their ability to exist in a wider range of environmental conditions, 

showed lower levels of community segregation. 

Although the ubiquity of ciliates has been suggested to be caused by their vast capacity 

to disperse across large distances (Finlay and Clarke 1999), it is  unlikely that high 

dispersal rates are different, or in fact greater than, those of bacterial taxa (Green and 

Bohannan 2006), especially within a set of contiguous habitats and at the scales relevant 

to this study. Species-sorting processes have been shown to cause distance-decay 

relationships in microbes as the diversity of habitats tend to increase with increasing 

area (Hanson et al. 2012, Nemergut et al. 2013). 

Microbial studies using rock pools (Langenheder and Ragnarsson 2007) and alpine tarns 

(Lear et al. 2014, Lee 2014) have reported variation which can be accounted for by 

environmental variation and geographic location on ba cterial communities. For 

example, bacterial communities in rock pools had up to 12% of variation explained by 

environmental variables and up t o 10% of variation explained by spatial variables 

(Langenheder and Ragnarsson 2007). In the alpine tarns, up t o 38% variation in 

bacterial communities could be explained by spatial variation and up t o 32% by 

spatially structured environmental variation (Lear et al. 2014). These results suggest 

that contemporary environmental conditions are important in determining bacterial 

community composition (Horner-Devine et al. 2004, Beisner et al. 2006), as well as 

spatial processes. Conversely, the data presented in this thesis suggested that the 

measured environmental variables do not explain any of the bacterial and ciliate 

community composition, and spatial variation only accounts for a small amount of the 

variation. 
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It is difficult to explain the distance-decay patterns found in this study using species-

sorting processes because there were neither clear environmental gradients within the 

ponds, nor was there a significant effect of environmental variation when geographic 

distance and pond i dentity were accounted for. Spatial variation did however explain 

some of the community variation for both bacteria and ciliate communities (approx. 8% 

and 4%, respectively; Figure 54). In this study though, pond identity, rather than 

geographic location and environmental variables, was the strongest determinant for both 

bacterial and ciliate communities. This suggests that either an unaccounted determinant, 

which is spatially independent but varies at the pond l evel, and/or a neutral process 

which operates independently of immigration processes, is driving the differences in 

these communities. It therefore remains possible that species-sorting mechanisms are 

important for these communities (Kent et al. 2007, Mosher and Findlay 2011, 

Lindström and Langenheder 2012, Lee et al. 2013). For example, intrinsic lake 

variables important in defining bacterial and ciliate community composition may not 

have been included in this study. Kent et al. (2007) suggest that mechanisms such as 

competition and nutrient cycling are important for describing among lake variation in 

aquatic communities.  Nonetheless, this study found that species-sorting processes are 

important in structuring the bacterial and ciliate communities in these ponds when 

considering ionic and nutrient dynamics, variables which would otherwise be expected 

to explain microbial community variation in salt lakes (Casamayor et al. 2013). 

The ponds have unique bacterial and ciliate communities inhabiting them, and perhaps 

the distinction between the communities is more pronounced with the bacterial 

communities than the ciliates. For example, the within pond similarity was greater for 

bacteria (R=0.839) than it was for ciliates (R=0.460).These results show that the ponds 

represent habitats in which immigrants do not contribute significantly to the community 

composition, because the proximity of the ponds to each other appeared to have little 

influence on t he microbial taxa found there. Furthermore, the inability of the neutral 

models to predict β-diversity of the ponds, suggests that immigration and connectivity 

are also unimportant structuring mechanisms of these microbial communities. Instead, it 

is likely that the community structure of the microbes diverge because of a neutral 

process that is driven by stochasticity instead of immigration. 
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Figure 54: Conceptual models comparing the amount of variation explained by the spatial variables, pond identity 
and the environmental variables for the bacterial community (a) and the ciliate communities (b). The percentage of 
variation explained by each of these factors were calculated from the variation partitioning method in the previous 
two chapters. The size of the arrows are proportional to the square root of the variation which they explain, therefore 
the larger the arrow, the more important the factor. Dashed lines represent non-significant relationships. Residual 
variation explains variation which could not be explained by the models. 

Ecological drift in microbial communities has been shown to cause divergence in 

community composition as taxa are lost by chance, or become common from exposure 

to novel conditions (Hubbell 2001, Lankau et al. 2012, Nemergut et al. 2013). This is a 

neutral process that explains community structure based on changes in the relative 

abundances of organisms due to stochastic events. It is analogous to theories of genetic 

drift (Masel 2011), which predicts the abundances and distribution of genes among 

populations. Specifically, the theory predicts that species in low abundance in a 

community are more likely to proceed towards local extinction. This is important when 

considering microbial communities because often most of the taxa are found at low 

relative abundances (Pedrós-Alió 2006, Nemergut et al. 2013). 

The effect of ecological drift can be the dominant process governing composition of 

ecological communities (Clark and McLachlan 2003), and can produce community 

patterns which are difficult to interpret (Volkov et al. 2007). Ecological drift is driven 

by three processes that simultaneously operate in metacommunities in the absence of 

environmental variation (Ruokolainen et al. 2009). Firstly, population densities change 

(drift) due to demographic stochasticity and interspecific competition. Secondly, species 

composition in local communities drift due to local extinctions and dispersal limitation. 

And thirdly, the metacommunity species pool can experience drift as individual species 
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become extinct across all local communities (global extinction). These three 

mechanisms operate at different strengths based on the importance of species-sorting 

and neutral processes (Ruokolainen et al. 2009). 

Testing for ecological drift is inherently difficult. Firstly, pure ecological drift is 

unlikely to occur in real communities because there will always be some effect of 

deterministic processes. Secondly, unexplained variance cannot automatically be 

attributed to drift because much of that variance may be due to the effect of 

unaccounted factors. For these reasons, the plausibility of ecological drift occurring in 

many ecological studies is often neglected (Vellend 2010). How to interpret 

stochasticity in ecological models, and methods to model elements that are unknown, 

present future challenges for neutral theory and ecology as a w hole (Rosendell et al. 

2012). 

Ecological drift is introduced here only as a possible explanation for the patterns found 

in the bacterial and ciliate communities in this study. The fact that there remained a 

large amount of unexplained variation in the models after environmental and spatial 

patterns were accounted for, as well as the significant role that pond i dentity has on 

community composition, a stochastic process, such as ecological drift, could be an 

important factor driving the patterns found here. However, it remains impossible to 

detect the unknown in this case, and the role that ecological drift has on the microbial 

communities in Lake MacLeod will remain as speculation. 

6.2 Where has time gone? 

Temporal variation in communities is an important factor in the assembly of microbial 

communities which has largely been ignored in this thesis (Newton et al. 2011). In this 

study, temporal variation was controlled for by collecting all the samples at the same 

time of day, during the same week and season, thus allowing for a ‘snap shot’ of the 

microbial communities and environmental conditions of the Northern Ponds at a single 

time point. By removing sources of temporal variation, and focusing on assembly 

processes within a single period, patterns of dissimilarity and relationships with 

environmental and spatial factors can be determined (Horner-Devine et al. 2004, Bell et 

al. 2005, Martiny et al. 2011, Lear et al. 2014). Seasonal and inter-annual temporal 
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variation undoubtedly affects microbial communities (Jones et al. 2012, Lee 2014), 

particularly the Northern Ponds communities (Huggett et al. unpublished). In their 

analysis of the spatial and temporal variation of bacterioplankton in the ponds of Lake 

MacLeod (the same ponds used in this study), Huggett et al. (unpublished) provide 

evidence of strong seasonal shifts in the microbial communities, but importantly show 

that the spatial patterns and separation of pond communities remain. Those results 

reinforce the data presented in this thesis by suggesting that the spatial patterns found 

for the bacterial and ciliate communities are likely to persist throughout time despite 

seasonal changes. Including a temporal component to this study would have reduced the 

number of samples that could have been used for the spatial analysis, because of budget, 

time and logistical reasons, and thus limited the power of the variation partitioning and 

spatial analyses. Nonetheless, temporal changes in microbial communities need to be 

considered when interpreting structuring processes of these communities. This section 

will present a brief overview of research on the temporal variation of aquatic microbial 

communities. 

Typically, bacterial communities become increasingly dissimilar with time (Wells et al. 

2011, Cabrol et al. 2012, Portillo et al. 2012). For example, in his thesis, Lee (2014) 

demonstrates changes in microcosm communities over 82 w eeks. These microcosm 

communities displayed strong temporal patterns where communities sampled in similar 

weeks were not only more similar in composition, but also diverged from one another 

over time. Jones et al. (2012) suggest that spatial variation and temporal variation in 

microbial communities are quite comparable, with the average community similarity 

across multiple temporal scales falling between average intra- and inter- lake 

community similarity. When spatial and temporal beta-diversities were calibrated to 

each other, it was found that communities separated by a single meter were comparably 

similar to those separated by a day. It can therefore be concluded that similar ecological 

processes drive community assembly over these spatial and temporal scales (Soininen 

2010, Shade et al. 2013), and further iterates the importance of temporal variation. 

It is likely that intrinsic factors, such as body size and dispersal rate, and extrinsic 

factors, such as ecosystem size and isolation, are drivers of bacterial turnover in both 

space and time (Soininen 2010, Jones et al. 2012). This may be because changes in 

environmental conditions at the metre scale are similar to the environmental changes 
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during the course of a day. Alternatively, the fast generation times (on the order of days) 

closely corresponds to the dispersal distances. Incorporating temporal sampling into 

ecological studies is difficult (Redford and Fierer 2009, Lauber et al. 2013), especially 

when considering fine-scale spatial variation has only recently been detected in 

microbial communities (Lear et al. 2014). 

6.3 Limitations and future directions of study 

One of the limitations of this project was the use of ARISA and T-RFLP, and the coarse 

taxonomic resolutions these methods achieve. Therefore, the rare taxa, which contribute 

greatly to microbial diversity (Reid and Buckley 2011, D unthorn et al. 2014, Weisse 

2014), were not accounted for. Also, the identities of the taxa detected remain unknown 

when using ARISA and T-RFLP. These problems can largely be overcome by using 

454-pyrosequencing techniques (Lee et al. 2012). Although more expensive than 

fragment analyses, such as ARISA and T-RFLP, pyrosequencing will improve future 

estimations of the distance-decay and taxa-area relationships and the understanding of 

the assembly processes occurring in bacteria and ciliate communities. Future studies 

should also target other gene regions which discriminate functional and trophic guilds in 

conjunction with the 16S and 18S rRNA genes (Burke et al. 2011), which are good for 

taxonomic discriminations. This would allow for investigations into the biogeographic 

patterns of organisms representing different functional and trophic guilds (Caruso et al. 

2011, Lear et al. 2014). Such data would enable for biogeographic patterns to be 

distinguished between functional and trophic groups within these diverse communities. 

It would also allow for a thorough investigation into the role of species-sorting 

processes as the composition of functional guilds can be compared across sites (Burke 

et al. 2011, Dopheide et al. 2015). 

By using molecular methods with higher OTU resolution, and having the ability to 

separate function guilds within microbial communities, the high amount of unaccounted 

variation, which is typical of these studies, can be reduced and thus allow for the 

building of more representative models. This would also give greater power to discern 

the role of neutrality and species-sorting mechanisms, allowing ecologists to begin 

identifying the role of ecological drift in structuring microbial communities. 
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6.4 Conclusion 

The objective of this thesis was to understand the role that environmental and 

demographic determinants have on the bacteria and ciliate communities found in Lake 

MacLeod. By understanding the variation in the physical and chemical environments 

found among the ponds, and the variation in bacteria and ciliate communities, it was 

established that the communities are determined primarily by the pond in which they 

originate from, despite the environmental similarities and the geographic locations of 

the ponds. These results suggest that ecological drift processes, where isolation has 

enabled each bacterial and ciliate pond c ommunity to diverge in composition, is an 

important mechanism in regulating the diversity of the ponds and the lake basin itself. 

New and exciting molecular methods are allowing for ecologists to affordably generate 

vast datasets to test concepts which are central to our understanding of the diversity on 

Earth. Previously, the microbial world has been treated as an ‘ecological black box’ 

without any discernible biogeographic patterns. Today this is not the case, and this 

study adds to a growing body of literature that suggests that microbial communities are 

structured within our environment in a similar manner to plants and animals. It is not 

only important to pursue an understanding of the biogeography and ecology of the most 

diverse, rich, abundant and functionally important organisms on our  planet to test 

theory, but it is also important simply for the pursuit of intellectual inquiry.     

 



161 

 

REFERENCES 

Abdelrady, A. R. 2013. Evaporation over fresh and saline water using SEBS. University 
of Twente. 

Adl, S. M., A. G. B. Simpson, M. A. Farmer, R. A. Andersen, O. R. Anderson, J. R. 
Barta, S. S. Bowser, G. Brugerolle, R. A. Fensome, S. Fredericq, T. Y. James, S. 
Karpov, P. Kugrens, J. Krug, C. E. Lane, L. A. Lewis, J. Lodge, D. H. Lynn, D. 
G. Mann, R. M. McCourt, L. Mendoza, Ø. Moestrup, S. E. Mozley-Strandridge, 
T. A. Nerad, C. A. Shearer, A. Y. Smirnov, F. W. Spiegel, and M. F. J. R. 
Taylor. 2005. The new higher level classification of eukaryotes with emphasis 
on the taxonomy of protists. Journal of Eukaryotic Microbiology 52:399-451. 

Alongi, D. 1994. T he role of bacteria in nutrient recycling in tropical mangrove and 
other coastal benthic ecosystems. Hydrobiologia 285:19-32. 

Alonso, D., R. S. Etienne, and A. J. McKane. 2006. The merits of neutral theory. Trends 
in Ecology and Evolution 21:451-457. 

Anderson, M. J. 2001. A  new method for non-parametric multivariate analysis of 
variance. Austral Ecology 26:32-46. 

Andrushchyshyn, O. P., K. P. Wilson, and D. D. Williams. 2007. Ciliate communities in 
shallow groundwater: Seasonal and spatial characteristics. Freshwater Biology 
52:1745-1761. 

Andrushchyshyn, O. P., K. P. Wilson, and D. D. Williams. 2009. C limate change-
predicted shifts in the temperature regime of shallow groundwater produce rapid 
responses in ciliate communities. Global Change Biology 15:2518-2538. 

Angermeier, P. L. and I. J. Schlosser. 1989. Species-area relationships for stream fishes. 
Ecology 70:1450-1462. 

Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen, and T. Muotka. 2012. 
Distance decay of similarity in freshwater communities: do macro- and 
microorganisms follow the same rules? Global Ecology and Biogeography 
21:365-375. 

Australian Bureau of Meteorology. 2015. C limate statistics for Australian locations. 
http://www.bom.gov.au/climate/averages/tables/cw_006011_All.shtml. 

Baas-Becking, L. G. M. 1934. G eobiologie of inleiding tot de milieukunde. van 
Stockum, W. P. 

Zoon, N. V., Den Haag. 
Baranyi, C., T. Hein, C. Holarek, S. Keckeis, and F. Schiemer. 2002. Zooplankton 

biomass and community structure in a Danube River floodplain system: Effects 
of hydrology. Freshwater Biology 47:473-482. 

Barberán, A. and E. O. Casamayor. 2011. E uxinic freshwater hypolimnia promote 
bacterial endemicity in continental areas. Microbial Ecology 61:465-472. 

Barko, J. W. and W. F. James. 1998. E ffects of submerged aquatic macrophytes on 
nutrient dynamics, sedimentation, and resuspension.in E. Jeppesen, M. 
Søndergaard, M. Søndergaard, and K. Christoffersen, editors. The structuring 
role of submerged macrophytes in lakes. Springer Science+Business Media, 
New York. 



162 

 

Barreto, D. P., R. Conrad, M. Klose, P. Clause, and A. Enrich-Prast. 2014a. Distance-
decay and taxa-area relationships for bacteria, archaea and methanogenic 
archaea in a tropical lake sediment. PLoS One 9:e110128. 

Barreto, D. P., R. Conrad, M. Klose, P. Clause, and A. Enrich-Prast. 2014b. Distance-
decay and taxa-area relationships for bacteria, archea and methanogenic archaea 
in a tropical lake sediment. PLoS One 9:e110128. 

Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett, and M. L. Longhi. 2006. 
The role of environmental and spatial processes in structuring communities from 
bacteria to fish. Ecology 87:2985-2991. 

Bell, G. 2000. T he distribution of abundance in neutral communities. The American 
Naturalist 155:606-617. 

Bell, G. 2001. Neutral macroecology. Science 293:2413-2418. 
Bell, T. 2010. Experimental tests of the bacterial distance-decay relationship. The ISME 

Journal 4:1357-1365. 
Bell, T., D. Ager, J. I. Song, J. A. Newman, I. P. Thompson, A. K. Lilley, and C. J. van 

der Gast. 2005a. Larger islands house more bacterial taxa. Science 308:1884. 
Bell, T., J. A. Newman, B. W. Silverman, S. L. Turner, and A. K. Lilley. 2005b. The 

contribution of species richness and composition to bacterial services. Nature 
1157-1160. 

Bertzeletos, D., R. A. Davis, and P. Horwitz. 2012. Importance of Lake MacLeod, 
northwestern Australia, to shorebirds: a review and update. Journal of the Royal 
Society of Western Australia 95:115-124. 

Blackwood, C. B., D. Hudleston, D. R. Zak, and J. S. Buyer. 2007. Interpreting 
ecological diversity indices applied to terminal restriction fragment length 
polymorphism data: insights from simulated microbial communities. Applied 
and Environmental Microbiology 73:5276-5283. 

Boggs, D. A., G. S. Boggs, I. Eliot, and B. Knott. 2006. Regional patterns of salt lake 
morphology in the lower Yarra Yarra drainage system of Western Australia. 
Journal of Arid Environments 64:97-115. 

Boggs, D. A., G. S. Boggs, B. Knott, and I. Eliot. 2007. T he hydrology and 
hydrochemistry of six small playas in the Yarra Yarra drainage system of 
Western Australia. Journal of the Royal Society of Western Australia 90:15-32. 

Boon, P. I., P. C. Pollard, and D. Ryder. 2014. Wetland Microbial Ecology and 
Biogeochemistry.in D. P. Batzer and R. R. Sharitz, editors. Ecology of 
Freshwater and Estuarine Wetlands. University of California Press, Oakland, 
Californai. 

Borcard, D., F. Gillet, and P. Legendre. 2011. Numerical Ecology with R. Springer 
Science + Buisness Media, New York. 

Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by 
means of principal coordinates of neighbour matrices. Ecological Modelling 
153:51-68. 

Borcard, D. and P. Legendre. 2012. Is the Mantel correlogram powerful enough to be 
useful in ecological analysis? A simulation study. Ecology 93:1473-1481. 



163 

 

Borcard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto. 2004. Dissecting the 
spatial structure of ecological data at multiple scales. Ecology 85:1826-1832. 

Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component 
of ecological variation. Ecology 73:1045-1055. 

Brose, U., A. Ostling, K. Harrison, and N. D. Martinez. 2004. Unified spatial scaling of 
species and their trophic interactions. Nature 428:167-171. 

Brown, M. V., M. S. Schwalbach, I. Hewson, and J. A. Fuhrman. 2005. Coupling 16S-
ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to 
show marine microbial diversity: development and application to a time series. 
Environmental Microbiology 7:1466-1479. 

Buosi, P. R. B., G. M. Pauleto, F. A. Lansac-Tôha, and L. F. M. Velho. 2011. Ciliate 
community associated with aquatic macrophyte roots: Effects of nutrient 
enrichment on t he community composition and species richness. European 
Journal of Protistology 47:86-102. 

Burgess, R. 2001. An improved protocol for separating meiofauna from sediments using 
colloidal silica sols. Marine Ecology Progress Series 214:161-165. 

Burke, C., P. Steinberg, D. Rusch, S. Kjelleberg, and T. Thomas. 2011. Bacterial 
community assembly based on functional genes rather than species. Proceedings 
of the National Academy of Sciences 108:14288-14293. 

Cabrol, L., L. Malhautier, F. Poly, A.-S. Lepeuple, and J.-L. Fanlo. 2012. Bacterial 
dynamics in steady-state biofilters: beyond functional stability. FEMS 
Microbiology Ecology 79:260-271. 

Cadotte, M. W. 2006. Dispersal and species diversity: a meta-analysis. The American 
Naturalist 167:913-924. 

Cam, E., J. D. Nichols, J. E. Hines, J. R. Sauer, R. Alpizar-Jara, and C. H. Flather. 2002. 
Disentangling sampling and ecological explanations underlying species-area 
relationships. Ecology 83:1118-1130. 

Cameron-Caluori, H. 2014. A  preliminary investigation of the potential effects of the 
invasive Mozambique tilapia Oreochromis mossambicus on t he native fish 
assemblages of Lake MacLeod, Western Australia. Edith Cowan University. 

Caron, D. A. 2009. P ast President's Address: Protistan Biogeography: Why All The 
Fuss? Journal of Eukaryotic Microbiology 56:105-112. 

Caron, D. A., A. Z. Worden, P. D. Countway, E. Demir, and K. B. Heidelberg. 2009. 
Protists are microbes too: a perspective. The ISME Journal 3:4-12. 

Caruso, T., Y. Chan, D. C. Lacap, M. C. Y. Lau, C. P. McKay, and S. B. Pointing. 
2011. Stochastic and deterministic processes interact in the assembly of desert 
microbial communities on a global scale. ISME J 5:1406-1413. 

Casamayor, E. O., X. Triadó-Margarit, and C. Castañeda. 2013. Microbial biodiversity 
in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiology 
Ecology 85:503-518. 

Castañeda, C., J. Herrero, and J. A. Conesa. 2013. Distribution, morphology and 
habitats of saline wetlands: a case study from Monegros, Spain. Geologica Actta 
11:371-388. 



164 

 

Chase, J. M. 2007. Drought mediates the importance of stochastic community assembly. 
Proceedings of the National Academy of Sciences 104:17430-17434. 

Chave, J. and E. G. Leigh Jr. 2002. A spatially explicit neutral model of beta-diversity 
in tropical forests. Theoretical Population Biology 62:153-168. 

Cho, J.-C. and J. M. Tiedje. 2000. B iogeography and Degree of Endemicity of 
Fluorescent Pseudomonas Strains in Soil. Applied and Environmental 
Microbiology 66:5448-5456. 

Clark, J. and J. S. McLachlan. 2003. S tability of forest biodiversity. Nature 423:635-
638. 

Clarke, K. R. 1993. N on-parametric multivariate analyses of changes in community 
structure. Australian Journal of Ecology 18:117-143. 

Cody, M. L. 1985. Towards a theory of continental species diversities. Pages 214-257 in 
M. L. Cody and J. M. Diamond, editors. Ecology and evolution of communties. 
Harvard University, Cambridge, Massachusetts. 

Coggins, L., A. Ghadouani, and M. Ghisalberti. 2014. B athymetry mapping using a 
GPS-sonar equipped remote control boat: Application in waste stabilisation 
ponds. European Geosciences Union General Assembly, Vienna, Austria. 

Comte, J., E. S. Lindström, A. Eiler, and S. Langenheder. 2014. Can marine bacteria be 
recruited from freshwater sources and the air? The ISME Journal 8:2423-2430. 

Connor, E. F. and E. D. McCoy. 1979. T he statistics and biology of the species-area 
relationship. The American Naturalist 113:791-833. 

Cotner, J. B. and B. A. Biddanda. 2002. Small players, large role: Microbial influence 
on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-
121. 

Cottenie, K. 2005. I ntegrating environmental and spatial processes in ecological 
community dynamics. Ecological Letters 8:1175-1182. 

Crosbie, B. and P. Chow-Fraser. 1999. Percentage land use in the watershed determines 
the water and sediment quality of 22 marshes in the Great Lakes basin. Canadian 
Journal of Fisheries and Aquatic Sciences 56:1781-1791. 

Danovaro, R., G. M. Luna, A. Dell'Anno, and B. Pietrangeli. 2006. Comparison of two 
fingerprinting techniques, terminal restriction fragment length polymorphism 
and automated ribosomal intergenic spacer analysis, for determination of 
bacterial diversity in aquatic environments. Applied and Environmental 
Microbiology 72:5982-5989. 

De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. 
Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. 
Vyverman, and S. A. J. Declerck. 2012. Body size and dispersal mode as key 
traits determining metacommunity structure of aquatic organisms. Ecology 
Letters 15:740-747. 

De Deckker, P. 1983. Australian salt lakes: their history, chemistry, and biota - a 
review. Hydrobiologia 105:231-244. 

DeLong, J. R. and N. R. Pace. 2001. Environmental diversity of bacteria and archaea. 
Systematic Biology 50:470-478. 



165 

 

De Meester, L., A. Gómez, B. Okamura, and K. Schwenk. 2002. The Monopolization 
Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta 
Oecologica 23:121-135. 

De Wit, R. and T. Bouvier. 2006. ' Everything is everywhere, but, the environment 
selects': what did Baas Becking and Beijerinck really say? Environmental 
Microbiology 8:755-758. 

Declerck, S. A. J., J. S. Coronel, P. Legendre, and L. Brendonck. 2011. Scale 
dependency of processes structuring metacommunities of cladocerans in 
temporary pools of High-Andes wetlands. Ecography 34:296-305. 

Dodson, S. I. 1992. Predicting crustacean zooplankton species richness. Limnology and 
Oceanography 37:848-856. 

Dodson, S. I., S. E. Arnott, and K. L. Cottingham. 2000. T he relationship in lake 
communities between primary productivity and specie richness. Ecology 
81:2662-2679. 

Domènech, R., A. Gaudes, López-doval, J. C., H. Salvadó, and I. Muñoz. 2006. Effects 
of short-term nutrient addition on microfauna density in a mediterranean stream. 
Hydrobiologia 568:207-215. 

Dopheide, A., G. Lear, Z. Z. He, J., and G. Lewis. 2015. Functional gene composition, 
diversity and redundancy in microbial stream biofilm communities. PLoS One 
10:e0123179. 

Dopheide, A., G. Lear, R. Stott, and G. Lewis. 2008. M olecular characterization of 
ciliate diversity in stream biofilms. Applied and Environmental Microbiology 
74:1740-1747. 

Dopheide, A., G. Lear, R. Stott, and G. Lewis. 2009. Relative diversity and community 
structure of ciliates in stream biofilms according to molecular and microscopy 
methods. Applied and Environmental Microbiology 75:5261-5272. 

Dorigo, U., D. Fontvieille, and J.-F. Humbert. 2006. Spatial variability in the abundance 
and composition of the free-living bacterioplankton community in the pelagic 
zone of Lake Bourget (France). FEMS Microbiology Ecology 58:109-119. 

Doupe, R. G. and D. Burrows. 2008. Thirty years later, should we be more concerned 
for the ongoing invasion of Mozambique Tilapia in Australia? Pacific 
Conservation Biology 14:235-238. 

Dray, S., P. Legendre, and F. G. Blanchet. 2007. Packfor: forward selection with 
permutation - R package ver. 0.0-7. 

Dray, S., P. Legendre, and P. R. Peres-Neto. 2006. Spatial modelling: a comprehensive 
framework for principal coordinate analysis of neighbour matrices (PCNM). 
Ecological Modelling 196:483-493. 

Dunham, N. R. 2014. Influence of hydrological and environmental conditions on 
mangrove vegetation at coastal and inland semi-arid areas of the Gascoyne 
region. Edith Cowan University, Joondalup, WA. 

Dunthorn, M., T. Stoek, J. C. Clamp, A. Warren, and F. Mahé. 2014. Ciliates and the 
rare biosphere: a review. Journal of Eukaryotic Microbiology 61:404-409. 

Dupont, C. 2014. Functional tradeoffs underpin salinity-driven divergence in microbial 
community composition. PLoS One 9:e89549. 



166 

 

Dupraz, C., P. T. Visscher, L. K. Baumgartner, and R. P. Reid. 2004. Microbe-mineral 
interactions: early carbonate precipitation in a hypersaline lake (Eleuthera 
Island, Bahamas). Sedimentology 51:745-765. 

Dykhuizen, D. 1998. S anta Rosalia revisited: Why are there so many species of 
bacteria? Antonie van Leewenhoek 73:25-33. 

Ellison, J. C. and S. Simmonds. 2003. S tructure and productivity of inland mangrove 
stands at Lake MacLeod, Wetern Australia. Journal of the Royal Society of 
Western Australia 86:25-30. 

Elloumi, J., J.-F. Carrias, H. Ayadi, T. Sime-Ngando, M. Boukhris, and A. Bouaïn. 
2006. Composition and distribution of planktonic ciliates from ponds of 
different salinity in the solar saltwork of Sfax, Tunisia. Estuarine, Coastal and 
Shelf Science 67:21-29. 

Elloumi, J., Z. Drira, W. Guermazi, A. Hamza, and H. Ayadi. 2015. S pace-time 
variation of ciliates related to environmental factors in 15 nearshore stations of 
the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Mediterranean Marine 
Science 16:162-179. 

Etienne, R. S. 2007. A neutral sampling formula for multiple samples and an 'exact' test 
of neutrality. Ecology Letters 10:608-618. 

Etienne, R. S. 2009. Improved estimation of neutral model parameters for multiple 
samples with different degrees of dispersal limitation. Ecology 90:847-852. 

Etienne, R. S., A. M. Latimer, J. A. Silander, and R. M. Cowling. 2006. Comment on 
"Neutral ecological theory reveals isolation and rapid speciation in a biodiversity 
hot spot". Science 311:610. 

Faafeng, B. A. and M. Mjelde. 1998. Clear and turbid water in shallow Norwegian lakes 
related to submerged vegetation.in E. Jeppesen, M. Søndergaard, M. 
Søndergaard, and K. Christoffersen, editors. The Structuring Role of Submerged 
Macrophytes in Lakes. Springer Science+Business Media, New York. 

Falkowski, P. G., T. Fenchel, and E. F. Delong. 2008. The microbial engines that drive 
Earth's biogeochemical cycles. Science 320:1034-1038. 

Fee, E., R. Hecky, S. Kasian, and D. Cruikshank. 1996. E ffects of lake size, water 
clarity, and climatic variability on mixing depths in Canadian Shield lakes. 
Limnology and Oceanography 41:912-920. 

Fenchel, T. 1993. Are there more small than large species? Oikos 68:375-378. 
Fenchel, T. and B. Finlay. 2003. Is microbial diversity fundamentally different from 

biodiversity of larger animals and plants? European Journal of Protistology 
39:486-490. 

Fenchel, T. and B. J. Finlay. 2004. The ubiquity of small species: Patterns of local and 
global diversity. BioScience 54:777-784. 

Fenchel, T., B. J. Finlay, E. A. D. Mitchell, T. Bell, J. A. Newman, I. P. Thompson, A. 
K. Lilley, and C. J. van der Gast. 2005. B acteria and island biogeography. 
Science 309:1997-1999. 

Finlay, B. and K. J. Clarke. 1999. Ubiquitous dispersal of microbial species. Nature 
400:828. 



167 

 

Finlay, B., G. Esteban, and T. Fenchel. 1998. Protozoan diversity: Converging estimates 
of the global number of free-living ciliate species. Protist 149:29-37. 

Finlay, B. and T. Fenchel. 2004. Cosmopolitan metapopulations of free-living microbial 
eukaryotes. Protist 155:237-244. 

Finlay, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 
296:1061-1063. 

Finlay, B. J. and G. F. Esteban. 1998. Freshwater protozoa: biodiversity and ecological 
function. Biodiversity and Conservation 7:1163-1186. 

Finlay, B. J., G. F. Esteban, J. L. Olmo, and P. A. Tyler. 1999. Global distribution of 
free-living microbial species. Ecography 22:138-144. 

Finlay, B. J., S. C. Maberly, and J. I. Cooper. 1997. Microbial diversity and ecosystem 
function. Oikos 80:209-213. 

Fisher, J., C. J. Stratford, and S. Buckton. 2009. Variation in nutrient removal in three 
wetland blocks in relation to vegetation composition, inflow nutrient 
concentration and hydraulic loading. Ecological Engineering 35:1387-1394. 

Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic 
spacer analysis of microbial diversity and its application to freshwater bacterial 
communities. Applied and Environmental Microbiology 65:4630-4636. 

Foissner, W. 2006. B iogeography and dispersal of micro-organisms: A review 
emphasizing protists. Acta Protozzologica 45:111-136. 

Foissner, W. 2007. Dispersal and biogeography of protists: Recent advances. Japanese 
Journal of Protozoology 40:1-16. 

Foissner, W., A. Chao, and L. A. Katz. 2008. Diversity and geographic distribution of 
ciliates (Protista: Caliophora). Biodiversity and Conservation 17:345-363. 

Franklin, R. B. and A. L. Mills. 2003. Multi-scale variation in spatial heterogeneity for 
microbial community structure in an eastern Virginia agricultural field. FEMS 
Microbiology Ecology 44:335-346. 

Frontier, S. 1985. D iversity and structure in aquatic ecosystems. Oceanography and 
Marine Biology Annual Review 23:253-312. 

Fuhrman, J. A., I. Hewson, M. S. Schwalbach, J. A. Steele, M. V. Brown, and S. 
Naeem. 2006. Annually reoccurring bacterial communities are predictable from 
ocean conditions. Proceedings of the National Academy of Sciences of the 
United States of America 103:13104-13109. 

Fuhrman, J. A., J. A. Steele, I. Hewson, M. S. Schwalbach, M. V. Brown, J. L. Green, 
and J. H. Brown. 2008. A  latitudinal diversity gradient in planktonic marine 
bacteria. Proceedings of the National Academy of Sciences 105:7774-7778. 

Gage, S. H., S. A. Isard, and G. M. Colunga. 1999. Ecological scaling of aerobiological 
dispersal processes. Agricultural and Forestry Meteorology 30:249-261. 

Gainswin, B. 2004. Biotic influences on chemical fluxes and sediment-water exchanges 
in sediment deposits. University of Birmingham. 

Garcia, E., C. M. Duarte, N. Marba, J. Terrados, H. Kennedy, M. D. Fortes, and N. H. 
Tri. 2003. S ediment deposition and production in SE-Asia seagrass meadows. 
Estuarine, Coastal and Shelf Science 56:37-47. 



168 

 

Garcia, S. L., I. Salka, and H.-P. Grossart. 2013. Depth-discrete profiles of bacterial 
communities reveal pronounced spatio-temporal dynamics related to lake 
stratification. Environmental Microbiology Reports 5:549-555. 

Gaston, K. J. 1992. Regional numbers of insect and plant species. Functional Ecology 
6:243-247. 

Geovariances and G. d. l. E. d. M. d. Paris. 2012. Isatis. France. 
Gevers, D., F. M. Cohan, J. G. Lawrence, B. G. Spratt, T. Coenye, E. J. Feil, E. 

Stackebrandt, T. Van de Peer, P. Vandamme, F. L. Thompson, and J. Swings. 
2005. Re-evaluating prokaryotic species. Nature Reviews. Microbiology 3:733-
739. 

Gibbons, S. M., J. G. Caporaso, M. Pirrung, D. Field, R. Knight, and J. A. Gilbert. 
2013. Evidence for a persistent microbial seed bank throughout the global ocean. 
Proceedings of the National Academy of Sciences 110:4651-4655. 

Gotelli, N. J. and G. L. Entsminger. 2004. EcoSim: Null models software for ecology. 
Acquired Intelligence Inc. & Kesey-Bear, Jericho, VT 05465. 

Green, J. L. and B. J. M. Bohannan. 2006. S patial scaling of microbial biodiversity. 
Trends in Ecology and Evolution 21:501-507. 

Green, J. L., A. J. Holmes, M. Westoby, I. Oliver, D. Briscoe, M. Dangerfield, M. 
Gillings, and A. J. Beattle. 2004. S patial scaling of microbial eukaryote 
diversity. Nature 432:747-750. 

Gücker, B. and H. Fischer. 2003. Flagellate and ciliate distribution in sediments of a 
lowland river: relationships with environmental gradients and bacteria. Aquatic 
Microbial Ecology 31:67-76. 

Halse, S. A., R. J. Shiel, A. W. Storey, D. H. D. Edward, E. I. Lansbury, D. J. Cale, and 
M. S. Harvey. 2000. Aquatic invertebrates and waterbirds of wetlands and rivers 
of the southern Carnarvon basin, Wetern Australia. Records of the Western 
Australian Museum 61:217-267. 

Hambright, K. D., J. E. Beyer, J. D. Easton, R. M. Zamor, A. C. Easton, and T. C. 
Hallidayschult. 2015. The niche of an invasive marine microbe in a subtropical 
freshwater impoundment. The ISME Journal 9:356-364. 

Hanson, C. A., J. A. Fuhrman, M. C. Horner-devine, and J. B. H. Martiny. 2012. 
Beyond biogeographic patterns: processes shaping the microbial landscape. 
Nature Reviews. Microbiology 10:497-506. 

Harte, J. and A. Kinzig, P. 1997. On the implications of species–area relationships for 
endemism, spatial turnover, and food web patterns. Oikos 80:417-427. 

Herczeg, A. I. and W. Berry Lyons. 1991. A  chemical model for the evolution of 
Australian sodium chloride lake brines. Palaeogeography, Palaeoclimatology, 
Palaeoecology 84:43-53. 

Hillebrand, H., F. Watermann, R. Karez, and U. G. Berninger. 2001. Differences in 
species richness patterns between unicellular and multicellular organisms. 
Oecologia 126:114-124. 

Hingsamer, P., M. Striebel, M. Stockenreiter, R. Ptacnikova, R. Ptacnik, and S. A. 
Wickham. 2013. Interaction of productivity and disturbance in a marine ciliate 
community: a mesocosm study. Aquatic Microbial Ecology 70:141-155. 



169 

 

Horner-Devine, C. C., M. Lage, J. B. Hughes, and B. J. M. Bohannan. 2004. A taxa-
area relationship for bacteria. Nature 432:750-753. 

Horppila, J. and L. Nurminen. 2003. E ffects of submerged macrophytes on s ediment 
resuspension and internal phosphorus loading in Lake Hiidenvesi (southern 
Finland). Water Research 37:4468-4474. 

 

Hörtnagl, P., M. T. Pérez, M. Zeder, and R. Sommaruga. 2010. The bacterial 
community composition of the surface microlayer in a high mountain lake. 
FEMS Microbiology Ecology 73:458-467. 

Hubbell, S. P. 2001. T he unified neutral theory of biodiversityand biogeography. 
Princeton University Press, Princeton, NJ. 

Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent 
studies on t he emerging phylogenetic view of bacterial diversity. Journal of 
Bacteriology 180:4765-4774. 

Humbert, J.-F., U. Dorigo, P. Cecchi, B. Le Berre, D. Debroas, and M. Bouvy. 2009. 
Comparison of the structure and composition of bacterial communities from 
temperate and tropical freshwater ecosystems. Environmental Microbiology 
11:2339-2350. 

Jackson, D. A. and H. H. Harvey. 1993. Fish and benthic invertebrates: community 
concordance and community-environment relationships. Canadian Journal of 
Fisheries and Aquatic Sciences 50:2641-2651. 

Jackson, D. A., P. R. Peres-Neto, and J. D. Olden. 2001. What controls who is where in 
freshwater fish communities - the roles of biotic, abiotic, and spatial factors. 
Canadian Journal of Fisheries and Aquatic Sciences 58:157-170. 

Jensen, H. S. and Ø. F. Anderson. 1992. Importance of temperature, nitrate, and pH for 
phosphate release from aerobic sediments of four shallow, eutrophic lakes. 
Limnology and Oceanography 37:577-589. 

Jensen, J. P., E. Jeppesen, K. Olrik, and P. Kristensen. 1994. Impact of nutrients and 
physical factors on t he shift from cyanobacterial to chlorophyte dominance in 
shallow Danish lakes. Canadian Journal of Fisheries and Aquatic Sciences 
51:1692-1699. 

Jones, S. E., T. A. Cadkin, R. J. Newton, and K. D. McMahon. 2012. S patial and 
temporal scales of aquatic bacterial beta diversity. Frontiers in Microbiology 
3:e318. 

Jones, S. E. and K. D. McMahon. 2009. Species-sorting may explain an apparent 
minimal effect of immigration on freshwater bacterial community dynamics. 
Environmental Microbiology 11:905-913. 

Jyväsjärvi, J., K. T. Tolonen, and H. Hämäläinen. 2009. Natural variation of profundal 
macroinvertebrate communities in boreal lakes is related to lake morphometry: 
implications for bioassessment. Canadian Journal of Fisheries and Aquatic 
Sciences 66:589-601. 

Kent, A. D., A. C. Yannarell, J. A. Rusak, E. W. Triplett, and K. D. McMahon. 2007. 
Synchrony in aquatic microbial community dynamics. The ISME Journal 1:38-
47. 



170 

 

King, A. J., K. R. Freeman, K. F. McCormick, R. C. Lynch, C. Lozupone, R. Knight, 
and S. K. Schmidt. 2010. B iogeography and habitat modelling of high-alpine 
bacteria. Nature Communications 1:53. 

Kissoon, L. T. T., D. L. Jaob, M. A. Hanson, B. R. Herwig, S. E. Bowe, and M. L. Otte. 
2015. Multi-elements in waters and sediments of shallow lakes: relationships 
with water, sediment, and watershed characteristics. Wetlands 35:443-457. 

Koleff, P., K. J. Gaston, and J. J. Lennon. 2003. Measuring beta diversity for presence-
absence data. Journal of Animal Ecology 72:367-382. 

Kremp, A. 2001. E ffects of cyst resuspension on germination and seeding of two 
bloom-forming dinoflagellates in the Baltic Sea. Marine Ecology Progress 
Series 216:57-66. 

Langenheder, S., E. S. Lindström, and L. J. Tranvik. 2005. W eak coupling between 
community composition and functioning of aquatic bacteria. Limnology and 
Oceanography 50:957-967. 

Langenheder, S. and H. Ragnarsson. 2007. The role of environmental and spatial factors 
for the composition of aquatic bacterial communities. Ecology 89:2154-2161. 

Langenheder, S. and A. Székely. 2011. Species sorting and neutral processes are both 
important during the initial assembly of bacterial communities. The ISME 
Journal 5:1086-1094. 

Lankau, E. W., P.-Y. Hong, and R. I. Mackie. 2012. E cological drift and local 
exposures drive enteric bacterial community differences within species of 
Galápagos iguanas. Molecular Ecology 21:1779-1788. 

Latimer, A. M., J. A. Silander, and R. M. Cowling. 2005. N eutral ecological theory 
reveals isolation and rapid speciation in a biodiversity hot spot. Science 
309:1722-1725. 

Lauber, C. L., K. S. Ramirez, Z. Aanderud, J. Lennon, and N. Fierer. 2013. Temporal 
variability in soil microbial communities across land-use types. The ISME 
Journal 7:1641-1650. 

Lawton, J. H. 1999. Are there general laws in ecology? Oikos 84:177-192. 
Lear, G., M. J. Anderson, J. P. Smith, K. Boxen, and G. D. Lewis. 2008. Spatial and 

temporal heterogeneity of the bacterial communities in stream epilithic biofilms. 
FEMS Microbiology Ecology 65:463-473. 

Lear, G., J. Bellamy, B. Case, S., J. Lee, E., and H. Buckly, L. 2014. Fine-scale spatial 
patterns in bacterial community composition and function within freshwater 
ponds. The ISME Journal 8:1-12. 

Lear, G., A. Dopheide, P. Ancion, and G. D. Lewis. 2011. A comparison of bacterial, 
ciliate and macroinvertebrate indicators of stream ecological health. Aquatic 
Ecology 45:517-527. 

Lear, G., V. Washington, M. Neale, B. Case, S., H. Buckley, and G. Lewis. 2013. The 
biogeography of stream bacteria. Global Ecology and Biogeography 22:544-
554. 

Lee, C. K., C. W. Herbold, S. W. Polson, K. E. Wommack, S. J. Williamson, I. R. 
McDonald, and S. C. Cary. 2012. G roundtruthing next-gen sequencing for 
microbial ecology-biases and errors in community structure estimates from PCR 
amplicon pyrosequencing. PLoS One 7:44224. 



171 

 

Lee, J. E. 2014. Niche and neutral processes in aquatic bacterial communities: Are all 
things equal? Lincoln University. 

Lee, J. E., H. Buckley, R. S. Etienne, and G. Lear. 2013. B oth species sorting and 
neutral processes drive assembly of bacterial communities in aquatic 
microcosms. FEMS Microbiology Ecology 86:288-302. 

Leff, L. G., J. V. McArthur, and L. J. Shimkets. 1998. Persistence and dissemination of 
introduced bacteria in freshwater microcosms. Microbial Ecology 36:202-211. 

Legendre, P. and M. J. Anderson. 1999. Distance-based redundancy analysis: Testing 
multispecies responses in multifactorial ecological experiments. Ecological 
Monographs 69:1-24. 

Legendre, P. and M. De Cáceres. 2013. B eta diversity as the variance of community 
data: dissimilarity coefficients and partitioning. Ecology Letters 16:951-963. 

Legendre, P. and E. D. Gallagher. 2001. E cologically meaningful transformations for 
ordination of species data. Oecologia 129:271-280. 

Legendre, P., J. Oksanen, and C. J. F. ter Braak. 2011. T esting the significance of 
canonical axes in redundancy analysis. Methods in Ecology and Evolution 
2:269-277. 

Lei, Y., K. Stumm, S. Wickham, and U. G. Berninger. 2014. Distributions and biomass 
of benthic ciliates, foraminifera and amoeboid protists in marine, brackish, and 
freshwater sediments. Journal of Eukaryotic Microbiology 61:493-508. 

Leibold, M. A. 1995. The niche concept revisited: Mechanistic models and community 
context. Ecology 76:1371. 

Lepère, C., I. Domaizon, N. Taïb, J.-F. Mangot, G. Bronner, D. Boucher, and D. 
Debroas. 2013. G eographic distance and ecosystem size determine the 
distribution of smallest protists in lacustrine ecosystems. FEMS Microbiology 
Ecology 85:85-94. 

Lighthart, B. 1997. T he ecology of bacteria in the alfresco atmosphere. FEMS 
Microbiology Ecology 23:263-274. 

Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399-417. 
Lindström, E. S., A. Eiler, S. Langenheder, S. Bertilsson, S. Drakare, H. Ragnarsson, 

and L. J. Tranvik. 2007. Does ecosystem size determine aquatic bacterial 
richness? Comment. Ecology 88:252-253. 

Lindström, E. S., X. M. Feng, W. Granéli, and E. S. Kritzberg. 2010. The interplay 
between bacterial community composition and the environment determining 
function of inland water bacteria. Limnology and Oceanography 55:2052-2060. 

Lindström, E. S. and S. Langenheder. 2012. Local and regional factors influencing 
bacterial community assembly. Environmental Microbiology Reports 4:1-9. 

Lindström, E. S. and Ö. Östman. 2011. T he importance of dispersal for bacterial 
community composition and functioning. PLoS One 6. 

Livermore, J. A. and S. E. Jones. 2015. Local-global overlap in diversity informs 
mechanisms of bacterial biogeography. The ISME Journal 9:2413-2422. 

Logan, B. 1987. T he MacLeod evaporite basin, Western Australia. The American 
Associaction of Petroleum Geologists, Tuksa, Oklahoma. 



172 

 

Logares, R., E. S. Lindström, S. Langenheder, J. B. Logue, H. Paterson, J. Laybourn-
Parry, K. Rengefors, L. Tranvik, and S. Bertilsson. 2013. B iogeography of 
bacterial communities exposed to progressive long-term environmental change. 
The ISME Journal 7:937-948. 

Logue, J. B., S. Langenheder, A. F. Anderson, S. Bertilsson, S. Drakare, A. Lanzen, and 
E. S. Lindström. 2012. F reshwater bacterioplankton richness in oligotrophic 
lakes depends on nutrient availability rather than on species-area relationships. 
The ISME Journal 6:1127-1136. 

Logue, J. B. and E. S. Lindström. 2010. S pecies sorting affects bacterioplankton 
community composition as determined by 16S rDNA and 16S rRNA 
fingerprints. The ISME Journal 4:729-738. 

Lomolino, M. V. 2001. Ecology’s most general, yet protean pattern: the species-area 
relationship. Journal of Biogeography 27:17-26. 

Long, D. T., W. Berry Lyons, and M. E. Hines. 2009. Influence of hydrogeology, 
microbiology and landscape history on the geochemistry of acid hypersaline 
waters, N.W. Victoria. Applied Geochemistry 24:285-296. 

Maaß, S., M. Migliorini, M. C. Rillig, and T. Caruso. 2014. Disturbance, neutral theory, 
and patterns of beta diversity in soil communities. Ecology and Evolution 
4:4766-4774. 

MacArthur, R. and E. O. Wilson. 1967. The theory of island biogeography. Princeton 
University Press, Princeton, N. J. 

Madigan, M. T., J. M. Martinko, D. A. Stahl, and D. P. Clark. 2011. Brock Biology of 
Microorganisms. 13th edition. Benjamin Cummings, San Francisco. 

Mantel, N. 1967. T he detection of disease clustering and a gerneralized regression 
approach. Cancer Research 27:209-220. 

Margulis, L. and V. Schwartz. 1988. Five Kingdoms: An Illustrated Guide to the Phyla 
of Life on Earth. W. H. Freeman & Company, New York. 

Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. 
Green, C. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, 
S. Naeem, L. Ovreas, A. L. Reysenbach, V. H. Smith, and J. T. Staley. 2005. 
Microbial biogeography: putting microorganisms on the map. Nature Reviews. 
Microbiology 4:102-112. 

Martiny, J. B. H., J. A. Eisen, K. Penn, S. D. Allison, and C. C. Horner-Devine. 2011. 
Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the 
National Academy of Sciences 108:7850-7854. 

Masel, J. 2011. Genetic drift. Current Biology 21:R837-R838. 
Mason, R. P. 2013. Trace Metals in Aquatic Systems. John Wiley & Sons, Somerset, 

NJ, USA. 
McLure, N. 2011. Temporal and spatial variation in aquatic invertebrate communities at 

Lake MacLeod, Northwestern Australia. Edith Cowan University, Joondalup, 
WA. 

Mees, F., C. Castañeda, and E. Van Ranst. 2011. Sedimentary and diagenetic features in 
saline lake deposits of the Monegros region, northern Spain. CATENA 85:245-
252. 



173 

 

Mehner, T., K. Holmgren, T. L. Lauridsen, E. J. Jeppesen, and M. Diekmann. 2007. 
Lake depth and geographical posiiton modify lake fish assemblages of the 
European 'Central Plains' ecoregion. Freshwater Biology 52:2285-2297. 

Miao, W., Y. Y. Shen, and X. Zhang. 2004. Intraspecific phylogeography of 
Carchesium polypinum (Peritrichia, Ciliophora) from China, inferred from 18S-
ITS1-5.8S ribosomal DNA. Science in China Series C: Life Sciences 47:11-17. 

Mitsch, W. J. and J. G. Gosselink. 2000. W etlands. 3rd edition. John Wiley & Sons, 
New York. 

Monchy, S., G. Sanciu, M. Jobard, S. Rasconi, M. Gerphagnon, M. Chabé, A. Cian, D. 
Meloni, N. Niquil, U. Christaki, E. Viscogliosi, and T. Sime-Ngando. 2011. 
Exploring and quantifying fungal diversity in freshwater lake ecosystems using 
rDNA cloning/sequencing and SSU tag pyrosequencing. Environmental 
Microbiology 13:1433-1453. 

Morgan, D. 2010. A ppliation of sonar for the measurment of sludge heights in 
wastewater stabilisation ponds. University of Western Australia, Perth, 
Australia. 

Mosher, J. J. and R. H. Findlay. 2011. Direct and indirect influence of parental bedrock 
on streambed microbial community structure in forested streams. Applied and 
Environmental Microbiology 77:7681-7688. 

Mouguet, N. and M. Loreau. 2003. Community patterns in source‐sink 
metacommunities. The American Naturalist 162:544-557. 

Müller, M., P. Stadler, and T. Weisse. 2002. Seasonal dynamics of cyst formation of 
strombidiid ciliates in alpine Lake Mondsee, Austria. Aquatic Microbial 
Ecology 29:181-188. 

Nekola, J. C. and P. S. White. 1999. The distance decay of similarity in biogeography 
and ecology. Journal of Biogeography 26`:867-878. 

Nemergut, D. R., S. K. Schmidt, T. Fukami, S. P. O'Neill, T. M. Bilinski, L. F. Stanish, 
J. E. Knelman, J. L. Darcy, R. C. Lynch, P. Wicky, and S. Ferrenberg. 2013. 
Patterns and processes of microbial community assembly. Microbiology and 
Molecular Biology Reviews 77:342-356. 

Newton, J. A., S. E. Jones, A. Eiler, K. D. McMahon, and S. Bertilsson. 2011. A guide 
to the natural history of freshwater lake bacteria. Microbiology and Molecular 
Biology Reviews 75:14-49. 

Nurminen, L. and J. Horppila. 2009. Life form dependent impacts of macrophyte 
vegetation on the ratio of resuspended nutrients. Water Research 43:3217-3226. 

O’Malley, M. A. 2008. ‘Everything is everywhere: but the environment selects’: 
ubiquitous distribution and ecological determinism in microbial biogeography. 
Studies in History and Philosophy of Science Part C: Studies in History and 
Philosophy of Biological and Biomedical Sciences 39:314-325. 

Ochman, H., E. Lerat, and V. Daubin. 2005. E xamining bacterial species under the 
specter of genne transfer and exchange. Proceedings of the National Academy of 
Sciences 102:6595-6599. 

Odour, S. O. and M. Schagerl. 2007. Temporal trends of ion contents and nutrients in 
three Kenyan Rift Valley saline–alkaline lakes and their influence on 
phytoplankton biomass. Hydrobiologia 584:59-68. 



174 

 

Ofiteru, I. D., M. Lunn, T. P. Curtis, G. F. Wells, C. S. Criddle, C. A. Francis, and W. 
T. Sloan. 2010. Combined niche and neutral effects in a microbial wastewater 
treatment community. Proceedings of the National Academy of Sciences 
107:15345-15350. 

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. 
Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2013. vegan: 
Community Ecology Package. r package version 2.0-10. http://CRAN.R-
project.org/package=vegan. 

Olding, D., D., J. Hellebust, A., and M. Douglas, S., V. 2000. Phytoplankton 
community composition in relation to water quality and water-body 
morphometry in urban lakes, reservoirs, and ponds. Canadian Journal of 
Fisheries and Aquatic Sciences 57:2163-2174. 

Oren, A. 2002. D iversity of halophilic microorganisms: Environments phylogeny, 
physiology, and application. Journal of Industrial Microbiology and 
biotechnology 28:56-63. 

Orsi, W., S. Charvet, P. Vd’acný, J. M. Bernhard, and V. P. Edgcomb. 2012. Prevalence 
of partnerships between bacteria and ciliates in oxygen-depleted marine water 
columns. Frontiers in Microbiology 3:341. 

Östman, Ö., S. Drakare, E. S. Kritzberg, S. Langenheder, J. Logue, and E. S. Lindström. 
2012. Importance of space and the local environment for linking local and 
regional abundances of microbes. Aquatic Microbial Ecology 67:35-45. 

Pagaling, E., H. Wang, M. Venables, A. Wallace, W. D. Grant, D. A. Cowan, B. E. 
Jones, Y. Ma, A. Ventosa, and S. Heaphu. 2009. Microbial biogeography of six 
salt lakes in inner Mongolia, Chin and a salt lake in Argentina. Applied and 
Environmental Microbiology 75:5750-5760. 

Patterson, D. J., J. Larsen, and J. O. Corliss. 1989. T he ecology of heterotrophic 
flagellates and ciliates living in marine sediments. Progress in Protositology 
3:185-277. 

Pebesma, E., R. Bivand, B. Rowlingson, V. Gomez-Rubio, and R. Hijmans. 2015. sp: 
classes and methods for spatial data. r package versio 1.0-17. http://cran.r-
project.org/package=sp. 

Pebesma, E. and B. Graeler. 2014. gstat: Spatial and spatio-temporal geostatistical 
modelling, prediction and simulation. r package version 1.0-22. http://cran.r-
project.org/package=gstat. 

Pedrós-Alió, C. 2006. M arine microbial diversity: can it be determined. Trends in 
Microbiology 14:257-263. 

Pernthaler, J. and R. Amann. 2005. Fate of heterotrophic microbes in pelagic habitats: 
Focus on popul ations. Microbiology and Molecular Biology Reviews 69:440-
461. 

Phillips, B., R. Butcher, J. Hale, and M. Coote. 2005. Ecological character of the Lake 
MacLeod wetland of international importance. Department of Conservation and 
Land Managment, Western Australia. 

Plebani, M., K. E. Fussmann, D. Hansen, E. J. O'Gorman, R. I. A. Stewart, G. 
Woodward, and O. L. Petchey. 2015. Substratum-dependent responses of ciliate 



175 

 

assemblages to temperature: a n atural experiment in Icelandic streams. 
Freshwater Biology 60. 

Portillo, M. C., S. P. Anderson, and N. Fierer. 2012. T emporal variability in the 
diversity and composition of stream bacterioplankton communities. 
Environmental Microbiology 14:2417-2428. 

Radke, L. C., K. W. F. Howard, and P. A. Gell. 2002. C hemical diversity in south-
eastern Australian saline lakes I: geochemical causes. Marine and Freshwater 
Research 53:941-959. 

Radke, L. C., S. Juggins, S. A. Halse, P. De Deckker, and T. Finston. 2003. Chemical 
diversity in south-eastern Australian saline lakes II: biotic implications. Marine 
and Freshwater Research 54:895-912. 

Raffaelli, D., E. Bell, G. Weithoff, A. Matsumoto, J. J. Cruz-Motta, P. Kershaw, R. 
Parker, D. Parry, and M. Jones. 2003. The ups and downs of benthic ecology: 
considerations of scale, heterogeneity and surveillance for the benthic-pelagic 
coupling. Journal of Experimental Marine Biology and Ecology 285-286:191-
203. 

Ramette, A. 2009. Quantitative community fingerprinting methods for estimating the 
abundance of operational taxonomic units in natural microbial communities. 
Applied and Environmental Microbiology 75:2495-2505. 

Ranjard, L., F. Poly, J.-C. Lata, C. Mougel, J. Thioulouse, and S. Nazaret. 2001. 
Characterization of bacterial and fungal soil communities by automated 
ribosomal intergenic spacer analysis fingerprints: Biological and methodological 
variability. Applied and Environmental Microbiology 67:4479-4487. 

Rao, C. R. 1995. A  review of canonical coordinates and an alternative to 
correspondence analysis using Hellinger distance. Qüestiió 19:23-63. 

Reche, I., E. Pulido-Villena, R. Morales-Baquero, and E. O. Casamayor. 2005. D oes 
ecosystem size determine aquatic bacterial richness? Ecology 86:1715-1722. 

Redford, A. J. and N. Fierer. 2009. B acterial succession on t he leaf surface: a novel 
system for studying successional dynamics. Microbial Ecology 58:189-198. 

Reed, H. E. and J. B. H. Martiny. 2007. Testing the functional significance of microbial 
composition in natural communities. FEMS Microbiology Ecology 62:161-170. 

Reid, A. and M. Buckley. 2011. The Rare Biosphere. Washington DC. 
Reiss, J. and J. M. Schmid-Araya. 2008. E xisting in plenty: abundance, biomass and 

diversity of ciliates and meiofauna in small streams. Freshwater Biology 53:652-
668. 

Renard, D., N. Bez, N. Desassis, H. Beucher, F. Ors, and F. Laporte. 2014. RGeostats: 
The Geostatistical package [10.0.3]. MINES ParisTech. 

Rengefors, K., R. Logares, and J. Laybourn-Parry. 2012. P olar lakes may act as 
ecological islands to aquatic protists. Molecular Ecology 21:3200-3209. 

Rennella, A., M. and R. Quiros. 2006. The effects of hydrology on plankton biomass in 
shallow lakes of the Pampa Plain. Hydrobiologia 556:181-191. 

Ricklefs, R. E. and I. J. Lovette. 1999. T he roles of island area per se and habitat 
diversity in the species-area relationships of four Lesser Antillean faunal groups. 
Journal of Animal Ecology 68:1142-1160. 



176 

 

Ripley, B., B. Venables, D. M. M. Bates, K. Hornik, A. Gebhardt, and D. Firth. 2014. 
MASS: Support Functions and Datasets for Venables and Ripley's MASS.in r. p. 
v. 7.3-39, editor. http://cran.r-project.org/package=MASS. 

Romina Schiaffino, M., F. Unrein, J. M. Gasol, R. Massana, V. Balagué, and I. 
Izaguirre. 2011. Bacterial community structure in a latitudinal gradient of lakes: 
the roles of spatial versus environmental factors. Freshwater Biology 56. 

Rosendell, J., S. P. Hubbell, F. He, L. J. Harmon, and R. S. Etienne. 2012. The case for 
ecological neutral theory. Trends in Ecology and Evolution 27:203-208. 

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University 
Press, Cambridge, UK. 

Rowan, J. S., S. Black, and S. W. Franks. 2012. S ediment fingerprinting as an 
environmental forensics tool explaining cyanobacteria blooms in lakes. Applied 
Geography 32:832-843. 

Ruokolainen, L., E. Ranta, V. Kaitala, and M. S. Fowler. 2009. When can we 
distinguish between neutral and non-neutral processes in community dynamics 
under ecological drift? Ecology Letters 12:909-919. 

Schauer, R., C. Bienhold, A. Ramette, and J. Harder. 2010. B acterial diversity and 
biogeography in deep-sea surface sediments of the South Atlantic Ocean. The 
ISME Journal 4:159-170. 

Scheffer, M. 2004. Ecology of shallow lakes.in M. B. Usher, D. L. De Angelis, and B. 
F. J. Manly, editors. Population and Community Biology Series 202. Kluwer 
Academic Publishers, Dordrecht. 

Schnurrenberger, D., J. Russell, and K. Kelts. 2003. C lassification of lacustrine 
sediments based on s edimentary components. Journal of Paleolimnology 
29:141-154. 

Schoener, T. W. 2010. The MacArthur-Wilson equilibrium model.in J. B. Losos and R. 
E. Ricklefs, editors. The Theory of Island Biogeography Revissted. Princeton 
University Press, Princeton, NJ. 

Shade, A., C.-Y. Chiu, and K. D. McMahon. 2010. Seasonal and episodic lake mixing 
simulate differential planktonic bacterial dynamics. Microbial Ecology 59:546-
554. 

Shade, A., S. E. Jones, and K. D. McMahon. 2008. T he influence of habitat 
heterogeneity on freshwater bacterial community composition and dynamics. 
Environmental Microbiology 10:1057-1067. 

Shade, A., J. G. Caporaso, J. Handelsman, R. Knight, and N. Fierer. 2013. A meta-
analysis of changes in bacterial and archaeal communities with time. The ISME 
Journal 7:1493-1506. 

Shade, A., J. S. Read, N. D. Youngblut, N. Fierer, R. Knight, T. K. Kratz, N. R. Lottig, 
E. E. Roden, E. H. Stanley, J. Stombaugh, R. J. Whitaker, C. H. Wu, and K. D. 
McMahon. 2012. Lake microbial communities are resilient after a whole-
ecosystem disturbance. The ISME Journal 6:2153-2167. 

Shepherd, M. J. 1990. Hydrologic environments and sedimentation, Cygnet Seepage 
Face, Lake MacLeod, Western Australia. University of Western Australia. 



177 

 

Sloan, W. T., M. Lunn, S. Woodcock, I. M. Head, S. Nee, and T. P. Curtis. 2006. 
Quantifying the roles of immigration and chance in shaping prokaryote 
community structure. Environmental Microbiology 8:732-740. 

Sloan, W. T., S. Woodcock, M. Lunn, I. M. Head, and T. P. Curtis. 2007. M odeling 
taxa-abundance distributions in microbial communities using environmental 
sequence data. Microbial Ecology 53:443-455. 

Smith, E. P. and G. van Belle. 1984. Estimation of species richness. Biometrics 40:119-
129. 

Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold, and J. R. 
Denoyelles. 2005. P hytoplankton species richness scales consistently from 
laboratory microcosms to the world's oceans. Proceedings of the National 
Academy of Sciences 102:4393-4396. 

Smouse, P. E., J. C. Long, and R. R. Sokal. 1986. Multiple regression and correlation 
extensions of the Mantel test of matrix correspondence. Systematic Zoology 
35:627-632. 

Soininen, J. 2010. Species turnover along abiotic and biotic gradients: patterns in space 
equal patterns in time? BioScience 60:433-439. 

Soininen, J., R. McDonald, and H. Hillebrand. 2007. The distance decay of similarity in 
ecological communities. Ecography 30:3-12. 

Stock, A., V. Edgcomb, W. Orsi, S. Filker, H.-W. Breiner, M. M. Yakimov, and T. 
Stoeck. 2013. E vidence for isolated evolution of deep-sea ciliate communities 
through geological separation and environmental selection. BMC Microbiology 
13:150. 

Stone, L. and A. Roberts. 1990. T he checkerboard score and species distributions. 
Oecologia 85:74-79. 

Storey, A. W., S. A. Halse, and S. Creagh. 2011. Aquatic fauna and water chemitry of 
the mound springs and wetlands of Mandora Marsh, north-western Australia. 
Journal of the Royal Society of Western Australia 94:419-437. 

Streamtec. 2003. Lake MacLeod northern ponds food web structure. Report ST 05/03 to 
Dampier Salt Pty Ltd. Streamtec Pty Ltd. 

Sul, W. J., T. A. Oliver, H. W. Ducklow, L. A. Amaral-Zettler, and M. L. Sogin. 2013. 
Marine bacteria exhibit a bipolar distribution. Proceedings of the National 
Academy of Sciences 110:2342-2347. 

Székely, A. and S. Langenheder. 2013. T he importance of species sorting differs 
between habitat generalists and specialists in bacterial communities. FEMS 
Microbiology Ecology 87:102-112. 

Tang, H. and P. Xie. 2000. B udgets and dynamics of nitrogen and phosphorus in a 
shallow, hypereutrophic lake in China. Journal of Freshwater Ecology 15:505-
514. 

Tiedje, J. M., S. Asuming-Brempong, K. Nüsslein, T. L. Marsh, and S. J. Flynn. 1999. 
Opening the black box of soil microbial diversity. Applied Soil Ecology 13:109-
122. 

Tilman, D. 1982. Resource competition and community structure. Princeton University 
Press, Princeton, NJ. 



178 

 

Timms, B. V. 2005. S alt lakes in Australia: present problems and prognosis for the 
future. Hydrobiologia 552:1-15. 

Timms, B. V. 2009. A study of the salt lakes and salt springs of Eyre Peninsula, South 
Australia. Hydrobiologia 626:41-51. 

Timms, B. V. 2010. B lue Lagoon, South Australia: A closed marine lake harbouring 
potential invaders of continental saline lakes? Verhandlungen des 
Internationalen Verein Limnologie 30:1425-14228. 

Torsvik, V., J. Goksøyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. 
Applied and Environmental Microbiology 56:782-787. 

Torsvik, V., L. Øvreås, and T. F. Thingstad. 2002. Prokaryotic diversity--magnitude, 
dynmacis and controlling factors. Science 296:1064. 

Ugland, K. I., J. S. Gray, and K. E. Ellingsen. 2003. The species-accumualtion curve 
and estimation of species richness. Journal of Animal Ecology 72:888-897. 

Van Cleave, K. 2012. Interaction among evaporation, ice cover, and water temperature 
on Lake Superior: decadal, interannual, and seasonal variability. University of 
Nebraska, Lincoln, Nebraska. 

van den Boogaart, K. G. and R. Tolosana-Delgado. 2013. A nalyzing Compositional 
Data with R. 1 edition. Springer-Verlag, Berlin Heidelberg. 

van den Boogaart, K. G., R. Tolosana-Delgado, and M. Bren. 2014. c ompositions: 
Compositional Data Analysis. r package version 1.40-1. http://CRAN.R-
project.org/package=compositions. 

van der Gast, C. J., A. K. Lilley, D. Ager, and I. P. Thompson. 2005. Island size and 
bacterial diversity in an archipelago of engineering machines. Environmental 
Microbiology 7:1220-1226. 

Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. 
Jeppesen, J.-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. 
Vyverman, and L. De Meester. 2007. T he power of species sorting: Local 
factors drive bacterial community composition over a wide range of spatial 
scales. Proceedings of the National Academy of Sciences of the United States of 
America 104:20404-20409. 

Vellend, M. 2010. Conceptual synthesis in community ecology. The Quarterly Review 
of Biology 85:183-206. 

Venäläinen, A., M. Heikinheimo, and T. Tourula. 1998. Latent heat flux from small 
sheltered lakes. Boundary-Layer Meterology 86:355-377. 

Vitousek, P. M. 1990. B iological invasions and ecosystem processes: towards an 
integration of population biology and ecosystem studies. Oikos 57:7-13. 

Volkov, I., J. R. Banavar, S. P. Hubbell, and A. Maritan. 2007. P atterns of relative 
species abundance in rainforest and coral reefs. Nature 450:45-49. 

Vymazal, J. 1995. Algae and element cycling in wetlands. Lewis Publishers, University 
of California. 

Walsh, D. A. and W. F. Doolittle. 2005. The real ‘‘domains’’ of life. Current Biology 
15:R237-R240. 

Wardle, D. A. 1999. Is "sampling effect" a problem for experiments investigatin 
biodiversity-ecosystem function relationships? Oikos 87:403-407. 



179 

 

Weisse, T. 2008. D istribution and diveristy of aquatic protists: an evolutionary and 
ecological perspective. Biodiversity and Conservation 17:243-259. 

Weisse, T. 2014. Ciliates and the Rare Biosphere—Community Ecology and Population 
Dynamics. Journal of Eukaryotic Microbiology 61:419-433. 

Wells, G. F., H.-D. Park, B. Eggleston, C. A. Francis, and C. S. Criddle. 2011. Fine-
scale bacterial community dynamics and the taxa–time relationship within a full-
scale activated sludge bioreactor. Water Research 45:5476-5488. 

Wetzel, R. G. 2001. Limnology. Lake and river ecosystems. Academic Press, London, 
U.K. 

Wey, J. K., H. Norf, H. Arndt, and M. Weitere. 2009. R ole of dispersal in shaping 
communities of ciliates and heterotrophic flagellates within riverine biofilms. 
Limnology and Oceanography 54:1615-1626. 

Whitaker, R. J., D. W. Grogan, and J. W. Taylor. 2003. G eographic barriers isolate 
endemic populations of hyperthermophilic archaea. Science 301:976+. 

Whitman, W. B., D. C. Coleman, and W. J. Wiebe. 1998. P rokaryotes: The unseen 
majority. Proceedings of the National Academy of Sciences of the United States 
of America 95:6578-6583. 

Whittaker, R. H. 1975. Communities and ecosystems. MacMillan Publishing, New 
York. 

Wickham, S. A., S. Nagel, and H. Hillebrand. 2004. C ontrol of epibenthic ciliate 
communities by grazers and nutrients. Aquatic Microbial Ecology 35:153-162. 

Wong, J. W. C. and C. L. Yang. 1997. T he effect of pH and redox potential on t he 
release of nutrients and heavy metals from a c ontaminated marine sediment. 
Toxicological and Environmental Chemistry 62:1-10. 

Woodcock, S., T. P. Curtis, I. M. Head, M. Lunn, and W. T. Sloan. 2006. Taxa–area 
relationships for microbes: the unsampled and the unseen. Ecology Letters 
9:805-812. 

Woodcock, S., C. J. van der Gast, T. Bell, M. Lunn, T. P. Curtis, I. M. Head, and W. T. 
Sloan. 2007. N eutral assembly of bacterial communities. FEMS Microbiology 
Ecology 62:171-180. 

Woodruff, S. L., W. A. House, M. E. Callow, and B. S. C. Leadbeater. 1999. The effect 
of a developing biofilm on chemical changes across the sediment-water interface 
in a freshwater environment. International Review of Hydrobiology 84:509-532. 

Wurzbacher, C. M., F. Bärlocher, and H.-P. Grossart. 2010. Fungi in lake ecosystems. 
Aquatic Microbial Ecology 59:125-149. 

Wyrwoll, K., T. Stoneman, G. Elliot, and P. Sandercock. 2000. Geoecological setting of 
the Carnarvon Basin, Western Australia: geology, geomorphology and soils of 
selected sites. Records of the Western Australian Museum 61:29-75. 

Yannarell, A. C. and E. W. Triplett. 2004. Within- and between-lake variability in the 
composition of bacterioplankton communities: Investigations using multiple 
spatial scales. Applied and Environmental Microbiology 70:214-223. 

Yannarell, A. C. and E. W. Triplett. 2005. G eographic and environmental sources of 
variation in lake bacterial community composition. Applied and Environmental 
Microbiology 71:227-239. 



180 

 

 



181 

 

APPENDIX 1 – ROSE OF WIND DIRECTION VS SPEED 

 

Figure 55: Rose of wind direction versus wind direction in km/h for the months January, April, July and October. All 
data collected at Carnarvon Airport (BOM Site: 006011) for the period between 1945 to 2010. Graphs reproduced 
from Bureau of Meteorology. 
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APPENDIX 2 – VARIOGRAM MODELS 

Table 36: Summary of parameters used to derive the variogram models used for the kriging processes for determining 
the bathymetry of each pond. 

 Lag 
distance 

Number of 
lags 

Direction 
of 

anistropy 
Range (m) Total sill Model 

structure 

Pete’s Vent 0.5 12 0 11.7 0.096 Spherical 
Donut Pond 3 15 30, 120 178.0 7.506 Spherical 
Annie’s 
Pond 5 10 60, 150 60.8 0.088 Spherical, 

Cubic 
Pete’s Pond 10 10 60, 150 114.7 0.037 Spherical 
Whistler’s 
Pond 10 30 70, 160 193.8 0.121 Spherical 

Harjie’s 
Pond 2 20 55, 90, 

145, 180 13.1 0.053 Spherical 

Jana’s Vent 20 30 70, 160 118.9 1.102 Spherical 
Cygnet 
Pond 10 100 0, 90 201.6 0.071 Spherical 
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APPENDIX 3 – R-SCRIPTS 

Bathymetric determination 

This R-Script was written to build the bathymetric maps of the ponds and to determine 

some of the morphometric characteristics of the ponds. The raw data file (data) should 

contain northing [,1] and easting [,2] values for each recorded depth [,3] and 

temperature [,4] measurement and imported in .csv format. The outline of the water 

body can be imported directly in .kml format, although the file needs to be in the 

working directory. 

#Load required packages 
library(sp) 
library(rgdal) 
library(RGeostats) 
library(maptools) 
 
#Load depth and temperature data file with coordinated in UTM 
data <- read.csv(“[….].csv”, header=TRUE) 
dt.z <- data 
dt.z$Temp <- NULL 
dt.t <- data 
dt.t$z <- NULL 
 
#load outline of pond as .kml file into UTM coordinates 
spa <- data.frame(getKMLcoordinates(kmlfile="[….].kml", ignoreAltitude=TRUE)) 
colnames(spa) <- c("x", "y") 
coordinates(spa) <- c("x", "y") 
proj4string(spa) <- CRS("+proj=longlat +datum=WGS84") 
spa <- data.frame(spTransform(spa, CRS("+proj=utm +zone=49 ellps=WGS84"))) 
 
#Build polygon shape of pond outline 
polygon <- polygon.create(x=spa$x, y=spa$y) 
plot(polygon) 
axis.values <- par("usr") 
n.nodes.x1 <- 200 
n.nodes.x2 <- 200 
n.dim <- c(((axis.values[2]-axis.values[1])/n.nodes.x1), 
           ((axis.values[4]-axis.values[3])/n.nodes.x2), autoname=F) 
 
#Create grid for kriging 
grid.db <- db.create(flag.grid=TRUE,  
                     dx=c(n.dim[1], n.dim[2]),  
                     nx=c(n.nodes.x1, n.nodes.x2), x0=c(axis.values[1], axis.values[3])) 
grid.poly <- db.polygon(grid.db, polygon) 
 
#Build variograms and variogram models 
z.db <- db.create(dt.z, flag.grid=FALSE, ndim=2) 
z.db <- db.locate(z.db, c("x","y"), "x") 
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lag.distance.z <- [INSERT LAG DISTANCE] 
lag.number.z <- [INSERT NUMBER OF LAGS] 
dir1 <- [INSERT DIRECTION OF ANISTROPY] 
dir2 <- dir1+90 
z.dir.vario <- vario.calc(z.db, lag=lag.distance.z, nlag=lag.number.z) 
plot(z.dir.vario,npairdw=TRUE,npairpt=TRUE, title="Omnidirectional variogram") 
z.dir.model <- model.auto(z.dir.vario,  

struct=c("Nugget Effect", "Spherical", "Spherical", "Exponential", "Exponential"),  
title = "1 direction variogram model”) 

 
#Build neighbourhood matrix 
unique.neigh <- neigh.init(type=0, ndim=2) 
moving.neigh <- neigh.input() 
 
#Kriging & simulation 
depth.db <- db.polygon(z.db, polygon) 
depth.db <- xvalid(depth.db, model=z.dir.model, neigh=moving.neigh) 
depth.db <- db.locate(depth.db, seq(6,7)) 
depth.db <- db.locate(depth.db, "z", "z") 
grid.poly.z <- kriging(depth.db, grid.poly, z.dir.model, unique.neigh, radix="KU.Part") 
grid.poly.z <- kriging(depth.db, grid.poly.z, z.dir.model, moving.neigh, radix="KM.All") 
grid.poly.z <- neigh.test(depth.db, grid.poly.z, z.dir.model, moving.neigh, radix="Moving") 
depth.anam <- anam.fit(depth.db, "z") 
depth.db <- anam.z2y(depth.db, "z", anam=depth.anam) 
depth.g.vario <- vario.calc(z.db, nlag=lag.number.z, lag=lag.distance.z) 
plot(depth.g.vario, npairdw=T, npairpt=T) 
depth.g.model <- model.auto(depth.g.vario, struct=c("Nugget Effect", "Spherical", "Spherical", 

"Exponential", "Exponential")) 
grid.poly.z <- simtub(depth.db, grid.poly.z, depth.g.model, unique.neigh, nbsimu= 100, nbtuba=100) 
grid.poly.z <- anam.y2z(grid.poly.z, ngrep="Simu.Gaussian.z", anam=depth.anam) 
grid.poly.z.mean <- db.compare(grid.poly.z, ngrep="Raw.Simu.Gaussian.z", fun="mean")  
grid.poly.z.stdv <- db.compare(grid.poly.z, ngrep="Raw.Simu.Gaussian.z", fun="stdv") 
 
#Lake characteristics 
depth.points <- data.frame(grid.poly.z.mean@items$mean) 
depth.points <- na.omit(depth.points) 
names(depth.points) [1] <- "Depth" 
Lake.character <- data.frame((nrow(depth.points)*(grid.poly@dx[1])*(grid.poly@dx[2])),  
                             (sum(depth.points$Depth*(grid.poly@dx[1])*(grid.poly@dx[2]))), 
                             mean(depth.points$Depth), max(depth.points$Depth)) 
names(Lake.character) <- c("S.A.", "V", "Mean", "Maximum") 
Lake.character <- round(Lake.character, digits=2) 
 
#Output Map 
plot(grid.poly.z.mean, col=terrain.colors(21), asp=1, xlab= "Latitude", ylab="Longitude") 
plot(grid.poly.z.mean, name.contour="mean", nlevels=10, col="black", labcex=1, add=TRUE) 
plot(polygon, lwd=3, add=TRUE) 
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Sediment analysis 

R script used to conduct the sedimentology analyses. This script relies on two sets of 

data: the sediment data (sed) which contains the counts of each particle type for each 

sample, and the coordinates for each sample (spa). 

#Load required packages and codes 
library(vegan) 
source("sr.value.R") # http://www.davidzeleny.net/anadat-r/doku.php/cs:numecolr:sr.value 
source("scores.cca.R")# https://searchcode.com/codesearch/view/15734587/  
 
#Load data 
sed  <- read.csv("[….].csv", row.names=1, header=TRUE) 
spa <- read.csv("[….].csv", row.names=1, header=TRUE) 
 
#Remove un-used coordinates 
spa <- spa[Reduce(intersect, lapply(list(sed, spa), rownames)), ] 
 
sed.prop <- data.frame(mean(sed $pel), mean(sed $ske), mean(sed $det), 
mean(sed $dia),  mean(sed $min)) 
 
sed.norm <- decostand(sed, "normalize") 
sed.mds <- (metaMDS(sed.norm)) 
sed.anosim <- anosim(sed.norm, grouping=groups$Pond, distance="bray") 
sed.PERMANOVA <- adonis(sed.norm~Pond, groups) 
sed.PERMANOVA 
sed.cn.dist <- vegdist(sed.norm, distance="bray") 
anova(betadisper(sed.cn.dist, groups$Pond)) 
betadisper(sed.cn.dist, groups$Pond) 
plot(sed.mds, type="n", 
     main="Sediment composition of each location") 
points(sed.mds, select=which(groups$Pond=="A"), col="blue") 
points(sed.mds, select=which(groups$Pond=="C"), col="olivedrab") 
points(sed.mds, select=which(groups$Pond=="D"), col="green4") 
points(sed.mds, select=which(groups$Pond=="H"), col="purple") 
points(sed.mds, select=which(groups$Pond=="J"), col="red") 
points(sed.mds, select=which(groups$Pond=="P"), col="darkorange1") 
points(sed.mds, select=which(groups$Pond=="S"), col="darkred") 
points(sed.mds, select=which(groups$Pond=="W"), col="violetred") 
ordihull(sed.mds, group=groups$Pond) 
 
#K-means clustering to identify sediment groups 
sed.KM.cascade <- cascadeKM(sed.norm, inf.gr=2, sup.gr=11, 
                                iter=9999, criterion="ssi") 
plot(sed.KM.cascade, sortg=TRUE) 
sed.kmeans <- kmeans(sed.norm, centers=6, nstart=9999) 
library(labdsv) 
iva <- indval(sed.norm, sed.kmeans$cluster) 
iva <- indval(sed.norm, sed.kmeans$cluster) 
#Table of significant indicators 
gr <- iva$maxcls[iva$pval<=0.05] 
iv <- iva$indcls[iva$pval<=0.05] 
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pv <- iva$pval[iva$pval<=0.05] 
fr <- apply(sed.norm > 0, 2, sum) [iva$pval<=0.05] 
fidg <- data.frame(group=gr, indval=iv, pvalue=pv, freq=fr) 
(fidg <- fidg[order(fidg$group, -fidg$indval),]) 
clus$cluster <- as.factor(clus$cluster) 
summary(clus) 
 
#Extract information on the compositions of the sediment types. 
Sed.nominclature <- cbind(sed, clus$cluster) 
names(Sed.nominclature)[6] <- "cluster" 
one.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "1") 
two.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "2") 
three.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "3") 
four.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "4") 
five.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "5") 
six.sed <- subset(Sed.nominclature, Sed.nominclature$cluster == "6") 
 
one.sed.prop <- data.frame(mean(one.sed$pel), mean(one.sed$ske), mean(one.sed$det), 
mean(one.sed$dia),  
                           mean(one.sed$min)) 
two.sed.prop <- data.frame(mean(two.sed$pel), mean(two.sed$ske), mean(two.sed$det), 
mean(two.sed$dia),  
                           mean(two.sed$min)) 
three.sed.prop <- data.frame(mean(three.sed$pel), mean(three.sed$ske), mean(three.sed$det), 
mean(three.sed$dia),  
                             mean(three.sed$min)) 
four.sed.prop <- data.frame(mean(four.sed$pel), mean(four.sed$ske), mean(four.sed$det), 
mean(four.sed$dia),  
                            mean(four.sed$min)) 
five.sed.prop <- data.frame(mean(five.sed$pel), mean(five.sed$ske), mean(five.sed$det), 
mean(five.sed$dia),  
                            mean(five.sed$min)) 
six.sed.prop <- data.frame(mean(six.sed$pel), mean(six.sed$ske), mean(six.sed$det), mean(six.sed$dia),  
                           mean(six.sed$min)) 
names(one.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
names(two.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
names(three.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
names(four.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
names(five.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
names(six.sed.prop)[1:5] <- c("pel", "ske", "det", "dia", "min") 
 
Sed.groups.prop <- rbind(one.sed.prop, two.sed.prop, three.sed.prop, four.sed.prop, five.sed.prop, 
six.sed.prop) 
Sed.groups.prop$Group <- c("One", "Two", "Three", "Four", "Five", "Six") 
Sed.groups.prop 
 
clus$Pond <- row.names(clus) 
clus$Pond <- substring(clus$Pond, 1,1) 
clus$Pond <- as.factor(clus$Pond) 
counts <- table(clus$cluster, clus$Pond) 
 
barplot(counts,  xlab="Pond", ylab="Number of Samples", col=c("red", "blue", "green", ”yellow", 
"purple", "orange")) 
legend("topright", legend=rownames(counts), fill=c("red", "blue", "green", "yellow", 
"purple", "orange"), horiz=TRUE) 
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# Pie Chart with Percentages 
slices <- c(31, 15, 41, 61, 218, 90)  
lbls <- c("Pelletal-Aragonite Mud", "Aragonite Mud", "Pelletal Diatomaceous Sand",  
          "Pelletal Skeletal Sand", "Pelletal Sand", "Pelletal Sand & Aragonite Mud") 
pie(slices,labels = lbls, col= c("red", "blue", "green", 
                                 "yellow", "purple", "orange")) #rainbow(length(lbls))) 
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Water chemistry analysis 

Raw data file (data) consists of the concentrations of sodium, magnesium, calcium, 

potassium, chloride, sulphate, ammonia, nitrite/nitrate and phosphate, in that order, in 

mg/L. The data data.frame has two additional columns for sediment cluster and pond 

identity. The spa data.frame contains the UTM coordinates for each sample. The data 

will need to be subset into pond groups for the IDW analysis. 

library(compositions) 
library(vegan) 
library(MASS) 
library(gstat) 
library(sp) 
library(lattice) 
 
data <- read.csv("[….].csv", header=TRUE, row.names=1) 
 
#Transform ionic concentrations into millequivalents 
sal <- data[,c(1,2,3,4,5,6)] 
sal[,1] <- (sal[,1]/(22.99/1))*1000 
sal[,2] <- (sal[,2]/(24.31/2))*1000 
sal[,3] <- (sal[,3]/(40.08/2))*1000 
sal[,4] <- (sal[,4]/(39.10/1))*1000 
sal[,5] <- (sal[,5]/(35.45/1))*1000 
sal[,6] <- (sal[,6]/(96.06/2))*1000 
sal <- round(sal, 0) 
 
#Transform into composition data matrix 
x <- acomp(sal, parts=c("Na", "Mg", "Ca", "K", "Cl", "SO4")) 
 
#PCA_ Exploring Codependence in Salinity measures 
pcx <- princomp(x) #Conduct PCA on Salinity Composition 
sum(pcx$sdev[1:1]^2/mvar(x)) #Proportion of explained variance biplot captures 
 
#Draw PCA biplot 
opar <- par(mar=c(1,1,1,1)) 
dots <- rep(".", times=nrow(x)) 
biplot(pcx, xlabs=dots) 
par(opar) 
 
#Three groups in biplot. Measure proportionality of each group 
sal.grp1 <- mvar(acomp(x[,c("Ca", "Mg", "Na")])) 
sal.grp2 <- mvar(acomp(x[,c("Cl", "SO4")])) 
sal.grp3 <- mvar(acomp(x[,c("K")])) 
mvar(x) 
(prop.grp1 <- sal.grp1/mvar(x)) 
(prop.grp2 <- sal.grp2/mvar(x)) 
(prop.grp3 <- sal.grp3/mvar(x)) 
 
#Scree and form plots and variation explained by PCA 
plot(pcx, type="screeplot") 
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plot(pcx, type="variance") 
sum(pcx$sdev[1]^2/sum(pcx$sdev^2)) #First two variances against total variation 
 
#Loadings of ions against PC axes 
loadings(pcx)[,1:2] 
colSums(loadings(pcx)) 
 
comprel2d <- function(data, fixedvar){ 
  diag(1/data[,fixedvar]) %*% unclass(data) 
} 
comprel1d <- function(data, fixedvar){ 
  unclass(data)/data[fixedvar] 
} 
 
princ.comp <- 1 
element <- "Cl" 
fk <- pcx$scores[,princ.comp] 
vd <- pcx$Loadings[princ.comp,]*pcx$sdev[1] 
vd <- comprel1d(vd, element) 
mn <- pcx$Center 
mn <- comprel1d(mn, element) 
matplot(fk, log(comprel2d(x, element)), pch=19, col=rainbow(10)) 
for(i in 1:6){ 
  abline(a=log(mn[i]), b=log(vd[i]), col=rainbow(10)[i], lwd=2) 
} 
fkdens <- seq(from=min(fk)*1.1, to=max(fk)*1.1, length.out=200) 
compdens <- clrInv(outer(fkdens, clr(vd))) + pcx$Center 
compdens <- comprel2d(compdens,element) 
etqy <- compdens[length(fkdens),] 
par(mfrow=c(1,2), mar=c(3,3,1,1)) 
for(logscale in c("","y")){ 
  matplot(fk, comprel2d(x,element), 
          pch=19, col=rainbow(10), log=logscale, cex=0.75) 
  matlines(fkdens, compdens, lty=1, col=rainbow(10)) 
} 
text(x=fkdens[length(fkdens)], y=etqy, 
     labels=colnames(x), pos=2) 
 
#Cluster Analysis: Detecting Natural Groups 
xc = acomp(x) 
dd = dist(xc) 
hc = hclust(dd, method="ward") 
plot(hc) 
h = locator(1)$y 
rect.hclust(hc, h=h) 
gr = cutree(hc, h=h) 
plot(x,col=gr) 
dd = as.dist(variation(x)) 
hc = hclust(dd, method="ward") 
plot(hc) 
 
#Linear Discriminant Analysis 
res <- lda(x=data.frame(ilr(x)), grouping=pond) 
ilrInv(res$means, orig=x) 
V <- ilrBase(x) 
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rownames(V) <- colnames(x) 
t(ilr2clr(t(res$scaling),V=V)) 
grint <- as.integer(pond) 
pairs(res, abbr=1, col=1:8[grint], cex=1.2) 
 
#Inverse distance weighting maps 
meq.sp <- cbind(sal, spa) 
coordinates(meq.sp) <- c("x", "y") 
x.min <- round(min(spa$x), 0) 
x.max <- round(max(spa$x), 0) 
y.min <- round(min(spa$y), 0) 
y.max <- round(max(spa$y), 0) 
nodes <- 50 
spa.grid <- (cbind(seq(x.min, x.max, by=((x.max-x.min)/nodes)), seq(y.min, y.max, by=((y.max-
y.min)/nodes)))) 
spa.grid <- expand.grid(spa.grid[,1], spa.grid[,2]) 
spa.grid$x <- spa.grid$Var1 
spa.grid$y <- spa.grid$Var2 
spa.grid$Var1 <- NULL 
spa.grid$Var2 <- NULL 
spa.grid$fict <- rnorm(nrow(spa.grid), 34000,88541) 
coordinates(spa.grid) <- c("x", "y") 
spa.grid <- as(spa.grid, "SpatialPixelsDataFrame") 
 
Na.idw <- idw(Na ~ 1, meq.sp, spa.grid) 
Mg.idw <- idw(Mg ~ 1, meq.sp, spa.grid) 
Ca.idw <- idw(Ca ~ 1, meq.sp, spa.grid) 
K.idw <- idw(K ~ 1, meq.sp, spa.grid) 
Cl.idw <- idw(Cl ~ 1, meq.sp, spa.grid) 
SO4.idw <- idw(SO4 ~ 1, meq.sp, spa.grid) 
 
par(mfrow=c(2,3)) 
greys = grey.colors(4, 0.55, 0.95) 
image(Na.idw, main="Sodium", col=greys, breaks=seq(400,520, 30), axes=TRUE) 
legend("topleft", legend = c("400-430", "430-460", "460-490", "490-520"),  
       fill = greys, bty = "n", title = "meq") 
 
greys = c("#8C8C8C", "#B0B0B0", "#CDCDCD") 
image(Mg.idw, main="Magnesium", col=greys, breaks=seq(80,110, 10), axes=TRUE) 
legend("topleft", legend = c("80-90", "90-100", "100-110"),  
       fill = greys, bty = "n", title = "meq") 
 
greys = c("#8C8C8C", "#B0B0B0", "#CDCDCD") 
image(Ca.idw, main="Calcium", col=greys, breaks=seq(16,25, 3), axes=TRUE) 
legend("topleft", legend = c("16-19", "19-22", "22-25"),  
       fill = greys, bty = "n", title = "meq") 
 
greys = grey.colors(4, 0.55, 0.95) 
image(K.idw, main="Potassium", col=greys, breaks=seq(7,11, 1), axes=TRUE) 
legend("topleft", legend = c("7-8", "8-9", "9-10", "10-11"),  
       fill = greys, bty = "n", title = "meq") 
 
greys = grey.colors(4, 0.55, 0.95) 
image(Cl.idw, main="Chloride", col=greys, breaks=seq(345,765, 105), axes=TRUE) 
legend("topleft", legend = c("345-450", "450-555", "555-660", "660-765"),  
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       fill = greys, bty = "n", title = "meq") 
 
greys = grey.colors(4, 0.55, 0.95) 
image(SO4.idw, main="Sulphate", col=greys, breaks=seq(35,95, 15), axes=TRUE) 
legend("topleft", legend = c("35-50", "50-65", "65-80", "80-95"),  
       fill = greys, bty = "n", title = "meq") 
 
SpatialPolygonsRescale(layout.scale.bar(), offset = locator(1), scale = 20, fill = c("transparent", "black"), 
plot.grid = FALSE) 
text(locator(1), "0") 
text(locator(1), "20 m") 
par(mfrow=c(1,1)) 
 
#LDA on water chemistry and nutrients using sediment type as group 
clus <- as.factor(data$clus) 
x2 <- acomp(data, c(1:9)) 
table(clus) 
 
x2.ilr <- data.frame(ilr(x2)) 
 
x2.dist <- dist(x2.ilr) 
(x2.MHV <- betadisper(x2.dist, clus)) 
anova(x2.MHV) 
permutest(x2.MHV) #Not homogenous but close enough 
 
res2 <- lda(x2.ilr, grouping=clus) 
 
round(ilrInv(res2$means, orig=x2), 10) 
V2 <- ilrBase(x2) 
rownames(V2) <- colnames(x2) 
t(ilr2clr(t(res2$scaling), V=V2)) 
 
grint2 <- as.integer(clus) 
pairs(res2, abbr=1, col=(1:6)[grint2], cex=1.2) 
 
grw <- as.numeric(clus) 
plot(res2$scores , asp=1, xlab="PC1", ylab="PC2", add=TRUE) 
k <- length(levels(factor(grw))) 
for (i in 1:k) { 
  points(pcx$scores[grw==i,1], pcx$scores[grw==i,2], pch=21, cex=1, 
         col="black", bg=i+1) 
} 
legend("bottomright", paste("Pond", 1:k), pch=21, 

col="black", pt.bg=2:(k+1), pt.cex=2, bty="n") 
plot(envfit(pcx$scores, sal, Permu=999), col="black")  
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Biological analysis 

This script is a summary of the analysis used for understanding the structure of the 

bacteria and ciliate chapters. It uses three sets of data: bacterial or ciliate community 

matrices (com), UTM coordinates for each sample (com.spa) and a set of environmental 

determinants (expl) which consists of water chemistry, nutrient, sediment and 

morphotype data. 

library(vegan) 
library(compositions) 
library(PCNM) 
library(packfor) 
source("create.MEM.model.R") # www.davidzeleny.net/anadat-
 r/doku.php/en:numecolr:create.mem.model 
 
#Import data and define env, pond and morph data.frames 
com <- read.csv("[….].csv", row.names=1, header=TRUE) 
com.spa <- read.csv("[….].csv", row.names=1, header=TRUE) 
expl <- read.csv("[….].csv", row.names=1, header=TRUE) 
pond <- data.frame(substr(row.names(com), 1,1)) 
morph <- data.frame(expl[,12]) 
rownames(morph) <- rownames(expl) 
rownames(pond) <- rownames(expl) 
sed <- data.frame(as.factor(expl$clus)) 
wat <- data.frame(acomp(expl, parts=c("Na", "Mg", "Ca", "K", "Cl", "SO4", "NH4", "NOx", "PO4"))) 
env <- cbind(wat, sed) 
names(env)[10] <- "Sed" 
com <- round(com, 0) 
com <- com[,!apply(com==0,2,all)] 
com.pond <- data.frame(substr(row.names(com), 1,1)) 
 
# Basic Functions 
ncol(com) #Number of OTUs 
colnames(com) #OTU names 
rownames(com) #Site names 
summary(com) #All OTUs non-symmetrical in abundance due to large number of zeros in dataset 
 
# Overall distributions of abundances (dominance codes) 
#Minimum and maximum of abundance values in the whole dataset  
range(com) 
ab <- table(unlist(com)) 
ab 
# Barplot of the distributions, all species confounded 
barplot(ab, las=1, xlab="Abundance class", ylab="Frequency", col=gray(5:0/5)) #Highly skewed towards 
0 
# Number of absences 
sum(com==0) 
# Proportion of zeros in the data set 
sum(com==0)/(nrow(com)*ncol(com)) 
 
# Compare species: number of occurrences 

http://www.davidzeleny.net/anadat-
http://www.davidzeleny.net/anadat-
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com.pres <- apply(com>0, 2, sum) 
# Sort in increasing order 
sort(com.pres) 
# Compare percentage frequencies 
com.relf <- 100*com.pres/nrow(com) 
round(sort(com.relf), 1) 
#Plot histogram 
par(mfrow=c(1,2)) 
hist(com.pres, main="OTU Occurrences", right= FALSE, las=1, xlab="Number of occurrences", 
ylab="Number of OTUs", 
     breaks=seq(0,480,by=20), col="bisque") 
hist(com.relf, main="Species Relative Frequencies", right=FALSE, las=1, xlab="Frequency of occurrence 
(%)", ylab= 
       "Number of OTUs", breaks=seq(0,100, by=10), col="bisque") 
 
#Diversity Summary 
com.tot <- data.frame(t(colSums(com))) 
N0 <- rowSums(com.tot>0)  #Species richness 
H <- diversity(com.tot)   #Shannon entropy 
N1 <- exp(H)      #Shannon diveristy number 
N2 <- diversity(com.tot, "inv") #Simpson diveristy number 
J <- H/log(N0)  #Pielon evenness 
E1 <- N1/N0 #Shannon evenness 
E2 <- N2/N0 #Simpson evenness 
(div.tot.com <- data.frame ((N0), (H), (N1), (N2), (E1), (E2), (J))) 
sac <- specaccum(com) #RAREFACTION/ Species ACCUMULATION 
#Betadiversity ‘z’ values 
com.z <- betadiver(com, "z") 
quantile(com.z) 
mean(com.z) 
z.mod <- betadisper(com.z, pond[,1]) 
z.mod 
boxplot(z.mod) 
 
#Linear Regression of TAR 
richness <- rbind(A.tot.div.com[,1], C.tot.div.com[,1], D.tot.div.com[,1], H.tot.div.com[,1], 
J.tot.div.com[,1], 
                  P.tot.div.com[,1], S.tot.div.com[,1], W.tot.div.com[,1]) 
log.rich <- log10(richness) 
size <- rbind(6715, 7147702, 5978, 65069, 187509, 14880, 95, 46544) #Areas of each pond 
size.richness <- data.frame(cbind(log.rich, size)) 
size.richness$LogSize <- log10(size.richness[,2]) 
size.richness.lm <- lm(log.rich ~ LogSize, size.richness) 
summary(size.richness.lm) 
plot(size.richness$X1~size.richness$LogSize, ylab="OTU richness", xlab="Pond Size (log m2)", type="n") 
points(size.richness$X1~size.richness$LogSize, pch=3, cex=1.5, lwd=0.5) 
axis.values <- par("usr") 
coef <- data.frame(size.richness.lm$coefficients) 
temp <- data.frame(x=seq(axis.values[1]+1.5, axis.values[2]-.1, length=20)) 
temp$y <- temp$x*coef[2,1]+coef[1,1] 
lines(y~x, data=temp, col="black", lwd=2) 
 
# Mantel correlogram 
com.hel <- decostand(com, "hellinger") # Perform Hellinger transformation 
# Data is first detrended 
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anova(rda(com.hel, com.spa)) 
com.hel.det <- resid(lm(as.matrix(com.hel)~., data=com.spa)) 
 
com.h.D1 <- dist(com.hel.det) 
(com.correlog <- mantel.correlog(com.h.D1, XY=com.spa, cutoff=FALSE, nperm=999)) 
plot(com.correlog) 
 
#MDS 
com.nmds <- metaMDS(vegdist(decostand(com, "hellinger")), "euclidean") 
plot(com.nmds, type="t", main=paste("NMDS/BRay Lp1 - Stress =", round(com.nmds$stress, 3))) 
 
par(mfrow=c(1,1)) 
com.Pond <- data.frame(substr(row.names(com), 1,1)) 
names(com.Pond)[1] <- "Pond" 
grw <- as.numeric(com.Pond$Pond) 
plot(com.nmds$points , asp=1, xlab="MDS1", ylab="MDS2", add=TRUE) 
k <- length(levels(factor(grw))) 
for (i in 1:k) { 
  points(com.nmds$points[grw==i,1], com.nmds$points[grw==i,2], pch=21, cex=1, 
         col="black", bg=i+1) 
} 
ordispider(com.nmds, com.Pond$Pond, label=TRUE) 
legend("bottomright", paste("Pond", 1:k), pch=21, 
       col="black", pt.bg=2:(k+1), pt.cex=2, bty="n") 
 
morph.nmds <- metaMDS(com.hel, "euclidean") 
par(mfrow=c(1,1)) 
grw <- as.numeric(morph2[,1]) 
plot(morph.nmds$points , asp=1, xlab="MDS1", ylab="MDS2", add=TRUE) 
k <- length(levels(factor(grw))) 
for (i in 1:k) { 
  points(morph.nmds$points[grw==i,1], morph.nmds$points[grw==i,2], pch=21, cex=1, 
         col="black", bg=i+1) 
} 
ordispider(morph.nmds, morph2$morph2, label=TRUE) 
 
#PERMANOVA 
com.perm <- vegdist(decostand(com, "hellinger"), "euclidean") 
perm.res <- adonis(com.perm~Pond, data=com.Pond) 
perm.beta <- with(com.Pond, betadisper(com.perm, Pond)) 
plot(perm.beta) 
TukeyHSD(perm.beta) 
 
#ANOSIM 
anosim(vegdist(decostand(com, "hellinger"), "euclidean"), com.Pond$Pond) 
adonis(vegdist(com.hel, "euclidean")~morph2, data=morph2) 
with(morph2, betadisper(vegdist(com.hel, "euclidean"), morph2)) 
plot(with(morph2, betadisper(vegdist(com.hel, "euclidean"), morph2))) 
TukeyHSD(with(morph2, betadisper(vegdist(com.hel, "euclidean"), morph2))) 
anosim(vegdist(com.hel, "euclidean"), morph2$morph2) 
 
# RDA of Hellinger-transformed OTU data by environmental data 
com.hel <- decostand(com2, "hellinger") 
 
com.rda <- rda(com.hel ~., cbind(com.env, morph2)) # Sediment Dummy variable 
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summary(com.rda) 
coef(com.rda) 
 
# Retrieval of adjsuted R2 
(R2 <- RsquareAdj(com.rda)$r.squared) #Unadjusted R@ from rda result 
(R2adj <- RsquareAdj(com.rda)$adj.r.squared) # Adjusted R2 retrieved from rda object 
 
# Global test of RDA result 
anova.cca(com.rda, stop= 1000) 
# Test of all canonical axes 
anova.cca(com.rda, by="axis", step=1000) 
 
com.rda.summary <- summary(com.rda) 
com.rda.summary[15] 
 
#Forward selection of environmental variables using ordiR2step 
com.env.com <- cbind(com.env, morph2) 
rda.com.0 <- rda(com.hel ~ 1, data=com.env.com) 
rda.com.all <- rda(com.hel ~ ., data= com.env.com) 
ordiR2step(rda.com.0, scope=formula(rda.com.all), direction="forward") 
temp <- rda(com.hel~., com.env.com) 
RsquareAdj(temp) 
forward.sel(com.hel, model.matrix(~.,com.env.com)[,-1], adjR2thresh=RsquareAdj(temp)) 
plot(com.rda2) 
com.env.com2 <- model.matrix(~.,com.env.com)[,-1][,c(15,16,17,10,8,13,14,12,2,3,6,1,4,7)] 
 
#RDA DONE USING NEW VARIABLES 
com.rda2 <- rda(com.hel~com.env.com2) 
summary(com.rda2) 
com.rda2 
(R2 <- RsquareAdj(com.rda2)$r.squared) #Unadjusted R2 from rda result 
(R2adj <- RsquareAdj(com.rda2)$adj.r.squared) # Adjusted R2 retrieved from rda object 
 
#MEM Analysis 
ngr=8 # Number of groups in data 
nsites.per.group= c(40,52,42,55,51,44,40,60) #Insert number of observation of for each pond 
MEM <- create.MEM.model(com.spa, ngroups=ngr, nsites=nsites.per.group) 
MEM <- data.frame(MEM) 
summary(MEM) 
str(MEM) 
 
# Variation partitioning 
pond.group <- model.matrix(~., pond2)[,-1] 
varp <- varpart(com.hel, com.env.com2, pond.group, MEM) 
plot(varp, digits=2) 
 
#Marginal Effects 
env.rda <- rda(com.hel ~ com.env.com2) 
anova.cca(env.rda) 
RsquareAdj(env.rda) 
MEM.rda <- rda(com.hel ~., MEM) 
anova.cca(MEM.rda) 
RsquareAdj(MEM.rda) 
pond.rda <- rda(com.hel ~ pond.group) 
anova.cca(pond.rda) 
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RsquareAdj(pond.rda) 
 
#2 way Conditional Effects 
wipond.varpart.ad <- rda(com.hel, com.env.com2, pond.group) 
anova.cca(wipond.varpart.ad) 
RsquareAdj(wipond.varpart.ad) 
wipond.varpart.af <- rda(com.hel, com.env.com2, MEM) 
anova(wipond.varpart.af) 
RsquareAdj(wipond.varpart.af) 
wipond.varpart.bd <- rda(com.hel, MEM, pond.group) 
anova(wipond.varpart.bd) 
RsquareAdj(wipond.varpart.bd) 
wipond.varpart.be <- rda(com.hel, MEM, com.env.com2) 
anova.cca(wipond.varpart.be) 
RsquareAdj(wipond.varpart.be) 
wipond.varpart.ce <- rda(com.hel, pond.group, com.env.com2) 
anova(wipond.varpart.ce) 
RsquareAdj(wipond.varpart.ce) 
wipond.varpart.cf <- rda(com.hel, pond.group, MEM) 
anova(wipond.varpart.cf) 
RsquareAdj(wipond.varpart.cf) 
 
#3 way Conditional Effects 
wipond.varpart.a <- rda(com.hel, com.env.com2, cbind(MEM,pond.group)) 
anova.cca(wipond.varpart.a) 
RsquareAdj(wipond.varpart.a) 
wipond.varpart.b <- rda(com.hel, MEM, cbind(com.env.com2,pond.group)) 
anova(wipond.varpart.b) 
RsquareAdj(wipond.varpart.b) 
wipond.varpart.c <- rda(com.hel, pond.group, cbind(com.env.com2,MEM)) 
anova(wipond.varpart.c) 
RsquareAdj(wipond.varpart.c) 
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