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a b s t r a c t

Recently, differences in the levels of various chemokines and cytokines were reported in patients with
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as compared with controls. Moreover,
the analyte profile differed between chronic ME/CFS patients of long duration versus patients with
disease of less than 3 years. In the current study, we measured the plasma levels of 34 cytokines,
chemokines and growth factors in 100 chronic ME/CFS patients of long duration and in 79 gender and
age-matched controls. We observed highly significant reductions in the concentration of circulating
interleukin (IL)-16, IL-7, and Vascular Endothelial Growth Factor A (VEGF-A) in ME/CFS patients. All three
biomarkers were significantly correlated in a multivariate cluster analysis. In addition, we identified
significant reductions in the concentrations of fractalkine (CX3CL1) and monokine-induced-by-IFN-c
(MIG; CXCL9) along with increases in the concentrations of eotaxin 2 (CCL24) in ME/CFS patients. Our
data recapitulates previous data from another USA ME/CFS cohort in which circulating levels of IL-7 were
reduced. Also, a reduced level of VEGF-A was reported previously in sera of patients with Gulf War Illness
as well as in cerebral spinal fluid samples from a different cohort of USA ME/CFS patients. To our knowl-
edge, we are the first to test for levels of IL-16 in ME/CFS patients. In combination with previous data, our
work suggests that the clustered reduction of IL-7, IL-16 and VEGF-A may have physiological relevance to
ME/CFS disease. This profile is ME/CFS-specific since measurement of the same analytes present in
chronic infectious and autoimmune liver diseases, where persistent fatigue is also a major symptom,
failed to demonstrate the same changes. Further studies of other ME/CFS and overlapping disease cohorts
are warranted in future.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Myalgic encephalomyelitis (ME) or chronic fatigue syndrome
(CFS) is a complex and severely debilitating disease characterized
by profound fatigue lasting for more than six months, post-
exercise malaise, unrefreshing sleep, chronic pain, and cognitive
dysfunction. It is more common in middle-age women with an
estimated prevalence of 0.8 million people in the USA and 0.4–1%
in the world [1,2]. There is no laboratory test for diagnosis and
no approved cure for the illness. Diagnosis has been difficult,

subjective and controversial leaving an urgent need for an objec-
tive laboratory-based diagnostic test for this very challenging ill-
ness. Currently, the disease is diagnosed solely by subjective
clinical symptoms [3] and evidence for an infectious etiology has
been controversial [4–8]. There is some evidence suggesting that
the patients might suffer from a neuro-immune disorder [9] with
neuroinflammation in the brain [10]. Alterations in the frequency
and function of immune cells such as B cells and NK cells have been
also reported [11,12]. Abnormalities in the concentrations of some
circulating cytokines and chemokines have been previously
reported [13–18] including three very recent studies of
plasma and cerebrospinal fluid (CSF) samples from ME/CFS
patients [19–21]. However, so far, there has been little confirma-
tion of these abnormal analytes between different ME/CFS patient
groups. The objective of the current study was to measure the
levels of various chemokines, cytokines and growth factors in the
plasma of 100 ME/CFS patients from the USA along with 79 gender
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and age-matched controls to see if any consensus with previous
studies could be identified.

2. Materials and methods

2.1. Patients and sample collection

The collection and analysis of clinical information and biological
samples by the Solve ME/CFS BioBank was ethically approved by
the Genetic Alliance ethics review board, which approved all pro-
cedures for obtaining written informed consent from all subjects
to participate in this study. A total of 100 samples from ME/CFS
patients and 79 from healthy controls were available from a bigger
cohort [22] in the Solve ME/CFS BioBank and studied in blinded
fashion. The Solve ME/CFS BioBank samples were selected from
five, geographically distinct clinical sites from long-term patients
of expert clinician, who are specialized in the diagnosis and man-
agement of ME/CFS. A subject was excluded if they had a body
mass index >40, an immunosuppressive disorder including, but
not limited to cancer, severe infections, HCV, or HIV. In addition,
subjects were excluded if they had a history of substance or alcohol
abuse <2 years before onset of ME/CFS or were mentally or legally
incapacitated at the time of collection. Most of the exclusionary
factors are a part of ME/CFS case definition criteria. Healthy control
participants were geographically co-localized (same neighborhood
or region; but not residing in the same household or of close rela-
tion to a ME/CFS subject); they were also matched to ME/CFS sub-
jects by age, sex, race and BMI. Patients with primary mental
disorders (depression, bipolar mental disorder, and schizophrenia)
were excluded as per ME/CFS case definition. ME/CFS diagnosis
was based on the Fukuda and/or the Canadian Consensus clinical
case definition [23,24].

The blood was collected in heparinized tubes and was sent to
the Rutgers University Cell and DNA Repository at ambient tem-
perature via overnight shipping. Plasma was collected after cen-
trifugation, dispensed into 0.2 ml aliquots and stored at �80 C
until analysis. Processing of blood samples followed guidelines
approved by Rutgers University (Newark, NJ, USA). Analytes were
also measured in chronic infectious and autoimmune liver diseases
where persistent fatigue is also a major symptom.

2.2. Analysis of cytokines/chemokines and growth factors

Pre-coated multiplex ELISA plates from Meso Scale Discovery
(MSD, Gaithersburg, MA, USA) were selected for assays after a rig-
orous comparison with other technologies for their sensitivity at
low concentrations, linearity and high dynamic range of the stan-
dard curves, as well as inter-plate low variability. MSD Human
V-PLEX Plus Kits employed in this study included Chemokine Panel
1, Cytokine Panel 1, and Pro-inflammatory Panel 1; In addition,
Human Eotaxin-2 Kit, a custom-designed 3-Plex kit, and a
custom-designed 1-Plex kit were used. The list included eotaxin
1 (CCL11), eotaxin 2 (CCL24), eoatxin-3 (CCL26), IL-8, interferon
gamma-induced protein 10 (IP-10; CXCL10), monocyte chemotac-
tic protein-1 (MCP-1; CCL2), monocyte chemotactic protein-4
(MCP-4; CCL13), macrophage-derived chemokine (MDC; CCL22),
macrophage inflammatory protein-1-alpha (MIP-1a; CCL3),
macrophage inflammatory protein-1-beta (MIP-1b; CCL4), thymus
and activation regulated chemokine (TARC; CCL17), granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL12/23p40, IL-
15, IL-16, IL-17A, IL-1a, IL-5, IL-7, tumor necrosis factor beta
(TNF-b), Vascular Endothelial Growth Factor A (VEGF-A), interferon
(IFN)-c, IL-10, IL-12p70, IL-13, IL-1b, IL-2, IL-4, IL-6, TNF-a, frac-
talkine (CX3CL1), monokine induced by IFN-c (MIG; CXCL9),
macrophage inflammatory protein 3 beta (MIP-3b; CCL19), and

b2 microglobulin. Frozen plasma samples from healthy controls
and CFS patients were assayed in duplicate immediately after the
first thaw. All experiments were performed according to the man-
ufacturer’s instructions with minimal modifications and optimiza-
tion as described previously [25]. Briefly, 50 ll of each 1:2 diluted
sample was added to each well of the pre-coated 96-well plate and
incubated at room temperature (RT) for 2.5 h with continuous
counter-clock-wise shaking. The plates were then washed three
times with 1�Wash Buffer (MSD) and Sulfotag Detection Antibody
Cocktail (MSD) was then added to each well and the plates then
incubated for an additional 2 h with shaking at RT. Finally, the
plates were washed again, and were scanned by a SECTOR� Imager
6000 Reader (MSD) after adding 150 ll of 2� Read Buffer (MSD).

2.3. Data pre-processing

To accurately quantify the concentrations of each analyte in the
test samples, a four-point logarithmic standard curve is produced
using the MSD Discover Workbench V4 software as developed by
the Meso Scale Discovery Company. According to the plate manu-
facturer and software developer, this kind of curve is optimized to
produce the most accurate standard curves for the cytokine study.
The validation and optimization was done in line with a commonly
accepted method of ‘‘Fit-for-Purpose Method Development and
Validation for Successful Biomarker Measurement” [26], which is
published and recommended by major diagnostic companies.

Intra-CVs were calculated for each plate using the values from
all samples duplicates and the average of all the plates are reported
for each analyte. To measure the Inter-CVs, we added four control
samples at different concentrations to each plate. The LLOD was
calculated based on the mean of negative control samples +2.5
standard deviations (SD). The LLOQ was set to the lowest standard
sample value on the linear part of the standard curve, where it’s
‘‘Mean Recovery Value” was within 20% of the actual value (accu-
racy of 20%) with a CV of 20% (precision of 20%) for the given stan-
dard curve point. When the signals obtained by the scanner were
plotted against the calculated concentrations for each standard
and control sample (data not shown), any adverse matrix effect
was ruled out as the concentration curves for both standard and
control samples were highly correlated, and comparable with the
signals reported by the scanner. The determined concentrations
were also corrected for dilution prior to statistical analysis.

2.4. Statistical analyses: A. Hypothesis testing

The data in each group (ME/CFS & Controls) for individual ana-
lytes were not normally distributed, thus for each analyte in turn,
the null hypothesis that there was no difference in sample median
values between ME/CFS and control groups was tested using the
Mann–Whitney U test. Correction for multiple comparisons was
performed using Storey’s FDR methodology [27]. Both p-values
and corrected p-values (q-values) are reported. The linear correla-
tion between all reproducibly measured analytes was calculated
using the non-parametric pairwise Pearson’s correlation coeffi-
cient. The resulting correlation matrix is presented in the form of
a spring-embedded correlation plot [28]. Here a network of
‘‘nodes” and ‘‘spring-edges” are constructed such that each node
represents each of the tested analytes and the spring constant of
each edge is proportional to the correlation coefficient between
two connected nodes. The size of each node is proportional to sig-
nificance of that variable; the larger the node the lower the q-value
(the corrected p-values). Edges were only included in the network
if the correlation coefficient was positive, and significant at a crit-
ical p-value of 0.05. Once the network is constructed it is allowed
to ‘‘relax”. That is, the connected spring-edges compete against
each other to pull the nodes in a given direction based on the
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spring constant (the higher the correlation, the stiffer the spring,
and hence the more power organizing the clustering of the node).
Once relaxed (i.e. the model is in a low energy configuration) the
spring embedded plot can be viewed as a simple multivariate clus-
ter analysis, where nodes that cluster close to each other can be
considered to be highly correlated in a multivariate sense. Node
color directly maps both the level of significance and whether
the median ME/CFS concentration was higher or lower than med-
ian control (Red = p < 0.05 and ME/CFS > Control; Orange = p < 0.1
and ME/CFS > Control; Blue = p < 0.05 and Control > ME/CFS; Light
Blue = p < 0.1 and Control > ME/CFS; nodes were colored gray when
their corresponding p-value was > 0.1). Networks were constructed
using the graph visualization software–Graphviz (www.graphviz.
org) using the ‘neato’ virtual physics model [29].

2.5. B. Multivariate data analysis

To investigate the potential utility of combining multiple ana-
lytes into a single model predictive of ME/CFS, two techniques
were compared: LASSO-LR and CART. Logistic Regression is a type
of probabilistic statistical classification model commonly used for
predicting the outcome of a categorical dependent variable (in this
case ME/CFS vs. Control), and can be considered as a special case of
a generalized linear model such that, logitðpiÞ ¼ b0 þ b1x1;iþ
b2x2;i . . .þ bmxm;i (where, pi is the predicted probability of positive
classification for the ith patient, x1;i . . . xm;i are the m analyte mea-
surements for the ith patient, is the regression constant, and
b1 . . . bm are regression coefficients indicating the relative influence
of a particular analyte on the outcome). In complete contrast, CART
is a non-parametric decision tree model that produces (in this
case) a classification tree as a predictive model. A decision tree
can be translated into a simple set of logical rules for classification
such as: if ðx1;i > aÞ AND ðx2;i < bÞ then yi ¼ 1; else yi ¼ 0.

Both methodologies were optimized in order to produce a
robust and parsimonious model. The LR model was optimized
using LASSO regularization [30], and the CART model was opti-
mized using tree ‘‘pruning” [31]. For each method, 5-fold cross-
validation with 100 Monte Carlo repetitions was performed during
the optimization to ensure the avoidance of ‘‘over fitting” (i.e.
ensuring the model is generalizable for future testing with new
independent samples). The resulting optimal classifier models
were assessed using Receiver Operator Characteristic (ROC) curve
analyses. This allows determination a posteriori of the optimal

Table 1
Number, gender, age, and MFI/RAND36 scores of subjects in the study.

Controls CFS/ME

Number of subjects 79 100
Gender (F/M) 62/17 72/28
Age (mean ± SD) 50.4 ± 12.6 50.5 ± 12.6
MFI (mean ± SD) 37.4 ± 14.5 77.8 ± 12.7
RAND36 (mean ± SD) 87.1 ± 9.2 37.9 ± 13.9

Controls = Healthy controls, ME/CFS = Myalgic encephalomyelitis/chronic fatigue
syndrome, SD = Standard deviation, M = Male, and F = Female, MFI = Multidimen-
sional fatigue inventory score (the higher, the more fatigue), RAND36 = The RAND
36–item health survey (The higher, the healthier).

Table 2
Detailed information and statistics for the thirty-four analytes that are investigated. Gray rows are the biomarkers with significant changes after p-value correction. The q-values
refer to the corrected p-value for gender and age in multiple comparisons.
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‘‘decision boundary” (the predictive score determining whether a
sample is classified as ME/CFS rather than control) and the associ-
ated optimal classification sensitivity and specificity. The AUC is
used as a generalized non-parametric estimate of biomarker utility
(AUC = 1 implies a perfect classifier; AUC = 0.5 implies a model
which is no better than flipping a coin to determine outcome).
Bootstrap resampling was performed (n = 500) to estimate the
95% confidence interval (CI) for both the AUC, and a given model’s
optimal sensitivity given a fixed specificity.

All statistical analysis was performed using Matlab� scientific
scripting language, version R2014b (http://www.mathworks.com).
The Logistic Regression model was verified using STATA� statistical
software, version 13 (http://www.stata.com).

3. Results

3.1. Study population

Plasma samples from 100 USA patients diagnosed with ME/CFS
and 79 gender- and age-matched healthy controls were tested in
this study. The details of the patient’s characteristics are summa-
rized in Table 1. There were no significant differences in gender
or age between these two groups. As expected, the multidimen-
sional fatigue inventory (MFI) and RAND 36, a 36-item health sur-
vey identical to that of MOS SF-36, which provides health status
[32] scores were significantly different in ME/CFS patients com-
pared to healthy controls (p values of <0.0001) (Table 1).
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Fig. 1. The level of cytokines, chemokines and growth factors that are significantly altered in the patient group as compared to healthy controls. The horizontal lines are
medians. The numbers show the p value for each analyte. CFS = Myalgic encephalomyelitis/chronic fatigue syndrome; LLOD = Lower level of detection; LLOQ = Lower level of
quantification.
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3.2. Univariate analysis

The concentration of 34 plasma cytokines, chemokines and
growth factors were measured in each test subject using Multiplex
Elisa Assays. Table 2 describes each measured analyte, the
measured median concentrations, the statistical difference

between ME/CFS and control samples, the intra- and inter-assay
coefficient of variance (Intra-/Inter-CVs) and the lower level of
detection and quantification (LLOD and LLOQ).

Analytes with measured concentrations below the LLOQ were
excluded from subsequent data analyses. After correction for
multiple comparisons, univariate hypothesis testing revealed 6
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analytes that had significantly different median group values
(Fig. 1). Five analytes had significantly decreased levels in our
ME/CFS patients compared with matched controls (IL-16, IL-7,
VEGF-A, CXCL9, CX3CL1) and one analyte that was significantly
increased (CCL24). When the same six analytes were measured
in control patients with chronic HCV infections or autoimmune
liver diseases, such as primary sclerosing cholangitis (PSC),
primary biliary cirrhosis (cholangitis) (PBC), and autoimmune hep-
atitis (AIH), the pattern observed in ME/CFS patients was unique
(Fig. 2). The standard curves calculated from different assay plates
were very well overlapped indicating minimal inter-plates varia-
tion and the highly reproducible nature of the data (Fig. 3). More-
over, signal analysis showed a high level of consistency between
plates with very low variations consistent with a minimal matrix
effect in the assay (data not shown). This was confirmed by the
very low Inter-CVs of 5–18% for the different measurements and
the Intra-CVs values were also very low, varying from 3% to 9%
for different analytes (Table 2).

3.3. Multivariate analysis

A spring-embedded correlation analysis of the 18 analytes
above the LLOQ showed that the significantly different analytes
associated into 3 clusters (Fig. 4). In particular, IL-16, IL-7 and
VEGF-A were significantly down regulated and the most tightly
correlated. The other two clusters had less significance; a cluster

comprising CCL24 and CCL11 and a cluster comprising CXCL9,
CX3CL1, and CCL19.

Logistic Regression optimized by LASSO regularization (LASSO-
LR) produced an optimal model using three analytes (IL-16, IL-7,
and CCL24) that resulted in the following diagnostic regression
model:

logitðyÞ ¼ 3:98� 1:24� lnðIL-16Þ � 0:92� lnðIL-7Þ þ 0:89

� lnðCCL24Þ

The corresponding Receiver Operator Characteristic (ROC) curve
had an AUC (area under the ROC curve) of 0.79 (95% CI:
0.71–0.83) (Fig. 5a). However, for a fixed specificity of 94%, the
corresponding sensitivity for predicting ME/CFS was 41% (95% CI:
0.29–0.49). The model statistics are described in Table 3).

The Classification And Regression Trees (CART) analysis pro-
duced two optimal decision trees using two series of three ana-
lytes. In the first one (CART-1), a combination of IL-16, CXCL9,
and CCL19 was used that for a fixed specificity of 96%, the corre-
sponding sensitivity for predicting ME/CFS was 43% (95% CI:
0.35–0.51) (Fig. 5b). The second CART model (CART-2) was based
on IL-16, IL-7, and VEGF-A and showed a sensitivity of 46% in pre-
dicting ME/CFS for a specificity of 96% (Fig. 5c). These low sensitiv-
ities may reflect a broad underlying heterogeneity of ME/CFS
disease as discussed elsewhere [33,34].

Fig. 3. The overlapped standard curves from individual plates show minimal inter-plate variation and support the validity and accuracy of comparing the measured
concentrations from different plates between study groups. The data point for each replicate are also shown that are located within the detection range of the standard curves.
The above and bottom dotted lines are ‘‘Above Detection Range” and ‘‘Below Detection Range” limits, respectively.
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4. Discussion

Our study revealed six analytes that were altered significantly
in our ME/CFS patients versus gender- and age-matched controls.
Of these, the most significant changes were reductions in the
plasma concentrations of IL-16 and IL-7, both of which were signif-
icantly correlated with reductions in VEGF-A plasma concentra-
tions in a multivariate cluster analysis (Fig. 4). These changes
were specific to ME/CFS since they were not observed in patients
suffering from chronic HCV infections or chronic autoimmune liver
diseases where fatigue is also a major symptom (Fig. 2). While to
the best of our knowledge, we are the first to test for IL-16 levels
in ME/CFS patients, previous reports have also shown a reduction
in circulating levels of IL-7 in a different USA cohort of ME/CFS
patients [16] and very recently, VEGF-A was shown to be reduced
in sera of patients with Gulf War Illness (a discrete subset of
ME/CFS) [35] and in CSF samples from a different cohort of USA
ME/CFS patients [20]. While the clustered reduction of these
three analytes needs to be confirmed in plasma and CSF samples
(logistically challenging) from other ME/CFS cohorts includ-
ing other diseases cohorts, such as patients with primary depres-
sion and other mental disorders as controls, it is tempting to
speculate on the possible physiological significance of our
observed changes. We intend to conduct a study as soon as
we can logistically collect enough CSF samples from ME/CSF
patients.

Interleukin-16 is a unique pro-inflammatory cytokine with little
sequence homology to other cytokines/chemokines. It is chemotac-
tic for CD4+ T lymphocytes, monocytes, eosinophils, and is
produced by epithelial cells, mast cells, lymphocytes, macro-
phages, synovial fibroblasts, eosinophils, and residing microglia
in brain. Expression of CD4 receptor is required for mediating

IL-16 function. In the periphery, this interaction can specifically
initiate an increase in intra-cytoplasmic inositol tri-phosphate
(IP3) and calcium, both of which are involved in muscle contraction
[36]. IL-16 mRNA is constitutively expressed in CD4+ and CD8+ T
cells, which is further induced upon exposure to antigens. It has
been reported that IL-16 may repress HIV-1 replication and its
serum level may drop during disease progression [37]. In addition,
an important role for IL-16 in the early development of the human
immune system has been described [38]. Low concentrations of IL-
16 have also been suggested to be correlated to the impaired devel-
opment of B cells within the bone marrow of thymic-deprived
nude and old mice [39]. In contrast, high expression of IL-16 is
linked to pro-inflammatory diseases such as asthma, rheumatoid
arthritis, systemic lupus erythematous, colitis, atopic dermatitis
and MS [40–42]. This may indicate that the circulating level of
IL-16 is under a rigorous control and its increase or reduction
may result in immunopathology or immunodeficiency,
respectively.

With respect to the central nervous system (CNS), the role of
IL16-secreting microglial cells in the development of the human
fetal brain has suggested a critical role for IL-16 in neuronal devel-
opment [43]. However, reports on neuroprotection by IL-16 is con-
troversial as the microglial IL-16 up-regulation has been reported
under inflammatory and degenerative conditions, while its consti-
tutive, but low expression of that in normal brain has been
reported [10,38]. Altogether, the lower plasma levels that we have
observed in ME/CFS patients may possibly reflect a neuronal
dysfunction possibly reflective of the well-known cognitive
dysfunction and mental fog symptoms associated with ME/CFS
disease [44].

IL-7 is a hematopoietic growth factor that can be secreted by a
wide range of cells including stromal cells in the bone marrow,

Fig. 4. The spring-embedded correlation plot as a simple multivariate cluster analysis. The larger the node, the lower the p-value and the higher the correlation, the stiffer the
spring. Red = p < 0.05 and ME/CFS > Control; Orange = p < 0.1 and ME/CFS > Control; Blue = p < 0.05 and Control > ME/CFS; Light Blue = p < 0.1 and Control > ME/CFS; nodes
were colored gray when their corresponding p-value was > 0.1.
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thymus, hepatocytes, epithelial cells, and lymphocytes [45–47]. It
is an indispensible interleukin for T cell, B cell, and NK cell prolif-
eration and survival [48,49]. Age-related thymic atrophy and
decreased thymopoiesis has been correlated with lower levels of
IL-7 [50,51]. These processes result in a decline in T lymphocyte

output, lower peripheral T cells, and lower number of T cells in
lymph nodes, which, in turn, may compromise the immune
response and promote immunosenescence [52–54]. Indeed, the
anti-apoptotic effects of IL-7 [55] may be responsible for the
increase in the number and performance of T cells in animal mod-
els [56]. Higher levels of IL-7 are seen in chronic hepatitis C possi-
bly indicating the chronic activation of the immune response.
Interestingly, IL-7 is also expressed in developed brain neurons
that may indicate its potential role in CNS-related diseases [57],
especially as lower IL-7 has been correlated with cognitive decline
during aging [50,51]. In turn, its reduction in ME/CFS may indicate
a reduction in immune activation at least in a subgroup of ME/CFS
patients along with a potential neuropathology that could mimic
the process of aging.

VEGF-A is known to be produced by contractile pericyte cells
that are wrapped around the endothelial cells of capillaries and
venules and promote the survival and stability of endothelial cells
[58]. It is a signaling protein known initially for its roles in stimu-
lating vascular angiogenesis and muscle growth; however, subse-
quent findings have indicated an important neurotrophic and
neuroprotective role for VEGF-A [59–62]. The elevated level of
VEGF-A has been suggested as a surrogate marker for peripheral
vascular disease in contrast to its angiogenesis effect [63].
However, a recent study has suggested the existence of different
isoforms of VEGF-A, VEGF-A165a and VEGF-A165b that may explain
these different biological effects. The elevated level of VEGF-A165b
that is seen in peripheral artery disease may have anti-angiogenic
characteristics, which is opposite to the known angiogenic feature
of VEGF-A that may be related to the VEGF-A165a isoform [64]. The
levels of VEGF-A mRNA and protein have also been shown to be
significantly increased after exercise in humans and mice which
may be due to the increase in blood flow in muscles [65]. This
may suggest a role for VEGF-A in the post-exertional malaise and
fatigue in ME/CFS. In addition to its peripheral effects, later find-
ings have indicated an important neurotrophic and neuroprotec-
tive role for VEGF-A in both the periphery and in the central
nervous system [59–62] suggesting that it’s depletion in ME/CFS
may also contribute to the neurobiological phenotype of disease.
An effect of VEGF-A on the blood brain barrier facilitating the entry
of immunomodulators into the central nervous system has also
been reported [66]. Interestingly, VEGF-A promotes neurogenesis
by stimulating epithelial cells to release neurogenic signals such
as brain-derived neurotrophic factor (BDNF) [67]; a factor that
has recently been shown to be suppressed in PBMCs from
ME/CFS patients in comparison to that of healthy controls [68].
As BDNF is also neuroprotective [69], the reduction of BDNF due
to a decline of VEGF-A may inhibit the neurogenesis process.
Administration of VEGF-A has also been shown to revert the cogni-
tive impairment induced by focal traumatic brain injury [70] and
to restore impaired memory behavior in a mouse model of Alzhei-
mer’s disease [71]. Down-regulation of VEGF-A mRNA in the CSF
and PBMCs from patients with primary and secondary MS has also
been reported [72,73].

Despite the urgent need for a serologic diagnostic for ME/CFS,
no blood test that is reproducible and validated has yet been

Fig. 5. Multivariate data analysis: (a) The corresponding Receiver Operator
Characteristic (ROC) curve for Logistic Regression optimized by LASSO regulariza-
tion (LASSO-LR) model shows an AUC (area under the ROC curve) of 0.79 with
confidence interval of 95% (range of 0.71–0.83). (b) The optimal decision tree that is
produced by Classification And Regression Trees (CART) model using three analytes
(IL-16, CXCL9, and CCL19). (c) The optimal decision tree that is produced by
Classification And Regression Trees (CART) model using three analytes (IL-16, IL-7,
and VEGF-A).

Table 3
Logistic regression (LASSO-LR) model parameters and significance test.

Analyte Coefficient S.E. z P > |z| [95% Conf.
Interval]

IL-16 �1.24 0.27 �4.53 5.84E�06 �1.78 �0.70
IL-7 �0.92 0.45 �2.04 0.041 �1.80 �0.04
CCL24 0.89 0.29 3.02 0.002 0.31 1.47
Constant 3.98 2.56 1.56 0.12 �1.04 9.01
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developed for ME/CFS patients. The three algorithms described
herein produced very similar predictive abilities (LASSO-LR: speci-
ficity of 94% and sensitivity of 41%; CART-1: specificity of 96% and
sensitivity of 43%; CART-2: specificity of 96% and sensitivity of
46%), even though they are based on different components of the
cytokine/chemokine/growth factor profile. The LASSO-LR model
used analytes IL-16, IL-7, and CCL24, whereas the CART-1 model
used analytes IL-16, CXCL9, and CCL19. The CART-2 model uses
analytes IL-16, IL-7, and VEGF-A. When mapped on to the correla-
tion plot (Fig. 4), the LASSO-LR model focuses on both the IL-16/ IL-
7/VEGF-A cluster and the CCL24/CCL11 cluster; whereas the CART
model focused on the IL-16/ IL-7/VEGF cluster and the CCL19/
CXCL9/CX3CL1 cluster. It is clear that a central component of the
ME/CFS biomarker profile is IL-16. If confirmed in other ME/CFS
cohorts, these algorithms could greatly aid the diagnosis of
some ME/CFS patients and potentially aid in their clinical manage-
ment. To our knowledge, this is the first study that describes algo-
rithms with defined sensitivities and specificities in predicting ME/
CFS patients and there are no other studies to compare our sensi-
tivities and specificities with.

In conclusion, our study shows significant changes in the circu-
lating cytokine, chemokine and growth factor profile of ME/CFS
patients from the USA and is consistent with previous studies of
USA ME/CFS cohorts that also showed reductions in the circulating
levels of IL-7 & VEGF-A levels [16,20,35]. In this study, we have
taken great care to report LLOD, LLOQ, Intra-assay CV, and Inter-
assay CV values for our studied analytes and to discuss interpreta-
tions only when our measured values are consistently reproducible
with low variance and above the LLOQ. Not all studies have done
this, which could account for some of the apparent variations in
the literature [74]. In addition, we have detected reductions in
IL-16 that clustered statistically with IL-7 & VEGF-A levels. While
it will be important in the future to investigate these analytes in
blood and CSF samples from other ME/CFS cohorts from around
the world and in patients exhibiting overlapping symptoms, our
data suggests that there could be physiological relevance in the
observed reductions of these three linked analytes in ME/CFS dis-
ease which if confirmed, could open up new diagnostic and thera-
peutic avenues for this challenging disease.
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