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Abstract In this work, we present a new methodology
for the treatment of the contact interaction between rigid
boundaries and spherical discrete elements (DE). Rigid body
parts are present in most of large-scale simulations. The sur-
faces of the rigid parts are commonly meshed with a finite
element-like (FE) discretization. The contact detection and
calculation between thoseDE and the discretized boundaries
is not straightforward and has been addressed by different
approaches. The algorithm presented in this paper consid-
ers the contact of the DEs with the geometric primitives of
a FE mesh, i.e. facet, edge or vertex. To do so, the origi-
nal hierarchical method presented by Horner et al. (J Eng
Mech 127(10):1027–1032, 2001) is extended with a new
insight leading to a robust, fast and accurate 3D contact
algorithm which is fully parallelizable. The implementation
of the method has been developed in order to deal ideally
with triangles and quadrilaterals. If the boundaries are dis-
cretized with another type of geometries, the method can be
easily extended to higher order planar convex polyhedra. A
detailed description of the procedure followed to treat a wide
range of cases is presented. The description of the developed
algorithm and its validation is verified with several practical
examples. The parallelization capabilities and the obtained
performance are presented with the study of an industrial
application example.
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1 Introduction

Since Cundall [7] presented the first ideas about the DEM in
1979, this numerical technique has increased its popularity,
being, nowadays, one of themost powerful and efficient tools
to reproduce the behaviour of granular materials. Within the
DEM approach, each material grain is represented as a rigid
particle. The deformation of thematerial is represented by the
interaction between the particles. As the particles are rigid,
the normal and tangential contact between them define the
material constitutive behaviour.

Due to themethod formulation, the definition of the appro-
priate contact laws is fundamental and a fast contact detection
is something of significant importance in DEM calculations.
Contact status between individual objects, which can be two
DE particles (DE/DE contact) or a DE particle and a bound-
ary element (e.g. DE/FE contact) can be calculated from their
relative position in the previous time step and it is used for
updating the contact forces at the current step. The relative
computational cost of the contact detection over the total
computational cost is high in most of DEM simulations, and
so, the problem of how to recognize all contacts precisely and
efficiently has received considerable attention in the litera-
ture [26,41]. Note that the term FE used in this article does
not refer to the solution of any partial equation by means of
the finite element method. Instead the term is used to refer to
the geometry elements (triangles, quadrilaterals, etc.) which
are used to discretize the boundaries.

Traditionally, the contact detection is split into two stages:
Global Neighbour Search and Local Contact Resolution.
ConcerningGlobalNeighbour Search the computational cost
can be reduced from O(N 2) in an all-to-all check to a
O(N · ln(N )). Han et al. [16] compared the most common
Global Neighbour Search algorithms (cell-based and tree-
based) in simulations with spherical particles. Numerical
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tests showed better performance for the cell-based algo-
rithms (D-Cell [42] and NBS [27]) over the tree-based ones
(ADT [2] and SDT [12]), specially for large-scale problems.
It should be noted also that the efficiency is dependent on
the cell dimension and, in general, the size distribution can
affect the performance. Han et al. [16] suggest a cell size of
three times the average discrete object size for 2D and five
times for 3D problems. It is worth noting that using these or
other efficient algorithms, the cost of the Global Neighbour
Search represents typically less than 5 % of the total compu-
tation, while the total cost of the search can reach values over
75 % [17], specially when the search involves non-spherical
geometries such as triangles, quadrilaterals, etc. In this sense
the focus should be placed on the Local Contact Resolution
check rather than on optimizing theGlobalNeighbour Search
algorithms.

Regarding the characterization of the contact boundaries,
several solutions have been reported for resolving particle–
solid interaction problems. Among the simplest ones is the
glued-sphere approach [21], which approximates any com-
plex geometry (i.e. a rigid body or boundary surface) by
a collection of spherical particles so it retains the simplic-
ity of particle-to-particle contact interaction. This approach,
however, is geometrically inaccurate and computationally
intensive due to the introduction of an excessive number of
particles. Another easy approach (used in some numerical
codes, e.g. ABAQUS) is to define the boundaries as analyti-
cal surfaces. This approach is computationally inexpensive,
but it can only be applied in certain specific scenarios, where
the use of infinite surfaces does not disturb the calculation. A
more complex approachwhich combines accuracy and versa-
tility is to resolve the contact of particles (spheres typically)
with a finite element boundary mesh. These methods take
into account the possibility of contact with the primitives of
the FE mesh surface, i.e. facet, edge or vertex contact.

Horner et al. [17] and Kremmer et al. [22] developed the
first hierarchical contact resolution algorithms for contact
problems between spherical particles and triangular ele-
ments, while Zang et al. [44] proposed similar approaches
accounting for quadrilateral facets. Dang et al. [9] upgraded
the method introducing a numerical correction to improve
smoothness and stability. Su et al. [34] developed a com-
plex algorithm involving polygonal facets under the name
of RIGID method which includes an elimination procedure
to resolve the contact in different non-smooth contact situ-
ations. This approach, however, does not consider the cases
when a spherical particle might be in contact with the enti-
ties of different surfaces at the same time (multiple contacts)
leading to an inaccurate contact interaction. The upgraded
RIGID-II method presented later by Su et al. [35] and also
the method proposed by Hu et al. [18] account for the mul-
tiple contact situations, but they have a complex elimination
procedure with many different contact scenarios to distin-

guish, which is difficult to code in practice. Recently Chen et
al. [6] presented a very simple and accurate algorithm which
covers many situations. Their elimination procedure, how-
ever, requires a special database which cannot be computed
in parallel.

In this work, the Double Hierarchy Method (H2), for
Local Contact Resolution, is introduced. It consists in a sim-
ple contact algorithm based not only on the FE boundary
approach which has been specially designed to resolve effi-
ciently the intersection of spheres with triangles and planar
quadrilaterals but it can also work fine with any other higher
order planar convex polyhedra. A two-layer hierarchy is
applied upgrading the classical hierarchy method presented
by Horner [17]; namely hierarchy on contact type followed
by hierarchy on distance. The first one classifies the type
of contact (facet, edge or vertex) for every contacting neigh-
bour in a hierarchicalway,while the distance-based hierarchy
determines which of the contacts found are valid or relevant
and which ones have to be removed.

Another important issue considered in this work is the par-
allel computation which is crucial for practical purposes of a
DEM code. Industrial applications may involve a large num-
ber of particles and also a fine definition of the boundaries
which, in our case, turns into large number of FE boundary
conditions. Therefore, the algorithm presented here has been
designed in away that the code canwork efficiently in parallel
computations. This is a clear advantage over the above-
mentioned publications. Nakashima [28] whose method is
presumably parallelizable and Zang [44] and Su [35] which
remark the importance of the future parallelization of their
algorithms are exceptions.

Summarizing, the contact search framework presented is
designed to satisfy the following requirements:

• Include poly-disperse elements for both: FEs and DEs.
• Allow different FE geometries and primitives (triangle,
quadrilateral, polygon).

• Ensure contact continuity in non-smooth regions (edges
and vertices).

• Resolvemultiple contacts and contact with different enti-
ties simultaneously.

• Need low memory storage.
• Be simple, fast and accurate.
• Be fully parallelizable.

Table 1 summarizes the strengths and drawbacks of the
reviewed contact detection methods. Methods based in stor-
ing all the potential contacts to lately remove the invalid ones
(RIGID-II [35], Hu et al. [18], Chen et al. [6] and H2) are
the most accurate. They treat the cases with large indenta-
tions (relative to the size of the FE) and give a solution for
the contact continuity in non-smooth regions of the bound-
ary. These methods have, however, some limitations due to
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Table 1 Strengths and drawbacks of the different contact detection algorithms evaluated

Glued sph. Analytical Hierarchical RIGID RIGID-II Hu Chen H2

[21] [9,17,22,44] [34] [35] [18] [6]

Wide size rate DEs/FEs – – × � � � × �
Contact element typologies × – � � � × × �
Boundary shape flexibility � × � � � � � �
Multi-contact � – � × � � � �
Simple � � � × × × � �
Efficient × � × � × × � �
Accurate × × � × � � × �
Low storage � � × × × × � �
Upgradable to deformable FEs × × � � � � � �
Large indentation × � × × �∗ �∗ × �∗
Contact continuity × - �∗ × �∗ �∗ �∗ �∗
Symbol (�) implies that the method satisfies the property. On the other hand, symbol (×) means that the method does not satisfy the property.
Symbol (–) denotes that the property does not apply to that method and (�∗) means that, although method satisfies the property, there are some
limitations

the fact that the real deformed geometry of the sphere is not
represented in the DEM. The indentation represents, instead,
the local deformation near the contact region. Due to this
fact, in concave transitions of the boundary, error in the con-
tact detection is common for all these methods including the
H2 method here presented. In Sect. 7 this is analysed under
the H2 framework and a bound of the error is provided for
different situations.

The paper starts with the introduction of the basic for-
mulation of the DE method and the classical algorithms
for DE/DE contact search. Next the proposed strategy for
the DE/FE contact search which includes the novel Dou-
ble Hierarchy Method (H2) is described. Some validation
analysis together with examples of performance in critical
situations (where most of the literature methods would fail)
is presented. Finally some results of scalability and parallel
computation are given.

2 DEM formulation

The algorithm has been implemented in theDEMcode called
DEMPack (www.cimne.com/dempack/) which is inside
Kratos [8], an Open-Source software framework for the
development of numerical methods for solving multidisci-
plinary engineering problems.

2.1 Basic DE formulation

The DEM is based on the characterization of the material
by means of defining the interactions between constituent
particles. The interaction is described by the DE/DE contact
mechanics defined by the particle kinematics. In the basic

DEM formulation, the translational and rotational motion
of particles is defined by the standard equations for the
dynamics of rigid bodies. For every spherical particle, these
equations can be written as

m ü = F , (1)

I ω̇ = T , (2)

where u, u̇ü are, respectively, the particle centroid displace-
ment, its first and second derivative in a fixed coordinate
systemX,ω the angular velocity, ω̇ the angular acceleration,
m the particle mass, I the inertia dyadic with respect to par-
ticle centre of mass, F the resultant force and T the resultant
moment about the central axes.

F and T are computed as the sum of (i) all forces and
moments applied to the particle due to external loads, Fext

andText, respectively, (ii) the contact interactionswith neigh-
bouring spheres and boundary finite elements Fi j , j =
1, · · · , nc, where i is the particle in consideration and j the
neighbour index ranging from 1 to the number of elements
or spheres nc being in contact with it and (iii) all forces and
moments resulting from external damping, Fdamp andTdamp,
respectively, which can be written as

F = Fext +
nc∑

j=1

Fi j + Fdamp (3)

T = Text +
nc∑

j=1

ri jc × Fi j + Tdamp (4)

where ri jc is the vector connecting the centre of mass of the
i-th particle with the contact point Pci j with the j-th parti-
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(a) (b)

Fig. 1 Decomposition of the contact force into normal and tangential
components [30]. a Contact between particles. b Force decomposition

cle. Figure 1 shows the contact forces between two spherical
particles [30].

The contact between the two interacting spheres can be
represented by the contact forces Fi j and F j i (Fig. 1), which
satisfy (Fi j = −F j i ). Each force Fi j is decomposed into the
normal and tangential components, Fi j

n and Fi j
t , respectively

(Fig. 1)

Fi j = Fi j
n + Fi j

t = Fnni j + Fi j
t , (5)

where ni j is the unit vector normal to the contact surface at
the contact point.

The tangential force Fi j
t , along the tangential direction t

i j

(Fig. 1), can be written as

Fi j
t = Ft1 t

i j
1 + Ft2 t

i j
2 , (6)

where Ft1 and Ft2 are the tangential force components along
the tangential direction t1 and t2, respectively.

The contact forces Fn, Ft1 and Ft2 are obtained using a
constitutive model formulated for the contact between two
DE or a DE and a rigid FE. There is a large amount of avail-
able contact models [32,33,37] which are compatible with
the contact algorithm presented in this article. The examples
included will be performed using the formulation summa-
rized in [5]. Standard constitutive models in the DEM are
characterized by the normal (kn) and tangential (kt ) stiffness,
normal (dn) and tangential (dt ) local damping coefficients at
the contact interface and Coulomb friction coefficient (μ)
represented schematically in Fig. 2 for the case of two dis-
crete spherical particles [32]. Similar models are usually
applied for the Sphere-FE contact.

Equations (1) and (2) can be integrated in time using a
simple Central Differences scheme [30]. The translational
motion at the (n + 1)-th time step is calculated as follows:

ün = Fn

m
, (7)

u̇n+ 1
2 = u̇n− 1

2 + ün�t (8)

Fig. 2 DEM standard contact interface model [31]

un+1 = un + u̇n+ 1
2 �t . (9)

The integration scheme for the calculation of the incre-
ment of rotational motion in each time step ,�θ , is

ω̇n = I−1Tn , (10)

ωn+ 1
2 = ωn− 1

2 + ω̇n�t (11)

�θ = ωn+ 1
2 �t . (12)

Explicit integration in time yields high computational
efficiency and enables the solution of large models. The dis-
advantage of the explicit integration scheme is its conditional
numerical stability, imposing the limitation on the maximum
time step �t which is determined by the highest natural fre-
quency of the system [46].

2.2 DE/FE contact

Themain focus of thiswork is on thedynamics of the particles
(DEs) contacting rigid boundaries (FEs). A single force for
every contact entity (facet, edge, vertex) suffices to describe
the physics on the particle side but, in general, not on the
FE side where deformable solids must be characterized. The
contact forces can be transferred to the finite element nodes
through interpolation based on FE shape functions [17]. For
linear triangles, a simple linear interpolation is used as

fi = Ni (xPc )F, Ni (xPc ) = �i

�1 + �2 + �3
, i ∈ [1, 3] (13)

wherexPc is the positionof the contact point and�i is the area
of the triangle formed by the contact point and the opposite
vertices to vertex i in the FE (Fig. 3).

2.2.1 Non-smooth contact

The application of constitutive contact laws such as theHertz-
Mindlin [25] requires that the contact surfaces are smooth and
present a unique normal at each point. In the DE/FE contact,
usually, the original geometry presents regions where this
requirement is not fulfilled. Moreover, even the smooth sur-
faces loose this feature when they are discretized by means
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Fig. 3 Punctual Force F and its nodal interpolation to a three-noded
triangle by means of linear shape functions expressed using its area
coordinates

of FEs. In these situations, a special treatment of the non-
smooth regions should be applied under the requirement of
some conditions to ensure reasonable results. The following
conditions were also analysed in the work byWellmann [39]:

• The contact constitutive model will be applied normally
when the contact is on the facet and will vanish when
there is no interpenetration between the elements.

• There should be no discontinuities in the contact force
when a contact point evolves from facet to edge and the
other way round in order to avoid unphysical results and
numerical instabilities.

• The energy should be conserved in an elastic frictionless
impact.

The use of the present contact determination algorithm
helps the selected contact model ensuring these objectives.
Additionally we want this method to yield a result which is
geometrically dependent and nevermesh dependent. This can
be practically achieved as it will be shown in the following
Sect. 6 with the limitations detailed in Sect. 7.

2.2.2 Extension to deformable FE

The direct application of hierarchy-based contact algorithms
for deformable solids yields not only inaccurate results when
the particles come into contact with non-smooth parts of the
discretized surface but also instabilities caused by sudden
appearance of contact forces at the non-smooth transition
between FE. Horner et al. [17], Nakashima et al. [28] and
Michael et al. [24], just to name a few, have used the clas-
sic hierarchical-based algorithms with linear interpolation
of forces in tire—soil interaction applications where the FE
deformation is accounted. This can be reasonable in cases
where the size of the DEs is relatively small compared to the
size of the FEs and the penetration is negligible compared
to the DEs radius (small deformation). Even though using

Fig. 4 Neighbour finding scheme. From FE in the intersection domain
ΩI to the valid entities

the H2 method the major part of these problems is solved,
the method is not conceived for this purpose and the fact
that it concentrates the contact force in one point is a clear
disadvantage.

In general, situations where detailed analysis of strain and
stress is conducted, more accurate schemes should be used.
Han et al. [14,15] and Wellmann [39] present some algo-
rithms for this purpose.

3 DE/FE contact search algorithm

The DE/FE contact search differs from the DE/DE in the
sense that the search is between two different groups of
geometries whose intersection is generally more complex
and computationally more expensive than the trivial sphere–
sphere case. It involves, in general, the resolution of a
non-linear system of equations (see the case of superquadrics
[4,39] or polyhedra [3,10,29]). The choice of spheres for the
DEs and triangles or quadrilaterals for the FEs is a clever
choice since this particular check can be done in an efficient
way. The contact search is also split into a Global Neigh-
bour Search and a Local Contact Resolution. Our strategy is
based on a further split of the Local Contact Resolution in
two stages: (a) A Fast Intersection Test and (b) The Double
Hierarchy Method. The stages are schematically shown in
Fig. 4.

3.1 Global search algorithm

Themain purpose of the global search is to determine through
a fast rough searchwhich is the potential neighbours for every
element in the domain. A basic cell-based algorithm [42] is
chosen here which has been parallelized in OMP and adapted
for the DE/FE search. The FE domain is selected to build the
Search Bins taking advantage of the fact that usually the
spatial distribution of the FEs is more regular and in some
cases fixed. The algorithm has an additional feature that the
Search Bins are built dynamically considering only the FEs
belonging to the intersection of the bounding boxes of the
DEs and FEs domains. Figure 5a shows how the intersection
evolves as long as the simulation goes on. On the other hand,
only theDEs inside the intersection domain (ΩI )will look for
their neighbours. This reduces significantly the contact pairs
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(a)

(b)

(c) (d)

(e)

(f) (g)

Fig. 5 Sketch showing the search algorithm at the basic contact level.
a Evolution of the bounding box of the intersection ΩI . b Bounding
box of the FEs ∈ ΩI . c Bins over FEs ∈ ΩI . d Hash table. e Bounding
box of the DEs ∈ ΩI . f Intersection cells. g Local Contact Resolution

to be checked and, therefore, the global search performance
is increased.

In the global search, every FE and DE has an associated
BoundingBox (FEBBX , DEBBX ) that is used to tag the posi-
tion of the elements on the Search Bins and rapidly check for
potential neighbours. This is done using a hash table structure
as depicted in Fig. 5d which relates each cell to the bounding
box FEBBX that fall into it. Rectangular hexahedral bound-
ing boxes encompassing both types of elements are chosen
here.

The steps needed to perform the neighbouring search at
the global search level are as follows:

(a) Set the bounding box of the intersection of domains ΩI

(Fig. 5a).
(b) Set the bounding box for every FE ∈ ΩI (Fig. 5b).
(c) Generate the Search Bins based on the size and position

of the bounding boxes FEBBX of the FEs ∈ ΩI (Fig.
5c).

(d) Place every FE in the Search Bins (looking at the coor-
dinates of their associated bounding box FEBBX ) and
build the hash table (Fig. 5d).

(e) Set the bounding box for every DEs ∈ ΩI (Fig. 5e).
(f) For every DE particle ∈ ΩI obtain the potential neigh-

bours in the Search Bins. Check the intersection of the
DEBBX with the FEBBX of the FEs lying in the sur-
rounding cells (Fig. 5f).

3.2 Local resolution

In theFast IntersectionTest,wedeterminewhichpotential FE
neighbours are in actual contact with each particle. This has
to be fast because there are many potential neighbours in the
adjacent cells to be checked. Therefore, all detailed contact
computations such as determining the type of contact, the
contact point, normal direction, etc. are skipped. On the other
hand, a good accuracy in the determination of the contacting
neighbours is needed. We want to avoid filling the contact
pool with FE which do not have contact and therefore have
to be eliminated or treated subsequently. This procedure is
described in detail in Sect. 4.

In a second stage, the Double Hierarchy Method takes
place as a full contact characterization. It determines the type
of contact of every neighbour, which contacts are relevant
and which ones have to be removed to avoid instabilities
or redundant contact evaluations in non-smooth regions and
contact transitions. All the detailed contact characteristics
are fully determined at this stage for each one of the valid
neighbouring entities.

Even though the H2 Method can be directly applied as a
traditional Local Contact Resolution check, the split gives the
code higher modularity, i.e. any other contact characteriza-
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tion can be applied for the contacting entities. In our in-house
code Kratos the split yields also higher efficiency (Sect. 6).

4 Fast intersection test

An efficient algorithm designed to determine the intersec-
tion of spheres contacting triangles or planar quadrilaterals
is described here. We have adapted some of the procedures
existing in the computer graphics bibliography [11,20] to the
case where the facet contact (inside of the FE) occurs in a
substantial higher frequency compared to edge and vertex
geometrical contact types. See [18] where the type of con-
tact frequency (facet, edge, vertex) is determined for different
number of particles and relative sizes.

The test works for any planar convex polygons of N sides.
For every DE∈ ΩI we loop over the potential FE neighbours
provided by Global Neighbour Searching algorithm. Every
FE which has contact is stored in an array for every DE
sphere.

4.1 Intersection test with the plane containing the FE

The first check is to determine whether the particle intersects
the πm plane formed by the m-th planar finite element e©m .
This is represented in Fig. 6.

The outward-pointing normal of the plane can be calcu-
lated with the cross product T of any pair of edges taken
counter-clockwise. This can bewritten in the following form,
using the permutation tensor εi jk on two edges formed, for
example, by the three consecutive vertices v1, v2, v3:

Ti = εi jk(v
2
j − v1j ) · (v3k − v2k) (14)

which has to be normalized to unit length to obtain the normal
to the plane n

n = T
‖T‖ (15)

Fig. 6 Intersection of a DE particle with a plane formed by a plane FE

In the case of a zero-thickness wall which can contact for
both sides of the FE, the sense of the normal will be set such
that points outwards to each particle centre. Once the normal
is defined, the distance of theDE centreC to the planeπm can
be determined taking any known point of the plane, namely
a vertex va , as

dπ =
3∑

i=1

(
ni · Ci − ni · vai

)
(16)

The distance dπ should be compared to the radius R. If
and only if |dπ | ≤ R, the contact between the sphere and the
FE is possible. In this case, we proceed with the next checks.
Otherwise, the contact with the current FE is discarded and
we will jump to check the next potential FE neighbour.

4.2 Inside-Outside test

The purpose of this test is to determine whether the contact
is inside the FE (facet contact) or outside (edge, vertex or no
contact). It applies to the cases where |dπ | ≤ R. A modifi-
cation of the Inside-Outside status check [38] is used. The
projection Cπm of the centre C of a DE onto the plane πm

formed by an element e©m with normal n can be calculated
as

Cπm = C − dπ · n (17)

The next step is to evaluate whether the projection Cπm lies
inside or outside the FE e©m with respect to every edge ea

formed with the vertices va and va+1(vN = v0) (see Fig. 7).
For every edge ea , we compute the cross product sign sa as

ea = va+1 − va (18)

sa = (
ea × (Cπm − va)

) · n (19)

If the product is positive, the projection point Cπm turns
to be inside the triangle with respect to that edge. The loop
proceeds with the next edges. If the same result is found for
every edge, contact occurs with the facet of the FE (inside)

Fig. 7 Inside-Outside check of the projection point edge by edge
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and so the contact is assured. Otherwise, if for any edge an
outside status is found, the loop aborts automatically and no
contact with facet can be found. The current value of the edge
index a is stored in an auxiliary variable indexe which will
be used in the next step where contact with vertices or edges
is checked.

4.3 Intersection test with an edge

This test is needed for the cases where |dπ | ≤ R but the
Inside-Outside test failed. Here we use the idea that the
edge contact cannot happen to be on the edges where the
Inside-Outside check yields a “inside” status. Therefore, it
is recommendable to test the edges ea with a ∈ [indexe, N ]
starting from the vertex which failed in the previous test and
skipping the previous ones (Note that the edge check is the
most expensive one). This approach has also been used by
Chen et al. [6].

First, the shortest distance de between the edge ea and the
particle centre C should be calculated and compared to the
radius R (Fig. 8). The distance is calculated finding out the
contact point Pc, as

de = ‖Pc− C‖ (20)

Pc = va + p
ea

‖ea‖ (21)

ea = va+1 − va (22)

where p is the distance resulting from the projection of the
vector connecting the centre C and the vertex va onto the
edge ea :

p = (C − va) · ea (23)

If de > R, the contact with this edge is not possible and
the check starts again with the next edge ea+1. Otherwise,
if de ≤ R we determine where the Pc lies, along the edge,
with the help of η, defined as

η = p

‖ea‖ (24)

The case of 0 ≤ η ≤ 1 implies edge contact. Therefore, con-
tact is found and the Fast Intersection Test finishes yielding
a positive result. The FE neighbour is saved to the current
DE and the algorithm proceeds to check the next potential
FE neighbour.

Otherwise, if this test failed for the current edge ea , the
connecting vertices (va and va+1) have to be evaluated. A
value of η < 0 indicates that the check has to be done with
va ; On the other hand, for η > 1 the vertex to be tested is
va+1.

Fig. 8 Intersection of a DE particle with an edge

4.4 Intersection test with a vertex

For the vertex va under consideration, we calculate the
squared distance to the DE centre C:

dva
2 =

i<3∑

i=0

(
Ci − vai

)2 (25)

If dva 2 ≤ R2, then the Fast Intersection Test yields a pos-
itive result and the test finishes. Otherwise the test moves
on with the check of the next edge ea+1 and its subsequent
vertices.

We recall that the purpose of this Fast Intersection Test
is merely to determine whether there is intersection or not
between the DE sphere and the FE planar convex polygon.
An intersection found with a vertex or edge does not assure
that this is the actual contact point. In this case, however, we
omit at this stage further checks with subsequent edges or
vertices where the contact point can happen to be closer.

4.5 Fast Intersection Test scheme

The full algorithm for planar convex polygons of N sides is
summarized in Table 2.

5 Double Hierarchy (H2) Method

This procedure applies only to the list of FEwith contact that
the Fast Intersection Test has generated for every particle.
In the case of no previous Fast check this operation could
be directly applied as a Local Contact Resolution with the
disadvantage that many potential FE have to be tested. It is
developed in two different stages:

• Contact Type Hierarchy (Sect. 5.1) where for every con-
tacting FE the contact entity with higher priority is
determined.

• Distance Hierarchy (Sect. 5.2) the elimination procedure
takes place determining which contact points have dis-
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Table 2 Fast Intersection Test scheme

tance priority over others which are redundant or false
and have to be eliminated.

5.1 Contact Type Hierarchy

The basis of this procedure is that each primitive has hier-
archy over its sub-entities, i.e. a facet of a N -sides polygon

Fig. 9 Contact Type Hierarchy for a triangle. The facet has higher
hierarchy than its edge and vertices. The edges have higher hierarchy
than its vertices

Fig. 10 Contact with facet. Edges and vertices are discarded from con-
tact check

has hierarchy over the N edges that compose it. In turn each
of the edges ea has hierarchy over its two vertices va, va+1.
Figure 9 outlines the Contact Type Hierarchy for a triangle.

The algorithm is organized as a sequence of three entity-
checking levels. If a particle is in contact with the facet of a
FE the contact search over its edges and vertices, which are in
a lower hierarchy level, is discarded (see Fig. 10). Otherwise,
if contact with the FE facet does not exist, the contact check
should continue over the sub-entities. Similarly, at the edges
level, any contact with an edge cancels out further contact
checks for those two vertices belonging to that edge. It does
not cancel out, however, the contact check with the other
edges because they are at the same hierarchy level. Table 3
in Sect. 5.1.4 displays the pseudocode of the contact Type
detection.

Every time a new contact entity is determined by the
Contact Type Hierarchy, the Distance Hierarchy (Sect. 5.2)
takes place immediately after. The Distance Hierarchy will
determine if the new contacting entity found is redundant or
non-valid, if it cancels out the previously found ones or if it
is a new valid contacting entity to be considered for the DE.
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Table 3 Contact Type Hierarchy algorithm

Loop over every FE neighbour with contact e©m .

(1) Facet level

Project the centre onto the plane Cπm (Eq. 17).

Perform the Inside-Outside test (Sect. 4.2)

if Contact: ⇒
Go to Distance Hierarchy (Table 4) and Stop!

else: ⇒ Go to (2) with index indexe.

(2) Edge level

loop over every edge ea with a ∈ [indexe, N ].

Perform the Edge Check (Sect. 4.3).

if Contact ⇒ Go to Distance Hierarchy (Table 4).

else if (de ≤ R and η < 0) ⇒ Go to (3) with va .

else if (de ≤ R and η > 1) ⇒ Go to (3) with va+1.

Continue with the next edge.

(3) Vertex level

Perform Vertex check (Sect. 4.4).

if Contact ⇒ Go to Distance Hierarchy (Table 4).

Go To Edge level and check next edge.

For any valid contact entity the geometrical contact char-
acteristics that will be stored are as follows:

• The contact Point Pc.
• The FE nodal weights.
• The contact type: Facet, Edge or Vertex.

Note that some of the geometrical characteristics such as
the distance, the normal vector or the contact local axis can be
recalculated later when the contact constitutive law is applied
and, thus, it is optional to store them here at this stage.

5.1.1 Facet level

The check proceeds in the same way as explained in Sect.
4, checking for the intersection of the DE with the plane
formed by the FE (Sect. 4.1). If the Fast Intersection Test has
been performed previously |dπ | ≤ R is necessarily true since
contact has been found for this FE. Otherwise, if no previous
Fast Intersection Test has been carried out, this condition
applies to discard FE without contact.

Next, the Inside-Outside test (Sect. 4.2) has to be per-
formed. This test will tell us whether the projection Cπm

(Eq. 17) lies on the facet (inside the FE) or it is outside,
contacting with the edges or vertices. Figure 11 shows two
examples where the projection Cπm is inside and outside the
FE facet.

The values of the cross product sign sa obtained from Eq.
19 for every edge ea are used to obtain the weights of the
shape function at the contact point. The areas needed for the

(a) (b)

Fig. 11 Example of projection Cπm inside the FE facet (a) (facet con-
tact) and outside (b) (no facet contact) for a triangle. a Cπm inside the
facet. b Cπm outside the facet.

Fig. 12 Triangular areas for the calculation of shape function values
in a planar convex quadrilateral

calculation are simply one half of the cross product sign:
�a = sa/2. The weights of the nodal shape functions on the
contact point are then calculated. For a triangle:

N1 = �2

�̂T
, N2 = �3

�̂T
, N3 = �1

�̂T
(26)

where

�̂T = �1 + �2 + �3 (27)

For four-node convex quadrilaterals (Fig. 12 the following
expression can be applied as introduced in Zhong [45]):

N1 = �2�3

�̂Q
, N2 = �3�4

�̂Q

N3 = �4�1

�̂Q
, N4 = �1�2

�̂Q
(28)

where

�̂Q = (�1 + �3)(�2 + �4) (29)

Note that if any of the cross product signs sa evaluated
with respect to the edge ea yields a negative value the check
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Fig. 13 Contact with edge. Vertices belonging to that edge are dis-
carded from contact check

stops since the projection of the centre Cπm lies outside. The
current edge index indexe is stored and it will be the first to
be checked as it has been appointed in Sect. 4.3.

If the projection Cπm (Eq. 17) lies inside the facet, it
becomes the contact point Pc. Due to the highest hierar-
chy level of the facet, the Contact Type Hierarchy finishes
here for this FE. The Distance Hierarchy is now called and
all the necessary contact characteristics are saved.

5.1.2 Edge level

At this level the edge check detailed in Sect. 4.3 has to be
applied for every edge ea with a ∈ [indexe, N ] starting with
the first edge that yielded an outside status at the Facet level.

When contact with the edge ea is found the check at the
lower level for the vertices associated to it, va and va+1, is
discarded (Fig. 13). The contact check with the following
edges cannot be discarded, however, since they are at the
same hierarchy level in terms of Contact Type. The Distance
Hierarchy will determine the validity of the new contact and
eliminate or substitute previous ones. This is a key difference
with the Fast Intersection Test where the check automatically
stops once a contact entity is found.

The nodal weights can be obtained from the η parameter
(Eq. 24) at the edge ea . Figure 14 shows graphically how η

is determined,

Na = 1 − η, Na+1 = η (NN = N0) (30)

Equation 30 shows the values at the nodes connected to
the edge ea . The rest of nodes have a null value for its shape
functions.

If the edge contact check failed but the distance de (Eq. 20)
is lower than the radius (de ≤ R) the closest vertex (based on
the calculation of η) will be checked. The check will proceed

Fig. 14 Weights for an edge contact in a triangle

Fig. 15 Contact with edge and vertex. When contact exist with edge
e3 it can also exists with vertex v2

in any case (found edge, found vertex or none) with the next
edges.

5.1.3 Vertex level

The vertex check is described in Sect. 4.4. Figure 15 illus-
trates why the edge ea has hierarchy over its two vertices
va, va+1 but not over thenon-contiguousoneva+2. The shape
function weights are 1 for the found vertex and 0 for the rest.

As usual the Distance Hierarchy is called after the contact
is detected and, if the contact is valid, its characteristics are
stored.

5.1.4 Contact Type Hierarchy scheme

The scheme of Table 3 assumes that the Fast Intersection
Test has taken place already. For every DE the first loop is
over the found neighbours. The check can be performed in
parallel for every particle in the model.

5.2 Distance Hierarchy

A spherical particle can be, in general, in contact with many
different FE entities. Sometimes these contacts are result of
the penetrations introduced by the penalty method and some
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Fig. 16 Contact between a DE and a FE mesh whose elements are
smaller than the indentation

contacts give redundant or invalid information and, therefore,
should be eliminated. This is the scenario shown in Fig. 16
where contact with elements e©2, e©3 and e©4 is detected. In
a collision of the sphere normal to the plane, the force applied
by the plane surface to the sphere must have also a normal
direction and a magnitude only given by the penetrations and
independent of the position x and y on the plane. Therefore,
the contact force coming from the edges of elements e©2 and
e©4 should not be taken into account. This is solved by the
distance-based hierarchy which is an elimination procedure
that takes place every time a new contact entity is found at
the Contact Type Hierarchy.

The procedure basically compares the contact vectors
against their projections one another. The new contact vector
Vci = C − Pci is projected onto the previously found con-
tact vector Vc j = C − Pc j and vice versa. The following
expressions are obtained:

Pri, j = Vci · Vc j
‖Vc j‖ , Pr j,i = Vc j · Vci

‖Vci‖ (31)

The contact check is performed using the algorithm pre-
sented in Table 4:

Table 5 shows an example of how the elimination proce-
dure is performed for two different possible cases. On the left
side all the found contact vectors are represented. A graphi-
cal interpretation of the projections is also given for the first
example. On the right side, only the final relevant contact
vectors, that the Distance Hierarchy yields, are shown.

In the first situation, no contact with edges of elements e©2

and e©4 is taken into account, since their projections, Pr2,3
and Pr4,3, over the facet contact vector of element e©3 have
the same module as the contact vector Vc3 itself.

In the second situation, the sphere has contact with the
facet of element e©4, the edge of element e©3 and the shared
edge of elements e©1 and e©2 which will be appearing as two
different contact vectors Vc1 and Vc2 given by the Contact
Type Hierarchy stage. These vectors do not appear directly
in the figures in Table 5 but they are calculated by C − Pc1

Table 4 Distance Hierarchy check

Given a new found contact i by the Contact Type Hierarchy:

(1) loop over every existing contact ( j = 1, . . . , n)

Project Vci on Vc j :⇒ Pri, j = Vci · Vc j
‖Vc j ‖

Project Vc j on Vci :⇒ Pr j,i = Vc j · Vci‖Vci ‖
if (Pri, j ≥ ‖Vc j‖) :⇒ i is an invalid contact.

Go to (2) (False) and break loop.

else if (Pr j,i ≥ ‖Vci‖) :⇒ j is an invalid contact.

Discard j ! Continue loop.

Go to (2) (True).

(2)Valid contact (True/False)

if (True) :⇒ i is valid contact! Save contact details.

else (False) :⇒ i is an invalid contact! Discard i!.

andC−Pc2, respectively. First, note that either contact with
Vc1 or Vc2 will be arbitrarily discarded by the elimination
procedure since they are mathematically the same vector. Let
us assume the Vc1 is kept and Vc2 discarded. On the other
hand, the projection Pr3,4 of the contact vector Vc3 over
the contact vector Vc4 discards contact with element e©3.
Finally, contacts with element e©4 and e©1 do not discard
each other since their projections one another have a value
of Pr1,4 = 0 and Pr4,1 = 0 (they form a 90◦ angle) and
therefore are smaller than the contact vectors length. Hence
both contacts are taken into account, as it is expected.

The main advantage of this method lies in its wide
generality. It works fine for most of the traditional conflic-
tive situations where multi-contacts and FE transitions are
present. It is consistent and so the order in which the neigh-
bours have been found and stored does not affect the final
result. The tests carried out in the validation (Sect. 6) show
that the force vector always has the appropriate direction.

5.3 Note on types of FE geometries

Taking advantage of the generality of the method, the full
algorithm can be applied directly to any N -sided planar con-
vex polygonal FE. The weights can be calculated with the
barycentric coordinates as introduced in Meyer et al. [23]
and further analysed by Sukumar [36]:

Ni = cot(αi ) + cot(βi )

‖Pc − vi‖2 (32)

The definition of αi and βi is shown in Fig. 17.
Contact surfaces with non-planar quadrilaterals or other

curved elements are not on the scope of this paper. Generally
it involves a minimization problem [43]. However, Chen [6]
proposes an averaging of the normal and a relaxed contact
criterion.
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Table 5 Contact elimination cases

Found Contact Points and Vectors Relevant Contact Vectors

Situation 1

Situation 2

Fig. 17 Angles formed with the vector vi − Pc and each of the two
edges connecting on node i in a polygon

5.4 Note on types of DE geometries

Industrial applications often make use of more accurate
strategies to model the particles rather than using classi-
cal spherical particles. Among the more popular ones are
the superquadrics [39], level set functions [1], or cluster of
spheres [13]. Our choice is to model the particles with the
sphere clustering technique which provides a solution with
a good ratio between accuracy and computational cost and
it adapts perfectly to the presented algorithm and, thus, it

makes the contact search fast and parallelizable applying the
explained technique.

6 Validation

In this section, several examples are carried out to test dif-
ferent aspects of the algorithm performance. First, several
examples are carried out to test its performance in critical sit-
uationswheremost of the literaturemethodswould fail.Next,
an industrial application example serves to test the method
in terms of scalability and parallel computation.

6.1 Benchmarks of critical situations

The following tests do not correspond to practical situations,
but they serve instead to validate the contact calculation
procedure. All benchmarks have been carried out using a
Hertzian contact law [5].

6.1.1 Facet, edge and vertex contact

These first three benchmarks are represented by a sphere,
which has low stiffness in order to achieve large indentation,
contacting three different boundaries meshed with triangles.
In every case, the sphere falls from the same height (1 m)
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Fig. 18 Benchmarks layout
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Fig. 19 Results obtained in the benchmark tests. a Force exerted by
the FEs to the DE. b Position of the centre of the DE

vertically and perpendicular to the contact entity which is,
respectively, a facet, an edge or a vertex. Figure 18 shows the
benchmarks display and Table 6 the simulations parameters.

Since there is no damping applied, the energy should be
conserved and the ball must return to the initial position after
the rebound. The sphere is expected to follow a vertical tra-
jectory with identical results for the three cases.

Graph in Fig. 19a shows that, although the indentation is
greater than the 30 % of the DE radius leading to multiple

contacts with all kind of entities, the force is applied only
in the vertical direction (Y direction). From this, it can be
concluded that the contact elimination procedure performs
correctly. The results are exactly the same in the three differ-
ent scenarios (facet, edge and vertex contact). It verifies also
that there is no energy gain or dissipation since the rebound
maximum height is the same always as it can be observed
in Fig. 19b. This is a good test to see that the method works
properly for normal contacts of all three types: with facet,
with edge and with vertex independently of the mesh and the
indentation achieved (always lower than the radius).

6.1.2 Continuity of contact

It is essential to ensure continuity of the contact force in the
non-smooth contact regions and FE element transitions. In
the following example, the continuity of the normal force
is presented. A DE is set to move along the boundary and
its contact transfers from the surface of a triangular element
(facet contact) to one of its edges or vertices. A frictionless
and rotation-free sphere has a trajectory path enforced (as
shown in Fig. 20) so that the indentation is always constant
(0.01m either in contact with the facets f 1 and f 2 orwith the
edge e). The simulation parameters are the ones presented in
Table 6.

If continuity is met, the force module must always be the
same. The direction of the contact force should evolve from
vertical (normal to f 1) to horizontal (normal to f 2) with a
smooth transition. This is achieved due to the fact that the
algorithm gives higher hierarchy to the edge and the vector
is calculated joining the contact point and the centre of the
sphere (Fig. 21).

The results show that no discontinuities arise when the
contact evolves from facet contact to edge contact and vice
versa, being the contact force constant along all the simula-
tion and equal to 76.063 N, as expected.

The continuity of the normal forces in a concave transition
and the tangential forces across different elements is not fully
assured. Even though the error is very small for practical
situations, it is something which we consider important to
quantify and be aware of. This is reported in Sect. 7.
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Fig. 20 Simulation scheme

Table 6 Simulation parameters

Material properties

Radius (m) 0.3

Density (kg/m3) 100

Friction coefficient DE/FE 0.3

Young modulus (Pa) 105

Poisson ratio 0.2

Calculation parameters

Initial velocity (DE) (m/s) [0.0, 0.0, 0.0]

Gravity (m/s2) [0.0,−9.81, 0.0]

Time step (s) 10−5

Neighbour search frequency 5

6.1.3 Multiple contact

The goal of this test is to check that the method determines
correctly the case of a sphere contacting more than one ele-
ment. The set up of the example consists of three spheres
falling onto a planewith three different shape holes, as shown
in Fig. 22a. Simulation parameters are presented in Table 7.
In this example, damping is applied.

Graph in Fig. 23 shows the velocitymodulus of each of the
DEs involved in the simulation. It can be seen that the spheres
velocity after 2.5 s of simulation is close to 0, as expected
and a final equilibrium position is reached for every sphere
involving simultaneous contacts with vertices and edges.

6.1.4 Mesh independence

The following example simulates a ball sliding on a plane
with friction. The sphere is set in vertical equilibrium upon

the plane and a horizontal velocity is imposed. The sphere
should start sliding, while its angular velocity will progres-
sively increase up to a constant value at which the sliding
event finishes and only rolling occurs thereafter. This is
schematically depicted in Fig. 24a.

The analytical solution can be calculated to validate the
simulation using equilibrium equations with kinematic com-
patibility conditions and the basic Coulomb friction law. The
moment of inertia of a sphere is Iθ = 2/5mR2. The following
is obtained for the combined sliding and rotation phase:

v(t) = v0 − μgt (33)

x(t) = v0t − 1/2μgt2 (34)

ω(t) = Rμmg

Iθ
t = 5μg

2R
t (35)

Equation 35 comes from integrating the angular accelera-
tion ω̇ for the case zero initial angular velocity. The constant
rolling event occurs when the tangential velocity v matches
the angular velocity ω times the radius R:

v = Rω

tc = 2v0
7μg

(36)

For time t > tc, the equations of motion are as follows:

v(t) = 5

7
v0 (37)

x(t) = 12v20
49μg

+ 5

7
v0(t − t0) (38)

ω(t) = 5v0
7R

(39)

Fig. 21 Force applied by the
surface and the edge to the
sphere at different instants of the
simulation. a Contact f 1. b
Contact e. c Contact e. d
Contact f 2
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Fig. 22 Multiple contact test geometry

Table 7 Simulation parameters

Material properties

Radius (m) 0.3

Density (kg/m3) 100

Friction coefficient DE/FE 0.3

Young modulus (Pa) 106

Poisson ratio 0.2

Restitution coefficient 0.4

Calculation parameters

Initial velocity (DE) (m/s) [0.0, 0.0, 0.0]

Gravity (m/s2) [0.0,−9.81, 0.0]

Time step (s) 10−5

Neighbour search frequency 1

The set up of the simulation is shown in Fig. 24b. Two
cases are compared, one involves sliding on a plane dis-
cretized by a single quadrilateral element, while in the other
case the plane is discretized by 80 triangular elements. The
parameters of the simulation are the same as in the previous
example, detailed in Table 7. The spheres are given an initial
velocity of 5m/s in the x direction. The simulation has been

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 23 DEs velocity

run for 1 s. The simulation results are plotted together with
the analytical solution in Fig. 25.

Only one numerical solution was included in the plot of
Fig. 25 since the difference between meshes turned to be
negligible. In Table 8 the values of the displacement (x),
velocity (v) and angular velocity (ω) at the end of the simu-
lation (t = 1) are presented.

This example shows how the results on the DE practi-
cally independent on the boundary mesh selected. On the
other side, for the simulationperformed, the numerical results
agreed perfectly with the theoretical solution. This case does
not show any noticeable discontinuity in the normal and tan-
gential contact forces in the transition betweenboundaryFEs.
In Sect. 7 a note on this issue is given too.

6.2 Algorithm behaviour on industrial examples

In order to evaluate the overall method behaviour, the sim-
ulation of a particle mixer has been carried out. The model
represents a rotary mixer where contact occurs between DEs
and the three different FE entities (facets, edges and vertices)
of the boundary mesh composed by triangular and quadrilat-
eral elements. Additionally, the simulation has been used to
evaluate the parallelization behaviour.

6.2.1 Description of the simulation

Figures 26 and 27 show the geometry and the initial arrange-
ment of the simulation composed by 29559 DEs, 848
triangular FEs and 1600 quadrilateral FEs.

Table 9 presents the material properties and simulation
parameters used.

The calculations have been carried out assuming a
Hertzian contact law [5]. For the integration of the equations
of motion the classical central difference integration scheme
has been used [30]. Additionally, in this test, some rolling
resistancemoment has been added tomodel the particle irreg-
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Fig. 24 Benchmark of a sliding
sphere on a plane with friction.
a Problem definition. b
Simulation set up

(a) (b)
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Fig. 25 Numerical results of the displacement and velocity in X with
the angular velocity in Z compared against the theoretical solution

Table 8 Results at the end of the simulation

Quadrilateral Triangle Analytical

x (m) 3.9021 3.9022 3.9182

Error (%) 0.4102 0.4071 −
v (m/s) 3.5410 3.5410 3.5714

Error (%) 0.8528 0.8528 −
ω (rad/s) −11.9788 −11.9788 −11.9048

Error (%) 0.0062 0.0062 −

Fig. 26 Geometry of the horizontal rotary mixer. Distance expressed
in meters

ularities. In this case, an improvement to the classical rolling
resistance model A presented by Wensrich and Katterfeld
[40] has been developed, in order to avoid the instabilities that

Fig. 27 Mesh used in the horizontal rotary mixer simulation. a DEs
initial arrangement. b Triangular FEs. c Quadrilateral FEs

Table 9 Simulation parameters

Material properties

Radius (m) 0.0035

Density (kg/m3) 1000

Friction coefficient DE/DE 0.5

Friction coefficient DE/FE 0.75

Young modulus (Pa) 107

Poisson ratio 0.2

Rolling friction coefficient 0.001

Restitution coefficient 0.4

Calculation parameters

Rotation velocity (rad/s) 18.85

Time step (s) 5 × 10−5

Neighbour search frequency 1

Simulation time (s) 20.0

appear when ωrel is almost 0. This complete new approach
can be found in [19].

6.2.2 Simulation results and code performance in serial

The DEMPack code was tested in an Intel Xeon E5-2670. It
took 29 h, 20 min and 30 s in serial to run 20 s of simulation
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Table 10 Serial performance of the code for the industrial example

Split fast + H2 Direct H2 method

DE/DE contact search (%) 53.9 51.4

DE/FE contact search (%) 20.7 23.9

Create bins and others (%) 4.5 4.2

Fast intersection (%) 15.1 –

H2 method (%) 1.2 19.7

Total time (s) 105,630 111,041

Fig. 28 Spheres arrangement after 20 s

which comprehends 400,000 time steps. Some results about
the performance of the code are presented in Table 10. In
this specific case, which involves approximately 30k DE and
2.5k FE, it can be seen that the calculation effort for DE/FE
contact search represents about the 20% of the total CPU
time.The results showed that by splitting theFast Intersection
and the H2 Method the code turned to be 5% faster which
is a significant improvement for this case, where most of the
contacts are DE/DE. It can be also seen that the cost of the
H2 Method is very low (only 1%) when the split is applied.

Figure 28 displays the arrangement of the spheres after 20
s. This mixer simulation has been considered due to the great
amount of contacts (DE/DE and DE/FE) that it involves.

6.2.3 Code performance in parallel

Graphs in Fig. 29 show the code performance using an
OpenMP parallel computing strategy. Based on the results
it can be concluded that, despite being the speedup far from
the ideal linear case, the fact that the contact check algorithm
is totally parallel helps to the performance.

6.2.4 Performance of the search algorithm

An analysis has been performed within this industrial exam-
ple in order to detect how many FE are treated in each of
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Fig. 29 Scalability test results

the stages introduced in Fig. 4 in Sect. 3 where the Local
Resolution was presented split into a Fast Intersection Test
(Sect. 4) and the Double Hierarchy Method (Sect. 5). Fig.
30 shows the results for the first 0.5 s of simulation which
correspond to 1.5 turns of the helices. The cumulative counts
for the following variables are represented:

• FE Potential: The number of times the Fast Intersection
Test (Sect. 4) is called (number of FE potential neigh-
bours to be checked) averaged to the number of particles.

• FE with contact: The average number of FE per particle
that yields a positive result (have intersectionwith sphere)
in the Fast Intersection Test.

• Entitywith valid contact: The average number of relevant
entities per particle determined by the H2 Method.

Figure 30 shows that the number of Potential Neighbours
to be treated is large compared to the FE with actual contact,
a ratio of 30:1. Due to this fact and the improvement in per-
formance shown in Table 10 it can be concluded that it is a
good choice to perform the split which additionally brings
modularity to the code.
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7 Method limitations

7.1 Normal force in concave transitions

A limitation of this method which is common to the revised
penalty-based contact algorithms occurs when a DE contacts
with a slightly non-convex surface. Here the error introduced
by the method is analysed and quantified for normal forces
in the case of spherical DE in concave transitions.

The penalty method introduces an indentation which
accounts for the local elastic deformation of the discrete ele-
ment during a contact event and allows the imposition of the
contact condition in a weak form. The use of rigid geome-
tries with non-physical indentation introduces error in the
contact detection. Constitutive laws such as Hertz-Mindlin
present a limitation in terms of small deformation in order to
work fine. This rule does not apply, however, for non-smooth
regions where the basic assumptions are not met and contact
detection errors arise.

A sphere moves horizontally in a plane πa until it reaches
a transition with other plane πb which forms an acute angle
α with the plane πa (Fig. 31a). In this situation, a region
can be defined between the current contact plane πa and the
plane πn formed by the common edge and the normal of
the second plane nb. Whenever the sphere centre is in that
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Fig. 30 Counts of FE checks in different stages
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Fig. 31 Error emerging in concave transitions. a Error region. b Con-
tact with 2 planes

region a discontinuity in forces will occur. The contact with
plane πb is detected only when the centre C has a normal
projection onto the plane πb forming a tangential contact.
Figure 31b shows that when the new contact is detected,
some indentation t is existing already and, therefore, the new
contact force value introduces a discontinuity.

From the geometrical relations, the error ξ can be quanti-
fied as a ratio of the absolute value of the new force ‖Fnb‖
over the absolute value of the current force ‖Fna‖. This value
can be expressed in function of the change of angle α and
indentation ratio t/δ relative to the sphere radius R:

ξ = ‖Fnb‖
‖Fna‖

=
{
t/δ for linear case
(t/δ)3/2 for Hertzian case

(40)

Using the geometrical relationships and setting γ = δ/R
as the relative indentation measure, the following expression
is obtained:

t = R(cos(α) + γ − 1)

cos(α)
(41)

Finally the following expression is found:

ξ =
⎧
⎨

⎩

cos(α)+γ−1
γ cos(α)

for linear case
(
cos(α)+γ−1

γ cos(α)

)3/2
for Hertzian case

(42)

The solution is plotted for the two cases (linear and
Hertzian) for a different change of angle α and different γ

indentation ratios.
Figure 32 shows that for an indentation of 1%of the radius

(γ = 0.01) and a small change in the angle of about 10◦ no
error is produced, however, for an indentation of 3.3% the
error measure reaches a value of ξ = 0.41 for the Hertzian
case (ξ = 0.55 for the linear case) which turns into a sudden
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force of magnitude ‖Fnb‖ = 0.41‖Fna‖ in the direction of
nb. The error tends to 0 as the angle change tends to 90◦
and does not occur for obtuse angles. On the other hand,
the lower the change of angle α is, the greater the error is.
It is bounded to 100% of error ξ = 1.0 for the extreme
case of coplanar transition. Luckily this very frequent case
is considered by the Distance Hierarchy (Sect. 5.2) where
a tolerance is used to detect the coplanar cases. Note that
the error depends only on geometrical conditions and the
indentation ratio relative to the sphere and not to the boundary
FE mesh quality, the dependence of which has been solved
using the Double Hierarchy Method.

7.2 Tangential force across elements

InmanyDEMcodes, the tangential force is applied bymeans
of an incremental scheme which requires to keep track of the
forces that the particle has with each neighbour. The prob-
lem arises when a particle moves across two elements and
the historical tangential force resets to zero because the con-
tact is determined with the new element. This is common
to all reviewed contact algorithms in the introduction. Even
though it could be solved with a complex data structure, the
error introduced is very low for practical situations. This has
been proved in Sect. 6 where even the case of mesh indepen-
dence,which combines tangential sliding and rolling, showed
a negligible error.

The cases with larger error will be the ones with sliding
where the tangential force is kept at its maximum (generally
Coulomb friction value) and are much higher than during a
rolling event. In this situation the error can be measured in
terms of the missing work in a force-displacement diagram
as the one shown in Fig. 33 which corresponds to a linear
contact law [7,33] for normal and tangential directions.

In average, a particle with linear stiffness values Kn and
Kt sliding across a transition of finite elements of character-

Fig. 33 Schematic force-displacement diagram with the discontinuity
introduced by an element transition during a sliding event with a linear
contact law

istic length L with a relative indentation of δ will have the
following error in the work done by the tangential force:

Et = ‖Error Area‖
‖Total Area‖ = 1/2(μδKn)

2/Kt

μδKnL − 1/2(μδKn)2/Kt

= μδKn/Kt

2L − μδKn/Kt
≈ μ

2

Kn

Kt

δ

L
(43)

For example, using the linear model in Shäfer [33] which
suggests a ratio Kn/Kt of 7/2, with a particle-structure
friction coefficient μ = 0.3, the error in the integral of
the tangential forces over the displacement has a value of
Et = 0.525 δ/L . That means that a large indentation of 10%
the characteristic size L of the FE yields only an error of
approximately 5%.

8 Concluding remarks

The new contact detection algorithm, the Double Hierarchy
Method, is presented in this paper. Themethod, besides being
accurate, robust and efficient, has been developed to perform
well in extreme cases, where DEs and FEs sizes are dif-
ferent or where the relative indentation between them can
be considerably high. This method can be used with differ-
ent types of contact FEs providing a high level of accuracy
in terms of contact force continuity in FE transitions and
allowing multi-contact scenarios with high mesh indepen-
dence and low effort. It has been designed to make it easy to
implement and adapt to an existing DEM code. In addition,
the algorithm has been conceived to be fully parallelizable,
something essential in order to allow the calculation of real
cases with a great amount of discrete and finite elements.

Contact calculation is split into two stages: Global Neigh-
bour Search and Local Contact Resolution. Furthermore, the
Local Contact Resolution level is split into two phases. The
first one, Fast Intersection Test, aiming to determine which
FE is in contact with each DE, discards very efficiently all
the FEs not contacting the DE. Once the FEs with contact are
known, the second phase, Double Hierarchy, takes place in
order to accurately calculate the contact characteristics and
to remove invalid contacts.

The accuracy and robustness of the proposed algorithm
have been verifiedwith different benchmark tests. Three tests
were developed in order to evaluate contact elimination and
energy conservation (see Fig. 18) in situations that involve
the three possiblemaster contact entity: a facet, an edge and a
vertex.Additional tests showhow the code behaves regarding
to multi-contact (see Fig. 22a), contact continuity (see Fig.
20) and mesh independence (see Fig. 24).

An industrial example (Sect. 6.2) is presented to show the
computational efficiency. Shared memory parallelization has
a performance which is limited by the amount of serial parts
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of the code. Having the possibility to parallelize an important
part of the code, which is the contact detection, allows the
computation speed to scale up. The results proved that the
split of the Local Resolution into a Fast Intersection and
the Double Hierarchy Method greatly improves the overall
performance.

We highlight that there are some limitations for the use
of this method that have been clearly defined and analysed
in this paper. First, any geometry can be used for the contact
elements (triangle, quadrilateral, polygon) only if they are
convex as it has been detailed in Sect. 5.3. In second place
it has been highlighted that this method is best suited when
predicting the contact forces on the DE side and should be
only used to calculate the forces on the FE side under cer-
tain conditions detailed in Sect. 2.2.2. Finally it has been
appointed that the method works perfectly in for the normal
force calculation with surfaces that present a convex transi-
tion even for very large indentations (see examples in Sect.
6.1). It may present some discontinuities in the normal con-
tact forces, however, when dealing with concave transitions
between surfaces that form small angles if the indentation is
not small. Also, in sliding situations across different elements
which a non-small indentations, some error in the continuity
of tangential contact forces can arise. The error introduced in
these cases, which ismost of the times negligible for practical
cases, has been quantified in Sect. 7.

Notwithstanding those limitations, the proposed algo-
rithm can be used in a wide range of DE/FE simulations.
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